
Homology manifolds

Washington Mio

The study of the local-global geometric topology of homology manifolds
has a long history. Homology manifolds were introduced in the 1930s in
attempts to identify local homological properties that implied the duality
theorems satisfied by manifolds [23, 56]. Bing’s work on decomposition
space theory opened new perspectives. He constructed important exam-
ples of 3-dimensional homology manifolds with non-manifold points, which
led to the study of other structural properties of these spaces, and also
established his shrinking criterion that can be used to determine when ho-
mology manifolds obtained as decomposition spaces of manifolds are man-
ifolds [4]. In the 1970s, the fundamental work of Cannon and Edwards on
the double suspension problem led Cannon to propose a conjecture on the
nature of manifolds, and generated a program that culminated with the
Edwards-Quinn characterization of higher-dimensional topological mani-
folds [15, 24, 21]. Starting with the work of Quinn [44, 46], a new viewpoint
has emerged. Recent advances [10] use techniques of controlled topology to
produce a wealth of previously unknown homology manifolds and to extend
to these spaces the Browder-Novikov-Sullivan-Wall surgery classification of
compact manifolds [53], suggesting a new role for these objects in geomet-
ric topology, and tying together two strands of manifold theory that have
developed independently. In this article, we approach homology manifolds
from this perspective. We present a summary of these developments and
discuss some of what we consider to be among the pressing questions in the
subject. For more detailed treatments, we refer the reader to article [10]
by Bryant, Ferry, Mio and Weinberger, and the forthcoming lecture notes
by Ferry [26]. The survey papers by Quinn [45] and Weinberger [54] offer
overviews of these developments.

1. Early developments

Localized forms of global properties of topological spaces and continu-
ous mappings often reveal richer structures than their global counterparts
alone. The identification of these local properties and the study of their
influence on the large scale structure of spaces and mappings have a history
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that dates back to the beginning of this century. Wilder’s work [56] reflects
the extensive study of local homology conducted by many authors, a line
of investigation that has its roots in the search – started by Čech [20] and
Lefschetz [38] – for local homological conditions that implied the duality
and separation properties known to be satisfied by triangulable manifolds.

Definition 1.1. A topological n-manifold is a separable metrizable space
that is locally homeomorphic to euclidean n-space Rn.

Early proofs that a closed oriented manifold Mn satisfies Poincaré du-
ality assumed the existence of a triangulation of M [37, 42]. Orientability
was defined as a global property of the triangulation, and the Poincaré
duality isomorphism

∩[M ] : H∗(M ;Z)→ Hn−∗(M ;Z)

was established by analysing the pattern of intersection of simplices with
“cells” of the dual block structure on M obtained from the triangulation.

If M is an n-manifold and x ∈ M , then x has arbitrarily small n-disk
neighborhoods which have (n− 1)-dimensional spheres as boundaries. By
excision, homologically this local structure can be expressed as H∗(M,Mr
{x}) ∼= H∗(Dn, Sn−1), for every x ∈M .

Definition 1.2. X is a homology n-manifold if for every x ∈ X

Hi(X,X r {x}) ∼=
{
Z, if i = n

0, otherwise.

The local homology groups H∗(X,X r {x}) of these generalized mani-
folds can be used to define and localize the notion of orientation for these
spaces, and to formulate proofs (at various degrees of generality) that com-
pact oriented generalized manifolds satisfy Poincaré and Alexander duality.
For a historical account of these developments, we refer the reader to [23].

Topological manifolds are homology manifolds; however, the latter form
a larger class of spaces. (As we shall see later, there are numerous ho-
mology manifolds without a single manifold point.) Spaces X satisfy-
ing the Poincaré duality isomorphism with respect to a fundamental class
[X ] ∈ Hn(X) are called Poincaré spaces of formal dimension n. We thus
have three distinct classes of spaces related by forgetful functors:

{
Topological
manifolds

}
+3
{

Homology
manifolds

}
+3
{

Poincaré
spaces

}
.
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Classical surgery theory studies topological-manifold structures on Poincaré
spaces [53]. Our discussion will be focused on the differences between topo-
logical and homology manifolds, a problem that is usually treated in two
stages:

(i) determine whether or not a given homology manifold X is a “fine”
quotient space of a topological manifold (we shall elaborate on this
later), and

(ii) exhibit conditions under which a quotient space X of a manifold M
is homeomorphic to M .

