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Abstract. In this survey, based on my 1990 lecture at the University of Bologna I
describe the history and the present status of one of the most interesting problems of
modern geometric (i.e. Bing) topology — the problem of detection of topological man-
ifolds among topological spaces, also known as the Recognition problem. I begin by a
primary on the topology of generalized manifolds. In the sequel I concentrate on the
higher dimensional case. The Recognition problem naturally splits into two parts — the
Resolution problem and the Disjoint Disks Property problem. The former is still un-
solved whereas the solution to the latter is due to R. D. Edwards. I describe the attempts
at the Resolution problem — from J. .. Bryant and J. G. Hollingsworth via J. W. Can-
non, J. L. Bryant and R. C. Lacher, to F. S. Quinn — and analyze the problem of Quinn’s
local surgery obstruction. As for the Disjoint Disks Property problem I merely give an
outline of the Edwards’ Shrinking theorem — as a prime example of Bing topology. 1
discuss the low dimensional case (dimensions 3 and 4) only briefly — in the Epilogue — as
it will be the subject of another survey. In the References I have collected an extensive
bibliography on the subject of recognizing topological manifolds (of all dimensions).

! This paper is in its final form and no version of it will appear elsewhere.
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1. Introduction

One of the most interesting and at the same time most challenging problems of mod-
ern geometric topology is to determine whether a given topological space is a topological
manifold or not. (For some history see e.g. [13], [28], [74], [76], [89], [91], [98], [108], [122],
[151], [182], [186], [187], [221], [232], [238], [290].) In 1977, J.W. Cannon [74] explicitly
formulated this, so-called Recognition problem: find a short list of simple topological
properties which characterize topological manifolds. For example, S! is known to be
the only compact, connected metric space containing at least 2 points, which is sep-
arated by every pair of its points [224], whereas S? is the only nondegenerate locally
connected, connected, compact metric space which is separated by no pair of its points
but is separated by each of its simple closed curves [22].

The purpose of this survey article is to give an up-to-date review of the current status
of the recognition problem for higher dimensional manifolds, i.e. of dimension > 5. In
1984 I wrote a similar survey for dimension 3 [238]. In [238] the higher dimensional case
was dealt with only briefly since at that time it seemed that it had been successfully
settled through the work of R. D. Edwards [118] and F. S. Quinn [232]. However,
the unexpected discovery [233] [234] in 1985 — by S. Cappell and S. Weinberger — of
a fundamental gap in [232] suddenly reopened this problem, in particular the status
of the Resolution problem which asks whether every generalized n—manifold admits a
resolution. In the following years no success was reported on this subject. Therefore,
I have decided to prepare a survey of the work done so far in this field. Perhaps a
description of different methods of approach various authors have used in the past may
inspire and stimulate future attempts at the Resolution Problem.

This paper doesn’t treat the other two dimensions which remain of interest, namely
3 and 4 (in dimensions < 2 everything is classics [22] [224]). In the Epilogue we give
some references concerning the lower dimensional case, in particular the surveys [238],
[98], and [221].

The author would like to thank Massimo Ferri for his kind invitation to give an ad-
dress at the 1990 Bologna Workshop in Differential Geometry and Topology of Manifolds
on which this survey is based.



2. Preliminaries

Throughout this paper, we shall be working in the category of locally compact Haus-
dorff spaces and continuous maps throughout this paper. Manifolds (TOP, PL or DIFF)
will be assumed to have no boundary unless specified. Homology (resp. homotopy)
equivalence will be denoted by ~ (resp. =). Isomorphisms (resp. TOP, PL, DIFF
homeomorphisms) will be denoted by = (resp. =, =3 DﬁF)' The singular (resp. Cech,
Borel-Moore, sheaf) (co)homology over a principal ideal domain (PID) R will be denoted
by H(;R) (resp. H(;R), H(;R), H(;R)). Wherever R = Z we shall not write the
coefficients.

The euclidean n-space (resp. the closed n-ball, the standard n-sphere, the n-cube
= [0, 1]™ will be denoted by IR" (resp. B",S™, I"). A homotopy (resp. R-homology) n-cell
is a compact n-manifold with boundary M such that M ~ B™ (resp. M ~ B™ over R).
The definition of a homotopy (R-homology) n-sphere is analogous.

A compact subset K of an n-manifold M is cellular in M if K is the intersection
of a properly nested decreasing sequence of n-cells in M, K =N = B} (i.e. for every
i, By C IntB}'). A space X is cell-like if there exist a manifold N and an embedding
f: X — N such that f(X) is cellular in N. A map defined on a space (resp. an ANR, a
manifold) X is monotone (resp. cell-like, cellular) if its point-inverses are continua (resp.
cell-like sets, cellular sets) in X. A closed map is proper if its point-inverses are compact.
A map f: X — Y is one-to-one over Z C Y if for every z € Z, f~!(z) is a point.

Let F' be a covariant (resp. contravariant) functor defined on some topological cate-
gory C and let ® : F(X) — F(Y) (resp. F(Y) — F(X)) be a morphism, where X C Y
are any two objects of C. Then it will always be assume that ® = F (incl.) unless
otherwise specified.

