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In the domain of analysis situs Poincaré1 has recently brought us an abun-
dance of new results, but at the same time he has raised an abundance of new
questions that still await settlement. Thus while we have known, for a long
time, a set of necessary and sufficient conditions for the existence of a one-to-
one continuous map between two two-dimensional manifolds, at present such
a system of conditions for three- and higher dimensional manifolds is not
known. Certainly one has a whole series of distinguishing features, thanks to
the work of Poincaré in particular, of multidimensional manifolds (numbers,
groups) which do not change under one-to-one continuous mappings, and
which therefore can be described as topological invariants of the manifolds.
These give necessary conditions for two manifolds to be related one-to-one
and continuously, but we do not know whether agreement of the known in-
variants is also sufficient for the existence of a one-to-one and continuous
relationship.

The following essay2 supplements Poincaré’s work and deals in particular
with the mutual relationship between the known topological invariants, pre-
senting in particular the fact (Section IV) that the “fundamental group” of
the two-sided closed three-dimensional manifolds yields all the other known
topological invariants (thus in addition to the Betti number, which has al-
ready been described by Poincaré, also the Poincaré torsion numbers and

1The following works come under consideration above: “Analysis situs”, Jour-
nal d. l’École polytechnique, 2 ser., Cah.1; “Complément a l’Analysis situs”,
Rend.d.Circ.mat.d.Palermo, V.13; “Second Complément a l’Analysis situs” Proc. Lond.
Math. Soc. 32; “Cinquieme Complément á l’Analysis situs”, Rend. d. Circ. mat. d.
Palermo, v.18. In what follows these works will be cited by “An.Sit.”, “Compl. 1” etc.
The 3rd and 4th compléments (Bull. d. l. Soc. Math. d. France v.30 and Liouv. J. 5 ser.
v.8) as well as the work “Sur les périodes des intégrales doubles” (Liouv. J. 6 ser. v.2)
have the object of applying analysis situs to algebraic surfaces.

2I have given a preview of some of the results in the Wiener Akad.d.Wiss (see Wr.
Ber.115, IIa. p.841 and Anzeiger 1906, Math. nat. Kl. p.349.)
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hence also the number Q introduced in Section III). This result follows in
a simple way from the fact that each discrete finitely generated group has
certain characteristic numbers, which may be called the Poincaré numbers
of the group, and the torsion numbers of first order of a manifold are none
other than the Poincaré numbers of its fundamental group.

Various other questions are discussed in the later sections V-VII. The
first two sections, which serve as an introduction and foundation for what
follows, contain the definitive treatment of the manifold concept on the basis
of a certain presentation called a “cell system,” followed by a sketch of the
objectives and known facts. In this connection it should be remarked that
the presentation of a manifold as a cell system in Section I is of particular
theoretical interest in that it permits the construction of analysis situs free
of the introduction of infinite point sets or function theoretic methods. This
depends on the fact that a cell system is determined by a finite number of
elements and a finite number of relations between them. This possibility of
developing analysis situs purely combinatorially, so to speak, has achieved
importance in the works of Dyck3 and has been systematically presented
by Dehn4 in the most recent Enzyklopädie article. The presentation of the
cell system and the pertinent definitions are guided by intuition up to three
dimensions and are then continued by analogy5.
§§15, 16 of this essay are indeed primarily concerned with continuous

point manifolds, for which intuition is in large measure subordinate to de-
duction. Except for this part of the work, which is to be regarded only as
preparation for the strict treatment of our questions, the emphasis is on the
idea of a cell system independent of its relation to the concept of a point
manifold. This applies in particular to the abovementioned results on the
fundamental group of a cell system as an independent object of study, with
the proof in §13 that the fundamental group is a topological invariant, and
to the content of §19. Equally, it seems desirable to emphasize the rela-
tion between cell systems and point manifolds, indeed to introduce the cell
system so that it has the character of a representation of a manifold, and
to indicate its combinatorial character only incidentally. However, the cell
system has been applied by Poincaré precisely as a method for the analysis
situs of point manifolds, in a most productive way. Of course it turns out

3Math. Ann. 32 and 37.
4Dehn-Heegaard, Analysis situs, Enz. III AB3.
5See the above-cited Enzyklopädie article, Grundlagen, no.8.
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that there are difficulties in carrying over many theorems, derived easily in
the domain of combinatorial analysis situs, to the domain of point manifolds.
Hence the distinction between “topological invariants of the schemata” and
those of manifolds in §2; hence the replacement of the definition of Betti
numbers first given in §6 by another based on the cell system. It is obvi-
ous that many of the difficulties could be avoided by restricting the class of
manifolds considered, e.g., as Poincaré often does, by considering analytic
manifolds. No doubt the method of approximation by analytic functions
would cope with many of the difficulties considered by reduction to the case
of analytic manifolds usually considered by Poincaré, while for other cases a
deeper foundation may be necessary. However, we have confined ourselves to
pointing out the difficulties and unsettled questions, especially since further
intrusion of these questions into an essay devoted essentially to combinatorial
analysis situs is to be avoided.

Now a few words concerning the use made of intuition in what follows.
We have already said that it is used as at least a first step towards settling
questions in certain developments in a few later sections.6 On the other hand,
intuition is also introduced for the sake of clarity in places where there is no
difficulty in proceeding on a purely deductive basis.

I. The schemata of multidimensional manifolds

§1

Demarcation of the point manifolds to be considered

One can consider the most general purpose of analysis situs1 to be the
complete presentation and study of those properties of arbitrary point sets
that are preserved when one passes to a homeomorphic image of the set.
Following Poincaré,2 two point sets are called homeomorphic when there is
a one-to-one continuous correspondence between them.

6There are also a few places (particularly in Section II) in which certain assumptions
are discussed in relation to their admissibility or probability. In a few of the examples
claims are made by appeal to intuition, so that statements derived from them cannot be
regarded as rigorously based, but only as plausible.

1This is the point of view expressed by Hurwitz at the Zürich Congress (Verh. Int.
Math. Kongr. Zürich p.102).

2An. Sit.§2. In this instance it is only applied to continuous manifolds.
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The enormous generality of the problem is reflected by the distance at
which we find ourselves from our goal. Restricting consideration to connected
point manifolds (or to their connected components) corresponds to the needs
elsewhere in mathematics for a better view of the analysis situs of continu-
ous manifolds.3 Our first concern is therefore to circumscribe the concept of
manifold to the extent appropriate for later applications. It seems most nat-
ural to do this by giving intrinsic features that one can prove to be preserved
by one-one continuous transformations, so as to extract from the class of all
point sets those for which the analysis situs of continuous point sets can be
carried out4. Far-reaching results in this direction have so far been obtained
only in the domain of plane point manifolds. As a result, it seems justified
when investigating multidimensional manifolds to use a certain form of pre-
sentation as the definition of manifold (which leads in general to a certain
restriction of the domain of manifolds considered), and to avoid in this way
certain difficulties inherent in the first approach. By a manifold one then
means a point set representable in the prescribed way, or one homeomorphic
to it.

We begin by making a couple of general remarks on the different ways
of presenting manifolds. The principal, and simplest, way to determine
point sets and hence all point manifolds is to give a collection of points
(x1, x2, ..., xn) in the space of n rectangular coordinates,5 where each point is

3Thus it appears to be desirable to know the analysis situs of connected four-
dimensional point manifolds in the theory of algebraic functions of two complex variables.
In this connection we remark incidentally that the Cremona transformations of the space of
two complex variables are certainly not always one-to-one, but may map two-dimensional
point manifolds into points and conversely, and the same also holds for birational trans-
formations of algebraic surfaces. As a result, it is possible that the topological invariants
of the four-dimensional manifolds represented by algebraic surfaces change under bira-
tional transformations (See Picard, C.R.134, p.629 and the work of Poincaré cited above
in Liouv. J. 6 ser., v.2). Thus for function-theoretic problems it may be necessary to
use transformations that are not always invertible, and to study the invariants of such
transformations.

4In order to grasp this idea it suffices to recall the well-known result of C. Jordan,
supplemented by the series of works by A. Schoenflies which have appeared recently.

5Different forms of this presentation, such as equations Fi(x1, x2, ..., xn) = 0 between
the coordinates or by parametric representation, are given by Poincaré (An. Sit.§§1,3,15).
He assumes, e.g., that the functions Fi are differentiable, even analytic. (It is clear that
assuming them to be merely continuous leads to point sets that are far too general.) Ad-
mittedly, in the passage from a manifold defined in this way to a homeomorphic image
the representability by equations with this property may be lost. The requirement that,
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represented by a single n-tuple, and each n-tuple appearing corresponds to a
point of the manifold. But if we look at, say, the points of a lemniscate and
take the double point to be two points of a one-dimensional manifold, with
the neighbourhoods of the latter consisting only of points that can be con-
sidered as neighbours on the same branch, then we have a representation of
a simple closed curve of the same general type as the mode of representation
first considered. Riemann surfaces are an example of this type of represen-
tation for two dimensional manifolds: each point (x, y) of the (x+ iy)-plane
represents not one, but a finite number of points of the manifold, and the
manifold itself is determined by the number of points assigned to each pair
(x, y) and the establishment of their neighbourhoods. Another way to deter-
mine a manifold is to view different n-tuples as representing the same point
of the manifold, for example the corresponding points on opposite sides of
the period parallelogram which defines the algebraic manifold of an elliptic
curve. The general principle that arises here, namely the construction of two-
dimensional manifolds by identification of the boundary segments of bounded
surface pieces, has been especially stressed by Klein.6 The generalization of
the latter form of presentation, which Poincaré in particular has used several
times, and which may be called a “cell system”, will be used as the basis for
what follows.

Generally one can supplement what has just been said about the different
forms of representation of point manifolds by saying that the nature of a
manifold is established on the one hand by giving its points, where, as we
have said, each point is secured by a particular n-tuple (x1, x2, ..., xn), as well
as saying what are considered to be the neighbourhoods of a particular point.
The latter requires some measure of distance, which admittedly can be varied
somewhat without changing the character of the manifold. As an example

for a point set to be regarded as a manifold, all its homeomorphic images must be also,
is then expressed by saying that either a representation by functions with the prescribed
property exists, or else a homeomorphic point set has such a representation. Such difficul-
ties of definition are responsible for our basing the manifold concept on a certain form of
presentation. Obviously it is also necessary, when a property is introduced topologically,
to be able to prove it invariant under one-one continuous transformations of manifolds
of the type considered, e.g., in the present case not merely for transformations realized
by differentiable or analytic functions. It should be mentioned at the beginning that the
satisfaction of this requirement for the presentation which follows, in terms of a “scheme”,
is closely connected with the proof of a later theorem (§2) that two schemata defining
homeomorphic manifolds are themselves homeomorphic.

6See for example Math. Ann. 21 p.141
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of the way such a prescription determines the nature of a manifold, consider
how the plane can be regarded as a surface homeomorphic to the sphere:
one adds a point ∞ to the usual points (x, y), and chooses the distance
between the point ∞ and (x, y) to be, say, 1√

x2+y2
. The distance measure

and neighbourhood concept then give the required notions of continuity and
homeomorphism.7

Regarding the use of the word manifold, it may be said first of all to
denote — in a given form of presentation — a certain particular set of points.
However it is convenient to denote a totality of mutually homeomorphic
manifolds as a manifold itself in an extended sense, so that a particular
member of the totality can be considered as a particular presentation, or
representative, of the manifold (when the word is taken in the extended
sense).8

The description of the cell systems used in the following §§, or as we shall
say, the schemata,9 will be carried out only in the case of two (§2) and three
dimensions (§3). In the case of higher-dimensional manifolds (§4) we can
then confine ourselves to indications.10

7Apart from point manifolds, we can also consider manifolds of other elements (cf.
Klein, Math.Ann. 9 p.480, and 21 p.154); however, provided the elements are determined
by a finite number of coordinates, this yields nothing new.

8When speaking of a point of the manifold in this extended sense one needs to think of
a specific one-to-one continuous relationship between any two representatives, chosen in
such a way that if A, B, C are any three representatives of the manifold, the relationships
between A and B and C respectively associate the same point of C with points of A and
B that are associated with each other.

9Since the expression seems particularly appropriate for manifolds of three or more
dimensions, we shall use the word Schema for the general case, though in a somewhat
different sense from Poincaré (Compl.1, §2, p.290), whose systems we shall describe in
what follows (see §5) as Poincaré relation systems. In order to avoid accumulation of new
terms, I have absorbed this modification into the meaning.

10The representation in question is not taken as a foundation by Poincaré, but is ob-
tained by decomposition of analytically defined manifolds. The development of the anal-
ysis situs of two-dimensional manifolds in terms of their construction from surface pieces
first became known to me from the lectures of Professor Wirtinger (on Algebraic Func-
tions, Vienna, Summer 1904), where the combinatorial side of this development was also
indicated. It was these lectures, together with a later personal communication on the anal-
ogous presentation of three-dimensional manifolds, that stimulated the studies underlying
the present essay. The combinatorial side of the following investigations, in particular the
stepwise construction of schemata by increasing dimension, are also covered by Dehn in
the Enzyklopädie article already cited.
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§2

The schemata of two-dimensional manifolds

The description of each piece of information involved in the schema of a
two-dimensional manifold begins with a special case, in which the schema is
introduced to a certain extent in abstract form, then extended, just as one
does in defining a point manifold.

Let a disk be given, with its perimeter divided into n parts, the dividing
points of which will be called vertices, and the arcs, edges. In addition, let
a rule by given that associates certain edges with certain other edges. The
edges that do not occur in pairs of associated edges will be called free edges.

A particular orientation is chosen to be positive1 for the perimeter of the
disk, and correspondingly a positive and negative direction for each edge.
The rule that associates pairs of edges must say in each case whether the
edges are identified so that the positive direction of one matches the negative
or positive direction of the other. The two types of edge identification will
be called the first kind and the second kind respectively.

The correspondences between the edges and their directions determine
correspondences between the vertices. Let s1, s2, . . . , sn be the edges as they
appear in order around the positively traversed circumference of the disk.
The endpoints of si may be called Ai1 and Ai2, so that the positive direction
of si is from Ai1 to Ai2.

2 Each vertex therefore carries two notations and we
have

(1) An2 = A11, Ai2 = Ai+1,1, (i = 1, 2, . . . , n− 1)

Now suppose two edges sh, sk are identified in the first way; then we
derive the following identifications of vertices:

(2) Ah1 with Ak2

1The choice of this orientation is not an essential piece of information in the schema,
only an aid in describing the correspondences that follow. However when we are dealing
not with manifolds as such (even two-sided ones) but with their orientation or lack of it,
then the choice of orientation of the schema becomes important. We discuss this in §4.

2In the case n = 1 one has a single subdivision point on the circle perimeter, which is
at the same time the initial point and endpoint of the single edge S1.
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Ah2 with Ak1

Conversely, an identification of the second kind matches Ah1 with the ver-
tex Ak1 and Ah2 with the vertex Ak2. By alternately applying the equations
(1) and the identification relations (2) one obtains a grouping of all relations
(1) and (2) into series of the following kind

... Ah−1,2 = Ah1 associated with Ak2 = Ak+1,1 ...

and these series are continued to left and right until either a repetition occurs
or the series breaks off. The latter obviously occurs at the endpoint of a free
edge. In particular, a vertex that lies between two adjacent free edges si−1
and si gives rise to a series consisting of the single equation

Ai−1,2 = Ai,1

All the vertices appearing in a series may be associated with the vertex of a
cycle, and the cycle may be called closed or open according as the relation
series in question is periodic or breaks off.

A system of rules prescribing identifications of the kind described between
the n edges of a subdivided circle perimeter represents the simplest case of
the schema of a two-dimensional manifold.

The extent to which such a schema can be considered to define a two-
dimensional manifold is most simply explained by reference to the corre-
sponding properties of the fundamental domains of automorphic functions.
We take for example the special case of a polygon with 4p edges that are
circular arcs, with each pair of opposite edges related by a linear substitu-
tion. In the case of the algebraic manifold represented by the fundamental
domain and the collection of automorphic functions defined on it, two points
on opposite sides which correspond under the associated linear substitution
represent a single point of the manifold, and similarly all 4p vertices repre-
sent a single point. It is quite analogous to consider a schema of the kind
we have described to determine a two-dimensional manifold. Namely, one
thinks of a one-to-one continuous relationship between the points of a pair of
corresponding sides — correctly directed — and fuses two points related in
this way by definition into a single point of the manifold. As a consequence,
all vertices occurring within the same cycle represent the same point of the
manifold. In the manifold so defined, points on a side that is paired with
another side have the same character as points in the interior of the disk, as
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does a point represented by a closed cycle of vertices. On the other hand, the
free edges and the vertices that fall into open cycles yield (closed) boundary
lines of the manifold.

We append the following remark to the process just developed for deriv-
ing a two-dimensional manifold from a schema. The mere requirement of a
one-to-one continuous relationship between the points of corresponding sides
leaves a great deal of flexibility, apart from which the particular positions
of the n subdivision points on the perimeter of the disk can be arbitrarily
chosen, since only the number n and the order of the edges are expressed in
the schema. It is obvious that no matter how one determines these arbitrary
factors, all the point manifolds obtained are homeomorphic; the indetermi-
nacy expressed is therefore without importance. It is likewise an inessential
modification, which leads to a homeomorphic manifold, when one takes (pro-
vided n > 2) an ordinary rectilinear plane polygon with n sides in place of
the disk with n points of subdivision. We shall therefore speak simply of
a “polygon” in place of a “disk with perimeter divided into n parts”, but
without requiring the restriction n > 2.

A two-dimensional manifold defined by a schema in the way just described
may be called two-sided, when all the identifications of edges are of the first
kind, otherwise, one-sided.3

We shall consider a somewhat more general two-dimensional manifold in
which we permit the defining schema to omit certain of the points represented
by vertices of closed edges.

In such a case there are missing inner points of the manifolds which

3Cf. Poincaré, Compl. 5 p.52, 53. In his works Poincaré has gone back to the older
and shorter terms “two-sided” and “one-sided” (bilatère, unilatère). However it should be
noted that these terms presuppose an embedding of the two-dimensional (n-dimensional)
manifold in a three-dimensional ((n+ 1)-dimensional) space, whereas they really express,
not such a relative property, but an absolutely intrinsic property of the manifold. Klein
(Math. Ann. 9 p.479) and Dyck (Math. Ann. 32, p.473) have replaced the notions
of two-sidedness and one-sideness by “with non-reversing indicatrix” and “with reversing
indicatrix”. By an indicatrix of a two-dimensional manifold V we mean a small closed line
drawn around an inner point A of V , upon which three points 1, 2, 3 are marked, e.g. a
small triangle or a small circle with three distinguished points. Now if one carries this small
closed line along a closed path in V , from A and back to A again, so as to bring it back into
coincidence with its initial position with 1 on top of 1, then the points 2, 3 either return
to their initial positions or come into coincidence with 3, 2 respectively. Correspondingly,
closed paths in V are divided into those which “do not reverse the indicatrix” and those
which do. The two-sided manifolds are distinguished by the fact that they have no paths
in the latter category.
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comprise the boundary together with the boundary lines.4 A two-dimensional
manifold is called closed when its schema contains neither boundary points
of the kind just described, nor free edges.5

The general case of the schema of a two-dimensional manifold differs from
the special case above only to the extent that there may be a finite number
of polygons instead of one (again, disks with finitely subdivided perimeter).
Again, certain edges are paired, with directions being observed. Just as in
the case of a single polygon, cycles of vertices result. The schema may also
admit deletion of certain cycles of vertices. What has been said concerning
a schema involving only a single polygon, such as the definition of a closed
manifold, carries over immediately to the general case. In the case of several
polygons we call two different polygons directly connected when an edge of
one is identified with an edge of the other, and indirectly connected when
they comprise the first and last term of a finite series of directly connected
polygons. If any two polygons in a schema are either directly or indirectly
connected, then the schema itself and the manifold it defines will also be
called connected. A connected manifold is called two-sided when one can
give an orientation to each polygon so that all edge identifications are of the
first kind; if that is not possible, then the manifold is called one-sided.

The polygons of a schema will be called surface pieces of the schema,
and their number will be denoted α2. An edge of the schema will be either
a free edge or a pair of identified edges; a vertex of the schema is a cycle
of identified polygon vertices. Let α1 be the number of edges, and α0 the
number of vertices. A schema with a single surface piece, such as we first
considered, will also be called a fundamental polygon of the manifold.

So far we have explained how a two-dimensional manifold is determined
by a “schema”, or as one may also say, a “system of surface pieces.”6 We
now define a relation between schemata that will be called homeomorphism.
This is done in terms of certain modifications of the schemata called “subdi-

4The (n − 1)-dimensional boundary manifolds of an n-dimensional manifold may be
distinguished from the others, following Poincaré (An. Sit. p.6) as proper boundary man-
ifolds (véritables variétés frontières). The points represent so-called improper boundary
manifolds of the two-dimensional manifold. The points on the proper boundary manifolds
are reckoned to belong to the manifold itself.

5This represents a slight deviation from the definition of Poincaré (cf. An. Sit. p.7),
wherein improper boundary manifolds are allowed to occur in closed manifolds. Cf. §15,
note 9.

6Called a “polyhedron” by Poincaré (An. Sit., p.101).
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visions”, beginning with “elementary subdivisions”, which are of two kinds
for a two-dimensional schema.

1) One introduces a new subdivision point on an edge of the polygon
from the original schema (say, dividing it in half), thus dividing it
into two edges. If the edge being subdivided is paired with another
edge, the latter is also subdivided at the corresponding point. The two
subdivision points then constitute a two-termed closed cycle in the new
schema.

2) One of the circles (polygons) is divided by a chord between any two
vertices into two segments, each of which can again be deformed into
the form of a circle. Thus one obtains two polygons in place of one.
The two new edges that result from the chord are identified in such a
way that vertices coinciding before the division are also identified. The
identifications between the edges originally present remain unchanged.

These two types of elementary subdivision of a two-dimensional schema
may be briefly described as division of an edge into two and division of a
surface piece into two. A subdivision in general is understood to be the
modification of a schema that results from a series of successive elementary
subdivisions. The schema resulting from the subdivision will be called the
subdivided or derived schema.7

Two schemata will be called homeomorphic when they have a common
derived schema, thus when they have the property that subdivision of one
schema yields a schema that can also be obtained by subdivision of the other.
Two schemata homeomorphic to the same schema are homeomorphic to each
other.8 The schemata therefore fall into classes of mutually homeomorphic
schemata and it is easy to see that the property of being closed, two- or
one-sided, or connected either holds for all schemata in a class, or else fails
for them all.

However, since the term “homeomorphic” already has a quite definite
meaning in relation to manifolds, the above definition of homeomorphism
requires some further explanation. Previously we have called two mani-
folds homeomorphic when there was a one-to-one continuous relationship
between them. It is now clear that two manifolds defined by homeomorphic

7Called “derived polyhedron” by Poincaré (An. Sit. p.101).
8This theorem is the object of §19.
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schemata are homeomorphic in the original sense, since this is obviously true
of two manifolds related by an elementary subdivision. The converse fact,
namely that if two manifolds defined by schemata are pointwise homeomor-
phic then their schemata are also homeomorphic, i.e., possess a common de-
rived schema, can be made plausible by very simple considerations. Namely,
one thinks of superimposing the images of the edges of one schema under
the continuous mapping upon the other schema. Then under the assumption
that each of these lines is divided into only a finite number of pieces by the
latter schema, we have a subdivision of the original schema. The same holds
for the schema of the other manifold when the converse construction is car-
ried out, and the two schemata obtained are obviously the same, so the two
given schemata are homeomorphic. However, since our assumption need by
no means always be satisfied,9 the proof of this theorem is still somewhat in-
complete, since, although the two-dimensional case may be relatively simple,
the higher-dimensional case is lacking a satisfactory treatment.

The following remark may be made in this connection. Suppose one had
a process for deriving a certain property from the schema, e.g., a series of
numbers, of such a kind that this series was the same for any two homeo-
morphic schemata. Then speaking of this series of numbers as a topological
invariant is justified only if homeomorphic manifolds can never be defined
by nonhomeomorphic schemata, in other words under the assumption that
the questionable theorem above has been settled. We shall therefore retain
the expression “topological invariant”, but use it only under a clear under-
standing of the difference between the topological invariants of schemata and
those of manifolds. Nevertheless, it is only theorems derived with the aid of
the concept of homeomorphism of schemata, and therefore applicable only
with some reservations to point manifolds, that are meaningful in the purely
combinatorial development of analysis situs. The conception implied by such
a development has already been mentioned in the introduction. One realizes

9When this assumption, which says that when the two-dimensional manifold is simul-
taneously defined by the two schemata the two edge systems meet in only a finite number
of points, is not satisfied, then certain polygons are divided into infinitely many pieces.
Still more complicated relations can occur between the schemata of homeomorphic three-
dimensional manifolds, in which certain cells of a schema are divided by walls of the other
schema into infinitely many pieces, some of which have infinite connectivity (i.e., which
do not have a finite Betti number P1). The above considerations also break down when
dealing with manifolds of more than two dimensions with improper boundary manifolds
(see §15, note 5).
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immediately that the schemata carry a combinatorial imprint in terms of
their information content (in the case of the schema of a two-dimensional
manifold, the order of edges in the individual polygons and the pairings be-
tween them). The concept of a number continuum or functional relationship
between real numbers does not intervene. The same is true, as one easily
convinces oneself, for the schemata of three- and higher-dimensional mani-
folds.10

A two-dimensional schema will be called simply connected when it is
homeomorphic to one of the following schemata, denoted by ε2 and σ2.

ε2 denotes any schema consisting of a single polygon with two sides, with
no pairing between the sides. The schema σ2 consists of two polygons, each
with two sides, where each side of one polygon is paired with a side of the
other polygon in the first way. A schema homeomorphic to ε2 resp. σ2
is called a simply connected two-dimensional schema which is bounded or
closed respectively.11

The manifold defined by σ2, or a homeomorphic manifold, is called the
two-dimensional spherical manifold. The manifold is obviously homeomor-
phic to the surface of a ball. The manifold defined by ε2, or a homeomorphic
manifold, may be called the two-dimensional element.

If one considers the schemata homeomorphic to the schema of a given two-
dimensional manifold, then there is among them the so-called dual schema,12

which is of particular interest. Its meaning becomes immediately clear when
one uses the presentation to join together the individual polygons13 into a
closed surface. The edges of the schema then constitute a net of polygons

10For the sake of convenience in what follows we shall speak of a “two-dimensional
schema” instead of the “schema of a two-dimensional manifold”, and analogously on “n-
dimensional schema”. The justification for describing the schema itself as two-dimensional
lies in the fact that the schema can be considered to have a meaning independent of the
point manifold it defines.

11Schemata homeomorphic to ε2 include all schemata consisting of a single polygon with
an arbitrary number of edges, e.g., a single edge, with no pairings between them; and a
simpler schema homeomorphic to σ2 can be obtained from a single polygon with two sides,
paired in the first way. The reason for choosing our specific ε2, σ2 was to bring them into
line with the simply connected n-dimensional schemata of §4.

12Poincaré, Compl.1, §7 (“polyèdre reciproque”).
13The actual execution of this process does not trouble us here. There is a question: how

large is the smallest possible dimension ψ(n) or ψ∗(n) of a euclidean space containing a
homeomorphic copy, without self-intersections, of each closed resp. bounded n-dimensional
manifold? We know ψ∗(2) = 3, while it is open whether, as Poincaré assumes (An. Sit.
§10 and §11, p.56), that ψ∗(3) = 4.
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on the surface. One draws the corresponding polar of this figure by taking a
point in the interior of each polygon, and crossing each edge k of the given
figure by an edge k of the new figure, where k connects the chosen interior
points of the two polygons which meet along k. Then each vertex, edge and
surface piece of the given figure corresponds respectively to a surface piece,
edge and vertex of the polar figure. If one cuts the surface along the edges
of the new net, then one obtains the polygons of the desired dual schema.

