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Abstract. We survey the genesis and development of higher al-
gebraic K-theory by Daniel Quillen.

Introduction

This paper1 is dedicated to the memory of Daniel Quillen. In it, we
examine his brilliant discovery of higher algebraic K-theory, including
its roots in and genesis from topological K-theory and ideas connected
with the proof of the Adams conjecture, and his development of the
field into a complete theory in just a few short years. We provide a few
references to further developments, including motivic cohomology.

Quillen’s main work on algebraic K-theory appears in the following
papers: [55, 57, 59–64]. There are also the papers [34, 36], which are
presentations of Quillen’s results based on hand-written notes of his
and on communications with him, with perhaps one simplification and
several inaccuracies added by the author. Further details of the plus-
construction, presented briefly in [57], appear in [7, pp. 84–88] and
in [75]. Quillen’s work on Adams operations in higher algebraic K-
theory is exposed by Hiller in [45, sections 1-5]. Useful surveys of
K-theory and related topics include [38, 39, 46, 79] and any chapter in
Handbook of K-theory [27].

I thank Dale Husemoller, Friedhelm Waldhausen, and Chuck Weibel
for useful background information and advice.
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1. The Grothendieck group

Grothendieck introduced the abelian group K(X), known as the
Grothendieck group, where X is an algebraic variety, in order to for-
mulate his generalization of the Riemann-Roch Theorem to higher di-
mensions [3, 21]. It is defined by generators and relations, where there
is one generator [E] for each vector bundle of finite rank E on X, and
there is one relation [E] = [E ′] + [E ′′] for each short exact sequence
0 → E ′ → E → E ′′ → 0. The tensor product operation E ′ ⊗ E ′′

provides a multiplication operation on K(X) that makes it into a com-
mutative ring.

For an affine variety X with coordinate ring R we let K(R) denote
the group. In that case a vector bundle can be regarded as a finitely
generated projective R-module, so all short exact sequences split. Thus
the identity [E ′ ⊕ E ′′] = [E ′] + [E ′′] implies the defining relation, so
could also serve as a defining relation.

For k ∈ N, the symmetric power operation E 7→ SkE induces a
natural function σk : K(X) → K(X), and the exterior power op-
eration E 7→ ΛkE induces a (closely related) natural function λk :
K(X) → K(X); for k > 1 the operations are not compatible with
direct sums, and thus the corresponding functions are not compatible
with addition. The closely related and derivative Adams operations
ψk : K(X) → K(X), for k ∈ N, introduced in [4], are ring homomor-
phisms characterized by the identity ψk[L] = [L⊗k], for any line bundle
L.

Various cohomology theories provide a graded ring H ·(X) for each
smooth quasi-projective variety X and harbor Chern classes ck(E) ∈
Hk(X) for each vector bundle E with properties reminiscent those of σk

and λk. Moreover, there is a Chern class function ck : K(X)→ Hk(X)
and a related ring homomorphism ch : K(X) → H ·(X)⊗Q, in terms
of which the Grothendieck-Riemann-Roch theorem is phrased.

2. Topological K-theory

Atiyah and Hirzebruch [9] (see also [6,8]), motivated by Grothendieck’s
work, considered a finite simplicial complex X and defined K(X) to be
the Grothendieck group of the category of topological vector bundles
E on X. They used suspension to shift the degree by −1 and Bott
periodicity to shift the degree by ±2, thereby extending it to a graded
ring and generalized cohomology theory K∗(X), known as topological
K-theory, with K0(X) = K(X) and with K∗(X) ∼= K∗+2(X). The
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Atiyah-Hirzebruch spectral sequence expresses its close relationship to
the singular cohomology groups Hk(X;Z).

3. K1 and K2

Motivated both by Grothendieck and by Atiyah-Hirzebruch, Bass,
partly in collaboration with Alex Heller, sought the algebraic ana-
logue of the topological K-groups K∗(X), at least for an affine scheme
with coordinate ring R. Thus they sought a graded ring K∗(R) with
K0(R) = K(R) (lowering the index to take into account the contravari-
ance between rings and spaces). Bass [11] defined K1(R) to be (some-
thing isomorphic to) the abelianization of the infinite general linear
group GL∞(R), which consists of invertible matrices whose rows and
columns are indexed by N and are equal to the identity matrix except
in finitely many locations. The map R× → K1(R) is an isomorphism
when R is a field or a local ring.