A compactum K in a manifold is point-likeif M—K =~ M—{pt}. A subset Z of a space
X is mi-negligible if for each open set U C X the homomorphism 71 (U — Z) — m1(U)
is one-to-one. A space X is k-lc(R) (resp. Ic*(R), Ic®(R)) atz € X (k € Z,, R
a PID) if for every neighborhood U C X of z there is a neighborhood V' C U of x
such that Hy(V;R) — Hi(U;R) is trivial (resp. H;(V;R) — H;(U;R) is trivial for
every 0 < j < k, Hj(V;R) — H;(U;R) is trivial for all j > 0). A compactum K in
an ANR X has the k¥ — uv(R) (resp. uv®(R), uv™®(R)) property (k € Z,, R a PID)
if for each neighborhood U C X of K there is a neighborhood V' C U of K such
that Hy(V; R) — Hi(U;R) is trivial (resp. H;(V;R) — H;(U; R) is trivial for every
0<j<k, H(V;R) - H;(U; R) is trivial for all j > 0). The uv properties are related
to the Cech cohomology: if a compactum K has the properties j — uv(R) (j = k — 1, k)
then H*(K;R) = 0 and conversely, if H/(K;R) = 0 (j = k,k + 1) then K has the
property k — uv(R) [185]. If instead of homology R-modules one uses homotopy groups
one gets the corresponding definitions of the k — LC, LC*, LC*® and k — UV, UV*,
UV properties [185]. A map defined on an ANR is uv*(R) (resp. UV*) (k€ Z,, R a
PID) if its point-inverses have the uv*(R) (resp. UV*) property.

A countable collection of pairwise disjoint compacta {C;} in a metric space X is a
null-sequence if for every € > 0 all but finitely many among the C!s have diameter less
than . A compactum K C RR™ has embedding dimension < n, dem K < n, if for every
closed subpolyhedron L C R™ with dim L < m —n — 1, there exists an arbitrarily small
ambient isotopy of R™, with support arbitrarily close to K N L which moves L off K.
This concept is due to M.A. Stan’ko [265] - for more see [117].
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A crumpled cube is the complementary domain of an open n-cell in S™. A fake cube is
a homotopy 3-cell which is not homeomorphic to B2. The classical Poincaré conjecture
asserts that there are no fake cubes [153]. A space X is said to have the Kneser finiteness
(KF) if no compact subset of X contains more than finitely many pairwise disjoint fake
cubes. A homotopy handlebody is a regular neighborhood of a wedge of finitely many
circles in some 3-manifold.

Let X be a o-compact space and present it as the union X = U,* K; of a properly
nested increasing sequence of compact subsets K; C X. An end of X is sequence e = {U;}
of properly nested decreasing sequence of components of X — K;. The Freudenthal
compactification X of X is X U{e} with {U;} as the basis of topology at the end e [137]
[138] [256]. For example, if X is generalized n-manifolds with 0-dimensional singular set
S(X) (see Chapter 3 for definitions) then X is the Freudenthal compactification of the
open n-manifold X — S(X).

A space X is 1-acyclic at oo if for every compact set K C X there exists a compact
set K’ O K such that H;(X — K') — Hy(X — K) is trivial.

A subset Z C X is locally simply connected (1-LCC) if for every x € X and every
neighborhood U C X of z there is a neighborhood V' C U of z such that m(V — Z) —
m (U — Z) is trivial. A metric space X is uniformly locally simply connected (1-ULC) f
for every € > 0 there exists a 6 > 0 such each loop in X of diameter less than § bounds
a disk in X of diameter less than .

Let G be a decomposition of a space X into compact and connected subsets and let
7 : X — X/G be the corresponding quotient map, Hg the collection of all nondegenerate
(i.e. # pt) elements of G, and Ng their union. A set U C X is G-saturated if U =
7 'w(U). A decomposition G is upper semicontinuous if for each g € G and for each
open neighborhood U C X of g there exists a G-saturated open neighborhood V' C U of
g. Equivalently, 7 is a closed map. A decomposition G of a separable metric space X
is k-dimensional (resp. closed k-dimensional), k = —1,0,1,..., if dim7(Ng) = k (resp.
dim7(Ng) = k). A decomposition G of a metric space X is weakly shrinkable if for each
e > 0 and each neighborhood U C X of Ng there is a homeomorphism A : X — X such
that h | X — U = id and for each g € G, diamh(g) < €. A decomposition G of a space
X is shrinkable if for every G-saturated open cover U of Ng and every open cover )V of
X there is a homeomorphism A : X — X such that:

(i) h | X —U* = id where U* = U{U € U};

(ii) for each x € X there exists U € U such that {z, h(z)} C U; and

(iii) for each g € G there exists V € V such that h(g) C V.

Let f : X — Y be a map. The nondegeneracy set of f is defined by N(f) = {z €
X | f1f(x) # z} and its image S(f) = f(N(f)) is called the singular set of f. Let
f: M — X be a proper, cell-like map from manifold onto an ENR. Then the associated
decomposition G(f) = {f~'(z) | z € X} of M is upper semicontinuous and cell-like.
Moreover, He(p) = f1(S(f)) and Ng(yy = N(f). For more on decompositions see [91].

A general reference for algebraic topology will be [263], for PL topology [250], for
surgery [57] and [283], for 3-manifolds [31], [153], and [160], for ANR’s [39] and [156], for
cell-like maps and related topics [108], [185], and [221], and for decompositions [91].



