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The Princeton notes on the Hauptvermutung

by M.A.Armstrong, C.P.Rourke, G.E.Cooke

Preface

The homotopy Hauptvermutung is the conjecture that a (topological) home-
omorphism between two PL (= piecewise linear) manifolds may be continuously
deformed to a PL homeomorphism.

These notes contain a proof, due to Casson and Sullivan, of the homotopy
Hauptvermutung for simply connected manifolds under the hypothesis of ‘no 2-
torsion in H4’. They were written in 1968 at the Institute for Advanced Study,
Princeton and reissued in the Warwick Lecture Note Series in 1972. Nearly 25 years
later there is still no other complete account available, hence their appearance in
a more permanent form in this volume.

The connection with the subsequent solution of the isotopy Hauptvermutung
by Kirby and Siebenmann [2, 3] is outlined in a coda. The two theories combine
to give a fibration

K(Z2, 3) ' TOP/PL −−→ G/PL −−→ G/TOP ' Ω4n(G/PL)

and the following theorem.

Theorem. Suppose that h : Q−−→M is a (topological) homeomorphism between
PL manifolds of dimension at least five, whose restriction to ∂M is PL. Then
there is an obstruction θ ∈ H3(M,∂M ;Z2) which vanishes if and only if h is iso-
topic to a PL homeomorphism keeping ∂M fixed. If in addition M is 1–connected
then h is homotopic to a PL homeomorphism if and only if δθ ∈ H4(M,∂M ;Z)
is zero.

When M is not 1–connected the solution to the homotopy Hauptvermutung
is bound to be more complicated (see the final remark in the coda).

More detail on the relationship of the results proved here with later results is
to be found in the paper of Ranicki at the start of this volume.

The Princeton notes consist of three papers written by Armstrong, Rourke
and Cooke, presented as three chapters, and a coda. The first chapter, written
by Armstrong, gives an account of the Lashof-Rothenberg proof for 4–connected
manifolds, and includes the ‘canonical’ Novikov splitting theorem used in the main
argument. The second, by Rourke, contains the geometry of the main proof, and
deals with simply connected manifolds which satisfy H3(M ;Z2) = 0. The treat-
ment follows closely work of Casson on the global formulation of Sullivan theory.
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This approach to the Hauptvermutung was the kernel of Casson’s fellowship disser-
tation [1] and a sketch of this approach was communicated to Rourke by Sullivan
in the Autumn of 1967. The remainder of the chapter contains an outline of
an extension of the proof to the weakest hypothesis (M simply connected and
H4(M ;Z) has no elements of order 2), and some side material on block bundles
and relative Sullivan theory. The final chapter, written by Cooke, gives the details
of the extension mentioned above. It contains part of Sullivan’s analysis of the
homotopy type of G/PL and its application in this context. (The other part of
this analysis is the verification that G/PL and BO have the same homotopy type
‘at odd primes’, see [5]). Sullivan’s original arguments (outlined in [4, 5]) were
based on his ‘Characteristic Variety Theorem’, and the present proof represents a
considerable simplification on that approach.

Sadly George Cooke is no longer with us. We recall his friendship and this
collaboration with much pleasure, and dedicate these notes to his memory.

M.A.A. (Durham), C.P.R. (Warwick)
January, 1996
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CHAPTER I

The Hauptvermutung according to

Lashof and Rothenberg

By M. A. Armstrong

§1. Introduction

The aim of Chapter I is to prove the following result.

(1.1) Theorem. Let h : Q−−→M be a topological homeomorphism between two
closed PL manifolds of dimension at least five. If M is 4–connected, then h is
homotopic to a PL homeomorphism.

The approach is due to Lashof and Rothenberg [11]. Our treatment differs
only in that we write with the specialist less in mind, and prefer to emphasise the
geometry throughout rather than enter a semi-simplicial setting. The theorem can
be refined, but we shall examine only the version given above. Stronger results,
due to Casson and Sullivan, are presented in Chapters II and III written by Rourke
and Cooke.

In this introduction we shall present a bird’s eye view of the proof of (1.1),
referring the reader to later sections for more detail. Suppose then that M and Q
are PL manifolds, and that we are presented with a (topological) homeomorphism
h from Q to M . We shall assume throughout that our manifolds are closed (com-
pact without boundary) and 4–connected. The first step is to use h to construct
a PL Rk-bundle over Q, and a topological trivialization of this bundle. Second,
by reference to Browder-Novikov theory, we show that if the given trivialization
is properly homotopic to a PL trivialization, then h is homotopic to a PL home-
omorphism. The problem of homotoping the topological trivialization to a PL
trivialization will then occupy the remainder of the argument. Use of Browder-
Novikov surgery necessitates the simple connectivity of our manifolds; the solution
of the trivialization problem will require that the manifolds be 4–connected.

Identify M with M × {0} ⊆ M × Rn for some large integer n, and think of
h as a (topological) embedding of Q in M × Rn. If we are in the stable range, in
other words if n is at least m+2, a result of Gluck [6] provides an ambient isotopy
{Ht} of M × Rn which moves h to a PL embedding

e = H1h : Q −−→ M × Rn .
Further, in this range, work of Haefliger and Wall [7] shows that the new embedding
has a PL normal disc bundle. Taking the pullback gives a PL n-disc bundle over



108 armstrong

Q and an extension of e to a PL embedding e : E−−→M × Rn of its total space
onto a regular neighbourhood V of e(Q) in M × Rn. Let E

π
−−→Q denote the

associated Rn-bundle. Choose a closed n-dimensional disc D ⊆ Rn centred on the
origin, and of sufficiently large radius so that V is contained in the interior of the
‘tube’ M ×D. Then M ×D\int(V ) is an h-cobordism between M × ∂D and ∂V
and, by the h-cobordism theorem, this region is PL homeomorphic to the product
∂V × [0, 1]. Therefore we may assume that e : E−−→M ×Rn is onto.

So far we have produced the following diagram

E w
e

u
π

M × Rn

u
p1

Q w
h M

which commutes up to homotopy, with e : E−−→M × Rn a PL homeomorphism,
and π : E−−→Q a PL Rn-bundle. We claim that e is stably isotopic to a topological
bundle equivalence. Certainly the composition

H−1
1 e : E −−→ M × Rn

provides a topological normal bundle for the embedding h : Q−−→M × Rn . On
the other hand this embedding has a natural normal bundle given by

h× 1 : Q× Rn −−→ M ×Rn .
These two are stably isotopic (see for example Hirsch [8] combined with Kister [9]).
More precisely, if r is at least (m+ 1)2 − 1 then the associated normal bundles of

h : Q −−→ M × Rn × Rr

are isotopic. Therefore

e× 1 : E ×Rr −−→ M ×Rn ×Rr

is isotopic to a topological bundle equivalence. Let g denote this equivalence, write

E′ = E × Rr (k = n+ r) ,

and consider

g
A
A

�

E′ w
e× 1

u

πp1

M ×Rk

u

p1

u h× 1
Q× Rk

u
p1

Q w
h M u h Q
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The composite

t = (h−1 × 1)g : E′ −−→ Q× Rk

is topological trivialization of the PL Rk-bundle πp1 : E′−−→Q.

Assume for the moment that t is properly homotopic to a PL trivialization.
(We remind the reader that a proper map is one for which the inverse image of
each compact set is always compact.) Then the inverse of this new trivialization
followed by e× 1 gives a PL homeomorphism

f : Q× Rk −−→ M × Rk

which is properly homotopic to

h× 1 : Q×Rk −−→ M ×Rk .
Now let λ : M−−→Q be a PL map which is homotopic to h−1, so that the compo-
sition

Q× Rk
f
−−→ M × Rk

λ×1
−−→ Q× Rk

is homotopic to the identity via a proper homotopy

F : Q× Rk × I −−→ Rk .

Notice that both F0 = (λ × 1)f and F1 = id : Q × Rk−−→Rk are PL and trans-
verse regular to the submanifold Q × {0} of Q × Rk. Also F−1

0 (Q × {0}) is PL
homeomorphic to M , and F−1

1 (Q × {0}) is the submanifold Q × {0} × {1} of
Q×Rk×{1}. Using the relative simplicial approximation theorem of Zeeman [22]
and the transverse regularity theorem of Williamson [20], we may assume without
loss of generality that F is itself PL and transverse regular to Q× {0} ⊆ Q×Rk.
Let W denote the compact manifold F−1(Q×{0}). Then W is a proper subman-
ifold of Q×Rk × I which has a trivial normal bundle (the pullback of the natural
normal bundle of Q×{0} ⊆ Q×Rk under F |W ). Embed Q×Rk in a sphere SN of
high dimension, and extend this embedding in the obvious way to an embedding
of Q× Rk × I in SN+1. If νQ denotes the normal bundle of Q × {0} in SN , and
νW that of W in SN+1, then our map F |W : W−−→Q × {0} extend to a bundle
map νW−−→νQ.

Summarizing, we have produced a PL manifold W , whose boundary consists
of the disjoint union of M and Q, and a PL map F : W−−→Q such that :

(i) F |Q is the identity;
(ii) F |M is a homotopy equivalence;

(iii) F pulls back the stable PL normal bundle of Q to that of W .

In this situation we may apply the surgery results of Browder and Novikov [2, 3, 4, 14]
to alter W and F , though not ∂W or F |∂W , until F becomes a homotopy equiv-
alence. The net result is an h-cobordism W ′ between M and Q, together with a
deformation retraction F ′ : W ′−−→Q. The h-cobordism theorem provides a PL
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homeomorphism G : M × I−−→W ′, and F ′G is then a PL homotopy between the
maps

F0G0 , F1G1 : M −−→ Q .

Now F0 : M−−→Q consists of a PL automorphism of M , followed by a PL map
from M to Q that is homotopic to h −1. Also, F1 : Q−−→Q is the identity map,
and both of G0, G1 are PL homeomorphisms. Therefore h−1 is homotopic to a
PL homeomorphism. Consequently h is also homotopic to a PL homeomorphism.
This completes our outline of the proof of Theorem 1.1.

Remarks. 1. If the dimension of Q is even there is no obstruction to performing
surgery. However, when the dimension is odd, there is an obstruction which must
be killed and which, in the corresponding smooth situation, would only allow us
to produce an h-cobordism between M and the connected sum of Q with an exotic
sphere. Lack of exotic PL spheres means that, in the PL case, killing the surgery
obstruction does not alter the boundary components of W .
2. In the terminology of Sullivan [18, 19] the PL bundle π : E−−→Q together with
the fibre homotopy equivalence

E w
(h−1 × 1)e

u
π

Q×Rn

u
p1

Q Q

is a characteristic (F/PL)n-bundle for h−1, and is classified by a homotopy class
of maps from Q to F/PL. Our work in stably moving e to a topological bundle
equivalence can be reinterpreted as factoring this class through TOP/PL. The
final step (deforming the topological trivialization through fibre homotopy equiv-
alences to a PL trivialization) amounts to proving that the associated composite
map

Q −−→ TOP/PL −−→ F/PL

is homotopically trivial. This will be the setting in the Chapters II, III by Rourke
and Cooke.

Conversations with Colin Rourke were invaluable during the preparation of
these notes, and I would like to thank him for his help.

§2. Splitting theorems

At the end of §1 we were left with a PL Rk-bundle E′−−→Q, a topological
trivialization t : E′−−→Q× Rk and the problem of exhibiting a proper homotopy
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between t and a PL trivialization. Triangulate Q in some way. We can now
examine the restriction of the bundle to each simplex and try to push through an
inductive argument. More precisely, let ∆ be a simplex of the triangulation and
E′(∆) the part of the bundle over ∆. Our problem reduces to that of constructing,
inductively, a proper homotopy between t|E′(∂∆) and a PL bundle equivalence
E′(∂∆)−−→∂∆×Rk, in such a way that it extends to one that moves t|E′(∆) to a
PL bundle equivalence E′(∆)−−→∆×Rk . This is the motivation for the ‘splitting
theorems’ below.

Maps between bounded manifolds will, without further mention, be assumed
to be maps of pairs (that is to say, they should carry boundary to boundary).
Let M be a compact topological manifold of dimension m, W a PL manifold of
dimension m+ k, and h : W−−→M × Rk a proper homotopy equivalence.

Definition. A splitting for h : W−−→M×Rk consists of a compact PL manifold
N , a PL homeomorphism s : N × Rk−−→W and a proper homotopy φ from
hs : N × Rk−−→M × Rk to λ× 1 : N × Rk−−→M × Rk, where λ is the homotopy
equivalence given by the composition

N
×0
−−−→ N × Rk

hs
−−−→ M ×Rk

proj.
−−−→ M .

The splitting will be denoted by the ordered triple (N, s, φ). Remember, under
our convention, h, s, and the proper homotopy φ all preserve boundaries. When
h has a splitting we shall simply say that h splits. A splitting (N ′, s′, φ′) of
h| : ∂W−−→∂M × Rk extends to one for h if there is a splitting (N, s, φ) for
h : W−−→M × Rk such that ∂N = N ′, s|∂N×Rk = s′ and φ|∂N×Rk×I = φ′.

(2.1) Splitting theorem. Let W be a PL manifold, M a compact topological
manifold and h :W−−→M×Rk a homeomorphism. Then h splits if M is simply
connected, and is either a closed manifold of dimension at least five, or has a
simply connected boundary and dimension at least six.

The proof of this theorem will occupy §4. We shall construct the splitting of
h using a very concrete construction due to Novikov, and we shall call a splitting
a Novikov splitting if it arises in this way. There is a relative version of the
theorem for Novikov splittings.

(2.2) Relative splitting theorem. Let W be a PL manifold, M a compact sim-
ply connected topological manifold of dimension at least five, and h :W−−→M×Rk
a homeomorphism. Then any Novikov splitting for h|∂W extends to a Novikov
splitting for h.

A proof of this relative version is given in §5.

Remarks. (1) In our applications to the trivialization problem, the relative split-
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ting theorem (2.2) will be applied in situations where M is either a cell of dimension
at least six, or M is a cell of dimension five which is already supplied with a rather
special splitting over the boundary. The Poincaré Conjecture will then tell us that
the associated manifold N is a PL cell. Our hypothesis of 4–connectivity will
enable us to avoid any reference to the splitting theorem over cells of dimension
less than five.
(2) For k = 1 both theorems come directly from work of Siebenmann [16]. His
arguments will not be repeated here, though his results are summarized in the
next section. The manifold N will occur in a very natural way as the boundary
of a collar neighbourhood of an end of M × R. For higher values of k, ideas of
Novikov allow us to produce a situation which is ripe for induction. Siebenmann’s
results are applied a second time in the inductive step.

§3. Siebenmann’s collaring theorems

In later sections we shall rely heavily on results from Siebenmann’s thesis [16].
For completeness we sketch the necessary definitions and theorems. We remark
that Siebenmann works entirely in the smooth category, however (as he notes)
there are analogous PL techniques, and we shall interpret all the results in PL
fashion.

An end E of a Hausdorff space X is a collection of subsets which is maximal
under the properties :

(i) Each member of E is a non-empty open connected set with compact frontier
and non-compact closure;

(ii) If A1, A2 ∈ E then there exists A3 ∈ E such that A3 ⊆ A1 ∩A2.
(iii) The intersection of the closures of all the sets in E is empty.

A subset U of X is a neighbourhood of E if it contains some member of E .

Our spaces are at worst locally finite simplicial complexes. For these one can
show:

(i) The number of ends of X is the least upper bound of the number of compo-
nents of X\K, where K ranges over all finite subcomplexes of X.

(ii) The number of ends of X is an invariant of the proper homotopy type of X.

A compact space has no ends; R has two ends and Rn has one end when
n ≥ 2; if X is compact then X × R has two ends; the universal covering space of
the wedge of two circles has uncountably many ends. Think of a compact manifold
with non-empty boundary. Removing a boundary component M creates one end,
and this end has neighbourhoods which are homeomorphic to M × [0, 1). Indeed
the end has ‘arbitrary small’ neighbourhoods of this type, in the sense that every
neighbourhood contains one of these so called collar neighbourhoods.
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Let W be a non-compact PL manifold. A collar for an end E of W is a
connected PL submanifold V of W which is a neighbourhood of E , has compact
boundary, and is PL homeomorphic to ∂V × [0, 1). In what follows we look for
conditions on an end which guarantee the existence of a collar.

Given an end E of W , let {Xn} be a sequence of path connected neighbour-
hoods of E whose closures have empty intersection. By selecting a base point xn
from each Xn, and a path which joins xn to xn+1 in Xn, we obtain an inverse
system

S : π1(X1, x1)
f1
←−− π1(X2, x2)

f2
←−− · · · .

Following Siebenmann, we say that π1 is stable at E if there is a sequence of
neighbourhoods of this type for which the associated inverse system induces iso-
morphisms

im(f1)
∼=
←−− im(f2)

∼=
←−− · · · .

When π1 is stable at E , define π1(E) to be the inverse limit of an inverse system S
constructed as above. One must of course check that this definition is independent
of all the choices involved.

Recall that a topological space X is dominated by a finite complex K if
there are maps

K
f

−−−−−→
←−−−−−

g
X

together with a homotopy

fg ' 1 : X −−→ X .

Let D be the collection of all those spaces which are of the homotopy type of a
CW complex and dominated by a finite complex.

Definition. An end E of W is tame if π1 is stable at E and, in addition, there
exist arbitrarily small neighbourhoods of E that lie in D.

The reduced projective class group K̃0(Z[G]) is the abelian group of
stable isomorphism classes of finitely generated projective Z[G]-modules.

(3.1) The collaring theorem. Let E be a tame end of a PL manifold which
has compact boundary and dimension at least six. There is an obstruction in
K̃0(Z[π1(E)]) which vanishes if and only if E has a collar.

The corresponding relative version involves the ends of a PL manifold W
whose boundary is PL homeomorphic to the interior of a compact PL manifold.
(So in particular the ends of its boundary all have collars.) A collar for an end E
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of W is now connected PL submanifold neighbourhood V of E such that :

(i) The frontier bV of V in W is a compact PL submanifold of W (this frontier
may itself have a boundary); and

(ii) V is PL homeomorphic to bV × [0, 1).

(3.2) Relative collaring theorem. Let E be a tame end of a PL manifold
which has dimension at least six, and whose boundary is PL homeomorphic to the
interior of a compact PL manifold. Then E has a collar provided an obstruction
in K̃0(Z[π1(E)]) vanishes. Further, the collar of E can be chosen to agree with any
preassigned collars of those ends of ∂W which are ‘contained’ in E.

Remarks on the proof of (3.1). A tame end is always isolated (in the sense
that it has a neighbourhood which is not a neighbourhood of any other end), and
its fundamental group is finitely presented. Given a tame end E of W , it is easy
to produce a neighbourhood V of E which is a connected PL manifold having
compact boundary and only one end. The idea is then to modify V so that the
inclusion of ∂V in V becomes a homotopy equivalence, when V must be a collar
by Stallings [17]. Preliminary modifications ensure that :

(i) ∂V is connected,
(ii) the homomorphisms π1(E)−−→π1(V ), and π1(∂V )−−→π1(V ) induced by in-

clusion are isomorphisms and
(iii) the homology groups Hi(Ṽ , ∂̃V ) are zero for i 6= n− 2, where n = dim(W ).

Here Ṽ denotes the universal covering space of V and, by (ii), the part of
Ṽ which sits over ∂V is precisely the universal cover ∂̃V of ∂V . At this stage
Hn−2(Ṽ , ∂̃V ) turns out to be a finitely generated projective Z[π1(E)]-module. The
class of this module in K̃0(Z[π1(E)]) is the obstruction mentioned in the state-
ment of (3.1). When this module is stably free we can modify V further so that
H∗(Ṽ , ∂̃V ) is zero, and the inclusion of ∂V in V is then a homotopy equivalence.