According to Bass: “The idea was that a bundle on a suspension is
trivial on each cone, so the gluing on the ‘equator’ is defined by an auto-
morphism of a trivial bundle, E, up to homotopy. Thus, topologically,
K−1 is Aut(E)/Aut(E)o, where Aut(E)o is the identity component of
the topological group Aut(E). Since unipotents are connected to the
identity (by a straight line, in fact) they belong to the identity compo-
nent. This indicated that the algebraic definition should at least include
the elementary subgroup of GLn(R). Since that turned out (thanks to
Whitehead) to be (stably) exactly the commutator subgroup, that led
to the algebraic definition of K1.”

Good evidence for the appropriateness of numbering the groups K0

and K1 as adjacent members of a series is provided by the Localization
Theorem [15, p. 702] (see also [43, Theorem 10.5] and [11, p. 43]) for a
Dedekind domain R, which provides an exact sequence

⊕pK1(R/p)→ K1(R)→ K1(F )→ ⊕pK0(R/p)→ K0(R)→ K0(F )→ 0,

where p runs over the maximal ideals of R, and F is the fraction field
of R.

Further evidence is provided by various results about Laurent poly-
nomial rings. For a regular noetherian ring R, there is an isomorphism

K1(R[t, t−1]) ∼= K0(R)⊕K1(R)

that mixes K0 and K1 (see [12, Theorem 2] and [43, Theorem 10.6]),
contrasting with the more orderly behavior of the polynomial ring
over R, for which there are isomorphisms K0(R) ∼= K0(R[t]) (due to
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Grothendieck, see [67, Section 9]) and K1(R) ∼= K1(R[t]) (see [12, The-
orem 1]). For an arbitrary ring, there is Bass’ Fundamental Theo-
rem [15, Chapter XII, Theorem 7.4, p. 663], which provides the split
exact sequences

0→ K1(R)→ K1(R[t])→ K0(NilR)→ 0

and

0→ K1(R)→ K1(R[t])⊕K1(R[t−1])→ K1(R[t, t−1])→ K0(R)→ 0.

Here NilR denotes the category of those R[x]-modules whose underly-
ing R-module is finitely generated and projective, and upon which x
acts nilpotently. There is also the related split exact sequence

0→ K1(R[t])→ K1(R[t, t−1])→ K0(NilR)→ 0

of [25, Theorem 2] (which treats the twisted case).

See [17] for Bass’ illuminating discussion of the history of K-theory
up to this point.

Milnor introduced the abelian group K2(R) in [54], defining it as
the kernel of a group homomorphism St(R)→ GL∞(R), where St(R),
the Steinberg group, is defined by generators corresponding to the el-
ementary row and column operations of linear algebra, together with
a handful of obvious relations among them. Hence elements of K2(R)
correspond to the non-obvious relations among the row operations.

Bass and Tate [54, Theorem 13.1] (see also [14]) extended the Local-
ization Theorem by adding one more term on the left, namely K2(F ),
and Bass extended it by adding one more term, K2(R).

Bass makes the following remark in 1964 [11]: “The natural extension
of the functors Ki, i > 2, to our algebraic context has so far evaded a
definitive appearance.”

4. Quillen’s first definition of the K-theory of a ring

Quillen’s first definition of higher algebraic K-theory was announced
in [57], which covered his work at the Institute for Advanced Study dur-
ing the year 1969-70. Other contemporaneous and correct definitions
of higher algebraic K-theory were presented by Swan [71], Gersten [28],
Karoubi-Villamayor [47], and Volodin [74], but Quillen’s was the most
successful.

For a group G, there is a classifying space BG, whose only non-
vanishing homotopy group is its fundamental group, with π1BG ∼= G.
Key to Quillen’s proof [56] of the Adams Conjecture [5] (see also [24])
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was his discovery that for each power q of a prime number p there is
a homology equivalence BGL∞(Fq) → Fψq. Here Fq is a finite field
with q elements, and Fψq is the homotopy fiber of ψq − 1 acting on
the connective spectrum BU representing topological K-theory. The
map is constructed using representation theory and Brauer lifting to
pass from representations of GLnFq to representations of GLnC; on
fundamental groups it amounts to taking the determinant of a matrix.
Since Fψq has a binary operation on it arising from direct sum of
complex vector bundles, that makes it a monoid up to homotopy; such
a space is called an H-space.

Quillen has attributed the following idea to Dennis Sullivan. One
may add 2-cells to BGL∞(Fq), glued to it along their boundary circles,
to kill the elements of the fundamental group corresponding to matrices
of determinant 1; that also changes the second homology group, which
can be restored it to its former value by adding 3-cells. The resulting
space has the same homology groups as BGL∞(Fq), and thus has the
same homology as Fψq, by virtue of the homology equivalence of the
previous paragraph. The space has the same fundamental group as
Fψq, so one can check that it is homotopy equivalent to Fψq.