This is the intuitive meaning of the dual schema. It corresponds to the
following method for constructing the dual of a given schema, a method of
a more abstract kind, like that used to define a schema at the beginning of
this paragraph: one lets each vertex corresponding to a cycle γi of the given
schema correspond to a polygon πi of the new schema, namely a polygon
with as many vertices as there are edges in the cycle. Now when (in terms
of the notation explained earlier)

..., Ah−1,2 = Ah1 corr. to Ak2 = Ak+1,1 ...

denotes a relation series that generates the cycle γi, then the vertices of
the polygon πi may be provided with the notations Bh−1,2 = Bh1, Bk2 =
Bk+1,1, .... The edge Bh1Bk2 of the polygon πi is now given one of the nota-
tions th, tk e.g., th. The edge Bh2Bk1, which can belong to either the polygon
πi or to another polygon of the new schema is then called tk. The pairing
rule of the new schema then says that the edge th is paired with the edge tk
so that the vertices Bh1, Bh2 correspond, and similarly Bk1, Bk2. In this way
the new schema is completely determined by the old.

The schema dual to the dual itself is obviously the original schema. The
proof of the fact that two schemata dual to each other are homeomorphic
can be suppressed, since it is immediate when one sees the intuitive meaning
of the dual schema.

§3

The schemata of three-dimensional manifolds

In order to explain the schemata of the three-dimensional manifolds and
to carry over the various concepts defined for two-dimensional schemata, we
again begin with a special case.

Consider a ball whose surface is divided into a finite number of simply
connected polygons by a finite number of line segments.
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A few explanatory remarks are in order immediately. By a line segment
we mean a one-to-one continuous image of a straight line segment, and the
simply connected polygons are point sets of the spherical surface that are
in one-to-one and continuous correspondence with the set of points on a
disk, so that boundary points correspond to boundary points. The polygons
therefore constitute two-dimensional elements (see §2). The line segments
on the spherical surface will be called edges of the polygon subdivision, the
points at the ends of edges will be called vertices. When we regard each edge
on the spherical surface as a pair of associated edges, the polygons on the
spherical surface obviously form the schema Σ of a two-dimensional manifold.
On the basis of the provisional theorem mentioned above, we can assume that
the schema Σ is homeomorphic to the schema σ2 (see §2). At any rate, we
shall assume this to be true of the schema Σ.

Certain of the polygons that subdivide the spherical surface are identified.
This is possible only if they have the same number of edges. Now let a certain
orientation be designated as positive in each polygon, and let it be the same
for all polygons from the point of view of an observer outside the sphere. As
a result, each edge of a polygon has an orientation induced by the polygon
itself.1 The pairing of polygons will then also include the information whether
the positive orientation of one matches the negative or positive orientation
of the other (pairing of the first or second kind.) The edges of one polygon
will also be paired with the edges of the other, and in the case of a polygon
identification of the first (second) kind, the edges of one polygon, taken in the
order of positive orientation, correspond to the edges of the other taken in
the order of negative (positive) orientation,2 and a positively directed edge of
one polygon is identified with the negative (positive) direction of its partner
in the other polygon. Such an edge identification will itself be said to be of
the first or second kind in conformity with the polygon identification.

Due to the fact that each edge of the polygonal subdivision of the spherical
surface appears doubly as a polygon side, cycles of identified edges can now be
established, in complete analogy with the construction of cycles of identified
vertices in a two-dimensional schema. The cycles of identified edges can be
closed or open. Open cycles can only appear when there are free polygons,
i.e., ones that are not paired with other polygons.

1It may happen that a polygon meets itself along an edge. Of course such an edge
represents two sides of the polygon, with two opposite orientations induced by the polygon
itself.

2This condition is meaningful only for polygons of more than two sides.
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Each individual edge of the polygon subdivision may itself be given an
orientation.3 (This is not to be confused with the induced orientation de-
scribed earlier, and it naturally coincides with the positive direction of one of
the two polygon sides forming the edge.) We shall now assume satisfaction
of the condition4 that in each closed cycle of identified edges the number of
identifications of the second kind that occur is even, and then an association
of orientations for the edges identified in the cycle can be derived from the
association of directions of the polygon sides.

Just as in the case of a two-dimensional schema the identifications of the
polygon vertices follow from those of the polygon sides. The identifications
of the vertices here may be derived from the identifications of edges and their
directions. Since a vertex in general appears in several ways as the endpoint
of an edge, the construction of systems of associated vertices depends on the
polygonal subdivision.

A further condition5 that may be imposed on a three-dimensional schema
concerns certain two-dimensional schemata derived from the present identi-
fication process. For this purpose we think of each vertex of the polygonal
subdivision surrounded by a small circle. This circle is divided into a finite
number of sides by the polygon edges radiating from the vertex in question.
We take the positive direction of these sides to be that corresponding to a
positive circuit around the vertex (i.e., one with the vertex on its left). Now
let π1, π2 be two identified polygons, let A1 a vertex of π1, and let A2 be the
corresponding vertex of π2. The arc of the small circle around A1 that lies
in π1 may be called s1, and the corresponding arc around A2, lying in π2,
may be called s2. The sides s1 and s2 are now identified, and in fact, when
the identification of the polygons π1 and π2 is of the first (second) kind, the
positive direction of s1, is identified with the negative (positive) direction
of s2. The collection of all the small circles drawn around the vertices then
constitutes a number of polygons, with certain identifications between their
sides, and therefore gives us a two-dimensional schema. The latter divides

3The choice of this orientation, like that of the polygons on the spherical surface, is not
an essential feature of the three-dimensional schema, but merely an aid in describing the
identification process.

4This condition represents a special case of a condition mentioned in §4 for n-
dimensional schemata, from which it follows that the identifications between the geometric
figures considered (here: edges) are always of a nature such that a definite set of identifi-
cations of their boundary elements (here: the endpoints of edges) follows.

5cf. Poincaré, An. Sit. p.52-55.
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into as many connected schemata as there are systems of identified vertices
in the polygon subdivision.6

The condition for a schema to define a three-dimensional manifold is now
that all these connected two-dimensional schemata be simply connected (with
or without boundary). According as such a schema is closed or bounded, the
corresponding system of identified vertices of the polygon subdivision is called
closed or bounded.

To the extent that a three-dimensional manifold is defined at all by a
schema, there is a complete analogy with the case of two dimensions. Thus
the points of identified polygons are associated in a one-to-one and contin-
uous fashion, with attention to orientation and side ordering, though only
the closed cycles of identified edges of the polygon subdivision are easy to
visualize.7 Such sets of identified points are considered to be points of the
manifold by definition. The interior points of identified polygons then have
the same character as the points of the manifold in the interior of the ball,
i.e., by means of a suitable one-one continuous map of the manifold onto
itself they can be mapped to points in the interior of the ball, and the same
holds for points that lie on the edge of a closed cycle, and any point that
represents a closed system of identified vertices. In the latter case the con-
dition of simple connectivity of the neighbourhood manifold, which excludes
the appearance of certain singular points, is essential. The free polygons
form themselves into “boundary surfaces” of the manifold, which contain the
lines representing open cycles of identified edges, and the points representing
open systems of identified vertices. The individual boundary surfaces have no
common points, which is also guaranteed by the condition on neighbourhood
manifolds.

One sees immediately that, just as the determination of two-dimensional
manifolds by schemata involves a certain arbitrariness, the same is true for
the above process, since it depends on a two-dimensional schema Σ dividing

6The manifold defined by these connected schemata may be called the neighbourhood
manifold of the vertices in question in the three-dimensional schema (see text, two pages
hence).

7The pointwise identification of polygons yields an identification of the points in any
two successive edges in a cycle. Now if k1, k2, . . . , km are the edges in a closed cycle, a
point P1 of k1 corresponds to a particular point P2 of k2, the latter corresponds to a point
P3 of k3 and so on, finally with a point Pm of km corresponding to a point of k1. The
identifications now have to satisfy the condition that this last point is P1 again. This
condition is guaranteed by the above hypothesis on the number of side pairings of the
second kind.
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the spherical surface in a way that is by no means fully determined. The
information expressed in a three-dimensional schema, namely the schema
Σ and the identifications prescribed, is sufficient for the determination of a
three-dimensional manifold.

More general three-dimensional schemata result by allowing certain points
and lines represented by closed systems to be excluded. A particular case
of interest is the one in which the line segments excluded from the manifold
unite into closed lines.

The general case of a three-dimensional schema is obtained from the spe-
cial case above by allowing the ball to be replaced by a finite number of
balls whose surfaces are divided into polygons, then making identifications
of these polygons in pairs. All that has been said for the special case carries
over without further comment to the general case.

When the three-dimensional schema is so constituted that there are nei-
ther free polygons nor excluded points or lines, the manifold defined by the
schema is called closed. The concept of connectedness is defined analogously
as in the case of two dimensions. Each single ball of a three dimensional
schema can be arbitrarily given a positive orientation by coherently orient-
ing the polygons on its surface. If these orientations in a connected schema
can be chosen so that all polygon identifications are of the first kind, then
the manifold defined by the schema is called two-sided, otherwise one-sided.8

The individual balls will also be called cells of the three-dimensional
schema. A wall9 of the schema is either a free polygon or a pair of iden-
tified polygons. A cycle of identified edges of the polygon subdivision will be
called an edge of the schema, a system of identified vertices will be called a
vertex of the schema. The numbers of cells, walls, edges and vertices of the

8The indicatrix (cf. §2, note 3) of a three-dimensional manifold V can be taken to be a
small tetrahedral surface surrounding an inner point A of V , or any other simply connected
closed surface with a similar subdivision into four triangles, with vertices denoted 1, 2, 3,
4. If one now carries the indicatrix along a path from A to A and brings the tetrahedral
edges and vertices back to their old positions so that 1 and 2 take exactly their original
positions, then 3, 4 can either retain their old positions or exchange them. The paths in
V divide into those that do not reverse the indicatrix and those that do.

The indicatrix for an n-dimensional manifold can be introduced in an analogous way.
9We introduce the word “wall” for a two-dimensional element in an n-dimensional

schema, since the word “surface piece” will have another meaning in §5 (namely, the
notation for a space piece in a manifold in the special case m = 2. The normal use of the
word “surface piece” will only be retained in the case n = 2 (§2), for the two-dimensional
elements of the schema.
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schema will be denoted α3, α2, α1, α0.
The determination of a three-dimensional manifold by a schema or cell

system has now been described. The concept of homeomorphism of schemata
is now set up, just as in the two-dimensional case, in terms of elementary
subdivisions, of which there are three types in the three-dimensional case:

1. One selects a cycle of identified edges from the schema and halves all
the corresponding edges of the polygon subdivision, identifying the re-
sulting half edges as they were before halving. We thus obtain, in place
of the cycle of identified edges, two cycles and a system of identified
vertices corresponding to the halving point, while the remainder of the
schema is unchanged.10

2. One divides one of the polygons into two by a new edge of the polygon
subdivision connecting two of its vertices. If the subdivided polygon is
identified with another in the original schema, then the latter is also
subdivided by a new edge connecting the corresponding vertices, and
the two pieces of the first polygon are identified with the two pieces of
the second in such a way that identifications between the original edges
and vertices are preserved, while the two new edges of the polygon
subdivision are identified with each other. The two new edges then
constitute a cycle of identified edges.

3. One chooses a simple closed line consisting of edges on one of the balls
of the schema and divides the ball into two by a simply connected
surface spanning this line (e.g., by the surface comprised of the radius
vectors to the closed line). The subdividing surface is therefore a two-
dimensional elementary manifold, and it may be assumed that each
of the two pieces can again be mapped one-to-one and continuously
onto a ball K so that the points on the original spherical surface and
the points on the subdividing surface map to the surface of K. The
surfaces of the two pieces, which accordingly can also be regarded as
balls, then consist of a polygon resulting from the subdividing surface
together with polygons originally present. The two new polygons must
then be identified in such a way that the identifications between the

10If the selected cycle is closed and there is a rule according to which the corresponding
line is to be removed from the manifold, then this rule is carried over to the two new
cycles.
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original edges and vertices are preserved. The identifications between
the polygons originally present remain unchanged.

The elementary subdivisions can be described as subdivision of an edge,
a wall, or a cell of the three-dimensional schema into two edges, two walls,
two cells respectively. The introduction of the general subdivision, the de-
rived schema and homeomorphism now follows just as for two-dimensional
schemata. Likewise the remarks concerning the relationship between the def-
inition of homeomorphism for schemata and homeomorphism for manifolds
carry over to three (and more) dimensions.

Bounded and closed simply connected three-dimensional schemata can
now be introduced as those that are homeomorphic to schemata ε3 and σ3
respectively, where ε3 consists of a single ball whose surface is divided by
the equator into two hemispherical surfaces, which are not identified; and σ3
consists of two balls each of which is divided by the equator into two 2-gons
whose edges are a1, a2 and b1, b2 respectively, and the polygons of one ball
are identified with those of the other in the first way so that a1 is identified
with b1 and a2 with b2.

11

The manifold defined by σ3, and any manifold homeomorphic to it, is
called the three-dimensional spherical manifold. We can represent it in eu-
clidean space by closing the three-dimensional space by a point at infinity.
The manifold defined by ε3, or a manifold homeomorphic to it, is called the
three-dimensional element.

The dual to the schema of a closed three-dimensional manifold is obtained
by a process that is easily set up when one observes12 that the relation
between a schema and its dual in three dimensions is quite analogous to that
in two dimensions, and in fact each vertex, edge, wall and cell of a schema
corresponds respectively to a cell, wall, edge and vertex of the dual. It may
also be remarked that each simply connected closed two-dimensional schema

11In place of σ3 one could take a simpler schema with a single ball whose equator,
divided into a certain number of arcs, divides the surface of the ball into two polygons
that are identified in the first way and so that each arc on the equator corresponds to itself
(a schema (l, 0), see §20). In place of ε3 one can choose any schema consisting of a single
ball with an arbitrary subdivision and no identifications. The representation of ε3, σ3 in
the text, like that for ε2, σ2 earlier, is chosen with an eye to the general case of εn, σn
(§4). One notes that the polygonal subdivision of the ball surface used for ε3 is exactly
the schema σ2.

12To see this done in detail in the three-dimensional case see Poincaré (Compl. 1, §7,
p.314-316).
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represented by the subdivided surface of a cell Z of the schema is none other
than the neighbourhood schema (see §3, note 6) of the vertex dual to the
cell Z in the dual schema. Thus the condition of simply-connectedness of the
neighbourhood manifold of a vertex is again of importance here.13

§4

Schemata of arbitrary dimension. The meaning of cells and
two-sided manifolds

From the development of §§2,3 one sees without difficulty how to obtain
schemata of increasing dimension. Corresponding to the vertices, edges, walls
and cells of the three-dimensional schema, the elements of the n-dimensional
schema are cells of dimension m (m = 0, 1, . . . , n). The number of these will
be denoted by αm.

One sees that the ascent to schemata of higher dimension takes place
via the simply connected schemata εn, σn. One obtains σn by taking two
copies of εn — whose elements carry corresponding notations — regarded as
two n-dimensional cells, and identifies corresponding elements of (n − 1)th

and lower dimensions in the two εn. Thus, from a purely combinatorial
point of view, σn is not essentially different from εn+1,

1 and the totality of
schemata homeomorphic to σn yields the (n+1)-dimensional cells from which
all (n + 1)-dimensional schemata are constructed by identifications between
their elements of νth dimension (ν < n + 1). These identifications have
to satisfy conditions that generalize the simple-connectedness condition for
neighbourhood manifolds described for three-dimensional schemata. Namely,
in an (n+ 1)-dimensional schema each cell of dimension m has a neighbour-
hood manifold given by an (n−m)-dimensional schema. The condition that
(n+1)-dimensional schema must satisfy is that all the schemata of neighbour-
hood manifolds be simply connected. A further condition, which expresses
the fact that a geometric figure must always yield a definite arrangement of
its boundary elements, is the generalization of the condition on the edges of

13Cf. the remark of Poincaré (Compl. 1, §10, p.336) on the assumptions underlying the
“arithmetic” proofs.

1If one thinks of the cells of a schema written in rows, with the m-dimensional cells
in the (m + 1)th row, then εn+1 differs from σn only in the fact that εn+1 contains an
(n + 2)th row of (n + 1)-dimensional cells. However εn+1 has the same identifications as
σn.
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a polygonal subdivision and their directions made for the three-dimensional
schemata.2

The presentation of n-dimensional schemata according to increasing di-
mension given in this section begins with the case n = 2. It is clear that one
could go back still further to ε0 and σ0, representing the zero-dimensional
schemata of the single point and the point pair. The point pair is the
boundary of the line segment. Identification of the endpoints of the line
segment gives the one-dimensional schemata. One obtains only two non-
homeomorphic classes of connected one-dimensional schemata, the open line
and the closed line, the former represented by the line segment (schema ε1
and the latter by the schema σ1 consisting of two segments with correspond-
ing endpoints identified. σ1 and the schemata homeomorphic to it bound the
surface piece, which is the building block for the two-dimensional schemata.

It should be mentioned what is meant by an m-dimensional cell and a
two-sided manifold.3 A point pair is given an orientation (direction) by des-
ignating one of the points as earlier, the other as later. This also gives an
orientation to the one-dimensional cell, the line segment, in terms of the
orientation of its pair of endpoints. Then if one chooses the orientation of
each segment constituting a connected one-dimensional schema so that all
identifications of the endpoints are of the first kind,4 which is possible in two
different ways, then the manifold defined by the schema receives an orienta-

2E.g., in the case of polygons (closed cycles of which occur in four-dimensional
schemata) this condition reads as follows: if Π1,Π2, . . . ,Πk are polygons (with the same
number of sides, of course) each of which is identified with its successor, and the last with
the first, so that any directed side of one corresponds to a particular side and direction in
its successor, then the identification of Π1 with itself induced via Π2, . . . ,Πk must in fact
be the identity.

Since manifolds of more than three dimensions, and likewise one-sided manifolds, have
been very little studied, the condition in question, which first becomes significant for
three-dimensional manifolds, and then only for the one-sided manifolds among them, has
previously not been noticed.

3Cf.P. Heegaard, Forstudier til en topologisk Teori for de algebraiske Fladers Sammen-
haeng (Dissertation, Kopenhagen 1898), §10.

4The choice of an orientation for the constituent segments of the schema of a one-
dimensional manifold determines whether identifications of their endpoints are of the first
or second kind according as an earlier point is identified with a later, or two of the same
orientation together, respectively. If one defines the concepts “two-sided” and “one-sided”
for connected one-dimensional manifolds in the same way as for manifolds of higher di-
mension, then it is immediately clear that one-sided one-dimensional manifolds cannot
occur.
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tion as a result.5 The orientation of a surface piece is then the orientation
of the one-dimensional manifold that bounds it, and the two ways in which
the surface pieces in the schema of a two-sided two-dimensional manifold can
be oriented so that all side identifications are of the first kind give the two
possible orientations of the manifold. One proceeds in this way to use the
orientation of m-dimensional manifolds to give an orientation to (m + 1)-
dimensional cells, whose boundaries — which are closed simply connected
m-dimensional manifolds — are indeed two-sided, and to thus obtain an
orientation for any two-sided m-dimensional manifold.

II. The Betti numbers

§5

Homologies, the Poincaré relation system of a manifold

In order to present the Betti numbers, Poincaré introduced the concept
of homology, which we shall develop in this paragraph. We begin with some
notation for the m-dimensional space pieces lying in a manifold.

The points of a manifold will be denoted by small latin letters with su-
perscript zero e.g., u0, a0i .

The manifold of points of the segment −1 ≤ x ≤ +1 (i.e., the manifold
defined by the schema ε1 of §4) is denoted by E1, and its endpoints x = −1,
x = +1 by v0, w0. A line piece of a manifold is understood to be a set G
of points of the manifold that can be mapped one-to-one and continuously
on to E1. The two points of G that correspond to v0 and w0 under this
mapping may be denoted a0, b0 and will be called the end points of the line
piece, the remaining points of G will be called inner points. The different
one-to-one continuous maps of G onto E1 fall into two classes, according as
a0 is mapped on to v0 or w0. If one particular class is chosen, this gives an
orientation to the line segment. The point associated with v0 will be called
the earlier (negative) endpoint, the one associated with w0 will be called
the later (positive) endpoint. The one-to-oneness and continuity of the maps
between G and E1 may only apply to inner points. A point c0 may correspond
to both the points v0, w0 and its neighbourhoods will divide into two parts,
one corresponding to a neighbourhood of v0, the other to one of w0. We

5In case the schema consists of a single line segment whose endpoints are not identified
then the orientation of this manifold is the orientation of the segment.

23



can still speak of the orientation of the line piece, but the definition is now
based on the two parts of the neighbourhood of c0 and their association with
v0 and w0. The point c0 itself is both a positive and negative endpoint of
the line piece. The oriented line pieces will be denoted by small latin letters
with superscript 1. If a0 is the positive endpoint of a line piece a1 and b0 the
negative we shall write this symbolically12

a1 ≡ +a0 − b0.

The manifold of points on the unit circle x2 + y2 ≤ 1 (i.e., the manifold
defined by the schema ε2 of §2) will be denoted by E2, while the circular line
x2 + y2 = 1 will be denoted by K. By a surface piece lying in a manifold we
mean a set G of points of the manifold that can be mapped one-to-one and
continuously onto E2. The distinction between the two types of one-to-one
continuous maps ofG onto E2 takes place analogously with the case of the line
piece, and is determined by the orientation in which the boundary line L of
G is mapped onto the boundary of E2. We shall assume that the circular line
K is divided by points k01, k

0
2, . . . , k

0
R (R ≥ 1) into line pieces k11, k

1
2, . . . , k

1
R.

Correspondingly, the boundary L of the surface piece is divided by the image
points l01, . . . , l

0
R of the points k0i into R line pieces l11, l

1
2, . . . , l

1
R. However the

concept of a surface piece, like that of a line piece, may undergo an extension.
Namely, it will be admitted that several of the line pieces into which L is
divided may coincide. Then several line pieces k1i correspond to a single line
piece of G. The same applies to certain points l0i . The one-to-oneness and
continuity of the mapping of E2 on to G is preserved for the inner points, but
it is modified as just described for certain points on the boundary line. The
detailed investigation of relations corresponding to the line piece would be
too tedious. The generalized surface piece can also be given an orientation
in terms of the mapping from E2 and a given orientation of K. The oriented
surface pieces will be denoted by small latin letters with superscript 2. Let
a2 be a surface in the general sense and let l11, l

1
2, ... be the oriented individual

line pieces of a2, each of which corresponds to one or more line pieces k1i .

1See Poincaré, Compl. 1, p.291; cf. also the association of numbers with points, lines
etc. of a manifold at the beginning of §18 of An. Sit. (p.114)

2If one wants to give the individual points u0 of a manifold signs in full generality then
one must write

a1 ≡ δa0 − δ′b0

when a0 is the point at the positive end of a1, with sign δ, and b0 is the point at the
negative end of a1, with sign δ′. Use is made of this in §8 (note 8).
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Moreover, let the orientations of the line pieces k11, k
1
2, . . . , k

1
R be chosen so

that they coincide with the positive orientation of K. Then if lλi is the line
piece of G corresponding to the line pieces k1i and δi = +1 or −1 according as
the mapping of E2 on to G establishes a correspondence between the positive
orientation of k1i and the positive or negative orientation of lλi , then we shall
symbolically write

a2 ≡
3∑
i=1

δil
1
λi

The order of the summands does not matter.
It is not difficult to infer from this what should be meant by an m-

dimensional space piece3 lying in a manifold (it will be denoted by a small
latin letter with an upper index m, and by a symbolic congruence of the form

(3) nm ≡
∑

δiu
m−1
i

(the δi are equal to +1 or −1).
The special congruences introduced here can be used in calculations sub-

ject to the following rules.
As we have already said, the terms on one side of a congruence may be

permuted and grouped in the usual way of calculating with letters. Both
sides of a congruence may be multiplied by a positive or negative integer.
Two congruences yield a third by adding or subtracting the respective left
and right sides4 of the given congruences.5

3One could define the m-dimensional space piece to be a point set G upon which Em is
mapped continuously and one-to-one except for certain boundary elements, where Em is
the bounded simply connected m-dimensional manifold (defined by the schema εm of the
previous paragraph) which can be taken to be the manifolds of points x21+x22+· · ·+x2m ≤ 1.
The inner points of the m-dimensional space piece do not yield the most general set
homeomorphic to the inner points of Em, cf. the plane point set defined by 0 < x2+y2 < 1,
(x− 3.2−ν)2 + y2 − 2−2ν > 0 (ν = 2, 3, . . .).

Notice that, in the case of coincident endpoints, a line piece is characterized not just
by the totality of its points, but also by the position of the point c0. Analogously, the
particular position in G of the coincident boundary elements is an essential part of the
nature of the surface piece or space piece.

4It is not permitted to exchange the right and left side of a congruence in the process.
5When the collection of m − 1-dimensional space pieces is so constituted that no two

of them have inner points in common then the right hand sides of all congruences∑
hiu

m
i ≡

∑
kiu

m−1
i
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As a consequence of this first rule one can say: if u1 is a line piece with
coincident endpoints then u1 ≡ 0, and in general we have the relation

um ≡ 0

when the points of um constitute a closed two-sided6 m-dimensional manifold7

in the sense of Section I.
More generally, the rules allow us to say the following: if um1 , u

m
2 , . . . , u

m
α

are m-dimensional space pieces in a manifold with no interior points in com-
mon,8 and if the totality of their points comprise a closed two-sided m-
dimensional manifold M (see Section I), and if in addition the orientation
of the umi is chosen to correspond to a particular orientation of M (see §4),
then9

α∑
i=1

umi ≡ 0.

A further theorem may be mentioned:

when um ≡
∑

δiu
m−1
i , then

∑
δiu

m−1
i ≡ 0.

The integral linear forms with the symbols for m-dimensional space pieces
as variables to which we are led in this calculus, may be considered as m-
dimensional figures, and in particular when the relation∑

hiu
m
i ≡ 0

holds, the m-dimensional figure on the left hand side may be considered
closed and two-sided. The two-sided closed m-dimensional figures therefore
include the (oriented) two-sided closed m-dimensional manifolds, when these
appear as unions of space pieces without common interior points, as special
cases.

The oriented m-dimensional cells of the schema of an n-dimensional man-
ifold V which, following Poincaré, we shall denote by ami , a

m
2 , . . . , a

m
αm , repre-

sent a particularly important case of m-dimensional space pieces in V . The

are uniquely determined by the left hand sides, from which one infers that this holds for
the congruences (3).

6As far as one-sided manifolds are concerned, see §9.
7For m > 1 the converse obviously does not hold.
8The assertion of the theorem assumes that the individual (m − 1)-dimensional spare

pieces comprising the boundary of the umi have no common interior points.
9The converse obviously does not hold.
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collection of all congruences that hold between them, expressing their spatial
relations

amj ≡
km−1∑
j=1

εmija
m−1
j (i = 1, 2, . . . , αm; m = 1, 2, . . . , n)

constitute the Poincaré relation system10 of V for the schema in question,
which we shall often use in future.

On the basis of formal sums of space pieces and the symbolic congruences
between them it is very simple to explain what a homology is in relation to
a manifold V .11 Namely, if um+1

1 , um+1
2 , . . . , um+1

α ; um1 , u
m
2 , . . . , u

m
β are space

pieces in V and if there is a congruence

(4)
α∑
i=1

hiu
m+1
i ≡

β∑
i=1

kiu
m
i

then it will be said that the figure
∑β

i=1 kiu
m
i is null homologous relative to

V , in symbols
β∑
i=1

kiu
m
i ∼ 0.

The existence of such a homology relation indicates the presence of space
pieces um+1

i in V satisfying a congruence (4).
It will also be permitted to add the same symbol for an m-dimensional

space piece to both sides of a homology between m-dimensional space pieces.
It then follows from the rules for calculating with congruences12 that it is in
fact allowed to add homologies, or to multiply both sides of a homology by
an integer.

It should be noted that the concept of homology is tied quite explicity to
the underlying manifold V .

The following example may serve to clarify the above theory. We take
a manifold V given by a schema that is a rectangle with sides identified in

10Poincaré described this relation system simply as the schema (compl. 1 p.291). Cf.
in this connection note 9, §1.