The latter is a central question in decomposition space theory, an area that
originated with the work of Moore [40]. He proved that if X is Hausdorff
and f : S2 → X is a surjection such that S2 r f−1(x) is non-empty and
connected, for every x ∈ X , then X is homeomorphic to S2. This result
is a precursor to the characterization of the 2-sphere in terms of separa-
tion properties obtained by Bing. If X is a compact, connected, locally
connected metrizable space with more than one point, then X is homeo-
morphic to S2 if and only if the complement of any two points in X is
connected and the complement of any subspace of X homeomorphic to a
circle is disconnected [3].

Bing’s work on decompositions of 3-manifolds defined an important
chapter in decomposition theory. While focused on the geometry of de-
compositions of low dimensional manifolds, his work was influential in
subsequent developments in higher dimensions. Given a quotient map
f : M → X , exploiting the interplay between the local structure of X near
points x ∈ X and the local geometry of the embeddings f−1(x) ⊆ M of
the corresponding point inverses, he constructed examples of generalized
3-manifolds with non-manifold points, which led to the first considerations
of general position properties of generalized manifolds. Conversely, Bing’s
shrinking criterion uses the geometry of the point inverses of f to provide
conditions under which the quotient space X is homeomorphic to M [4].
For metric spaces, the criterion can be stated as follows.

Theorem 1.3 (R. H. Bing). A surjection f : M → X of compact metric
spaces can be approximated by homeomorphisms if and only if for any ε > 0,
there is a homeomorphism h : M →M such that:

(i) d (f ◦ h, f) < ε.
(ii) diam h(f−1(x)) < ε, for every x ∈ X.

Applications of the shrinking criterion in low dimensions include the
construction of a Z2-action on S3 which is not topologically conjugate to a
linear involution [4].

Generalized manifolds also arise in the study of dynamics on manifolds.
Smith theory [50, 7] implies that fixed points of topological semifree circle
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actions on manifolds are generalized manifolds, giving further early evi-
dence of the relevance of these spaces in geometric topology.

2. The recognition problem

How can one decide whether or not a given topological space X is a
manifold? A reference to the definition of manifolds simply reduces the
question to a characterization of euclidean spaces, a problem of essentially
the same complexity. The proposition that a characterization of higher
dimensional manifolds in terms of their most accessible properties might be
possible evolved from groundbreaking developments in decomposition space
theory in the 1970s. We begin our discussion of the recognition problem
with a list of basic characteristic properties of topological manifolds. For
simplicity, we assume that X is compact, unless otherwise stated.

(i) Manifolds are finite dimensional.

Definition 2.1. The (covering) dimension of a topological space X is ≤ n,
if any open covering U of X has a refinement V such that any subcollection
of V containing more than (n+1) distinct elements has empty intersection.
The dimension of X is n, if n is the least integer for which dimension of X
is ≤ n. If no such integer exists, X is said to be infinite dimensional.

Topological n-manifolds, and euclidean n-space Rn in particular, are
examples of n-dimensional spaces.

(ii) Local contractibility.
Every point in a manifold has a contractible neighborhood. The follow-

ing weaker notion of local contractibility is, however, a more manageable
property.

Definition 2.2. X is locally contractible if for any x ∈ X and any neigh-
borhood U of x in X , there is a neighborhood V of x such that V ⊆ U and
V can be deformed to a point in U , i.e., the inclusion V ⊆ U is nullhomo-
topic.

Absolute neighborhood retracts (ANR) are important examples of lo-
cally contractible spaces. (Recall thatX is an ANR if there is an embedding
of X as a closed subspace of the Hilbert cube I∞ such that some neigh-
borhood N of X retracts onto X .) Conversely, if X is finite dimensional
and locally contractible, then X is an ANR [6]. Since any n-dimensional
space can be properly embedded in R2n+1 [31], it follows that X is a fi-
nite dimensional locally contractible space if and only if X is an euclidean
neighborhood retract (ENR). The definition of ENR is analogous to that of
ANR with the Hilbert cube replaced by some euclidean space. Hence, con-
ditions (i) and (ii) above can be elegantly summarized in the requirement
that X be an ENR.
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(iii) Local homology.