The following result will be needed later. Let M be a compact topological
manifold of dimension m, W a PL manifold of dimension m+1, and h : W−−→M×
R a proper homotopy equivalence of pairs.

(3.3) Theorem. The ends of W are tame.

Proof. Since h is a proper homotopy equivalence W has exactly two ends. Let g
be a proper homotopy inverse for h, and E the end whose neighbourhoods contain
sets of the form g(M × [t,∞)).

(a) Given a path connected neighbourhood X of E , choose t so that g(M×[t,∞)) is
contained in X. Write α(X) for the homomorphism from π1(M) to π1(X) induced
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by the composite map

M
×t
−−→ M × [t,∞)

g
−−→ X ,

and note that α(X) is a monomorphism because hg is homotopic to the identity
map of M ×R.

Begin with a path connected neighbourhood X1 of E . If F is a proper ho-
motopy from gh to the identity map of W , choose a path connected neighbour-
hood X2 of E which lies in the interior of X1 and satisfies F (X2 × I) ⊆ X1. If
f1 : π1(X2)−−→π1(X1) is induced by inclusion we have a commutative diagram

π1(X2)��
�
��α(X2)

w
f1 π1(X1)

π1(M)
N
N
NNP
α(X1)

We claim that im(α(X1)) = im(f1), so that α(X1) is an isomorphism from
π1(M) to im(f1) ⊆ im(α(X1)). We now select X3 in the interior of X2 with the
property F (X3 × I) ⊆ X2, and so on. The inverse system

S : X1

f1
←−− X2

f2
←−− X3 ←−− · · ·

then shows that π1 is stable at E , and that π1(E) is isomorphic to π1(M).

(b) We quote the following lemma from Siebenmann [16].

Lemma. Let Z be connected CW complex which is the union of two connected
sub-complexes Z1, Z2. If Z1 ∩ Z2, Z ∈ D, and if both π1(Z1), π1(Z2) are retracts
of π1(Z), then Z1, Z2 ∈ D.

From part (a) we know that π1 is stable at E , and that π1(E) is finitely pre-
sented. To see the latter, remember that π1(E) ∼= π1(M) and that M is a compact
topological manifold, and therefore dominated by a finite complex. Hence π1(M)
is a retract of a finitely presented group and is itself finitely presented. Assume
for simplicity that M is closed. Given a neighbourhood X of E , Siebenmann’s
methods allow us to construct a connected PL submanifold neighbourhood V in-
side X such that the homomorphisms π1(E)−−→π1(V ), π1(∂V )−−→π1(V ) induced
by inclusion are both isomorphisms. Then π1(V ) and π1(W\int(V )) are both iso-
morphic to π1(W ). To complete the proof of (3.3) we simply apply the lemma,
taking Z = W , Z1 = V and Z2 = W\int(W ).

One can define πr to be stable at E in exactly the same way as for π1. Having
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done this the first part of the above proof is easily modified to give :

(3.4) Addendum. If E is an end of W then, for each r, πr is stable at E and

πr(E) ∼= πr(M) ∼= πr(W ) .

§4. Proof of the splitting theorem

We consider the splitting theorem (2.1) in its simplest form. As before let W
be a PL manifold, M a closed simply connected topological manifold of dimension
at least five and h : W−−→M×Rk a homeomorphism. We must show that h splits.

Let T k denote the k-dimensional torus (the cartesian product of k copies of
the circle), and let

D = {(x1, x2, . . . , xk) ∈ Rk ‖ |xj| ≤ 1, 1 ≤ j ≤ k} .

Starting from an embedding of S1×R in R2 we can inductively define embeddings

T k−1 × R ⊆ Rk

for which the universal covering projection

e = exp× 1 : Rk−1 ×R −−→ T k−1 × R

is the identity on a neighbourhood of D. We leave the details to the reader.

If P denotes h−1(M×T k−1×R), then P is an open subset of W and therefore
inherits a PL structure fromW . Write h1 for the restriction of h to P , and consider
the pullback from :

P̃ w
h̃1

u

p

M × Rk

u
1× e

P w
h1 M × T k−1 × R

SinceM is simply connected, P̃ is just the universal cover of P , and p the associated
covering projection. Let i denote the inclusion map of P in W .

(4.1) Theorem. There is a PL homeomorphism d : P̃−−→W such that :
(i) d = ip on a neighbourhood of h̃−1

1 (M ×D), and
(ii) hd is isotopic to h̃1 keeping a neighbourhood of h̃−1

1 (M ×D) fixed.

Remark. In view of (4.1) we shall be able to restrict ourselves to the problem of
splitting h̃1 : P̃−−→M × Rk.
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Proof of 4.1. Diagramatically we have

Wh
h
h
h
h
h
h
h
h
hhj

h

*'
'
'
'
'
'
'
''

i

75
5
5
55
d

P̃ w
h̃1

u

p

M × Rk

u
1× e

P w
h1 M × T k−1 × R

The map 1 × e : M × Rk−−→M × T k−1 × R is the identity on M ×Dε, for some
ε > 1, where

Dε = {(x1, x2, . . . , xk) ∈ Rk ‖ |xj| ≤ ε, 1 ≤ j ≤ k} .

Therefore ip PL embeds h̃−1
1 (M × Dε) in W . Now h̃−1

1 (M × Dε) has only one
end; it is clearly tame and its fundamental group is trivial because M is simply
connected. The collaring theorem provides a compact PL submanifold B of P̃
such that

h̃−1
1 (M × int(Dε)) = B ∪ ∂B × [0, 1) , h̃−1

1 (M ×D) ⊆ int(B) .

Consider the PL manifold P̃\int(B). Again we have one simply connected end
and, if V is a collar of this end, the region P̃\(int(B)∪ int(V )) is an h-cobordism.
Hence by Stallings [17] there is a PL homeomorphism γ : P̃−−→B ∪ ∂B × [1, 0)
which is the identity on B. At this stage ipγ : P̃−−→W is a PL embedding that
agrees with ip on B. By the same trick, applied this time in W , we can ‘expand’
ipγ to provide a PL homeomorphism d : P̃−−→W which satisfies (i).

To deal with property (ii) it is sufficient to show that

ψ = hdh̃−1
1 : M ×Rk −−→ M ×Rk

is isotopic to the identity keeping a neighbourhood of M ×D fixed. Write

ψ(m,x) = (ψ1(m,x), ψ2(m,x))

and use the ‘Alexander isotopy’ defined by

ψ0 = identity ,

ψt(m,x) =
(
ψ1(m, tx),

1
t
ψ2(m, tx)

)
(0 < t ≤ 1) .

This completes the proof of (4.1).

We make a couple of assertions concerning proper maps, leaving the reader
to fill in the details.

(4.2) Assertion. Let A and B be compact spaces. A map f : A×Rn−−→B ×Rn
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is proper if and only if given an arbitrarily large positive real number ε there is a
positive δ such that |p2f(a, x)| > ε, for all a ∈ A and x ∈ Rn with |x| > δ.

(4.3) Assertion. A bundle map between two bundles which have locally compact
base spaces and a locally compact fibre is proper if and only if the corresponding
map of base spaces is proper.

(4.4) Theorem. Let P be a PL manifold of dimension m+r+1 and h : P−−→M×
T r × R a proper homotopy equivalence. Then h splits.

Proof. Since h is a proper homotopy equivalence, P has exactly two ends. Both
are tame by (3.3), and their fundamental groups are free abelian of rank r. There
is no obstruction to collaring because K̃0(Z[Zr]) is the trivial group (see [1]). Let
U and V be disjoint collars of the two ends. Addendum (3.4) can be used to see
that P\(int(U) ∪ int(V )) is an h-cobordism, and therefore P\(int(U) ∪ V ) is PL
homeomorphic to ∂U × [0, 1). But P\(int(U) ∪ V ) is also PL homeomorphic to
P\int(U). Collecting together this information we find there is a PL homeomor-
phism s : ∂U × R−−→P . Let

g = hs : ∂U ×R −−→ M × T r ×R ,

and write

g(u, x) =
(
g1(u, x), g2(u, x)

)
where g2(u, x) ∈ R. As g is a proper map, the limit of g2(u, x) as x tends to +∞
is either +∞ or −∞ simultaneously for all u ∈ U. We assume s chosen so as to
give the positive limit. The map

φ : ∂U × R× [0, 1] −−→ M × T r × R ;

(u, x, t) −−→
(
g1(u, tx), (1− t)x+ tg2(u, x)

)
is a homotopy between g and λ× idR, where λ(u) = g1(u, 0). Using (4.2) one easily
checks that φ is a proper map. Therefore (∂U, s, φ) splits h.

Returning to the terminology of 4.1 we obtain the next step in the proof of
the splitting theorem (2.1) :

(4.5) Theorem. The homeomorphism h̃1 : P̃−−→M×Rk splits.

Proof. Apply (4.4) repeatedly to construct a tower for h1 : P−−→M × T k−1 ×R
as illustrated below.
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P k × R w
hk M ×R

u
M × S1

· · · · · · · · · · · · · · ·

P 2 × R w
s2 P2 w

h2 M × T k−2 × R w

u

M × T k−2

P 1 ×R w
s1 P w

h1 M × T k−1 × R wM × T k−1

We say a few words in case the reader starts operating at the wrong end of the
diagram. Start with the homeomorphism h1 : P−−→M × T k−1 × R. Split this
using (4.4) to obtain a compact PL manifold P 1, a PL homeomorphism s1 :
P 1 × R−−→P and a proper homotopy φ1 from h1s1 to λ1 × 1, where λ1 is the
homotopy equivalence given by the composite

P 1

×0
−−−→ P 1 × R

h1s1−−−→ M × T k−1 ×R
proj.
−−−→ M × T k−1 .

Now induce h2 : P2−−→M × T k−2 × R as the pullback

P2 w
h2

u

M × T k−2 ×R

u
idM×Tk−2 × exp

P 1 w
λ1 M × T k−1

Then h2 is a proper homotopy equivalence by Assertion (4.3). Split again using
(4.4) to produce (P 2, s2, φ

2), and so on. The process terminates after k steps.

For each r let P̃r denote the universal covering space of Pr. There are induced
bundle maps
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P̃r+1 w
s̃r

u

P̃r w
h̃r

u

M × Rk−r+1

u
1× exp× 1

P r × R w
sr Pr w

hr M × T k−r × R

Note that

P̃k+1 = P k , P̃k = Pk , s̃k = sk , h̃k = hk .

Let

N = P k = P̃k+1 ,

and let s̃ denote the composition

N × Rk
s̃k×1
−−−→ P̃k ×Rk−1

s̃k−1×1

−−−→ · · ·
s̃2×1
−−−→ P̃2 × R

s̃1−−−→ P̃

where s̃r × 1 stands for s̃r × idRr−1 . Then N is a compact PL manifold and

s̃ : N × Rk −−→ P̃

is a PL homeomorphism. We are left to construct a proper homotopy φ̃ between
h̃1s̃ and the usual product λ̃× idRk . For each r the tower construction provides a
proper homotopy φr from hrsr to λr × idR. These lift to proper homotopies (use
(4.3) again) from h̃r s̃r to h̃r+1 × idR, which in turn induce proper homotopies

h̃1s̃ = h̃1s̃1(s̃2 × 1) · · · (s̃k × 1) ' (h̃2s̃2 × 1) · · · (s̃k × 1)

' · · ·

' h̃ks̃k × 1

' λ̃× 1 .

If φ̃ denotes the composite proper homotopy from h̃1s̃ to λ̃×1, then (N, s̃, φ̃) splits
h̃1. This completes the proof of (4.4).
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Proof of the splitting theorem (2.1). By (4.1) and (4.4) we have the following
situation

N × Rk
s̃
−−→ P̃

d
−−→ W

h
−−→ M × Rk

where hd is isotopic to h̃1 : P̃−−→M × Rk. Let

s = ds̃ : N ×Rk −−→ W ,

and construct a proper homotopy φ from hs to λ× idRk as the composition

hs = hds̃ ' h̃1s̃ ' λ̃× idRk ' λ× idRk .

The triple (N, s, φ) is a splitting for h : W−−→M × Rk, as required.

We have proved the splitting theorem when M is a closed simply connected
manifold of dimension at least five. Exactly the same process goes through for
compact, simply connected, manifolds of dimension at least six which have a simply
connected boundary. All maps and homotopies must now preserve boundaries, and
the relative collaring theorem is needed for the bounded analogues of (4.1) and
(4.4).

§5. Proof of the relative splitting theorem

Let W be a PL manifold, M a compact topological manifold (which may have
boundary), and h : W−−→M × Rk a homeomorphism.

Definition. A splitting of h is a Novikov splitting if it can be obtained by the
construction presented in §4.

More precisely, a splitting (N, s, φ) of h is a Novikov splitting if (keeping the
previous notation) we can find a PL homeomorphism d : P̃−−→W satisfying the
hypotheses of (4.1), plus a tower for h1 : P−−→M × T k−1 ×R, such that N = P k,
s = ds̃ and φ can be constructed from the tower homotopies and the isotopy of
(4.1) in the manner described earlier.

Note that it makes sense to speak of a Novikov splitting for h : W−−→M ×Rk
even when M is not simply connected. Of course, in this case, the covering spaces
involved are no longer universal coverings. For example, P̃ becomes the cover of
P which corresponds to the subgroup π1(M)C π1(M × T k−1 ×R).

In the special case where M is a PL manifold, and h is a PL homeomorphism,
then (M,h−1, h−1×1) is a splitting for h and will be called the natural splitting.
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It is a Novikov splitting. Just take d = h−1h̃1 : P̃−−→W and use

P 1 = M × T k−1 , s1 = h−1
1 ,

Pr = M × T k−r × R , P r = M × T k−r ,
hr = sr = identity (r > 1) ,

as a tower for h1 : P−−→M × T k−1 × R.

For the remainder of this section we shall assume that M is simply connected
and has dimension at least five. Given a Novikov splitting for h|∂W , we must show
that it extends to a Novikov splitting for h. There are two essential ingredients
in the construction of a Novikov splitting, namely a suitable PL homeomorphism
d : P̃−−→W and a tower for h1 : P−−→M × T k−1 × R. We therefore need relative
versions of (4.1) and (4.4).

(5.1) Theorem. Suppose that d′ : ∂P̃−−→∂W is a PL homeomorphism which
satisfies :

(i) d′ = ip|
∂P̃

on a neighbourhood of h̃−1
1 (∂M×D), and

(ii) (h|∂W )d′ is isotopic to h̃1|∂P̃ keeping a neighbourhood of h̃−1
1 (∂M×D) fixed.

Then there is a PL homeomorphism d : P̃−−→W which satisfies (i) and (ii) of
(4.1), such that d|

∂P̃
= d′ and the isotopy of hd extends that of (h|∂W )d′.

Proof. Proceeding essentially as in (4.1) we use the relative collaring theorem
(3.2) to construct a PL homeomorphism d : P̃−−→W such that d = ip on a
neighbourhood of h−1

1 (M ×D), and hd is isotopic to h̃1 keeping a neighbourhood
of h̃−1

1 (M ×D) fixed. Along the way we write

P̃ = B ∪ bB × [0, 1) , ∂P̃ = B′ ∪ ∂B′ × [0, 1)

where B is a compact PL submanifold of P̃ which meets ∂P̃ transversally, B′ =
B ∩ ∂P̃ , bB is the frontier of B in P̃ , and :

h̃−1
1 (M ×D) ⊆ int(B) ,

d = ip on a neighbourhood of B ,

d|
∂P̃

= d′ on a neighbourhood of B′ .

Since d|∂B′×[0,1) , d′|∂B′×[0,1) are collars of d′(∂B′) in ∂W\d′(int(B′)), there is a
PL ambient isotopy of ∂W which moves d|

∂P̃
so as to agree with d′ whilst keeping

d′(B′) fixed. Extend this ambient isotopy to an ambient isotopy H of all of W
which keeps d(B) fixed, and let

d = H1d : P̃ −−→ W .

Then by construction we have d|
∂P̃

= d′ and d = ip on a neighbourhood of
h̃−1

1 (M ×D).
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Take the given isotopy from (h|∂W )d′ to h̃1|∂P̃ and extend it over P̃ , keeping
a neighbourhood of h̃−1

1 (M ×D) fixed, to an isotopy from hd to a PL homeomor-
phism g : P̃−−→M ×Rk. Then

ψ = gh̃−1
1 : M ×Rk −−→ M ×Rk

is the identity on ∂M × Rk and on a neighbourhood of M ×D. The Alexander
isotopy constructed for (4.1) slides ψ to the identity, keeping ∂M × Rk and a
neighbourhood of M × D fixed. Therefore g is isotopic to h̃1 leaving ∂P̃ and a
neighbourhood of h̃−1

1 (M ×D) fixed. Combining this isotopy with that from hd
to g gives the required result.

(5.2) Theorem. Let P be a PL manifold of dimension m+r+1 and h : P−−→M×
T r×R a proper homotopy equivalence of pairs. Then any splitting of h|∂P extends
to a splitting of h.

Proof. Let (N ′, s′, φ′) be a splitting of h|∂P . Clearly P has two ends, and
s′|N ′×[1,∞) provides a collar of those ends of ∂P contained by one of the ends
of P . Using the relative collaring theorem (3.2) we can extend this collar to
a collar of the whole end. If N denotes the base of the extended collar, then
∂N = N ′. In exactly the same way we can produce a (disjoint) collar of the other
end which is compatible with s′|N ′×[−1,−∞). As in (4.4) we have an h-cobordism
(this time between manifolds with boundary) sandwiched by the two collars. A
version of Stallings [17] for manifolds with boundary provides a PL homeomor-
phism s : N ×R−−→P such that s|N ′×R = s′. If we can find a proper homotopy φ
between hs and the usual product λ× idR which extends φ′, then (N, s, φ) is the
required splitting of h. We can certainly extend φ′ to a proper homotopy between
hs and some map g : N × R−−→M × T r × R. Then, proceeding as in (4.4), we
can construct a proper homotopy from g to λ × idR which fixes N ′ × R. The
composition of the two homotopies gives φ.

A proof of our relative splitting theorem (2.2) may now be obtained simply
by reworking the material of §4, allowing M to have boundary and using (5.1) and
(5.2) in place of (4.1) and (4.4).

We end this section with the observation that in the special case when M and
h are both PL, we can extend the natural splitting of h|∂W to a splitting of h.

§6. The trivialization problem

This final section will be devoted to a proof of the following result.

(6.1) Theorem. Let X be a compact 4–connected polyhedron of dimension m,
π : E−−→X a PL Rk-bundle with k ≥ m + 2, and t : E−−→X × Rk a topological
trivialization. Then t is properly homotopic to a PL trivialization.
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As a direct corollary we have a solution to the bundle trivialization problem
proposed in §1. A proof of (6.1) will therefore complete our arguments.

Proof of (6.1). Triangulate X in some way, let K denote the 4–skeleton of the
triangulation, and CK the cone on K. Since X is 4–connected, the inclusion map
of K into X extends to a map d from all of CK to X. Using d we can pull back
the diagram

E w
t

u

X × Rk

u
X X

to give a bundle over CK and trivialization

E∗ w
t∗

u

CK ×Rk

u
CK CK

As CK is contractible, we can find a PL bundle equivalence

f : E∗ −−→ CK × Rk .
Now let E(K) denote the part of E which lies over K, and extend

K × Rk
t−1

−−−→ E(K)
f
−−−→ K × Rk

to a map g : X × Rk−−→X × Rk as follows. Use the contractibility of CK again
to produce a map r : X−−→CK which extends the identity on K, and define

g(x, u) = (x, p2ft
∗−1(r(x), u)) .