3. An introduction to generalized manifolds

The concept of a generalized manifold goes back to the 1930’s. The first results
concerning this class of spaces were obtained during 1930-1945 by P. S. Aleksandrov,
E. G. Begle, E. Cech, S. Lefschetz, L. S. Pontrjagin, P.A. Smith, R.L. Wilder, and
some others, each approaching the subject with a different motivation. For example,
R.L. Wilder discovered that generalized manifolds were the proper framework in which
some fundamental results about 2-manifolds (e.g. the Jordan curve theorem and the
Schoenflies theorem) generalized to higher dimensions [291]. From another direction,
P.A. Smith entered this subject in the course of his investigations of group actions on
topological manifolds [260]. During this period the foundations of the algebraic topology
of (generalized) manifolds were developed.

The second period of increased activity in this area was during 1950-1965 and it
was led by A. Borel’s seminar group in Princeton [37]. They were mostly interested in
transformation groups and they exploited heavily the sheaf theory, which was developed
around that time by J. Leray, J.P. Serre and some others [37] [43] [45] [235]. A. Borel,
G.E. Bredon, P.E. Conner, E.E. Floyd, D. Montgomery, J.C. Moore, R.S. Palais, F.A.
Raymond, C.T. Yang, and others did some most important work in this period.

The third period of interest in generalized manifolds started sometime in the early
seventies - among geometric topologists, in at least 3 areas: taming theory, the double
suspension problem and the desingularization problem. It has since been dominated by
some important results of M.G. Brin, J.L.. Bryant, J.W. Cannon, R.J. Daverman, W.
T. Eaton, R. D. Edwards, J. G. Hollingsworth, R.C. Lacher, D.R. McMillan,Jr., F.S.
Quinn, M. Starbird, L. C. Siebenmann, T.L. Thickstun, J.J. Walsh, and some others.
As it is often the case in geometric topology much of the foundations of their work can
be traced to the pioneering work of R.L. Wilder [290],[291] and R.H. Bing [28], [31].

The following is a modern, more geometric definition of a generalized manifold [76]:
A space X is a (geometric) generalized n-manifold (n € IN) if:

(i) X is euclidean neighborhood retract (ENR), i.e. for some integer m, X embeds in
IR™ as a retract of an open subset of IR™; and

(il) X is a homology n-manifold, i.e. for every z € X, H, (X, X — {z},Z) =
H.(R",R" — {0}; Z).

Note that condition (i) is equivalent to: X is a locally compact, finite dimensional
separable metrizable ANR [156].

Classical definitions were much more general: condition (i) above was usually weak-
ened to some (co)homological local connectivity requirement and finite (co)homological
dimensionality was also assumed in most cases. On the other hand the singular homology
in condition (ii) above was replaced mostly by the Borel-Moore homology [38], with coef-
ficients in an arbitrary principal ideal domain. The following (classical) definition seems
to have been most commonly used among algebraic topologists since 1950’s [43] [235]. A
locally compact Hausdorff space X is a (classical) generalized n-manifold (n € IN) over
a principal ideal domain R if:

(i) X is cohomologically locally connected over R, clcg, i.e. for every x € X and every
neighborhood U C X of x there is a neighborhood V' C U of x such that the restriction
H*(U; R) — H*(V; R) of reduced (Cech or sheaf) cohomologies is trivial;

(ii) X has finite cohomological dimension over R, dimr X < oo, i.e. there exists an
integer m such that H?(U; R) = 0 for every open subset U C X and every integer j > m;
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(iii) The homology sheaf, generated by the presheaf U — H, (X, X —-U; R), H,(X; R),
has each stalk a free R-module of rank 1 if ¢ = n and is trivial otherwise.

Condition (iii) can be rephrased in the language of the Borel-Moore homology: for
every v € X, H,(X,X — {z} : R) £ R if ¢ = n and = 0 otherwise. The main reason for
using the Borel-Moore homology above is that it doesn’t have the well-known deficiencies
of the classical homology theories, e.g. the Cech homology is not exact [202], the singular
homology doesn’t respect the dimensions properly [16], etc. However, on the class of
[c>(Z) spaces, the Borel-Moore homology coincides with the singular homology [43]
[195]. Therefore, this classical definition includes our first one - the geometric definition
above. In particular, all fundamental results above classical generalized manifolds also
hold for the geometric ones.

Although generalized manifolds are defined by a set of local properties of topological
manifolds, they nevertheless satisfy most of the basic global properties of manifolds, e.g.
the invariance of domain, standard separation properties, linking theory, and intersection
theory. By far the most significant fact is that the Poincaré duality in its most general
form) holds in generalized manifolds [38]:

Theorem 3.1 (A. Borel and J.C. Moore [38]) Let A be a coefficient sheaf of R-modules
and ¢ any paracompactifying family of suppotrs on a generalized n-manifold X (n € IN)
over a principal ideal domain R (i.e. ¢ is a collection of closed, paracompact subspaces
of X such that (i) a closed subset of a member of ¢ belongs to ¢, (ii) ¢ is closed under
finite unions, and (iii) every element of ¢ has a (closed) neighborhood in X which is in
¢). Then there exists a natural isomorphism A : HY(X;0® A) — H,,_,(X; A), induced
by a cap product and natural with respect to inclusion maps and boundary-coboundary
homomorphisms.

All standard duality theorems (Alexander’s, Lefschetz’s, Poincaré’s) can essentially
be deduced from Theorem (3.1). In fact, one could consider generalized manifolds as
the class of finite dimensionl, locally compact Hausdorff spaces in which the Poincaré
duality holds both locally and globally [43], [215], [235], [264].

One of the important applications of Theorem (3.1) is the following result which is
indispensable for almost all applications of (classical) generalized manifolds (in order to
derive global facts from locall hypotheses):

Theorem 3.2 (G.E. Bredon [44]) Every generalized n-manifold X (over any PID R) is
locally orientable, i.e. the orientation sheaf H,(X, R) is locally constant.

