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Abstract. Transversality phenomena are studied for homology manifolds.

For homology manifolds X, Y and Z, with Z embedded in Y with a neighbor-

hood ν(Z) which has a given bundle structure, we define a map f : X → Y to
be transverse to Z, if f−1(Z) = Z′ is a homology manifold, the neighborhood

f−1(ν(Z)) has a bundle structure given by f∗ν(Z) and f induces the bundle
map. In the case where the range is a manifold an arbitrary map is s-cobordant
to a transverse map if the submanifold is codimension one and (π, π) or codi-
mension greater than two. Appropriate homology manifold versions of related
splitting and embedding theorems are proved for homology manifolds. As a
group, bordism of high dimensional homology manifolds has one copy of the
bordism of topological manifolds for each possible index.

1. Introduction

We are interested in the following problem which makes sense in many different
categories of spaces: If X, Y and Z are objects in a given category C, ν(Z) is a
C−normal neighborhood of Z in Y and f : X → Y is a morphism in the category
C, when can f be replaced by a C-transverse map? For example Thom’s celebrated
transversality theorem says that any map in the smooth category can be approxi-
mated by a transverse map. Similar theorems for the PL and TOP categories are
due to Rourke and Sanderson [RS] and Kirby-Siebenmann [KS] respectively.

This paper explores this question in the category of homology manifolds. A
homology manifold X of dimension n is a finite dimensional ANR with the local
homology of a manifold, i.e. for any point x ∈ X, H∗(X, X \ x) ' H∗(Rn, Rn \ 0).
Homology manifolds are an object of classical mathematical interest. They have
been studied via sheaf theory and point set topology (see the work of Bing and his
school) and more recently via controlled topology, [Q] and [BFMW].

The question of transversality for homology manifolds was first proposed by
Quinn. Transversality for homology manifolds is seen to fail in general due to the
exotic local nature of the structures of unresolvable homology manifolds. Given
two exotic local structures Un and Vk of different types and of dimensions n and
k respectively, there does not generally exist a splitting of the local structures
Un = Vk × Wn−k. This parallels the local splitting problem in the equivariant
setting. For example, Browder- Livesay studied the obstruction to decomposing an
involution (Rn,Σ) as (R,−)×(Rn−1, T ) for any involution T . See [J1] for a study of
equivariant transversality for PL locally linear actions of the group Z2. The failure
of transversality for homology manifolds is noted in [We2].

This paper explores the question of transversality for homology manifolds. The
paper begins with some results related to transversality. Homology manifolds
versions of the (π, π) and Browder splitting theorems and the Browder-Casson-
Haefliger-Sullivan-Wall embedding theorems are proved.
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Theorem 1.1. Given X and Y high dimensional Poincaré spaces so that Y is
Poincaré embedded in X via a spherical fibration of dimension at least 2, then any
homology manifold structure on X defines an obstruction in L(Y ) which vanishes
if and only if the structure splits, i.e. has a representative which restricts to a
structure on Y . If Y is codimension 1 in X and X = V1∪Y V2 so that the inclusion
Y ⊂ V1 induces an isomorphism of fundamental groups, then any structure on X
splits.

See theorems ?? and ?? below.

Theorem 1.2. A Poincaré embedding of high dimensional homology manifolds
which is given by a spherical fibraton of dimenson at least 2 is s-cobordant to an
embedding.

See theorem ?? below.
Interestingly, although the proofs of the manifold versions of these results rely

heavily on transversality and the Wall surgery exact sequence, the homology man-
ifold versions are proven without transversality, using only the homology manifold
surgery exact sequence. In the homology manifold setting these splitting and em-
bedding results are used to prove transversality theorems.

Transversality for homology manifolds is defined for X, Y and Z homology
manifolds with Z ⊂ ν(Z) ⊂ Y where ν(Z) is the total space of a topological bundle
over Z as follows: f : X → Y is transverse to Z if f−1(Z) is a homology manifold
with a neighborhood f−1(ν(Z)) = f∗ν(Z) so that f is the bundle map. The two
main theorems about homology manifold transversality give information about the
success of transversality in this setting.

Theorem 1.3. Given f : X → Y with X, Y and Z high dimensional homology
manifolds as above. If in addition Y and Z are manifolds, then f is s-cobordant
to a transverse map if Z ⊂ Y is codimension one with the added condition that
Y = Y1 ∪Z Y2 and π1(Z) ' π1(Y1) or if Z ⊂ Y is codimension at least 3.

See theorems ?? and ?? below.
As in Thom’s work, transversality results are closely connected to the calculation

of bordism. Let ΩH
∗ (X) denote homology manifold bordism.

Theorem 1.4. In dimensions ≥ 6 we have an isomorphism of Abelian groups

ΩH
∗ (X) ' ΩTOP

∗ (X)[8Z + 1].

See theorem ?? below. As an Abelian group ΩTOP
∗ (X)[8Z + 1] is just

Maps(Z,ΩTOP
∗ (X)) where the Z corresponds to the Quinn index by the map x →

8x + 1. The notation is meant to suggest an expected multiplicative structure, but
unfortunately the given map does not yield a ring isomorphism.

We make use of the analysis of obstructions to Poincaré transversality and re-
lated transversality structures (see [HV] for an account) and the homology mani-
fold surgery exact sequence of [BFMW] to prove these theorems. First we apply
Poincaré transversality theorems to get a Poincaré space P as the Poincaré trans-
verse inverse image. Then we would like to perform Browder splitting to complete
the proof. There is a priori an obstruction to doing this. However an embedding
trick allows us to find a different solution to the Poincaré transversality problem
which has vanishing splitting obstruction.
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The bordism theorem is proven by comparing homology manifold bordism to
Poincaré bordism and bordism of topological manifolds. The proof uses a construc-
tion of 0 and 1 surgery for homology manifolds to reduce to the situation in which
there exists an isomorphism of fundamental groups. The proof uses the homology
manifold surgery exact sequence and a construction similar to that used in the proof
of the transversality theorem.

2. Definitions and Notation

2.1. Poincaré Duality Spaces. Poincaré spaces are most known for their use in
surgery theory for the study of manifold structures. These spaces have also been
studied as interesting in and of themselves. See for example the comprehensive
book of Hausmann and Vogel, [HV]. We will use the definitions of Poincaré and
normal spaces, called PD-spaces and Q-spaces respectively, which are given in [HV].

Transversality for Poincaré spaces is defined using a type of normal structure
called a CDq−structure.

Definition 2.1. A pair of spaces (X, A) with A closed in X is called a CDq-pair, if
it has a CDq-structure, i.e. a pair (NA, ∂NA) of closed subspaces of X giving rise
to a decomposition. X = NA ∪ [(X \NA) ∪ ∂NA], NA ∩ [(X \NA) ∪ ∂NA] = ∂NA

such that
1) NA is a neighborhood of A and the inclusion A ⊂ NA is a homotopy equivalence.
2) The homotopy fiber of the inclusion ∂NA → NA is Sq−1.
3) The inclusion ∂NA ⊂ (NA \A) is a homotopy equivalence.