11Cf. Poincaré, An. sit. §§5, 6.
12Poincaré distinguishes between “homologies with division” and “homologies without

division” according as division of both sides of a homology by a common integral factor
is allowed or not. In the text we shall use only “homologies without division”.
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pairs in the first way. The schema therefore has two edges and one vertex.
Let A, B, C, D be the series of vertices of the rectangle. Let E be a point on
AB, and F the corresponding point on DC. We draw the segments AF and
EC and introduce the following notations for the points, line- and surface
pieces which appear.

A = B = C = D = a0, E = F = b0

AE = DF = a1, EB = FC = b1, AD = BC = c1

AF = d1, EC = e1

AFD = a2, EBC = b2, AECF = c2

The following congruences hold:

a1 ≡ b0 − a0, b1 ≡ a0 − b0, c1 ≡ 0,

d1 ≡ b0 − a0, e1 ≡ a0 − b0;
a2 ≡ d1 − a1 − c1, b2 ≡ b1 + c1 − e1, c2 ≡ a1 + e1 − b1 − d1.

This shows that, in conformity with the general remark on closed manifolds,
a2 + b2 + c2 ≡ 0 and that, in agreement with another general theorem,
d1 − a1 − c1, b1 + c1 − e1 and a1 + e1 − b1 − d1 are congruent to null. The
congruences also imply the homologies13

a0 ∼ b0;

d1 ∼ a1 + c1, e1 ∼ b1 + c1, a1 − b1 ∼ d1 − e1.
The last homology is obviously a consequence of the preceding two. If we set
a1 + b1 = f 1, d1 + e1 = g1, then f 1, g1, c1 represent three closed lines in V
and we obtain the homology

g1 ∼ f 1 + 2c1

between them.
Certain special homologies may also be noted. Let Wm+1 be an (m+ 1)-

dimensional two-sided14 manifold lying in a manifold V (with respect to

13Any two points of a connected manifold are obviously homologous to each other.
14The condition of two-sidedness is obviously essential. This is particularly clear when

one considers a Möbius band along an arbitrary closed line l1 of an n-dimensional manifold
V , with n > 2. Its boundary line is homologous to 2l1 whereas the homology 2l2 ∼ 0
(relative to V ) obviously does not hold in general.
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which the homologies are calculated), whose boundary consists of the closed

m-dimensional manifolds U
(m)
1 , U

(m)
2 , . . . , U

(m)
h , V

(m)
1 , V

(m)
2 , . . . , V

(m)
k . A par-

ticular orientation of the two-sided manifoldW (m+1) then induces a particular
orientation in each of the two-sided manifolds U

(i)
m , V

(i)
m . If this orientation

coincides with the positive in each U
(m)
i , and with the negative in each V

(m)
i ,

then relative to V we have the homology

U
(m)
1 + U

(m)
2 + . . .+ U

(m)
h ∼ V

(m)
1 + V

(m)
2 + . . .+ V

(m)
k .

However, not every homology expresses such a simple fact,15 as the ho-
mology between g1, f 1 and c1 in the example above shows.16

§6

Definition of the Betti numbers

We proceed to the Poincaré definition of the Betti numbers of a manifold
V .1 Suppose there is a system of two-sided closed m-dimensional manifolds
W

(m)
1 ,W

(m)
2 , . . . ,W

(m)
t in V between which there is no homology2

k1W
(m)
1 + k2W

(m)
2 + · · ·+ ktW

(m)
t ∼ 0 (relative to V )

while each closed m-dimensional manifold W (m) in V satisfies a homology

kW (m) + k1W
(m)
1 + k2W

(m)
2 + · · ·+ ktW

(m)
t ∼ 0 (k 6= 0).

15Nevertheless the introduction of homologies preferably takes place with reference to
these special homologies. Cf. the remarks of Heegaard in the dissertation already cited,
pp. 64, 65.

16Consider also the example of a knotted closed line l1 in the elementary three-
dimensional manifold E3, for which we have the homology

l1 ∼ 0 (relative to V ),

which is easily seen from the discussion in the text. It will be shown later that the
discussion can also be extended to homologies involving manifolds with self-intersections.

1Connectivity numbers defined in various other ways are also known by the name of
“Betti numbers” or “Riemann-Betti numbers” (in Picard-Simart, Théorie des fonctions
algébriques de deux variables indépendantes vol.I, chap. 2) (looking back to the essay of
Betti, Sugli spazi di un numero qualunque di dimensioni, Ann. di mat. ser. 2., vol. 4
and the Fragment 29 in Riemann’s Ges. Werke, 2 Aufl. p.479). The only way of defining
these numbers that is free of certain objections we shall come to discuss in §21 is due to
Poincaré (illustrated in the definition on p.19 of An. Sit. and in more detail in Compl.1,
§1), and the Betti numbers for us will be the connectivity numbers defined by his process.

2The case k1 = k2 = · · · = kt = 0 is naturally excluded.
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Then if V
(m)
1 , V

(m)
2 , . . . , V

(m)
t′ is another system of manifolds with the same

property it is immediately clear that t′ = t. The number t of such manifolds
is therefore a characteristic number for V and it obviously has the same value
for all manifolds homeomorphic to V . Thus t is a topological invariant, and
the invariant t + 1 is called the mth Betti number, Pm, of the manifold V .
One has to set t = 0, Pm = 1 when each two-sided closed m-dimensional
manifold W (m) in V satisfies a homology kW (m) ∼ 0.3

The given definition of the Betti numbers is based — as Heegaard in
particular4 has pointed out — on the assumption that each manifold V in fact
contains a (finite) system of m-dimensional manifolds W

(m)
1 ,W

(m)
2 , . . . ,W

(m)
t

with the property in question. This assumption will be called Assumption I in
what follows, and in order to retain the homology concept in the above form
we need to surmount certain difficulties that may now be briefly described.

We consider an example, to which we shall also return later. One takes
a cylindrical surface Z in three-dimensional space and draws a knotted line
AB in its interior (see Fig. 1). One continues it with a congruent line BC
in Z and continues to construct infinitely many congruent copies of AB on
both sides, forming a single line K. By means of a projective transformation
of the space, which sends the infinitely distant point of the cylinder to a
finite point S, Z is transformed into a conical surface with apex S, and K
is transformed into a line L in its interior (see Fig. 2). Let R be a point of
contact of L with the conical surface, and connect R to S by a line s outside
the cone, so as to form a closed line U1 in conjunction with the part of L
between R and S. We construct a sphere with U1 in its interior and consider
the simply connected manifold V of points in its interior. U1 is a closed line
lying in this manifold V .

Now it is usual to assign to the bounded simply connected manifold V
the Betti number P1 = 1, which means simply that for each closed line W 1

in V there is an integer k such that kW 1 ∼ 0 relative to V . However it is
incontestable that the closed line U1 violates this theorem.

3If n is the dimension number of the manifold V , then one has to consider the values
1, 2, . . . , n− 1 for m. However there is no difficulty in extending the definition of the Betti
number Pm to the cases m = 0 and m = n also. In the case m = 0, where the closed
m-dimensional manifolds are point pairs, P0 is obviously equal to the number of connected
components of V . (For n = 0 this means P0 = α0− 1, where α0 is the number of points in
V .) Pn is however the number of two-sided manifolds among the connected components.

4Dissertation p.64
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Moreover when one thinks of the multitude of infinitely knotted lines that
can be constructed on the model of U1, of new types not homologous to the
original, then the admissibility of Assumption I (which is certainly unproved,
on the face of it) seems highly questionable.

We shall not be concerned with extensions of the homology concept (say
by means of infinite sums of homologies) that might serve to remove these
difficulties. Rather, we shall replace the above definition of the Betti numbers
by another, which is at least formally quite different, in that it depends
entirely on the scheme of a manifold.

Let V be the n-dimensional manifold in question, which for the sake of
simplicity we shall assume to possess only (n− 1)-dimensional manifolds as
boundary elements and let

ami ≡
am−1∑
j=1

εmija
m−1
j (i = 1, 2, . . . , αm; m = 1, 2, . . . , n)

be the Poincaré relation system of V . Then if γm denotes the rank of the
matrix formed by the numbers εmij , then the mth Betti number is defined by
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the equation5 6

(5) Pm − 1 = αm − γm − γm+1 (m = 1, 2, . . . , n− 1)

When the numbers Pm are defined in this way, so that they depend only
on a particular scheme for the manifold V , then it is not difficult to prove
(see §8) that they have the same value for homeomorphic schemata, so that
they are in fact topological invariants.7 The following may be said concerning
the relationship between this definition and the earlier one.

The second and third of Poincaré’s works on analysis situs8 are based
essentially on the latter definition of Betti numbers. Indeed the formula (5)
appears as a means of calculating the Betti numbers (defined in the earlier
way) from the schema of a manifold. However the problem immediately arises
whether it is possible to prove that the numbers Pm are the same under the
definition and the computation rule of formula (5), without certain extensions
and modifications, and since no use is made of the original definition of Betti
numbers in the works cited, the formula (5) can in fact be taken as a definition
of the Pm.

The considerations9 that lead from the earlier definition of Betti numbers
to the formula (5), and constitute some motivation for considering the num-
bers defined by (5) to be Betti numbers, are first of all the assumption (from
now on known as Assumption II) that each two-sided closed m-dimensional
manifold in V is homologous to a two-sided closed figure

∑
kiα

m
i comprised

of cells of the schema Σ of V .
Assumption II leads us to ask whether there is a system of two-sided

closed m-dimensional figures G
(m)
1 , G

(m)
2 , . . . , G

(m)
s whose nature is such that

there is no homology between the G
(m)
i themselves, but there is between them

and any other two-sided closed m-dimensional figure, which, like the G
(m)
i is

5One proves easily that α0 − γ1 is equal to the number of connected components of V
(cf. note 1, §10) and αn − γn is equal to the number of closed two-sided manifolds among
them. Thus if γ0 as well as γn+1 is set equal to 1, the formula (5) can also serve to define
P0 and Pn. In the development §§6,7 the Pm are understood to mean only the numbers
P1, P2, . . . , Pn−1.

6Another form of this definition may be found on the last page of §9.
7Of course it is only shown that Pm is a topological invariant of schemata, not a

topological invariant of manifolds. Cf. §2 in relation to this distinction.
8Compl. 1 and 2
9See Compl. 1
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composed of cells of Σ.10 It is easy to show that such a system can in fact
be found, and that the number s of figures in such a system, which must
obviously be independent of the choice of the system, is given by the right
hand side of equation (5).

The Poincaré relation system can be transformed to a reduced form,11

whose structure depends on well-known theorems from the theory of linear
forms, involving linear homogeneous integral substitutions of determinant 1
that replace the ami and the am−1j by new series of variables

bm1 , b
m
2 , . . . , b

m
αm and cm−11 , cm−12 , . . . , cm−1αm−1

so that the relations

ami ≡
αm−1∑
j=1

εmija
m−1
j (i = 1, 2, . . . , αm)

transform to
bmi ≡ ωmi c

m−1
i , (i = 1, 2, . . . , γm)

(6)
bmi ≡ 0 (i = γm + 1, . . . , αm)

Here ωm1 , ω
m
2 , . . . , ω

m
γm denote the non-zero elementary divisors of the ma-

trix of the numbers εmij .
12 The collection of relations (6) for m = 1, 2, . . . , n

then constitute a reduced form of the Poincaré relation system.
It is now immediately clear that a figure

αm∑
i=1

hia
m
i =

αm∑
i=1

kib
m
i

is two-sided and closed if and only if k1 = k2 = · · · = kγm = 0, so that it has
the form

αm∑
i=γm+1

kib
m
i ,

10In case one considers the theorem B which appears in §7 under the discussion of

Assumption II as obvious, it may be pointed out that such a system G
(m)
1 , G

(m)
2 , . . . , G

(m)
s

has the property that each two-sided closed m-dimensional figure composed of cells in any

schema for V satisfies a homology together with the G
(m)
i .

11Cf. Compl. 2, §2,3 (p.281ff.)
12Thus ωmγm = d1, ωmγm−k = dk+1/dk where dk is the greatest common divisor of all

k-rowed subdeterminants of |εmij |.
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and conversely, that each figure of this form is two-sided and closed.
On the other hand there is no difficulty in presenting the homology which

exists between the two-sided closed figures

(7) bmγm+1, b
m
γm+2, . . . , b

m
αm .

The Poincaré relation system in the original form yields the homologies

(8)
αm∑
j=1

εm+1
ij amj ∼ 0, (i = 1, 2, . . . , αm+1)

which must represent homologies between the figures (7), since the left hand
sides of these homologies (cf. a theorem given in §5) are two-sided closed
m-dimensional figures. But in general the αm+1 homologies written are not
independent, i.e., a few of them serve to compute the rest. On the other
hand, the system of homologies derived from the reduced form of the Poincaré
system

(9) ωm+1
i cmi ∼ 0 (i = 1, 2, . . . , γm+1)

is a system of independent homologies, since the cmi by hypothesis are linearly
independent forms in the ami and obviously all homologies (8) can be derived
from the γm+1 homologies (9). The homologies (9) now allow γm+1 of the
figures (7) to be expressed in terms of the remaining s = αm − γm − γm+1

figures, in other words: by suitably choosing s of the figures (7) one can
construct γm+1 new homologies from the homologies (9) so that the left sides
of these new homologies are multiples of some non-selected figure, while the
right hand side is each time a linear form in the s figures chosen. If we now
make the assumption (called Assumption III in what follows) that the figures
(7) satisfy no homologies other than those that follow from the homologies
(8) and hence from the homologies (9), then the figures chosen constitute a
system with the desired property, and the number of figures in such a system
is α1 − γm − γm+1, as claimed.

Using Assumption II one can now say that each two-sided closed m-
dimensional manifold in V is an integral linear form in the s = αm−γm−γm+1

selected figures, up to homology, so that the Betti number Pm (in the sense of
the earlier definition) cannot be greater than s+1. But when we set the Betti
number Pm exactly equal to s + 1, on the basis of previous considerations,
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we are making a further assumption that a certain converse of Assumption
II holds. This assumption (Assumption IV) says:

It is possible to construct s two-sided closed m-dimensional figures from
the cells of Σ which satisfy no homology, but which are related by a homology
to every other such figure, and which are also chosen so that each one of them
is homologous to a two-sided closed m-dimensional manifold lying in V .

If one accepts this assumption, then it is clear that the s manifolds whose
existence it asserts constitute a system with the property expressed by the
W

(m)
i in the definition of the Betti numbers, so that the Betti number Pm is

in fact equal to s+ 1 = αm − γm − γm+1 + 1. This completes the path from
the original definition of the Betti numbers to the formula (5).

§7

On the assumptions used in §6

We now give a by no means exhaustive discussion of the assumptions used
in §6. It may be remarked to begin with that many of the assumptions used
by Poincaré, which we consider to be not binding, become so with a suitable
limitation of the manifold concept. Thus it appears that Poincaré has only
analytic manifolds in mind. In this case many of the difficulties disappear,
when one is confined to manifolds that are analytic overall or else composed
of a finite number of analytic pieces.

As far as Assumption IV is concerned, it must be considered uncertain
whether it will be proved correct.1 In the evaluation of this question it is
important to note that the manifold concept of Section I excludes manifolds
with singularities and hence manifolds with self intersections.

The correctness of Assumption III can be regarded as highly probable. A
proof of it was given by Poincaré2 for the case of a three-dimensional manifold
and m = 1 and 2. This would need some extensions in circumstances similar
to those encountered with Theorem a) of §2 and in the discussion of the
theorem on the homeomorphism of the schemata of homeomorphic manifolds,
when complicated relationships can appear due to the higher dimension of V .

1In any case, not every two-sided closed m-dimensional figure in a manifold V is ho-
mologous to a two-sided closed m-dimensional manifold in V , e.g., the figure 2F 2 is not,
when V is the three-dimensional elementary manifold and F 2 is a spherical surface in V .
The question in the note on the second page of my note in the Wien. Ber. (1906), cited
above, is therefore to be disregarded.

2Compl. 1, §6.
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The necessity for these extensions is mainly due to the fact, which we have
already mentioned, that the manifolds considered in the text are more general
than those of Poincaré, since he confines himself to analytic manifolds.

It remains to discuss Assumption II. This assumption derives from con-
siderations something like the following.3 At bottom there are the following
two theorems:

A. For any m-dimensional manifold W (m) lying in a given manifold V
one can always find a decomposition of V into a cell system (schema) such
that W (m) consists of a collection of m-dimensional cells of this schema (i.e.,
there are a number of m-dimensional cells such that W (m) consists exactly
of the points that belong to one or more of these cells.

B. When two decompositions Σ1, Σ2 of V are present in a cell system,4

then the two-sided closed m-dimensional figures consisting of cells of Σ1 are
homologous to figures consisting of cells of Σ2.

Assumption II is an immediate consequence of these theorems. Namely,
if Σ1 is the given schema of V and Σ2 is a schema of V from whose m-
dimensional cells W (m) can be built, then it follows that W (m) is homologous
to a figure consisting of cells of Σ1, and since V represents an arbitrarily
selected m-dimensional manifold, Assumption II is confirmed.

In order to justify B, we introduce the following two theorems:
a) When Σ1 and Σ2 are decompositions of V into cell systems, then there

is a decomposition of V into a schema Σ3 such that Σ3 can be derived from
both Σ1 and Σ2 by subdivision.5

b) When a manifold is derived from the schema Σ by subdivision into a
schema Σ′, then all m-dimensional figures consisting of cells of Σ′ are homol-
ogous to figures consisting of cells of Σ.

Theorem B follows immediately from these theorems. Any figure consist-

3A slightly different arrangement of these is given in Poincaré’s Compl. 1 §§5,6.
4This is understood to mean the following: one thinks of the manifold V defined in any

manner, say by a schema. Then a “decomposition of V by a schema Σ1” is given, not only
in terms of the information specifying Σ1 itself, but also by giving the individual cells as
point sets in V . The “decomposition of V by the schema Σ2” is given in the same way. It
is of course not excluded, e.g., that the decomposition of V by the schema Σ1 coincides
with the decomposition given by Σ (for which it is necessary, but not sufficient, that the
schemata Σ and Σ1, be formally identical, regardless of their “position” in V ).

5This means (cf. note 4): 1. Σ3 is a derived schema of Σ1 (the cells of Σ3 therefore
divide into cells ζ ′ coinciding with cells ζ of Σ1, or parts of them, and new cells ζ ′′); 2. If
ζ ′1, . . . , ζ

′
µ make up the cell ζ1, then ζ1 consists exactly of the points of V belonging to one

of the cells ζ ′i; 3. The same holds between the decompositions of V into Σ3 and Σ2.
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ing of cells of Σ2 can be considered to consist of cells of Σ3, so by b) it is
homologous to one consisting of cells of Σ1.

It is easy to prove b) (see §8), but not a).6 The following simple example
suffices to show this. One lets V be the disc x2 + y2 ≤ 1 and considers the
two decompositions of V into two surface pieces that result from subdividing
V along the respective lines y = 0 and y = x sin 1

x
(with y = 0 when x = 0).

Since these two lines intersect each other infinitely often inside V , Theorem
a) evidently fails here.7

A proof of Theorem B valid under all circumstances is therefore still
lacking. On the other hand it seems that Theorem A, which we now turn
to discuss, it quite untenable, however plausible it seems at first. In order
to explain this we draw on the example used in §6 for the discussion of
Assumption I. Since the closed line U1 of this example is a line in the simply
connected bounded manifold V , then according to Theorem A there must
be decomposition of V into a cell system such that U1 consists of edges of
this cell system. Intuition says that such a cell system is impossible. Thus
it is shown that Theorem A cannot be generally valid (at least without an
extension of the concept of schemata to admit infinitely many cells).

The given example also shows that Assumption II itself is incorrect. In-
deed it is intuitively clear that U1 cannot be homologous to an edge path in
a schema of V . This would only be possible if the homology concept were
extended to admit sums of infinitely many homologies. We do not attempt
such an extension here.

Thus the considerations that lead from the original definition of Betti
numbers to the formula (5) depend on various assumptions that either (with
retention of the adopted definition) turn out to be inadmissible or not yet
rigorously proved. The obvious heuristic value that the original definition has
in explaining the new one, based on the schema alone, is of course untouched
by these objections. This is sufficient ground for departing from the original
definition and using the definition of the numbers Pm based in formula (5)
in what follows.

§8

On the topological invariants Pm

6If the theorem a) were available, the hypothetical theorem on the homeomorphism of
schemata of homeomorphic manifolds, mentioned in §2, would be immediate.

7On the other hand, Theorem b) clearly retains its validity for this example.
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This paragraph contains first of all an exposition of Poincaré’s proof in
Compl. 2 that the numbers Pm = αm− γm− γm+1 are topological invariants
of the schemata. In addition, Poincaré’s fundamental theorem on the Betti
numbers of two-sided closed manifolds and the necessary and sufficient con-
ditions for the homeomorphism of two-dimensional manifolds are discussed,
and we finally make a few remarks on the invariant N − α0 − α1 + . . .± αn
that is computable from the numbers Pm.

The first objective will be achieved when it is shown that the Pm do
not change under elementary subdivision. Thus we consider an elementary
subdivision of the schema Σ of an n-dimensional manifold V consisting of the
replacement of an l-dimensional cell of Σ by two cells that meet along a new
(l − 1)-dimensional cell (1 ≤ l ≤ n). The numbers α′m, γ′m for the derived
schema Σ′ have the same meaning as αm, γm do for the original schema Σ.
Then one has the first of all

α′l = αl + 1, α′l−1 = αl−1 + 1

(10)
α′m = αm for m 6= l − 1, l.

In addition, let alr be the cell of Σ that is divided into two. The boundary
of this cell is a spherical (l − 1)-dimensional manifold that may be denoted
by S(l−1). The subdivision in question then consists in dividing S(l−1) into
two (l − 1)-dimensional elementary manifolds E

(l−1)
1 , E

(l−1)
2

1 by means of a
spherical (l−2)-dimensional manifold S(l−2) consisting of (l−2)-dimensional
cells lying in S(l−1), and spanning S(l−2) by an (l−1)-dimensional elementary
manifold al−1s that divides alr into two cells alr1 and alr2 .

2 S(l−2) is therefore
the boundary of al−1s and the orientation of al−1s is chosen, say, so that al−1s

together with E
(l−1)
1 , and likewise −al−1 with E

(l−1)
2 , each constitute a spher-

ical (l − 1)-dimensional manifold provided with an orientation.3 If one now

1The manifolds E
(l−1)
1 and E

(l−1)
2 are provided with the orientation induced by that of

S(l−1).
2In the case l = 1 this formulation undergoes an easy modification. S(0) is the pair of

endpoints of the edge a1r, E
(0)
1 denotes one, and E

(0)
2 the other of these endpoints, and the

subdivision is carried out simply by marking a point a0s on a1r.
3It may be noted that the terminology of the text needs to be made more precise.

Namely, when we speak of the “spherical manifolds” S(l−1), S(l−2) and of the “elementary

manifolds” E
(l−1)
1 , E

(l−1)
2 then these expressions are, so to speak, not relative to V , but

relative to the “l-dimensional elementary manifold represented by alr”. This means the
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compares the Poincaré relation systems of Σ and Σ′ then it is first of all
obvious that the relations

(11) ami ≡
αm−1∑
j=1

εmija
m−1
j (i = 1, 2, . . . , αm)

for m > l + 1 and m < l − 1 completely agree in both systems, whence
γ′m = γm follows for these values of m. If in addition the positive orientation
of alr1 and alr2 is chosen so as to coincide with that of alr,

4 then it is clear

that the numbers εl+1
ir1

, εl+1
ir2

in the relation system of Σ are both equal to the

number εlir in the relation system of Σ, while all the remaining numbers εl+1
ij

of Σ also appear in Σ′. Consequently, γ′l+1 = γl+1 as well. The relations

(12) ali ≡
∑

εlrja
l−1
j

not only include such relations as completely coincide in both systems, but
in the system of Σ there is also the relation

ali ≡
αi−1∑
j=1

εlrja
l−1
j

following. If one considers the collection of all incidence relations that make up the schema
Σ of V , then it first of all defines elementary surfaces, each by giving a number of edges and
identifying their endpoints so as to form a closed line, then taking this as the boundary
line of an elementary surface. Later incidence relations introduce identifications between
the edges of elementary surfaces, so that finally a whole series of elementary surfaces link
up to form a single wall (= two-dimensional cell) a2i of the schema. Any such elementary
surface belonging to a2i will be said to be represented by a2i . The further construction of the
schema consists in assembling spherical two-dimensional manifolds by identifying edges of
elementary surfaces. These spherical two-dimensional manifolds are then used as boundary
surfaces of three-dimensional elementary manifolds. Any such elementary manifold that
ends up in the cell a3i , as a a result of later identifications, is then a representative of the
three-dimensional elementary manifold represented by a3i . Continuation of this reasoning
shows what is to be understood in general by the m-dimensional elementary manifold
represented by ami . However it is clear that the collection of points of the cell ami is not
in general an elementary manifold lying in V , but only an m-dimensional space piece
in V , since identifications between its boundary elements may occur as a result of later
incidence relations in the schema of V . Thus in general S(l−1) and S(l−2) respectively are
not spherical manifolds lying in V but only in the elementary manifold represented by alr,

and similarly for the “elementary manifolds” E
(l−1)
1 , E

(l−1)
2 . However, we omit carrying

through the details of all these relations in order to avoid unnecessary complications in
the presentation, which would be harmful to clarity.

4This assumption, which is made for the sake of simplicity, is of course inessential.
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and in the system of Σ′ there are the two relations

alr1 ≡
αi−1∑
j=1

εlr1ja
l−1
j + al−1s

(13)

alr2 ≡
αi−1∑
j=1

εlr2ja
l−1
j + al−1s

where εlrj = εlr1j + εlr2j and the linear forms

αi−1∑
j=1

εlrja
l−1
j ,

αi−1∑
j=1

εlr1ja
l−1
j ,

αi−1∑
j=1

εlr2ja
l−1
j

in order are the expressions for S(l−1), E
(l−1)
1 , E

(l−1)
1 in terms of the cells

of Σ. Comparison of the numbers εlij in the two systems of relations yields
γ′l = γl + 1. Finally it is obvious that all relations

(14) al−1i ≡
αi−2∑
j=1

εl−1ij al−2j

of the system Σ also stand in the system of σ′, and the latter also has a
relation

(15) al−1s ≡
αi−2∑
j=1

εl−1sj a
l−2
j

whose right hand side is the expression for S(l−2) in terms of the cells of Σ.
Now since

al−1s +

αi−1∑
j=1

εlr1ja
l−1
j ≡ 0,

the right hand side of (15) must be a linear combination of the right hand
sides of the relations (14), whence γ′l−1 = γl−1.

We now insert the following remark. A glance at the relations (12) and
(13) shows that each two-sided closed l-dimensional figure consisting of cells
of Σ′ must provide the cells alr1 , a

l
r2

with the same coefficient, so that they
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can only occur in the combination alr1 + alr2 . Since alr1 + alr2 can also be
written for alr, each such figure can be constructed from the cells of Σ. Since
also

al−1s ∼ −
αi−1∑
j=1

εlr1ja
l−1
j ,

each (l−1)-dimensional figure assembled from the cells of Σ′ is homologous to
one assembled from the cells of Σ. For all other dimensions the corresponding
theorem is trivial and therefore Theorem b) of §7 is proved.

Putting together the equations derived above:

γ′l = γl + 1, γ′m = γm for m 6= l,

with the equations (10) proves the equality of the numbers Pm for the two
schemata Σ and Σ′ 5

The following theorem has been proved by Poincaré:6 if P1, P2, . . . , Pn−1
are the Betti numbers of a two-sided closed n-dimensional manifold V , then7

Pm = Pn−m (m = 1, 2, . . . , n− 1).

The proof is carried out with the help of two dual schemata Σ and Σ of
V . Suppose ami , εmij , αm, γm, Pm have the usual meanings for the schema
Σ and the corresponding Poincaré relation system, and let ami , εmij , αm, γm,

Pm have the analogous meanings for Σ. In this connection, let an−mi be the
cell of Σ corresponding to the cell ami of Σ. Then with suitable choice of the
orientation of the cells of Σ 8 we have

εmij = εn−m+1
ji

5One sees also, of course, that the numbers α0 − γ1 and αn − γn, which can be defined
in terms of P0 and Pn, also have the same values for Σ and Σ′.

