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Triangulating and Smoothing

Homotopy Equivalences and Homeomorphisms.

Geometric Topology Seminar Notes

By D. P. Sullivan

Introduction

We will study the smooth and piecewise linear manifolds within a given homo-
topy equivalence class. In the first part we find an obstruction theory for deforming
a homotopy equivalence between manifolds to a diffeomorphism or a piecewise lin-
ear homeomorphism. In the second part we analyze the piecewise linear case and
characterize the obstructions in terms of a geometric property of the homotopy
equivalence. In the third part we apply this analysis to the Hauptvermutung and
complex projective space.

I. Triangulating and Smoothing Homotopy Equivalences

Definition 1. Let Ai denote the Abelian group of almost framed1 cobordism
classes of almost framed smooth i-manifolds.
Let Pi denote the Abelian group of almost framed cobordism classes of almost
framed piecewise linear i-manifolds.

Theorem 1. (The obstruction theories) Let f : (L, ∂L)−−→(M,∂M) be a
homotopy equivalence between connected piecewise linear n-manifolds. Let Q be
an (n − 1)-dimensional submanifold of ∂L such that f(∂L − Q) ⊆ ∂M − f(Q).
Suppose that n ≥ 6 and that π1(L) = π1(each component of ∂L−Q) = 0.

(a) If f |Q is a PL-homeomorphism, then f may be deformed (mod Q) to
a PL-homeomorphism on all of L iff a sequence of obstructions in Hi(L,Q;Pi)
0 < i < n vanish.

(b) If L and M are smooth, f |Q is a diffeomorphism, and ∂L 6= Q then f may
be deformed (mod Q) to a diffeomorphism on all of L iff a sequence of obstructions
in Hi(L,Q;Ai) 0 < i < n vanish.

Remark. From the work of Kervaire and Milnor [KM] we can say the following
about the above coefficient groups :

1 almost framed means framed over some (i− 1)-skeleton
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(i) If θi denotes the finite Abelian group of oriented equivalence classes of
differentiable structures on Si, then there is a natural exact sequence

. . . −−→ Pi+1

∂
−−→ θi

i
−−→ Ai

j
−−→ Pi −−→ θi−1 −−→ . . .

with image(∂) = θi∂π = {π-boundaries} ⊆ θi.

(ii) P∗ = P1, P2, P3, . . . , Pi, . . . is just the (period four) sequence

i 1 2 3 4 5 6 7 8
Pi 0 Z2 0 Z 0 Z2 0 Z

9 10 11 12 13 14 15 16
0 Z2 0 Z 0 Z2 0 Z

(iii) For i ≤ 19, Ai may be calculated

i 1 2 3 4 5 6 7
Ai 0 Z2 0 Z 0 Z2 0

8 9 10 11 12 13
Z⊕ Z2 2Z2 Z6 0 Z Z3

14 15 16 17 18 19
2Z2 Z2 Z⊕ Z2 3Z2 Z2 ⊕ Z8 Z2

Note that Theorem 1 is analogous to a fundamental theorem in smoothing
theory. In that case f is a PL-homeomorphism, f |Q is a diffeomorphism, and f
may be deformed by a weak-isotopy (mod Q) to a diffeomorphism iff a sequence
of obstructions in Hi(L,Q; θi) vanish.

These three obstruction theories are related by the exact sequence of coeffi-
cients above.

Proof of Theorem 1 : There are several approaches to Theorem 1. The most
direct method seeks to alter f by a homotopy so that it becomes a diffeomorphism
or a PL-homeomorphism on a larger and larger region containing Q. Suppose for
example that M is obtained from f(Q) by attaching one i-handle with core disk
Di.
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Then f is deformed (mod Q) so that it is transverse regular to the framed manifold
Di. The framed manifold f−1(Di) has a (smooth or PL) sphere boundary and
determines an element in Ai or Pi. If this element is zero, then surgery techniques
may be employed to deform f so that it is a diffeomorphism or PL-homeomorph-
ism on a neighborhood of f−1Di.

Theorem 1 asserts that the cochain with values in Ai or Pi determined by the
f−1Di’s has the properties of an obstruction cochain.

A complete description is given in [S1]. See also [W1].

The obstruction theories of Theorem 1 have the usual complications of an
Eilenberg-Whitney obstruction theory. The kth obstruction in Hk(L,Q;Pk) or
Hk(L,Q;Ak) is defined only when the lower obstructions are zero; and its value
depends on the nature of the deformation of f to a PL-homeomorphism or diffeo-
morphism on a thickened region of L containing the (k − 2)-skeleton of L−Q.

Thus applications of a theory in this form usually treat only the first obstruc-
tion or the case when the appropriate cohomology groups are zero.

For more vigorous applications of the theory one needs to know more precisely
how the obstructions depend on the homotopy equivalence f — for example, is it
possible to describe the higher obstructions and their indeterminacies in terms of
a priori information about f?1

1 I am indebted to Professor Steenrod for suggesting this problem at my Thesis
Defense, January 1966.



72 sullivan

We will concentrate on the PL obstruction theory – where a complete anal-
ysis can be made. We will replace the sequence of conditions in Theorem 1 by
one condition which depends only on the geometrical invariants of f (Theorem
2). These geometrical invariants are the classical surgery obstructions in P∗ ob-
tained by studying the behavior of f on the inverse image of certain characteristic
(singular) submanifolds of M .

It would be very interesting if a similar analysis can be made of the smooth
theories.

The PL Theory

Definition 2. Let M be an oriented PL m-manifold whose oriented boundary is
the disjoint union of n copies of the closed oriented (m− 1)-manifold L. We call
the polyhedron V obtained from M by identifying the copies of L to one another
a Zn-manifold. We denote the subcomplex L ⊆ V by δV , the Bockstein of V .

A finite disjoint union of Zn-manifolds for various n’s and of various dimen-
sions is called a variety.

If X is a polyhedron, a singular variety in X is a piecewise linear map
f : V−−→X of a variety V into X.

Remark. (i) Note that if V is a Zn-manifold of dimension m then V is locally
Euclidean except along points of δV = L. A neighborhood of L in V is PL-
homeomorphic to L× cone (n points).
(ii) A Zn-manifold carries a well-defined fundamental class in Hm(V ;Zn). It is
the nicest geometric model of a Zn-homology class.
(iii) A closed oriented manifold is a (Z0 or Z)-manifold.

We return to the homotopy equivalence f : (L, ∂L)−−→(M,∂M). Let g :
V−−→M be a connected singular Zn-manifold in the interior of M , of dimension
v. The graph of g defines V as a Zn-submanifold of the Zn-manifold M × V .1

Consider f = f × (identity on V ) mapping (L, ∂L) × V to (M,∂M) × V . If
π1(M) = π1(V ) = π1(δV ) = 0, v = 2s, and dim(M) ≥ 3, then we may deform f
so that it has the following properties :

(i) f is transverse regular to (V, δV ) ⊆ M × (V, δV ) with (U, δU) ⊆ L ×
(V, δV ) where U = f−1V .
(∗) (ii) f : δU−−→δV is a homotopy equivalence.2

(iii) f : U−−→V is s-connected where v = dim(V ) = 2s. See [S1] and [W1].

1 Using the graph of g is unnecessary if g is an embedding. Note that this
construction is the Gysin homomorphism for bordism.