Local orientability means, roughly speaking, that the local homology modules at
neighboring points have certain nice relationship to one another. Although this fact may
today seem only too natural it was for many years one of the outstanding conjectures
[291] until Bredon put it to rest in 1969 (see also [215]).

We conclude our discussion concerning the classical generalized manifolds and here-
after we shall only consider the geometric ones, in the narrow sense of the definition at
the begining of this chapter. So let X a (geometric) generalized n-manifold. If n < 2
then X is a genuine n-manifold because in these lowest dimensions algebraic properties
are strong enough to imply the geometric ones. In higher dimensions however, X may
not be locally euclidean at some (or perhaps at all) points. Such exceptions are called



singularities of X and they form the singular set of X, S(X) = {z € X | x doesn’t
have a neighborhood in X homeomorphic to an open subset of R"}. The complement,
M(X) =X — S(X) is the manifold set of X.

At the beginning of this century, in their search for an appropriate definition of a PL
n-manifold, early topologists came upon a concept we would today recognize as a PL
generalized n-manifold. It is nowadays easy to see that in the lowest dimensions, n < 3,
this class of spaces coincides with the class of n-manifolds (which they were trying to
capture) - so they were completely successful in this range. In higher dimensions, n > 4,
it has been observed by R.D. Edwards that, as a consequence of J.W. Cannon’s work
on the double suspension problem [75], such spaces may fail to be n-manifolds only
at the vertices of some triangulation [74]. Consequently, the classical topologists may
have missed the essential properties of (higher dimensional) manifolds only by a finite
collection of singularities (see the discussion on pp. 835-838 in [74].

Generalized manifolds arise in many situations:

(1) As cell-like, upper semicontinuous decomposition of manifolds: every proper, cell-
like surjection from a (generalized) n-manifold onto a finite dimensional metric space
yields a generalized n-manifold [185] (for examples see [238]).

(2) As manifold factors: using the Kiinneth formula one can show that given locally
compact Hausdorff spaces X; and Xs, their product X; x X is a generalized (n; + ng)-
manifold if and only if each X; is a generalized n;-manifold [37].

(3) As orbit spaces of the action of transformation groups, e.g. P.E. Conner and E.E.
Floyd proved in 1959 that the Smith manifolds [260] are (classical) generalized manifolds
[86]: the fixed point set of a toral group action (resp. a Z, action with p any prime) on
a manifold is a generalized manifold

(4) As suspensions of homology spheres: the k-fold suspensions of a generalized n-
manifold with the singular homology of S™ is always a generalized (n + k)-manifold.
J.W. Cannon [75] and, independently, R.D. Edwards [118] have proved that the k-fold
suspension (k > 2) of a topological n-manifold (n € IN) with the homology of S™ is
homeomorphic to S"™*. (Note that for k¥ = 1 this need not be true in general).

(5) As those ENR’s which admit maps onto closed manifolds with arbitrarily small
point-inverses [196].

(6) The Freudenthal compactifications of certain open manifolds [46]-[48], [52]-[55],
[51], [114], [281], [289], etc. Note that these constructions may, in general, produce quite
exotic spaces, e.g. the endpoint compactification of an infinite connected sum of Poincaré
homology 3-sphere [168] yields a homology 3-manifold with an uncountably generated
fundamental group.



4. The Resolution Problem

The problem of recognizing (detecting) topological manifolds is usually restricted to
the class of generalized manifolds and it splits naturally into two problems: Given a
generalized n-manifolds X, one must (1) find a resolution f : M — X and (2) check if
the associated cell-like decomposition Gy of M is shrinkable, if we are given that X has
a sufficient amount of general position properties, e.g. the DDP.

A resolution of an n-dimensional ANR X is a proper, cell-like map f : M — X
from a topological n-manifold M onto X. If X has a resolution then X is a generalized
n-manifold [185]. A resolution f: M — X of X is called conservative if f is one-to-one
over the manifold set M(X) of X.

The following is the best known result so far. Note that, in particular, it implies that
if X is a generalized n—manifold, n > 4, and X is not totally singular, i.e. S(X) # X,
then X always has a (conservative) resolution.

Theorem 4.1 (F. S. Quinn [232]-[234]) Let X be a generalized n-manifold.

(a) If n > 4, then X admits a conservative resolution if X X R resolves.

(b) If n > 5 and if a certain local surgery obstruction o(X) € 8Z & 1 vanishes, then
X admits a conservative resolution.

Moreover, if (M;, f;) are any two conservative resolutions of X, n >4, and U C X
is a neighborhood of S(X), then there is a homeomorphism h : My — My such that
fi(z) = foh(z), for every x € X — U.

We now review the history of attempts at the Resolution problem. The first resolution
theorem is due to J.L. Bryant and J.G. Hollingsworth [64]: they found a (conservative)
resolution f : M — X with M a smooth (resp. PL) n-manifold, for an arbitrary
generalized n-manifold X (n > 5), provided X x R¥ was smooth (resp. PL) (n +
k)-manifold, for some integer k, and that dim S(X) = 0. Their argument went as
follows: using the Product Structure Theorem of R.C. Kirby and L.C. Siebenmann [170],
a smooth structure can be imposed upon M (X), compatible with the smooth structure
on M(X) x IR* (which is inherited from X x R¥). Take now a closed neighborhood
N’ C X of S(X) such that each component N C N’ is compact and has a closed smooth
(n — 1)-manifold as boundary. Then N has the homotopy type of a finite cell-complex
since Wall’s obstruction to finiteness of N [282] can be shown to vanish. The hard
part is then to construct (using the main results from [256]) a smooth n-manifold with
boundary M and a map g : (M,0M) — (N,0N) such that g is cell-like over N N S(X)
and a diffeomorphism over the complement.