Then g is a bundle equivalence and is homotopic to the identity via a proper
homotopy. Therefore gt : E−−→X×Rk is a topological trivialization of our bundle
which is properly homotopic to t and which, by construction, is PL over K.

We now apply the splitting process over each simplex ∆ of X, in other words
we split t : E(∆)−−→∆ × Rk, taking care that the splittings fit together to give
a splitting of t : E−−→X × Rk. Since t is already PL over the 4–skeleton of X,
we may use the natural splitting over each simplex of K. These splittings are of
course compatible, in the sense that the natural splitting over a simplex restricts
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to the natural splitting over any face. Having rid ourselves of low dimensional
problems in this way, we work on the remaining simplexes inductively in order
of increasing dimension. The relative splitting theorem allows us to construct a
Novikov splitting over each simplex which, when restricted to a face is the splitting
constructed earlier. Suppose (B, s, φ) is the splitting over ∆. We observe that B
is PL homeomorphic to ∆. If ∆ ∈ K, then B = ∆, and for the other simplexes we
can use the Poincaré Conjecture noting that, in the special case of a 5-simplex, we
know the boundary is already standard. Therefore we have a compatible system
of PL homeomorphisms

s : ∆×Rk −−→ E(∆) (∆ ∈ X)

and a compatible family of proper homotopies φ : ∆ × Rk−−→∆ × Rk from ts to
λ× idRk .

A homeomorphism from a ball to itself, which is the identity on the boundary,
is isotopic to the identity keeping the boundary fixed. Therefore, again taking the
simplexes in some order of increasing dimension, we can inductively homotope the
λ’s to the identity. Combining all these homeomorphisms and homotopies gives a
PL homeomorphism

s : X × Rk −−→ E

together with a proper homotopy from ts to the identity. Hence t is homotopic to
s−1 via a proper homotopy that is fixed over K. Although s−1 sends ∆ × Rk to
E(∆), for each ∆ ∈ X, it is not at this stage a bundle map. If Γ is a PL section of

E
π−−→ X there is an ambient isotopy H of E such that H1s

−1(∆× {0}) = Γ(∆)
for every simplex ∆ of X. To construct H we use the Unknotting Theorem [21]
inductively. For the inductive step we have a situation where s−1(∆ × {0}) and
Γ(∆) are two embeddings of ∆ into E(∆) which agree on ∂∆, and which are
therefore ambient isotopic keeping ∂∆ fixed. The section Γ now has two normal
bundles in E, namely the bundle structure of E itself, and that given by s−1. The
stable range uniqueness theorem for PL normal bundles [7] provides a PL ambient
isotopy G of E such that

G1H1s
−1 : X × Rk −−→ E

is fibre preserving. Therefore G1H1s
−1 is a PL trivialization of E

π−−→ X which
is properly homotopic to t, and the proof of (6.1) is complete.
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CHAPTER II

The Hauptvermutung according to

Casson and Sullivan

By C. P. Rourke

§1. Introduction

Suppose M and Q are PL manifolds and h : Q−−→M is a (topological) home-
omorphism. The Hauptvermutung asserts that in this situation there is a PL
isomorphism g : Q−−→M . The purpose of Chapter II is to give a proof of the
Hauptvermutung for a large class of manifolds :

(1.1) Main theorem. Let M,Q, h be as above. Suppose :
(1) M and Q are closed of dimension ≥ 5 or bounded of dimension ≥ 6.
(2) π1(M) = π1(∂M) = 0. (Assumed for each component of M and ∂M .)
(3) H3(M ;Z2) = 0.

Then h is homotopic to a PL isomorphism.

We shall also indicate a proof that condition (3) can be weakened to the
following :

(3′) H4(M ;Z) has no elements of order 2.

Various refinements of the theorem are possible. One can weaken condition
(2) to π1(M) = π1(∂M) if ∂M is connected and non-empty and h is a simple
homotopy equivalence. One can keep submanifolds, on which h is already a PL
isomorphism, fixed during the homotopy. Precise statements of these refinements
are given in §7.

The rest of the introduction consists of a broad outline of the proof of the
main theorem followed by a guide to the rest of the chapter.

Outline of the Proof. According to Sullivan [41], h is homotopic to a PL
isomorphism if and only if a certain map qh : M0−−→G/PL is null-homotopic
(where M0 = M if ∂M 6= ∅ and M\{pt.} if ∂M = ∅) and from the definition of
qh if follows that qh factors via TOP/PL.

TOP/PLh
h
hji

M0

�
�
��

w
qh G/PL

The spaces PL, TOP and G will be defined in §2 and an account of the result from
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[41] which we use is given in §3, where a more general result is proved. The main
tools here are Browder-Novikov-Wall style surgery and the h-cobordism theorem.

From the above diagram we can assert that qh is null-homotopic if we know
that i is null-homotopic. In fact we prove that i factors via K(Z2, 3)

K(Z2, 3)h
h
hj

TOP/PL

�
�
��

w
i G/PL

From this factoring it follows that the obstruction to homotoping qh to zero is an
element of H3(M0;Z2) and, using condition (3), the result follows.

The proof of the factorization of i has two main steps :

Step 1. Construct a periodicity map

µ : G/PL −−→ Ω4n(G/PL)

where Ωn(X) denotes the n-th loop space on X. µ is defined to be the composite

G/PL
α
−−→ (G/PL)CP

2n σ
−−→ Ω4n(G/PL)

where XY is the space of maps Y−−→X, and α is defined by αx(y) = x for all
y ∈ CP2n (complex projective 2n-space) and σ is a canonically defined surgery ob-
struction (see §4). The periodicity map µ has the property that µ∗ : πk(G/PL)−−→
πk+4n(G/PL) is an isomorphism for k 6= 4 and multiplies by 2 for k = 4. (Recall
that πn(G/PL) = 0 for n odd, Z if n = 4k and Z2 if n = 4k + 2, essentially
Kervaire and Milnor [19], see §4). The proof that µ∗ has these properties follows
from a product formula for surgery obstructions which is proved by Rourke and
Sullivan [36]. It follows that the homotopy-theoretic fibre of µ is a K(Z2, 3).

Step 2. Prove that the composite

σ′ : (TOP/PL)CP
2n −−→ (G/PL)CP

2n σ
−−→ Ω4n(G/PL)

is null-homotopic. This result can be elucidated as follows : the surgery obstruction
for a map CP2n−−→G/PL is an “index” obstruction (see §4) and can be measured
in terms of the Pontrjagin numbers of a certain bundle over CP2n. Using the fact
that the map comes from a map of CP2n−−→TOP/PL, it follows from Novikov
[27] that the obstruction is zero. Thus to prove the result it is only necessary to
prove Novikov’s result in a canonical form, and this is done by using Siebenmann’s
thesis [37]. In fact we never mention Pontrjagin classes but prove the result directly
using Siebenmann. Details are in §5.
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Now consider the diagram

TOP/PL

u
α′

w
i G/PL

u
α

(TOP/PL)CP
2n

4
4
4
446σ′

w (G/PL)CP
2n

u
σ

Ω4n(G/PL)

σ′α′ ' ∗, consequently i factors via the fibre of σα which is K(Z2, 3), as required.

Guide to the rest of Chapter II

§2 collects most of the notation and basic definitions which we use. Two
important definitions here are the semi-simplicial complexesHT (M) andNM(M).
These are (roughly) the space of homotopy triangulations of M and the space of
“normal maps” onto M . A normal map is a degree 1 map f : M1−−→M covered
by a bundle map from the normal bundle of M1 to some bundle over M (the
terminology “normal map” is Browder’s). HT (M) should not be confused with
the set of PL equivalence classes of homotopy triangulations of M , which we
denote Ht(M). (This set was called PL(M) by Sullivan [41] – a notation which
we consider should be reserved for the space of PL isomorphisms of M .)

In §3 we prove two basic homotopy equivalences :

NM(M) ' (G/PL)M

(which is true in general) and

HT (M) ' NM(M)

if M is bounded of dimension ≥ 6 and π1(M) = π1(∂M) = 0. The classification
of homotopy triangulations

Ht(M) ∼= [M0, G/PL]

follows at once. We conclude §3 by defining the characteristic map qh : M0−−→G/PL
(see sketch above) and proving that it factors via TOP/PL if h is a homeomor-
phism.

The main result of §4 is the homotopy equivalence

(G/PL)M ' (G/PL)M0 × Ωn(G/PL)

in case M is closed of dimension ≥ 6. The “canonical surgery obstruction” map

σ : (G/PL)M −−→ Ωn(G/PL)
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is then projection on the second factor. We deduce the properties of µ mentioned
earlier.

§5 completes the proof of proving Step 2 above. We start from a refined
version of the Novikov–Siebenmann splitting theorem and construct a map

λ : (TOP/PL)M −−→ HT (M)

which commutes with maps of both spaces into (G/PL)M – the first induced
by inclusion, the second defined in §3. The result then follows easily from the
definition of σ.

In the remaining sections, we consider improvements to the main theorem. In
§6 we sketch the proof of the weakening of condition (3).

In §7 three refinements are proved :
(a) Replace condition (2) (simple connectivity) by the condition that π1(∂M)
−−→π1(M) is an isomorphism and h is a simple homotopy equivalence. A
corollary (using Connell and Hollingsworth [7]) is that the Hauptvermutung
holds for manifolds with 2-dimensional spines.

(b) Assume, instead of a topological homeomorphism h : Q−−→M , that M and
Q are (topologically) h-cobordant.

(c) Assume that h : Q−−→M is a cell-like map (cf. Lacher [21]) rather than a
homeomorphism.

In §8 we prove a theorem on homotopy triangulations of a block bundle. Two
corollaries are :

1. A relative Hauptvermutung; that is, if h : (M1, Q1)−−→(M,Q) is a homeo-
morphism of pairs and Q is a submanifold either of codim 0 or codim ≥ 3,
then h is homotopic to a PL isomorphism of pairs.

2. The embedding theorem first proved by Casson-Sullivan and independently
by Haefliger [11] and Wall.

I am indebted to Chris Lacher for pointing out §7(b) and a crucial step in §7(c),
and to Greg Brumfiel and George Cooke for patiently explaining §6 . Chapter III
by Cooke supplies more detail for §6.

§2. Notation and basic definitions

We refer to Rourke and Sanderson [35] for the definition of the PL category.
Objects and maps in this category will be prefixed “PL”.

The following are standard objects in the category. Rn = R1 × · · · × R1,
Euclidean n-space. ∆n, vertices {v0, · · ·, vn}, the standard n-simplex. The face
map ∂ni : ∆n−1−−→∆n is the simplicial embedding which preserves order and
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fails to cover vi and Λn,i = c` (∂∆n\∂i∆n−1). The n-cube In = [−1,+1]n and
I = [0, 1], the unit interval.

Semi-simplicial objects.

We work always without degeneracies – by Rourke and Sanderson [33] they
are irrelevant to our purposes, and we shall not then have to make arbitrary choices
to define them.

Let ∆ denote the category whose objects are ∆n, n = 0, 1, . . . and morphisms
generated by ∂ni . A ∆-set, pointed ∆-set, ∆-group is a contravariant functor
from ∆ to the category of sets, pointed sets, groups.

∆-maps, ∆-homomorphisms, etc. are natural transformations of functors. Or-
dered simplicial complexes are regarded as ∆-sets in the obvious way. A ∆-set X
satisfies the (Kan) extension condition if every ∆-map Λ(n,i)−−→X possesses
an extension to ∆n.

We now define the various ∆-groups and ∆-monoids that we need :

PLq : typical k-simplex is a zero and fibre preserving PL isomorphism

σ : ∆k × Rq −−→ ∆k ×Rq

(i.e σ|∆k×{0} = id. and σ commutes with projection on Rq).

P̃Lq : typical k-simplex is a zero and block preserving PL isomorphism

σ : ∆k × Rq −−→ ∆k ×Rq

(i.e. σ|∆k×{0} = id and σ(K × Rq) = K × Rq for each subcomplex K ⊂ ∆k).

Face maps are defined by restriction and PLq, P̃Lq form ∆-groups by com-
position.

Gq : typical k-simplex is a zero and fibre preserving homotopy equivalence of pairs

σ : (∆k × Rq,∆k × {0}) −−→ (∆k × Rq,∆k × {0})

(i.e. σ−1(∆k × {0})=∆k × {0} and σ|∆k×(Rq\{0}) has degree ±1).

G̃q : typical k-simplex is a zero and block preserving homotopy equivalence of
pairs

σ : (∆k ×Rq,∆k × {0}) −−→ (∆k × Rq,∆k × {0}) .
Again face maps are defined by restriction and Gq, G̃q form ∆-monoids by com-
position.
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Inclusions i : PLq ⊂ PLq+1 etc. are defined by i(σ) = σ× id. (write Rq+1 =
Rq × R1) and the direct limits are denoted PL, P̃L,G, G̃.

The notation used here differs from that used in Rourke and Sanderson [32],
where these complexes were called PLq(R) etc. However, as we never use the other
complexes, no confusion should arise.

G/PLq and G̃q/P̃Lq are the complexes of right cosets (i.e. a k-simplex of Gq/PLq
is an equivalence class of k-simplexes of Gq under σ1 ∼ σ2 iff σ1 = σ3 ◦ σ2 where
σ3 ∈ PLq).

The following basic properties of the complexes defined so far will be used (cf.
Rourke and Sanderson [33] for notions of homotopy equivalence, etc.).

(2.1) Proposition.
(a) Gq ⊂ G̃q is a homotopy equivalence for all q.
(b) The inclusions PLq ⊂ P̃Lq, PLq ⊂ PL, P̃Lq ⊂ P̃L and Gq ⊂ G are all

(q − 1)-connected.
(c) PL ⊂ P̃L is a homotopy equivalence.
(d) The map G̃q/P̃Lq−−→G̃/P̃L induced by inclusion is a homotopy equivalence

for q > 2.
(e) The complexes Gq/PLq (resp. G̃q/P̃Lq) are classifying for PL bundles with

fibre (Rq, {0}) and with a fibre homotopy trivialization (resp. open block bun-
dles with a block homotopy trivialization – i.e. a trivialization of the associ-
ated fibre space).

Remark. A “PL bundle with a fibre homotopy trivialization” means a pair (ξq, h)
where ξq/K is a PL fibre bundle with base K and fibre (Rq, {0}), and

h : E0(ξq) = E(ξ)\K −−→ K × (Rq\{0})
is a fibre map with degree ±1 on each fibre (cf. Dold [9]). Such pairs form a
bundle theory with the obvious definitions of induced bundle, Whitney sum, etc.
(see Sullivan [41]). A PL block bundle with a block homotopy trivialization can
be defined in a similar way.

Proof of 2.1. Parts (a) to (d) were all proved in Rourke and Sanderson [32], the
following notes will help the reader understand the status of these results :
(a) is proved by an easy “straight line” homotopy.
(b) the first two parts depend on Haefliger and Poenaru [13] – the second part is

explicit in Haefliger and Wall [14] and the first part is a translation of their
main result. The third part is a straight analogue of the smooth stability
theorem and the fourth part is classical homotopy theory (James [17]).

(c) follows from (b).
(d) is a translation of the stability theorem of Levine [23] using the transverse
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regularity of Rourke and Sanderson [31] and Williamson [45] – special argu-
ments are necessary in low dimension – see §7.

(e) follows from the fibrations

Gq/PLq−−→BPLq−−→BGq ,

G̃q/P̃Lq−−→BP̃Lq−−→BG̃q

(see Rourke and Sanderson [34]) and can also be proved by a simple direct argu-
ment analogous to Rourke and Sanderson [30; §5].

TOPq is the topological analogue of PLq i.e. a k-simplex is a zero and fibre
preserving homeomorphism ∆k × Rq−−→∆k × Rq. TOP is the direct limit of

i : TOPq ⊂ TOPq+1 ⊂ . . . .

The stability theorem for TOPq is for weaker than 2.1(b), but one can define a
stable K-theory of topological bundles (see Milnor [26]).

(2.2) Proposition. The complex TOPq/PLq classifies PL bundles with a topo-
logical trivialization.

The proof is the same as 2.1(e).

All the complexes defined so far satisfy the extension condition – this follows
easily from the existence of a PL isomorphism Λk,i × I−−→∆k.

Function spaces.

Let X be a ∆-set with the extension condition and P a polyhedron. A map
of P in X is an ordered triangulation K of P and a ∆-map K−−→X. A typical
k-simplex of the ∆-set XP is a map P ×∆k−−→X where the triangulation K of
P ×∆k contains P ×∂i∆k−1 as a subcomplex, each i. Face maps are then defined
by restriction. For connections with other definitions see Rourke and Sanderson
[33].

When X is pointed, denote by ∗ ⊂ X the subset consisting of base simplexes
(or the identity simplexes in case X is a ∆-group or monoid). XP is then pointed
in the obvious way.

Relative function spaces are defined in a similar way. In particular the nth
loop space of X is defined by

Ωn(X) = (X, ∗)(In,∂In) .
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(∆k, n)-manifolds.

Let M denote the category with objects : PL manifolds; morphisms : inclu-
sions of one PL manifold in the boundary of another. A (∆k, n)-manifold is a
lattice in M isomorphic to (and indexed by) the lattice of faces of ∆k, where the
isomorphism is graded and decreases dimension by n. (I.e. each s-face of ∆k in-
dexes an (n+s)-manifold.) If Mn,k is a (∆k, n)-manifold then the element indexed
by σ ∈ ∆k is denoted Mσ.

Examples.
(1) If Mn is an n-manifold then Mn ×∆k is a (∆k, n)-manifold in the obvious

way, with Mσ = M × σ.
(2) A (∆0, n)-manifold is an n-manifold.
(3) A (∆1, n)-manifold is a cobordism of n-manifolds, possibly with boundary.
(4) If Mn,k is a (∆k, n)-manifold then the (∆k, n−1)-manifold ∂Mn,k is defined

by

(∂M)∆k = c`
(
∂(M∆k)\

⋃
i

M∂i∆k−1

)
,

(∂M)σ = (∂M)∆k ∩Mσ .

Thus, in example (3), ∂Mn,1 is the corresponding cobordism between the bound-
aries.

Now we come to two basic definitions :

The ∆-set HT (M).

A map of (∆k, n)-manifolds f : Mn,k−−→Qn,k is a map f : M∆k−−→Q∆k

such that f(Mσ) ⊂ Qσ for each σ ∈ ∆k. A homotopy equivalence of (∆k, n)-
manifolds is a map h such that h|Mσ : Mσ−−→Qσ is a homotopy equivalence for
each σ ∈ ∆k.

Let Mn be a PL manifold (possibly with boundary). A k-simplex of the ∆-set
HT (M) (“homotopy triangulations of M”) is a homotopy equivalence of pairs

h : (Qn,k, ∂Qn,k) −−→ (Mn ×∆k, ∂Mn ×∆k)

where Qn,k is some (∆k, n)-manifold. (I.e. h(∂Q)∆k ⊂ ∂Mn ×∆k and h|∂Qn,k is
also a homotopy equivalence.)

Face maps are defined by restriction and it is easy to prove that HT (M)
satisfies the extension condition.
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The ∆-set NM(M).

A typical k-simplex is a normal map f : Qn,k−−→M × ∆k. I.e. f is a
(∆k, n)-map, has degree 1 on each pair (Qσ, ∂Qσ)−−→(M × σ, ∂M × σ), and is
covered by a map of PL bundles :

E(νQ) w
f̂

u

E(ξ)

u
Q w

f
M ×∆k

where νQ is the (stable) normal bundle of Q and ξ is some PL bundle on M ×∆k.
Face maps are defined by restriction and it is again easy to check that NM(M)
satisfies the extension condition.