This way of adding cells to a space was probably motivated by well-
known work of Kervaire on the construction of compact closed mani-
folds that are homology spheres [48]. He starts with a finitely presented
group G with H1G = H2G = 0. Expressing G as a quotient F/R of
a free group F , he finds a closed compact manifold N of dimension d
(for any d ≥ 5) with F as fundamental group. Using spherical modi-
fications, an analogue of adding cells that ensures the result is still a
manifold, Kervaire kills the subgroup R of π1N = F , obtaining a man-
ifold N ′ whose fundamental group is G and with H1N

′ = 0. Then he
kills the generators of the free abelian group H2N

′, obtaining a man-
ifold N ′′ whose fundamental group is G with the same homology as a
sphere of dimension d. A rough parallel with Sullivan’s idea is drawn
by replacing F by GL∞(Fq), taking N to be BGL∞(Fq), taking R to
be the subgroup SL∞(Fq), and observing that H1R = 0.

Replacing Fq by an arbitrary ring R, Quillen started with BGL∞(R)
and used Sullivan’s idea to kill the classes in its fundamental group
corresponding to elementary matrices, i.e., those matrices which differ
from the identity matrix at a single off-diagonal spot. The result is a ho-
mology equivalence from BGL∞(R) to a space he called BGL∞(R)+;
the process for constructing it is referred to as the plus-construction.
The same cells work for every ring, rendering the operation functorial.
(Curiously, it even suffices to use a single 2-cell and a single 3-cell.)
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Quillen used the direct sum of matrices, with rows and columns inter-
leaved, to prove that BGL∞(R)+ is an H-space; for that he had to
show that the choice of interleaving function NtN ∼= N does not mat-
ter. Evidently π1BGL∞(R)+ = H1BGL∞(R)+ = H1BGL∞(R) =
GL∞(R)ab = K1(R), and Quillen was able to produce an isomorphism
π2BGL∞(R)+ ∼= K2(R) (see, for example, [64, Section 7, Corollary
5]). Quillen then defined the higher algebraic K-groups by setting
Kn(R) := πnBGL∞(R)+ for n > 0. The groups are abelian: K1(R) by
construction, and Kn(R), for n > 1, because higher homotopy groups
are abelian.

The homotopy equivalence between Fψq and BGL∞(Fq)
+, together

with the definition of Fψq, yields a complete computation of the K-
groups of Fq, namely, that K2iFq = 0 and K2i−1Fq

∼= Z/(qi − 1)Z, for
i > 0.

There is an impressive corollary. Let F̄ denote the algebraic closure
of Fp; it is the filtered union of the finite fields Fq. Then, for any prime
number ` prime to p, the `-adic completion of BGL∞(F̄)+ is homotopy
equivalent to the `-adic completion of BU . Thus the algebraic K-
theory of F̄ is almost the same as topological K-theory, when viewed
from the perspective of homotopy with finite or pro-finite coefficients.
The generalization of that statement to any algebraically closed field of
characteristic p was conjectured by Lichtenbaum and proved by Suslin
in [70].

5. Two more definitions of the K-theory of a ring

Later, as reported in in [34], Quillen invented another way to con-
struct a homology equivalence from BGL∞(R) to an H-space S−1S,
which we may call the localization construction. It can replace the plus-
construction as a definition of the groups Ki(R). In [66], as a way of
formulating some ideas of Quillen, Segal introduced Γ-objects, as a way
to generalize the classifying space of a group; it is closely related to the
localization construction and provides motivation for subsequent defi-
nitions of K-theory that incorporate exact sequences; it also provides
an alternative definition of the groups Ki(R). Both ways are better
than the plus-construction, because the group K0(R) is not divorced
from the higher homotopy groups, and natural deloopings (spectra)
are available. (Because K0(R) participates in exact sequences involv-
ing K1 where the boundary maps are nonzero, it would be unnatural to
write the product K0(R)×BGL∞(R)+ and expect it to serve a useful
purpose, unless K0(R) happens to be generated by [R1].)
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Suppose T is a monoid, and consider the construction of a universal
homomorphism T → G to a group G. One way is to let G be the group
with one generator [t] for each element t ∈ T , modulo all relations of
the form [t′ + t′′] = [t′] + [t′′]. Another way, which works when T is
commutative, is to let G be the set of equivalence classes of pairs [t, t′],
where the equivalence relation is generated by the requirement that [t+
t′′, t′ + t′′] = [t, t′]. Both ways can be realized topologically, as follows.
Consider the space X1(T ) with: one vertex v; an edge (t) starting
and ending at v for each t ∈ T ; a triangle bounded appropriately
by (t′), (t′′), and (t′ + t′′) for each pair t′, t′′ ∈ T ; and with higher
dimensional simplices incorporated following the same pattern. It is a
basic fact that G ∼= π1X1(T ). Consider also, for T commutative, the
space X0(T ) with: a vertex (t, t′) for each pair; an edge connecting
(t + t′′, t′ + t′′) to (t, t′) for each triple; and with higher dimensional
simplices incorporated following the same pattern. One sees that G ∼=
π0X0(T ). In both cases, the advantage derived from incorporating
higher dimensional simplices is that when T is a group G, the other
homotopy groups of the two spaces vanish, and the space X1(G) is the
classifying space BG.