It is a consequence of the double suspension theorem [75] that the result of Bryant
and Hollingsworth doesn’t extend to dimension 4: let X* be the open cone over the
dodecahedral space H? [168]. Then X* satisfies the hypotheses of the theorem (for
n =4 and k > 1). However, if the conclusion were valid for X4 then H® would bound
a contractible 4-manifold which is known to be impossible [166]. (Since, by Theorem
(4.1), X* has a conservative resolution f : M* — X* we see that such M* cannot admit
a smooth structure - although it is smoothable away from any of its points [231]. In
dimension 3, the analogue of the Bryant - Hollingsworth theorem is equivalent to the
Poincaré conjecture (see [238]).



Few years later the resolution problem was attacked by J.L. Bryant and R.C. Lacher
[65]. Rather than trying to resolve a wider class of generalized manifolds (than those
covered in [64])they weakened the requirement on the resolution f : M — X. Instead,
they proved that every generalized n-manifold is the base of an approximate fibration
with the total space a topological m-manifold, m > n+2. (Subsequently, R.J. Daverman
and L.S. Husch [91] have verified that a (proper) approximate fibration from a topological
manifold onto an ANR always yields a generalized manifold. Thus the class of generalized
manifolds is essentially the same as the class of those ANR’s which are the base spaces
of some (proper) approximate fibrations on topological manifolds.)

Since approximate fibrations didn’t seem to offer any applications in the characteri-
zation of manifolds, Bryant and Lacher continued their investigations of resolvability of
higher dimensional generalized manifolds. In their next paper [66] they proved Theorem
(4.1) for the case n > 5 and dim S(X) = 0. Here’s an outline of their argument: Suppose
first, that » > 6 and that S(X) = {p}. Because of the local contractibility of X, the
Kirby-Siebenmann obstruction to triangulating U — {p} [170] vanishes for a sufficiently
small neighborhood U C X of p. We can therefore find a smaller neighborhood V- C U
of p such that V is contractible in U and V — {p} is a PL n-manifold with a compact
and connected boundary. Then V has the homotopy type of a finite complex and a
well-defined simple homotopy type [214] [287]. Since (V,0V) is a simple Poincaré pair
[283] we can choose V small enough to make the restriction of the (stable) normal bun-
dle n of X — {p} to V. —{p}, n | V — {p}, to be a trivial PL bundle [264] [283]. Using
the Thom-Pontrjagin construction [283] one can then obtain a PL n-manifold M with
a normal bundle v and a degree one normal map f : (M,0M) — (V,0V) such that
f | OM is a PL isomorphism and v is PL trivial. Using simply connected surgery [57]
one can transform f into a simple proper homotopy equivalence, such that f is a PL
isomorphism over the complement of IntV. Finally, extend f : M — X over the rest of
X to get a homotopy resolution of X over V' which, by the s-cobordism theorem [250],
are unique up to a PL homeomorphism. The desired cell-like resolution is then obtained
as the limit of such homotopy resolutions, much like in [64]. The general case is then
deduced from the “one singularity” case by an inverse limit argument (see [66]).

In the case when n = 5 (and S(X) = {p}) we need some extra work since the deleted
neighborhoods of p do not necessarily have a vanishing Kirby-Siebenmann obstruction.
However, one can get around this problem by geometric methods (compare [6] [120] [141]
[170]).

At this point we wish to mention two papers of JJW. Cannon: [72] and [73]. For,
[72] was the first paper to advertise that generalized manifolds can be treated not only
algebraically but also geometrically much like topological manifolds. Cannon was the
first to sistematically study geometric properties of generalized manifolds. Using taming
arguments, he proved in [72] that all generalized codimension one submanifolds of S™
(n > 5) arise, at least stably, as cell-like decompositions of topological manifolds. His
other paper [73] played a crucial role in his solution of the double suspension problem
few years later [75]: in [73] he proved that the double suspension > H? of a homology
3-sphere H? admits a resolution f : S — 2 H3. (As R.D. Edwards later pointed out
this proof can easily be generalized to all dimensions n > 5). In [75], Cannon then used
the DDP to shrink the associated cell-like, upper semicontinuous decomposition G(f).
(See [238] for more details.)

New ideas and insights from [72] [73] [74] enabled Cannon to improve the results of



[66]: in 1977, J.W. Cannon and, independently, J.L. Bryant and R.C. Lacher proved
Theorem (4.1), for n > 5, in the trivial range, i.e. for the case 24+ 2dimS(X) <n >5
[77] (see also [74] and [186]).

Their proof splits naturally into two parts. First, given a generalized n-manifold X
such that 2 + 2dim S(X) < n > 5, they detect homologically a sequence of (pinched)
crumpled n-cells in X which capture the “homotopic” nontriviality of the embedding of
S(X) in X. By replacing these crupled cubes by pinched real n-cells, they produce a
better generalized n-manifold Y in that, now, S(Y) C Y is 1-LCC. Furthermore, they
obtain a proper, cell-like map ¢ : Y — X. In the second step they show that ¥ must, in
fact, be a manifold since S(Y’) cannot be tamely embedded if it is in the trivial range.