Definition 2.2. We say that a map between Poincaré spaces P
f−→ X, with a

CDq−pair (X, A), is Poincaré transverse to A, if
1) (P, f−1(A)) admits a CDq-structure (f−1(NA), f−1(∂NA)), so that f induces a
map of spherical fibrations.
2) The same is true for ∂P and the inclusion f−1(NA)∩ ∂P ⊂ f−1(NA) induces a
morphism of spherical fibrations.
3)The decompositions of P and ∂P given by the CDq-structures are Poincaré de-
compositions.

We shall say that a pair of spaces (X, Y ) is a (π, π) -pair if the inclusion X ⊂ Y
induces an isomorphism of fundamental groups. The celebrated theorem of [Wa],
that L(π, π) ' 0, is then called the (π, π) -theorem. A consequence of this theorem
is the following Poincaré transversality theorem, see e.g. [HV].

Theorem 2.3. Poincaré transversality holds for a CD1-pair (X, A) so that X =
X1 ∪A X2 and (X1, A) is a (π, π) -pair.

In a setting where Poincaré transversality holds, a consistent method for making
maps transverse is called a transversality structure. Given a Poincaré space P and
Spivak fibration η, with Thom space T (η), an (extrinsic) transversality structure
on P is a way of making simplices of T (η) transverse to P . Note that for any
PL manifold M , M → T (η) can be made Poincaré transverse to P , by using the
transversality structure on η to make all simplices of M Poincaré transverse to P
in a consistent way.

According to Levitt and Morgan [LM], a Spivak fibration η has a transversality
structure if and for dim η ≥ 3 and P 4-connected only if, η has a PL reduction.
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Their methods and TOP transversality [KS] yield the same theorem in the TOP
category. We will be interested in the easier direction.

Theorem 2.4. Given η → P a spherical fiber space, a TOP reduction of η defines
a transversality structure for η.

2.2. Homology Manifolds.

Definition 2.5. Define a homology manifold of dimension n to be a finite dimen-
sional absolute neighborhood retract (ANR) X so that for every x ∈ X H∗(X, X \
x) = H∗(Rn, Rn \ 0)

Let I(X) denote Quinn’s integer obstruction to resolution for homology mani-
folds. [Q3]

Let L∗ or just L denote the 4-periodic 0-connective spectrum whose homotopy
groups are the surgery obstruction groups of Wall. This spectrum is also known
as the quadratic L-theory spectrum. Let L∗ denote the corresponding symmetric
L-theory spectrum of Ranicki. If X is a homology n-manifold, it has a canonical

L-theory orientation [X]L ∈ Hn(X, L∗) so that H0(X, L∗)
∩[X]L−→ Hn(X, L∗) is an

isomorphism, see [R2]. Ferry and Pedersen, [FP] have used this result to show that
the Spivak fibration of a homology manifold has a canonical TOP reduction, which
we will call the Ferry-Pedersen reduction.

Definition 2.6. Given a Poincaré space P , define SH(P ) to be the (possibly empty)
set of simple homotopy equivalences X → P for X a homology manifold up to s-
cobordism.

This is the definition used by Bryant, Ferry, Mio and Weinberger, for which they
have proven a surgery exact sequence for homology manifolds, [BFMW]. In this
sequence the homology manifold normal invariants are given by Hn(P, L) where
H∗ denotes locally finite homology. Similarly there exists a surgery exact sequence
for n-ads of homology manifolds.

3. Topology of Homology Manifolds

Many important splitting and embedding theorems for manifolds were proven us-
ing manifold surgery theory. In this section we use the homology manifold surgery
exact sequence to prove similar theorems for homology manifolds. These split-
ting and embedding theorems will play a central role in proving the transversality
theorems to follow.

Theorem 3.1. ( (π, π) -splitting) Given a Poincaré space P , dim P = n ≥ 6
and a Poincaré decomposition of P = P1 ∪ P2 where P1 ∩ P2 = P0 and (P1, P0)

is (π, π) i.e. π1(P0) ' π1(P1). Any simple homotopy equivalence X
f−→ P from a

homology manifold X to P is s-cobordant to a simple homotopy equivalence X ′ g−→
P which restricts to a simple homotopy equivalence g−1(P0)

g−→ P0.

Proof: Consider X
f−→ P as an element of SH(P ). In particular the Ferry-

Pedersen TOP reduction of X gives a TOP reduction of P . P1 has a TOP reduction,
by restriction of the TOP reduction of P , and it is (π, π) , so there exists a homology
manifold structure on P1. We would like a homology manifold structure on the
Poincaré space P × I, which restricts to a structure on P1 × 1 and agrees with the
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Figure 1. A homology manifold structure on R = P × I rel P ×
0q P1 × 1.

given structure on P × 0. For a given structure in SH(P1), consider the homology
manifold surgery exact sequence for P ×I, rel P1×1qP ×0, which we shall denote
by R.

SH(R) → Hn+1(P × I, P2; L) → Ln+1(P × I, P2) → BSH(R) → Hn(P ×
I, P2; L) → Ln(P × I, P2)

Notice that L∗(P × I, P2) ' L∗(P1, P0) ' ∗. So we have an isomorphism
BSH(R) ' Hn(P × I, P2; L). But Hn(P × I, P2; L) ' Hn(P1, P0; L) ' SH(P1).
By naturality of the surgery exact sequence under inclusion we have the following
commutative diagram, where the vertical maps are the sum of the maps induced
by inclusion.

SH(P )× SH(P1) −−−−→ Hn(P, L)×Hn(P1, P0; L)y y
BSH(R) −−−−→ Hn(P × I, P2; L)

By commutativity of the diagram, the map i : SH(P1) → BSH(R) induced
by inclusion is the above isomorphism. We can choose a structure on P1 which
together with f in SH(P ) gives a vanishing total surgery obstruction of R. Thus
we have W → P × I a simple homotopy equivalence, i.e. W is an s-cobordism from
X1∪X0 X2 to X ′ where X ′ → P is s-cobordant to the original structure X → P . �

This is called codimension one splitting. We say that the given homotopy equiv-
alence “splits”, i.e. restricts to a homotopy equivalence (over P1 and hence) over
P0. A corollary of the proof which we will need later is that the splitting map
SH(P ) → SH(P1) extends to a map of surgery exact sequences. We also have a
relative version of this theorem, whose proof uses the relative version of the surgery
exact sequence for homology manifolds.

Theorem 3.2. (Browder Splitting) Let f : X ′ → X denote a simple homotopy
equivalence where X ′ is a homology manifold of dimension n ≥ 6 and X is a
Poincaré space of dimension n. If Y is a Poincaré space of dimension y ≥ 6 and
ν(Y ) is a fiber bundle over Y with fiber Dc, c ≥ 3 so that X = ν(Y ) ∪∂ν(Y ) V
then there is a well defined obstruction σ(f) ∈ Ly(Y ) which depends only on the
s-cobordism class of f so that f splits over Y i.e. f is s-cobordant to a map which
is transverse to Y and restricts to a homotopy equivalence over Y if and only if
σ(f) vanishes.