Now consider replacing the monoid T by a category such as the cate-
gory P(R) of finitely generated projective modules P over a ring R; the
direct sum operation P ⊕ P ′ makes P(R) into a commutative monoid,
except that commutativity and associativity involve isomorphisms in-
stead of equalities. Segal [66] takes the isomorphisms into account to
produce a Γ-category, which we may call IsomP(R)⊕, consisting of the
direct sum diagrams in P(R) and their isomorphisms. From it is made
a space | IsomP(R)⊕|, analogous to X1(T ) above. Quillen’s localiza-
tion construction also takes the isomorphisms into account but makes a
space BS−1S(P(R)) from P(R) analogous to X0(T ) above. The space
BS−1S(P(R)) turns out to be homotopy equivalent to the loop space
of | IsomP(R)⊕|.

The desired homology equivalence BGL∞(R) → BS−1S(P(R)) is
constructed [34, p. 224] from the automorphisms of the free modules
Rn. The idea of the proof is that, at least homologically, the local-
ization construction can be considered as a direct limit construction,
in the same way that a ring of fractions S−1R, regarded as an R-
module, can be viewed as a direct limit of copies of R. Thus one
has the following pair of alternative definitions of direct sum K-theory:
Ki(R) := πiBS

−1S(P(R)) and Ki(R) := πi+1| IsomP(R)⊕|, for i ≥ 0.
An alternative approach to the same circle of ideas is presented in [64,
Section 7].
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6. K-theory of exact categories

Quillen’s proof [60] of the extension, to higher K-groups, of the Lo-
calization Theorem for a Dedekind domain R, depends on the use of
categories not of the form P(R), such as the categoryM(R) of finitely
generated R-modules. In such a category, there are short exact se-
quences that do not split and hence do not arise from a direct sum
diagram, so a new construction is required to produce the right exact
sequence K-theory space from such a category.

The way to modify Segal’s construction | IsomP(R)⊕| to incorporate
short exact sequences was perceived early, by Segal and by Waldhausen,
and it is motivated directly by the definition of the Grothendieck
group. For this purpose, consider an exact category M as defined
by Quillen [60]: it is an additive category together with a family of
sequences 0 → M ′ → M → M ′′ → 0 called short exact sequences that
satisfies appropriate formal properties. An additive functor between
exact categories is called exact if it sends exact sequences to exact se-
quences. The S.-construction, named thus for Segal by Waldhausen,
yields a space |S.M|, which is analogous to X1(T ) above; it has one
vertex v; it has an edge (M) starting and ending at v for each M ∈M;
it has a triangle bounded appropriately by (M ′), (M ′′), and (M) for
each short exact sequence 0 → M ′ → M → M ′′ → 0 of M; and
it has higher dimensional simplices corresponding to filtrations. Its
fundamental group is K0M, so πi+1|S.M| would be an appropriate
definition of Ki(M).

The appropriate way to incorporate short exact sequences into the
definition of BS−1S(P(R)) to produce a space |GM| analogous to
X0(T ), with Ki(M) = πi|GM| for all i, was discovered in 1987 [32].
The first algebraic description of the K-groups of an exact category
not involving homotopy groups was found in 2011 [41].

Quillen’s letter to Segal [58] reveals an interesting bit of history. He
says that he thought a lot about Segal’s S.-construction, but couldn’t
get very far, aside from using his stable splitting theorem [63, Section
5, Theorem 2’] to prove the equivalence of |S.M| with | IsomP(R)⊕|.
Then, finally, in Spring, 1972, he freed himself “from the shackles of
the simplicial way of thinking and found the category QM”. Later
work [37,69] showed the simplicial way of thinking could accommodate
proofs of many, but not all, of Quillen’s basic theorems, and Wald-
hausen found that the S.-construction admits an additivity theorem
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and thereby produces a usable K-theory for certain non-additive cate-
gories arising from topology that he called categories with cofibrations
and weak equivalences [76, Section 1.2].