6Compl. 1, §8
7This equation is obviously also correct for m = 0.
8If we have chosen an orientation of the cells of V , the orientation of the cell an−mi is

derived from that of ami by the following rule, where we shall use the term “m-dimensional
generalized tetrahedron” for the mth figure in a series that begins with the line segment,
triangle and tetrahedron (cases m = 1, 2, 3): if M denotes the point of intersection of ami
and an−mi (it is naturally assumed that only one such point exists) then the indicatrix J
of V may be brought into such a position that the point 1 of J falls on M , the points
1, 2, . . . ,m+1 on the boundary of J belong to a m-dimensional generalized tetrahedron Tm
wholly inside the cell ami , which otherwise has no points in common with J ; the analogous

generalized tetrahedron Tn−m lies wholly in the cell an−mi , which has no other points in
common with J , and thus Tm and Tn−m respectively define positive indicatrices of ami
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and therefore γm = γn−m+1 whence, since αm = αn−m, we have

Pm = αm − γm − γm+1 + 1 = αn−m − γn−m+1 − γn−m + 1 = Pn−m.

But since Pm = Pm as a consequence of the homeomorphism of the schemata
Σ and Σ′, the assertion follows.

This is an appropriate place to review the well known necessary and suffi-
cient conditions for the homeomorphism of two-dimensional manifolds. These
are obtained with the help of the easily-proved theorem that the schema of
a two-dimensional manifold V is homeomorphic to a fundamental polygon Π
of one of the following types 1 and 2 according as V is two- or one-sided.

1. Π has 4p+ 3r1 + 2r0 sides, where the paired sides

(s4k−3, s4k−2), (s4k−1, s4k) for k = 1, 2, . . . , p,

and
(s4p+3l−2, s4p+3l) for l = 1, 2, . . . , r1,

(s4p+3r1+2m−1, s4p+3r1+2m) for m = 1, 2, . . . , r0

are identified in the first way, and the points represented by the closed
cycles of vertices

A4p+3r1+2m−1,2 = A4p+3r1+2m,1

are deleted from the manifold.9

2. Π has 4q − 2 + 3r1 + 2r0 sides, where the paired sides

(s2k−1, s4q−2k) for k = 1, 2, . . . , q

are identified in the second way, and

(s2k, s4q−2k−1) for k = 1, 2, . . . , q − 1,

(s4q−2+3l−2, s4q−2+3l) for l = 1, 2, . . . , r1,

and an−mi when their vertices are taken in the order written. In addition, one thinks

of the point a0i provided with a positive or negative sign (cf. §5, note 2) according as
the orientation of ani agrees with that of V or not, and the signs of the vertices a0i are
analogously determined by the orientations of the cells ani .

9Cf. §2 for the notation.
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(s4q−2+3r1+2m−1, s4q−2+3r1+2m) for m = 1, 2, . . . , r0

are identified in the first way, and the vertices

A4q−2+3r1+2m−1,2 = A4q−2+3r1+2m,1

are the points omitted from the manifold.

The numbers r1 and r0 and q respectively are topological invariants of
the schema, because r1 is the number of boundary lines, r0 is the number
of isolated boundary points, and in the case of p and q this follows by first
assuming r0 = 0, when we have the formulae P1 = 2p + r1 resp. 2p + 1
respectively when V is closed and P1 = q + r1.

Of course it is also true for r0 > 0 that fundamental polygons with dif-
ferent p or q cannot be homeomorphic.10 Consequently, equal values of r1,
r0, P1, i.e., of r1, r0, p resp. r1, r0, q is necessary and sufficient for the home-
omorphism of two schemata. As is well-known, p is called the genus of the
surface, and q is the number of independent paths that reverse the indicatrix.

To conclude this paragraph we consider the topological invariant

N = α0 − α1 + α2 − · · ·+ (−1)nαn

of schemata (it follows immediately from the formulae (10) that this is a topo-
logical invariant)11 which is related to the Betti numbers via a generalization
of the well-known Euler polyhedron formula12

α0 − α1 + · · ·+ (−1)nαn = P0 − P1 + · · ·+ (−1)nPn +
1

2
(1 + (−1)n)

10In the case r0 > 0 we set P1 = 2p + r1 + r0 resp. q + r1 + r0. Cf. the conditions on
the last page of §14.

11It is easy to see that N is the only topological invariant obtained from the num-
bers αi. This is because any such invariant ϕ(α0, α1, . . . , αn) can be written in the form
f(η0, η1, . . . , ηn) where

ηi = α0 − α1 + · · ·+ (−1)iαi

and consideration of an elementary subdivision dividing an l-dimensional cell into two
yields

f(η0, η1, . . . , ηl−2, ηl−1 ± 1, ηl, . . . , ηn) = (η0, η1, . . . , ηn), (l = 1, 2, . . . , n),

i.e., f depends only on ηn = N . One proves in an analogous way that, apart from
P0, P1, . . . , Pn, no other numbers formed from α0, α1, . . . , αn, γ1, . . . , γn are topological in-
variants, i.e., any other invariants formed from the numbers αi, γi, which can obviously be
written in the form f(P0, P1, . . . , Pnγ1, γ2, . . . , γn), are independent of the last n arguments
and are thus functions of the Pi.

12Cf. Poincaré, An. Sit. §18 and Compl. 1 §3 p.301
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as follows immediately from the formulae (5) for m = 0, 1, . . . , n, when it is
remembered that γ0 = γn+1 = 1. This equation yields the theorem:13

For each closed manifold of odd dimension the invariant N is zero.

III. One-sided closed manifolds in a manifold

§9

The invariants Qm analogous to the Betti numbers Pm

The original definition of the Betti numbers of a manifold V involved
the two-sided closed manifolds in V and the homologies between them, as
explained in §6.1

We shall now also consider the one-sided closed manifolds lying in a given
manifold.

We begin with a simple example. Let T3 be that two-sided closed three-
dimensional manifold obtained from the ball x2 + y2 + z2 ≤ 1 by identifying
pairs of diametrically opposite points on the spherical boundary surface. T3
is then a finite image of projective three-dimensional space. One obtains a
cell system Σ for T3 by dividing the spherical surface by a meridian circle
M into two hemispheres, and dividing the meridian circle into two arcs f ,
g by the north pole A and the south pole B, and regarding the ball as a
single three-dimensional cell a3 on which the two hemispherical boundary
surfaces are identified in such a way as to bring diametrically opposite points

13Poincaré, An. Sit. p.114. Cf. also Dyck, Math. Ann. 37, p.295. Poincaré gave
another proof of the simply-connectedness of the “neighbourhood manifolds” (see §3, note
6 and §4) based on this (An. Sit. §17). The theorem is obtained most simply as fol-
lows from properties of the dual schema (in the construction of which the condition of
simply-connectedness of the neighbourhood manifold is of course implicit). Namely, if the
dimension n = 2ν + 1 then since αm = αn−m we have

N = α0 − α1 + · · · − α2ν+1 = −α0 + α1 − · · ·+ α2ν+1

but from topological invariance

N = α0 − α1 + · · · − α2ν+1.

The remarks just made also allow us to see that the theorem is correct for one-sided closed
manifolds, although the proof in the text based on Pm = Pn−m, because of the proof of
this formula itself, assumes that the manifold is two-sided.

1This is also emphasized by Heegaard, Diss. p.64
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into coincidence. (Since this identification is of the first kind, the manifold
T3 is two-sided.) In the process, the edge f = AB is identified with the
edge g = BA, and the vertex A with the vertex B. The two identified
hemispherical surfaces constitute a wall a2, the edges f , g an edge a1 and the
vertices A, B a vertex a0 of the schema. The neighbourhood manifold of a0

satisfies the condition of being simply connected.
The Poincaré relation system for the schema Σ of V is

a3 ≡ 0,

a2 ≡ 2a1,

a1 ≡ 0.

The two-dimensional figures ha2 obtainable from the single wall of the schema
clearly include none that are two-sided, and because of this we obtain the
Betti number P2 = 1 from α2 = 1, γ2 = 1 and γ3 = 0. On the other hand,
the collection of points of a2 obviously represents a closed one-sided surface
lying in T3, since it can be viewed as a projective plane lying in the projective
space T3.

If one considers yet another schema Σ′, which results from Σ when one
divides the cell a3 into two cells a31, a

3
2 by a new wall b2 represented by a disc

through M , then the Poincaré relation system becomes

a31 ≡ a2 − b2, a32 ≡ −a2 + b2;

a2 ≡ 2a1, b2 ≡ 2a2;

a1 ≡ 0.

So b2 as well as a2 is a one-sided closed surface in T3. The surface b2 is related
to a2 by the homology

a2 ∼ b2.

This leads us to the following question, which can be expressed quite generally
and relates closely to the considerations upon which the original definition
of Betti numbers was based.

Does each n-dimensional manifold V contain a system of closed (two-
or one-sided) m-dimensional (m < n) manifolds connected by no homology,

Φ
(m)
1 ,Φ

(m)
2 . . . ,Φ

(m)
r such that any other closed m-dimensional manifold Φ(m)

in V , whether two-sided or one-sided, satisfies a homology

kΦ(m) + k1Φ
(m)
1 + . . .+ krΦ

(m)
r ∼ 0 (k 6= 0)?
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If the answer is in the affirmative, then the number r is obviously in-
dependent of the choice of system, and its value plus one is a topological
invariant Qm of V completely analogous to the number Pm. But for the
same reasons that led us away from the definition of Betti numbers orig-
inally given, we avoid this path in investigating the topological invariants
associated with one-sided manifolds. Moreover, in complete analogy with
the case of the numbers Pm we pass from one-sided closed manifolds in V
to one-sided closed figures — it will be explained in a moment what they
are — and indeed we pass directly from a schema of V to an unimpeachable
definition of the desired topological invariants. For this purpose we introduce
the following theorem, which is analogous to a theorem for two-sided closed
manifolds given in §5.

If um1 , u
m
2 , . . . , u

m
α are m-dimensional space pieces without common inte-

rior points lying in a manifold and

(17)
α∑
i=1

um ≡
∑

hiu
m−1
i ,

and if the points in one or more of the space pieces umi constitute a one-
sided closed m-dimensional manifold, then all coefficients hi of the um−1i on
the right hand side of (17) are divisible by 2,2 which may be expressed in
abbreviated form by

(18)
α∑
i=1

um ≡ 0. [mod 2]

This assertion is clearly independent of the choice of sense of the individ-
ual umi .

With the one-sided closed surface lying in the manifold T3 we have already
seen a simple example of this theorem. We note that (18) also holds when
the points belonging to one or more umi together constitute a two-sided closed
manifold, and that just in this case the senses of the individual umi may be
chosen so that the coefficients hi in (17) are exactly zero. We shall now —
with the preceding theorem as motivation — call an m-dimensional figure

2As in the theorem of §5 we also assume here that the um−1i comprising the boundary
of umi have no common interior points
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∑
hiu

m
i closed when it satisfies the relation3∑

hiu
m
i ≡ 0 [mod 2]

i.e., when the figure in question is congruent, in the sense of §5, to an (m−1)-
dimensional figure, all coefficients of which are divisible by 2. If in fact we
have the relation ∑

hiu
m
i ≡ 0 [mod 2]

then, as we have said, the figure is called two-sided and closed.
A remark is in order here. When the space pieces um1 , u

m
2 , . . . , u

m
α , form

a one-sided closed manifold then this manifold can be symbolized as one of
the 2α linear forms

(19)
∑

δiu
m
i ,

constructed from the umi with coefficients ±1, and all these linear forms
satisfy the relation ∑

δiu
m
1 ≡ 0 [mod 2].

On the other hand, if the space pieces um1 , u
m
2 , . . . , u

m
α form a two-sided closed

manifold, so that we have the relation∑
umi ≡ 0,

then of all the remaining linear forms (19) only
∑

(−umi ) satisfies the relation∑
δiu

m
i ≡ 0.

Thus only the linear forms
∑
umi and

∑
(−umi ) symbolize the same two-sided

closed manifold, and they may be regarded as providing its two possible ori-
entations. On these grounds, when we consider closed figures, which are pos-
sibly one-sided, then figures given by distinct linear forms

∑
hiu

m
i ,
∑
h′iu

m
i

that satisfy the congruence∑
hiu

m
i ≡

∑
h′iu

m
i (mod 2)

3These symbolic congruences with the modulus enclosed in square brackets may be
distinguished from congruences of the form∑

hiu
m
i ≡

∑
kiu

m
i (mod 2),

which, taken in the usual sense, express the divisibility of all numbers (hi − ki) by 2.
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will not be regarded as geometrically distinct, even though they are arith-
metically distinct. Only in the case of two-sided closed figures will arithmetic
distinctness be regarded as genuine distinctness.

Now let us recall the decisive definition of the numbers Pm of a manifold
V in a form suitable for our future purposes.

One makes the assumption (called III above) that there are no homologies
between the cells of the schema Σ of V other than those obtained from the
Poincaré relation system of Σ, and then computes them from it. Under this
assumption one obtains a system of figures, among which the collection Γ
of two-sided closed m-dimensional figures comprised of cells of Σ is chosen
with the property that no homology exists between these figures of Γ alone,
although one exists between the figures of Γ and each other figure of the
system. The number of figures in such a system (which is independent of the
choice of system), plus 1, is called the number Pm for the manifold V .

The corresponding numbers Qm for V are given by the same definition,
except for omission of the word “two-sided”. The inequality

Qm ≥ Pm

therefore follows immediately.
The definition of the Qm just given needs clarification only to the extent of

proving the existence of a system of closed figures with the required property.
It is then clear that the number of figures in any such system is the same.
The required proof will be carried out in the following paragraph in such a
way as to simultaneously determine the difference Qm−Pm in terms of known
topological invariants, namely the torsion numbers discovered by Poincaré.

§10

The Poincaré torsion numbers. Determination of Qm

Continuing the notation of §§5,6, let εmij be the coefficients of the Poincaré
relation system of a manifold schema and let ωm1 , ω

m
2 , . . . , ω

m
γm be the nonzero

elementary divisors of the matrix of the εmij . Then those of the numbers
ωmh that are > 1 will be called the (m − 1)th order torsion numbers1 of the

1Called “coefficients de torsion” by Poincaré (Compl. 2 p.301). If one were to denote
εmij , ω

m
h , γm, βm instead by εm−1ij , ωm−1h , γm−1, βm−1 this would agree better with the

numbering of the orders of the torsion numbers introduced here (in my note in the Wiener
Ber. cited above the torsion numbers of (m − 1)th order were called torsion numbers

48



manifold. When, as in §8, one takes the Poincaré relation system for a schema
Σ and derives a schema Σ′ from Σ by elementary subdivision, then one sees
that the torsion numbers derived from Σ agree with those derived from Σ′,
so that they are in fact topological invariants of the schemata.2 We wish to
show that a knowledge of Pm and the Poincaré torsion numbers of (m− 1)th

order suffices for the calculation of the Qm.
In order to obtain a system of closed m-dimensional figures with the

property expressed in the definition of the Qm we go back to the Poincaré
relation system of a schema Σ and its reduced form (6) described in §6. It
follows from the latter that a figure

αm∑
i=1

hia
m
i =

αm∑
i=1

kib
m
i

of mth order) however we forego this to avoid deviating from the notation in Poincaré’s
fundamental works. On the other hand this numbering of the orders of the torsion numbers
harmonises with the result of §14 that the fundamental group of a manifold V — which
concerns the closed one-dimensional manifolds in V — determines P1 as well as the torsion
numbers of “first order”, and its basis is ultimately the fact that the matrix of the numbers
ε1ij has no elementary divisors > 1 (see Poincaré, Compl. 2, p.307). This derives from

the following property of the matrix: if not all numbers ε1ij in the ithth row are zero, then

only two are non-zero, one of which = +1 and the other = −1. Suppose ε1ih = +1 and
ε1ik = −1. One can assume i = 1, h = 1, k = 2, since this can always be arranged by
reordering the rows and columns. Now if the elements of the first column are added to
the corresponding elements of the second column, followed by multiplication of the first
row by −ε1i1 and addition of it to the ith row (i = 2, 3, . . .), then one obtains a matrix of
the form

(20)

1 0 0 . . .
0 ζ11 ζ12 . . .
0 ζ21 ζ22 . . .
...

where the matrix of the numbers ζij , which has one row and column fewer than the
original matrix, has the same property as the matrix of the ε1ij , as one easily sees. But

since the matrix (20) has the same elementary divisors as the matrix of the ε1ij one sees
by induction that elementary divisors > 1 cannot appear. (The same type of argument
shows that γ1 = α0 − P0 which was used in note 5 of §6.)

2See Poincaré, Compl. 2. By introduction of the dual schema and the relation (16)
one obtains the theorem (see Poincaré op. cit.): For a two-sided closed n-dimensional
manifold the torsion numbers of mth order coincide with those of (n−m− 1)th order.
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can be closed only when the numbers

k1ω
m
1 , k2ω

m
2 , . . . , kγmω

m
γm

are divisible by two. Now if βm of the numbers ωmi are even, say ωmγm−βm+1, . . . ,
ωmγm−1, ω

m
γm , and the rest are odd, then k1, k2, . . . , kγm−βm must be divisible by

two if the figure in question is to be closed, so this figure must be congruent
modulo 2 to a figure of the form

αm∑
i=γm−βm+1

kib
m
i

This necessary condition is clearly also sufficient.
Thus one sees first of all that all closed m-dimensional figures are linear

combinations of αm − γm + βm closed figures

(21) bmγm−βm+1, bmγm−βm+2, . . . , bmαm

when one does not distinguish figures differing by linear forms divisible by
two; these are not geometrically distinct in any case. But the figures (21)
are not only all geometrically distinct from each other; because of the linear
independence of these forms in the ami , none of them can be congruent modulo
2 to a linear combination of the others. The last αm− γm of the figures (21)
are two-sided, the first βm one-sided.

We now have the question of homologies between the figures (21) and
indeed, since we are leaning on Assumption III, the question of deriving
them from the Poincaré relation system. As already remarked in §6, these
homologies may be represented as homologies between the two-sided closed
figures bmγm+1, . . . , b

m
αm ,3 and in fact one obtains γm independent homologies,

from which all the rest may be computed. It follows from this, analogously
as in §6 for the corresponding case of two-sided closed figures, that one can
exhibit a system of t = αm − γm + βm − γm+1 closed m-dimensional figures,

3Thus when gm1 , g
m
2 , . . . are closed m-dimensional figures, some of which are one-sided,

and if there is a homology ∑
hig

m
i ∼ 0

between them, then the linear form in the cells ami on the left hand side may always
be represented as a linear combination of suitably chosen two-sided closed figures. In
the above example of the manifold T3 this is immediately confirmed for the homology
a2 − b2 ∼ 0.
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consisting of cells of the schema, connected by no homology but such that
any other such figure does satisfy a homology together with these t figures.
In the proof of the existence of such a system the required completion of the
definition of the Qm has to be carried out and at the same time we have
found the formula

Qm = t+ 1 = αm − γm − γm+1 + βm + 1 = Pm + βm.

βm, the number of even numbers among ωm1 , ω
m
2 , . . . , ω

m
γm , is just the num-

ber of even torsion numbers of (m− 1)th order of the manifold and we have
the theorem:4

The difference Qm − Pm equals the number of even torsion numbers of
(m− 1)th order.

The determination of the number βm does not necessarily require the
determination of the elementary divisors ωm1 , ω

m
2 , . . . , ω

m
γm . Namely, let the

Poincaré relation system be brought, by any means, into a form

bmi ≡ τmi c
m−1
i , (i− 1, 2, . . . , γm) (τmi > 0)

bmi ≡ 0 (i = γm, . . . , αm)

where the bm1 , b
m
2 , . . . , b

m
αm and cm−11 , cm−12 , . . . , cm−1αm−1

are linear homogeneous

forms in the am1 and am−1i respectively, with determinant 1. Then βm is also
the number of even numbers among the τmi . This follows from the easily-
proved theorem that the number of elementary divisors of the matrix

τm1 0 0 . . .
0 τm2 0 . . .
0 0 τm3 . . .
...

divisible by any prime p (2 in particular) is equal to the number of τmi divisible
by p.

IV. The fundamental group

§11

The Poincaré numbers of a discrete group

4See §1 of the note in the Wien. Ber (1906) cited above.
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In this paragraph we introduce a few of the group-theoretic considerations
relevant to the groups that will arise in connection with connected manifolds.
We remark that the elements of these groups are not operations with a specific
meaning, and we are concerned only with the laws of their combination, so
we are dealing with the general group concept.

These laws of combination of the groups in question, and hence the pre-
sentations of the groups themselves, will be given in the following well-known
way. First of all one gives a number1 of elements (operations) s1, s2, . . . , sn
of the group, which will be called generating operations.2 One then obtains
all the elements of the group as products of the operations s1, s2, . . . , sn and
the inverse operations s−11 , s−12 , . . . , s−1n . Thus each element of the group may
be written in the form

(22) sα1
1 s

α2
2 · · · sαnn sβ11 s

β2
2 · · ·

where the αi, βi are integers (positive, negative or zero) and each symbol (22)
represents a particular element of the group. In general an element of the
group will be representable in different ways in the form (22). In addition
to giving the generating operations, the group must be defined by certain
“defining relations” between them

(23) Fi(s1, s2, . . . , sn) = 1 (i = 1, 2, . . . , n)

whose left hand sides Fi(s1, s2, . . . , sn) are expressions of the form (22) and
which say that all the expressions F1(s1, s2, . . . , sn), F2(s1, s2, . . . , sn), . . . ,
Fm(s1, s2, . . . , sn) are symbols for the identity operation 1 of the group, and
furthermore that any two expressions that can be proved equal with the help
of the relations (23) are symbols for the same element of the group. In this
way a group is completely determined by giving its generators and defining
relations.

One observes immediately that two different systems of generators and
defining relations can define groups that are isomorphic,3 and hence the same
in the sense of the general group concept. However we have neither solved
the general problem of theoretically surveying all the possible ways in which

1We confine ourselves to groups that can be generated by a finite number of operations.
2The identity group can be thought of as the result of taking no generating operations,

as well as none of the defining relations that are discussed later.
3By “isomorphic” we always mean “holoedrically isomorphic” [genuine isomorphism,

rather than just homomorphism, Trans.]
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the same group may be defined, nor found a means4 for deciding in partic-
ular cases whether two groups given by different systems of generators and
defining relations are the same, i.e., isomorphic. However, we shall give a
necessary condition for two differently-defined groups to be isomorphic. It
consists in the agreement of the Poincaré numbers derived from the systems
of defining relations for the groups. But before giving the definition of these
numbers we discuss the connection between two relation systems that define
isomorphic groups.

First, a remark about the relations that follow from a given system of
relations

(24) A1 = 1, A2 = 1, . . . , Ak = 1

The A1, A2, . . . , Ak are understood to be expressions of the kind (22) in the
generating operations. Each of the relations (24) implies the relation obtained
by replacing the left hand side by its inverse. Thus one obtains the relations5

(25) A−11 = 1, A−12 = 1, . . . , A−1k = 1.

Also, if L denotes any expression of the same kind as A1, A2, . . . , Ak, then
any one of the relations (24), say A1 = 1 has the consequence

L−1A1L = 1

Another way of obtaining consequences of (24) is to take any two of them
(which need not be distinct), say A1 = 1 and A2 = 1, and derive the relation

A1A2 = 1.

If one assumes that the relation system (24) is constituted so that it already
contains the relations (25), then one can say: successive applications of the
last two types of construction allow one to derive all relations that follow
from (24), if, each time one obtains a consequence relation, one adds this
new relation to the system and proceeds with derivations from the extended
system. This can also be summarized as follows:

4In the case of finite groups this decision is obviously always possible. However a
criterion for deciding whether a group given by a particular presentation is in fact finite
or not, is lacking.

5The inverse A−1i of Ai is defined so that AiA
−1
1 = 1 identically.
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If the relation system (24) contains the inverse relations (25), then each
consequence relation is of the form

L1Ai1L2Ai2L3 · · ·AirLr+1 = 1

where i1, i2, . . . , ir are any numbers from the series 1, 2, . . . , k, and L1, L2, . . . ,
Lr+1 are expressions in the generating operations of the form (22) that iden-
tically satisfy the equation

L1L2 · · ·Lr+1 = 1.

To deal with relation systems defining the same group we first introduce
two special cases.

In the first case let s1, s2, . . . , sn be the generating operations and let

(26) F1(s1, s2, . . . , sn) = 1, . . . , Fm(s1, s2, . . . , sn) = 1

be the defining relations of one system, while the second system has the same
generating operations and, as well as (26), the additional defining relation

Fm+1(s1, s2, . . . , sn) = 1,

which is a consequence of the relations (26). It is evident that the two
relation systems define the same group. The passage from the first system
to the second will be called an extension of the first kind, while the passage
from the second to the first, by omission of a consequence relation, will be
called a reduction of the first kind.

In the second case let s1, s2, . . . , sn again be the generating operations
and let (26) be the defining relations of one system. The second system, on
the other hand, has the elements s1, s2, . . . , sn, t as generating operations,
and the defining relations are (26) together with a relation of the form

A−1t = 1,

where A is an expression in the elements s1, s2, . . . , sn of the type (22). Since
the second system differs from the first only in mentioning the operation t =
A, which is already present in the first system, it is clear that the two relation
systems here also define the same group. In this case the passage from
the first system to the second by introduction of a superfluous generating
operation is called an extension of the second kind. On the other hand, if
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the relation system contains a generator t that appears in only one of the
relations, and if the latter is of the form (27), then omission of t and the
relation in question will be called a reduction of the second kind.

We now consider the general case of two relation systems that define the
same group.6 Let the generating operations of one system be s1, s2, . . . , sn
and let

(28) Fi(s1, s2, . . . , sn) = 1 (i = 1, 2, . . . ,m)

be the defining relations. For the second system let t1, t2, . . . , tν be the gen-
erating operations and let

(29) Gj(t1, t2, . . . , tν) = 1 (j = 1, 2, . . . , µ)

be the defining relations. Since we assume that the two systems define the
same group, each operation th must be expressible as an operation of the
first group in terms of the s1, s2, . . . , sn. There must therefore be relations

th = Sh(s1, s2, . . . , sn) (h = 1, 2, . . . , ν)

or

(30) S−1h th = 1 (h = 1, 2 . . . , ν)

Also, the operations Sh(s1, s2, . . . , sn) must satisfy the same relations in the
first group as the operations th do in the second. The relations

(31) Gj(S1(s1, s2, . . . , sn), S2(s1, s2, . . . , sn), . . . , Sν(s1, s2, . . . , sn)) = 1

(j = 1, 2, . . . , µ)

must therefore be consequence relations of (28). In the same way we must
conversely have n relations

(32) T−1k sk = 1 (k = 1, 2, . . . , n)

6Naturally it is not excluded that the groups defined by the two relation systems are
isomorphic in more than one way. When we say that two relation systems define the same
group we assume that a fixed isomorphism has been chosen between the two groups, and
that the elements it pairs together will be identified for future purposes.
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where the Tk = Tk(t1, t2, . . . , tν) are products of the operations t1, t2, . . . , tν
and the relations

(33) Fi(T1(t1, t2, . . . , tν), T2(t1, t2, . . . , tν), . . . , Tn(t1, t2, . . . , tν)) = 1

(i = 1, 2, . . . ,m)

must be consequence relations of the relations (29).
These remarks permit a step-by-step passage from the first relation sys-

tem to the second, the individual steps of which are extensions or reductions
of the two kinds described. Namely, one first makes µ extensions of the first
kind by adding the relations (31) followed by ν extensions of the second kind
by introduction of the new generating operations th and the relations (30).
The relations (29) are obviously consequence relations of the thus-extended
relation system. By introducing these relations one obtains a relation system
R1, between the generating operations s1, s2, . . . , sn, t1, t2, . . . , tν , consisting
of all the relations (28), (31), (30), (29). The relations (32), (33) are clearly
consequence relations of the system R1. Addition of these extends R1 to a
relation system R. In the same way, however, we can obtain the relation
system R from the system of defining relations (29) between the generat-
ing operations t1, t2, . . . , tν ; first extending in the first way by adjoining the
consequence relations (33), then in the second way by introducing new gen-
erators s1, s2, . . . , sn with the help of the relations (32), then adding the
consequences (28) of the relations now present, giving the relation system R2

between the generators s1, s2, . . . , sn, t1, t2, . . . , tν , consisting of the relations
(29), (33), (32), (28), which finally extends to the system R by adjoining the
consequence relations (30) and (31). Consequently one can pass from the
system of relations (28) between the generators s1, s2, . . . , sn to the system
R by a series of extensions, then to the system of relations (29) between the
generators t1, t2, . . . , tν by a series of reductions.