Proof: Apply (π, π) splitting to f and ν(Y ) to get a structure g : X ′′ → X which
is s-cobordant to f and so that g|N where N = g−1(ν(Y )) is a simple homotopy
equivalence. Call this s-cobordism W . Recall from above that there is a well-defined
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Figure 2. We perform (π, π) splitting on f to get a structure on ν(Y ).
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Figure 3. Glue together the two s-cobordisms V and W to get an
s-cobordism from f to a new structure which contains an embedded
ν(Y ′).

map to SH(ν(Y )) call the image of f under this map ρ. Further consider the map
SH(ν(Y )) → Hn(ν(Y ), L), which is an isomorphism, because ν(Y ) is (π, π) (c ≥ 3.)
Let γ denote the image of ρ under this map. Further let α denote the image of γ
under Ranicki’s Thom isomorphism Hn(ν(Y ), L) ' Hy(Y, L), [R2]. Define σ(f) to
be the surgery obstruction of α in Ly(Y ).

Assume that σ(f) vanishes. Then α is normally cobordant to a structure on Y ,
i.e. an element of SH(Y ). Call this β. We have the following commutative diagram
where the horizontal maps are transfers [R2].

SH(Y ) −−−−→ SH(ν(Y ))y y
Hy(Y, L) −−−−→ Hn(ν(Y ), L)

Thus if β maps to α maps to γ, then also β maps to ρ maps to γ, i.e. ρ is in the
image of the transfer map SH(Y ) → SH(ν(Y )). Equivalently ρ is s-cobordant to a
bundle map h : ν(Y ′) → ν(Y ) for some structure k : Y ′ → Y representing β so that
ν(Y ′) = k∗ν(Y ). Call this s-cobordism V . Gluing the two s-cobordisms together
results in an s-cobordism from f to g̃ : X̄ → X so that X̄ = X ′′\N ∪∂N ∂2V ∪ν(Y ′)
where ∂2V = ∂V \ (ν(Y ′) ∪N) and g̃|Y ′ → Y is the simple homotopy equivalence
k as desired.

Conversely assume that g is a transverse split map s-cobordant to f . Then
the image of g in SH(ν(Y )) under codimension one (π, π) splitting is just g|ν(Y ′),
which by transversality comes from g|Y ′ which represents an element of SH(Y ) by
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Figure 4. Apply the codimension one (π, π) splitting theorem to
h to get h′.

the split assumption. By commutativity of the above diagram σ(g) is the surgery
obstruction corresponding to g|Y ′ in Hy(Y, L) which vanishes. �

We also have a relative version of the Browder splitting theorem, in which we
assume that the given simple homotopy equivalence is already split along ∂Y .
This translates into the appropriate hypothesis for a relative codimension one
(π, π) splitting theorem. The relevant surgery obstruction group remains L(Y ),
because all surgery is done relative to ∂Y . Thus the remainder of the proof goes
through as before.

Theorem 3.3. (Browder-Casson-Haefliger-Sullivan-Wall Embedding) Given X a
homology manifold Poincaré embedded in a homology manifold Y of dimension
n ≥ 6 by a homotopy equivalence h : Y → ν(X) ∪∂ν(X) V where ∂ν(X) is a
spherical fibration of dimension at least 2, with mapping cylinder ν(X), then X
embeds in Y ′′, which is s-cobordant to Y . (If Y is a manifold, then X embeds in Y
itself.)

Proof: Apply the codimension one (π, π) splitting theorem to h to get h′ : Y ′ →
ν(X) ∪∂ν(X) V so that (h′)−1(ν(X)) = N a homology manifold and h′|N : N →
ν(X) is a homotopy equivalence. Given that h is only a homotopy equivalence and
not a simple homotopy equivalence, the codimension one (π, π) splitting theorem
gives Y ′ only h-cobordant to Y . However we may assume that Y ′ is s-cobordant to
Y by gluing on an h-cobordism of appropriate torsion. We may do this on V (away
from N ,) because the high codimension gives π1(Y ) ' π1(V ). Let f denote h′|N .

We are interested in the controlled surgery exact sequence for
ν(X)
↓
X

. Notice that

ν(X) is a controlled Poincaré complex over X, because X is a homology manifold
and the fiber of ν(X) over X is a Poincaré space.

Let Sc,H(
ν(X)
↓
X

) denote the set of controlled homology manifold structures on the

controlled Poincaré complex (
ν(X)
↓
X

). This surgery exact sequence is studied in [F].

The special case we use here also follows from the bounded surgery exact sequence
for homology manifolds as studied in [BFMW]. In particular, we need to apply the
techniques discussed there to generalize the surgery exact sequence from X a finite
polyhedron to X a general finite dimensional ANR.

Claim: The map Sc,H(
ν(X)
↓
X

) → SH(ν(X)) induced by forgetting control is

surjective.
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Figure 5. W is the trace of surgery on f not rel ∂. W ′ is the
result of surgery on W rel ν(X)× 0, 1.

Proof of Claim: Consider f : N → ν(X) as a normal invariant. The controlled

surgery exact sequence for Sc,H(
ν(X)
↓
X

) is given by

· · · → Sc,H(
ν(X)
↓
X

) → NI(ν(X)) → Lc(
ν(X)
↓
X

) → · · · .

By our dimension assumption the fiber of (
ν(X)
↓
X

) is (π, π) and by the controlled

(π, π) theorem Lc(
ν(X)
↓
X

) = 0. Thus f : N → ν(X) can be surgered to a controlled

homotopy equivalence, f̃ : N ′ → ν(X). Let R : W → ν(X) × I denote the
trace of this surgery. We can do surgery on R : W → ν(X) × I rel ν(X) × 0, 1
to get a homotopy equivalence, because the relevant surgery obstruction group is
Ln+1(ν(X), ∂ν(X)) = 0. This surgery results in r : W ′ → ν(X)×I an h-cobordism
between f̃ and f , i.e. f̃ the desired controlled structure which represents the same
element of SH(ν(X)) as f . Our claim is proved.

Given f̃ |∂N ′ = g an element of Sc,H(
∂ν(X)
↓
X

), we will now construct an element of

SH(ν(X)) in which X embeds. Let H : ∂2W
′ → ∂ν(X)×I denote the h- cobordism

r|∂2W
′ where ∂2W

′ = ∂W ′\(N ′∪N). Let k = p◦g denote the composition of g and
p : ∂ν(X) → X the projection map. Since g is a controlled homotopy equivalence,
H extends to a homotopy equivalence H̄ : Yk → ν(X) where Yk = ∂2W

′/ ∼ for
n1 ∼ n2 if k(n1) = k(n2). Yk is a homology manifold, because g is a controlled
homotopy equivalence.

The map H̄ : Yk → ν(X) defines an element of SH(ν(X) rel ∂) in which X is
embedded. We will show that this implies that X can be embedded in any element
of SH(ν(X) rel ∂), i.e. X can be embedded in N above.

Consider the surgery exact sequence for ν(X) rel ∂.

Ln+1(X) → SH(ν(X) rel ∂) → Hn(ν(X), L) → Ln(ν(X)).

Recall that for the homology manifold surgery exact sequence NI(ν(X)) are natu-
rally given by controlled surgery obstructions. (Even in the manifold case, we may
still consider NI(ν(X)) as contained in the group of controlled surgery obstruc-
tions.)