We describe now the category QM, introduced in [60] and referred
to above; it is known as the Q-construction.

From each short exact sequence 0 → M ′ → M → M ′′ → 0, by
taking isomorphism classes, we get a subobject M ′ of M and a quotient
object M ′′ of M , and we restrict our attention to these. A subobject of
a quotient object of M is called a subquotient object of M ; a quotient
object of a subobject amounts to the same thing. By definition, an
object of the category QM is an object ofM, and an arrow M1 →M
of QM is an isomorphism of M1 with a subquotient object of M . One
composes two arrows by viewing a subquotient object of a subquotient
object of M as a subquotient object of M .

The next task is to make a space from the category QM by inter-
preting the language of category theory in the language of topology. A
space BC, the geometric realization of C, can be made from any cate-
gory C as follows. The space has: a vertex (C) for each object C ∈ C;
an edge (f) connecting C ′ to C for each arrow f : C ′ → C in C; a
triangle (f, g) joining the three edges f , g, and gf for each composable

pair of arrows C ′′
f−→ C ′

g−→ C of C; and higher dimensional simplices
incorporated similarly. A functor F : C → D yields a continuous map
BF : BC → BD. A natural transformation η : F → F ′ between two
functors yields a homotopy between BF and BF ′. If C has an initial
object C, then the space BC is contractible, with a contraction to C.

Quillen defined Ki(M) := πi+1BQM. Quillen has remarked that
the shift of degrees by 1 here seems to be related to the advantage that
the Q-construction has over the plus-construction for proving abstract
foundational theorems. Alternatively, defining KM := ΩBQM as the
K-theory space ofM, where Ω denotes taking the loop space of a space,
we may write Ki(M) := πiKM.

Quillen then introduced two crucial combinatorial tools for proving
homotopy-theoretic statements in K-theory: Theorem A [60, p. 93]
provides a category-theoretic criterion for a functor to yield a homo-
topy equivalence on geometric realizations, together with its attendant
isomorphisms on homotopy groups; Theorem B [60, p. 97] is a general-
ization of Theorem A that produces a homotopy fibration sequence and
its attendant long exact sequence of homotopy groups. Quillen then
proved the following amazing sequence of theorems, most of which were
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written down in January and February of 1973. Many of the proofs in-
volve the clever introduction of ad hoc auxiliary categories and functors
between them, to which Theorems A and B can be applied.

Theorem 1. [60, Theorem 1, p. 102] K0(M) is isomorphic to the
Grothendieck group of M.

Theorem 2. [58] The space BQM is homotopy equivalent to the space
|S.M|.

The homotopy equivalence of the theorem sends the vertex v of
|S.M| to the object 0 of QM, and, for M ∈ M, sends the loop (M)
in |S.M| to the loop that first traverses the arrow from 0 to M that
expresses 0 as a subobject of M , and then traverses, in the reverse
direction, the arrow from 0 to M that expresses 0 as a quotient object
of M .

Theorem 3 (Plus equals Q). [34, p. 224] For a ring R and for all
i ∈ Z, there is an isomorphism Ki(R) ∼= Ki(P(R)), implemented by a
homotopy equivalence ΩBQP(R) ' BS−1S(P(R)).

Theorem 4 (Additivity). [60, Theorem 2, p. 105] Letting E denote
the exact category whose objects are the short exact sequences of M,
the map BQE → BQM×BQM that forgets the middle object and the
maps is a homotopy equivalence. Moreover, if 0→ F ′ → F → F ′′ → 0
is an exact sequence of exact functors from an exact category M to
an exact category M′, then the maps KiM → KiM′ induced by the
functors satisfy the equation F∗ = F ′∗ + F ′′∗ .

Waldhausen provides a non-additive version of this basic theorem
in [76, 1.3.2(4)], and a direct proof is given in [40].

Theorem 5 (Resolution). [60, Corollary 2, p. 110] Let P∞(R) de-
note the exact category of R-modules that have a finite resolution by
modules in P(R). Then the map K(P(R)) → K(P∞(R)) is a ho-
motopy equivalence. Thus if R is a regular noetherian ring, the map
K(P(R))→ K(M(R)) is a homotopy equivalence.

In Quillen’s paper, the theorem is stated more abstractly [60, The-
orem 3, p. 108], and thus is widely applicable to situations where the
objects in one exact category have finite resolutions by objects in a
larger one.