2 We assume further that f : δU−−→δV is a PL-homeomorphism in case dim(δU)
= 3. This is possible.
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Let Ks = ker f∗ ⊆ Hs(U ;Z). If s is even Ks admits a symmetric quadratic
form (the intersection pairing) which is even (〈x, x〉 is even) and non-singular.
Thus Ks has an index which is divisible by 8. If s is odd, then Ks ⊗ Z2 admits a
symmetric quadratic form which has an Arf-Kervaire invariant in Z2.

We define the splitting obstruction of f : (L, ∂L)−−→(M,∂M) along V by

Of (V ) =


Arf-Kervaire (Ks) ∈ Z2 if s = 2k + 1
1
8
Index(Ks) (modulo n) ∈ Zn if s = 2k > 2

1
8 Index(Ks) (modulo 2n) ∈ Z2n if s = 2.

We claim that Of (V ) only depends on the homotopy class of f . Also for
s 6= 2, Of (V ) = 0 iff f may be deformed to a map split along V , i.e. f−1(V, δV )
is homotopy equivalent to (V, δV ).

More generally we make the following :

Definition 3. Let f : (L, ∂L)−−→(M,∂M) be a homotopy equivalence and let
g : V−−→M be a singular variety in M . The splitting invariant of f along
the variety V is the function which assigns to each component of V the splitting
obstruction of f along that component.

Now we replace the Eilenberg obstruction theory of Theorem 1 by a first-order
theory. We assume for simplicity that Q is ∅.

Theorem 2. (The Characteristic Variety Theorem)
Let f : (L, ∂L)−−→(M,∂M) be a homotopy equivalence as in Theorem 1. Then
there is a (characteristic) singular variety in M , V−−→M , with the property that
f is homotopic to a piecewise linear homeomorphism iff the splitting invariant of
f along V is identically zero.

For example :

(i) (characteristic variety of QPn) = (QP1 ∪QP2 ∪ . . . ∪QPn−1
inclusion
−−−−−→ QPn)

(ii) (characteristic variety of Sp × Sq × Sr)
= even dimensional components of

(Sp ∪ Sq ∪ Sr ∪ Sp × Sq ∪ Sp × Sr ∪ Sq × Sr
inclusion
−−−−−→ Sp × Sq × Sr)

(iii) (characteristic variety of CPn) = (CP2 ∪CP3 ∪ . . . ∪ CPn−1
inclusion
−−−−−→ CPn)
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(iv) (characteristic variety of a regular neighborhood M of S4k−1 ∪r e4k)

= (V 4k
degree 1
−−−−→ M)

where V 4k is the Zr-manifold obtained from S4k by removing the r open disks

and identifying the boundaries.

We remark that there is not in general a canonical characteristic variety forM .
We will discuss below conditions that insure that a variety in M is characteristic
and what choices are available.

First we consider the natural question raised by Theorem 2 – what are the rela-
tions on the set of all splitting invariants of homotopy equivalences f : (L, ∂L)−−→
(M,∂M)?

One relation may be seen by example – if f : (L, ∂L)−−→(M,∂M) is a homo-
topy equivalence and S4 ⊆M , then Index f−1(S4) ≡ 0 (mod 16) by a theorem of
Rochlin. Thus the splitting obstruction of f along S4 is always even.

More generally, if V is a singular variety in M , then a four dimensional
component N of V is called a spin component of V in M if :

(i) N is a (Z or Z2r)-manifold,
(ii) 〈x∪x, [N ]2〉 = 0 for all x ∈ H2(M ;Z2) where [N ]2 is the orientation class

of N taken mod 2.

Then we can state the following generalization of Theorem 2.

Theorem 2′. Let (M,∂M) be a simply connected piecewise linear manifold pair
with dim(M) ≥ 6. Then there is a characteristic singular variety V in M
with the following properties :
(i) Let gi : (Li, ∂Li)−−→(M,∂M) be homotopy equivalences i = 0, 1. Then there is
a piecewise linear homeomorphism c : L0−−→L1 such that

(L0, ∂L0)������
g0

u

∼= c (M,∂M)

(L1, ∂L1)
''
''
')

g1

is homotopy commutative iff

(Splitting invariant of g0 along V ) = (Splitting invariant of g1 along V ) .
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(ii) A function on the components of V with the proper range is the splitting in-
variant of a homotopy equivalence iff its values on the four dimensional spin com-
ponents are even.

Note that Theorem 2 follows from Theorem 2′ (i) by taking g0 = f and g1 =
identity map of (M,∂M)

(L, ∂L)h
h
h
h
hhj

f

u

∼= c (M,∂M)

(M,∂M)
''
''
')

identity

Proof of Theorem 2 :

The Kervaire Obstruction in H4∗+2(M ;Z2)

There is a very nice geometrical argument proving one half of the character-
istic variety theorem. Namely, assume the homotopy equivalence f : (L, ∂L)−−→
(M,∂M) can be deformed to a PL-homeomorphism on some neighborhood Q of
the (k − 1)-skeleton of L and f(L−Q) ⊆M − f(Q) :

Suppose that k = 4s+ 2 and recall that the obstruction class in

H4s+2(M ;Z2)

is represented by a cochain c calculated by looking at various (f−1Dk)’s – where the
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Dk’s are the core disks of handles attached along ∂f(Q). In fact, for a particular
handle h, c(Dk) is the Kervaire invariant of the framed manifold f−1(Dk) (which
equals the class of f−1(Dk) in P4s+2 = Z2). See Figure 2.

NOW assume that there is a Z2-manifold Nk embedded in f(Q) union the
k-handle h which intersects the k-handle in precisely Dk. Then f−1Nk consists of
two pieces – one is PL homeomorphic to Nk intersect f(Q) and one is just f−1Dk.
Thus it is clear that the obstruction to deforming f on all of M so that f−1Nk is
homotopy equivalent to Nk is precisely c(Dk) = Kervaire Invariant of f−1Dk.

This means that c(Dk) is determined by the splitting obstruction of f along
Nk – it does not depend on the deformation of f to a PL-homeomorphism on Q.

Roughly speaking, the part of Nk in f(Q) binds all possible deformations of
f together.

From cobordism theory [CF1] we know that any homology class in Hk(M ;Z2)
is represented by a possibly singular Z2-manifold Nk in M . So for part of the
characteristic variety1 we choose a collection of singular Z2-manifolds in M of
dimension 4s+ 2, 2 ≤ 4s + 2 ≤ dimM . We suppose that these represent a basis
of H4s+2(M ;Z2), 2 ≤ 4s+ 2 ≤ dimM .

The splitting obstructions for f along these Z2-manifolds in M determine
homomorphisms H4s+2(M ;Z2)−−→Z2 which in turn determine cohomology classes
in H4s+2(M ;Z2). The argument above (generalized slightly)2 shows that the
lowest dimensional non-zero class among these is the first non-vanishing Eilenberg
obstruction in dimension 4s+ 2, (if it exists).

This would complete the proof of Theorem 2 if we did not have to cope with
the obstructions in H4i(M ;Z). So now the fun begins.

The Infinite (Index) Obstructions in H4∗(M ;Z)

Of course we can try to apply the argument of Figure 2 to characterize the
Eilenberg obstructions in dimensions 4s.

The attempt succeeds in characterizing the Eilenberg obstructions in H4s(M ;Z)
modulo odd torsion elements.

1 We shall see below that some of the two dimensional components are not
needed and others are replaced by certain four-dimensional (non-spin) components,
e.g. M = CPn.