Let α ∈ Hn(ν(X), L) ' Hn(X, L) denote the difference of the images of H̄ and
f there. In the controlled surgery exact sequence for p : ∂ν(X) → X we have

Hn(X, L) → Sc,H(
∂ν(X)
↓
X

) → Hn−1(∂ν(X), L) → Hn−1(X, L).
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Figure 6. The space ∂2W
′ and the map H are used to define

H̄ : Yk → ν(X).
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Figure 7. The space ∂2W
′∪V and the map H ′ are used to define

N ′′ = ∂2W
′ ∪ V/ ∼ and H̄ ′.

Take g : ∂N ′ → ∂ν(X) and do a Wall realization α : V → ∂ν(X) × I with
controlled surgery obstruction α to get g′ : B → ∂ν(X) another controlled struc-
ture. Now consider the homotopy equivalence H ′ : ∂2W

′ ∪ V → ∂ν(X) × I so
H ′|∂2W

′ = H and H ′|V = α.
Now N ′′ = ∂2W

′ ∪ V/ ∼ where ∼ is given by n1 ∼ n2 if p(g′(n1)) = p(g′(n2)),
is a homology manifold and H̄ ′ : N ′′ → ν(X) gives a homology manifold structure
on ν(X) rel ∂. To see that the image of H̄ ′ in Hn(X, L) agrees with that of f i.e.
that it differs from the normal invariant for H̄ by α, compare the controlled surgery
obstructions for H and H ′ in Hn(X, L) and observe that they differ by α.

Now we have H̄ ′ : N ′′ → ν(X) an element of SH(ν(X) rel ∂) which has the same
image in Hn(X, L) as f does. Thus we can act on H̄ ′ by an element σ ∈ Ln+1(X)
to get f . Note that by construction H̄ ′ maps the manifold V̄ = V/ ∼ to the subset
ν1(X) = ∂ν(X)× [0, 1

2 ]/ ∼ and maps ∂2W
′ to the complement ∂ν(X)× [ 12 , 1].

Since π1(ν(X) rel ∂) ' π1(∂ν(X)× I rel ∂) ' π1(X), we may represent σ by an
element of Ln+1(∂ν(X)×I rel ∂), s : K → (∂ν(X)×[ 12 , 1])×I so that s|s−1(∂ν(X)×
[ 12 , 1] × 0) = H̄ ′|∂2W

′ and s|s−1(∂ν(X) × [ 12 , 1] × 1) gives a new structure on
∂ν(X)× [ 12 , 1] rel ∂.
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Figure 8. Glue the Wall realization K onto N ′′ × I away from
the neighborhood V̄ of X to get a structure f̄ : N̄ → ν(X) which
is h-cobordant to f .

Gluing K to N ′′ × I gives a Wall realization of σ for S(ν(X) rel ∂) with H̄ ′ at
one end and a new structure f̄ at the other end. Thus f̄ is the same element of
SH(ν(X) rel ∂) as f , i.e. f̄ is h-cobordant to f . Let τ denote the torsion of this
h-cobordism. Say f̄ : N̄ = V̄ ∪ C → ν(X) and let K̄ denote an h-cobordism of
torsion τ from C to C ′. By gluing K̄ to N̄ × I we get an h-cobordism from f̄ to f ′,
where f ′ : N̄ ′ → ν(X) is s-cobordant to f : N → ν(X). this s-cobordism together
with the oe from Y ′ to Y ′ gives an s-cobordism from a new homology manifold Y ′′

to Y . Since by construction X is embedded in V̄ which is a submanifold of N̄ ′ we
have X embedded in N̄ ′ ⊂ Y ′′ as desired.

Note that if Y were a manifold, we could do everything in the manifold category
so that in the end we would have Y ′′ manifold s-cobordant to Y and hence by the
manifold s-cobordism theorem Y ′′ = Y . This requires the following extra step.

Claim: If W is a manifold and g : ∂1W → ∂ν(X) is a controlled homotopy
equivalence over X then for k = p ◦ g the space Wk = W/ ∼ where w1 ∼ w2 if
k(w1) = k(w2) is a manifold.

The claim can be used to show that Yk and N ′′ are both manifolds. If we use the
manifold surgery exact sequence instead of the homology manifold surgery exact
sequence the other constructions obviously remain in the manifold category. Note
that this does not preclude us from considering NI(ν(X)) as controlled surgery
obstructions, we just don’t get all possible controlled surgery obstructions this way.

Proof of claim: To see that Wk is a manifold use the fact that, by Edwards [E] and
Quinn [Q3], a DDP homology manifold with manifold points is a manifold. Clearly
Wk has manifold points and is a homology manifold (because g is a controlled
homotopy equivalence.) To see that Wk has DDP, consider two disks in D1 and
D2 in Wk. Because the homotopy fiber of k : ∂1W → X is highly connected, X is
1-l.c.c. embedded in Wk, and we can move each disk off X by a small move. If the
disks are contained in Wk \X then we can make them disjoint using DDP for the
manifold W.

�

4. Manifold Range

In this section we will study homology manifold transversality for the following
special problem: Given X a homology manifold, M a manifold, a submanifold
N ⊂ M , and a map f : X → M when can f be made transverse to N?
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Figure 9. Glue the h-cobordism K̄ of torsion τ to N̄ to get a map
f ′ s-cobordant to f .
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Figure 10. The manifold two-skeleton of P is the union of the
manifold two-skeleta for P1 and P2 along the manifold two-skeleton
for P0.

4.1. Codimension One (π, π). The following variation of Poincaré transversality
theorem ?? will be needed in this section.

Corollary 4.1. If (X, A) is a CD1-pair so that X = X1| ∪A X2 and (X1, A) is
(π, π) , then it is possible to make f transverse to A with the added conclusion that
f−1(A) ⊂ f−1(X1) induces an isomorphism on fundamental groups.

Proof: The proof of ?? proceeds by approximating f by a Serre fibration P
f̄−→

(X̄, Ā)
f̂−→ (X, A). Then the homotopy equivalence f̄ is made Poincaré transverse to

Ā. Thus we may assume that we are working with the homotopy equivalence f̄ . We
would like to do Poincaré surgery on f̄ to achieve an isomorphism of fundamental
groups. If we were working with manifolds this would be the usual handle trading
argument in the first few steps of (π, π) codimension one splitting, see for example
[B1]. We will need the following lemma to reduce to the manifold case.

Lemma 4.2. If a Poincaré space P has Poincaré decomposition P1 ∪ P2 = P and
P1 ∩ P2 = P0 then the Pi have manifold two skeleta Wi for i = 0, 1 and 2 so that
W = W1 ∪W2 with W1 ∩W2 = W0 is the manifold two skeleton of P .

This lemma is a corollary of the existence of a manifold two-skeleton for a
Poincaré space together with the relative version, 2.15 and 2.20 of [HV].