Theorem 6 (Dévissage). [60, Theorem 4, p. 112] Suppose that M
is an abelian category and N is a full subcategory closed under taking
subquotient objects and finite direct sums, such that any object of M



Quillen’s work in algebraic K-theory 11

has a finite filtration whose successive subquotients are in N . Then the
map K(N ) → K(M) is a homotopy equivalence. Thus if every object
of M has finite length, there is an isomorphism KiM ∼=

⊕
DKi(D)

where D runs over the (division) endomorphism rings of representatives
of the isomorphism classes of simple objects of M.

Theorem 7 (Localization for abelian categories). [60, Theorem
5, p. 113] Suppose that M is an abelian category and N is a Serre
subcategory of M, i.e., it is a full subcategory closed under taking
subquotient objects and extensions, so that the quotient abelian category
M/N exists. Then there is a long exact sequence · · · → Ki(N ) →
Ki(M)→ Ki(M/N )→ Ki−1(N )→ . . . .

Theorem 8 (Localization for Dedekind domains). [60, Corollary,
p. 113] Let R be a Dedekind domain with fraction field F . Then there
is a long exact sequence · · · → Ki(R) → Ki(F ) →

⊕
pKi−1(R/p) →

Ki−1(R)→ . . . , where the sum runs over the maximal ideals p of R.

The theorem is a corollary of Resolution, Dévissage, and Localization
for abelian categories.

Theorem 9 (Localization for projective modules). [34, Theorem,
p. 233] Let R be a ring, let S ⊆ R be a multiplicative set of central non-
zero-divisors, let S−1R be the ring of fractions, and let H be the category
of finitely presented S-torsion R-modules of projective dimension 1.
Then there is a long exact sequence · · · → Ki(R) → Ki(S

−1R) →
Ki−1(H)→ Ki(R)→ . . . .

Theorem 10 (Fundamental theorem for K ′). [60, Theorem 8,
p. 122] If R is a noetherian ring, then, letting K ′i(R) denote Ki(M(R)),
there are isomorphisms K ′i(R[t]) ∼= K ′i(R) and K ′i(R[t, t−1]) ∼= K ′i(R)⊕
K ′i−1(R).

Theorem 11 (Fundamental theorem for regular rings). [60,
Corollary, p. 122] If R is a regular noetherian ring, then there are
isomorphisms Ki(R[t]) ∼= Ki(R) and Ki(R[t, t−1]) ∼= Ki(R)⊕Ki−1(R).

Theorem 12 (Fundamental theorem for rings). [34, p. 237] If R
is a ring, then there is an exact sequence 0 → Ki(R) → Ki(R[t]) ⊕
Ki(R[t−1])→ Ki(R[t, t−1])→ Ki−1(R)→ 0.

We consider only schemes that are noetherian and separated in the
sequel. For such a scheme X, we let P(X) denote the exact category
of locally free coherent sheaves on X, and we let M(X) denote the
exact category of coherent sheaves on X. Then we define Ki(X) :=
Ki(P(X)) and K ′i(X) := Ki(M(X)).
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Theorem 13 (Resolution for schemes). [60, p. 124] If X is a regular
scheme, then the map Ki(X)→ K ′i(X) is an isomorphism.

Theorem 14 (Transfer map). [60, p. 126] If f : X → Y is a proper
map of schemes, and either it is finite, or X has an ample line bundle,
then there is a transfer map f∗ : K ′i(X)→ K ′i(Y ).

Theorem 15 (Localization for schemes). [60, Proposition 3.2, p. 127]
If Z is a closed subscheme of X and U is its complement, then there is
a long exact sequence · · · → K ′i(Z) → K ′i(X) → K ′i(U) → K ′i−1(Z) →
. . . .

Theorem 16 (Homotopy property). [60, Proposition 4.1, p. 28] If
the map Y → X is flat and its fibers are affine spaces, then the map
f ∗ : K ′i(X)→ K ′i(Y ) is an isomorphism.

This theorem generalizes the Fundamental Theorem for K ′, above.

Theorem 17 (Projective bundle theorem). [60, Proposition 4.3,
p. 129] Let P → X be the projective bundle associated to a vector
bundle E of rank r on X. Assume X is quasi-compact. The powers of
the tautological line bundle provide an isomorphism Ki(P ) ∼= (Ki(X))r.

The analogue of this theorem in topological K-theory follows from
Bott periodicity and the decomposition of complex projective space of
dimension r − 1 into cells of dimension 0, 2, 4, . . . , 2(r − 1). The proof
uses a novel fundamental functorial resolution of regular sheaves on
projective space.