2 The fact that the submanifolds are singular presents no difficulty – for we
may look at graphs or cross the problem with a high dimensional disk.
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Let Dk, k = 4s be the core disk of a handle h attached along the boundary
of f(Q) which determines an element of infinite order in H4s(M ;Z). Then by
obstruction theory in MSO there is an oriented submanifold Nk of f(Q) ∪ h
which intersects the handle in a certain positive number of oriented copies of Dk.
We can then calculate [1

8 Index of f−1Dk] = [class of f−1Dk in P4s = Z]1 in terms
of Index f−1Nk − Index Nk. The latter integer is determined by the splitting
obstruction of f along Nk. This characterizes the Eilenberg obstructions modulo
torsion elements in H4s(M ;Z).

The 2-Torsion (Index) Obstructions in H4∗(M ;Z)

Now suppose Dk represents a generator of order n in H4s(M ;Z) (k = 4s) and
there is a singular Zn-manifold Nk in f(Q) ∪ h which intersects the handle h in
Dk. Then the argument of Figure 2 again shows that the value of an Eilenberg
obstruction cochain on [Dk] taken mod n is just the splitting invariant of f along
Nk.

From cobordism theory we can show that such an Nk exists if n is a power
of 2.

So now we can characterize the Eilenberg obstructions modulo odd torsion
elements. We add to our characteristic variety the manifolds considered in the
previous two paragraphs – namely :

(i) an appropriate (as above) closed oriented manifold of dimension 4s for
each element of a basis of H4s(M ;Z)/Torsion.2

(ii) an appropriate Z2r -manifold of dimension 4s for each Z2r -summand in
H4s(M ;Z).

All this for 4 ≤ 4s < dimM .

The above applications of cobordism theory are based on the fact that the
Thom spectrum for the special orthogonal group, MSO, has only finite k-invariants
of odd order. (See [CF1]).

We also use the fact that the homotopy theoretical bordism homology with
Zn-coefficients is just the geometric bordism homology theory defined by Zn-
manifolds.

1 Except when 4s = k = 4, in which case we calculate 1
16 Index f−1Dk.

2 We will later impose an additional restriction on these manifolds so that
Theorem 2′ (ii) will hold.
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Now the proof of Theorem 2 would be complete if H4∗(M ;Z) had no odd
torsion.

The Odd Torsion Obstructions in H4∗(M ;Z),
Manifolds With Singularities, and k-Homology.

We have reduced our analysis to the case when the Eilenberg obstructions are
concentrated in the odd torsion subgroup of H4∗(M ;Z).

However, we are stopped at this point by the crucial fact that Zn-manifolds
are not general enough to represent Zn-homology when n is odd. (For example the
generator of H8(K(Z, 3);Z3) is not representable.) Thus the crucial geometrical
ingredient of the “Figure 2” proof is missing.

In the n odd case we can change the format of the proof slightly. Let Dk be
the core disk of a k-handle h representing a generator of odd order n in H4s(M ;Z).
Let Nk be a Zn-manifold in f(Q) ∪ h situated as usual. Then we claim that the
class of f−1Dk in Pk⊗Zn is determined by Index f−1Nk – Index Nk ∈ Zn.1 (We
can recover the 1

8 factor since n is odd.) But the index of f−1Nk only depends on
the homotopy class of f because of transversality and the cobordism invariance of
the mod n index. ([N2])

Thus we see that the rigidity of the odd torsion Eilenberg obstruction “follows”
from the existence of a geometrical Zn-manifold object which :

(i) is general enough to represent Zn-homology,
(ii) is nice enough to apply transversality,

(iii) has an additive index ∈ Zn which is a cobordism invariant and which
generalizes the usual index.

Finding a reasonable solution of (i) is itself an interesting problem.∗

We proceed as follows. Let C1,C2, . . . denote a set of ring generators for
smooth bordism modulo torsion, Ω∗/Torsion (dimCi = 4i). We say that a poly-
hedron is “like” Sn ∗ C1 (= Sn join C1) if it is of the form W ∪ L × coneC1, W
a PL-manifold, ∂W = L× C1, i.e. has a singularity structure like Sn ∗ C1. More
generally we say that a polyhedron is “like” Q = Sn ∗ Ci1 ∗ Ci2 ∗ . . . ∗ Cir 2 if it
admits a global decomposition “like” Q.

1 The index of a Zn-manifold (N4k, δN) is the index of N/δN taken modulo
n. The index of N/δN is the signature of the (possibly degenerate) cup product
pairing on H2k(N/δN ;Q).
∗ A solution is given by Rourke, Bull. L.M.S. 5 (1973) 257–262
2 We require i1 < i2 < . . . < ir.
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For example, Sn ∗ C1 ∗ C2 may be decomposed as in Figure 3.

These polyhedra play the role of closed “manifolds” in our theory. Part of
their structure is the join-like decomposition of a neighborhood of the singularity
set together with a compatible linear structure on the stable tangent bundle of the
complement of the singular set.

“Manifolds with boundary” and “Zn-manifolds” are easy generalizations.

(i) The bordism homology theory defined by these manifolds with singularities is
usual integral homology theory.

(ii) Also transversality and other geometrical constructions are fairly easy with
these varieties.

(iii) They do not however have a good index. Our mistake came when we intro-
duced the cone on C1 = cone on CP2, say.

If we make the analogous construction using only C2, C3, C4, . . . where Index
Ci = 0 i = 2, 3, 4, . . . then we can define a proper index.

However, we no longer have ordinary homology theory but a theory V∗ such
that V∗(pt.) is a polynomial algebra on one 4-dimensional generator [CP2]. V∗
is in fact a geometric representation of connective k-homology and the natural
transformation Ω∗−−→V∗1 is closely related to the transformation I : Ω∗−−→K∗
constructed below.2

1 This is obtained by regarding a non-singular manifold as a variety.
2 We are working modulo 2-torsion in this paragraph.
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Thus we see that the Eilenberg obstructions in dimension 4k are not well-
defined. Their values may be varied on those Zn-classes whose geometric repre-
sentative requires a CP2-singularity (i.e. does not come from V∗). This may be
seen quite clearly in dimension 8. In fact, from the homotopy theory below we
see that the H4k(M ;Zn) modulo the indeterminacy of the Eilenberg obstructions
(reduced mod n) is precisely dual to the subgroup of V∗ representable elements in
H4k(M ;Zn).

This duality may also be seen geometrically but it is more complicated.

II. The Characteristic Bundle of a Homotopy Equivalence

The proof of Theorem 2 (the Characteristic Variety Theorem) can be com-
pleted by studying the obstruction theory of Theorem 1 from the homotopy the-
oretical point of view.

Definition. (F/PL-bundle, F/O-bundle). An F/PL)n-bundle over a finite com-
plex X is a (proper) homotopy equivalence θ : E−−→X ×Rn where π : E−−→X is
a piecewise linear Rn-bundle and

E w
θ

u
π

X × Rn

u
p1

X w
identity

X
is homotopy commutative.

Two F/PL)n-bundles θ0 and θ1 are equivalent iff there is a piecewise linear
bundle equivalence b : E0−−→E1 so that

E0�����
θ0

u

b X × Rn

E1

''
''
')

θ1

is properly homotopy commutative.