We now return to the proof of the theorem. Poincaré transversality gives
f̄−1(A) = P0 and P = P1 ∪P0 P2. Applying the lemma we get a manifold two
skeleton W = W1 ∪W0 W2. Now we can repeat the handle trading argument for
the manifold case on the map f̄ |W . Changing the fundamental group as desired
involves doing surgery on embedded S1 or D2 representatives. Thus we can as-
sume that these representatives lie within the manifold two skeleta and do surgery
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there. This results in a homotopy of f̄ |W which changes the fundamental group of
(f̄ |W )−1(X̄1, Ā) while preserving transversality. Because everything is taking place
on the interior of W we can extend this homotopy by the identity to all of P to
achieve the desired result for the Poincaré spaces. �

Let X be a compact oriented homology manifold of dimension n and M and
N compact oriented manifolds so that N is a codimension one submanifold of M
which divides it into two pieces M1 and M2, N has a neighborhood N × I in M ,
and the inclusion of N into M1 is an isomorphism on fundamental groups.

Theorem 4.3. Given X, M and N as above, and an arbitrary map X
f−→ M there

exists an s-cobordism of homology manifolds W from X to X ′ and a map W → M
such that W |X = f and W |X ′ = g, so that g−1(N) = Y is a homology manifold
with neighborhood Y × I in X ′ so that g−1(N × I) = Y × I and g preserves the
product structure.

Remark 4.4. A relative version of this theorem follows easily from relative versions
of Poincaré transversality and codimension one (π, π) splitting.

Proof By ?? we can assume that f is Poincaré transverse to N say with
f−1(N) = P and f−1(M1) = P1. By ?? we can assume that the inclusion P ⊂ P1

induces an isomorphism on fundamental groups.
Now apply ?? to the identity map idX : X → P1 ∪P0 P2. This results in

X ′ = X1 ∪X0 X2 → P1 ∪P0 P2 s-cobordant to idX , where k|Xi is a homotopy

equivalence for each i. This achieves our main result, X ′ k−→ X
f−→ M is s-

cobordant to X
f−→ M and has f−1(N) = X0 a homology manifold. To achieve

the desired X0 × I neighborhood of X0 we must slightly alter X ′. Note that X ′ is
s-cobordant to X ′′ = X1 ∪X0 X0 × I ∪X0 X2 and there is an s-cobordism of maps
from f ◦ k : X ′ → M to g : X ′′ → M1 ∪N N × I ∪N M2 = M so that g is given by
f ◦ k on X1 ∪X2 and by (f ◦ k|N)× id on N × I. �

4.2. Codimension ≥ 3. Let X be a compact oriented homology manifold of di-
mension n, M and N compact oriented manifolds so that N is a submanifold of
codimension q, where q ≥ 3 and n−q ≥ 6 with ν(N) a bundle normal neighborhood
of N in M .

Theorem 4.5. Given X, M and N as above and a map f : X −→ M , there
exists a homology manifold s-cobordism W from X to X ′ and a map H : W −→ M
so that H|X = f and H|X ′ = g such that g−1(N) = Y is a homology manifold,
the neighborhood g−1(ν(N)) has a bundle structure given by ν(Y ) = g∗ν(N) and g
respects the bundle structure.

Proof: Because X is a homology manifold, its Spivak bundle has a canonical
TOP reduction ξ, given by E(ξ)

p−→ X, called the Ferry-Pedersen reduction, [FP].
The map E(ξ) → X → M given by the projection p composed with f is a map
of manifolds (E(ξ) is a manifold neighborhood of X), so we can use manifold
transversality to make f ◦ p transverse to N . Now we have (f ◦ p)−1(N) = B ⊂
E(ξ). By ?? a TOP reduction on X gives an extrinsic transversality structure
on ξ. We can use this transversality structure to make the manifold B ⊂ E(ξ)
Poincaré transverse to X. The transversality structure gives a way to make the
manifold B Poincaré transverse to X. Call the new Poincaré transverse manifold
B′ ⊂ E(ξ). Then B′ ∩ X = P is a Poincaré space, Poincaré embedded in X via
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Figure 11. A transversality structure on ξ gives Poincaré
transversality for f : X → M .

h : X → V ∪ ν(P ). Now if h̄ : V ∪ ν(P ) → X denotes the homotopy inverse of h,

then X
h−→ V ∪ ν(P ) h̄−→ X

f−→ M is homotopic to our original map and has P as
Poincaré transverse inverse image of N , i.e. ν(P ) = (f ◦ h̄)∗ν(N). Note that since
ν(N) has a TOP reduction the pull-back, ν(P ) comes with a TOP reduction.

Consider h as an element of Hn(V ∪ ν(P ), L). Map via the restriction map
to Hn(ν(P ), L). Then via Ranicki’s Thom isomorphism to Hn−q(P, L), [R2]. We
would like to put a homology manifold structure on P with this normal invariant.
Unfortunately there is an obstruction to doing this in Ln−q(P ). Call this ob-
struction σ. It is the obstruction to Browder splitting given in theorem ?? above.
This obstruction is possibly nontrivial with this particular h and P . The following
lemma, whose proof we defer briefly, allows us to switch to a different Browder
splitting problem which does have a vanishing obstruction.

Lemma 4.6. Given a Poincaré space (P, ∂P ) of dimension n, a normal k-disk
bundle ν(P ) (k ≥ 3) and a surgery obstruction σ ∈ Ln(P ), we can construct a
Poincaré space P ′ so that ∂P ′ = ∂P , and a map f : P ′ → ν(P ) so that f is a
Poincaré embedding with ν(P ′) = f∗ν(P ) and so that the surgery obstruction of
pr ◦ f : P ′ → P is σ.

Since the result gives P ′ Poincaré embedded in ν(P ), we actually have P ′

Poincaré embedded in V ∪ν(P ) which we denote by k̄ : V ′∪ν(P ′) → V ∪ν(P ). The
surgery obstruction of k̄|P ′ is σ. Denote the homotopy inverse of k̄ by k : V ∪ν(P ) →
V ′ ∪ ν(P ′). Now the composition of maps X

h−→ V ∪ ν(P ) k−→ V ′ ∪ ν(P ′) k̄−→
V ∪ ν(P ) h̄−→ X

f−→ M is homotopic to our original map and it has P ′ as Poincaré
transverse inverse image of N , i.e. ν(P ′) = (f ◦ h̄ ◦ k̄)∗ν(N).

Now we follow the same procedure as above to get the Browder splitting ob-
struction of k ◦ h. Begin with the image of k ◦ h in Hn(V ′ ∪ ν(P ′), L). Map to
Hn(ν(P ′), L) by restriction, then to Hn−q(P ′, L) by Ranicki’s Thom isomorphism.
Finally consider the image α in Ln−q(P ′). Consider the following commutative
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Figure 12. P ′ is the Poincaré transverse inverse image of N .
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Figure 13. The result of Browder splitting on k ◦ h.

diagram:

Hn(V ′ ∪ ν(P ′), L) −−−−→ Hn(ν(P ′), L) −−−−→ Hn−q(P ′, L) −−−−→ Ln−q(P ′)y y y y
Hn(V ∪ ν(P ), L) −−−−→ Hn(ν(P ), L) −−−−→ Hn−q(P, L) −−−−→ Ln−q(P )

The horizontal maps are as described above and the vertical maps are induced
by k̄. The diagram commutes by naturality of the surgery exact sequence and
transversality of k̄. The map induced on the surgery obstruction groups takes α to
α + σ = σ. Thus we have that the Browder splitting obstruction α in Ln−q(P ′)
vanishes. This means that there exists a transverse map g′ : X ′ → V ′ ∪ ν(P ′)
which is s-cobordant say via H̄ : W → V ′ ∪ ν(P ′) to k ◦ h : X → V ′ ∪ ν(P ′). Let
(g′)−1(P ′) = Y and denote (g′)−1(ν(P ′)) by ν(Y ).