Theorem 18 (K-theory of Severi-Brauer varieties). [60, Theorem
4.1, p. 145] Let X be a Severi-Brauer variety of dimension r−1 over a
field F , and let A be the corresponding central simple algebra over F .
Then there is a natural isomorphism Ki(X) ∼=

⊕r−1
n=0Ki(A

⊗n).

A Severi-Brauer variety is one that becomes isomorphic to projective
space over an extension field of F , and a (finite-dimensional) central
simple algebra over F is one that becomes isomorphic to a matrix al-
gebra over an extension field of F , so this theorem is a generalization
of the previous one. It was used in a crucial way in the paper [53]
of Merkurjev-Suslin to prove a theorem relating K2(F ) to the Brauer
group of a field F , which can be interpreted as a purely algebraic result
that shows how certain central simple algebras over F arise from cyclic
F -algebras, which are given by explicit generators and relations. A gen-
eralization of the Merkurjev-Suslin theorem, the Bloch-Kato conjecture,
served later as the central focus for research in motivic cohomology, as
we mention in section 7.
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Theorem 19 (Filtration by support). [60, Theorem 5.4, p. 131]
Suppose X has finite Krull dimension, and for p ∈ N let Xp denote the
set of points of X of codimension p. Then there is a spectral sequence
E1

pq =
⊕

x∈Xp
K−p−q(k(x))⇒ K ′−p−q(X).

This theorem generalizes the localization theorem for Dedekind do-
mains, above.

Theorem 20 (Bloch’s Formula). [60, Theorem 5.19, p. 137] If X is
a regular scheme of finite type over a field, and Ki denotes the sheaf
on X associated to the presheaf that sends an open set U to Ki(U),
then the cohomology group H i(X,Ki) is isomorphic to the Chow group
of algebraic cycles on X of codimension i modulo rational equivalence.

An algebraic cycle on a scheme X is a formal finite linear combina-
tion, with integer coefficients, of irreducible subvarieties. The divisor
of a rational function on a subvariety is declared to be rationally equiv-
alent to 0.

The theorem above was novel to algebraic geometers, for formerly,
the Chow group could be recovered only rationally from algebraic K-
theory, in terms of the Grothendieck groupK0(X), using the Grothendieck-
Riemann-Roch theorem.

The proof involved proving Gersten’s Conjecture for geometric rings,
which states that the map Ki(Mp(R))→ Ki(Mp−1(R)) is zero if R is a
regular noetherian local ring. HereMp(R) denotes the exact category
of finitely generated R-modules whose support has codimension p or
greater.

A slightly streamlined proof of the main lemma used in the proof
was presented in [35]. A useful application of Quillen’s techniques to
motives of varieties is presented in [29]. One can turn Bloch’s formula
around and view it as a way to define intersection products for algebraic
cycles in contexts where the moving lemma is not available, as in [30].
See also the survey [31].

Theorem 21 (Lambda operations). [45, 3.5 and 4.7] If R is a com-
mutative ring, then the exterior power operations on free R-modules
induce operations λk : Kn(R) → Kn(R), which are homomorphisms
for n > 0 and satisfy the identities of a (special) λ-ring. The corre-
sponding Adams operations ψk : Kn(R) → Kn(R) become diagonaliz-
able after tensoring with Q, the eigenvalues have the form ki with i ≥ 0,
and the eigenspaces depend only on i and not on k > 1. If p is a prime
number and R is a ring of characteristic p, then the map on K-theory
induced by the Frobenius endomorphism x 7→ xp of R is equal to ψp.
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Taking into account the Atiyah-Hirzebruch spectral sequence for the
topological analogue X of the scheme SpecR, one sees that the Adams
eigenspace in Kn(R) ⊗ Q with exponent i serves as an algebraically-
defined analogue of the topologically-defined rational cohomology group
Hn−2i(X;Q), with an added and novel dependence on the weight i,
foreshadowing the later development of motivic cohomology.

Theorem 22 (Finite generation). [36,59] Let R be a finitely gener-
ated commutative ring of Krull dimension at most 1. Then the abelian
group K ′i(R) is finitely generated, for all i.

Thus if R is the coordinate ring of a nonsingular algebraic curve over
a finite field, or is the ring of integers in a number field, then it is regular
noetherian, and Ki(R) is finitely generated. The proof of this theorem
depends on reduction theory for arithmetic groups and its analogue
in finite characteristic. The case i = 0 amounts to finite generation
of the ideal class group of R, and the case i = 1 amounts to finite
generation of group R× of units in R (the Dirichlet Unit Theorem) and
the theorem of Bass-Milnor-Serre [13] that provides an isomorphism
K1R ∼= R×. Bass has asked [16, 9.1] whether the theorem remains true
with no hypothesis on dimension; one may also ask the same question
for motivic cohomology. Little progress has been made, aside perhaps
from [19], which proves finite generation for K0 of a regular arithmetic
surface.