Topological n-manifolds are homology n-manifolds. The assumption
that X is an ENR homology manifold encodes all separation properties sat-
isfied by closed manifolds, since compact oriented ENR homology manifolds
satisfy Poincaré and Alexander duality. (As usual, in the nonorientable case
we twist homology using the orientation character.) Moreover, since the
dimension of finite dimensional spaces can be detected homologically, ENR
homology n-manifolds are n-dimensional spaces.

An ENR homology n-manifoldX is an n-dimensional locally contractible
space in which points have homologically spherical “links”. Thus, to this
hypothesis, it is necessary to incorporate a local fundamental group con-
dition that will guarantee that “links” of points in X are homotopically
spherical, as illustrated by the following classical example.

Let Hn be a homology n-sphere (i.e., a closed manifold such that H∗(H;
Z) ∼= H∗(Sn;Z)) with nontrivial fundamental group, and let X = ΣH
be the suspension of H. X is a simply connected homology manifold,
but arbitrarily close to the suspension points there are loops α that are
nontrivial in the complement of the suspension points. Therefore, X is not
a manifold since any small punctured neighborhood of a suspension point
is non-spherical. Nonetheless, an important result of Cannon establishes
that the double suspension of H is a topological manifold [14]. Since any
bounding diskD2

α for the loop αmust intersect one of the suspension points,
the presence of a nontrivial local fundamental group can be interpreted as
a failure of general position, if n ≥ 4. D2

α cannot be moved away from itself
by small deformations.

(iv) The disjoint disks property.

Manifolds satisfy general position. If P p and Qq are complexes tamely
embedded in a manifold M , under arbitrarily small perturbations, we can
assume that P ∩ Q is tamely embedded in M and that dim (P ∩ Q) ≤
p + q − n. In particular, if n ≥ 5, 2-dimensional disks can be positioned
away from each other by small moves.

Definition 2.3. X has the disjoint disks property (DDP) if for any ε > 0,
any pair of maps f, g : D2 → X can be ε-approximated by maps with
disjoint images.

The fact that the DDP is the appropriate general position hypothesis for
the recognition problem became evident in Cannon’s work on the double
suspension problem. Later, Bryant showed that if Xn is an ENR homology
manifold with the DDP, n ≥ 5, then tame embeddings of complexes into
X can be approximated by maps in general position. [8].

ENR homology manifolds with the DDP have the local-global algebraic
topology and general position properties of topological manifolds. In 1977,
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motivated largely by his solution of the double suspension problem, Cannon
formulated the following conjecture [14, 15].

The characterization conjecture. ENR homology n-manifolds with the
disjoint disks property, n ≥ 5, are topological n-manifolds.

Definition 2.4. A mapping f : M → X of ENRs is cell-like (CE), if f is
a proper surjection and for every x ∈ X , f−1(x) is contractible in any of
its neighborhoods. A CE-map f is a resolution of X if M is a topological
manifold.

All examples of ENR homology manifolds known at the time these de-
velopments were taking place could be obtained as cell-like quotients of
topological manifolds. In addition, if M is a manifold and f is cell-like,
then X is a homology manifold [36]. The fact that suspensions of homology
spheres are resolvable follows from a theorem of Kervaire that states that
homology spheres bound contractible manifolds [34].

The following result, of which the double suspension theorem is a special
case, is a landmark in decomposition space theory [21, 24].

Theorem 2.5 (R. D. Edwards). Let Xn be an ENR homology manifold
with the DDP, n ≥ 5. If f : M → X is a resolution of X, then f can be
approximated by homeomorphisms.

In light of Edwards’ theorem, the completion of the manifold character-
ization program is reduced to the study of the following conjecture.

The resolution conjecture. ENR homology manifolds of dimension ≥ 5
are resolvable.

Early results supporting this conjecture assumed that the homology
manifolds under consideration contained many manifold points. Cannon
and Bryant-Lacher showed that X is resolvable if the dimension of the
singular set of X is in the stable range [16]. Galewski and Stern proved
that polyhedral homology manifolds are resolvable, so that non-resolvable
homology manifolds, if they exist, must not be polyhedral [29].

A major advance toward the solution of the resolution conjecture is due
to F. Quinn. He showed that the existence of resolutions can be traced to a
single locally defined integral invariant that can be interpreted as an index
[44, 46].