Now g = f ◦ h̄ ◦ k̄ ◦ g′ is the desired map homology manifold transverse to N .
f ◦ h̄ ◦ k̄ ◦ H̄ gives an s-cobordism from g to f ◦ h̄ ◦ k̄ ◦ k ◦ h. Putting this together
with the homotopy from f ◦ h̄ ◦ k̄ ◦ k ◦ h to f yields the desired s-cobordism from
f to g. �

Proof of Lemma: Let D denote the boundary of the manifold two-skeleton of
P , where P = B ∪D C. Note that the surgery group for (P rel ∂P ) corresponds to
the fundamental group of P , and we can take a manifold two-skeleton for P which
is disjoint from ∂P . In any case, the fundamental group of D is the same as that
of P and the dimension of D is one less than that of P . Thus Ln(P ) ' Ln(D)
allows us to consider the given obstruction σ as an element of Ln(D) upon which
we may perform Wall realization. Let σ : W → D× I denote the result of the Wall
realization.

Let ν(D) denote the restriction of ν(P ) to D. Pull back this bundle via σ to
W , call the result V . Note that ∂(ν(D) × I) = ν(D) × {0, 1} ∪ ∂ν(D) × I. For
doing surgery on V → ν(D) × I rel ν(D) × {0, 1} the relevant surgery group is
Ln+k(ν(D) × I, ∂ν(D) × I) ' Ln+k(ν(D), ∂ν(D)) ' 0, because k ≥ 3 insures
that this will be (π, π) . Surgery on V → ν(D) × I results in V ′ → ν(D) × I
a simple homotopy equivalence. In particular V ′ is an s-cobordism with one end
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Figure 14. Pull back the bundle ν(D)× I to W and surgery this
to a homotopy equivalence rel ν(D)× 0, 1.
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Figure 15. Apply manifold transversality to V ′ the result of
surgery on V to get W ′ a Wall realization of σ which is embedded
in D × I.

ν(D), V ′ = ν(D)× I. Note that the transverse inverse image of D × I is now W ′.
By relative manifold transversality on the trace of the surgery we see that W ′ is
normally cobordant rel ∂ to W , i.e. it is still a Wall realization of σ. This W ′ is
embedded in ν(D)×I. The desired P ′ = B∪DW ′∪DC which is Poincaré embedded
in ν(P ) = ν(P )|B∪ν(D) ν(D)× I ∪ν(D) ν(P )|C. Because ∂P was contained entirely
in C we have that ∂P ′ = ∂P as will be useful for the relative version of this
theorem. �

Theorem 4.7. Let (X, ∂X) be a compact oriented homology manifold of dimension
n, (M,∂M) and (N, ∂N) compact oriented manifolds so that (N, ∂N) is a codi-
mension q submanifold of (M,∂M) where q ≥ 3 and n− q ≥ 6 with ν(N) a bundle
normal neighborhood of N in M . Given a map of pairs f : (X, ∂X) −→ (M∂M)
which is transverse to ∂N on ∂X so that f−1(∂N) = Y0 and ν(Y0) = f∗ν(∂N).
There exists a homology manifold s-cobordism from f : X → M to g : X ′ → M so
that g is transverse to N , g−1(∂N) = Y0 and g|Y0 = f |Y0.

The key difference in the proof of the relative version of the theorem is that
we must take care to work rel Y0 when changing the map to achieve Poincaré
transverality. We construct a manifold neighborhood of X, N(X) which contains
a manifold neighborhood of Y0, N(Y0) so that the map of manifolds given by the
composition of the retraction r : N(X) → X and the map f : X → M is transverse
to ∂N , with a neighborhood ν(N(Y0) ⊂ N(X)) = (f ◦ r)∗ν(∂N). We then use
relative manifold transversality in making this map transverse to N with transverse
inverse image a manifold B. Then when we use the manifold-type transversality
that X has inside N(X), because r : N(X) → X has a TOP reduction, we can
make B transverse to X relative to ν(N(Y0) ⊂ N(X)). The result is a Poincaré
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Figure 16. Gluing a one-handle onto Ȳ which is s-cobordant to
our original Y .

space P which is the Poincaré transverse image of N , so that ∂P = Y0. Having
done this the rest of the proof is as before using the surgery exact sequence for
(P, ∂P ).

5. Bordism of Homology Manifolds

As manifold bordism was understood via manifold transversality, homology man-
ifold bordism can be understood using the ideas of our transversality theorems. Let
ΩSH

n (X) denote the oriented bordism theory in the category of homology manifolds.

Theorem 5.1. ΩSH
n (X) ' ΩSTOP

n (X)[8Z + 1] as an Abelian group for n ≥ 6.

This was asserted in [BFMW] for X = pt. It shows in particular that bordism of
homology manifolds corresponds in high dimensions to a homology theory. It does
not, however, give the ring structure from the ring structure on ΩSTOP

∗ (X). The
appropriate normal bundle structure for homology manifolds, the Ferry-Pedersen
bundle of a product of homology manifolds, is not in fact the product of their Ferry-
Pedersen bundles. This suggests an unusual ring structure for homology manifold
bordism.

Before proving the theorem we give two important lemmas and their proofs.

Lemma 5.2. If Y is a homology manifold of dimension n, X is an arbitrary
connected finite CW-complex then f : Y → X is bordant to a map g : Y ′ → X so
that Y ′ is connected and g induces an isomorphism of fundamental groups.

Proof of lemma: If Y is not connected consider an element α of π0(Y ), i.e a
pair of points p1, p2 in Y . We will show how to do geometric 0-surgery on α in Y .
Recall that Y has a manifold two-skeleton, say this is given by C via a homotopy
equivalence h : Y → C ∪ D with homotopy inverse g : C ∪ D → Y . We will
now work with Y

h−→ C ∪ D
g−→ Y

f−→ X, which is homotopy equivalent to f .
Consider h(α(S0)) by a homotopy of h we can arrange that this lies in the manifold
two-skeleton. Say the two points are p′1, p

′
2 ∈ C. Because C is a manifold, there

exist neighborhoods Di of p′i, where each Di is homeomorphic to the standard disk
Dn. Because n is large, π1(∂Dn) ' π1(Dn) and we can apply the (π, π) -splitting
theorem ?? to h.
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This results in h′ : Ȳ → C∪D s-cobordant to h. Now work with Ȳ
h′−→ C∪D

g−→
Y

f−→ X which is bordant to the original map. By construction (h′)−1(Di) = Bi are
contractible homology manifolds and each ∂Bi is a homology manifold homotopy
equivalent to ∂Dn = Sn−1. We know from [BFMW] that SH(Sn−1) ' Z which is
given by the index. The index of ∂Bi agrees with the index of Bi which agrees with
the index of Y , because the Bi are both subsets of Ȳ and Ȳ is s-cobordant to Y .
Thus h′|∂Bi : ∂Bi → Sn−1 for i = 1, 2 give s-cobordant structures on Sn−1. Say
k : W → Sn−1 gives an s-cobordism of structures.