The property of two relation systems defining the same group is therefore
equivalent to the possibility of passing from one system to the other by a
series of reductions and extensions of the first and second kind.

This suggests a way of defining certain numbers for each system of defining
relations. Let s1, s2, . . . , sn be the generators and (28) the defining relations
of a group. Suppose that

Fi(s1, s2, . . . , sn) = s
κ′i1
1 s

κ′i2
2 · · · s

κ′in
n s

κ′′i1
1 s

κ′′i2
2 · · ·
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and set
λij = κ′ij + κ′′ij + · · ·

The elementary divisors of the matrix of the numbers λij that are > 1
may be denoted by π1, π2, . . . , πρ, and we now prove that these numbers
are the same for two defining systems of the same group.7 These numbers
π1, π2, . . . , πρ, which are characteristic of the group, may be defined just
as well for non-commutative groups as for abelian groups,8 and are repre-
sented by the Poincaré torsion numbers9 of a manifold in the case where the
group in question is the fundamental group of a manifold.10 The numbers
π1, π2, . . . , πρ may therefore be called the Poincaré numbers of the group.

The fact that Poincaré numbers of a group indeed are independent of
the relation system defining the group will follow from the remarks above
when it is shown that these numbers do not change under an extension of
the relation system of the first or second kind (nor of course under reduction
of either kind). In order to see this for an extension of the first kind, note
the following. One can think of the numbers λij being obtained by regarding
the group as commutative, then using the commutativity of the operations
to express the left hand sides of the relations (28) in the form sa11 s

a2
2 · · · sann

and determining the exponent of sj in the ith thus modified relation. An
extension of the first kind now consists of addition of a consequence relation
Fm+1(s1, . . . , sn) = 1 to the original system, and two kinds of consequence
relation are to be distinguished. The first consists in the construction of the
inverse to the original relation, say F1 = 1. It is clear that in this case

λm+1,j = −λ1j (j = 1, 2, . . . , n)

so the elementary divisors of the λij matrix distinct from 1 remain the same.

7Naturally it can happen that no elementary divisors > 1 are present. In this case
the proof shows that the property of the λij matrix of having no elementary divisors > 1
likewise holds for all systems of defining relations for the same group.

8For finite abelian (commutative) groups these numbers correspond essentially to the
invariants that are known to completely characterize the group. Namely, if one represents
such a group by a basis so that the orders ν1, ν2, . . . , νσ of the generating operations are
such that each divides its predecessor, then the numbers νi (cf. Frobenius & Stickelberger,
Crelle’s J. 86, p.238), or the numbers one obtains by decomposition of the νi into relatively
prime powers (cf. H. Weber, Algebra, 2. Aufl., Vol. 2 §12) are the invariants of the abelian
group. One now finds ρ = σ and πi = νi

9In fact the torsion numbers of first order.
10See §14.
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The second kind of consequence relation has the form

L1Fi1L2Fi2 · · ·FirLr+1 = 1

where L1L2 · · ·Lr+1 = 1 identically. One can therefore completely ignore the
expressions L1, L2, . . . , Lr+1 since, as we have noted, all operations can be
assumed to commute in constructing the numbers λij. Now if hi denotes
the number of occurrences of Fi among the expressions Fi1 , Fi2 , . . . Fir then
obviously

λm+1,j = h1λ1j + h2λ2j + · · ·+ hmλmj (j = 1, 2, . . . , n),

whence the equality of the Poincaré numbers for the original and extended
system is immediately clear.

Finally, if one is dealing with an extension of the second kind, then a new
generator t appears in the original system together with a relation

St = 1,

where S contains only the operations s1, s2, . . . , sn. The matrix of the λij
thus receives a new (m + 1)th row corresponding to this relation as well as
a new (n + 1)th column corresponding to the new operation t. This column
contains only zeroes in the first to mth places, and the number λm+1,n+1 = 1
in the (m+1)th place. It follows that in addition to the elementary divisors of
the original λij matrix there is a new one, equal to 1. The Poincaré numbers
therefore remain the same in this case also, and the assertion is proved. One
can express it in the following form.

A necessary condition for the isomorphism of two groups is the equality
of their Poincaré numbers.

It is possible to define another number that has the same value for isomor-
phic groups; in other words, it is independent of the special choice of defining
relations. This result can be derived immediately from Poincaré’s discussion
of the fundamental groups of three-dimensional manifolds.11 Namely, if n
denotes the number of generators of a group and r the rank of the λij ma-
trix defined above (in other words, one obtains r when one assumes that
the operations of the group commute, and under this assumption finds the
number of independent defining relations) then the number ζ = n − r has
the same value for all relation systems which define the same group, as one

11Note a remark in An. Sit. §13, p.65.
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again sees easily by consideration of extensions of the first and second kind.
If the group in question is the fundamental group of a manifold V , then the
number ζ + 1 is none other than the Betti number P1 of V .

Thus for two groups to be isomorphic it is necessary that not only the
numbers π1, π2, . . . , πρ but also the numbers ζ have the same value for both
groups.12 It is easy to see from examples that these conditions are not suffi-
cient. One takes for example the group with generator s and defining relation
s2 = 1 — the cyclic group of order 2 — and the group with the generators t,
u and the defining relations13

t2 = 1, u2tu−1t−1 = 1, u3 = 1

which is obviously none other than the permutation group on three symbols,
where

t = (1, 2), u = (1, 2, 3).

Both groups have a Poincaré number π1 = 1 and the same number ζ = 0.
Another example is provided by the relations

s4ts−1t = 1, t−2s−1ts−1 = 1

defining a group Γ on generators s, t which has ζ = 0 and no Poincaré num-
bers.14 The same obviously holds for the identity group, which is obviously
not isomorphic to Γ.15

§12

Introduction of the fundamental group

The topological invariants discussed up to now have been whole num-
bers or, in the case of torsion numbers, systems of whole numbers. We shall
now consider a topological invariant of a different kind, namely the funda-
mental group1 introduced by Poincaré. When this group is referred to as a

12It is easy to convince oneself that there are always groups for which the numbers
π1, π2, . . . , πρ and ζ have arbitrary prescribed values. E.g., the group with the generators
s1, s2, . . . , sρ, t1, t2, . . . , tζ and the relations sπ1

1 = 1, sπ2
2 = 1, . . ., s

πρ
ρ = 1 obviously gives

the desired values. For all finite groups ζ = 0, hence m ≥ n.
13The same is obviously true for the (infinite) group that has merely the defining rela-

tions t2 = 1, u2tu−1t−1 = 1.
14It is the fundamental group of the closed three-dimensional manifold given by Poincaré

which has P1 = P2 = 1 and no torsion numbers, the same as the three-dimensional sphere
without being homeomorphic to it (Compl. 5, p.109).

15Among other things, Poincaré on p.110 proves that adding the relation s−1ts−1t = 1
leads to the icosahedral group: s−1ts−1t = 1, s5 = 1, t3 = 1.

1An. sit. §12,13.
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topological invariant of a connected manifold we mean that a group can be
associated with each connected manifold, in such a way that its construction
involves only properties common to all manifolds homeomorphic to the given
manifold. However, just as with the previous topological invariants we shall
confine ourselves to a definition of the fundamental group of a manifold based
on its schema, and prove invariance by going to homeomorphic schemata. In
so doing we shall touch on the relation between the fundamental group and
many-valued but unbranched functions2 defined on the manifold.

In this paragraph we repeat the procedure of Poincaré for determining the
fundamental group from the schema of a manifold.3 Let us take for example
the case of a two-dimensional schema. Let M (i) be the centre of the disk
representing the surface piece a2i of the schema. We then mark a point N ′ on
one of each pair of identified sides, and the corresponding point N ′′ on the
other member of the pair; the two therefore represent a single point N on
the edge of the manifold obtained when the sides are identified. Now in each
polygon of the schema we draw radius vectors from M (i) to all the points N ′

or N ′′ on the sides of this polygon. We now think of any two radius vectors
M (i)N ′ and M (j)N ′′ to corresponding points N ′ and N ′′ (and of course j can
equal i also) as a line M (i)N ′ +N ′′M (j) from M (i) to M (j). The direction of
each line can be chosen arbitrarily, but once chosen it is fixed. The directed
lines constructed in this way will be denoted S1, S2, S3, . . . and called the
“fundamental paths” connecting the points M (i).

One now considers all the polygon vertices which correspond to closed
cycles, except those which correspond to points omitted from the manifold.
Let A be such a vertex of the schema, say a µ-tuple edge endpoint.4 A small
closed line LA is now drawn around A, cutting µ segments from the µ edges.
We take a point on each of these segments, and give it the name M

(i)
A when

the segment lies in the surface piece a2i . (The possibility that the same name

M
(i)
A is given to several points is not excluded.) In addition, one considers one

of the µ edges k1, k2, . . . , kµ of the schema ending at A, say k1, and considers

2Op. cit. p. 60,61.
3With trivial modifications. E.g. we drop the restriction to schemata which consist of

a single n-dimensional cell (where n is the dimension number of the schema).
4This term can be briefly clarified as follows; when µ edges meet at A it should be

remembered that there may be edges which lead from A to A. Such an edge contributes
2 to the number µ, so that µ is really the number of edge endpoints which come together
at A, rather than the number of edges.
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its point of intersection NA,1 with LA.5 The point NA,1 may be regarded as
a pair of corresponding points on the pair of identified polygon sides that
constitute the edge k1, and these two points may be denoted N ′A,1 and N ′′A,1.
Now the two polygon sides carry points called N ′ and N ′′, and the notations
of the points N ′A,1, N

′′
A,1, may be chosen so that the points N ′A,1 and N ′ lie on

one of the sides, while N ′′A,1 and N ′′ lie on the other. One then combines two

half segments M
(i)
A N ′A,h and M

(j)
A N ′′A,h that lead to the same point NA,h into a

single line M
(i)
A N ′A,h +N ′′A,hM

(j)
A and gives it the same notation Sλ, when the

corresponding direction is chosen, as the corresponding line M (i)N ′+N ′′M (j).
Then a given sense of LA determines a series of lines Sλ, say Sλ1 , Sλ2 , . . . , Sλµ
and exponents ε1 = 1 or −1 according as Sλi is traversed in the positive or
negative direction, and we write the relation:6

(34) Sε1λ1S
ε2
λ2
· · ·Sεµλµ = 1

The correct cyclic order of the Sλi is obviously essential for this relation,
though the choice of the initial Sλ1 is not. Each closed cycle of identified
polygon edges yields one such relation between the fundamental paths.

As an example, we consider the two-dimensional manifold T2 representing
the projective plane (it is the surface characterized by q = 1, r1 = r0 = 0
according to §8), which is defined by the schema consisting of a single polygon
with two sides identified in the second way. One obtains a single path S1 =

5The line LA, divided into a number of segments by the points NA,i, is none other than
the one- dimensional “neighbourhood manifold” of the vertex A (see §3, note 6 and §4).

6The fundamental group arises from many-valued but unbranched functions on the

manifold. If y
(i)
1 , y

(i)
2 , . . . is the set of values of such a function y at the point M (i) and

y
(j)
1 , y

(j)
2 , . . . is the corresponding collection at the point M (j) then the Sλ corresponding

to a path from M (i) to M (j) can be viewed as the substitution(
y
(i)
1 y

(i)
2 . . .

y
(j)
ν1 y

(j)
ν2 . . .

)

where the given path carries the series y
(i)
1 , y

(i)
2 , . . . of function values into the series

y
(j)
ν1 , y

(j)
ν2 , . . .. We can think of the closed line LA around A being expanded until it

finally coincides with a series of paths M (i)N ′ + N ′′M (j) in place of the segments

M
(i)
A N ′A,h + N ′′A,hM

(j). The thus deformed LA represents a closed path around A com-
posed of fundamental paths, and the relation (34) then simply says that along this path
the function returns to its initial values, which must indeed be the case for any unbranched
function y.
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M (1)N ′ + N ′′M (1) and the line LA around the single vertex of the schema
consists of two segments, on each of which there is a point denoted M

(1)
A , and

yields the relation S2
1 = 1. On the basis of the details below, it follows that

the fundamental group of T2 is the cyclic group of order 2.
In the general case of an n-dimensional schema the determination of the

fundamental paths and the relations between them follows quite analogously.
A point M (i) is chosen in the interior of each n-dimensional cell, and a point
N ′ in each (n − 1)-dimensional boundary cell, provided it is identified with
another (n − 1)-dimensional cell, in which case the corresponding point in
the latter cell is denoted by N ′′. The lines M (i)N + N ′′M (j) then represent
the fundamental paths Sλ. The (n − 2)-dimensional boundary cells of the
n-dimensional cells of the schema are determined by cycles. We then look at
each closed cycle that determines an (n− 2)-dimensional space piece, unless
the latter is omitted from the manifold. Let A be an (n − 2)-dimensional
cell of the schema represented by one such cycle. A closed line LA around
A then meets each of the (n− 1)-dimensional cells abutting at A, and these
points of intersection divide LA into a number of segments. In a completely
analogous way as in the case of the two-dimensional schema we then arrive
at the relation (34) between the Sλ by consideration of the lines LA.

In order to obtain the fundamental group from the fundamental paths and
the relations (34) between them, we select one of the points M (1),M (2), . . . ,
say M (g), and call it the basepoint. Then if M (i) is different from M (g) one
can, since the schema is assumed connected, choose a sequence of fundamen-
tal paths (in many different ways of course)

Sδ1ν1 = M (g)M (µ1), Sδ2ν2 = M (µ1)M (µ2), . . . , Sδkνk = M (µk−1)M (µi)

(δk = ±1)

which represents a path from M (g) to M (i). This particular type of path,
which may be called an “approach path” will now be fixed, and described by
the notation

Sδ1ν1S
δ2
ν2
· · ·Sδkνk = Ug,i.

Ug,g is understood to be the identity operation. Now if Sλ is any fundamental
path from M (h) to M (k) we set

(35) Sλ = U−1g,hsλUg,k
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so that sλ is a closed path from M (g) to M (g). The paths sλ will be called
the closed fundamental paths.7

We now consider the collection R of all the relations between the sλ which
can be obtained from the relations (34) and (35) by expressing the Ug,i in the
latter in terms of the Sλ and then eliminating the Sλ. Among the collection
R it is possible to choose a finite set F, as will turn out later, which has
all the remaining relations of R as consequences. The group defined by the
generating operations sλ and the relation system F is called the fundamental
group of the manifold.8 This group is clearly independent of the choice of
the system F from the relation system R.

§13

Proof that the fundamental group is a topological invariant

In what follows we give a proof that the fundamental group is in fact a
topological invariant,1 though confining ourselves, as previously, to a proof
that the fundamental group is a topological invariant of schemata. What we
have to show is that, on the one hand, the fundamental group is independent
of the choice of base point and “approach paths” Ug,i, and on the other hand,
that it is the same for two homeomorphic schemata. When a schema is given,
we therefore think first of the possible ways of choosing the basepoint and
the approach paths Ug,i, and the effect this has on the above process for
deriving the fundamental group. The different (i.e., nonisomorphic) groups
obtained will be called the groups corresponding to the schema. We now
prove that if Σ and Σ′ are two schemata, one of which, Σ′, results from an
elementary subdivision of the other, Σ, then for each way of choosing the
basepoint and approach paths, in one schema, the corresponding choice in
the other yields isomorphic groups for Σ and Σ′. It follows that any two
homeomorphic schemata have the same collections of groups.

7Called “contours fermés fondamentaux” by Poincaré (An. sit. §13, p.64).
8If one chooses the approach paths Ug,i so that no closed paths result from the collection

of Sνh comprising them [take a tree — Trans.] then one can take the defining relation
system F of the fundamental group to be simply the relations

sε1λ1
sε2λ2
· · · sεµλµ = 1

which result when one substitutes the expressions for the Sλ implied by (35) in the relations
(34).

1In Poincaré’s presentation this follows from the meaning of the fundamental group in
terms of unbranched many-valued functions on the manifold.
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Now it is easy to see that any connected n-dimensional schema homeo-
morphic to an n-dimensional fundamental polyhedron, i.e., a schema with
only one n-dimensional cell, must by definition contain a cell ani directly con-
nected to any given n-dimensional cell anj , i.e., anj is such that at least one of
its (n−1)-dimensional boundary cells is identified with an (n−1)-dimensional
boundary cell of ani . These two identified boundary cells of ami and amj repre-

sent an (n− 1)-dimensional cell an−1k of the schema. By the process inverse
to elementary subdivision one can unite the cells ani , anj into a single cell

along an−1k and obtain a new schema from which the original is obtainable
by elementary subdivision. If one continues this process, one finally obtains
a fundamental polyhedron homeomorphic to the original schema. Now since
essentially only one choice of basepoint is possible in a fundamental polyhe-
dron, and approach paths do not appear, the latter has only a single group,
namely that given by the relations (34) between the generators sλ = Sλ. But
then, for each schema homeomorphic to the fundamental polyhedron, the
group collection must consist of this one group alone, and the independence
of the fundamental group from its special construction in a schema, as well as
from the choice of schema from its homeomorphism class is therefore proved.
It also follows that, however the group is determined, the collection R of
relations described above is so constituted that it is the set of consequences
of a finite relation system F.

We now go to the proof of the fact that when Σ′ results from an elemen-
tary subdivision of Σ then for any group corresponding to Σ we can find an
isomorphic group corresponding to Σ′.

The fundamental paths of Σ are denoted by Sλ, those of Σ′ by S ′λ. The
schema gives the relations (34) between the fundamental paths. The relations
between the Sλ of Σ will be called the relations R, those for Σ′ the relations
R′. Approach paths will be called U for the first schema, U ′ for the second,
and fundamental closed paths sλ and s′λ accordingly. The relations (35)
between these will be called r for the first schema, r′ for the second.

The elementary subdivision converting Σ into Σ′ divides the l-dimensional
cell alr of Σ into two cells alr1 , a

l
r2

by means of a new (l− 1)-dimensional cell
al−1s . The cases l = 1, 2, . . . , n− 1 may then be settled immediately. Namely,
in all cases l ≤ n−2 the subdivision does not change the collection of (n−1)-
dimensional cells of the schema, and hence the corresponding paths Sk and S ′k
in the two schemata correspond completely. Since the relations (34) between
the fundamental paths depend on the (n−2)-dimensional cells of the schema,
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as long as these lie in the interior, and since these are not changed by the
subdivision in the cases l < n− 2, in these cases one obtains the relations R′

from the relations R simply by replacing each Sλ by the corresponding S ′λ.
In the case l = n− 2 the relations R′ result from the relations R, when they
refer to (n − 2)-dimensional cells other than an−2r , by replacing each Sλ by
the corresponding S ′λ. And in place of the the relation corresponding to the
latter cell (such a relation is of course present only when an−2r does not belong
to the boundary of the manifold) we obtain two similar relations R′ between
the corresponding S ′λ. The choice of the basepoint and approach paths can
be made the same for the two schemata when l ≤ n− 2, so that when such
a choice is made the relations r′ are obtained from r simply by replacement
of Sλ, sλ by S ′λ, s

′
λ. Thus the claim is proved in the cases l ≤ n− 2, and the

case l = n− 1 now is scarcely more difficult.
Let Sρ, S

′
ρ1

, S ′ρ2 be the fundamental paths corresponding to the cells an−1r ,
an−1r1

, an−1r2
. Each path Sλ (λ 6= ρ) then corresponds to a path S ′λ and each

S ′λ (λ 6= ρ1, ρ2) to a path Sλ and the system of relations R′ differs from the
relations R in the appearance of a relation

S ′ρ1S
′−1
ρ2

= 1,

which owes its existence to the new cell an−2s , since every occurrence of the
path Sρ in a relation R becomes an occurrence of one of the paths S ′ρ1 , S

′
ρ2

in
a corresponding relation R′, while all the remaining Sλ are replaced by the
corresponding S ′λ. Now suppose a system of approach paths U ′ is chosen for
the schema Σ′, resulting in relations r′. Then the corresponding approach
paths U will be chosen so that each S ′ρ1 or S ′ρ2 appearing in the expressions
for the U ′ can be replaced by Sρ, while the other S ′λ can be replaced by Sλ.
One then sees that each relation r′ corresponds to a relation r that results
from the former by replacement of S ′λ, s

′
λ (λ 6= ρ1, ρ2) by Sλ, sλ and of S ′ρ1

or S ′ρ2 , s
′
ρ1

or s′ρ2 , by Sρ, sρ respectively. The two relations r′ for s′ρ1 and s′ρ2
then correspond to the same relation r for sρ. Since the relation

sρ1s
−1
ρ2

= 1

obviously holds, the isomorphism of the two groups is immediate. Conversely,
if a system of approach paths U were given for Σ, then one could construct
the corresponding approach paths U ′ for Σ′ simply by replacing each Sρ which
appears by one or other of the paths Sρ1 or Sρ2 , arbitrarily.

It now remains to settle the case l = n. The schema Σ′ then contains
one point M (i) in addition to those present in the schema Σ, since a point
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M (r) has been replaced by two points M (r1), M (r2). The schema Σ′ contains a
fundamental path S ′σ connecting the pointsM (r1), M (r2); it pierces the (n−1)-
dimensional cell an−1s and is positive, say, in the direction from M (r1) to M (r2).
Apart from S ′σ, each fundamental path S ′λ has an obviously corresponding
path Sλ. These corresponding paths Sλ and S ′λ may be divided into different
categories. A first category comprises those S ′λ that begin and end at M (r1).

These paths will be indicated by a superscript α1, thus by S
(α1)′

λ . The paths

Sλ corresponding to them will be denoted S
(α1)
λ . These paths S

(α1)
λ can be

characterized as follows. The (n − 1)-dimensional spherical manifold that

forms the boundary of anr is divided into two elementary manifolds E
(n−1)
1 ,

E
(n−1)
2 by the (n − 2)-dimensional boundary manifold of an−1s . If one now

considers each cell an−1i of the schema that results from the pairing of two of

the (n−1)-dimensional boundary cells of anr in E
(n−1)
1 , then the corresponding

fundamental paths are none other than the S
(α1)
λ . Those paths that connect

M (r1) to a point M (i) different from M (r1) or M (r2) and for which the direction

of M (i) to M (r1) is chosen to be positive may be denoted S
(β1)′

λ . Analogously,

let S
(α2)′

λ be the paths that connect M (r2) to M (r2), and let S
(β2)′

λ be those
that connect M (r2) to a point M (I), (i 6= r1, r2), the latter being taken to

be positive in the direction from M (r2) to M (i). In addition, let S
(γ)′

λ be the
paths other than S ′σ connecting M (r1) to M (r2), taken positive in the direction

M (r2) to M (r1), and let S
(δ)′

λ be the paths that connect two points other than
M (r1) and M (r2). The paths of Σ corresponding to those just defined will be
denoted by S

(β1)
λ , S

(α1)
λ , S

(β2)
λ , S

(γ)
λ , S

(δ)
λ .

We now set

S
(α1)′

λ = T
(α1)
λ , S ′σS

(α2)′

λ S ′−1σ = T
(α2)
λ ,

S
(β1)′

λ = T
(β1)
λ , S ′σS

(β2)′

λ = T
(β2)
λ ,

S
(δ)′

λ = T
(δ)
λ , S ′σS

(γ)′

λ = T
(γ)
λ .

We can then say that one obtains the relations R′ from the relations
R simply by replacing each path S

(ε)
λ occurring in a relation R, where ε is

one of the indices α1, α2, β1, β2, γ, δ by the expression T (ε). Conversely,

if, the system of relations R′ between the paths S
(α1)′

λ , S
(α2)′

λ , S
(β1)′

λ , S
(β2)′

λ ,

S
(γ)′

λ , S
(δ)′

λ , S ′σ is given, then one easily sees that each relation R′ must be

expressible as a relation between the expressions T
(ε)
λ , i.e., when one expresses

each S
(ε)′

λ in terms of the corresponding T
(ε)′

λ and S ′σ then S ′σ cancels out of
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the relation. The relations R then result from the relations R′ when one
substitutes the S

(ε)
λ for these T

(ε)
λ .

The question we are dealing with is, given a choice of basepoint and
approach paths for one of the schemata Σ, Σ′, determine a suitable choice
for the other. Suppose for example that the basepoint M (g′) and the approach
paths U ′g′,i are given for Σ′. Then the basepoint M (g) and the paths Ug,i for
Σ may be determined as follows. If g′ is different from r1 and r2, so that
the cell of Σ′ containing M (g′) is an unmodified cell of Σ, then the basepoint
M (g) for Σ may be chosen in this cell, so g = g′. If on the other hand M (g′)

is one of the points M (r1), M r2 we can then suppose that the notation has
been chosen so that M (g′) = M (r1),2 and set M (g) = M (r). Now if M (i) is
different from M (r1) and M (r2) then it is easy to see that the approach path
Ug,i is constructed from U ′g′,i by writing it in terms of the T (ε) alone and then

replacing each T (ε) by the corresponding S(ε). The same process is used to
derive Ug,r from U ′g′,r1 . However the approach path U ′g′,r2 , which will also be
denoted V ′, corresponds to no approach path of the schema Σ.

Conversely, if a basepoint M (g) and approach paths Ug,i of Σ are given
then, when g 6= r, the basepoint M (g′) of Σ′ may be set equal to M (g) and,
when M (g) = M (r), M (g′) = M (r1). The approach paths U ′g′,i (i 6= r1, r2) and

U ′g′,r1 may be constructed by replacing each S
(ε)
λ in Ug,i or Ug,r by T

(ε)
λ . The

approach path U ′g′,r2 is taken to be an arbitrary path V ′ from M (g′) to M (r2).3

Our conventions are so arranged that obtaining the basepoint and ap-
proach paths for the derived schema from those for the original schema and
conversely are quite similar processes, regardless of which schema provides
them in the first place. The comparison of the relations r and r′ can therefore
be made without having to distinguish the two cases.

Since, with the exception of S ′σ, there is a one-one correspondence between
the paths Sλ and s′λ of Σ and Σ′, the same is also true for the closed paths
sλ and s′λ with the exception of the path

(36) s′σ = U ′g′,r1S
′
σV
′−1.

We consider each of the relations r and r′ introduced by corresponding paths

2The way of introducing the expressions T
(ε)
λ under which M (r1) and M (r2) indeed do

not play the same role, has been arranged with this in mind.
3E.g., one can set V ′ = U ′g′,r1S

′
σ . However in order to avoid separate consideration of

the relations r and r′ in the two cases where basepoint and approach paths are given, first
for Σ, then for Σ′, we shall not specialize V ′ further.
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sλ, s
′
λ. Suppose for example S

(β2)′

λ is a path from M (r2) to M (i) (i 6= r1, r2),

and S
(β2)
λ is the corresponding path from M (r) to M (i). Then the relations

determined by s
(β2)
λ and s

(β2)′

λ are:

s
(β2)
λ = Ug,rS

(β2)
λ U−1g,r

s
(β2)′

λ = U ′g′,r2S
(β2)′

λ U ′
−1
g′,i.

Now if we set

s
(α1)′

λ = t
(α1)
λ , s′σs

(α2)′

λ s′−1σ = t
(α2)
λ ,

s
(β1)′

λ = t
(β1)
λ , s′σs

(β2)′

λ = t
(β2)
λ ,

s
(δ)′

λ = t
(δ)
λ , s′σs

(γ)′

λ = t
(γ)
λ ,

then the relations in question can also be written in the form

s
(β2)
λ = Ug,rS

(β2)
λ U−1g,i ,

t
(β2)
λ = U ′g′,r1T

(β2)
λ U ′−1g′,i ,

and one sees that the second of these relations is obtained from the first when
s
(β2)
λ is replaced by t

(β2)
λ and each S

(ε)
λ by T

(ε)
λ .