They use geometric techniques which are different from the surgery arguments of
[66] described earlier. They invoke the 1-ULC taming theorems of A.V. Cernavskii [82]
and C.L. Seebeck [255] among others (see also [131] which improved upon both [82] and
[255]) in their fairly technical proof. We suggest Cannon’s outline of the proof in the
simplest cases [74] as a preliminary reading.

It is interesting to observe that, modulo the Poincaré conjecture, analogous results
(for the trivial range) were later shown to hold in dimension three, although in the reverse
historical order. First, J.L.. Bryant and R.C. Lacher proved the 1-LLCC taming theorem
[67] and few years later T.L. Thickstun found a blow up g : Y — X with the properties
described above [271]. We have discussed [67] and [271] in some detail in [238].

We should also mention another interesting resolution theorem, from 1982: using
the more basic techniques of [64] and the Waldhausen (analogue of) simple homotopy
type and projective class group for infinite complexes [280] (see an exposition in [227]),
M.Y. Kutter applied an obstruction theory due to J.L. Bryant and M.E. Petty [69] to
splitting X x IR as a manifold, to resolve generalized n-manifolds X (n > 5) with S(X)
a polyhedron and such that X x R is a PL (n + 1)-manifold [179].

Around the time of Cannon’s solution of the double suspension problem [75] and
subsequent Edwards’ definitive higher dimensional shrinking theorem [118], F.Quinn
began to present his program on ends of maps which in the years to follow materialized
in a sequence of papers [229] - [232]. The starting idea was to develop an analogue of the
completion theory, done for manifolds by L.C. Siebenmann [256], for functions: given
an n-manifold M and a continuous map e : M — X onto, say, an ENR, the question
was - when does there exist a completion, i.e. a compact n-manifold with boundary M’
such that M’ — M C OM' and an extension of e to a proper onto map €' : M’ — X?
Quinn obtained several important results on this subject with many applications (e.g. to
constructions of mapping cylinder neighborhoods, to resolutions of manifold factors, to
block bundle approximations of approximate fibrations, to local flatness of embeddings,
to locally flat approximations of wild embeddings, and finally - some starting results in
dimension 4 (see [229] - [232]). The methods employed in the proofs of his End theorem
and the corollaries were e-versions of algebraic topology, homotopy theory, algebraic
K-theory, and surgery which Quinn had been working out since the early 1970’s.

One of the main problems Quinn had been attacking since mid 1977 was the problem
of the existence of resolutions for higher dimensional generalized manifolds. The shrink-
ing theorem of Edwards [118] was “almost one half” of the proof of the Cannon manifold
characterization conjecture - the missing half was Theorem (4.1) (n > 5). Quinn an-
nounced a proof in 1978 and a full version of it appeared few years later [232]. The case
n = 4 of (4.1) followed soon after M.H. Freedman’s [134] and S.K. Donaldson’s [104]
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fundamental contributions to the topology of 4-manifolds [231]. We remark here that
before [231] appeared, M. Ue [275] [276] had resolved the class of generalized 4-manifolds
with isolated singularities.

For the general proof of Theorem (4.1) one needs the following result which is a
consequence of Edwards’ shrinking theorem [118], Quinn’s end theorems [229]-[231],
and R.J. Daverman’s observation [89] that all generalized manifolds adopt the DDP
after having been crossed by IR?. Note that this result also shows that the two, in the
past most useful methods of desingularizing a generalized n-manifold (n > 4), resolving
and stabilizing, are equivalent.

Theorem 4.2 Let X be a generalized n-manifold, n > 4. Then the following statements
are equivalent:

(i) X has a resolution;

(ii) X x R¥ has a resolution, for some k € N; and

(i) X x R? is a manifold.

For the proofs of (4.2) and using that, (4.1) we refer to the survey [238]. In conclusion, we
consider resolutions of PL homology manifolds (see [203] [165] for their basic properties).
M.M. Cohen and D. Sullivan [83] [84] [85] [270] see also [200] [254]) have completely
solved the Resolution problem for this class of spaces (they might have been inspired
by H. Hironaka’s resolution theorem for algebraic varieties [155]: the obstruction to
finding a PL acyclic resolution f : M — X for a PL homology n-manifold X (i.e. M
is a PL n-manifold and f is a PL, strongly acyclic surjection [209]) lies in H*(X;©)
where O is the abelian group of oriented PL h-cobordism classes of oriented homology
3-spheres, modulo those which bound acyclic PL 4-manifolds, and the group operation
in © is induced by taking connected sums. Furthermore, if X admits a PL acyclic
resolution then there is a one-to-one correspondence between H3(X; ©) and the set of the
concordance classes of PL acyclic resolutions of X. (One can show that © = II3(H/PL),

where H/ PL is a homotopy fiber of the natural map BPL s BH between the classifying
spaces for stable PL block bundles and stable homology cobordism bundles [165] [199].
For an interesting relationship between the Cohen-Sullivan obstruction and the Kirby-
Siebenmann obstruction to putting a PL manifold structure on a topological manifold
[169] see [2].)