Take
◦
Y = Ȳ \ (B1 ∪B2). Let Y ′ =

◦
Y ∪W gluing W by the identity map along

∂W = ∂B1 ∪ ∂B2. All that remains now is to extend f ◦ g ◦ h′ : Ȳ → X to W .
Since W is an s-cobordism we have k : W → Sn−1 × I a homotopy equivalence rel
boundary. Define a map r : Sn−1×I → C∪h(p1)∪h(p2)[

1
4 , 3

4 ] as follows: r|Sn−1×[0, 1
4 ]

is defined to be the composition of the cone map Sn−1×[0, 1
4 ] → Sn−1×[0, 1

4 ]/Sn−1×
1
4 = Dn and the inclusion map D1 ⊂ C so that r(Sn−1× 1

4 ) = h(p1) = p′1. Similarly
define r|Sn−1× [ 34 , 1] so that r(Sn−1× 3

4 ) = h(p2) = p′2. Define r|Sn−1× [ 14 , 3
4 ] to be

projection onto the second factor composed with the inclusion map. Recall that X
was connected so we can define a path γ : [14 , 3

4 ] → X connecting f ◦ g ◦ h′(p1) and
f ◦ g ◦ h′(p2). Now define a map s : C ∪ [ 14 , 3

4 ] → X as follows. Define s|C = f ◦ g

and s|[ 14 , 3
4 ] = γ. Define f ′ : Y ′ → X so that f ′|

◦
Y = f ◦g◦h′|

◦
Y and f ′|W = s◦r◦k.

We may now assume that Y is connected. If f∗ : π1(Y ) → π1(X) is not surjective.
Consider γ ∈ π1(X) which is not in the image of f∗. Take any two points p1 and p2

in Y and consider f(p1) and f(p2) in X. Let q denote the base point of γ. Because
X is connected, there exist paths βi connecting f(pi) to q. Let γ′ denote the path
β1 ∗ γ ∗ β−1

2 which goes from f(p1) to q along β1 then along γ, then back to f(p2)
along β2. By the above argument we may construct Y ′ by removing neighborhoods
of p1 and p2 and gluing in an s-cobordism of homology manifolds W . Define the

map f ′ : Y ′ → X so that f ′|
◦
Y = f |

◦
Y and f ′|W is defined similarly to the above,

using the path γ′′ from f ◦ g ◦ h(p1) to f ◦ g ◦ h(p2), where γ′′ = α1 ∗ γ′ ∗ α−1
2

and αi are the paths connecting f(pi) and f ◦ g ◦ h(pi), induced by the homotopy
g ◦ h ∼ idY . Now γ′′ and hence γ is in the image of f ′∗.

It only remains to show that we can kill ker f∗ by a bordism of f . Let α denote
an element of ker f∗ we will construct f ′ : Y ′ → X bordant to f so that ker f ′∗ '
(ker f∗)/(α). Let h : Y → C ∪D denote the manifold two skeleton decomposition
of Y as above. Let α′ denote h ◦ α. By a homotopy of α′ we may assume that it is
in the manifold two skeleton and that it is embedded with a neighborhood N(α′)
of the form S1 × Dn−1. Note that homotoping α′ does not change the homotopy
class of g ◦ α′ where g is the homotopy inverse of h. By (π, π) splitting as above
we get h′ : Ȳ → C ∪D so that (h′)−1(S1 ×Dn) = B is a homology manifold and
h′|B : B → S1 ×Dn gives a homology manifold structure on S1 ×Dn.

We are interested in gluing a homology manifold two-handle D2 × Sn−2
i where

Sn−2
i is a homology manifold of index i = I(Y ) homotopy equivalent to Sn−2 onto
◦
Y = Ȳ \B. Thus we must understand the structures on ∂B, i.e SH(S1×Sn−2). By
the homology manifold analogue of Shaneson’s Thesis or by a direct calculation, we
get SH(S1×Sn−2) ' SH(Sn−2)×SH(Sn−2×I, rel ∂). SH(Sn−2) ' Z detected by
index, and SH(Sn−2 × I, rel ∂) ' ∗, by a quick calculation involving the [BFMW]
surgery exact sequence. Thus since ∂B must have the same index as B which is the
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Figure 17. Gluing a two-handle onto Ȳ s-cobordant to the orig-
inal Y .

index of Y , we know that h′|∂B : ∂B → S1 × Sn−2 is s-cobordant to the structure
given by v : idS1 × u : S1 × Sn−2

i → S1 × Sn−2, where u : Sn−2
i → Sn is the non

resolvable homology manifold structure of index i from [BFMW]. So there exists
an s- cobordism from h′|∂B to v given by W → S1 × Sn−2.

Our new space Y ′ =
◦
Y ∪∂B W ∪S1×Sn−2

i
D2 × Sn−2

i . Again since W is an s-
cobordism we have a homotopy equivalence rel boundary r : W → S1 × Sn−2 × I.

Define f ′ : Y ′ → X as follows: Define f ′|
◦
Y to be f ◦ g ◦ h′|

◦
Y . Define f ′|W to be

f ◦ g ◦ i ◦ p ◦ r where p : S1 × Sn−2 × I → S1 × (Sn−2 × I/Sn−2 × 1) = S1 ×Dn−1

is the projection map, and i is the inclusion N(α) ⊂ C. Define f ′|D2 × Sn−2
i to

be H ◦ p where p is projection onto the first factor and H is a null-homotopy of
f ◦ g ◦ α′ = f ◦ g ◦ h ◦ α ∼ f ◦ α. �

Lemma 5.3. Given a manifold B and an integer k, we may find homology mani-
folds B′, and B′′ together with maps b : B′ −→ B and b̄ : B′′ −→ B′ so that
1) Sp(B′) = b∗Sp(B) where Sp denotes the Spivak fibration with its Ferry-Pedersen
TOP-reduction.
2) Ind(B′) = 8k + 1 where Ind denotes the Quinn index.
3) The composition of maps b ◦ b̄ : B′′ → B′ → B is normally cobordant to the
identity map.

Proof of lemma: The construction is a variation on a construction found in
[BFMW, section 7]. There the construction is performed on a torus, resulting in
a homology manifold not homotopy equivalent to any manifold. We perform the
construction on an arbitrary manifold with 1) 2) and 3) above as the result.