Quite generally one obtains the relation r′ by applying to relation r the
operation Π that replaces S

(ε)
λ , s

(ε)
λ by T

(ε)
λ , t

(ε)
λ and adds the relations (36).

Conversely, if the relations r′ are given one can think of them being written
in such a form that, apart from (36), every other relation r′ has a t

(ε)
λ on the

left hand side, and on the right an expression in the S
′(ε)
λ and S ′σ which can

be expressed in terms of the T
(ε)
λ . One obtains the corresponding relation r

from such an r′ by the operation Π−1.
In summary we can say: the collection ρ′ of the relations R′ and r′ is

obtained from the collection ρ of relations R and r by applying the operation
Π to each relation ρ and adding the relations (36). The desired proof that
the relation system ρ′ for the schema Σ′ defines a group Γ isomorphic to the
group Γ defined by the relation system ρ for Σ is now easy to complete. The
generators of Γ are the elements s

(ε)
λ and Γ is characterized by the fact that

the relations between these elements are just those which follow from the
relations ρ (by elimination of the Sλ). The relations ρ′ have the analogous

meaning for the group Γ′, whose generators are s′σ and the S
(ε)′

λ . However we

68



obviously can and will regard s′σ and the t
(ε)
λ as generators of Γ′. It is now

easy to see that s′σ, can be expressed in terms of the t
(ε)
λ . Namely, the paths

S ′ appearing on the right hand side of the expression (36) for s′σ represent a
closed path beginning and ending at M (g′), and this expression must therefore
be representable in terms of the T

(ε)
λ , so that one may write

s′σ = Tµ1Tµ2 · · ·Tµν .

The Tµ1 here are themselves paths between two points M (i) of Σ′ (and in fact
in such a way that none of these points is the point M (r2)) such that the final
point of each Tµi−1

coincides with the initial point of Tµi , and the initial point
of Tµ1 , as well as the final point of Tµν , is the point M (g′). Consequently, the
formulae

T
(ε)
λ = U ′g′,jt

(ε)
λ U ′g′,k,

where M (i), M (k) are initial and final point of T
(ε)
λ , give the equation

(37) s′σ = tµ1tµ2 · · · tµν .

The collection R′ of relations between the t
(ε)
λ and s′σ, which includes

(37), is therefore equivalent to the set R′ of relations obtained when one
replaces s′σ by tµ1tµ2 · · · tµν in each relation other than (37). And when this
has been done, s′σ can be omitted from the generators of Γ′. Γ′ is therefore

generated by the elements t
(ε)
λ , and is characterized by the relations between

them, which are derivable from the relations of ρ′. And it is now obvious
that for each relation between the generators s

(ε)
λ of Γ we can construct the

same relation between the generators t
(ε)
λ of Γ′, and conversely. Namely, let

a relation between the s
(ε)
λ be given, which may be written as a consequence

relation of the relations ρ in the form

L1Ai1L2Ai2L3 · · ·AirLr+1 = 1,

where
A1 = 1, A2 = 1, . . .

is the system of relations ρ and their inverses, and L1, L2, . . . are expressions
in the S

(ε)
λ and s

(ε)
λ identically satisfying the condition

L1L2 · · ·Lr+1 = 1.
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Then if A′i, L
′
i denote the expressions that result from Ai, Li respectively by

application of the operation Π, the relations

A′1 = 1, A′2 = 1, . . .

together with (37) and the relations inverse to (37) are obviously none other
than the relations ρ′ and their inverses. The relation

L′1A
′
i1
L′2A

′
i2
L′3 · · ·A′irL

′
r+1 = 1

now obviously represents a consequence of the relations ρ′ containing only
the t

(ε)
λ , and it is obtainable from the given relation by the operation Π.

Conversely, if a consequence of the relations ρ′ is given that contains only
the t

(ε)
λ , then one can obviously assume that it is derived without use of (37)

and therefore expressible in the form

L′1A
′
i1
L′2A

′
i2
L′3 · · ·A′irL

′
r+1 = 1,

where the L′i are expressions in the t
(ε)
λ , T

(ε)
λ . The operation Π−1 then leads

to the corresponding consequence of the relations ρ.
The isomorphism of Γ and Γ′ is therefore proved, and the proof that the

fundamental group is a topological invariant is complete.

§14

Determination of P1 and the first order torsion numbers from the
fundamental group

If one considers the process given at the outset for determining the fun-
damental group in the special case of a closed manifold, then one sees that
it is related to the construction of the dual schema. Each fundamental path
Sλ that connects the points M (i), M (j) in the interior of the cells ani , anj and

passes through a point N of a cell an−1k in the process, can be regarded as

the edge a1k connecting the vertices M (i) = a0i , M
(j) = a0j of the dual schema.

Then if
Sε1λ1S

ε2
λ2
· · ·Sεµλµ

is the relation that follows from consideration of the (n− 2)-dimensional cell

A = an−2l , one can also express this as follows: when a2l is the wall in the dual

schema corresponding to the cell an−2l then the perimeter of a2l is described
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by the sequence of edges of the dual schema represented by the Sλi , each in
the direction given by εi.

Thus one obtains the fundamental group of a closed manifold by con-
structing the schema Σ dual to Σ, and taking the closed perimeters of walls
to obtain the relations (34) between the edges denoted by Sλ, then using
a vertex of Σ as basepoint and taking approach paths along the edges to
the remaining vertices to get closed paths sλ to serve as generators of the
fundamental group, and to obtain the defining relations between them. But
since the fundamental groups of homeomorphic schemata are isomorphic, one
can obviously apply this process to the original schema Σ instead of Σ. This
process is particularly useful for the actual determination of the fundamental
group of a manifold with a given schema.

If one applies this process to the example of the schema σ3 of the spherical
three-dimensional manifold, then one has in this case two edges S1, S2 from
the vertex a01 to the vertex a02, and circuits around both walls yield the same
relation S1S

−1
2 = 1. If we now take the path U12 as approach path from a01 to

a02, then one obtains the closed fundamental paths s1 = S1S
−1
2 and s2 = 1 and

hence the defining relations s1 = s2 = 1, which show that the fundamental
group is the identity. For the first schema (denoted by Σ) of the projective
three-dimensional manifold T3 in §9 one obtains the relation s21 = 1 for one
of the edges S1 = a1, and since the schema has only one vertex, S1 = s1 is
the single generator of the fundamental group, which is therefore the cyclic
group of order 2.

One is easily convinced that the process just given also applies to bounded
manifolds with proper boundaries. If one considers, e.g., the schema of an
annulus as a rectangle ABCD in which the sides AD, BC are identified:
A = B = a01, C = D = a02, AB = S1, CD = S2, AD = BC = S3, U12 = S3,
s1 = S1, s2 = S3S2S

−1
3 , s3 = 1. So one obtains the relation S1S2S2S

−1
3 = 1

and hence for the fundamental group the relations s1s3s2s
−1
3 = 1, s3 = 1,

which define the infinite cyclic group.
The above process now affords a simple means of deriving the first Betti

number P1, and also the torsion numbers of first order from the fundamental
group.

For this purpose we think of the manifold being based on a schema for
which the number α0 of vertices is 1. Such a schema may always be found,
since one need only go from a fundamental polyhedron to its dual schema.
Now in such a schema the closed fundamental paths coincide with the fun-
damental paths Sλ represented by the edges of the schema. The relations
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derived from the walls then already represent the system of defining rela-
tions between the generators Sλ of the fundamental group. Now let Sj be
the fundamental path represented by the edge a1j and let

S
k′i1
1 S

k′i2
2 · · ·S

k′in
n S

k′′i1
1 S

k′′i2
2 · · · = 1

be the relation derived from the perimeter of the wall a2i . Then k′ij+k
′′
ij+· · · is

obviously none other than the coefficient ε2ij of the Poincaré relation system
for the schema in question. Since α1 is the number of generators of the
fundamental group, γ2 is the rank of the matrix of the numbers ε2ij = k′ij +
k′′ij + · · · , hence the characteristic number of the fundamental group denoted
by ζ in §11 is equal to α1 − γ2 = P1 − 1. One has only to recall that
γ1 = α0 − P0 for the schema in question.

The Betti number P1 is therefore equal to the number ζ from the funda-
mental group, plus one.1

But the meaning of the matrix of the ε2ij for the relation system of the
fundamental group also yields the theorem.

The torsion numbers of first order of a connected manifold are the Poincaré
numbers of its fundamental group.

The proof of this theorem for the case of bounded manifolds with proper
boundary may be omitted. For manifolds with improper boundary manifolds
(i.e., those of dimension less than n− 1), for which a definition of Betti and
torsion numbers has not been given, the theorem in question may be taken
as a definition of these numbers.

Now for closed n-dimensional manifolds the Betti numbers and torsion
numbers are the only known topological invariants apart from the fundamen-
tal group. The number N and the numbers Qm of §3 of course depend on
them. The above theorem therefore shows that, since P1 = P2 for two-sided
closed three-dimensional manifolds, all the known topological invariants de-
rive from the fundamental group in this case.

On the other hand, since Poincaré has shown2 that there are mani-
folds with the same Betti and torsion numbers but different fundamental
groups, the fundamental group serves as a better characterization of two-
sided closed three-dimensional manifolds than the topological invariants pre-
viously known. However, one qualification must be made to this statement.
While the equality of two series of numbers can always be effectively decided,

1Cf. Poincaré, An.Sit. p.65.
2Compl. 5
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the question whether two groups are isomorphic (cf. §11) is not solvable in
general. Thus in contrast to the other topological invariants, the fundamen-
tal group is one whose agreement or disagreement for two manifolds cannot
be decided in all cases.

V. Theorems and problems on developability and
transformations

§15

Developable manifolds

While the previous discussion has dealt mainly with multidimensional
manifolds in terms of their schemata, and is thus to be counted as combi-
natorial analysis situs, in this section the concept of a point manifold will
prevail. However, this does not mean going to the most general point sets,
for which these theorems are not valid, and the examples discussed often call
on intuition. Thus in this Section V we are merely hinting at ways some
important questions of analysis situs may be settled.

A manifold W is said to be developable on a manifold V when W has the
same dimension as V and is homeomorphic to a part of the manifold V or to
the manifold V itself. Manifolds are simply called developable if they are de-
velopable on a spherical manifold.1 A manifold W developable on a manifold
V will also be called a submanifold of V , and a proper submanifold when
there is a proper part of V homeomorphic to W . If one chooses, from the
collection of all submanifolds of V , a complete system of nonhomeomorphic
manifolds, then this system may be denoted by ∆(V ). The notation for a cor-
responding system of proper submanifolds of V is ∆∗(V ). Obviously we can
have ∆(V ) = ∆∗(V ) (e.g., for a disc or an annulus) only for bounded man-
ifolds. If Sn denotes the n-dimensional spherical manifold, then ∆n denotes
the set ∆(Sn) of all developable n-dimensional manifolds and ∆∗n denotes the
set ∆∗(Sn) of all bounded developable n-dimensional manifolds. We have the
equation ∆(En) = ∆∗(En) = ∆∗(Sn) where En is the n-dimensional element,
whence it follows that, when V is any n-dimensional manifold, ∆∗ is con-
tained in ∆(V ) and ∆∗(V ).

Two manifolds U , V will be called coextensive when ∆∗(U) = ∆∗(V ). U
will be called subordinate to V , and V superordinate to U , when ∆∗(U) is a

1This terminology is due to Poincaré (Compl. 5, §5, p.90)
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proper subset of ∆∗(V ). When U , V are manifolds of the same dimension and
the common elements of ∆∗(U), ∆∗(V ) form a proper subset of both ∆∗(U)
and ∆∗(V ), then U , V may be called incomparable. The ordering implied by
these relations satisfies the well-known properties of partial orders. E.g., two
manifolds which are coextensive with a third are coextensive with each other,
so that one can divide the manifolds into coextensivity classes. One such class
consists of all manifolds in ∆n. Each manifold developable on a manifold V
is either coextensive with, or subordinate to, V . The projective plane T2
and the two-sided closed surface of genus p = 1 constitute an example of an
incomparable pair of manifolds. It is not improbable that in three dimensions
there are already incomparable pairs among the two-sided manifolds.

When the manifold U is superordinate to, subordinate to, or incomparable
with the manifold V , the same may be said of the systems of manifolds
coextensive with U and V . A system S of coextensive manifolds is called
µ-tuply superordinate to another system T when it is possible to find µ− 1
and no more systems S1, S2, . . . , Sµ−1 of coextensive manifolds such that Si
is superordinate to Si+1, S to S1 and Sµ−1 to T .

When the system S is µ-tuply superordinate to the system ∆n we call µ
the order of the system S and each of manifolds belonging to it. The genus
p of two-sided surfaces may be taken as an example. All surfaces of the
same genus constitute a system of coextensive manifolds, and the system of
surfaces of genus p + q is q-tuply superordinate to the system of surfaces of
genus p.

In the order relation just defined we have a topological invariant (the
order) of which we admittedly know nothing in the case of more than two
dimensions. We do not even have an overview of the collection ∆3 of de-
velopable three-dimensional manifolds beyond a few simple cases. Consider
for example the developable manifolds bounded by a single surface of genus
1. The simplest example of such a manifold is the part of R3 bounded by a
torus surface. The fundamental group of this manifold is the infinite cyclic
group. One obtains a manifold homeomorphic to this one by boring a cylin-
drical canal out of a ball. But if one were to take instead a knotted canal
as shown in Fig. 3, the fundamental group of the resulting manifold has two
generators with the defining relation sts = tst, so that this manifold cannot
be homeomorphic to the former.2

2Cf. my note in the Wr. Ber., point 3.
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If one were to take the canal knotted in a more complicated way, then
the manifolds obtained would be different again. The manifolds obtained in
this way can also be viewed as the result of taking a closed line L, knotted
arbitrarily, in the spherical three-dimensional manifold, letting a ball move
along this line, and removing the space swept out. Whether or not two
such manifolds can be homeomorphic only when the line L for one manifold
is knotted “in the same way” as the line L for the other manifold or its
mirror image (so that one line can be deformed into the other or its mirror
image) is not investigated. Indeed, I do not know how to prove that any
developable three-dimensional manifold bounded by a single surface of genus
1 is homeomorphic to one of the manifolds derived in the above manner, so
that the manifolds representable in this way exhaust all manifolds bounded
by a surface of genus 1.

It may be remarked at this point that two-dimensional developable man-
ifolds have a characteristic property that in higher dimensions can also occur
for other than developable manifolds. It is obvious that each developable n-
dimensional manifold is separated by each closed (n−1)-dimensional manifold
in its interior. Conversely, each two-dimensional manifold which is separated
by each closed line is also developable. This converse is already incorrect
for n = 3, as witnessed by Poincaré’s example (Compl. 5, §6) of a closed
three-dimensional manifold V with Betti number P2 = 1, which shows that
every closed surface separates V . But V is obviously not developable, since
V is closed and different from the spherical manifold.

We now make a few remarks about n-dimensional manifolds that possess
only improper boundary manifolds.3 Such a manifold W is defined by an
n-dimensional schema in which the points of certain m-dimensional cells

3See §2, note 4. The expression boundary manifold in the present section refers to the
“complex” consisting of the boundary points (which is thus not a manifold in the sense of
Section I).
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(m = 0, 1, . . . , n−2) are declared to be omitted. Apart from these omissions,
one has the schema of a closed manifold V on which W is developable. It
is now possible to give a few theorems for the case n = 3 showing that,
among the manifolds with improper boundary developable on the same closed
manifold V , there are some that are homeomorphic despite quite different
appearance and being defined by nonhomeomorphic schemata.

Suppose for example that the schema of the manifold W is obtained from
that of the closed three-dimensional manifold V by omitting a number of
edges from the schema of V , without removing any isolated vertices (i.e.,
vertices other than those on the edges removed from V ). The collection of
these edges constitutes a so-called one-dimensional complex K, and we shall
assume it to be connected, so that one can travel from any edge a of the
complex to any other along edges of K itself. A vertex of the schema V is
called a free endpoint of the complex K when it lies in only one edge of the
complex, and in this it is an endpoint. We let V (K) denote the bounded
manifold that results from V by removing the one-dimensional complex K.
One can now prove the theorem.

If K is a connected one-dimensional complex, then the three-dimensional
manifold V (K) is homeomorphic to a manifold V (L) for which L either has
no free endpoints or consists of a single edge.

Namely, if k is an edge of K with a free endpoint A, while the other
endpoint B lies on other edges of K, then one takes A as the midpoint of
a small ball and lets this ball move in V so that its midpoint describes the
edge k = AB, while its radius tends to zero continuously as it approaches
B. The piece of V swept out by the variable ball then is a simply connected
space R enclosing the edge k, with A in its interior and B on its boundary.
The moving ball can be made so small in each position that R has no points
in common with K outside k. Let R1 denote the manifold obtained from R
(including its boundary points) by omitting the points of k (including A, B).
Let R2 denote the collection of all points of R with the exception of B, and
let S be the collection of all boundary points of R with the exception of B.

It is now possible to map R1 and R2 one-one and continuously onto each
other so that each point of S is fixed. In order to see this one thinks of R
being deformed into the point manifold M defined by the inequalities

x2 + y2 + z2 ≤ 4, z ≥ 0

in such a way that the points A, B and the edge k go to the points A′ =
(0, 0, 1), B′ = (0, 0, 0) and the segment A′B′. Let M1, M2, N denote the
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manifolds to which this map sends R1, R2, S. Now the formulae

ρ = ρ′, ϕ = ϕ′, z =
z′√

ρ′2 + z′2
+
z′

2
,

where ρ =
√
x2 + y2, ϕ = arctan y

x
and ρ, ϕ, z′ and ρ′, ϕ′, z′ are the coordi-

nates on M1 and M2 respectively, define a one-one continuous map t of M1

onto M2 that leaves the points of N fixed, and therefore utu−1 is the desired
mapping of R1, onto R2, where u denotes the transformation of R into M .
But the possibility of this mapping shows that V (K) is homeomorphic to
V (K1) when K1 denotes any complex that results from K by omitting an
edge such as k. Repeated application of such mappings removes all edges of
the complex with one free endpoint.4

Another mapping, also showing that different complexes K, L lead to
homeomorphic manifolds V (K), V (L), is obtained as follows. One removes
an edge k = AB from a complex K in which at least two other edges of K
end at A as well as B. One now introduces a small moving ball so that its
midpoint describes k and its radius tends to 0 on approaching A as well as
B. We think of the space R swept out by the ball being mapped onto the
cylindrical space M defined by

ρ2 = x2 + y2 ≤ 1, −1 ≤ z ≤ +1,

and in such a way that the edge k corresponds to the piece of the z-axis in
M . Let R1 denote the points of R minus k, and let M1 consist of the points
of M for which ρ > 0. We set ϕ = arctan y

x
. Then the mapping of the points

of M1, given by the formulas

ρ′ = ρ, ϕ′ = ϕ, z′ = ρz,

onto the set of points
0 < ρ′

2 ≤ 1, z′
2 ≤ ρ′

2

shows the possibility of mapping V (K) onto V (L) one-to-one and continu-
ously, where L is the complex which results from K by continuously contract-
ing k until A and B coincide. By mappings of an inverse character one can

4If the process leads finally to V (L), where L consists of a single edge with two free
endpoints, then a further application of the mapping described leads to a manifold V (B)
that results from V by omitting a single point B.
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show that when K contains a vertex e in which r (≥ 4) edges k1, k2, . . . , kr
end, then V (K) is homeomorphic to a manifold V (K ′), where K ′ results
from K by replacing e by a new edge k connecting vertices e1, e2 such that
k1, k2, . . . , ks, k end in e1 and ks+1, . . . , kr, k end in e2. Thus one obtains the
theorem:

Each three-dimensional manifold V (K) is homeomorphic to a manifold
V (L) such that at most three edges of L end at each of its vertices.5

Thus, e.g., the two manifolds V (K) and V (L) are homeomorphic when
one chooses V to be the three-dimensional spherical manifold S3, which one
can think of as being represented by euclidean space with a point at infinity,
and takes K to be two touching circles in a plane α of S3 and takes L to
be the set of points of two disjoint circles in α together with a connecting
segment.

One can collect all the one-dimensional complexes K in a manifold V into
classes consisting of those that lead to homeomorphic V (K). If one chooses
V to be the spherical manifold S3, then one can ask in particular, for each
closed line in S3, what other lines belong to the same class. If, as above, one
says lines in S3 are knotted “the same way” when they may be deformed into
each other in S3 (for the concept of deformation see §16),6 then it is clear
that S3(L1) and S3(L2) are homeomorphic when L1 is knotted the same way
as L2 or its mirror image, and the same is true when L1, L2 are two systems
of closed lines linked in the same, or mirror image, fashion. The question
arises, whether conversely, if two closed lines L1, L2 (or systems of closed
lines) in S3 belong to the same class then L1 always knotted (linked) the
same way as L2 or its mirror image.7)

It may also be remarked that each three-dimensional8 manifold W with

5The schemata of the two manifolds in the above theorems are in general not homeo-
morphic. Thus, due to the fact that improper boundary manifolds appear, the theorem
on the homeomorphism of schemata of homeomorphic manifolds is no longer valid (see §2,
note 9). The situation is otherwise for proper boundary manifolds, since it is stipulated
that their points are to be counted among those of the manifold itself (§2, note 4).

6The concept of the “same way” for linking of lines of for two one-dimensional complexes
in general is defined analogously.

7In my note already cited I have answered this question affirmatively, but under the
mistaken assumption (as the details in the text show) of the theorem that the homeorphism
of S3(K) and S3(L) for any one-dimensional complexes K, L implies that K is knotted in
the same way as L or its mirror image.

8The same holds for two-dimensional manifolds with isolated boundary points, as one
may easily convince oneself.

78



improper boundary manifolds only — which may be obtained from the closed
manifold V by removal of certain edges and vertices — is homeomorphic to
a manifold U developable on V with proper boundary manifolds, although
these boundary points are not to be counted as belonging to U .9

Namely, let A be an excluded isolated vertex. One then surrounds A with
a small ball of radius 2ρ. If r, ϕ, ϑ are polar coordinates with A as origin,
then the transformation

ϕ′ = ϕ, ϑ′ = ϑ, r′ =
1

2
r + ρ

maps the collection of points 0 < r ≤ 2ρ one-to-one and continuously on
to the collection of points ρ < r′ ≤ 2ρ. The boundary point A is therefore
replaced by the boundary surface r = ρ. If we are dealing with a one-
dimensional complex K as the improper boundary manifold, then to replace
it by a proper boundary manifold, one must first consider the points at the
ends of edges. A small ball of radius 2ρ is centred on each such point B,
and we assume that the edge ending at B runs linearly through this ball,
as can indeed be arranged by a deformation. If we again apply the above
transformation to the points 0 < r ≤ 2ρ, then the endpoint of each edge is
replaced by a ball of radius ρ whose points are excluded from the manifold.
Each single edge k of K now connects two points P , Q, each lying in one of
these balls σ. Let the manifold obtained, homeomorphic to W , be W1. Now
if one lets a small ball move so that its centre describes the edge k, then the
part of W1 swept out is a small cylindrical piece, from which the points of
the line k are excluded, and it may be mapped one-to-one and continuously
onto the manifold M defined by

0 < R2 = x2 + y2 ≤ 4, −1 < z < +1.

If we set ϕ = arctan y
x

and consider the mapping

R′ =
1

2
R + 1, ϕ′ = ϕ, z′ = z

of M onto the manifold 1 < R′ ≤ 2, −1 < z′ < +1, then it is clear that
the boundary edge k = PQ of W1 has been replaced by a cylindrical surface,

9Cf. notes 4 and 5 of §2. Despite the fact that all improper boundary manifolds can
be replaced by proper ones, it is nevertheless useful, to consider the improperly bounded
manifolds, since, e.g., they play a role in the form of representation discussed in §18.
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whose points are not counted in the manifold. The balls σ together with
these cylindrical surface pieces yield as many closed boundary surfaces as
there were connected one-dimensional complexes excluded from W .

Finally it may be mentioned that the developability concept can be ex-
tended by saying that a manifold W that is homeomorphic to a part of V
is also developable on V when W has lower dimension than V . One can
go even further and consider the developability of arbitrary point sets on
an n-dimensional manifold V or on another point set. Thus, e.g., when any
point set P is given one can ask what is the smallest dimension number m
for which P is developable on an elementary manifold Em.10

§16

Self-transformations and deformations of manifolds1

A one-to-one and continuous map of a manifold V onto itself will be called
a self-transformation of the manifold. Let t′, t′′ be two self-transformations
of V , P a point of V , and P ′, P ′′ its images under t′, t′′ respectively. We
shall say that the two transformations differ by less than ε when the distance
between the image points P ′, P ′′ is less than ε whatever the choice of the
point P .2 Two transformations t1, t2 of V will be said to be of the same
type when there is a sequence of transformations t(a), so that for each value
of the parameter a, 0 ≤ a ≤ 1, there is a transformation t(a), t(0) = t1 and
t(1) = t2, and t(a) depends continuously on a. By this we mean that for any
a0 (0 ≤ a0 ≤ 1) and each ε > 0 there is a δ such that for |a − a0| < δ the
transformations t(a0) and t(a) differ by less than ε. The transformations of
the same type as the identity will be called deformations of V .

We illustrate these definitions, which may also be carried over from mani-
folds to arbitrary point sets,3 briefly with the example of the two-sided closed
two-dimensional manifold of genus 1, which we can think of as being realized
by a torus surface. In this case intuition gives us a clear survey of the state

10The question raised in §2, note 13 may be placed in this general area.
1The relations about to be discussed between the self-transformations of a manifold

and isomorphisms of the fundamental group have already been mentioned in my note
cited above.

2It has already been mentioned in §1 that in applying the concept of manifold and
continuous mappings to the analysis situs of point manifolds, the notion of distance is
decisive.

3The definition given for continuous manifolds in my note obviously agrees with the
definition of deformation given in the text.
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of affairs. If x denotes a meridian circle and y a latitude circle on the torus,
each provided with an orientation, and if ωx, ωy denote the periods of an
elliptic integral of the first kind over the surface, taken along the paths x,
y respectively, then each deformation of the surface carries x into a simple
path x′ and y into a simple path y′ such that the periods of the integral along
x′ and y′ are again ωx and ωy. However, the periods ωx′ , ωy′ along paths x′,
y′ resulting from x, y by an arbitrary self-transformation of the surface are
given by equations of the form

ωx′ = α · ωx + βωy

(38)
ωy′ = γ · ωx + δωy

where α, β, γ, δ are integers for which αδ−βγ equals +1 or −1. Conversely,
for each quadruple of integers α, β, γ, δ of determinant +1 or −1 there is
a transformation of the surface for which the periods ωx′ , ωy′ are given by
(38), and all self-transformations with the same values of the numbers α, β,
γ, δ are of the same type. If one provides the surface with an orientation,
say by an indicatrix, then a transformation of the surface either preserves
this orientation or reverses it according as αδ − βγ equals +1 or −1. The
group T ∗ of all self-transformations of the surface that preserve orientation is
a distinguished subgroup of index 2 of the group T of all self-transformations
of the surface. The group D of all deformations is a distinguished subgroup of
T as well as of T ∗, and the quotient group T/D is the group A of all integral
binary linear homogeneous substitutions of determinant +1 or−1. The group
T ∗/D is the group B of integral binary linear homogeneous substitutions of
determinant +1.

If we now consider the fundamental group F of the two-dimensional man-
ifold in question, which is given by two generators s, t connected by the re-
lation sts−1t−1 = 1, and therefore represents the commutative group on two
generators, then A obviously represents the group of all isomorphisms of F
onto itself (when we again, using the point of view of abstract group theory,
do not regard isomorphic groups as distinct).