The (stable) normal bundle of Qn,k is the normal bundle of an embedding
Qn,k ⊂ In+N × ∆k (N large) of (∆k, n)-manifolds. The normal bundle of Qn,k

restricts to the normal bundle of Qσ ⊆ In+N×σ for each σ. To find such a bundle,
use general position to embed, and apply Haefliger and Wall [14].

Reducibility.

Let ξN/Qn,k be a bundle. T (ξ), the Thom space, is said to be reducible if
there is a map f : In+N × ∆k−−→T (ξ) which respects the lattice structure and
such that

f | : (In+N × σ, ∂(In+N × σ)) −−→ (T (ξ|Mσ), T (ξ|∂Mσ))

has degree 1 for each σ. Thus f gives a simultaneous reduction of all the Thom
spaces in the lattice.

For example, the Thom construction shows T (νQ) is reducible, in fact has a
canonical choice of reduction map.

Notice that, in the definition ofNM(M), T (ξ) is reducible. This is because the
Thom isomorphism is natural and f has degree 1. Indeed T (f̂) and the canonical
reduction of T (νQ) give a reduction of T (ξ).

The ∆-sets (G/PL)M and (TOP/PL)M .

Finally we define two ∆-sets which, although essentially the same as the
function spaces (G/PL)M and (TOP/PL)M , have certain advantages for some of
our constructions.

A k-simplex of the ∆-set (G/PL)M (resp. (TOP/PL)M) is a stable PL bun-
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dle ξN/M ×∆k together with a fibre homotopy trivialization (resp. a topological
trivialization). Face maps are defined by restriction and the extension condition
is easily verified.

(2.3) Proposition. There are homotopy equivalences

κ : (G/PL)M −−→ (G/PL)M ,

κ′ : (TOP/PL)M −−→ (TOP/PL)M

which commute with the natural maps

(TOP/PL)M
i∗−−→(G/PL)M , (TOP/PL)M

j
−−→ (G/PL)M .

This follows at once from 2.1(e) and 2.2, commutativity being obvious. One
of the advantages of the new sets is that they have an easily described H-space
structure. For example, the map

m : (G/PL)M × (G/PL)M −−→ (G/PL)M ;

(ξN1
1 , t1; ξN2

2 , t2) 7−→ (ξN1
1 ⊕ ξN2

2 , t1 ⊕ t2)

endows (G/PL)M with a homotopy commutative H-space structure with homo-
topy unit. [To make precise sense of t1 ⊕ t2, when ξ1 and ξ2 are stable bun-
dles, regard the range of each as M × ∆k × R∞ and choose a homeomorphism
R∞ ×R∞−−→R∞ by alternating coordinates.]

“×”, in the displayed formula above, means categorical direct product (as
always when we are dealing with ∆-sets). For sets with the extension condition
X × Y has the same homotopy type as X ⊗ Y (cf. Rourke and Sanderson [33]).

§3. An account of Sullivan theory

In this section we prove the following results :

(3.1) Theorem. If Mn is any PL manifold (with or without boundary) then there
is a homotopy equivalence

r : NM(Mn) −−→ (G/PL)M
n

.

(3.2) Theorem. If Mn, n ≥ 6 is a PL manifold with non-empty boundary, and
π1(M) = π1(∂M) = 0, then there is a homotopy equivalence

i : HT (M) −−→ NM(M) .

Theorem 3.1 is proved by transverse regularity (the usual argument) while
Theorem 3.2 is proved by surgery. This breaks the usual Browder-Novikov argu-
ment into its two basic components. Combining the two results we have :
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(3.3) Corollary. If M is as in Theorem 3.2 then there is a homotopy equivalence

q : HT (M) −−→ (G/PL)M .

To obtain a theorem for closed manifolds, suppose M is closed and let M0 =
M\{disc}, with n ≥ 6. Define a ∆-map

c : HT (M0) −−→ HT (M)

by adding a cone over the boundary. (The Poincaré theorem is used here).

(3.4) Theorem. c is a homotopy equivalence.

(3.5) Corollary. If M is closed of dimension ≥6 and π1(M) = 0, then there is
a homotopy equivalence HT (M)−−→(G/PL)M0.

Classification of homotopy equivalences.

Now let Mn (n ≥ 5) be a PL manifold, π1(M) = π1(∂M) = 0 (and if n = 5
assume ∂M = ∅). Define the set Ht(M) (homotopy triangulations of M) as
follows :

A representative is a homotopy equivalence h : (Qn, ∂Qn)−−→(Mn, ∂Mn)
where Qn is some PL manifold. h1 ∼ h2 if there is a PL isomorphism g : Q1−−→Q2

such that

Q1 w
g

h
h
hhj
h1

Q2

'
'

''*

h2

M

is homotopy commutative. If follows immediately from the h-cobordism theorem
that Ht(M) = π0(HT (M)).

(3.6) Corollary. Let n ≥ 6 and write Mn
0 = Mn if ∂M 6= ∅ and Mn

0 = M\{disc}
if ∂M = ∅. (π1(M) = π1(∂M) = 0, as usual.) Then there is a bijection

q∗ : Ht(M) −−→ [M0, G/PL]

where [ , ] denotes homotopy classes.

This follows immediately from 3.3 and 3.4. For the case n = 5 of the main
theorem we need

(3.7) Addendum. If n = 5 and ∂M = ∅ then there is an injection

q∗ : Ht(M) −−→ [M,G/PL] .
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This will be proved using methods similar to those used for 3.2 - 3.4. Following
these proofs, we shall make two remarks about q∗ which clarify the properties
needed for the main theorem.

Proof of Theorem 3.1. We define homotopy inverses r1 : NM(M)−−→(G/PL)M
and −r2 : (G/PL)M−−→NM(M). Then r = κ ◦ r1 is the required equivalence.

Definition of r1.

0-simplexes.

Let f : Qn−−→Mn be a degree 1 map covered by a bundle map :

E(νQ) w
f̂

u

E(ξ)

u
Qn,k w

f
M

Then, as remarked earlier, T (ξ) has a prescribed reduction. Let

u : (In+N , ∂In+N) −−→ (T (ξ), T (ξ|∂M))

be this reduction. Then the uniqueness theorem of Spivak [38] (see the proof given
in Wall [43]) says that there is a fibre homotopy equivalence g : ξ−−→νM such that

(3.8)

(In+N , ∂In+N)
h
h
hhk

u

4
4
446
u′

(T (ξ), T (ξ|∂M)) w
T (g)

(T (νM ), T (ν∂M))

is homotopy commutative, where u′ is the canonical reduction of νM . This diagram
determines g up to fibre homotopy, see Wall [43].

Now g determines a stable fibre homotopy trivialization of [νM ]− [ξ] (where
[ξ] denotes the element of the K-theory corresponding to ξ, etc.). This defines r1

on 0-simplexes.

In general r1 is defined by induction and the fact that all the choices made
above were only within prescribed homotopy classes implies that a choice over the
(k − 1)-skeleton extends to the k-skeleton.

Definition of r2 : (G/PL)M−−→NM(M). We now define a map r2. r1 and
−r2 are homotopy inverses (−r2 means r2 composed with inversion in (G/PL)M ,
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which, as an H-space, possesses a homotopy inverse.) It will be easy to verify
that r1 and −r2 are in fact homotopy inverses and we leave this verification to the
reader.

0–simplexes.

Let (ζ, g1) be a 0-simplex of (G/PL)M , meaning that ζ/M is a PL bundle
and g1 : ζ/M−−→M × RN is a fibre homotopy trivialization. Adding νM to both
sides we have a fibre homotopy equivalence g : ξ−−→νM , where ξ = νM ⊕ ζ,
and hence a homotopy equivalence T (g) : T (ξ)−−→T (νM ). Thus the canonical
reduction t′ : In+N−−→T (νM ) determines a reduction t of T (ξ). By Rourke and
Sanderson [31] and Williamson [45] we may assume that t is transverse regular to
M and hence t−1(M) is a PL manifold Q and t|Q : Q−−→M is covered by a map
t| : νQ−−→ξ of bundles. This defines a 0-simplex of NM(M).

In general the same argument applies to define r2 on k-simplexes extending
a given definition on (k − 1)-simplexes. The only change needed is that one uses
the relative transverse regularity theorem.

Proof of Theorem 3.2.

Definition of i.

0-simplexes. Let h : (Q, ∂Q)−−→(M,∂M) be a homotopy equivalence and let νQ
denote the normal bundle of Q. Let h′ be a homotopy inverse of h and let ξ/M
be (h′)∗νQ then h is covered by a bundle map ĥ : E(νQ)−−→E(ξ). This defines a
0-simplex of NM(M).

Again, since all choices were within canonical classes, this definition on 0-
simplexes yields an inductive definition on k-simplexes. Notice that i is an em-
bedding. Thus to prove i is a homotopy equivalence we only have to prove that
NM(M) deformation retracts on HT (M). We prove the following assertion :

Assertion. Suppose f : Qn,k−−→Mn × ∆k is a degree 1 map (covered by the
usual bundle map, as always) and suppose f |Qσ is a homotopy equivalence for
each proper face σ < ∆k. Then f is bordant rel

⋃
σ∈∂∆k Qσ to a homotopy

equivalence, (and the bordism is covered by the usual bundle map, extending the
given map over Qn,k).

The assertion implies that a typical relative homotopy element is zero and
hence the result (for more detail see Rourke and Sanderson [33]).

Proof of the assertion. The bordism is constructed as the trace of a finite
number of surgeries of (Q∆k , (∂Q)∆k) (each surgery being covered by a map of
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bundles). The construction here is familiar (see Browder [1], Novikov [28], Wall
[42]) so we shall not repeat it. Here is a lemma, proved in Wall [44, 1.1] which
allows one to do the surgery.

(3.9) Lemma. Every element α ∈ ker(πi(Q∆k)−−→πi(M × ∆k)) gives rise to a
well-defined regular homotopy class of immersions of T = Si ×Dn+k−i in Q. We
can use an embedding of T in Q to perform surgery on α iff the embedding lies in
this class.

By 3.9 we can immediately perform surgery up to just below the middle
dimension. To kill middle-dimensional classes use the method of surgery of relative
classes in Wall [42, 44]. (For a direct proof that surgery obstructions are zero on a
boundary see Rourke and Sullivan [36].) This completes 3.2.

Proof of 3.4. Observe that c is an embedding and so we have to construct a
deformation retract of HT (M) on c(HT (M)). To construct this on 0-simplexes
one has to prove that any homotopy triangulation is homotopic to one which is a
PL homeomorphism on the inverse image of a disc Dn ⊂ Mn. This is easy. In
general we have to prove the following assertion, which follows from the splitting
theorem of Browder [2].

Assertion. Suppose f : Qn,k−−→Mn × ∆k is a (∆k, n)-homotopy equivalence
and Mn is closed. Suppose f |f−1(Dn×∂∆k) is a PL homeomorphism. Then f is
homotopic rel

⋃
σ∈∂∆kQσ to a map which is a PL homeomorphism on f−1(Dn ×

∆k).

Proof of 3.7. q : HT (M)−−→(G/PL)M is defined as before. Suppose h1 :
M1−−→M and h2 : M2−−→M are vertices in HT (M) which map into the same
component of (G/PL)M . Then the proof of 3.1 yields a cobordism between M1

and M2 (covered by the usual map of bundles). By taking bounded connected sum
with a suitable Kervaire manifold (cf. Browder and Hirsch [5]) we may assume
that the surgery obstruction vanishes and hence this cobordism may be replaced
by an h-cobordism. So h1 and h2 lie in the same component of HT (M).

Two remarks on q∗.

(1) HT (M) and (G/PL)M0 are both based sets and, examining the proofs of 3.1
and 3.2, we see that both r and i can be chosen to preserve base-points. So q∗ is
base-point preserving and we can rephrase 3.6 and 3.7, as follows.
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(3.10) Corollary. Given a homotopy equivalence h : M1−−→M there is defined,
up to homotopy, a map qh : M0−−→G/PL with the property that qh ' ∗ iff h is
homotopic to a PL isomorphism (in case n=5, interpret M0 as M).

(2) Suppose h : M1−−→M is a (topological) homeomorphism then h determines a
topological isomorphism ν(h) : νM1−−→νM . This can be seen as follows. Regard M
as imbedded in a large-dimensional cube IN+n. Use Gluck [10] to ambient isotope
h to a PL embedding; reversing this isotopy and using the (stable) uniqueness
theorem for topological normal bundles (Hirsch [15] and Milnor [26]) we obtain
the required isomorphism of νM1 with νM .

Now ν(h) determines a topological trivialization t(h) of [νM ]− [(h−1)∗(νM1)]
and hence a map th : M−−→TOP/PL by 2.2.

Proposition 3.11. The diagram

M w
th

h
h
hjqh

TOP/PL

'
'
'*

i

G/PL

commutes up to homotopy.

Proof. From the definition of ν(h) is clear that

(In+N , ∂In+N)
N
N
NNQ

u1

�
�
���
u

(T (νM1), T (ν∂M1)) w
T (νh)

(T (νM ), T (ν∂M))

commutes up to homotopy, where u1 and u are the canonical reductions.

Comparing with diagram 3.8 we see that ν(h) coincides, up to fibre homotopy,
with g and hence the fibre homotopy trivialization of [νM ]− [(h−1)∗(νM1)] which
determines qh (see below 3.8) coincides up to fibre homotopy with t(h), as required.

§4. Surgery obstructions

In this section we define the “canonical surgery obstruction”

σ : (G/PL)M −−→ Ωn(G/PL)



144 rourke

and the periodicity map

µ : (G/PL) −−→ Ω4n(G/PL)

mentioned in the introduction.

Throughout the section M denotes a closed PL n-manifold, n ≥ 6, and M0 =
M\{disc}.

(4.1) Proposition. The restriction map p : (G/PL)M−−→(G/PL)M0 is a fibra-
tion with fibre Ωn(G/PL).

Proof. To prove that p has the homotopy lifting property one has to prove that a
map of M×In∪M0×In×I−−→G/PL extends to M×In×I (see §2 for the notion
of a map of a polyhedron in a ∆-set) and this follows at once from the generalized
extension condition proved in Rourke and Sanderson [33]. Thus the result will
follow if we know that p is onto, it is clear that the fibre will be Ωn(G/PL).

Consider the diagram

HT (M) w
q′

(G/PL)M

u
p

HT (M0)

u

' c

w
q
' (G/PL)M0

u

s

c and q were defined in §3 and q′ is defined exactly as q. Then q ' pq′c straight
from the definitions. Let s = q′cq−1 where q−1 is a (homotopy) inverse to q, then
ps ' id and the result follows.

(4.2) Theorem. (G/PL)M is homotopy equivalent to the product Ωn(G/PL) ×
(G/PL)M0.

Proof. Regard Ωn(G/PL) as a subset of (G/PL)M by inclusion as the fibre.
Define

d : Ωn(G/PL)× (G/PL)M0 −−→ (G/PL)M ; (x, y) 7−→ κm(κ−1x, κ−1sy)

where κ−1 is a homotopy inverse of κ and m, κ are as defined in §2 (below 2.3).
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We assert that the diagram

Ωn(G/PL)[
[
[[]
⊆�

�
���

⊆

Ωn(G/PL)× (G/PL)M0[
[
[[]
π2

w
d (G/PL)M

�
�

���
p

(G/PL)M0

commutes up to homotopy. The result follows by comparing the two exact homo-
topy sequences, using the five-lemma.

The top triangle commutes since m( , ∗) ' id. To prove that the bottom
triangle commutes, let xk ∈ Ωn(G/PL) be a k-simplex. Then κ−1x is a pair (ξ, t),
where ξ/M ×∆k is a PL bundle and t is a fibre homotopy trivialization. Since x
lies in Ωn(G/PL), t is the identity on ξ|M0×∆k . Now m(κ−1x, κ−1sy) is the pair
(ξ ⊕ ξ1, t⊕ t1) where ξ1/M ×∆k is another bundle. Moreover

p1m(κ−1x, κ−1sy) = p1m(∗k, κ−1sy) ,

where p1 : (G/PL)M−−→(G/PL)M0 is induced by restriction. Since it is clear that
p, p1 commute with κ, the result follows.

Definition. The composite

σ : (G/PL)M
d−1

−−−→ Ωn(G/PL)× (G/PL)M0
π1−−−→ Ωn(G/PL)

is the canonical surgery obstruction, where d−1 is some homotopy inverse to
d.

We now recall the more usual surgery obstructions. The connection with σ
will be established in 4.4.

The surgery obstruction of a class α ∈ [M,G/PL].

According to 3.1 α can be interpreted as a bordism class of normal maps :

E(νM1) w
f̂

u

E(ξ)

u
Mn

1 w
f

Mn
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One can then associate to α a surgery obstruction in the following groups :

s(α) =


I(M)− I(M1) ∈ 8Z n = 4k
0 if n is odd
K(f) ∈ Z2 if n = 4k + 2 .

Here I( ) denotes index and K( ) the Kervaire obstruction. Direct definitions
of K(f) are given by Browder [4] and Rourke and Sullivan [36]. The methods of
Browder [1] and Novikov [28], translated into the PL category, imply that s(α) = 0
iff the bordism class of (f, f̂) contains a homotopy equivalence, n ≥ 5.

Computation of πn(G/PL).

If Mn is the sphere Sn, then ξ0 = ξ|Sn\{disc} is trivial and so νM1 |M1\{disc}
is trivial and in fact has, up to equivalence, a well-defined trivialization given by
trivializing ξ0. This recovers the theorem (see also Rourke and Sanderson [32] and
Sullivan [41]) :

(4.3) Theorem. πn(G/PL) ∼= Pn, the group of almost framed cobordism classes
of almost framed PL n-manifolds.

The surgery obstruction give maps s : πn(G/PL)−−→8Z, 0, or Z2 which are
injective for n ≥ 5 by the Browder-Novikov theorem quoted above (using the
Poincaré theorem). Moreover in this range s is surjective, since all obstructions
are realized by suitable Kervaire or Milnor manifolds (see Kervaire [18] and Milnor
[25]). So we have

πn(G/PL) =


8Z if n = 4k
0 if n is odd
Z2 if n = 4k + 2.

To compute πn(G/PL) for n < 5 it is necessary to use the braid of the triple O ⊂
PL ⊂ G (see Levine [23], also Rourke and Sanderson [32]) and known homotopy
groups. Then the above formulae hold for n < 5 as well. However there is a
distinct singularity because the generator of P4 has index 16 (Rohlin [29]) instead
of 8 for P4k, k > 1 (cf. Milnor [26]).

We now prove :

(4.4) Theorem. The map σ : (G/PL)M−−→Ωn(G/PL) induces the surgery ob-
struction function

σ∗ = s : [M,G/PL] = π0(G/PL)M −−→ π0(Ωn(G/PL)) = πn(G/PL) = Pn

for n ≥ 5.
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Proof. We first make two observations.
(1) The surgery obstruction is additive (under connected sums). The con-

nected sum of normal maps f : M1−−→M, g : Q1−−→Q is a normal map f#g :
M1#Q1−−→M#Q with surgery obstruction

s(f#g) = s(f) + s(g) .

(2) The action of an element in π0(Ωn(G/PL)) on an element in [M,G/PL]
given by multiplication in (G/PL)M corresponds to taking connected sum of
the associated normal maps. (For the normal map corresponding to a vertex
in Ωn(G/PL) – after inclusion in (G/PL)M – is the identity outside a disc in M ,
and we can assume that the other situation is the identity in this disc.)