An F/O)n-bundle is the corresponding linear notion.1

1 These bundle theories are classified [B1] by the homotopy classes of maps
into certain CW complexes F/PL)n and F/O)n. The correspondence θ−−→θ ×
identityR defines stabilization maps F/PL)n−−→F/PL)n+1, F/O)n−−→F/O)n+1.
The stable limits are denoted by F/PL and F/O respectively. Using a “Whitney
sum” operation F/O and F/PL become homotopy associative, homotopy commu-
tative H-spaces.
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Let g : (L, ∂L)−−→(M,∂M) be a homotopy equivalence of compact piecewise
linear manifolds with homotopy inverse g : (M,∂M)−−→(L, ∂L).

A characteristic F/PL)n-bundle of g is any composition θg, given by

E
c =PL-homeomorphism
−−−−−−−−−−−−−−−−−→∼=

L× Rn
g×identity
−−−−−−−−→ M × Rn ,

where E is the normal bundle of an embedding M ⊂ L×Rn (n� dimL) approx-
imating g×0. c is any identification (homotopic to g) of the total space of E with
all of L×Rn. (c may be constructed for example á lá Mazur using the “half-open”
h-cobordism theorem.)

Notice that θg is transverse regular to M × 0 with inverse image PL-homeo-
morphic to L

The characteristic bundle of the homotopy equivalence g : (L, ∂L)−−→
(M,∂M) is the stable equivalence class of θg considered as a homotopy class of
maps

θg : M −−→ F/PL .

If L and M are smooth, E is a vector bundle, c will be a diffeomorphism,
and we obtain the characteristic F/O-bundle of a homotopy equivalence between
smooth manifolds

ηg : M −−→ F/O .

The Classification of h-Triangulations and h-Smoothings

To state the homotopy theoretical analogue of Theorem 1 we consider a homo-
topy equivalence of a PL-manifold pair with (M,∂M) as defining a “homotopy-
triangulation” of (M,∂M). Two h-triangulations g0 : (L0, ∂L0)−−→(M,∂M)
and g1 : (L1, ∂L1)−−→(M,∂M) are “concordant” iff there is a PL-homeomorphism
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c : (L0, ∂L0)−−→(L1, ∂L1) so that

(L0, ∂L0)������
g0

u

∼= c (M,∂M)

(L1, ∂L1)
''
''
')

g1

is homotopy commutative. We denote the set of concordance classes of h-triangulat-
ions of M by hT (M).

Note that the characteristic variety theorem asserts that the concordance
class of an h-triangulation g : (L, ∂L)−−→(M,∂M) is completely determined by
the splitting invariant of g.

In a similar fashion we obtain the set of concordance classes of h-smoothings
of M , hS(M).

The zero element in hT (M) or hS(M) is the class of id. : M−−→M . The char-
acteristic bundle construction for a homotopy equivalence defines transformations

θ : hT (M) −−→ (M,F/PL)

η : hS(M) −−→ (M,F/O)

where (X, Y ) means the set of homotopy classes of maps from X to Y .

Assume π1(M) = π1(∂M) = 0, n = dimM ≥ 6.

Theorem 3. If ∂M 6= ∅, then

θ : hT (M) =
{

concordance classes of
h-triangulations of M

}
−−→ (M,F/PL)

and

η : hS(M) =
{

concordance classes of
h-smoothings of M

}
−−→ (M,F/O)

are isomorphisms.
If ∂M = ∅, we have the exact sequences (of based sets)

(i) 0 −−→ hT (M)
θ
−−→ (M,F/PL)

S
−−→ Pn

(ii) θn∂π
#
−−→ hS(M)

η
−−→ (M,F/O)

S
−−→ Pn .

Proof. See [S1].

Here S is the surgery obstruction for an F/PL or F/O bundle over a closed
(even dimensional) manifold; and # is obtained from the action of θn on hS(M),
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(g : L−−→M) 7→ (g : L#Σ−−→M).

S will be discussed in more detail below. We remark that the exactness of (ii)
at hS(M) is stronger, namely

{orbits of θn∂π} ∼= image η .

Also (i) may be used to show that ∂M = ∅ implies the :

Corollary. If M is closed then θ : hT (M) ∼= (M − pt., F/PL).

Easy transversality arguments show that

πi(F/PL) = Pi , πi(F/O) = Ai .

Thus the Theorem 1 obstructions in

Hi(M ;Ai) or Hi(M ;Pi)

for deforming g : (L, ∂L)−−→(M,∂M) to a diffeomorphism or a PL-homeomorphism
become the homotopy theoretical obstructions in

Hi(M ; πi(F/O)) or Hi(M ; πi(F/PL))

for deforming ηg or θg to the point map.

In fact using naturality properties of θ and η we can precisely recover the
obstruction theory of Theorem 1 from statements about the “kernels” of θ and η
given in Theorem 3.

We obtain new information from the statements about the “cokernels” of θ
and η given in Theorem 3. For example, if we consider the map

CP4 − pt. ∼= CP3
deg 1
−−−−−→ S6

gen π6
−−−−−→ F/PL

we obtain an interesting h-triangulation of CP4, M8−−→CP4.

Now we may study the obstruction theory of Theorem 1 by studying the
homotopy theory of F/O and F/PL.

For example using the fact that F/O and F/PL are H-spaces (Whitney sum)
(and thus have trivial k-invariants over the rationals) one sees immediately that
the triangulating and smoothing obstructions for a homotopy equivalence f are
torsion cohomology classes iff f is a correspondence of rational Pontrjagin classes.
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To describe the obstructions completely we must again restrict to the piece-
wise linear case.

The Homotopy Theory of F/PL

We have already seen that the homotopy groups of F/PL are very nice :

i 1 2 3 4 5 6 7 8 . . .
πi(F/PL) 0 Z2 0 Z 0 Z2 0 Z . . .

This regularity is also found in the global homotopy structure of the space.

For describing this structure we will localize F/PL at the prime 2 and then
away from the prime 2.

If X is a homotopy associative homotopy commutative H-space, then

“X localized at 2” ≡ X(2) is the H-space which represents the functor

( , X)⊗ Z(2)

where Z(2) = Z[
1
3
,

1
5
, . . . ,

1
pi
, . . .], pi the ith odd prime.

“X localized away from 2” ≡ X(odd) is the H-space which represents the functor

( , X)⊗ Z(odd)

where Z(odd) = Z[
1
2

].

Note that there are natural projections p(2) and p(odd)

X(2)

Y = CW -complex w
f

X
''
''
')p(2)

������p(odd)

X(odd)

Also f : Y−−→X is homotopic to zero iff p(2) ◦ f and p(odd) ◦ f are homotopic to
zero. Thus it suffices to study X(2) and X(odd).

Let BO denote the classifying space for stable equivalence classes of vector
bundles over finite complexes.

Let K(π, n) denote the Eilenberg-MacLane space, having one non-zero homo-
topy group π in dimension n.
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Let δSq2 denote the unique element of order 2 in H5(K(Z2, 2);Z(2)), and
K(Z2, 2)×δSq2 K(Z(2), 4) the total space of the principal fibration over K(Z2, 2)
with K(Z(2), 4) as fibre and principal obstruction (k-invariant) δSq2.

Then we have the following :

Theorem 4. (i) F/PL(2) is homotopy equivalent to∏
= K(Z2, 2)×δSq2 K(Z(2), 4)×

∞∏
i=1

K(Z2, 4i+ 2)×K(Z(2), 4i+ 4) .