These existence and classification theorems have later been recast in the language of
classifying spaces by A.L. Edmonds and R.J. Stern: a PL homology n-manifold X admits
a PL acyclic resolution if and only if the classifying map 7 of the homology tangent bundle
of X lifts to BPL. Furthermore, if X admits a PL resolution then there is a one-to-one
correspondence between the set of homotopy classes of lifts of 7 to BPL and the set of
the concordance classes of PL acyclic resolutions of X [113]. Both properties follows
from the Product Structure Theorem in [113], analogous to our Theorem (4.2): a PL
homology manifold X admits a PL acyclic resolution if and only if X x I* admits a PL
acyclic resolution for some & € IN.

Note that by Theorem (4.1), every generalized n-manifold, n > 4, is simple homo-
topy equivalent to a topological n-manifold [185]. Analogous result for PL homology
n-manifolds, n > 5, was proved earlier by D.E. Galewski and R.J. Stern [140].
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5. The DDP Problem

Topological n manifolds (n > 5) the disjoint disks property (DDP) and Theorem(5.1)
shows that the DDP is also their characteristic property. A metric space X has the DDP
if for every pair of maps f, ¢ : B> — X and every € > 0 there exist maps f’,¢' : B2 -+ X
such that d(f, f') < e > D(g,¢") and f'(B?) N g'(B%) = ( [75]. In this chapter we
shall give a brief account of the results which culminated in the following definite higher
dimensional shrinking theorem:

Theorem 5.1 (R.D. Edwards [118]) Let G be a cell-like, upper semicontinuous decom-
position of an n-manifold M (n > 5) such that dim M /G < oo. Then G is shrinkable if
and only if M/G has the DDP.

In an arbitrary generalized n-manifold (n > 5) the DDP can fail badly [100] (see also
[238]). But if it is valid it detects topological manifolds:

Corollary 5.1 F.S. Quinn [232]-[234]) A space X is a topological n-manifold (n > 5)
if and only if X is a generalized n-manifold with the vanishing obstruction o(X) and
possessing the DDP.

Corollary 5.2 (J.W. Cannon [75]) The double suspension of every homology n-sphere
is homeomorphic to S™*2.

Edwards’ proof of Theorem (5.1) is one of the nicest achievements of modern geo-
metric topology. It generalizes many earlier related results, e.g. [75], [175], [180], [257],
and [273]. The proof’s ingredients are classical shrinking techniques of R.H. Bing, radial
engulfing and some fundamental taming results of R.H. Bing and J.M. Kister [34] and
J.L. Bryant and C.L. Seebeck [70].

We shall present an outline for the following, by [198], equivalent formulation of
Theorem (5.1).

Theorem 5.2 (R.D.Edwards [118]) A proper, cell-like map f : M — X from an n-
manifold (n > 5) onto an ANR can be approzimated by homeomorphisms if and only if
X has the DDP.

Corollary 5.3 (L.C. Siebenmann [257]) A proper, cell-like map between topological n-
manifolds (n > 5) can be approzimated by homeomorphisms.

This corollary is also known in lower dimensions: n = 2 [249] [279] (for S? already
[223], n = 3 [12], [180], [257] and for n = 4 [231].

The main idea of Edwards’ proof of Theorem (5.1) is as follows: Using the DDP, he
embeds the (infinite) 2-skeleton S of M into X. Then the applies the 1-ULC taming
theory for decompositions of manifolds to make f one-to-one over f(S). After this
process the remaining nondegenerate point-inverses of f have 1-ULC complements in
M, actually they have low embedding dimension. Consequently, they are essentially
tame. Using an engulfing type induction he then untangles them and shrinks them to
points.

The proof of (5.2) is based on three key proposition [191]: the 0-dimensional shrinking
theorem (5.3), the (n —3)-dimensional shrinking theorem (5.4), and the 1-LCC shrinking
theorem (5.5).
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Theorem 5.3 (R.D. Edwards [191]) Let f : M — X be a proper, cell-like map from an
n-manifold onto an ANR such that dim S(f) < 0 end dem N(f) < n —3. Then f can
be approrimated by homeomorphisms.

Note that Theorem (5.3) is false if the condition dem N(f) < n — 3 is replaced by
< n —2, even if f is cellular - as a counterexample for n = 3 one can take the Bing
countable planar Knaster continua decomposition [29] and for n > 4, Eaton’s generalized
dogbone space decomposition [110].

The idea is to first prove Theorem (5.3) for a special case: when the components of
N(f) form a null-sequence and dem f~!(z) < n — 3 for every z € X. The general case
then follows by a standard amalgamation technique. The proof of the special case is
a (quite technical) bare-handed shrinking, done in M - a generalization of a technique
used in dimension 3 by Bing [26] for the case when f~!(z) was a (geometric) cone,
lying in some coordinate patch in M. The crux is that our point-inverses are cell-like
hence almost contractible, so with some effort one can find a sufficiently good conelike
structure for them. Because we are dealing with only a null sequence of nondegenerate
point-inverses we only need to shrink finitely many of them (others are already small
enough). However, in doing this we must use the conelike structure on the chosen point-
inverse (which we want to shrink), to prevent others from being inadvertly stretched
larger.

Theorem 5.4 (R.D. Edwards [191]) Let f : M — X be a proper, cell-like map from an
n-manifold onto an ENR such that dem N(f) < n — 3. Then f can be approzimated by
homeomorphisms.