Now let f : M−−→G/PL be a vertex of (G/PL)M and let α ∈ πn(G/PL) be
the class −s(f). Let α0 ∈ Ωn(G/PL) be a corresponding vertex. Then

σ∗[m1(α0, f)] = [m2(σα0, σf)] = σ∗[α0] + σ∗[f ] ,

with m1 and m2 the multiplications in (G/PL)M and Ωn(G/PL) respectively.
But

[m1(α0, f)] = [∗]
by choice of α and observations (1) and (2), so that σ∗[f ] = −σ∗[α0]. The com-
posite

Ωn(G/PL) ⊂ (G/PL)M
σ
−−→ Ωn(G/PL)

is the identity (by definition); hence σ∗[α0] = α and the result follows.

Remarks. (1) 4.4 fails for n = 4 (we cannot even define σ in this case). Indeed if
one considers the composition

π4(G/PL)
i∗−−−→ [M4, G/PL]

s
−−−→ Z

(s denotes the surgery obstruction) then si∗(π4(G/PL)) = 16Z, as remarked
above, while s maps onto 8Z for suitable choice of M . This follows from the
fact that 24µ/CP2 is fibre homotopy trivial, where µ is the normal bundle of
CP2 in CP3. Then the surgery obstruction of the corresponding map of CP2 into
G/PL is 24(Hirzebruch index of µ) = 24.
(2) It has been obvious for some time that πn(G/PL)−−→ΩPLn (G/PL), where
ΩPLn ( ) denotes PL bordism, is a monomorphism (see e.g. observation (2) above).
In fact it follows at once from 4.4 (and the fact that surgery obstructions are bor-
dism invariants) that πn(G/PL) splits as a direct summand of ΩPLn (G/PL) for
n ≥ 5 (see also Sullivan [41]). This remark also fails for n = 4 for the same reasons
as remark (1).

The periodicity map.

We now define the periodicity map mentioned in the introduction.
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Definition. µ is the composite

µ : G/PL
α
−−−→ (G/PL)CP

2n σ
−−−→ Ω4n(G/PL)

where α is a semi-simplicial approximation to the map (of spaces) defined in the
introduction (see Rourke and Sanderson [33]).

(4.5) Theorem. The map µ∗ : πi(G/PL)−−→πi(Ω4n(G/PL)) = πi+4n(G/PL) is
an isomorphism for i 6= 4 and is the inclusion 16Z−−→8Z for i = 4.

Proof. By Theorem 4.4 we have to consider the composition

[Si, G/PL]
α∗−−−→ [Si × CP2n, G/PL]

s
−−−→ πi+4n(G/PL)

As mentioned earlier, an element β ∈ [Si, G/PL] is represented by a normal map

E(νM ) w
f̂

u

E(ξ)

u
M i w

f
Si

and then α∗(β) is represented by the normal map

E(νM × νCP2n) w
f̂ × 1

u

E(ξ × νCP2n)

u
M i ×CP2n w

f × 1
Si × CP2n

(this is easily checked from the proof of 3.1). So it is necessary to know how surgery
obstructions behave under cartesian product. A complete answer is provided by
Rourke and Sullivan [36]. Using the fact that I(CP2n) = 1 the required result
follows.

§5. The ‘canonical Novikov homotopy’

We now complete the proof of the Main Theorem (1.1) by proving :

(5.1) Theorem. The composite

(TOP/PL)M
i∗−−−→ (G/PL)M

σ
−−−→ Ωn(G/PL)



5. the `canonical novikov homotopy' 149

is null-homotopic, assuming M is closed of dimension n ≥ 5 .

Proof. We construct a map λ : (TOP/PL)M−−→HT (M) such that

(TOP/PL)M w
i∗

�
�
���λ

(G/PL)M

HT (M)
N
N
NNP
q′ (5.2)

is homotopy commutative. But by the definition of σ we have

HT (M)

u

(σ−1q′)× ∗

w
q′

(G/PL)M

u

σ

(G/PL)M0 × Ωn(G/PL) w
π2 Ωn(G/PL)

homotopy commutative, so that σq′ ' ∗ and the theorem follows.

Construction of λ. In fact we shall construct a map λ1 : (TOP/PL)M−−→
HT (M) so that

(TOP/PL)M w
j

�
�
���λ1

(G/PL)M

HT (M)
N
N
NNP
q1 (5.3)

commutes up to homotopy, where q1 = r1 ◦ i (see §3). The result then follows by
2.3.

The main tool in the construction of λ1 is a refined version of the Novikov-
Siebenmann splitting theorem. In what follows all maps of bounded manifolds are
assumed to carry boundary to boundary.

Definition. Suppose h : W−−→M ×Rk is a topological homeomorphism, W and
M being PL manifolds. We say h splits if there is a PL isomorphism g : M1×Rk
−−→W such that the composite hg : M1 × Rk−−→M × Rk is properly homotopic
to f × idRk , where f is the composite

M1 ⊂M1 ×Rk
hg
−−−→ M × Rk

π1−−−→ M .

A splitting of h is a triple (M1, g,H) where M1, g are as above and H is a proper
homotopy between hg and f × idRk . Two splittings (M1, g,H) and (M ′1, g

′, H ′)
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are equivalent if there is a PL isomorphism e : M1−−→M ′1 such that diagrams
(a) and (b) commute up to isotopy and proper homotopy respectively:

M1 × Rk w
g

'
'
'
')e× {id}

W

M ′1 × Rk
[
[
[
[]

g′

(a)

M1 ×Rk × I w
H

'
'
'
')e× {id}

M ×Rk

M ′1 × Rk × I
[
[
[
[]

H ′

(b)

(5.4) Theorem. Suppose given h as above and M is closed of dimension ≥ 5
or bounded of dimension ≥ 6 with π1(M) = π1(∂M) = 0. Then there is a well-
defined equivalence class of splittings of h which we call ‘Novikov splittings’. If
M is bounded then the restriction of a Novikov splitting of h to ∂M is a Novikov
splitting of h|∂M .

Remark. The second half of 5.4 implies that any Novikov splitting of h|∂W
extends to a Novikov splitting of h.

Theorem 5.4 is proved by constructing a tower of interpolating manifolds for

h| : h−1(M × T k−1 ×R) −−→ M × T k−1 × R

(cf. Novikov [27]), and applying inductively Siebenmann’s 1-dimensional splitting
theorem [37] (translated into the PL category using the techniques of Rourke and
Sanderson [30, 31]). Full details are to be found in Lashof and Rothenberg [22] or
Chapter I of these notes.

Definition of λ1 on 0-simplexes.

Suppose σ0 ∈ (TOP/PL)M is a 0-simplex. Then σ0 is a pair (ξ, h) where
ξk/M is a PL bundle and h : E(ξk)−−→M ×Rk is a topological trivialization. Let
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g : M1×Rk−−→E(ξ) be a Novikov splitting for h. Then the composite f : M1−−→
M (as in the definition above) is a homotopy equivalence and hence a 0-simplex
λ1(σ0) ∈ HT (M).

In general λ1 is defined by induction on dimension. The general definition is
similar to that for 0-simplexes except that one uses the relative version of 5.4.

Commutativity of 5.3.

In §3 q1 = r1 ◦ i was only defined up to homotopy. We shall prove that the
definition of q1 could have been chosen so that (5.3) commutes precisely. We prove
this for 0-simplexes. The general proof is similar.

Let σ0 ∈ (TOP/PL)M as above. Then we have :

(5.5)

M1 ×Rk�
�
���f × {id}

w
g
∼= E(ξ)

N
N
NNQ
h

M × Rk

commuting up to proper homotopy. Add the (stable) bundle νM1 to all the terms
in (5.5) and observe that (g−1)∗(νM1)⊕ ξ is the stable normal bundle of M since
its total space (which is the same as the total space of νM1) is embedded in a
sphere. We obtain

E(νM1)�
�
���f̂

w
g1
∼= E(νM )

N
N
NNQ
ĥ

E((f−1)∗νM1)

The pair (f |M1 , f̂) is a normal map of M1 to M which we can take to be i(σ0)
(see definition of i in §3).

Now it is clear that g1 commutes (up to homotopy) with the canonical reduc-
tions of T (νM1) and T (νM ). Consequently ĥ can be taken to be the fibre homotopy
equivalence νM−−→(f−1)∗(νM1) determined by f̂ . (Cf. diagram (3.8) et seq.) ĥ
determines a fibre homotopy trivialization of [ξ] = [νM ]− [(f−1)∗(νM1)] which we
may take to be h itself. So we may take q1(σ0) = (ξ, h), as required.

§6. Weaker hypotheses

Here we sketch a proof that the condition (3) in the Main Theorem (1.1) can
be weakened to

(3′) H4(M ;Z) has no elements of order 2.



152 rourke

Full details of the proof are contained in chapter III of these notes.

The idea of the proof is this. We proved that the Sullivan obstruction qh : M0

−−→G/PL corresponding to the homeomorphism h : Q−−→M factored via the
fibre K(Z2, 3) of µ : G/PL−−→Ω4n(G/PL). This factoring is not unique, it can
be altered by multiplication (in K(Z2, 3)) with any map of M0 into the fibre of
K(Z2, 3)−−→G/PL which is Ωm(G/PL), m = 4n + 1. We shall show that a
suitable map of M0 can be chosen so that the obstruction is changed by the mod 2
reduction of any class in H3(M,Z). Then consider the exact coefficient sequence :

H3(M ;Z)
mod 2
−−−→ H3(M ;Z2)

β
−−−→ H4(M ;Z)

× 2
−−−→ H4(M ;Z) .

If condition (3′) holds, β is zero, and the entire obstruction can be killed.

To prove that a suitable map of M0 into Ωm(G/PL) can be found, it is
necessary to examine the structure of G/PL for the prime 2.

Definition. Suppose X is an H-space and R is a subring of the rationals. X⊗R
is a CW complex which classifies the generalized cohomology theory [ , X] ⊗ R
(see Brown [6]).

The ring Z(2) of integers localized at 2 is the subring of the rationals generated
by 1

pi
with pi the odd primes. We write X(2) = X ⊗ Z(2).

(6.1) Theorem. The k-invariants of (G/PL)(2) are all trivial in dimension ≥ 5.

Assume 6.1 for the moment. To prove our main assertion we deduce :

(6.2) Corollary. Ωm(G/PL)(2) (m = 4n + 1, n > 0) is homotopy equivalent to
the cartesian product of K(Z2, 4i+ 1) and K(Z(2), 4i− 1), i = 1, 2, . . ..

Next we assert that the composite

K(Z(2), 3) ⊂ Ωm(G/PL)(2) −−→ K(Z2, 3)

is “reduction mod 2”. This follows from the observation that, from the ho-
motopy properties of µ, the map Ωm(G/PL)−−→K(Z2, 3) is essential. Now let
α ∈ H3(M ;Z) be any class and let α1 ∈ H3(M ;Z(2)) be the corresponding class.
Let α2 ∈ H3(M ;Z2) be the reduction mod 2 of α1 (and α). α1 is realized by
a map f : M0−−→K(Z(2), 3) ⊂ Ωm(G/PL)(2) and some odd multiple rf lifts to
Ωm(G/PL). But, on composition into K(Z2, 3), rf also represents α2, and so we
can indeed alter the original obstruction by the mod 2 reduction of α, as asserted.

Proof of 6.1. The main step is the construction of cohomology classes inH4∗(G/PL;
Z(2)) and H4∗+2(G/PL;Z2) which determine the surgery obstructions :
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(6.3) Theorem. There are classes

K = k2 + k6 + . . . ∈ H4∗+2(G/PL;Z2)

and

L = `4 + `8 + . . . ∈ H4∗(G/PL;Z(2))

with the following property. If f : Mn−−→G/PL is a map then

s(f) =
{ 〈W (M) ∪ f∗K, [M ]〉 ∈ Z2 if n = 4k + 2

8〈L(M) ∪ f∗L, [M ]〉 ∈ 8Z if n = 4k

where W (M) is the total Stiefel-Whitney class and L(M) is the Hirzebruch L-
genus.

Remark L( ) is a rational class (obtained from the equivalence BO⊗Q ' BPL⊗
Q, which follows from the finiteness of the exotic sphere groups Θi = πi(PL/O)
(Kervaire and Milnor [19]). The second formula must the therefore be interpreted
in rational cohomology.

(6.4) Corollary If f : Sm−−→G/PL represents the generator of π4n (resp. π4n+2),
n > 1, then

〈f∗(`4n), [S4n]〉 = 1 (resp. 〈f∗(k4n+2), [S4n+2]〉 = 1 ) .

It follows from 6.4 that the Hurewicz map for (G/PL)(2) is indivisible in di-
mensions 4n, n > 1, and that the mod 2 Hurewicz map is non-trivial in dimensions
4n+ 2. From these facts, 6.1 follows by an exact sequence argument.

We now prove 6.3.

Definition of K. Assuming that

Kr−1 = k2 + k6 + . . .+ k4r−2

has already been defined we define k4r+2. By Thom (see Conner and Floyd [8])
we have that

Ω4r+2(G/PL;Z2) −−→ H4r+2(G/PL;Z2)

is onto (where Ω∗( ) denotes oriented bordism), with kernel generated by decom-
posables. Let x ∈ H4r+2(G/PL;Z2) and f : M−−→G/PL represent x. Define

k(x) = K(f)− 〈f∗Kr−1 ∪W (M), [M ]〉 ∈ Z2 .

Then from the multiplicative formulae for the Kervaire obstruction (Rourke and
Sullivan [36]) and the multiplicative property of W ( ), it is easy to check that k( )
vanishes on decomposables and therefore defines a cohomology class k4r+2 with
the required properties.
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Definition of L. The definition is very similar to K. One uses instead the fact
(also due to Thom) that

Ω4r(G/PL) −−→ H4r(G/PL;Z(2))

is onto, and the multiplicative properties of L( ) and the index obstruction.

This completes the proof of 6.3.

Remark. We have described as little of the homotopy type of G/PL as we
needed. Sullivan has in fact completely determined the homotopy type of G/PL.
We summarize these results :

At the prime 2. (G/PL)(2) has one non-zero k-invariant (in dimension 4) which
is δSq2 (this follows from 6.3 and the remarks below 4.4).

At odd primes. (G/PL)(odd) has the same homotopy type as (BO)(odd) (the
proof of this is considerably deeper). [X(odd) means X ⊗ Z[ 1

2 ]. ]

§7. Refinements of the Main Theorem

We consider three refinements :
(a) Relaxing the π1-condition (2) in Theorem 1.1. No really satisfactory

results are available here since one immediately meets the problem of topological
invariance of Whitehead torsion.∗ However, if one is willing to bypass this problem
and assume that h is a simple homotopy equivalence, then one can relax condition
(2) considerably in the bounded case.

(b) and (c) Relaxing the condition that h is a homeomorphism. The two
conditions we replace this by are :

(b) There is a topological h-cobordism between M and Q.
(c) h is a cell-like map (cf. Lacher [21]).

With both these replacements, the Main Theorem (1.1) holds good.

We first consider condition (a), assuming that Mn is connected with non-
empty connected boundary, n ≥ 6, and π1(∂M)−−→π1(M) (induced by inclusion)
is an isomorphism.

Let SHT (M) denote the ∆-set of simple homotopy triangulations of M , i.e.
a typical k-simplex is a simple homotopy equivalence of pairs

(Qn,k, ∂Qn,k) −−→ (M ×∆k, ∂M ×∆k) .

(7.1) Theorem. i : SHT (M)−−→NM(M) is a homotopy equivalence.

∗ Solved by Chapman in 1974.
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Proof. The proof is the same as for 3.2, except that one deals with non-simply-
connected surgery in the bounded case with the same fundamental group in the
interior and on the boundary, so that the π-π theorem of Wall [44] applies.

Combining 7.1 with 3.1 we have :

(7.2) Corollary. q : SHT (M)−−→(G/PL)M is a homotopy equivalence.

Now define Sht(M) to be the set of PL equivalence classes of simple homotopy
triangulations of M . Then from the s-cobordism theorem we have

(7.3) Corollary. q ∗ : Sht(M)−−→[M,G/PL] is a bijection.

Using 7.3 we now have precisely the same analysis as in the simply connected
case and can deduce

(7.4) Theorem. Suppose h : Q−−→M is a homeomorphism and a simple homo-
topy equivalence. Suppose that H3(M ;Z) has no 2-torsion. Then h is homotopic
to a PL isomorphism.

(7.5) Corollary. If h : Q−−→Mn is a topological homeomorphism, n ≥ 6, and
M ↘ K2 then h is homotopic to a PL isomorphism.

Proof. The dimension condition ensures that π1(∂M)−−→π1(M) is an isomor-
phism and Connell and Hollingsworth [7] show that h must be a simple homotopy
equivalence.

We now move on to condition (b).

(7.6) Theorem. Suppose M satisfies the conditions of the main theorem 1.1 with
(2) replaced by the existence of a (topological) h-cobordism W between M and Q.
Then the homotopy equivalence h : Q−−→M determined by W is homotopic to a
PL isomorphism.

Proof. We only need to show that qh factors via TOP/PL. By Gluck [10]
we may assume that W is embedded properly in SN × I with PL embeddings
M ⊂ SN × {0}, Q ⊂ SN × {1} . By (stable) existence and uniqueness of normal
bundles, we may assume that W ⊂ SN × I has a normal bundle ξ which restricts
to PL normal bundles νM and νQ on M ⊂ SN × {0}, Q ⊂ SN × {1}.

Since W deformation retracts on M and Q, ξ is determined by each of νM
and νQ, therefore (f−1)∗νQ is topologically equivalent to νM . But this equivalence
clearly commutes with the standard reductions of Thom spaces and hence (cf.
§3) coincides, up to fibre homotopy, with the fibre homotopy equivalence which
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determines qh. Thus qh factors via TOP/PL, as required.

We now move on to condition (c).

Definition. A map f : Q−−→M of manifolds is cell-like (CL) if :
(1) f is proper, i.e. f−1(∂M) = ∂Q and f−1 (compact)=compact; and one of

the following holds :
(2)1 f−1(x) has the Čech homotopy type of a point, for each x ∈M ,
(2)2 f | : f−1(U)−−→U is a proper homotopy equivalence, for each open set U ⊂M

or ∂M .

Lacher [21] proves equivalence of (2)1 and (2)2.

(7.7) Theorem. Suppose M satisfies the conditions of the main theorem and
f : Q−−→M is a cell-like map. Then f is homotopic to a PL isomorphism.

To prove 7.7 we shall define a ∆-monoid CL (analogous to TOP ) and check
that the same analysis holds.

Definition of CLq. A typical k-simplex is a CL fibre map f : ∆k × Rq−−→
∆k ×Rq, i.e. f commutes with projection on ∆k and f | : {x}×Rq−−→{x}×Rq is
cell-like for each x ∈ ∆k.

The inclusion CLq ⊂ CLq+1 is defined by identifying f with f × id and the
stable limit is CL.

Now redefine Gq to consist of proper homotopy equivalences Rq−−→Rq (clearly
homotopy equivalent to our original definition) then we have CLq ⊂ Gq and
CLq/PLq ⊂ Gq/PLq.

Theorem 7.7 follows in the same way as the main theorem from the following
three propositions :

(7.8) Proposition. CL/PL classifies stable PL bundles with a CL-trivialization
(a CL-trivialization of ξ/K is a fibre map E(ξ)−−→K × Rq which is cell-like on
fibres).

(7.9) Proposition. qf factors via CL/PL.