(ii) F/PL(odd) is homotopy equivalent to BO(odd).
(iii) F/PL is homotopy equivalent to the fibre product of i and ph in the diagram∏

A
A
A
AAC
i = natural inclusion1

F/PL
[
[
[
[
[]

p(2)

[
[
[
[]p(odd)

∞∏
i=1

K(Q, 4i)

BO(odd)

h
h
hhj

ph = Pontrjagin character

Corollary. H∗(F/PL;Z) has no odd torsion and the 2-torsion may be calculated.

Corollary. Z× F/PL is an infinite loop space. In fact it is homotopy equivalent
to the 0th space in the Ω-spectrum of a multiplicative cohomology theory.

Corollary. If O = Ω(F/PL) = loop space of F/PL, then O satisfies a Bott
periodicity of length four, namely

Ω4O ∼= O , as H-spaces .

We use the notation O because O(odd)
∼= O(odd) where O is the infinite orthogonal

group.

Bordism, Homology Theory, and K-Theory.

In order to prove and apply Theorem 4 we need to study the relationship
between smooth bordism and ordinary homology on the one hand (for the prime
2) and smooth bordism and K-theory on the other hand (for odd primes). Recall
that Ω∗(X) is a module over Ω∗ = Ω∗(pt) by the operation

(f : M−−→X,N) −−→ (fp2 : N ×M−−→X) .

1 On π4 i∗ is twice the natural embedding Z(2)−−→Q.
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Z is a module over Ω∗ by Index : Ω∗−−→Z.
Then we can form Ω∗(X)⊗Ω∗ Z, and obtain a Z4-graded functor.
Let K∗(X) denote the Z4-graded homology theory defined by KO∗(X)⊗ Z(odd).
KO∗ is the homology theory dual to real K-theory, KO∗(X).

Theorem 5. There are natural equivalences of functors :

(i) Ω∗(X)⊗ Z(2)
∼= H∗(X; Ω∗ ⊗ Z(2)) as Z-graded Ω∗-modules,

(ii) Ω∗(X)⊗Ω∗ Z(odd)
∼= KO∗(X)⊗ Z(odd) ≡ K∗(X) as Z4-graded Z-modules .

Proof. (i) can be found in [CF1]. (ii) is analogous to [CF2] but different (and
simpler) because the module structure on the left is different. ([CF2] uses the Â
genus and the first cobordism Pontrjagin class.)

Proof of (ii) : We construct a (multiplicative) transformation

I : Ω∗(X) −−→ K∗(X)

which on the point is essentially the index.
I was first constructed by introducing the singularities described above into

cobordism theory and then taking a direct limit.
It can also be constructed by first producing an element in K0(BSO) whose

Pontrjagin character is

Â

L
=

Â-genus
Hirzebruch L-genus

(this is a calculation), and then applying the usual Thom isomorphism to obtain
the correct element in K0(MSO).

I induces a transformation

I : Ω0(X) −−→ K0(X)

which is in turn induced by a map of universal spaces

I : Ω∞MSO(odd) −−→ Z×BO(odd) .

I is onto in homotopy (since there are manifolds of index 1 in each dim 4k),
thus the fibre of I only has homotopy in dimensions 4k. Obstruction theory implies
that I has a cross section. Therefore the transformation induced by I

I : Ω∗(X)⊗Ω∗ Z(odd) −−→ K∗(X)

is onto for dimension zero cohomology.

When X = MSO, I is easily seen to be an isomorphism. This fact together
with the cross section above implies that I is injective for dimension zero. (ii) now
follows by Alexander duality and the suspension isomorphism.

The point of Theorem 5 is the following – the theories on the left have a
nice geometrical significance for our problems while those on the right are nice
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algebraically.

Of course H∗(X; Ω∗) is constructed from a chain complex. We thus have the
classical duality theorems (universal coefficient theorems) relating H∗ and H∗.

These results are also true for K∗ and K∗. For example, the multiplicative
structure (see [A]) in K∗ defines homomorphisms

e : K0(X) −−→ Hom(K0(X),Z(odd))

=

en : K0(X) −−→ Hom(K0(X;Zn),Zn) , n odd .

Theorem 6. If X is finite
(i) e is onto,
(ii) if σ ∈ K0(X), then σ = 0 iff en(σ) = 0 for all odd integers n,

(iii) any compatible (w.r.t. Zn−−→Zn′) set of homomorphisms (f, fn) determines
an element σ in K0(X) such that en(σ) = fn, e(σ) = f .

(i) and (ii) were first proved by the author using intersection theory and the
geometrical interpretation of I. (The hard part was to construct e and en.)

However, using the multiplication in K0(X) coming from the tensor product
of vector bundles (plus the extension to Zn-coefficients in [AT]) (i), (ii), and (iii)
follow immediately from Bott periodicity and general nonsense.

The duality theorems for K∗ and K∗ were first proved by Anderson [A1]. We
denote by Ω∗(X;Zn) the homology theory defined by bordism of Zn-manifolds.
We make P∗ = 0,Z2, 0,Z, . . . into a Ω∗-module by Index : Ω∗−−→P∗. Then we
have :

Theorem 7. (The splitting obstruction of an F/PL bundle)
There are onto Ω∗-module homomorphisms S and Sn so that the following square
commutes

Ω∗(F/PL) w
S

u
natural inclusion

P∗

u
reduction mod n

Ω∗(F/PL;Zn) w
Sn P∗ ⊗ Zn

The composition

π∗(F/PL)
Hurewicz
−−−−−−→ Ω∗(F/PL)

S
−−→ P∗

is an isomorphism if ∗ 6= 4, and multiplication by 2 if ∗ = 4.
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Using Theorem 5 (i) and S2 : Ω4∗+2(F/PL;Z2)−−→Z2 which is more generally
a Ω∗(pt;Z2)-module homomorphism1 we obtain :

Corollary 1. (A Formula for the Kervaire Invariant of an F/PL-bundle
over a Z2-manifold). There is a unique class

K = k2 + k6 + k10 + . . . ∈ H4∗+2(F/PL;Z2)

such that for any Z2-manifold in F/PL

f : M4k+2 −−→ F/PL

we have

S2(M4k+2, f) = W (M) · f∗K[M ] .

Using Theorem 5 (i) and S : Ω4∗(F/PL)−−→Z and working modulo torsion
we obtain :

Corollary 2. There is a class

L = `4 + `8 + `12 + . . . ∈ H4∗(F/PL;Z(2))

which is unique modulo torsion, such that

S(M4k, f) = L(M) · f∗L[M ] .

Here W (M) and L(M) are respectively the total Stiefel Whitney class and
total Hirzebruch class.

The point of Corollary 2 is that L is a class with Z(2)-coefficients. L regarded
as a class with rational coefficients is familiar, namely

L = `4 + `8 + . . . =
1
8
j∗(L1 + L2 + . . .)

where j : F/PL−−→BPL is the natural map and Li is the universal Hirzebruch
class in H4i(BPL;Q).

Now use

Ω∗(F/PL)
�

�
�

���

natural projection

A
A
A
AAC
S

K0(F/PL) w
S⊗Ω∗ Z(odd) Z(odd)

(with K0(F/PL) ∼= Ω4∗(F/PL)⊗Ω∗ Z(odd)) and Theorem 6 (i) to obtain :

1 Via the mod 2 Euler characteristic Ω∗(pt,Z2)−−→Z2.
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Corollary 3. There is a unique element σ ∈ K̃0(F/PL) such that the Pontrjagin
character of σ = L in H4∗(F/PL;Q).