Just as in this example, entirely analogous relations hold between the
groups mentioned in the general case. The group D of all deformations of a
manifold V is a distinguished subgroup of the group of all self-transformations
of D and similarly, when the manifold is two-sided, it is a distinguished
subgroup of the group T ∗ of all orientation preserving self-transformations
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of the manifold. If the manifold is connected, then the quotient groups
G = T/D, G∗ = T ∗/D are identical with the groups T 0/D0, T ∗0/D0 re-
spectively, where D0, T 0, T ∗0 respectively denote the groups of deforma-
tions, self-transformations and orientation-preserving self-transformations of
the manifold that leave an arbitrarily chosen inner point M0 of the manifold
fixed. Now we can choose a system of closed paths a1, a2, . . . emanating from
M0 as generators of the fundamental group F of V , and consider the nature
of F to be determined by the laws of combination of these paths.4

Each transformation in T 0 now corresponds to a permutation of the paths
ai of such a kind that the relations between the original paths also hold
between the permuted paths. The transformations therefore correspond to
automorphisms of F . All transformations of the same type correspond to
the same permutation, the deformations to the identity, and therefore each
operation of G = T 0/D0 = T/D corresponds to an operation of the group
J of all automorphisms of F . Now if τ , τ ′, τ ′′ are operations of T 0 which
satisfy the relation ττ ′ = τ ′′ then obviously the corresponding isomorphisms
j, j′, j′′ of F satisfy the relation jj′ = j′′. The same is true when τ , τ ′,
τ ′′ are understood to be operations of G. Thus G, and similarly G∗, is
homomorphic to a subgroup H, and H∗ respectively, of J , in general in a
many-to-one manner. There can be, say µ operations of G that correspond
to the same operation of J . If we consider the further example of the two-
dimensional manifold represented by the annulus, for which G is the Klein
four group, G∗ the cyclic group of order 2, F the infinite cyclic group and J
therefore the cyclic group of order two, then one obtains H = H∗ = J and
hence µ = 2, while G∗ is isomorphic to H∗. Note that H coincides with J in
both examples.

The groups G, G∗, H, H∗ obviously represent topological invariants,
about which we admittedly know little at present. As already remarked
in connection with the fundamental group, these invariants do not have the
same significance as the previous topological invariants as long as no method
is known for deciding the equality of two groups, but at least in the case of
the fundamental group we can always obtain a presentation when the schema
of the manifold is known. Not even this can be asserted for the groups G,
G∗, H, H∗. Moreover the same is already true for the group J , whose deter-

4The product of two paths in succession obviously represents a closed path. A relation
aiak = al between closed paths then means simply that composition of the values of an
arbitrary unbranched function in V (see §12, note 6) satisfies this relation.
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mination from F is a purely group theoretic question.
When it is a question of determining the groups just mentioned for a

given manifold, we can pose the problem as one of carrying out this determi-
nation from the schema of the manifold. One is therefore involved in defining
groups5 for schemata that reflect the deformations and self-transformations
of the manifold. Then groups based on these combinatorial concepts can be
defined, analogous to the groups mentioned above, and proofs for the old
groups carried over to the new. We would also want to prove theorems such
as the following: a simply connected manifold admits no orientation preserv-
ing self-transformations other than deformations, and apart from these no
self-transformations other than deformations composed with reflections. A
reflection of the closed or open n-dimensional simply connected manifold or
the bounded (n+ 1)-dimensional manifold

x21 + x22 + · · ·+ x2n + x2n+1 = 1 or ≤ 1 respectively

is understood to be the transformation:

x′1 = x1, x′2 = x2, . . . , x′n = xn, x′n+1 = −xn+1.

The above-mentioned theorems on the relations between the transforma-
tion groups in question and the isomorphisms of the fundamental group may
require combinatorial analysis situs based on the notion of schema not only
for their introduction and development, but also in another respect. Not
only the relations derived in the above examples by appeal to intuition, but
also the general theorems, need a sharper formulation and basis, requiring
a determination of the most general hypotheses one must impose on point
sets in order to retain the desired theorems for their self-transformations and
deformations. The definitions of self-transformation and deformation cer-
tainly apply, like homeomorphism, just as well to arbitrary point sets as to
continuous ones.

The above discussion of self-transformations of a manifold V may be
extended in a certain sense. Namely, suppose that V is bounded and that

5In order to see how this might happen one may refer to the investigations of C.
Jordan (Recherches sur les polyèdres, Crelles J., vol. 66) on the concept of the “aspect” of
a polyhedron, and the question whether different aspects of the same polyhedron can be
similar to each other, also to the Dehn-Heegaard Enzyklopädie article (IIIAB3, Grundlagen
T) already mentioned for a concept of deformation based on the schema, applicable to
figures lying in a manifold V .
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W1,W2, . . . are the boundary manifolds of V . A self-transformation of V then
permutes the manifolds Wi. For a deformation of V this permutation is the
identity, and one can therefore speak of the permutation of the Wi induced by
a particular operation of G. The permutations of the Wi associated with the
operations of G in this way constitute a group P homomorphic to G which is
intransitive in general. The intransitivity system of this permutation group
consists of the systems of boundary manifolds that can be carried into each
other by self-transformations of V . We shall assume further that all the Wi

are proper boundary manifolds, so that the points of Wi are to be counted
among those of V . Those manifolds Wi belonging to the same system must
therefore necessarily be homeomorphic to each other.6

If one chooses a particular manifold Wi, then those operations of T or G
that map Wi into itself constitute a subgroup Ti of T , or a subgroup Gi of
G respectively. Each transformation of V contained in Ti corresponds to a
transformation of Wi, and similarly each operation of Gi corresponds to an
operation of a group Γi that plays the same role for self-transformations Wi

as G does for self-transformations of V . In general those operations of Γi that
correspond to operations of Gi do not exhaust the group Γi but constitute a
subgroup Γ′i. Γ′i is homomorphic to Gi. When Wj, Wk belong to the same
system of mutually transformable boundary manifolds then Gj and Gk are
conjugate subgroups of G and not only are the groups Γj, Γk isomorphic
(which is simply a consequence of the homeomorphism of Wj and Wk), but
so are the groups Γ′j, Γ′k.

If V is two-sided and we confine ourselves to orientation-preserving self-
transformations, then one comes to consider the group P ∗ of permutations of
the Wi induced by operations of T ∗, and groups T ∗i , G∗i in T ∗, G∗ respectively
that map Wi into itself and the corresponding subgroup Γ∗′i of the group Γ∗i
of all operations of Γi that preserve the orientation of Wi.

A simple example may clarify some of these general concepts and the-

6However this condition is not sufficient. To see this one can consider the manifold
shown by Fig. 3 in §15 and cut from a space piece bounded by a torus surface. The
resulting manifold V is bounded by two surfaces W1, W2 of genus p = 1. Its fundamental
group is generated by three operations s, t, u satisfying the relation sts = tst. There are
two closed paths on W1 that generate all others, and which correspond to the operations
s and tst−1st of the fundamental group, and two such paths on W2, which correspond
to the operations 1 and u. One sees that there is no closed non-separating curve on W1

corresponding to the identity operation, so that W1 and W2 cannot be transformed into
each other by any self- transformation of V .
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orems. We choose V to be a three-dimensional space enclosed by a torus
surface. The single boundary manifold W1 is therefore the torus surface
considered above and Γ1 is accordingly the group of integral linear transfor-
mations

x′ = αx+ βy,

y′ = γx+ δy,

where αδ− βγ = ±1. But in order to determine Γ′1 one notes that, of all the
closed paths w = αx + βy (α, β relatively prime), only the paths w = +x
and w = −x satisfy the homology

w ∼ 0 (relative to V ),

where x again denotes a meridian circle and y a circle of latitude, each with a
definite orientation. But then it follows that an operation of γ′1 can transform
the meridian circle x only into +x or −x, and it therefore must have the form

x′ = εx

(39)
y′ = γx+ ηy,

where ε, η are each either +1 or −1. On the other hand it is easy to see that
each operation of this form is in fact an operation of Γ′1, and Γ′1 is therefore
isomorphic to the group of these substitutions. Namely, if ρ denotes the
distance of a point from the axis of the ring, ϕ the latitude, and ϑ the
meridian angle (geographic latitude and longitude) so that ϕ is constant on
meridians, and ϑ on latitudes, then the transformations of V represented by
the equations

ρ′ = ρ, ϕ′ = ηϕ, θ′ = εϑ− γ

2π
ϕ

induce the self-transformations of V represented by (39).7

At this point we may insert a remark concerning the combinatorial con-
struction of analysis situs. We recall that in §4 the (n+ 1)-dimensional cells
from which (n + 1)-dimensional manifolds were constructed were obtained
from simply connected closed n-dimensional manifolds. The geometric idea
underlying this stepwise construction of manifolds of ever greater dimension
is that the simply connected n-dimensional manifold.

x21 + x22 + · · ·+ x2n+1 = 1

7This may already be found in Heegaard, Diss. p.56.
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bounds the (n+ 1)-dimensional manifold

x21 + x22 + · · ·+ x2n+1 ≤ 1

which we take as the (n + 1)-dimensional cell. The construction of (n + 1)-
dimensional manifolds therefore depends on the previous introduction of the
concepts of “simply connected”, as well as “elementary subdivision” and
“homeomorphism” for n-dimensional manifolds. One can ask whether it
may not be possible to use a two-sided closed n-dimensional manifold V (n)

for the construction of (n + 1)-dimensional manifolds without restricting it
to be simply connected, merely taking V (n) to lie in n-dimensional euclidean
space Rn+1 and using the part Ξ(n+1) that it bounds in this space as the
(n+ 1)-dimensional cell.

But apart from the fact that it seems questionable whether each closed
two-sided n-dimensional manifold can be embedded continuously as a point
manifold X(n) of n-dimensional euclidean space8 (without singularities and
self-intersections, which would violate the embedding requirement), and apart
from the fact that there may be essentially different embeddings X(n) of the
same manifold V (n), so that the parts of Rn+1 they bound are not homeo-
morphic,9 thus requiring a particular embedding to be selected, the exam-
ple just discussed shows that a usable (n + 1)-dimensional element is still
not completely determined, because of the fact that X(n) can admit self-
transformations that do not correspond to self-transformations of Ξ(n+1).
This is seen immediately in the example.

Now suppose one proceeds to use closed two-sided surfaces to determine
three-dimensional cells, in the case p = 1 letting it be represented by a torus
surface X(2), whose interior is understood to be the cell. Now if ξ, η are
independent closed paths on the surface which generate all the others then
we map the surface one time on to X(2) so that ξ goes to the meridian circle
x, and η to the latitude circle y, and another time so that ξ goes to a line
x′ = αx + βy, and η goes to a line y′ = γx + δy, where αδ − βγ = ±1. We
then have two different interpretations of the surface with p = 1 as a surface
X(2), and the interior of X(2), which is regarded as the three-dimensional cell,
accordingly has two different interpretations Ξ

(3)
1 , Ξ

(3)
2 . Now the p = 1 surface

is thought of as divided into polygons that are identified with each other or

8For n = 2 this embedding is always possible, as is well known. For n > 2 cf. the
question raised in §2, note 13.

9Cf. the example given by fig. 3 in §15.
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with polygons on the boundary surfaces of other cells. The three-dimensional
manifold defined by such a pairing of boundary surfaces of cells will in general
be different when one takes the space piece Ξ

(3)
1 rather than the space piece

Ξ
(3)
2 , and we can only be assured of equality when the substitution

x′ = αx+ βy

y′ = γx+ δy

has the form (39). Consequently, further information is necessary if the
surface with p = 1 is to be used to determine three-dimensional cells, say
the specification of a particular closed, non-separating curve to wrap to the
meridian circle x of X(2). It follows that the restriction to simply connected
(n+1)-dimensional manifolds is the most natural in using n-dimensional cells
to build up n-dimensional manifolds. Difficulties of the kind just discussed do
not then appear, since all parts Ξ(n+1) of Rn+1 bounded by simply connected
n-dimensional manifolds X(n) are homeomorphic, and each transformation t
of X(n) can be induced by a self-transformation of Ξ(n+1).10

The groups P , P ∗, Gi, G
∗
i , Γ′i, Γ∗′i represent topological invariants of

bounded manifolds which seem important, inasmuch as there seem to be
manifolds they distinguish when all the topological invariants previously in-
vestigated (connectivity numbers, torsion numbers, fundamental group, num-
ber and character of boundary manifolds) do not.

Consider for example11 the three-dimensional manifold V1 one obtains by
removing two unlinked closed lines L1, L2 (see Fig. 4), which are mirror
image simple knots, from the three-dimensional spherical manifold.

10These theorems appear intuitively clear, and one can pose the problem of proving
them rigorously in the domain of point manifolds, or perhaps (cf. notes) in the domain of
combinatorial analysis situs, where the manifolds are presented by schemata, as was done
in Section I.

11In the examples that follow only the groups P , P ∗ are considered, since only these
groups are defined for improperly bounded manifolds (see §2, note 4), and the examples
concern such manifolds.
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Thus the line L1 cannot be deformed into L2 within the three-dimensional
spherical manifold without intersecting itself.12 One obtains the fundamental
group of V1

13 from four generators s1, s2, s3, s4 with the relations s1s2s1 =
s2s1s2 and s3s4s3 = s4s3s4, whence P1 = 3 and there are no torsion numbers.
One obtains the same fundamental group for the manifold V2 obtained by
removing two unlinked closed lines Λ1, Λ2 which are simply knotted in the
same sense, e.g., like L1. The boundary manifolds of both V1 and V2 are
the same in number and homeomorphic, but V1 and V2 themselves are not
homeomorphic.14

For both manifolds the permutation group P consists of the permutation
group on two letters, the two boundary elements being L1, L2 or Λ1, Λ2

respectively. However for V2 the group P ∗ = P since there is an orientation-
preserving self-transformation of V2 that exchanges Λ1 and Λ2, whereas each
orientation- preserving self-transformation of V1 must fix the lines L1, L2, so
that P ∗ is the identity group for V1. We may also consider the example of two
manifolds V1, V2 resulting from the three-dimensional spherical manifold by
removal of three unlinked closed lines Λ1, Λ2, Λ3 and K1, K2, K3 respectively.
Each of these lines is a simple knot, but Λ1, Λ2, Λ3, K1, K2, are the same
as the line L1 of Fig. 4, whereas K3 is the same as L2. The group P of
the manifold V1 obviously consists of the group of all permutations on three
letters Λ1, Λ2, Λ3. But, apart from the identity, the group P of V2 contains
only the permutation (

K1 K2 K3

K2 K1 K3

)
.

12This is also intuitively based, a fact of topological experience if I may use the term,
for which a stricter proof is not known to me.

13Cf. the determination of the fundamental group of Ψ1, in §18.
14One could regard this as intuitively evident. Or one could proceed from the standpoint

that if V1 and V2 were homeomorphic there would be a one-one continuous correspondence
between V1 and V2, from which a one-one continuous correspondence between the boundary
points could be derived, extendible to a self- mapping of the whole spherical manifold. But
since, on the basis of the above theorem, the spherical manifold has no self-transformations
other than deformations or deformations in combination with reflections, the system of
lines L1, L2 would be knotted in the same way as Λ1, Λ2 or its mirror image, i.e., each
member of the system would be deformable into its mirror image, which is obviously out
of the question.
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VI. Special ways of representing closed
multidimensional manifolds

§17

Closed manifolds are obtained: 1. by identification of boundary
manifolds, 2. by double covering of a “ground form”

In this section we shall generalize the known ways of representing closed
two-dimensional manifolds to more dimensions (especially three). As a result
it will be shown that certain of these forms of representation, which suffice to
obtain each closed two-dimensional manifold, are not adequate for the repre-
sentation of all closed manifolds in higher dimensions (so that the possibility
of such a representation is a special topological property of a manifold), or
else the uniqueness of the presentation is lost.

The first form of representation to be discussed, proceeds, in the case of
two-dimensional manifolds,1 from a “ground form,” i.e., from a developable
surface with r boundary lines, which one may represent as circles. If one
imposes an orientation on the developable surface, this induces a positive
direction for each of the r boundary lines. Identification of the circles in
pairs2 now serves to define a closed surface.

Three kinds of identification come into consideration:

1. The points of one circle K1, may be mapped on to the points of another,
K2, so that the positive orientation of K1, corresponds to the negative
orientation of K2.

2. The points of two circles K1, K2 may be related so that the positive
orientation of K1 corresponds to the positive orientation of K2.

3. The points of a circle K are identified with their diametric opposites. If
one now considers two identified arcs of K, then the positive orientation
of one corresponds to the positive orientation of the other.

One divides the r circles into s pairs that are identified in the first or second
way, and t individual circles identified with themselves in the third way. The

1Cf. Dyck, Math. Ann. 32
2The way to interpret this is immediate from what was said in Section I on the identi-

fication of boundary elements.
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resulting closed manifold3 is obviously two-sided if only identifications of the
first kind are present. Each two-dimensional manifold admits a representa-
tion of the kind described. It is unique only for the two-sided surfaces and the
one-sided surface with invariant q = 1 (see §8) (i.e., apart from topologically
inessential modifications of the ground form).4

The generalization of the form of representation just discussed is immedi-
ate. One proceeds from a developable n-dimensional manifold, bounded by
a number of (n − 1)-dimensional manifolds and induces orientations on the
boundary manifolds by choosing an orientation of the developable manifold.
Then the boundary manifolds are identified in the following three ways:

1. Two boundary manifolds R1, R2 are identified so that the positive
orientation of R1 corresponds to the negative orientation of R2, or

2. So that the positive orientation of R1 corresponds to the positive ori-
entation of R2.

3. The points of a boundary manifold R are identified so that the posi-
tive orientation of a piece of R corresponds to the positive or negative
orientation of its partner according as n is even or odd. This includes,
for example, the identification of diametrically opposite points of the
manifold

x21 + x22 + · · ·+ x2n = 1.

Identified point pairs are regarded as single points of the manifold being
represented. The resulting n-dimensional manifold is two-sided in the case
of even n just when all identifications are of the first kind, and in the case of
odd n only when no identifications of the second kind appear.

As an example, identification of diametrically opposite points on the sur-
face of the ball yields the two-sided three-dimensional manifold T3 (see §9),
and the result of identification of points on the same radius vector for the
space between two spheres is likewise a two-sided manifold U (whose schema
is given later). A further example is the three-dimensional manifold defined
by the following schema with two cells. The two cells may be given as cylin-
ders in the spaces with coordinates x, y, z and x′, y′, z′ respectively by

x2 + y2 + z2 ≤ 1, +1 ≥ z ≥ −1,

3Naturally one also obtains bounded surfaces by the same process when not all circles
are subject to identification, in fact each bounded surface is representable in this way.

4Dyck presents these relations op.cit. p.480.
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x′
2

+ y′
2

+ z′
2 ≤ 1, +1 ≥ z′ ≥ −1

respectively, with their boundary surfaces divided into three polygons each
by the perimeters of the end surfaces and the lines x = 1, y = 0 and x′ = 1,
y′ = 0 respectively. Let the two vertical surfaces be identified according to
the formulae

x′ = x, y′ = y, z′ = −z
and the end surfaces according to the formulae

x′ = −x, y′ = −y, z′ = −z.

It is easy to see that the manifold defined in this way may be expressed in
the above form, once as the space between two concentric spherical surfaces,
where diametrically opposite points on each sphere are identified, and also as
the space bounded by a torus surface whose points are identified according
to the formula5

ϕ′ = 2π − ϕ, ϑ′ = ϑ+ π

where ϕ, ϑ are understood to be geographic longitude and latitude on the
torus surface as in §16. Thus the form of representation is no longer unique
for two-sided manifolds of three dimensions.

When n = 3 it already happens that not all closed manifolds admit
representations of the kind described. Namely, since the set of points on
the manifold resulting from an identification of boundary surfaces R1, R2 in
the first or second way, or from the identification of a boundary surface R
with itself yields a (two- or one-sided) closed non-separating surface in the
manifold, the number P2 or Q2 must be greater than 1. But there are closed
two-sided three-dimensional manifolds, not homeomorphic to the spherical
manifold, for which P2 = Q2 = 1. Examples are the manifolds [2m + 1, λ]
considered in §20, which have the cyclic group of order 2m+1 as fundamental
group.

The second way we shall describe for representing closed multi-dimensional
manifolds concerns two-sided manifolds. In the two-dimensional case one re-
calls the well known normal form of the surface as a sphere with p handles.

5The collection of points of the manifold, each of which is represented by two points on
the torus, constitute a closed one-sided surface with invariant q = 2 (see §8). In general,
the result of identification of the third kind on a surface of genus p is a one-sided surface
in the three-dimensional manifold with invariant q = p + 1, as one sees by consideration
of the number N (see §8) which, for the surface of genus p, must be double that for the
one-sided surface.
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Now if one projects say the torus surface, the normal form of the surface
of genus 1, onto a suitably positioned plane, then one obtains an annulus,
whose boundary circles may be called K1 and K2, and each point between
them corresponds to two points of the torus surface. Thus if we think of
the annulus as consisting of two sheets connected along K1 and K2, we have
a way of representing the closed surface of genus 1. The following should
then be noted as far as the orientation of the manifold is concerned. If one
chooses an indicatrix for the annular surface between K1 and K2, then this
orientation is the same as that of the torus surface on one sheet, and the op-
posite on the other sheet. Thus if one wants to coherently orient the closed
surface, the orientation has to be reversed in passing from one sheet to the
other across K1 or K2.

Quite analogously as in the case p = 1, the general closed surface of genus
p is represented by a developable surface with p+1 boundary lines, covered by
two sheets joined along these boundaries. One obtains the generalization of
this form of representation for two-sided closed manifolds of more dimensions
when one thinks of a developable n-dimensional manifold, bounded by a
number of (n − 1)-dimensional manifolds, being doubly covered and then
joining the two sheets along the boundary manifolds.6

But while this form of representation is possible in only one way in the
two-dimensional case, it is not longer unique for three dimensions. This is
shown, for example, by the following manifold U . The schema consists of a
single cell, which one represents as a cylinder.

x2 + y2 ≤ 1, +1 ≥ z ≥ −1

whose vertical surface is divided into two rectangular pieces by its lines of
intersection with the plane y = 0; these are identified with each other by the
formulae

x′ = x, y′ = −y, z′ = z

and the two end surfaces are identified by the formulae

x′ = x, y′ = y, z′ = −z.

Now if one considers firstly the space D′ enclosed by a torus surface, and
secondly the space D′′ between two concentric spheres, and thinks of each

6One can of course generalize this form of representation by taking 2m sheets and
joining a pair of them at each boundary manifold.
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of the developable manifolds D′, D′′ doubly covered, with the sheets joined
along the boundary surfaces, then it is easy to see that one obtains the same
manifold U in each case. Furthermore, if one considers the representations,
characterized by numbers p, q, that one obtains by taking the normal form
of the closed surface of genus p, i.e., the sphere with p handles, in three-
dimensional space, removing q balls from its interior, covering the remaining
developable space with two sheets and joining them along the q+1 boundary
surfaces, then one obtains two different representations of the same two-sided
closed three-dimensional manifold when p+ q has the same value for each.7

It appears that this form of representation is also special for n ≥ 3, and by
no means all two-sided closed manifolds admit it. Thus it is not improbable
that not only all developable manifolds, but also closed manifolds obtain-
able by double covering of developable manifolds, have no torsion numbers.
However, no proof is known to me in either case.

§18

Riemann spaces1

A third form of representation of multi-dimensional manifolds is a gener-
alization of Riemann surfaces. We confine ourselves to discussing this gener-
alization in the case of three dimensions.

One can obtain Riemann surfaces by beginning with a spherical surface
from which n points a1, a2, . . . , an are removed,2 so that one obtains a surface
Φ bounded by n points. If one draws non-intersecting lines from a point O of
the surface to the points ai, then one can associate an operation si with the
crossing of each line Oa1, Oa2, . . . , Oan in a positive circuit around O. If one
crosses all lines in the positive orientation this corresponds to a closed circuit
around O, and since the point O by no means occupies a special position
on the surface Φ, the operation s1s2 · · · sn associated with this circuit, like a
circuit which crosses none of the lines Oai, must be the identity. Thus we
have the relation

s1s2 · · · sn = 1.

7The manifolds considered are identical with those represented as Riemann spaces in
ex. 2, 3 of Heegaard’s dissertation §14.

1Cf. Appell, Math. Ann. 30, Sommerfeld, Proc. Lond. Math. Soc. 28 and §§13,14 of
the dissertation of Heegaard.

2Thus representing improper boundary manifolds, cf. §2, note 4.
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This requirement obviously corresponds to the idea of an arbitrary unbranched
function on the surface Φ, when the si are understood to be substitutions
of the function values along closed paths. In fact, the group generated by
s1, s2, . . . , sn with the relation (40) is the fundamental group of Φ.

It is now a question of covering the surface Φ with a finite number of
sheets, say m, so that the resulting m-sheeted surface has branch points
only at the positions a1, a2, . . . , an, which means that one need only take
s1, s2, . . . , sn to be permutations of the n letters 1, 2, . . . , n that denote the
corresponding permutations of the sheets, so that these permutations sat-
isfy the relation (40). Then if the group generated by the permutations
s1, s2, . . . , sn is transitive one obtains a connected m-sheeted Riemann sur-
face over the sphere.3

Analogously, one can consider a three-dimensional manifold Ψ resulting
from the spherical three-dimensional manifold, viewed as R3 closed by a
point at infinity, by removing a number of closed lines a, b, c, . . . 4

One considers the surface F consisting of all radius vectors from a point
O of Ψ to the points of these lines. Then one considers the projections of the
lines a, b, c, . . . from O onto a plane E not containing O. The resulting curves
in E cross each other at certain points N1, N2, . . .. We assume that only two
pieces of curve cross at each such point Ni. Then two of the radius vectors
of the surface F lie in the same direction ONi, leading to two points Ai, Bi

of the system of lines a, b, c, . . . where the length OAi < OBi say. Thus the
surface F passes through itself along OAi. The points Ai divide the lines
a, b, c, . . . (or a single one of them) into pieces and the pieces of a may be
denoted by a1, a2, . . ., the pieces of b by b1, b2, . . ., etc. The orientation of
a piece is determined by choosing a positive orientation of the line. Each
of the pieces ai, bi, ci, . . . corresponds to a piece of the surface F consisting
of the radius vectors leading to this piece. If Ah is the negative end, and
Ak the positive end, of a line piece li, then the circuit OAhAkO around
the corresponding surface piece may be taken as positive. This orientation
determines a positive and negative side of the surface piece.

3As is well-known, one can apply the same method to obtain many-sheeted covering
surfaces over surfaces other than the sphere.

4The process that follows, which uses the cone F as the branching surface, together
with the conditions for joining the sheets where the lines from O have apparent double
points with the lines a, b, c, . . ., has been obtained from Herr Wirtinger, who developed it
and used it in investigations to be mentioned later. The same process, with a restriction
to first order branching, already occurs in Heegaard op. cit.
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We associate an operation with the piercing of a surface piece of F from
the positive or negative side, which is denoted by the same letter as the
corresponding line piece. Now if the two line pieces u1 = AhAi and u2 = AiAj
meet at the point Ai, while the point Bi lies on the line piece v, then U1, u2,
v satisfy the relation

(41) vu1v
−1u−12 = 1 or v−1u1vu

−1
2 = 1

according as u1 ends on the positive or negative side of the surface piece
corresponding to v. One also obtains this by considering a small loop around
the radius vector OAi, which must correspond to the identity operation.
The group defined by these generators and the relations (41) is obviously the
fundamental group of Ψ.5

A many-sheeted covering of the spherical manifold, with the lines a, b, c, . . .
as branch lines, is obtained in analogy with the two-dimensional case, by
choosing the operations ai, bi, ci, . . . to be permutations of m sheets so that
the relations (41) are satisfied.6

While each closed two-sided surface is homeomorphic to one represented
by a Riemann surface, it is not known whether each two-sided closed three-
dimensional manifold is homeomorphic to a “Riemann space” of the kind
described. In any case (just as with two dimensions) the same manifold may
admit different representations as a Riemann space, as the following examples
show.