(7.10) Proposition. There is a map λ1 : (CL/PL)M−−→HT (M) (M closed,
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simply connected and n ≥ 6) which makes

(CL/PL)M w
j

�
�
���λ1

(G/PL)M

HT (M)
N
N
NNP
q1

homotopy commutative.

Proposition 7.8 is best proved directly (an easy argument) rather than as the
fibre of BPL−−→BCL, since it is not clear what BCL classifies. We leave this to
the reader. For 7.10 notice that the only fact used in defining λ1 (cf. proof of 5.4) is
that h : E(ξ)−−→M×Rk is a proper homotopy equivalence on h−1(M×T k−1×R),
which is certainly implied if h is cell-like. It remains to prove 7.9. For this we
associate to f : Q−−→M a CL fibre map f̂ : τQ−−→τM . Since the definition of f̂
is natural (induced by f × f : M ×M−−→Q×Q) it is easily proved that the CL
trivialization of τM⊕(f−1)∗νQ which f̂ determines, coincides up to fibre homotopy,
with the fibre homotopy trivialization determined by f as a homotopy equivalence
(cf. §3 – one only needs to prove (3.8) commutative.).

Construct f̂ as follows : let

M
∆
−−−→ M ×M

π1−−−→ M

be the tangent microbundle of M . By Kuiper and Lashof [20], π1 contains a PL
fibre bundle τM with zero section ∆M . Let

EQ = (f × f)−1E(τM) ⊂ Q×Q .

We assert that EQ is the total space of a PL fibre bundle, fibre Rn, projection π1

and zero-section ∆Q. To see this observe that

V = EQ ∩ π−1
1 (x) ∼= f−1(U)

where U = π2(π−1
1 (fx) ∩ E(τM)) ⊂ M , which is ∼= Rn. Now f | : V−−→U is a

proper homotopy equivalence, since f is cell-like, so V ∼= Rn by Stallings [39].
Hence EQ is an Rn-bundle; ∆Q is a section since EQ is a neighborhood of ∆Q in
Q×Q and we can take it as zero section. By the uniqueness part of [20], EQ ∼= τQ
and (f × f)|EQ is the required CL bundle map f̂ .

In the bounded case, one first extends f to a cell-like map of open manifolds
(by adding an open collar to M and Q and extending f productwise), then the
above procedure works on restricting again to Q.

§8. Block bundles and homotopy equivalences

We refer the reader to Rourke and Sanderson [30] for notions of block bundle
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etc. A block homotopy equivalence h : E(η)−−→E(ξ), where ξq, ηq/K are
q-block bundles, is a map satisfying :
(1) h|K = id ,
(2) h preserves blocks ,
(3) h(E(∂η)) ⊂ E(∂ξ) (∂ξ, ∂η denote associated sphere block bundles)
(4) h| : E(∂η|σ)−−→E(∂ξ|σ) has degree ± 1 each σ ∈ K.

Condition (3) makes sense since both sides have the homotopy type of Sq−1.

The proof of the following is left to the reader (cf. Dold [9]) :

(8.1) Proposition. There is an “inverse” block homotopy equivalence g : E(ξ)
−−→E(η) such that hg and gh are homotopic to the identity via block homotopy
equivalences.

The associated G̃q/P̃Lq-bundle.

Define ∆-sets G̃q, P̃Lq to consist of b.h.e.’s ∆k × Iq−−→∆k × Iq and block
bundle isomorphisms ∆k × Iq−−→∆k × Iq. These sets have the same homotopy
type as the sets defined in §2 (cf. Rourke and Sanderson [32]). We associate to
ξq a ∆-fibration with base K and fibre G̃q by taking as typical k-simplex a b.h.e.
f : ∆k × Iq−−→E(ξ|σ), σk ∈ K, and a ∆-fibration fibre G̃q/P̃Lq by factoring by

P̃Lq on the left. I.e. f1 ∼ f2 if there is g ∈ P̃L
(k)

q such that f1 = f2 ◦ g.

Now say b.h.e.’s h1 : E(η1)−−→E(ξ), h2 : E(η2)−−→E(ξ) are isomorphic
(resp. homotopic) if there is a block bundle isomorphism g : η1−−→η2 such that
h2g = h1 (resp. h2g is homotopic to h1 via b.h.e.’s). The following is easily proved
(cf. Rourke and Sanderson [30]) :

(8.2) Proposition. Isomorphism classes (resp. homotopy classes) of b.h.e.’s
E(η)−−→E(ξ) correspond bijectively to cross-sections (resp. homotopy classes of
cross-sections) of the associated G̃q/P̃Lq-bundle to ξ.

Now write Ht(ξ), “homotopy triangulations of ξ”, for the set of homotopy
classes of b.h.e.’s η−−→ξ.

(8.3) Corollary. If q ≥ 3, Ht(ξ) ∼= [K,G/PL].

Proof. This follows from 8.2 and 2.1(d), from the fact that G/PL is an H-space,
and from the existence of one cross-section (determined by id : ξ−−→ξ).

More generally define a ∆-set HT (ξ) with π0(HT (ξ)) = Ht(ξ) by taking as
typical k-simplex an isomorphism class of b.h.e.’s η−−→ξ × ∆k (see Rourke and
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Sanderson [30] for the cartesian product of block bundles), then one has similarly :

(8.4) Corollary. If q ≥ 3, HT (ξ) ' (G/PL)K.

Now suppose |K| = Mn then E(ξ) is a manifold and a block homotopy equiva-
lence η−−→ξ gives a simple homotopy equivalence (E(η), E(∂η))−−→(E(ξ), E(∂ξ)),
so we have a ∆-map j : HT (ξ)−−→SHT (E(ξ)).

(8.5) Theorem. If q ≥ 3, n+ q ≥ 6 then j is homotopy equivalence.

Proof. By 8.4 and 7.2, both sides have the homotopy type of (G/PL)M , so one
only needs to check that the diagram

HT (ξ) w
j

�
�
���8.4

SHT (E(ξ))
N
N
NNQ
q

(G/PL)M

commutes up to homotopy. Now 8.4 was defined by comparing ξ and η as (stable)
block bundles and q was defined (cf. §3) by comparing τ(E(ξ)) and τ(E(η)) as
stable bundles. But τ(E(ξ)) ∼ ξ ⊕ τM and τ(E(η)) ∼ η ⊕ τM (see Rourke and
Sanderson [31]) and it follows that the diagram commutes up to inversion in G/PL.

Relative Sullivan theory.

Suppose Q ⊂ M is a codimension 0 submanifold and consider homotopy
triangulations h : M1−−→M which are PL isomorphisms on Q1 = f−1(Q) ⊂ M1.
Denote the resulting ∆-set HT (M/Q), cf. §2.

The following is proved exactly as 3.3 and 3.5 :

(8.6) Theorem. There is a homotopy equivalence

HT (M/Q) ' (G/PL)M0/Q

if n ≥ 6, π1(M\Q) = π1(∂M\∂Q) = 0 and M0 = M if ∂M\∂Q is non-empty, and
M0 = M\{pt /∈ Q} if ∂M\∂Q = ∅.

From 8.6 one has a Hauptvermutung relative to a codimension 0 submanifold,
which we leave the reader to formulate precisely.

Now suppose Q ⊂M is a codimension q proper submanifold and ξ/Q a normal
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block bundle. Let HT (M, ξ) denote the ∆-set of homotopy triangulations which
are block homotopy equivalences on E(η) = h−1(E(ξ)) (and hence in particular a
PL isomorphism on Q1 = zero-section of η).

(8.7) Corollary. The natural inclusion defines a homotopy equivalence

HT (M, ξ) ' HT (M)

if n ≥ 6, q ≥ 3 and π1(M) = π1(∂M) = 0.

Proof. Consider the diagram

HT (M |E(ξ)) w
' 8.6

u

(G/PL)M0/Q

u
HT (M, ξ) w

inc.

u
restriction

HT (M) w
' 3.3-5 (G/PL)M0

u
restriction

HT (ξ) w
' 8.4 (G/PL)Q

The outside vertical maps are fibrations, commutativity of the top square is clear
and of the bottom square (up to sign) follows from the proof of 8.5. The result
now follows from the 5-lemma.

Relative Hauptvermutung.

We apply 8.7 to give a Hauptvermutung relative to a submanifold of codi-
mension ≥ 3.

(8.8) Theorem. Suppose M satisfies the conditions of the Hauptvermutung and
Q ⊂ M is a proper codimension ≥ 3 submanifold. Then any homeomorphism
h : (M1, Q1)−−→(M,Q), which is a PL isomorphism on Q1, is homotopic mod Q1

to a PL isomorphism.

(8.9) Theorem. Suppose M and Q both satisfy the conditions of the Hauptver-
mutung and Q ⊂ M is a proper codimension ≥ 3 submanifold. Then any homeo-
morphism of pairs h : (M1, Q1)−−→(M,Q) is homotopic to a PL isomorphism of
pairs.

Proofs. In 8.8 it is easy to homotope h to be a b.h.e. on some block neighborhood
η of Q1 in M . h ' PL isomorphism by the main theorem and it is homotopic via
maps which are b.h.e.’s on η by Corollary 8.7.
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In 8.9 one first homotopes h|Q1 to a PL isomorphism and extends to give a
homotopy equivalence h1 : M1−−→Q1. It is again easy to make h1 a b.h.e. on η
and then the proof of 8.8 works.

The embedding theorem.

(8.10) Theorem. Suppose f : Mn−−→Qn+q is a simple homotopy equivalence,
M closed and q ≥ 3. Then f is homotopic to a PL embedding.

(8.11) Corollary. Suppose f : Mn−−→Qn+q is (n − q + 1)-connected, then f is
homotopic to a PL embedding.

Proof. This follows at once from 8.10 and Stallings [40].

Proof of 8.10. If n + q < 6 the theorem is trivial, so assume n + q ≥ 6. Let
g : ∂Q−−→M be the homotopy inverse of f restricted to ∂Q.

Assertion 1. As a fibration, g is fibre homotopy equivalent to the projection of
a sphere block bundle g1 : E(∂η)−−→M .

The theorem then follows by replacing g and g1 by their mapping cylinders
to obtain (up to homotopy type) :

Q

u

h '

h
h
h
h
hj

f−1

M

E(η)
''
''
')

π = projection

where h is a homotopy equivalence (Q, ∂Q)−−→(E(η), E(∂η)). But f−1 and π are
both simple homotopy equivalences so h is a simple homotopy triangulation of
E(η) and hence by 8.5 homotopic to a b.h.e. Therefore Q is PL isomorphic to a
block bundle over M and M is embedded in Q (by a map homotopic to f).

Instead of Assertion 1, we prove :

Assertion 2. Some large suspension (along the fibres) of g : ∂Q−−→M is fibre
homotopy equivalent to the projection of a sphere block bundle over M .

From this it follows that the fibre of g suspends to a homology sphere (and
being simply connected) must be a homotopy sphere. Assertion 1 then follows at
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once from the classifying space version of 2.1(d) which asserts that

BP̃Lq w

u

BG̃q ' BGq

u
BP̃L w BG̃ ' BG

is a pushout for q ≥ 3, i.e. “a spherical fibre space stably equivalent to a sphere
block bundle is already equivalent to one”.

Now to prove Assertion 2 we only have to notice that f × id : M−−→Q× IN
(N large) is homotopic to the inclusion of the zero section of a block bundle. First
shift to an embedding f1, then choose a normal block bundle ξ/f1M and observe
(cf. Mazur [24]) that c`(Q× IN\E(ξ)) is an s-cobordism and hence a product. So
we may assume E(ξ) = Q× IN , as required.

Now f−1
1 |∂(Q×IN ) is the projection of a sphere block bundle and the suspension

along the fibres of g.

Remarks. (1) There is a similarly proved relative version of 8.10 in case M and
Q are bounded and f |∂M is an embedding in ∂Q. Hence using Hudson [16] one
has that any two embeddings homotopic to f are isotopic.
(2) 8.10 (and the above remark) reduce the embedding and knot problems to
“homotopy theory” – one only has to embed up to homotopy type. The reduction
of the problem to homotopy theory by Browder [3] follows easily from this one –
for Browder’s smooth theorems, one combines the PL theorems with smoothing
theory using Haefliger [12] and Rourke and Sanderson [32].
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CHAPTER III

The Hauptvermutung according to

Casson and Sullivan

By G. E. Cooke

§1. Introduction

Chapter II contains a proof, due to Casson and Sullivan, of the Hauptvermu-
tung for a PL manifold M which satisfies :

(1) M is either closed of dimension at least five, or bounded of dimension at least
six;

(2) each component of both M and ∂M is simply connected;
(3) H3(M ;Z2) = 0.

In this chapter we give a proof that condition (3) can be weakened to :

(3)′ H4(M ;Z) has no 2-torsion.

This stronger result was stated in Sullivan [18]. An outline of the original proof
may be found in Sullivan [17]. The argument presented here was sketched in §6 of
Chapter II.

The main result is conveniently stated in terms of the obstructions to de-
forming a homotopy equivalence to a homeomorphism introduced by Sullivan in
his thesis [16]. Assume that h : Q−−→M is a topological homeomorphism. Write
M0 = M if ∂M is non-empty, and M0 = M\{disc} when ∂M is empty. The i-th
obstruction to deforming h to a PL homeomorphism is denoted by oi(h). It lies
in Hi(M0; πi(G/PL)). We shall prove that :

(a) o4(h) ∈ H4(M0; π4(G/PL)) = H4(M0;Z) is defined (all earlier obstructions
are zero) and is an element of order at most two;

(b) if o4(h) = 0 then all higher obstructions vanish.

Our method is to use information about the bordism groups of G/PL to yield
results on the k-invariants of G/PL. The following auxiliary result, which was
originally stated in Sullivan [17] and which implies that the 4i-th k-invariants are
of odd order for i > 1, is of independent interest :

(4.4) Theorem. There exist classes `i ∈ H4i(G/PL;Z(2)) for each i ≥ 0 such
that if we write

L = `0 + `1 + `2 + · · · ∈ H4∗(G/PL;Z(2))
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then for any map f : M4k−−→G/PL of a smooth manifold the surgery obstruction
of the map f (see §4 of Chapter II) is given by

s(f) = 8
〈
L(M) ∪ f∗L, [M ]

〉
,

where L(M) is the Hirzebruch L-genus, and Z(2) denotes the integers localized at
2.

We reproduce a proof given by Sullivan in his thesis that the (4i + 2)-nd k-
invariants of G/PL are zero, and explicitly calculate the 4th k-invariant (Theorem
4.6).

§2 contains two elementary results on principal fibrations. We follow the
treatment of Spanier [14] so closely that proofs are unnecessary. In §3 various
results on Postnikov systems are stated. The literature on Postnikov system is
scattered. 2-stage Postnikov systems were discussed by Eilenberg and MacLane
[4]; in particular, the notation k-invariant is due to them. Postnikov’s fundamental
papers appeared in 1951; see [10] for an English translation. Other basic references
are Moore [8, 9]; recent treatments are in Spanier [14] and Thomas [20]. In §3 I
give proofs of two well-known elementary results (3.7 and 3.8) which I was unable
to find in the literature. I also quote a result of Kahn’s [6] on Postnikov systems of
H-spaces because of its general interest. In §4 the desired results on the homotopy
properties of G/PL are obtained and applied to the Hauptvermutung.

I am happy to acknowledge the substantial help of several people in the prepa-
ration of this chapter. I wish to thank Colin Rourke for arousing my interest in
the problem and for explaining much of the needed geometry such as Sullivan’s
thesis. I am grateful to Greg Brumfiel for outlining Sullivan’s proof of the main
result to me, and for showing me how to extend Theorem 4.3 to PL-manifolds.
And I thank Bob Stong for patiently explaining the necessary results in cobordism
theory – especially Theorem 4.5.

§2. Principal fibrations

Let B be a space with base point b0. Let PB denote the space of paths in B
starting at b0. The evaluation map

p : PB −−→ B ; λ −−→ λ(1)

is the projection of the path-space fibration (see Spanier [14]). The fibre of p
is the space of loops in B based at b0, which is denoted ΩB. If f : X−−→B is a
map, the induced fibration over X is called the principal ΩB-fibration induced by
f . The total space E is defined by

E = {(x, λ) ∈ X × PB | f(x) = λ(1)}

and the projection E
π
−−→X is defined by π(x, λ) = x. (E is often called the fibre
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of the map f .) Suppose that x0 ∈ X is a base point and that f(x0) = b0. Then we
stipulate that c0 = (x0, λ0) is the base point of E, where λ0 is the constant path.

We have an inclusion ΩB
π−−→ E given by j(λ) = (x0, λ). Let Y be a space with

base point y0. In the following theorem [Y, ·] denotes the functor “homotopy-rel-
base point classes of base-point preserving maps from Y to ·”.

(2.1) Theorem. The following sequence of pointed sets is exact :

[Y,ΩB]
j∗
−−−→ [Y,E]

π∗−−−→ [Y,X]
f∗
−−−→ [Y,B] .

We define an action

m : ΩB × E −−→ E ; (λ, (x, λ′)) −−→ (x, λ ∗ λ′) ,

where λ ∗ λ′ denotes, as usual, the path

(λ ∗ λ′)(t) =
{
λ(2t) t ≤ 1

2

λ′(2t− 1) t ≥ 1
2 .

The action m is consistent with the inclusion j : ΩB−−→E and the multiplication
in ΩB since

m(λ, j(λ′)) = m(λ, (x0, λ
′))

= (x0, λ ∗ λ′)
= j(λ ∗ λ′) .

The map m induces an action

m∗ : [Y,ΩB]× [Y,E] −−→ [Y,E]

where [Y,ΩB] inherits a group structure from the multiplication in ΩB.

(2.2) Theorem. If u, v are elements of [Y,E], then π∗u = π∗v if and only if there
exists w in [Y,ΩB] such that

v = m∗(w, u) .

§3. Postnikov systems

Let X be a topological space. A cofiltration of X is a collection of spaces
{Xi} indexed on the non-negative integers and maps

fi : X −−→ Xi , gi : Xi −−→ Xi−1

such that the composition gifi is homotopic to fi−1. A cofiltration is usually
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assembled in a diagram as below :
...

u
gi+1

X w
fi

��������
fi−1

�
�
�
�
�
�
�
�
�
�
��

f0

Xi

u
gi

Xi−1

u
gi−1

...

u
g1

X0

A cofiltration is called convergent if for any integer N there is an M such that
for all m > M , fm : X−−→Xm is N -connected. The notion of convergent cofil-
tration has many applications. For example, a very general problem in topology
is to determine the homotopy classes of maps of a finite complex K to a space
X (denoted [K,X]). If {Xi}, {fi}, {gi} is a convergent cofiltration of X, then the
problem of calculating [K,X] is split up into a finite sequence of problems : given
that [K,Xi] is known, calculate [K,Xi+1]. Since the cofiltration is assumed con-
vergent, (fi)∗ : [K,X]−−→[K,Xi] is a bijection for large i and so the sets [K,Xi]
converge after a finite number of steps to a solution of the problem.

Naturally one would like to concentrate on cofiltrations where each step of
the above process (calculate [K,Xi+1] given [K,Xi]) is as simple as possible. Ob-
struction theory leads to the following requirement for simplifying the problem :
that each map gi : Xi−−→Xi−1 be a fibration with fibre an Eilenberg-MacLane
space. The precise definition is given in the following way.

First note that the space of loops in a K(π, n + 1) is a K(π, n), and so it
makes sense to speak of a principal K(π, n)-fibration. Such a fibration is induced
by a map of the base space into K(π, n+ 1).