Uniqueness follows from existence – which implies that K̃0(F/PL) is a free
Z(odd)-module.

Proof of Theorem 7. If θ : E−−→M × Rn is an F/PL-bundle over a Zn-
manifold M2s, then suppose θ−1(M, δM) has the properties of (U, δU) in (∗) (in
the construction of the splitting obstruction in Section I) and define S(M, f) by

S(M, f) =


1
8

{
Index(U, δU)− Index(M, δM)

}
(mod n)

s even1

Kervaire invariant of θ : (U, δU)−−→(M, δM)
s odd .

Remark. The fact that S : Ω4(F/PL)−−→Z is onto2 while π4(F/PL)−−→Ω4(F/PL)
S
−−→ Z is multiplication by 2 implies the first k-invariant of F/PL inH5(K(Z2, 2);Z)
= Z4 is non-zero.

Since F/PL is an H-space the reduction of the k-invariant to Z2-coefficients
must be primitive and have Sq1 zero. It is therefore zero (by an easy calculation
– pointed out to me by Milnor). This singles out δSq2 = “integral Bockstein of
square two” as the first k-invariant of F/PL (= first k-invariant of BSO, F/O,
BSPL etc.)

Proof of Theorem 4 :

I. The σ ∈ K̃0(F/PL) of Corollary 3 determines

p(odd) : F/PL −−→ BO(odd) .

II. Using K and L of Corollaries 1 and 2 and the remark above we construct3

p(2) : F/PL −−→
∏

,

1 If dimM = 4 S(M, f) is well-defined (modulo 2n) if cobordisms of δM are
restricted to spin manifolds.

2 24 times the canonical complex line bundle over CP2 is fibre homotopically
trivial.

3 i is onto in homotopy except in dimension 4 where it has index 2
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so that

�
�

�
�

��

w
L

∞∏
i=1

K(Z(2), 4i)

F/PL w
p(2) ∏




�

i
best possible projection1

N
N
N
NNP

natural projection

[
[

[
[

[[

w
K

∞∏
i=0

K(Z2, 4i+ 2)

is homotopy commutative.

A calculation shows that p(odd) and p(2) are correct in homotopy. It is clear
from the construction that ∏

'
'
'
'
'')

i = inclusion

F/PL
A
A
A
A
A
AACp(2)

'
'
'
'
'
')p(odd)

∞∏
i=1

K(Q, 4i)

BO(odd)

A
A
A
A
AAC

Pontrjagin character

is homotopy commutative, so (iii) is proven.

Remark. The only part of the construction of the localizing projections p(2)

and p(odd) which is not completely canonical is the construction of L used in the
definition of p(2). L was only determined modulo torsion (this can be improved to
“modulo torsion elements divisible by 2”). This difficulty arises from the lack of a
nice geometrical description of the product of two Zn-manifolds (as a Zn-manifold).

We can make this aspect of F/PL-homotopy theory more intrinsic by formu-
lating the results in terms of a characteristic variety.

If X is a finite complex and g : V−−→X is a singular variety in X, then for each
F/PL-bundle over X we can by restriction to V associate a splitting obstruction
on each component of V . We use the splitting invariant defined in the proof of
Theorem 7 (with the refinement in dimension 4). We obtain a “function on V ”
for each F/PL-bundle over X.
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Notice that no fundamental group hypothesis need be made to define the
“splitting invariant along V ” because every element in Ω2∗(F/PL;Zn) is repre-
sented by a simply connected pair (M, δM).

Theorem 4′. (The characteristic variety theorem for F/PL).
Let X be a finite complex. Then there is a characteristic variety in X, g : V−−→
X with the property that :

(i) two F/PL-bundles over X are equivalent iff their “splitting invariants along
V ” are equal.

(ii) a “function on V ” is the splitting invariant of a bundle iff its values on the
4-dimensional spin components1 of V are even.

Remark. It is easy to see that if h : (M,∂M)−−→(L, ∂L) is a homotopy equiva-
lence then the splitting invariant of h along a singular variety V in M is the same
as the splitting invariant of θh along V . Thus Theorems 3 and 4′ imply Theorem
2′.

Proof of Theorem 4′. We first describe a suitable characteristic variety.

(i) Choose a collection of (4i + 2)-dimensional Z2-manifolds in X, f : ∪
i
Ki−−→

X, so that {f∗(fundamental class Ki)} is a basis of A ⊕
i>0

H4i+2(X;Z2) where A ⊆
H2(X;Z2) is a subgroup dual to ker(Sq2 : H2(X;Z2)−−→H4(X;Z2)).

(ii) Choose a collection of 4i-dimensional Z2r -manifolds f : ∪
j
Nj−−→X such that

{f∗(δNj)} is a basis of [2-torsion ⊕
i
H4i−1(M ;Z)].

(iii) Choose a collection {Vα} of 4N -dimensional Zpr -manifolds for each odd prime
p, {fα : Vα−−→X} such that {fα : δVα−−→X} form a basis of the odd torsion
subgroup of

Ω4∗−1(X)⊗Ω∗ Z(odd)
∼= K−1(X) .

(iv) Choose a collection C of singular closed oriented 4i-dimensional manifolds
{gs : Ms−−→X} such that in

1 For definition see remarks before Theorem 2′.
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Ω4∗(X) w
S∗ = fund. class

u

I∗ = natural projection

⊕
i>0

H4i(X;Z(2))/Torsion

u

inclusion

Ω4∗(X)⊗Ω∗ Z(odd)/Torsion w
ph∗ ⊕

i>0

H4i(X;Q)

S∗C and I∗C form bases.

I. If we assign “splitting obstructions” in Zpr or Z to each manifold in group (iii)
or (iv) we define a collection of homomorphisms

φn : K0(X;Zn) −−→ Zn , n odd or zero .

The collection {φn} defines a unique element in σ ∈ K0(X), σ : X−−→BO(odd).

The commutativity1 of

K0(BO(odd);Zn)

u

p(odd) ∼=

w
en(id)

eval. of id.
Zn

K0(X;Zn)

N
NNQ

σ∗
A
A
A
A
AAC

φn

K0(F/PL;Zn) w
∼= Ω4∗(F/PL;Zn)⊗Ω∗ Z(odd)

u

S⊗

implies any lifting of σ

F/PL

u

p(odd)

X
[
[
[
[
[]

σ

wσ BO(odd)

will have the desired splitting obstructions on these components.

II. If we give splitting obstructions for the 2 and 4 dimensional components, we
can construct a homomorphism H2(M ;Z2)−−→Z2 using the given values on A and
the values (reduced mod 2) on the non-spin components of dimension 4 to obtain
a cohomology class u ∈ H2(M ;Z2) such that δSq2u = 0.

1 The outer commutativity is clear since for Y = F/PL(odd) or BO(odd) we
have K0(Y ;Zn) = K0(Y )⊗ Zn.
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u defines a mapX−−→K(Z2, 2) which may be lifted toK(Z2, 2)×δSq2K(Z(2), 4).
We alter this lifting by a map f : X−−→K(Z(2), 4) to obtain the desired splitting
invariants in dimension 2 and 4.