Proof: Find a filtration of X with o-compact subsets p, C X
D=ptlcp’cplc...cpi=X

such that for every k, dimp* < k and dim(p* — p*~!) < 0. (This can easily be done
with a (downward) induction: construct p;_; by taking the fronties of a countable base
of open neighborhoods of p*.) Choose an open neighborhood W C M of N(f). Without
losing generality we may assume that M is compact. Choose an € > 0 and construct
inductively, using at each step Theorem (5.3), for each k =1,2,...,n+ 1, cell-like maps
fr: M — X with the following properties:

(1) (fka ) n—|—1;

(i) f is one-to-one over pF~';

(iii) dem N(fy) < n — 3; and

(iv) fel M — W = f|M — W

Clearly, f,.1: M — X is then a homeomorphism and d(f,.1, f) < & as required.

Theorem 5.5 (R.D. Edwards [191]) Let f : M — X be a proper, cell-like map from an
n-manifold (n > 4) onto an ENR, such that dim S(f) < n—3 and S(f) is 1-LCC in X.
Then f can be approrimated by homeomorphisms.

Proof: (n > 5) The idea is to approximate f by a cell-like map f' : M — X
such that dem N(f') < n — 3 and then apply Theorem (5.4) to approximate f' by a
homeomorphism. Such an f’ can be constructed as the limit of cell-like maps fr : M — X

13



such that for every k, the nondegeneracy set N(fi) lies in the complement of the 2-
skeleton Tk@) of some triangulation 7} of M, where mesh 7y — 0 as k¥ — co. The main
ingredient of the construction of {fi} is radial engulfing.

Proof of (5.2): (M PL and compact, n > 6). There are three main steps. Choose an
e > 0.

Step 1. Let {Ps} be the (countable) set of all finite 2-complexes in M. Use the DDP
in X to get a countable collection {C;} of compact sets in X such that:

(i) Cy is 1-LCC in X

(ii) for every Cy there is some P; such that Cy; ~ Ps; and

(iii) for every map g; : P; — X there exists a homeomorphism hg : P; — C; such
that hg approximates g;.

Apply Theorem (5.5) to show that for every ¢, f can be approximated by homeomor-
phisms over C;. So there is a cell-like map f; : M — X such that d(fi, f) < 5 and f; is
one-to-one over U,>, C;.

Step 2. We want to lower the embedding dimension of the nondegeneracy set of f;.
Therefore we shall approximate fi by a cell-like map f; : M — X such that d(fs, f1) < 3
and dem N(f;) < n — 3. In order to find such an f, construct triangulations {7} of
M with pairwise disjoint 2-skeleta (use general position) and such that mesh 7 — 0 as
k — oco. We then get fo as the limit of a sequence of cell-like maps g : M — X with
the following properties:

(i) 90 = fi;

(ii) for every k, d(gr+1, gr) < zrFr; and

(iii) for every k > 0, g, is one-to-one over gy (Tk(2).

We must make certain that fo = limy_, ., gx agrees with each g, over T,SQ) hence

Nf)cM-u = 1®
k=1
so dem N(f2) < n — 3. The main ingredients of the proof are the Bing-Kister [34] and
the Bryant-Seebeck [70] taming theorems combined with [145].

Step 3. Use Theorem (5.4) to find a homeomorphism f3 : M — X such that
d(fs, f2) < §. Consequently, d(fs, f) < ¢ and we are done.

In conclusion, we mention a generalization of the disjoint disks property - the so-
called disjoint k-cells property (DD*P): A space X is said to have the DDFP if every
pair of maps f,g : B¥ — X can be arbitrarily closely approximated by maps with
disjoint images. H. Torunczyk proved in 1977 a remarkably simple characterization of
manifolds modelled on the Hilbert cube [274] (for an excellent exposition see [121] or
[212]): a compact AR X is homeomorphic to the Hilbert cube if and only if X satisfies the
DD*P for all k> 0. M. Bestvina has used the DD*P to characterize universal Menger
compacta [19] [20]: if X is a k-dimensional, (k — 1)-connected, LC* !, compact metric
space, satisfying the DD*P then X is homeomorphic to the k-dimensional universal
Menger space u*. (Some results along these lines were at the same time obtained by
A.N. Dranignikov [106]). As a corollary, various constructions of ;¥ that have appeared
in the past (e.g. in [192] [211] [226]) all yield the same space. Another important result
in [20] is a topological characterization of manifolds modelled on p*: a locally compact,
LC*! k-dimensional metric space locally looks like p* if and only if it satisfies the
DDFP. Asitis demonstrated in [20] x* turns out to be the k-dimensional analogue of the
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Hilbert cube. For another variation of the DDP and its applications for decompositions
of manifolds see the work of D.J. Garity [142] [143]. For more history of DDP see [238].

6. Epilogue

In this survey only the case of higher dimensions (> 5) was discussed. In dimensions
< 2 all generalized n-manifolds are genuine n—manifolds so the Recognition problem in
the sense of Cannon doesn’t concern this case. In dimension 4 we still don’t know enough
about the geometric properties of 4-manifolds to successfully attack this problem — in
spite of the recent breakthrough in this area by M. H. Freedman [134] and subsequent
developments [105], [136], [167], [194]. For example, we still have no good analogue of
the DDP for this dimension (for partial results see [21] and [96]).

In dimension 3, however, there has been a considerable amount of work done in the
past 3 years. Anyone interested in this dimensions can consult the surveys [238] (which
describes the results up to 1984) and [98] (which is about the work done after 1984, e.g.
[21], [40]-[42], [52]-[55], [56], [9], [92], [95]-[97], [102], [103], [132], [142]-[144], [146]-
[148], [161]-[164], [220]-[222], [237]-[246], [261], [266], [267], [272], [293]) as well as a
related survey [221] on topology of cell-like maps.
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