Slice B open along the boundary of a manifold two skeleton, ∂. So B = C ∪∂ D.
We first apply lemma 4.4 from [BFMW]. This will allow us to perform a small
homotopy on idB : B → B to get a new map p0 : B → B which restricts to
a UV 1 map on C, D and ∂. Because p0|∂ is a UV 1 map, its controlled surgery

obstruction group Lc
(

∂
↓
B

)
' Hn(B, L) ' Hn(B,G/TOP ) × Z. Let σ denote the

element of Lc
(

∂
↓
B

)
which corresponds to Sp(B) and the desired index. Now by

Wall realization we construct a normal invariant σ : N → ∂ × I with controlled
surgery obstruction as desired, which is given by a controlled homotopy equivalence
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Figure 18. The map b1 : B1 → B
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Figure 19. The map b2 : B2 → B1.

k : ∂′ −→ ∂ on one end and by the identity on the other. Gluing C and D back
onto N by the identity and by k respectively results in B1 a Poincaré complex. We
define a map b1 : B1 → B by b1|C ∪D = id and b1|N = σ. By applying [BFMW,
4.4] we may assume b1 is UV 1. A calculation of the total surgery obstruction of B1

shows that it is homotopy equivalent to a homology manifold.
The rest of the construction is a limiting process in which the above type of

construction is performed on finer and finer manifold two skeleta of B. We refer the
reader to [BFMW] for the details of this stage. The construction yields a homology
manifold B′ and a homotopy equivalence h : B′ → B1 so that the controlled surgery

obstruction of h in Lc
( B1
↓b1
B

)
vanishes and the controlled surgery obstruction of

b = b1 ◦h : B′ → B1 → B is given by σ in Lc
(

B
↓p0
B

)
' Hn(B, L) ' [B,G/TOP ]×Z

which gives 1) and 2) as desired.
To see 3) consider B2 = C ∪∂ N ∪∂′ (−N) ∪∂ D. Define a map b2 : B2 → B1

so that b2|B2 \ (−N) = id and b2|(−N) = −σ. Now B′′ = B2 is a homology

manifold. Consider the controlled surgery obstruction of b2 in Lc
( B1
↓b1
B

)
. This is

−σ. Let b′ : B′′ → B′ be given by h̄ ◦ b2 where h̄ is the homotopy inverse of h. The
composition b ◦ b′ : B′′ → B′ → B has surgery obstruction σ + (−σ) = 0. Thus
it is normally cobordant to the identity map and in particular it is bordant to the
identity map as we will find useful in the proof of the theorem. �

Proof of theorem: Assume that X is connected. The general case follows by
applying the theorem to each of the connected components of X.
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We will define a map ΩSH
n (X) → ΩSTOP

n (X)[8Z+1] as follows. Given f : Y → X
in ΩSH

n (X) consider fi : Yi → X where each Yi is the union of the connected
components of Y of index i, and fi = f |Yi. Note that, because the index of a
homology manifold is bordism invariant, this separation according to index is well-
defined.

For each i ∈ 8Z + 1, we will get an element of ΩSTOP
n (X) as follows. Let

ni : Mi → Yi denote the normal invariant of Yi corresponding to the Ferry-Pedersen
TOP reduction of Yi. We map fi to the element fi ◦ ni : Mi → Yi → X in
ΩSTOP

n (X).
This map is surjective by lemma ??. Given f : M → X an element of ΩSTOP

n (X)
and a given index i, this construction yields mi : M ′

i → M and m̄i : M ′′ →
M ′

i . Notice that m̄i is the normal invariant corresponding to the Ferry-Pedersen
reduction of M ′

i and that mi ◦ m̄i : M ′′ → M ′
i → M is bordant to id : M → M .

Thus to see that f ◦mi ◦ m̄i and hence f is in the image we may apply the given
map to f ◦mi.

To see that this map is injective we need to see that if two homology manifolds
have the same index and the maps f : Y → X and g : Z → X have the same image
in ΩSTOP

n (X), then they are homology manifold bordant. We will first see that
they are Poincaré bordant. By the above lemma ?? we may assume that Y and Z
are connected and that f and g induce isomorphisms of fundamental groups.

Consider f and g as elements of Poincaré bordism of X. Note that we have the
following exact sequence see [HV]:

Ln(X) →or ΩPD
n (X) → Hn(X, MSG) → Ln−1(X).

Which corresponds to the sequence
ΩQP

n+1(X ×BSG) → ΩP
n (X ×BSG) → ΩQ

n (X ×BSG) → ΩQP
n (X ×BSG).

Claim the diagram commutes

ΩSH
n (X) −−−−→ ΩSTOP

n (X)y y
orΩPD

n (X) −−−−→ ΩQ
n (X ×BSG)

where the top horizontal map is given above and all other maps are the appropriate
forgetful maps. This follows from the fact that id × jY : Y → Y × BSG and
(id × jY ) ◦ ni : M → Y → Y × BSG are bordant as Q spaces, where jY is the
classifying map of Sp(Y ). See [HV] for this fact and related definitions.

From the above exact sequence we see that if f and g have the same image in
ΩSTOP

n (X), then the obstruction to them being Poincaré bordant is an element
of Ln(X). It is given by the difference of the surgery obstructions for f and g.
Let m : M → Y and n : N → Z denote the normal invariants associated to the
Ferry-Pedersen reductions of Y and Z. By assumption f ◦m : M → Y → X and
g◦n : N → Z → X are bordant as manifolds so we have V → X a bordism between
them. Consider id : Y → Y and m : M → Y . They bound as elements of Q-
bordism. Therefore we get an element QY of ΩQP

n+1(Y ) and a corresponding element
of Ln(Y ). This element vanishes; it is given by comparing id ◦ m : M → Y → Y
and m ◦ id : M → M → Y as elements of Ln(Y ). Thus id and m bound in ΩP

n (Y ).
Denote their bordism by PY . Similarly id : Z → Z and n : N → Z are bordant by
PZ . Pasting these three bordisms together we get a Poincaré bordism from f to g,
call this k : W → X.
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Figure 20. The Poincaré bordism from f to g.
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Figure 21. A homology manifold cobordism from Y to Z and a
map to W which is the identity on the boundary.

Further we get a TOP reduction on W which restricts to the Ferry-Pedersen
reductions on Y and Z as follows. We use the TOP-reductions of Y and Z to get
TOP reductions of the Poincaré bordisms PY and PZ respectively. Together with
the TOP reduction of the manifold V this gives a TOP reduction of W as desired.
Taking this TOP reduction together with the index i gives a homology manifold
normal invariant on W which agrees with the given homology manifold normal
invariants for Y and Z. By performing Poincaré surgery rel ∂ on k : W → X
(f : Y → X and g : Z → X already induce isomorphisms of π1,) we may assume
that it is an isomorphism on fundamental groups.

We would like to put a homology manifold structure on W rel Z. Notice that
since we have a homology manifold normal invariant of W which agrees with that
for Y and Z, the only obstruction to this lives in Ln+1(W,Y ) ' ∗.

So we have a structure h : W ′ → W so that ∂W ′ gives α : Y ′ → Y an arbitrary
structure on Y and Z̄ → Z which is s-cobordant via î : Ẑ → Z to the identity map
idZ : Z → Z. Since this structure α on Y , has the same homology manifold normal
invariant as the identity structure, it came from a Wall realization of Y . Thus there
exists a Wall realization r : V → Y ×I so that r|∂V = αqidY . The desired bordism
from f to g is then given by r∪h∪ î : V ∪Y W ′∪Z̄ Ẑ → Y ×I∪Y W∪Z Z×I composed
with the projection to W and the given Poincaré bordism k : W → X. �
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