The splitting obstructions in the other dimensions may be obtained by map-
ping into the appropriate K(Z(2), 4i) or K(Z2, 4i+ 2) independently. We obtain

β : X −−→
∏

.

σ and β determine a unique map f : X−−→F/PL with the desired splitting ob-
structions.

Discussion of the characteristic variety

We can replace any component g : N−−→X of the characteristic variety con-
structed for Theorem 4′ by gp2 : C× N−−→X if IndexC = ±1 and N is not a Z
or Z2r manifold of dimension 4. The new variety is still characteristic for X.

For determining whether two F/PL-bundles are the same we may further
replace the four dimensional Z-components N by C×N . (The realization property
is then disturbed however).

We cannot replace the 4-dimensional Z2r -components by higher dimensional
components because we thereby lose the delicate property that the splitting in-
variant is well defined modulo 2r+1 on these components.

Thus in either case the characteristic variety has two “parts” – one of dimen-
sion four and one of infinite (or stable) dimension.

The ability to stabilize is the real reason why only Zn-manifolds appear in
Theorem 4′ and not varieties of the more complicated type discussed earlier (for
the study of odd torsion). Such a variety ×CPn is cobordant to a non-singular
manifold.

The Zn-manifolds with singularities can be used to describe F/PL-bundles
over X together with filtrations (the highest skeleton over which the bundle is
trivial).

III. The Hauptvermutung

We can apply the first part of the characteristic variety theorem for F/PL to
study homeomorphisms.

Theorem H. Let h : (L, ∂L)−−→(M,∂M) be a homeomorphism and θh : M−−→
F/PL be the characteristic F/PL-bundle for h. Then there is only one possible
non-zero obstruction to the triviality of θh, an element of order 2 in H4(M ;Z).
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Then if H3(M ;Z) has no 2-torsion we have :

Corollary 1. If π1(M) = π1(each component of ∂M) = 0 and dimM ≥ 6, then
h : (L, ∂L)−−→(M,∂M) is homotopic to a PL-homeomorphism.

Corollary 2. In the non-simply-connected case, any dimension, we have that

h× idRN : (L, ∂L)× RN −−→ (M,∂M)×RN

is properly homotopic to a PL-homeomorphism. We may take N = 3.

Corollary 3. The localizing projections for the natural map H : TOP/PL−−→F/PL
satisfy

(∗) w
Pt (F/PL)(odd)

TOP/PL

u

Pt

w
H

u
Θ

F/PL

u

podd

u

p(2)

K(Z(2), 4) w
inclusion

(F/PL)(2)

where Θ is an h-map and has order 2.
(Z(2) = Z[ 1

3 ,
1
5 , . . . ,

1
pi
, . . .], pi the ith odd prime).1

Corollary 4. Let M be as in Corollary 1. The subgroup of hT (M) generated
by homeomorphisms h : (L, ∂L)−−→(M,∂M) is a Z2-module of dimension not
exceeding the dimension of [2-torsionH3(M ;Z)]⊗ Z2.

Proof of Theorem H.

Let V be a characteristic variety for M . Replace each component N of V by
CP4×N . If M is simply connected, we may use the splitting theorem of Novikov
[N1] to see that the splitting invariant of h along CP4 × V equals zero.2 This
proves Theorem H in the simply connected case.

If M is a general manifold we use a strengthened version of Novikov’s split-
ting theorem (originally proved to treat the manifolds with singularities described

1 We are considering the spaces of Corollary 3 as being defined by functors on
the category of finite CW complexes.

2 V may be chosen in this case so that π1(V ) = π1(δV ) = 0.
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above).

Definition. A manifold complex is a polyhedron constructed inductively by
attaching an n-dimensional PL-manifold to the previously constructed (n − 1)-
dimensional polyhedron along the boundary of the manifold which is embedded.
The components of the n-manifold are the n-cells of the manifold complex.

Splitting Lemma. Let K be a manifold complex whose “cells” have dimension
≥ 5 and free abelian fundamental group. Let t : E−−→K × Rn be a topological
trivialization of the piecewise linear Rn-bundle E over K. Then t is properly
homotopic to a map which is transverse regular to K × 0 ⊂ K ×Rn and such that

t| : t−1(K × 0) −−→ K × 0

is a cell-wise homotopy equivalence of manifold complexes.

Proof of Splitting Lemma. Assume first that K has one cell. Consider

Tn−1 = S1 × . . .× S1 (n− 1 factors) ⊂ Rn

and let

W = t−1(K × Tn−1 ×R) .

Then t0 : W−−→K × Tn−1 ×R is a proper homotopy equivalence.1 We may apply
Siebenmann’s Thesis [S] to split t0, namely we find a PL-homeomorphism W ∼=
W1 × R and a map t1 : W−−→K × Tn−1 so that

W w
t0

u
∼=

K × Tn−1 × R

W1 ×R
N
N
N
NNP

t1 × idR

is properly homotopy commutative.

We then apply Farrell’s fibring theorem [F] to deform

W1

t1−−→ K × Tn−1
last factor
−−−−−−→ S1

1 This is the only place “homeomorphism” is used in the proof of the Haupt-
vermutung.
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to a fibration and thus split t1. Then we have a diagram

W2 w
t2

u
⊂

K × Tn−2

u
⊂

W1 w
t′1

�
�
���

K × Tn−1

N
N
NNQ

S1

where t′1 is transverse regular to K × Tn−2 and t2 is a homotopy equivalence.

We similarly split t2 and find a t3, etc. Finally, after n steps we obtain the
desired splitting of t.

Now each of the above steps is relative (Siebenmann’s M × R theorem and
Farrell’s Fibring Theorem).

The desired splitting over a manifold complex may then be constructed in-
ductively over the “cells”. The only (and very crucial) requirement is that each
manifold encountered has dimension ≥ 5 and free abelian π1.

Proof of Theorem H (contd.)

We may assume that θh : E−−→M × Rn is a topological bundle map (by
increasing n if necessary).

Now notice that (any Zn-manifold)×CP4 has the structure of a manifold
complex satisfying the hypotheses of the Splitting Lemma. Thus the splitting
invariant of θh along (characteristic variety)×CP4 is zero.

Proof of Corollaries.

Corollary 1 follows from Theorem 3.

Corollary 2 follows from the definition of θh.

Corollary 3 follows from Theorem 4.

Corollary 4 follows from Theorems 5, 3 and 4.

Lashof and Rothenberg [LR] have proved the Hauptvermutung for 3–connected
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manifolds by deforming the 3–connective covering of

H : TOP/PL −−→ F/PL

to zero. The argument is somewhat like that of the splitting lemma.

Application to complex projective space

We will apply the general theory to the special case of complex projective
space. We choose this example because (a) the results have immediate applica-
tions to the theory of free S1-actions on homotopy spheres, (b) CPn is interesting
enough to illustrate certain complications in the theory, and finally (c) certain
simplifications occur to make the theory especially effective in this case.

We illustrate the last point first. We assume n > 2 throughout.

Theorem 8. (i) Any self-homotopy equivalence of CPn is homotopic to the iden-
tity or the conjugation.
(ii) Any self-piecewise linear homeomorphism of CPn is weakly isotopic to the
identity or the conjugation.

Definition 5. If M is homotopy equivalent to CPn, we call a generator of
H2(M ;Z) a c-orientation of M .

Corollary 1. The group of concordance classes of h-triangulations of CPn is
canonically isomorphic to the set of PL-homeomorphism classes of piecewise linear
homotopy CPn’s.