(3.1) Definition. A Postnikov system for a path-connected space X is a
convergent cofiltration

{Xi} , {fi : X−−→Xi} , {gi : Xi−−→Xi−1}
of X such that X0 is contractible, each Xi has the homotopy type of a CW
complex, and gi : Xi−−→Xi−1 (i > 0) is a principal K(π, i)-fibration for some π.

Suppose that X is a path-connected space, and that {Xi}, {fi : X−−→Xi},
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{gi : Xi−−→Xi−1} is a Postnikov system for X. Then it follows that :
(a) For each i, the map fi : X−−→Xi induces isomorphisms of homotopy

groups in dimensions ≤ i, and πj(Xi) = 0 for j > i;
(b) for each i > 0, the map gi : Xi−−→Xi−1 is actually a principal K(πi(X), i)

fibration, induced by a map

ki : Xi−1 −−→ K(πi(X), i+ 1) .

The class ki ∈ Hi+1(Xi−1; πi(X)) is called the i-th k-invariant of the given Post-
nikov system. Furthermore, the inclusion of the fibre of gi, j : K(πi(X), i)−−→Xi,
induces a homology homomorphism equivalent to the Hurewicz homomorphism hi
in the space X, in that the diagram below is commutative :

Hi(K(πi(X), i)) w
j∗

u

'

Hi(Xi)

πi(X) w
hi Hi(X)

u

(fi)∗

(c) X is a simple space; that is to say, π1(X) acts trivially on πn(X) for each
n, or equivalently, any map of the wedge S1 ∨ Sn−−→X extends over the product
S1 × Sn. In particular, π1(X) is abelian.

On the other hand, if X is simple then there exists a Postnikov system for
X. See Spanier [14, Corollary 8.3.1, p.444]. For a discussion of the uniqueness of
Postnikov systems, see Barcus and Meyer [1].

The following facts about Postnikov systems are presented without proofs
except in cases where I do not know of an appropriate reference :

(3.2) Maps of Postnikov systems. Let X and X ′ be spaces, with Postnikov
systems {Xi, fi, gi}, {X ′i, f ′i , g′i}. If h : X−−→X ′ is a map, then there exists a map
of Postnikov systems consistent with the map h; that is, there is a collection of
maps {hi : Xi−−→X ′i} such that hifi ' f ′ih and hi−1gi ' g′ihi for all i. (See Kahn
[6].)

(3.3) Cohomology suspension. If B is a space with base point ∗, and PB
p
−−→

B is the path space fibration, then for i > 1 the composition

Hi(B;G)
≈
←−− Hi(B, ∗;G)

p∗

←−− Hi(PB,ΩB;G)
δ
←−−
≈

Hi−1(ΩB;G)

−−→ Hi−1(ΩB;G)

(with G an arbitrary coefficient group) is called the cohomology suspension
and is denoted by σ : Hi(B;G)−−→Hi−1(ΩB;G). For i ≤ 1 σ is set equal to zero.
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(3.4) Postnikov system of a loop space. (See Suzuki [19] for a study of the case
of 2 non-vanishing homotopy groups.) Let X be a path-connected space with base
point. Let ΩX denote the component of the loop space of X consisting of those
loops which are homotopic to a constant. If {Xi}, {fi : X−−→Xi} {gi : Xi−−→
Xi−1} is a Postnikov system for X, then a Postnikov system for ΩX is obtained
by applying the loop space functor. That is, set

Yi = ΩXi+1 ,

f ′i = Ωfi+1 : ΩX −−→ ΩXi+1 ,

g′i = Ωgi+1 : ΩXi+1 −−→ ΩXi

and then {Yi, f ′i , g′i} is a Postnikov system for ΩX. The k-invariants of this Post-
nikov system for ΩX are just the cohomology suspensions of the k-invariants of
the Postnikov system {Xi, fi, gi}.

(3.5) Definition. For any space Y , the set [Y,ΩB] inherits a group structure
from the multiplication on ΩB. We shall often use the fact that if u ∈ Hi(B;G)
then σu ∈ Hi−1(ΩB;G) is primitive with respect to the multiplication on ΩB;
this means that for any space Y and for any two maps f, g ∈ [Y,ΩB],

(f · g)∗σu = f∗σu+ g∗σu ,

where f · g denotes the product of f and g. (See Whitehead [22].)

(3.6) Postnikov system of an H-space. Let X be an H-space. Then X is
equipped with a multiplication h : X ×X−−→X such that the base point acts as
a unit. If X and Y are H-spaces, then a map f : X−−→Y is called an H-map if
fhX ' hY (f×f). It is proved by Kahn [6] that if X is an H-space and {Xi, fi, gi}
is a Postnikov system for X, then each Xi can be given an H-space structure in
such a way that :

(a) for all i, fi and gi are H-maps,
(b) for all i, the k-invariant ki ∈ Hi+1(Xi−1; πi(X)) is primitive with respect

to the multiplication on Xi−1.

(3.7) Vanishing of k-invariant. If X is a space and

Xi

u

gi

Xi−1 w
ki K(πi(X), i+ 1)

is the i-th stage of a Postnikov system for X, then ki = 0 if and only if the
Hurewicz map h : πi(X)−−→Hi(X) is a monomorphism onto a direct summand.

Proof. Serre [12] constructs for any fibre space such that the fundamental group of
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the base acts trivially on the homology of the fibre an exact sequence of homology
groups. In the case of the fibration gi : Xi−−→Xi−1, with coefficient group πi(X),
we obtain

. . . −−−→Hi(Xi; πi(X))
j∗

−−−→ Hi(K(πi(X), i); πi(X))
τ
−−−→ Hi+1(Xi−1; πi(X)) .

Here j : K(πi(X), i)−−→Xi is the inclusion of the fibre and τ is the transgression.
The fundamental group of Xi−1 acts trivially on the homology of the fibre because
the fibre space is induced from the path-space fibration over K(πi(X), i+ 1). The
sequence is exact in the range needed even if Xi−1 is not simply-connected, as a
simple argument using the Serre spectral sequence will show.

Let ı ∈ Hi(K(πi(X), i); πi(X)) denote the fundamental class. The natural
isomorphism

Hi(K(πi(X), i); πi(X)) ∼= Hom(πi(X), πi(X))

sends ı to the identity map. Consider the square below :

Xi w

u

K(πi(X), i)

PK(πi(X), i+ 1)

u

K(πi(X), i)

Xi−1 w K(πi(X), i+ 1)

In the path-space fibration the fundamental classes of the fibre and base space
correspond under transgression; the k-invariant ki ∈ Hi+1(Xi−1; πi(X)) is by
definition the pull-back of the fundamental class of the base space K(πi(X), i+1).
It follows that τ(ı) = ki.

First suppose ki = 0. Then by Serre’s exact sequence there is a class x ∈
Hi(Xi; πi(X)) such that j∗x = ı. The action of x on the homology of Xi gives a
map such that the diagram below is commutative :

πi(X)

u

∼=Hi(Xi)
��
��
����x

Hi(K(πi(X), i))
h
h
h
hhk j∗

But j∗ is essentially the Hurewicz homomorphism h : πi(X)−−→Hi(X) by remark
(b) above, so x gives a splitting map and h is a monomorphism onto a direct
summand.

Now assume that h is a monomorphism onto a direct summand. Then so is
j∗, and we may choose a splitting map

p : Hi(Xi) −−→ πi(X)

such that the diagram above is commutative with p in place of x. The universal
coefficient theorem implies that there is a class x ∈ Hi(Xi; πi(X)) whose action on
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Hi(Xi) is the map p. It follows that j∗x = ı, since K(πi(X), i) has no homology
in dimension i− 1. Thus ki = 0 and the proof is complete.

(3.8) Order of k-invariant. Let X be a space such that πi(X) = Z for some
i. Then the i-th k-invariant ki in any Postnikov system for X is of finite order
if and only if there is a cohomology class in Hi(X) which takes a non-zero value
on the generator of πi(X). The order of ki is equal to the least positive integer
d such that there is a cohomology class in Hi(X) which takes the value d on the
generator of πi(X).

Proof. Let
Xi

u

K(Z, i)

Xi−1 w K(Z, i+ 1)
be the i-th stage of a Postnikov system for X. We have as in 3.7 an exact sequence

. . . −−−→ Hi(Xi)
j∗

−−−→ Hi(K(Z, i))
τ
−−−→ Hi+1(Xi−1)

and the fundamental class ı ∈ Hi(K(Z, i)) transgresses to ki. It follows from
remark (b) above that after identifying Hi(X) with Hi(Xi) the map j∗ can be
regarded as evaluation of Hi(X) on πi(X). In other words

Hi(Xi) w
j∗

u

(fi)∗

Hi(K(Z, i))

u

∼=

Hi(X) w
eval. Hom(πi(X),Z)

is commutative. Thus to prove the first part of (3.8) we have

ki is of infinite order ⇐⇒ τ is a monomorphism

⇐⇒ j∗ = 0

⇐⇒ every cohomology class in Hi(X)

takes the value 0 on πi(X) .

To prove the second statement of (3.8) we have

the order of ki divides d ⇐⇒ j∗x = dı for some x ∈ Hi(Xi)

⇐⇒ some cohomology class in

Hi(X) takes the value d on

the generator of πi(X) .



4. application to g/pl and the hauptvermutung 173

§4. Application to G/PL and the Hauptvermutung

Recall that in Chapter II it is proved that the periodicity map

µ : G/PL −−→ Ω
4n

(G/PL)

has fibre an Eilenberg-MacLane space K(Z2, 3). Furthermore, the composition

TOP/PL
i

−−−→ G/PL
µ
−−−→ Ω

4n
(G/PL)

is null-homotopic. Now let M and Q be PL manifolds, and assume that

h : Q −−→ M

is a topological homeomorphism. Associated to h is a map

qh : M0 −−→ G/PL

(where M0 = M\{disc} if ∂M = ∅, M0 = M if ∂M 6= ∅) and, under certain
conditions on M , h is homotopic to a PL homeomorphism if and only if qh is
homotopic to a constant. (For example, it is enough to assume :

(1) M and Q are closed of dimension ≥ 5 or bounded of dim ≥ 6
(2) π1(M) = π1(∂M) = 0 .)

In this section we study the question of whether the map qh is null-homotopic.
By Chapter II the map qh factors through TOP/PL :

TOP/PL

�i

M0

(
(
()

w
qh G/PL

and so the composition µqh : M0−−→Ω
4n
G/PL is null-homotopic. By Theorems

2.1 and 2.2, this means that
(a) qh lifts to a map into the total space of the ΩΩ

4n
(G/PL) fibration induced

by µ. This total space is just the fibre of the map µ and so we denote it by
K(Z2, 3),

(b) different liftings of qh are related via the action of ΩΩ
4n

(G/PL) on K(Z2, 3).

Now any lifting of qh to a map into K(Z2, 3) defines a cohomology class in
H3(M0;Z2). We shall prove :

(4.1) Theorem. The collection of cohomology classes defined by liftings of qh
is a coset of the subgroup of mod 2 reductions of integral classes in M0 and so
determines an element Vh ∈ H4(M0;Z) of order 2. The map qh is null-homotopic
if and only if Vh = 0.

The theorem above can be restated in terms of the obstruction theory defined
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by Sullivan [16]. Let

oi(qh) ∈ Hi(M0; πi(G/PL))

denote the i-th obstruction to deforming qh to a constant. The theorem just stated
implies that in our case (where h is a topological homeomorphism) :

(a) o2(qh) = 0,
(b) o4(qh) ∈ H4(M0;Z) is equal to Vh and is an element of order 2,
(c) if o4(qh) = 0 then all the higher obstructions vanish.

We begin with a study of the k-invariants of G/PL. Let

{Xi} , {fi : G/PL−−→Xi} , {gi : Xi−−→Xi−1}
be a Postnikov system for G/PL. Let

xi ∈ Hi+1(Xi−1; πi(G/PL))

denote the i-th k-invariant. Recall that π4i+2(G/PL) = Z2, π4i(G/PL) = Z, and
the odd groups are zero.

(4.2) Theorem. For all i, x4i+2 = 0.

Proof. This theorem was proved in Sullivan’s thesis [16], and we reproduce the
proof here. By 3.7 it is sufficient to show that the Hurewicz homomorphism

h : Z2 = π4i+2(G/PL) −−→ H4i+2(G/PL)

is a monomorphism onto a direct summand. But that is true if and only if the
mod 2 Hurewicz homomorphism

h2 : Z2 = π4i+2(G/PL) −−→ H4i+2(G/PL)
mod 2 reduction
−−−−−−−−−→ H4i+2(G/PL;Z2)

is a monomorphism.

Consider the following diagram :

Ω4i+2(G/PL)

u

×2

Ω4i+2(G/PL) w

u

H4i+2(G/PL)

u

π4i+2(G/PL)
44
446h0

�h1

N4i+2(G/PL) w H4i+2(G/PL;Z2)
Here Ω and N denote oriented and unoriented smooth bordism respectively. The
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column in the middle is exact by a result of Conner and Floyd [3]. The surgery
obstruction gives a splitting

O
OOQ

���

π4i+2(G/PL) w Ω4i+2(G/PL)
and so h0 is onto a direct summand Z2. By the exactness of the middle column,
h1 is non-zero. Thus the generator f : S4i+2−−→G/PL of π4i+2 does not bound
a singular manifold in G/PL. According to Theorem 17.2 of [3], at least one of
the Whitney numbers associated to the singular manifold [S4i+2, f ]2 must be non-
zero. Since all of the Stiefel-Whitney classes of S4i+2 vanish (except w0 which is 1),
this implies that f∗[S4i+2] is non-zero in Z2-homology. Thus the mod 2 Hurewicz
homomorphism is a monomorphism and Theorem 4.2 is proved.

(4.3) Theorem. For all i > 1, x4i ∈ H4i+1(X4i−1;Z) is of odd order.

Proof. By 3.8 it is sufficient to find a cohomology class in H4i(G/PL) which
takes an odd value on the generator of π4i(G/PL).

We shall prove that such cohomology classes exist as follows : we construct,
for each i, a cohomology class

`i ∈ H4i(G/PL;Z(2)) ,

where Z(2) = integers localized at 2 = the ring of rationals with odd denominators.
The classes `i shall be constructed so that `i takes the value 1 on the generator
of π4i(G/PL) for i > 1. Since the homology of G/PL is finitely generated, a
sufficiently large odd multiple of `i is then the reduction of an integral class which
takes an odd value on the generator of π4i(G/PL).

(4.4) Theorem. There exist classes `i ∈ H4i(G/PL;Z(2)) for each i ≥ 0 such
that if we write

L = `0 + `1 + `2 + · · · ∈ H4∗(G/PL;Z(2))

then for any map f : M4k−−→G/PL of a smooth manifold the surgery obstruction
of the map f (see Chapter II) is given by

(1) s(f) = 8〈L(M) ∪ f∗L, [M ]〉
where L(M) is the L-genus of Hirzebruch [5, II §8] applied to the Pontrjagin classes
of M .

Now if αi ∈ π4i(G/PL) is a generator then the surgery obstruction of the
map αi : S4i−−→G/PL is 16 if i = 1 and 8 if i > 1. Since the Pontrjagin classes
of S4i are trivial, Theorem 4.4 implies that

〈`i, αi〉 =
{

2 if i = 1
1 if i > 1

and so Theorem 4.3 follows.
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We now prove Theorem 4.1, postponing the proof of Theorem 4.4. Consider
the diagram below

K(Z2, 3)

u
π

M0

i
i
i
iij

w
qh G/PL

Let ı3 ∈ H3(K(Z2, 3);Z2) be the fundamental class. Choose a lifting f1 : M0−−→
K(Z2, 3). We prove first that given any other lifting f2 : M0−−→K(Z2, 3) of qh,
we have

(a) f∗2 ı3 − f∗1 ı3 = reduction of an integral cohomology class.

Proof of (a). By Theorem 2.2, there is a map g : M0−−→ΩΩ
4n

(G/PL) such that
the composition

M0 w
g × f1 ΩΩ

4n
(G/PL)×K(Z2, 3)

u
m

K(Z2, 3)

is homotopic to f2. We have

m∗ı3 = j∗ı3 × 1 + 1× ı3

(where j : ΩΩ
4n

(G/PL)−−→K(Z2, 3) is the inclusion of the fibre) for dimension
reasons. We evaluate j∗ı3. Since

π1(ΩΩ
4n

(G/PL)) = Z2 , π3(ΩΩ
4n

(G/PL)) = Z

and the even groups are zero, a Postnikov system for ΩΩ
4n

(G/PL) looks like

ΩΩ
4n

(G/PL)NNNNNNP





�

E3

u
K(Z, 3)

K(Z2, 1)

in low dimensions. The k-invariant k3 ∈ H4(K(Z2, 1);Z) is the (4n+1)-st suspen-
sion of the k-invariant x4n+4 of G/PL, by 3.4. Since x4n+4 is of odd order, so is
k3 (here we assume n ≥ 1 and apply Theorem 4.3) and since k3 lies in a 2-primary
group it must be zero. Thus E3 is a product. Hence

H3(E3;Z2) ∼= Z2 ⊕ Z2 ,
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generated by ı31 and ı, where ı1 ∈ H1(K(Z2, 1);Z2) is the fundamental class
and ı ∈ H3(K(Z, 3);Z2) is the mod2 reduction of the fundamental class ı ∈
H3(K(Z, 3);Z). Thus we may write

j∗ı3 = aı31 + bı (a, b ∈ Z2) .

Now π3(ΩΩ
4n

(G/PL)) ∼= Z maps onto π3(K(Z2, 3)) ∼= Z2 since π3(G/PL) = 0.
It follows that b = 1. To evaluate a, we consider the fibre of the map j, which has
the homotopy type of Ω(G/PL). We obtain a sequence of spaces :

Ω(G/PL)
j′

−−−→ ΩΩ
4n

(G/PL)
j
−−−→ K(Z2, 3)

π
−−−→ G/PL .

We shall show that (j′)∗ı31 6= 0, (j′)∗ı = 0. Then, since jj′ ' ∗, it follows that
a = 0. Let

Ω(G/PL)NNNNNNP





�

E′3

u
K(Z, 3)

K(Z2, 1)

be a section of a Postnikov system for Ω(G/PL) obtained by looping the corre-
sponding section of a Postnikov system for G/PL. The k-invariant k3 ∈ H4(K(Z2,
1);Z) is then the suspension σx4 of the k-invariant x4 ∈ H5(K(Z2, 2);Z) forG/PL.
We shall prove later (Theorem 4.6) that x4 = δSq2ı2, where ı2 is the fundamental
class and δ is the Bockstein operation associated to the coefficient sequence

Z
×2
−−−→ Z −−−→ Z2 .

Since δ and Sq2 commute with suspension,

k3 = σx4 = δSq2ı1 = 0 .

Thus E′3 is a product. Now associated to the map j is a map E′3−−→E3 by 3.2.
This map multiples by 2 in π3 and is an isomorphism on π1, so a calculation gives

(j′)∗ı1 = ı1 , (j′)∗ı31 6= 0 , (j′)∗ı = 0 .

This completes the proof that a = 0, and we may write

m∗ı3 = ı× 1 + 1× ı3 .
Then since f2 ' m(g × f1) we have

f∗2 ı3 = (g × f1)∗(ı× 1 + 1× ı3)

= g∗ı+ f∗1 ı3 .
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The difference f∗2 ı3 − f∗1 ı3 is thus the reduction of the integral class g∗ı, and (a)
is proved.

We complete the proof of Theorem 4.1 by showing that given any lifting f1

of qh and any class u ∈ H3(M0;Z2) such that u = v, v ∈ H3(M0;Z), then
(b) there is a lifting f2 of qh such that

f∗2 ı3 − f∗1 ı3 = u .