7. Later developments

Quillen’s foundational work, summarized above, laid the foundation
for a host of subsequent inspirational developments, many of which are
exposed in detail in the Handbook of K-theory [27]. One could also
peruse the many preprints at [1] or [2].

For example, there is the line of development that starts with Borel’s
computation [20] of the ranks of the K-groups of a ring of integers in an
algebraic number field F . Borel’s computation inspired Lichtenbaum’s
conjectures [49] that relate the ranks of the K-groups and the orders of
the torsion subgroups of the K-groups to the behavior of the L-function
of F at non-positive integers, generalizing the class number formula of
analytic number theory, and Quillen showed [62, Section 9] how this
ought to relate to étale cohomology. Soulé made concrete progress
in [68], showing, for example, that K22Z contains an element of order
691 and K46Z contains an element of order 2294797. Then, motivated
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by Quillen’s work on the eigenspaces of the Adams operations in The-
orem 21 and by Bloch’s work on regulators for K2 of elliptic curves,
Beilinson [18, 65] generalized the conjectures to arithmetic schemes of
higher dimension, and the field blossomed during the 1980’s and 1990’s
at the hands of Soulé, Bloch, Friedlander, Levine, Rost, Suslin, and Vo-
evodsky (who won a Fields medal for his work), leading to the arrival of
motivic cohomology and motivic homotopy theory as an ongoing enter-
prise [22,51,73], whose high point is the recent proof of the Bloch-Kato
conjecture, spanning several papers, with [42] putting the final touches
on the proof. Consequences for the K-groups of rings of integers in al-
gebraic number fields are exposed in [78]. An important open problem
is to prove the vanishing of motivic cohomology in negative degrees, as
conjectured by Beilinson and Soulé.

There is also the line of development that starts with Waldhausen’s
variation on Segal’s definition of higher K-theory, which accommodates
certain non-additive categories arising from topology, mentioned above.
His additivity theorem [76, 1.3.2(4)], fibration theorem [76, (1.6.4)] and
approximation theorem [76, (1.6.7)] laid the basic foundation for his
algebraic K-theory of topological spaces, which is broad enough to en-
compass the stable homotopy groups of the spheres as an example of
algebraic K-groups, as well as to forge an important connection be-
tween geometric topology and the algebraic K-groups Ki(Z), whose
ranks were computed by Borel. As a result, Farrell and Hsiang [26]
deduced the following result. Let Diff(Sn) denote the space of diffeo-
morphisms of the n-sphere, and assume 0 ≤ i < n/6 − 7. Then the
homotopy group πi Diff(Sn) has rank 0 if i does not have the form
4k − 1, it has rank 1 if n is even and i has the form 4k − 1, and it has
rank 2 if n is odd and i has the form 4k−1. Surveys of that material in-
clude [50] and the more recent [80]. The statement and the careful and
detailed proof of the stable parametrized h-cobordism theorem in [77]
depend on the algebraic K-theory of topological spaces to relate the
geometric topology of manifolds to algebraic K-theory in a succinct
and powerful form. Waldhausen’s basic theorems also laid the founda-
tion for Thomason’s extension of Quillen’s K-theory that incorporates
chain complexes naturally, leading to his localization theorem [72] for
schemes.

A related line of development [33] [52] [23] considers a homomor-
phism f : R → S between simplicial rings or between rings up to
homotopy and relates the relative K-theory K(f) of the map, which
fits into a fibration sequence K(f) → K(R) → K(S), to the relative
cyclic homology or to the relative topological cyclic homology of the
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map. Computability of the latter leads to consequences for the former,
as in [44] and [10].
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C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416–A419. MR 0251717 (40
#4944)

48. Michel A. Kervaire, Smooth homology spheres and their fundamental groups,
Trans. Amer. Math. Soc. 144 (1969), 67–72. MR 0253347 (40 #6562)

49. Stephen Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic
K-theory, Algebraic K-theory, II: “Classical” algebraic K-theory and connec-
tions with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash.,
1972), Springer, Berlin, 1973, pp. 489–501. Lecture Notes in Math., Vol. 342.
MR 53 #10765

50. Jean-Louis Loday, Homotopie des espaces de concordances [d’après F. Wald-
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Secrétariat mathématique, Paris, 1958, p. 18. MR 0177011 (31 #1277)
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