Corollary 2. The set of concordance classes of h-smoothings of CPn is canoni-
cally isomorphic to the set of c-oriented diffeomorphism classes of smooth homo-
topy CPn’s.

Corollary 3. The group of concordance classes of smoothings of CPn is canon-
ically isomorphic to the set of c-oriented diffeomorphism classes of smooth mani-
folds homeomorphic (or PL-homeomorphic) to CPn.

Proof of Theorem 8.

(i) Theorem 8 (i) follows from the fact that CPn is the (2n + 1)-skeleton of
K(Z, 2) = CP∞.

(ii) Any PL-homeomorphism P : CPn−−→CPn is homotopic to the identity or the
conjugation by (i). Choose (mod CPn× I) such a homotopy H and try to deform
it to a weak isotopy (mod CPn × ∂I)

H : CPn × I −−→ CPn × I .
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Such a deformation is obstructed (according to Theorem 1) by cohomology classes
in

H∗(CPn × (I, ∂I);P∗) .

But these groups are all zero. This proves Theorem 8 (ii).

Proof of Corollaries.

Corollaries 2 and 3 follow immediately from Theorem 8 (i) and (ii) and the
definitions.

Corollary 1 follows from the additional fact that

CPnh
h
h
hhj

f

u

conjugation F/PL

CPn
''
''
')

f

is homotopy commutative for any f . The corollaries show that the three groups

(CPn, PL/O) , (CPn, F/O) , and (CPn, F/PL)

solve the correct problems.

Theorem 9. The characteristic variety of CPn may be taken to be

V = CP2 ∪ CP3 ∪ . . . ∪ CPn−1 −−→ CPn .

Thus any PL-manifold M homotopy equivalent to CPn is determined uniquely by
choosing any homotopy equivalence g : M−−→CPn and calculating the splitting
invariant of g along V . Furthermore all such invariants are realizable.

The set of PL-homeomorphism classes of such M is therefore canonically
isomorphic to

Z for CP3

Z⊕ Z2 for CP4

Z⊕ Z2 ⊕ Z for CP5

Z⊕ Z2 ⊕ Z⊕ Z2 for CP6

...
...

...

etc.

Remark. Any CPn admits a c-orientation reversing PL-homeomorphism, i.e. a
piecewise linear conjugation. This follows from Corollary 1.
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Remark. The characteristic variety V does not contain CP1 because A =
kerSq2 ⊆ H2(CPn;Z2) = 0. In fact, the splitting obstruction of g along CP1

(i.e. Kervaire invariant of g−1(CP1)) is just the splitting obstruction of g along
CP2 taken modulo 2 (i.e. 1

8
(Index (g−1CP2)− 1)(modulo 2)).

Remark. hT (CPn) has another group structure coming from the isomorphism

hT (CPn) ∼= (CPn − {pt}, F/PL) ∼= (CPn−1, F/PL) .

If we denote the F/PL-structure by ⊗ and the characteristic variety group
structure by + then the operation a ◦ b = (a⊗ b)− (a+ b) is a multiplication.

The operations ◦ and + make hT (CPn) into a commutative associative ring.

The ring hT (CPn) ⊗ Z(odd) has one generator η obtained by suspending
the additive generator of hT (CP3) = Z. The elements η, η2, . . . , η[n−1

2 ] span
hT (CPn)⊗ Zodd additively.

Remark. A suspension map Σ : hT (CPn)−−→hT (CPn+1) is defined by

(g : M−−→CPn) 7−→
(g : g∗ (line bundle) ∪ cone on boundary−−→CPn+1) .

If H denotes the total space of the canonical D2-bundle over CPn then we
have the diagram

hT (CPn) w
∗

u

θ

A
A
AAC
Σ

hT (H)
[
[
[
[[̂

∼=

u

θH ∼=hT (CPn+1)

hT (CPn) w
∗
∼= (H,F/PL)

with ∗ given by the induced bundle.1

Thus the image of Σ is isomorphic to

image(θ) = ker(S : [CPn, F/PL]−−→Pn)

by Theorem 3.

Corollary. An element in hT (CPn+1) is a suspension iff its top splitting invariant
is zero.

1 θH is an isomorphism because π1(H) = π1(∂H) = 0.



100 sullivan

(Note : When we suspend elements of hT (CPn) we merely add zeroes to the string
of splitting invariants.)

Smoothing elements of hT (CPn)

One interesting problem is to determine which elements of hT (CPn) are de-
termined by smoothable manifolds.

For example,

(0, 1) ∈ hT (CP4) ,

(0, 0, 0, 0, 0, 1) ∈ hT (CP8) , and

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) ∈ hT (CP16) are.

In fact, these manifolds are stably PL-homeomorphic to the corresponding pro-
jective spaces.

A non-smoothable example is provided by

(0, 0, 0, 0, 1) ∈ hT (CP6) .

In fact any element of hT (CPn) with fifth invariant non-zero is non-smooth-
able.1

Also any suspension of a non-smoothable homotopy CPn is likewise.

Understanding which (4K + 2)-invariants are realizable by smooth manifolds
is quite hard in general.

The corresponding problem for the 4K-invariants is theoretically possible be-
cause of Adams’ work on J(CPn).

This problem is further complicated by the fact that the set hS(CPn) has
no natural group structure when n is even. Theorem 3 asserts there are exact
sequences

0 −−→ hS(CP2n+1) −−→ (CP2n+1, F/O)
S1−−→ Z2

0 −−→ hS(CP2n) −−→ (CP2n, F/O)
S2−−→ Z .

S1 is a homomorphism, but S2 is not.

If we consider homotopy almost smoothings of CPn we do get a group

h+S(CPn) ∼= (CPn−1, F/O) ,

1 This follows from the fact that the 10-dimensional Kervaire manifold is not a
PL-boundary (mod 2).
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and

h+S(CPn)
natural
−−−−−→ hT (CPn)

hS(CPn)
natural
−−−−−→ hT (CPn)

are homomorphisms with the ⊗ structure on hT (CPn).

It would be interesting to describe all these group structures geometrically for
CPn.

Corollary 3 asserts that the set of c-oriented equivalence classes of differen-
tiable structures on CPn is isomorphic to [CPn, PL/O], a finite group.

We can calculate this group in another way if we ignore 2-torsion.

Proposition. [CPn, PL/O] is isomorphic to the zeroth stable cohomotopy group
of CPn modulo 2-torsion.
Proof. We apply (CPn, )⊗ Z[ 1

2 ] to the diagram

A
A
A
A
AA

�
N
N
N
NN

������

Ω(F/PL) PL/O BO

PL

���
��

�

N
N
N
NNP

O
N
N
N
NNP

F

���
��

�

F/PL

��
��

�

N
N
N
N
NP

'
'

'
''

N
N
N
NNP

and obtain
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4444444

�
N
N
N
NN

������
0

0 (CPn, PL/O)(odd) torsion free group

(CPn, PL)(odd)

���
��

��

N
N
N
NNP

O
N
N
N
NNP

(CPn, F )(odd)

���
��

�

torsion free group

��
��

��

A
A
A
A
AAC

��
��

�

[
[
[
[[]

0

Thus
(CPn, PL/O)(odd)

∼= (CPn, PL)(odd)

∼= (CPn, F )(odd) ≡ π0
s(CPn)(odd) .
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