To present such an example, one begins with the manifold Ψ1, which
results from the spherical manifold by removal of a knotted line L1 (cf. Fig.
4). L1 divides into three pieces s, t, u satisfying the relations

sts−1 = u, tut−1 = s, usu−1 = t,

the last of which is a consequence of the first two. If one omits the superfluous
generator u, then one obtains the fundamental group of Ψ1 by the relation

sts = tst

between the generators s, t.

5The form of the relations (41) shows the manifolds Ψ in question have no torsion
numbers. This follows from the same considerations as were presented in §10, note 1.

6Naturally one can again replace the covering of the spherical manifold by one of an
arbitrary closed manifold.
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One obtains a three-sheeted Riemann space branched along L1 when one
chooses the permutations s, t, u to be:

s = (2, 3), t = (1, 3), u = (1, 2).

In this way one obtains a manifold7 obtained by Wirtinger8 in an investigation
of the algebraic function of two complex variables represented by the Cardano
formula. It is noteworthy that this Riemann space is three-sheeted but has
branching only of first order along L1.

A two-sheeted Riemann space branched along L1 is obtained when one
sets9

s = t = u = (1, 2)

We now go to the manifold Ψ2 that results from the spherical manifold by
removal of two unknotted lines a, b which are simply linked, e.g., the circles
x2 + y2 = 1, z = 0 and x2 − 2x + z2 = 0, y = 0. The operations a, b satisfy
the relation

aba−1b−1 = 1,

so that the fundamental group of Ψ2, is the abelian group on two generators.
If one takes a three-sheeted covering of Ψ2 and

a = b = (1, 2, 3)

then the resulting Riemann space may be denoted by R2. One can then show
that R1 and R2 are representations of the same three-dimensional manifold,
and in fact the one denoted by [3, 1] in §20.

VII. Some supplementary material

§19

On a theorem from the foundations of combinatorial analysis situs

7The same Riemann space had previously been considered by Heegaard (op. cit. p.84,
ex. 4) and recognized to be simply connected.

8Erste Sitzung d. Math. Ges. in Vienna on 22 Jan. 1904 and Jber. d. Deutsch. Math.
Ver. Meran, Sept. 1905 (see Jber. 14, p.517).

9Heegaard, op. cit. p.84, ex. 5.
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Combinatorial1 analysis situs rests on the division of schemata into home-
omorphism classes. Two schemata are called homeomorphic if they have a
derived schema in common (see §2). The division into classes then results
from the fact that if two schemata are both homeomorphic to a third then
they are homeomorphic to each other. This theorem seems obvious, but it
is necessary to provide a proof and this will be carried out for the case of
two dimensions. As far as the position of this theorem in the systematic
construction of analysis situs is concerned, it may be remarked that it is
possible to dispense with it. One can describe two schemata that have a
common derived schema as homeomorphic in the strict sense, and call two
schemata homeomorphic in the extended sense if a sequence of schemata may
be interpolated between them so that each schema in the sequence is strictly
homeomorphic to its predecessor. In this way one obtains a division of the
schemata into homeomorphism classes without depending on a subdivision
lemma, and the properties of schemata that are topologically invariant, i.e.,
the same for homeomorphic schemata, are just those that are invariant under
elementary subdivisions.

The theorem we are concerned with will obviously be proved when we have
established the following special case: two schemata Q, R derived from the
same schema P by subdivision are homeomorphic. This in turn will be settled
when it is established in the particular case when one of the schemata Q, R is
derived from P by an elementary subdivision. Suppose for example that Q is
derived from P by an elementary subdivision and that P, P1, P2, . . . , Pn (Pn =
R) is a sequence of schemata, each of which is derived from its predecessor by
an elementary subdivision. It is a question of finding, for each Pi, a schema
Qi derived from it and also derivable from Q. Qn is then the common derived
schema of Q and R.

In the first instance, where R as well as Q results from P by an elementary
subdivision, it is possible to give a common derived schema S. In the case
of two dimensions there are then two kinds of elementary subdivisions to be
distinguished: division of an edge into two edges and division of a surface
piece into two surface pieces. We call these subdivisions of first and second
order respectively and the subdivided edge or surface piece may be called the
element of the schema subject to subdivision.

Now when the elements of the schema P subject to subdivision, whether
it be of first or second order, are different, then it is immediately clear that

1See the introduction.
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the two schemata Q, R derived from P possess a common derived schema
S, obtainable from Q as well as from R by an elementary subdivision. If
on the other hand the same element of P is subject to the two subdivisions
that yield Q, R, and if both subdivisions are of first order, then Q and R
are identical and we can set S = Q = R. Finally, if each subdivision is of
second order and the same surface piece a2 is subject to subdivision, then
the perimeter of the surface piece, which one can regard as a circle, can be
marked with the endpoints AQ, BQ and AR, BR respectively of the two new
edges cQ, cR realizing the subdivisions Q and R respectively. Now when the
point AQ is followed by one of the points AR, BR and then the point BQ in
the cyclic order on the circle, one derives the schema S from Q by a series
of three elementary subdivisions: first dividing cQ into two edges by a new
vertex C and then subdividing the two surface pieces into which a2 is divided
by cQ by further edges connecting C with AR and BR. This schema S may
be derived from R in an analogous way and it is therefore a common derived
schema of Q and R. When the point pair AQ, BQ coincides with the point
pair AR, BR, so that Q is equal to R, we take S = Q = R.

In all the remaining cases of second order subdivisions that apply to the
same surface piece one can give a schema S derivable from Q as well as R by
an elementary subdivision. Thus in all cases we have a process which, given
two schemata Q, R derived from a schema P by elementary subdivision,
finds a common derived schema S for both Q and R using a finite number
of elementary subdivisions (zero, one or three).

If T, T ′, T ′′, . . . , T (m) is a series of schemata in which T (i) results from
T (i−1) by subdivision of an element ei−1 of T (i−1) into two pieces e′i and e′′i by
a new element ei (of dimension one lower than that of ei−1) (i = 1, 2, . . . ,m),
and if none of the later subdivisions apply to one of the elements ei, e

′
i, e
′′
i ,

2

then the sequence of subdivisions that yield T ′ from T , T ′′ from T ′, . . ., T (M)

from T (M−1) may be called a sequence of independent elementary subdivisions
of the schema T . It is obvious that when Q, R result from the same schema by
elementary subdivisions then the sequence of elementary subdivisions used
in the above process to obtain the common derived schema S from R is a
sequence of independent elementary subdivisions of R.

If we now suppose that a sequence of schemata

(42) Pi, Pi1, Pi2, . . . , Pi,mi−1, Pi,mi (Pi,mi = Qi)

2By virtue of this hypothesis the elements e, e1, e2, . . . , em−1 can all be regarded as
elements of the schema T .
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has been found such that each results from its predecessor by an elementary
subdivision and the sequence of these elementary subdivisions is independent,
and the last schema Qi is a derived schema of Q, then it can be easily shown
that there is a sequence.

Pi+1, Pi+1,1, Pi+1,2, . . . , Pi+1,mi+1−1, Pi+1,mi+1

(43)
(Pi+1,mi+1

= Qi+1)

with exactly the same properties as the sequence (42). When i = 1 we can
find a sequence with the stated properties by the process described above,
which finds a common derived schema S = Q1 for the two schemata Q and
P1 obtained from P by elementary subdivision, so the desired demonstration
can be achieved by complete induction.

As far as finding the sequence (43) is concerned, it can be assumed
that Pi+1 6= Pi1, otherwise one need only take mi+1 = mi − 1, Pi+1,k =
Pi,k+1. We consider each element e of the schema Pi that is subject to el-
ementary subdivisions leading from Pi to Pi+1. If none of the elementary
subdivisions leading from Pi to Qi apply to the element e, then Pi+1,1 is
taken to be any schema obtainable from Pi1 as well as from Pi+1 by an el-
ementary subdivision (and on the basis of our assumption there is such a
schema). In general we take Pi+1,k to be any schema obtainable from Pik
as well as Pi+1,k−1 by an elementary subdivision. The sequence of schemata
Pi+1, Pi+1,1, Pi+1,2, . . . , pi+1,mi−1, Pi+1,mi is then the desired sequence (43).

If on the other hand one of the subdivisions leading from Pi to Qi, say
yielding Pi,h+1 from Pih, applies to the element e, then for k ≤ h we take
Pi+1,k to be any schema derivable from Pi+1,k−1 as well as from Pi,k by an
elementary subdivision. Then the schemata Pi,h+1 and Pi+1,h each result from
Pi,h by an elementary subdivision, and these two subdivisions both apply to
the element e of Pih. Suppose that e is a surface piece and that the two
subdivisions in question are situated so that the endpoint pairs of the new
edges separate each other. The subdivision yielding Pi,h+1 from Pih consists
of the subdivision of e by a new edge e into the surface pieces e′, e′′; the
subdivision yielding Pi+1 from Pi, and hence also Pi+1,h from Pih, consists of
the subdivision of e by the edge e1 into the surface pieces e′1, e

′′
1.

On the basis of the process set out above there is then a common derived
schema S for Pi,h+1 and Pi+1,h which, since we are assuming that e and e1
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cross, is obtained from each of these schemata by three elementary subdivi-
sions. The three applied to Pi+1,h involve in turn the elements e1, e

′
1, e

′′
1, and

the three schemata that result may be denoted Pi+1,h+1, Pi+1,h+2, Pi+1,h+3,
where Pi+1,h+3 = S. The three applied to Pi,h+1 involve e, e′, e′′ and lead in
order to the schemata

Pi,h+1,1, Pi,h+1,2, Pi+1,h+3.

Suppose that the elementary subdivisions yielding Pi1, Pi2, . . . , Pih from Pi
are of the elements f1, f2, . . . , fh, and that those yielding Pi,h+2, Pi,h+3, . . . , Pi,mi
from Pi,h+1 are of the elements gh+2, gh+3, . . . , gmi . By hypothesis the ele-
ments fk, gk are all different from each other and from e. One now deter-
mines any schema that can be obtained from both Pi,h+2 and Pi,h+1,1 by an
elementary subdivision and calls it Pi,h+2,1, then any common derived schema
Pi,h+2,2 of Pi,h+2,1 and Pi,h+1,2, and any obtainable from Pi,h+2,2 and Pi+1,h+3,
where in each case we take any common derived schema obtainable from the
two given schemata by an elementary subdivision. The last common derived
schema, of Pi,h+2,2 and Pi+1,h+3, is called Pi+1,h+4.

The elementary subdivisions yielding Pi,h+2,1 from Pi,h+1,1, Pi,h+2,2 from
Pi,h+1,2, and Pi+1,h+4 from Pi+1,h+3, all apply to the element gh+2. The sub-
divisions yielding Pi,h+2,1, Pi,h+2,2, Pi+1,h+4 from Pi,h+2 apply in turn to e, e′,
e′′. Now if in general we have found a sequence of schemata Pi,h+k,1, Pi,h+k,2,
Pi+1,h+k+2 resulting in turn from Pi,h+k by subdivisions of e, e′, e′′, and where
Pi+1,h+k+2 is a derived schema of Pi+1, then by applying the elementary sub-
divisions of gh+k+1 that produce Pi,h+k+1 from Pi,h+k, to the schemata in this
sequence, one may obtain the schemata Pi,h+k+1,1, Pi,h+k+1,2, Pi+1,h+k+3 that
also result from Pi,h+k+1 by subdivisions of e, e′, e′′. The resulting sequence
of schemata Pi+1,h+3, Pi+1,h+4, Pi+1,h+5, . . . ends with a schema Pi+1,mi+2 that
is a derived schema of PI,m, and the sequence of schemata

Pi+1, Pi+1,1, . . . , Pi+1,mi+2

that results by a sequence of successive elementary subdivisions therefore
ends with a schema derivable from Q. The successive elementary subdivisions
are independent, since they apply to distinct elements f1, f2, . . . , fh, e1, e

′
1, e
′′
1,

gh+1, gh+2, . . . , gmi of Pi+1. The sequence is therefore the desired sequence
(43). We have just discussed the case where the element e is a surface piece
and the edges e, e1 cross. In all the remaining cases the determination of the
sequence (43) is simpler.
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The proof of the theorem is therefore complete for the two-dimensional
case.

§20

An example

We shall consider an example (in fact not a single manifold, but a whole
series of manifolds) that is in a certain sense the simplest possible type of
two-sided closed three-dimensional manifold.

The schema of this manifold consists of a single three-dimensional cell
a3, thus a single fundamental polyhedron, and since the manifold is to be
closed, this cell is bounded by an even number of boundary polygons. One
obtains the simplest case by dividing the spherical surface of the given cell
a3 by an equatorial circle which is itself divided into l equal parts. The
two-sidedness condition still leaves open l different ways of associating the
two hemispherical polygons. These identifications of the two hemispheres are
expressible by the formulae

ϕ′ = ϕ+
2πλ

l
, ϑ′ = −ϑ, (λ = 0, 1, 2, . . . , l − 1)

where ϕ, ϑ are the geographical longitude and latitude of a point on the upper
hemisphere (ϑ > 0), and ϑ′, ϑ′ are the coordinates of the corresponding point
on the lower hemisphere. The identification is completely determined by the
numbers l and λ, so the schema may be denoted by (l, λ). The schemata (l, 0)
all represent the spherical manifold defined by (1, 0). In general, if l, λ have
a common divisor, so that l = kl1, λ = kλ1, then the manifold defined by
(l, λ) is no different from the one defined by (l1, λ1). Thus for each value of l
we need only consider the ϕ(l) members of the series 1, 2, . . . , l− 1 relatively
prime to l.

Suppose l, λ are relatively prime. The l edges of the polygon in the
schema (l, λ) then constitute a single closed cycle, the l vertices on the equa-
tor a single system of corresponding vertices of the polygon subdivision. The
neighbourhood manifold of the vertex of the schema corresponding to this
system is, as one easily realizes, the two-dimensional sphere, so the condition
presented in §3 is satisfied. For this schema, α3 = α2 = α1 = α0 = 1, and
when a3, a2, a1, a0 denote the cell, surface piece, edge and vertex of the
schema the Poincaré relation system reads

a3 ≡ 0; a2 ≡ la1; a1 ≡ 0.
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The manifold defined by the schema in question, which may be called
[l, λ],1 therefore has the Betti numbers

P1 = P2 = 1

and, when l > 1, a torsion number equal to l. One obtains the cyclic group
of order l as fundamental group.2

I have Herr Wirtinger to thank for an oral communication giving a simple
representation of the manifold [l, λ] as a branched covering over the spherical
manifold, and thus a representation as a “Riemann Space”, (§18). In order
to obtain this one takes the two poles N and S of the ball representing
the cell a3 and l subdivision points M0,M1, . . . ,Ml−1 on the equator, and
draws each meridian from N to S through a point Mi. One cuts the cell
a3 into l pieces by discs through these meridians and the NS axis, and
calls them a30, a

3
1, . . . , a

3
l−1. Each of these pieces a3i can be deformed into a

tetrahedron. The vertices of this tetrahedron, which result from Mi, Mi+1,
N , S by the deformation, may be denoted by Ai, Bi, Ci, Di respectively.
To obtain a schema of the manifold [l, λ] one has to define the following
correspondence between the boundary surfaces of the cells a3i : the triangle
BiCiDi is associated with the triangle Ai+1Ci+1Di+1, and the triangle AiBiCi
with the triangle Ai+λBi+λDi+λ.

Now one observes that one obtains a schema of the manifold Ψ2 con-
sidered in §18 when one takes a tetrahedron ABCD, identifies the triangle
BCD with the triangle ACD, the triangle ABC with the triangle ABD,
and leaves out the lines a = AB and b = CD. (Each of the tetrahedron
edges AB, CD obviously represents a “closed cycle of identified edges of

1When using this symbol we always assume that λ is relatively prime to l and that
0 < λ < l. In this connection (as well as in connection with the considerations of §22)
the “diagrams” of Heegaard’s dissertation may be recalled. The diagram (p.57) of a torus
with the curve [mβ+nλ] yields a manifold homeomorphic to [m,n′] when n′ ≡ n mod m.

2Functions lying on the manifold without branching can therefore be at most l-valued.
When one forms the corresponding l-sheeted cover of the manifold, on which l-valued
functions become single-valued, the result is a manifold homeomorphic to the sphere. In
general, one finds that a µ-sheeted cover of [l, λ] is a manifold homeomorphic to [l/t, r/t],
where r is the residue of µλ mod l, and t is the greatest common divisor of l and r. We
remark that we have finite groups other than the identity here, whereas all two-sided two-
dimensional manifolds with the exception of the simply connected manifold, whose group
is trivial, have infinite fundamental groups (see Poincaré An. sit. §14). The question
whether there are closed three- dimensional manifolds, other than the sphere, with trivial
fundamental group (Poincaré, Compl. 5, p.110) is undecided.
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the polygonal decomposition”.) If the manifold Ψ2 is now covered with l
sheets 0, 1, 2, . . . , l − 1 so that a circuit around b corresponds to the cyclic
permutation (0, 1, 2, . . . , l − 1) and a circuit around a corresponds to the
permutation (0, λ, 2λ, . . . , λ(l − 1)), then one obviously obtains the schema
of the resulting manifold when one represents each sheet by a tetrahedron
AiBiCiDi and identifies the triangle BiCiDi with the triangle Ai+1Ci+1Di+1,
and the triangle AiBiCi with the triangle Ai+λBi+λCi+λ. But this is exactly
the above schema of [l, λ], so that the latter manifold may be represented as
an l-sheeted cover branched over two linked curves.3

§21

A definition of Betti numbers different from Poincaré’s

The preceding example of the manifolds [l, λ] provides a suitable back-
ground for a short discussion of the different ways of defining Betti numbers,
from which it becomes clear that, with the exception of Poincaré’s, which
is found to be the simplest and most natural, all these definitions require a
supplementary statement in order to be correct.

We first recall the Poincaré definition and suppose that the difficulties
pointed out in §§6,7 have been removed, say by a suitable definition of ho-
mology. This definition of the Betti number Pm of a manifold V depends
on the existence of a system of two-sided closed m-dimensional manifolds
W

(m)
1 ,W

(m)
2 , . . . ,W

(m)
t lying in V , between which there is no homology

k1W
(m)
1 + k2W

(m)
2 + . . .+ ktW

(m)
t ∼ 0,

whereas every other two-sided closed m-dimensional manifold W (m) which
lies in V is connected with W

(m)
1 ,W

(m)
2 , . . . ,W

(m)
t by a homology. Assuming

the existence of such a system, the number t must be the same for all such
systems. For if V

(m)
1 , V

(m)
2 , . . . , V

(m)
t′ were a second system with the same

3The l-sheeted covering of [l, λ] mentioned in the previous footnote corresponds to an
l2-sheeted covering of the spherical manifold S3 branched along the closed lines a and b,
which one obtains when one joins the l2 sheets {i, k}, (i, k = 0, 1, 2, . . . , l − 1), in such
a way that circuits around b and a bring one from sheet {i, k} to sheets {i, k + 1} and
{i + 1, k + λ} respectively. This l3-sheeted covering of S3 is homeomorphic to S3 itself.
One can represent each sheet {i, k} by a cell in the form of a tetrahedron and thus obtain
a schema of S3 consisting of l2 tetrahedra with identifications between their faces. In
this way one obtains a decomposition of the three dimensional spherical manifold into l2

tetrahedral regions.

103



property, and if say t′ < t then each manifold W
(m)
i , multiplied by a suitable

integer hi, would be homologous to a linear combination of the V
(m)
i , and

these t linear combinations could not be linearly independent. But a linear
relation between them would give a homology between the hiW

(m)
i and hence

between the W
(m)
i , contrary to hypothesis.

Definitions of the Betti numbers Pm of V other than that of Poincaré are
based on systems of (two-sided, closed) m-dimensional manifolds lying in V .1

However for these the independence of the particular choice of manifolds in
the system is by no means guaranteed, and this is the point to which we shall
apply the above example.

We consider first of all the definition of Betti numbers in the section
with this object in the book of Picard and Simárt: Théorie des fonctions
algébriques de deux variables indépendantes.2 The considerations presented
to prove the independence of the number from the special choice of manifold
system are based essentially on the above definition of Poincaré. However,
the definition given does not fully coincide with that of Poincaré but is based
on a system of two-sided closed manifolds W

(m)
1 ,W

(m)
2 , . . . ,W

(m)
t lying in V

such that
A) no homology of the form (44) holds between the manifolds W

(m)
i and

B) every other two-sided closed m-dimensional manifold W (m) that lies
in V satisfies a homology

W (m) ∼
t∑
i=1

kiW
(m)
i ,

where the coefficients ki are integers.3

But it can be seen that such a system is by no means always present in
a manifold V . E.g., there is no such system when one takes V to be any one
of the manifolds [l, λ], (l > 1), since not every line W (1) in the latter satisfies
the homology W (1) ∼ 0, although it always satisfies the homology lW (1) ∼ 0.
We can find systems of manifolds W

(m)
1 ,W

(m)
2 , . . . ,W

(m)
t lying in V which, in

addition to B, also satisfy the condition A′ (in place of A) saying that none

1In each case Pm is defined to be one less than the number of manifolds in such a system.
As a result we always have to consider the case where the system does not contain a single
manifold, in which case Pm is set equal to 1.

2Vol. 1, p.28ff.
3The case t = 0, in which the system contains no manifold at all, here corresponds to

the case where each manifold W (m) is null-homologous.
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of the manifolds W
(m)
i is expressible in terms of the others in the form

W
(m)
i ∼

∑
kJW

(m)
j (j = 1, 2, . . . , i− 1, i+ 1, . . . , t)

where the kj are integers.
In order to show that one can sometimes find two such systems, in the

same manifold, for which the t values are different we consider the manifold
[6,1] and the closed path represented by the edge a1 of the schema (6,1).
We have 6a1 ∼ 0 and for each closed line l in [6,1] there is a homology
l ∼ ka1. Each of the systems (a1), (l12, l

1
3), (l13, l

1
4), (l15) is then a system of

closed lines satisfying the conditions A′, B, where l1k denotes a closed line
satisfying the homology l1k ∼ ka1 and consisting of k parts lying close to
a1. Thus [6,1] contains systems of one, and also two, closed lines with the
property required. Thus if the definition of Betti number is to be based on
such systems, Pm must be defined as one less than the number of members
in the smallest system with this property;4 and this supplementary condition
is therefore essential.

The same supplement proves to be necessary for the other definition corre-
sponding to the original conception of Betti numbers.5 The latter is based on
a system of two-sided closed m-dimensional manifolds W

(m)
1 ,W

(m)
2 , . . . ,W

(m)
t

in V such that these manifolds (or no single one of them) do not bound any

two-sided (m+1)-dimensional manifold lying in V , while the manifolds W
(m)
i

(or a single one of them) in combination with every other two-sided closed
m-dimensional manifold W (m), do bound a two-sided (m + 1)-dimensional

manifold in V . These conditions on the system W
(m)
1 ,W

(m)
2 , . . . ,W

(m)
t may

be expressed precisely with the help of the homology concept as follows: there
is no homology of the form

W
(m)
i1

+W
(m)
i2

+ . . .+W
(m)
ir
∼ W

(m)
j1

+W
(m)
j2

+ . . .+W
(m)
js

whereas for each W (m) there is a homology

W (m) ∼ W
(m)
k1

+W
(m)
k2

+ . . .+W
(m)
kρ
−W (m)

l1
−W (m)

l2
− . . .−W (m)

lσ

4Of course one could also, instead of a single number Pm, take all those numbers that,

when reduced by one, are possible sizes for such a system W
(m)
1 ,W

(m)
2 , . . .. But then the

question arises whether these numbers can be determined from Poincaré’s Betti numbers
and torsion numbers, or at least from the fundamental group.

5See the work of Betti and the fragment of Riemann cited in note 1 of §6.
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where i1, i2, . . . , ir, j1, j2, . . . , js and similarly k1, k2, . . . , kρ, l1, l2, . . . , lσ are
understood to be all distinct numbers in the series 1, 2, . . . , t. The exam-
ple of the manifold [8, 1] shows that one and the same manifold can contain

two or more such systems W
(m)
i with different t values; namely, the systems

(a1, l12, l
1
4), (a1, l13), (l12, l

1
3, l

1
4) all have the required property, where a1 is the

closed line represented by the edge of the schema [8,1] and l1k denotes a closed
line satisfying the homology l1k ∼ ka1 as above. In this case the Betti num-
bers are also determined by the supplementary requirement that the system
with the given property be the smallest possible.

§22

Manifolds that agree with respect to the topological invariants
previously considered

By way of conclusion we would like to point out that the manifolds [l, λ]
of §20 appear to hold a certain interest for the basic problem of analysis situs,
that of obtaining necessary and sufficient conditions for the homeomorphism
of two manifolds. The ultimate solution of this problem would be a means
of determining a system of topological invariants for a given manifold such
that agreement of all invariants in the system for two manifolds enables us
to conclude that they are homeomorphic. Now two manifolds [l, λ] with
the same value of l agree in their fundamental groups, and hence in all
topological invariants that we presently have at our disposal. The question
therefore arises, whether two manifolds [l, λ] with the same l value are always
homeomorphic.

One observation is immediate, namely that [l, λ] and [l, l − λ] are home-
omorphic manifolds, since one obviously obtains the schema (l, λ) from the
schema (l, l − λ) by reflection of the cell a3. For l = 2, in which case one
has in [2,1] the projective space T3 of §9, this remark is trivial. For l > 2
the remark implies that at most ϕ(l)/2 of the manifolds in question can be
different: l = 5 is therefore the smallest value of l for which one obtains two
manifolds, [5,1] and [5,2] whose homeomorphism is questionable.

One can view the question of homeomorphism between [5,1] and [5,2] as
follows.1 In [5,1] one considers the points of the geometric figure consisting

1One knows no process for deciding such questions, which are also difficult to settle
intuitively. E.g., the homeomorphism between the schema: tetrahedron ABCD with iden-
tifications BCD = ACD = a21, ABC = DAB = a22 and the schema σ3 is not immediately
obvious because of the complicated position of the two-dimensional complex a22.
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of the surface a2. One obtains this from a pentagon M0M1M2M3M4 when
one identifies the sides M0M1, M1M2, . . ., M4M1 in the order written. In this
way one obtains a “two-dimensional complex” characterized by the property
that the boundary of the surface piece describes a closed line five times. It
is a question of the position of this two-dimensional complex in the manifold
[5,1].

One obtains a better view when one draws the meridian semicircles through
the points M0, M1, . . ., M4 that divide a2 into five triangles NM0M1 =
SM1M2, NM1M2 = SM2M3, etc., which may be called, in order, d0, d1, d2,
d3, d4. Two sides of such a triangle lead from the point N = S to a0, the
third side consists of the edge a1 leading from a0 to a0. Let A be a point
on a1. In the neighbourhood of A one draws a small loop L in the manifold
[5,1] around the edge a1. This line pierces the triangles di, and indeed in the
same order d0, d1, d2, d3, d4 as these triangles are placed around the point
N = S.

Now if [5,1] and [5,2] are homeomorphic it must be possible to place a
two-dimensional complex in [5,2] in such a way that

1. it is homeomorphic to the complex a2 in [5,1] and therefore consists of
a surface piece whose boundary wraps five times around a closed line,

2. it lies in [5,2] the same way the previous complex lay in [5,1] and

3. it dissects [5,2] into a simply connected space.

Condition 1 is obviously satisfied by the complex represented by a2 in
[5,2], but not condition 2. Namely, if one carries out the decomposition of a2

into five triangles in [5,2] the same way as in [5,1], and again denotes them
d0, d1, d2, d3, d4 in the order in which they lie around N = S, then a small
loop around the edge a1 pierces them in the order d0, d2, d4, d1, d5. Thus
a two-dimensional complex in [5,2] satisfying the conditions 1, 2, 3 must be
placed differently from a2.

We do not go further into this question, seeing only that it essentially
involves certain order relations. The fundamental group is already distin-
guished from the other topological invariants (Betti numbers, torsion num-
bers) by the fact that it reflects certain order relations to a higher degree.
However, one obtains these other topological invariants by the process of
letting the operations of the fundamental group commute. The reflections
on the manifolds [5,1] and [5,2], which both have the cyclic group of order 5
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as fundamental group, show that certain order relations in the schemata are
also not expressed in the fundamental group.
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