Proof of (b). Since m∗ı3 = ı⊗ 1 + 1⊗ ı3 we need only find a map

g : M0 −−→ ΩΩ
4n

(G/PL)

such that g∗ı = (2c + 1)v for some integer c. For then the map f2 = m(g × f1)
satisfies

f∗2 ı3 = g∗ı+ f∗1 ı3

= (2c+ 1)v + f∗1 ı3

= u+ f∗1 ı3 .

Construction of the map g. Let {Ei} denote the stages of a Postnikov system
for ΩΩ

4n
(G/PL). It was shown above that E3 is a product, and so there exists a

map

g3 : M0 −−→ E3

such that g∗3ı = v. Now each Ei is assumed to be a loop space, and so for any
i, [M0, Ei] is a group. The map g3 is constructed by lifting odd multiplies of g3

to successively higher stages Ei. Suppose we have obtained a map gi : M0−−→Ei.
The obstruction to lifting gi

Ei+1

u
M0

i
i
i
iij

w
gi Ei

is equal to g∗i k
i, where ki is the i-th k-invariant. Now the k-invariants are either

zero or of odd order. In a case where ki = 0, there is no obstruction and gi lifts. If
ki 6= 0 and is of odd order 2d+1, then the map (2d+1)gi obtained by multiplying
gi with itself (2d+ 1) times in the group [M0, Ei] satisfies

((2d+ 1)gi)∗ki = (2d+ 1)g∗i k
i = 0

since ki is primitive (see 3.5). Since M0 is finite dimensional the obstructions
vanish after a finite number of iterations of this procedure. It follows that an odd
multiple of g3, say (2c+ 1)g3, lifts to a map

g : M0 −−→ ΩΩ
4n

(G/PL)

Now the class ı ∈ H3(ΩΩ
4n

(G/PL)) is primitive. This is true because it is actually
a suspension; we argued previously that the third k-invariant k3 ∈ H4(K(Z2, 1);Z)
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is trivial because it is of odd order and 2-primary. The same is true of the fourth k-
invariant in H5(K(Z2, 2);Z) of Ω

4n
(G/PL). Thus the fourth stage of a Postnikov

system for Ω
4n

(G/PL) splits as a product K(Z2, 2)×K(Z, 4), and the fundamental
class of K(Z, 4) suspends to ı ∈ H3(E3). Since ı is primitive we have

g∗ı = (2c+ 1)g∗3ı = (2c+ 1)v

and the proof of (b) is complete.

Proof of Theorem 4.4. We first recall some results on the smooth oriented
bordism groups Ω∗(X) of a space X. The reader is referred to Conner and Floyd
[3] or Stong [15, Chapter IX] for definitions.

Let MSOk denote the Thom complex of the universal oriented k-plane bundle
over BSOk. The spectrum MSO = {MSOk} classifies the bordism groups of a
space X in that

Ω∗(X) = π∗(X+ ∧MSO) ,

with X+ = X ∪ {pt.}. Let K (Z, 0) denote the Eilenberg-MacLane spectrum with
k-th space K(Z, k). For any connected space X we have

π∗(X+ ∧K (Z, 0)) = H∗(X) .

The Thom class U ∈ H0(MSO) induces a map MSO−−→K (Z, 0) which on any
space X yields the Hurewicz homomorphism h : Ω∗(X)−−→H∗(X). Now Ω∗(X)
is an Ω∗(pt)-module. An element in Ω∗(X) is decomposable if it is a linear
combination of elements of the form

N1 ×N2

p2
−−−→ N2

g
−−−→ X

where dimN1 > 0. We need the following result, writing

G = G/torsion⊗ Z(2)

for any group G.

Theorem 4.5. For any space X the Hurewicz homomorphism h : Ω∗(X)−−→
H∗(X) induces an epimorphism

h : Ω∗(X) −−→ H∗(X)

with kernel generated by decomposables.

Proof. According to Stong [15, p.209] the Hurewicz homomorphism in MSO
induces a monomorphic map of graded rings

h : π∗(MSO)/torsion −−→ H∗(MSO)/torsion

with finite odd order cokernel in each dimension, so that

h : π∗(MSO) −−→ H∗(MSO)
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is an isomorphism of graded rings. For any space X we have a commutative
diagram :

Ω∗(X) w
h

u
≈

H∗(X)

u

≈

π∗(X+ ∧MSO)

u
≈

H∗(X+ ∧MSO)

u
≈

H∗(X)⊗H∗(MSO) w
1⊗ U

H∗(X)⊗H∗(K(Z, 0))

The vertical maps on the left are isomorphisms of π∗(MSO) (or H∗(MSO))-
modules. The kernel of 1⊗ U consists of decomposables, and so the same is true
of the kernel of h.

The classes `i ∈ H4i(G/PL;Z(2)) are constructed inductively. Set `0 = 0.
Then the conclusion (1) of Theorem 4.4 holds for manifolds of dimension zero.
Suppose that `0, · · · , `i−1 have been defined in such a way that the conclusion of
Theorem 4.4 holds for manifolds of dimension 4k, k < i. We define the cohomology
class `i as follows. The formula (1) forces the action of `i on the 4i-th bordism
group of G/PL; `i must map Ω4i(G/PL) to Z(2) by the homomorphism `′ which
is defined by

`′[M4i, f ] =
s(f)

8
− 〈L(M) ∪ f∗

∑
j<i

`j , [M ]〉

for any [M4i, f ] ∈ Ω4i(G/PL). The values taken by `′ lie in Z(2) because the
Hirzebruch polynomials have coefficients in Z(2). Now suppose that [M4i, f ] is a
boundary. Then there is a smooth manifold W 4i+1 with boundary ∂W 4i+1 = M4i

and a map F : W 4i+1−−→G/PL such that F |∂W = f . Now the surgery obstruction
s(f) vanishes because it is a cobordism invariant. Let i : M ⊆ W denote the
inclusion. Then

〈L(M) ∪ f∗
∑
j<i

`j , [M ]〉 = 〈i∗L(W ) ∪ i∗F ∗
∑
j<i

`j, [M ]〉

= 〈L(W ) ∪ F ∗
∑
j<i

`j , i∗[M ]〉

= 0 (since i∗[M ] = 0) .
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Thus `′ vanishes on boundaries and is well-defined on Ω4i(G/PL). Since `′ must
map torsion to zero it induces a homomorphism

`′ : Ω4i(G/PL) −−→ Z(2) .

Theorem 4.5 states that `′ induces a map

` : H4i(G/PL) −−→ Z(2)

if and only if `′ vanishes on decomposables. We assume for the moment that
`′ vanishes on decomposables. The universal coefficient theorem states that the
evaluation map

(2) H4i(G/PL;Z(2)) −−→ Hom(H4i(G/PL);Z(2))

is onto. Thus there exists a cohomology class `i whose action on H4i(G/PL) is
the composition

H4i(G/PL) −−→ H4i(G/PL)
`
−−→ Z(2) .

The action of `i on Ω4i(G/PL) is then exactly what is needed to satisfy (1) for
manifolds of dimension 4k, k ≤ i.

Proof that `′ vanishes on decomposables. The decomposables of Ω4i(G/PL;
Z(2)) are linear combinations of elements of the form

N4i−n
1 ×Nn

2

p2
−−−→ Nn

2

g
−−−→ G/PL

where n < 4i and p2 is projection onto the second coordinate. To evaluate `′

on [N1 × N2, gp2], we note that the L-genus is multiplicative and the Pontrjagin
classes satisfy a Whitney sum formula modulo 2-torsion and so

L(N1 ×N2) = L(N1)× L(N2)

modulo 2-torsion. Thus

(3)

`′[N1 ×N2, gp2] =
s(gp2)

8
− 〈L(N1)× (L(N2) ∪ g∗

∑
j<i

`j), [N1]× [N2]〉

=
s(gp2)

8
− 〈L(N1), [N1]〉 · 〈L(N2) ∪ g∗

∑
j<i

`j, [N2]〉 .

First assume that n 6≡ 0(mod 4). Then s(gp2) = 0 by the product formula
for the index surgery obstruction of Rourke and Sullivan [11, Theorem 2.1]. Also,
〈L(N1), [N1]〉 = I(N1) = 0, so that both terms of (3) vanish and `′[N1×N2, gp2] =
0.

Next assume n ≡ 0(mod 4). If n = 0 then both terms of (3) are obviously
zero. If n > 0 then

s(gp2)
8

= I(N1) · s(g)
8
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by the product formula and

〈L(N1), [N1]〉 · 〈L(N2) ∪ g∗
∑
j<i

`j, [N2]〉 = I(N1) · s(g)
8

by the inductive hypothesis (N2 is a manifold of dimension 4j for some j < i). Thus
`′[N1×N2, gp2] = 0, and `′ vanishes on decomposables. The proof of Theorem 4.4
is complete.

Remarks on Theorem 4.4. (i) Since the evaluation map (2) has kernel a torsion
group, the `i are unique up to the addition of torsion elements.
(ii) There are classes LPLi ∈ H4i(BPL;Q) which pull back to the L-genus in BO.
(See Milnor and Stasheff [7].) The natural map π : G/PL−−→BPL then satisfies

(4) π∗(LPL − 1) = 8L (Sullivan [17], p.29)

where L denotes the image of L in H∗(G/PL;Q).

Proof of (4). By our first remark we only need to verify that π∗(LPL−1) can be
used to calculate the surgery obstruction for smooth manifolds. Let M4k be a PL
manifold, f : M4k−−→G/PL a map. The composition πf is a stable PL bundle
over M . Then let νM be the stable normal bundle. We obtain a stable bundle
νM − πf over M and the fibre homotopy trivialization of πf determines a normal
invariant in π∗(T (νM − πf)). The resulting surgery problem is the normal map
associated to the map f . (See Chapter II.) The surgery obstruction of the map f
is thus equal to [I(νM − πf)− I(M)]. The “index” of a stable bundle ξ over M4k

is defined by

I(ξ) = 〈LPLk (−ξ), [M4k]〉 .
Thus

s(f) = 〈LPLk (τM + πf), [M4k]〉 − I(M)

= 〈LPL(τM ) ∪ LPL(πf), [M4k]〉 − I(M)

= 〈LPL(M) ∪ (LPL(πf)− 1), [M4k]〉
since 〈LPL(τM ), [M ]〉 = I(M). But LPL(πf) − 1 = f∗π∗(LPL − 1), so we have
proved the desired formula for the surgery obstruction. We have also proved that
Theorem 4.4 holds for PL manifolds.
(iii) Let M4k be a manifold, smooth or PL. Then [M,G/PL] forms a group via
Whitney sum, and so it is natural to ask whether the surgery obstruction

s : [M,G/PL] −−→ Z

is a homomorphism. The answer is in general no. Since LPL ∈ H∗(BPL;Q) is
multiplicative it follows from (4) that

h∗(L) = L× 1 + 1× L+ L× L
where h : G/PL × G/PL−−→G/PL is the multiplication in G/PL induced by
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Whitney sum. Thus if f, g ∈ [M,G/PL],

s(f · g) = s(f) + s(g) + 8〈L(M) ∪ f∗L ∪ g∗L, [M ]〉 .

(iv) By 3.8 the order of x4i ∈ H4i+1(X4i−1;Z) divides 〈u, αi〉 for any integral class
u ∈ H4i(G/PL). Let νi denote the least positive integer such that νi`i is integral.
Then νi is of course always odd. We obtain a bound on νi as follows. By (ii) above
π∗(LPL − 1) = 8L. Let µi denote the least positive integer such that µiLPLi is
integral. Brumfiel [2] has proved that

µi =
∏
p

[ 4i
2(p− 1)

]
where the product is taken over all odd primes p ≤ 2i + 1. Since νi divides µi
we have : the order of x4i is a divisor of µi. (The precise order of x4i can be
computed using a result due to Dennis Sullivan, that G/PL and BO have the
same homotopy type in the world of odd primes. It follows that the order of x4i

is the odd part of (2i− 1)!, for i > 1 .)

We conclude with a calculation of the fourth k-invariant x4 ∈ H5(K(Z2, 2);Z)
of G/PL. The following theorem is due to Sullivan [17].

(4.6) Theorem. x4 = δSq2ı2, where ı2 ∈ H2(K(Z2, 2);Z2) is the fundamental
class and δ is the Bockstein operation associated to the coefficient sequence

Z
×2
−−→ Z −−→ Z2 .

Proof. Consider a section of the Postnikov system for G/PL

G/PL w X4

u
K(Z, 4)

X2 = K(Z2, 2)

By 3.8 the order of x4 is the smallest positive integer d such that there exists a
cohomology class u ∈ H4(G/PL) satisfying 〈u, α1〉 = d , where α1 ∈ π4(G/PL)
is a generator. By Theorem 4.4 there is a class `1 ∈ H4(G/PL;Z(2)) such that
〈`1, α1〉 = 2. Since there is an odd multiple of `1 which is the reduction of an
integral class, the order of x4 divides an odd multiple of 2. But x4 is in a 2-
primary group. Thus 2x4 = 0. By the exactness of the sequence

H4(K(Z2, 2);Z2)
δ
−−→ H5(K(Z2, 2);Z)

×2
−−→ H5(K(Z2, 2);Z)

there is a class y ∈ H4(K(Z2, 2);Z2) such that δy = x4. But H4(K(Z2, 2);Z2) ∼=
Z2 generated by ı22 = Sq2ı2 (Serre [13]), and so x4 = aδSq2ı2 for some a ∈ Z2. We
complete the proof of Theorem 4.6 by showing that x4 6= 0.
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The inclusion of the base point i : ∗ ⊆ G/PL induces a monomorphism

i∗ : Ω4(∗) −−→ Ω4(G/PL)

and since the image of i∗ is in the kernel of the Hurewicz homomorphism, there is
a diagram

π4(G/PL)A
A
A
AACh′

w Ω4(G/PL)

u

w H4(G/PL)

cok i∗
h
h
h
hhj

We have Ω4(G/PL)/torsion = Z ⊕ Z, and so cok i∗ ∼= Z⊕ finite group. Now the
surgery obstruction s : Ω4(G/PL)−−→Z vanishes on im i∗ and so induces a map
s′ : cok i∗−−→Z such that

π4(G/PL) w
h′

�
�
���s

cok i∗
N
N
NNQ
s′

Z
In order to prove that x4 6= 0, we show that h′ : π4(G/PL)−−→cok i∗ is not an
isomorphism onto a direct summand and apply 3.7. Since cok i∗ 6= Z⊕ finite group,
we need only show that im s′ properly contains im s. Now s(α1) = 16, so that im s
consists of multiples of 16. Thus it suffices to show

(∗) there exists a map f : CP2−−→G/PL such that s(f) = −8.

Proof of (∗). Let γ denote the canonical complex line bundle over CP2. The total
Chern class of γ is 1 + x, x a generator of H2(CP2), and so the first Pontrjagin
class p1(rγ) of the realification of γ is −x2. (The reader is referred to Milnor and
Stasheff [7] for details.)

We show first that 24rγ is fibre homotopically trivial. The cofibration se-
quence

S3
η
−−−→ S2 −−−→ CP2 −−−→ S4

Ση
−−−→ S3

induces an exact sequence

[S3, BG]
(Ση)∗

−−−→ [S4, BG] −−−→ [CP2, BG] −−−→ [S2, BG]
η∗

−−−→ [S3, BG] .

We have
[S3, BG] ∼= π2(G) ∼= πS2 = Z2 (generated by η2) ,

[S4, BG] ∼= π3(G) ∼= πS3 = Z24 (generated by ν) .

Since η3 = 12ν (for example, see Toda [21]) the cokernel of (Ση)∗ is isomorphic to
Z12. We also have

[S2, BG] ∼= π1(G) ∼= πS1 = Z2 generated by η ,
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so that [S2, BG] is generated by the Hopf bundle. Since the pullback of the Hopf
bundle

E w

u
η∗(η)

S3

u
η

S3 w
η

S2

is trivial, η∗ : [S2, BG]−−→[S3, BG] is the zero map and there is an exact sequence

0 −−→ Z12 −−→ [CP2, BG] −−→ Z2 −−→ 0 .

Thus [CP2, BG] is a group of 24 elements and 24rγ is fibre homotopically trivial.

The composite

CP2
24rγ
−−−→ BO −−−→ BPL −−−→ BG

is trivial and so the associated PL bundle

ξ : CP2 −−→ BPL

factors through G/PL :

CP2 w
24rγ

u
f

BO

u
G/PL w

π BPL

We calculate s(f) using the remarks following Theorem 4.4

s(f) = 〈L(CP2) ∪ (LPL(πf)− 1), [CP2]〉
= 〈(1 + L1(CP2)) ∪ LPL1 (πf), [CP2]〉
= 〈LPL1 (πf), [CP2]〉

= 〈p1(24rγ)
3

, [CP2]〉

= 〈−24x2

3
, [CP2]〉

= −8 .

This completes the proof of (∗) and Theorem 4.6 follows.
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Coda: connection with the results of Kirby and Siebenmann

By C. P. Rourke

We have shown that TOP/PL−−→G/PL factors via

K(Z2, 3) = fibre(G/PL−−→Ω4n(G/PL)) .

Now Kirby and Siebenmann have shown [2, 3, 4] that TOP/PL is also a K(Z2, 3),
and that the map qh : M−−→TOP/PL is the obstruction to an isotopy from h to
a PL homeomorphism. There are two possibilities :

(1) TOP/PL−−→K(Z2, 3) is null-homotopic;

(2) TOP/PL−−→K(Z2, 3) is a homotopy equivalence.

We shall eliminate (1). Both the fibration and the theorem mentioned in the
introduction then follow if we combine the Kirby-Siebenmann result with the main
theorem of Chapter III. In order to eliminate (1) it is necessary to consider the
structure sequence for the torus T r. There is a fibration onto its image

HT (T r) −−→ (G/PL)T
r −−→ Lr+4n(Zr)

due to Casson and Quinn [5]. Now Lr+4n(Zr) consists of (∆k, r + 4n)-oriented
normal maps (which are homotopy equivalences on boundaries) together with a
reference map to a K(Zr, 1), which we can take to be T r itself. Consequently there
is a map

α : L4n({1})T r −−→ Lr+4n(Zr)
defined as follows. Let f : T r−−→L4n({1}) be given; then f determines an (i+4n)-
normal map for each i-simplex of T r and, glueing together, we obtain an (r+ 4n)-
normal map over T r, in other words a simplex of Lr+4n(Zr). Using the Splitting
Theorem of Farrell [1] we can convert any normal map (homotopy equivalence on
boundary) over T r into an assemblage of normal maps (homotopy equivalences on
boundaries) over simplexes of T r. This argument generalizes to show that α is a
homotopy equivalence. Now L4n({1}) and Ω4n(G/PL) have the same homotopy
type, by considering the structure sequence for D4n rel ∂, and we can rewrite our
fibration as

HT (T r) −−→ (G/PL)T
r −−→ (Ω4n(G/PL))T

r

.

It follows that HT (T r) and (K(Z2, 3))T
r

have the same homotopy type. Now if
the map TOP/PL−−→K(Z2, 3) is null-homotopic, then any self-homeomorphism
of T r is homotopic to a PL homeomorphism. However Siebenmann [2, 3, 4] has
constructed a self-homeomorphism of T 6 which is not homotopic to a PL home-
omorphism. Hence

TOP/PL −−→ K(Z2, 3)

must be a homotopy equivalence.

It is clear from the above discussion that any homotopy equivalence onto T r
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is homotopic to a homeomorphism, and that the obstructions to the homotopy
and isotopy Hauptvermutung coincide for Q = T r. This contrasts with the simply
connected case and shows that the general solution is bound to be somewhat
complicated.
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