Theorem 2.6 (Quinn). Let X be a connected ENR homology n-manifold,
n ≥ 5. There is an invariant I(X) ∈ 8Z+ 1 such that:

(a) If U ⊆ X is open, then I(X) = I(U).
(b) I(X × Y ) = I(X)× I(Y ).
(c) I(X) = 1 if and only if X is resolvable.

Remark . The local character of Quinn’s invariant implies that if X is
connected and contains at least one manifold point, then X is resolvable.
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Thus, a non-resolvable ENR homology n-manifold, n ≥ 5, cannot be a cell
complex, since the interior of a top cell would consist of manifold points.

Combined, Theorems 2.5 and 2.6 yield the celebrated characterization
of higher dimensional topological manifolds.

Theorem 2.7 (Edwards-Quinn). Let X be an ENR homology n-manifold
with the DDP, n ≥ 5. X is a topological manifold if and only if I(X) = 1.

The resolution conjecture, however, remained unsolved. Are there ENR
homology manifolds with I(X) 6= 1?

3. Controlled surgery

This is a brief review of results of simply-connected controlled surgery
theory needed in our discussion of the resolution problem. Proofs and
further details can be found in [27, 28].

In classical surgery theory one studies the existence and uniqueness of
manifold structures on a given Poincaré complex Xn of formal dimension
n. Controlled surgery addresses an estimated form of this problem, when
X is equipped with a map to a control space B. For simplicity, we assume
that ∂X = ∅, although even in this case bounded versions are needed in
considerations of uniqueness of structures.

Definition 3.1. Let p : X → B be a map to a metric space B and ε > 0.
A map f : Y → X is an ε-homotopy equivalence over B, if there exist a
map g : X → Y and homotopies Ht from g ◦ f to 1Y and Kt from f ◦ g
to 1X , respectively, such that the tracks of H and K are ε-small in B, i.e.,
diam (p◦f ◦Ht(y)) < ε for every y ∈ Y , and diam (p◦Kt(x)) < ε, for every
x ∈ X . The map f : Y → X is a controlled equivalence over B, if it is an
ε-equivalence over B, for every ε > 0.

In order to use surgery theory to produce ε-homotopy equivalences, we
need the notion of ε-Poincaré spaces. Poincaré duality can be estimated by
the diameter of cap product with a fundamental class as a chain homotopy
equivalence.

Definition 3.2. Let p : X → B be a map, where X is a polyhedron and B
is a metric space. X is an ε-Poincaré complex of formal dimension n over
B if there exist a subdivision of X such that simplices have diameter � ε
in B and an n-cycle y in the simplicial chains of X so that ∩y : C](X) →
Cn−](X) is an ε-chain homotopy equivalence in the sense that ∩y and the
chain homotopies have the property that the image of each generator σ only
involves generators whose images under p are within an ε-neighborhood of
p(σ) in B.

The next definition encodes the fact that the local fundamental group
of X is trivial from the viewpoint of the control space B.
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Definition 3.3. A map p : X → B is UV 1 if for any ε > 0, and any
polyhedral pair (P,Q) with dim (P ) ≤ 2, and any maps α0 : Q → X and
β : P → B such that p ◦ α0 = β|Q,

Q
α0 //

i

��

X

p

��
P

α

??~
~

~
~

β
// B

there is a map α : P → X extending α0 so that d(p ◦ α, β) < ε.

Remark . When both X and B are polyhedra and p is PL, this is the same
as requiring that p−1(b) be simply connected, for every b ∈ B.

Definition 3.4. Let p : X → B be an ε-Poincaré complex over the metric
space B, where p is UV 1. An ε-surgery problem over p : X → B is a
degree-one normal map

νM
F //

��

ξ

��
M

f // X

where ξ is a bundle over X , νM denotes the stable normal bundle of M ,
and F is a bundle map covering f .

Theorem 3.5. Let B be a compact metric ENR and n ≥ 5. There exist
an ε0 > 0 and a function T : (0, ε0] → (0,∞) satisfying T (t) ≥ t and
limt→0 T (t) = 0, such that for any ε, 0 < ε ≤ ε0, if f : M → X is an ε-
surgery problem with respect to the UV 1 map p : X → B, associated to the
normal bordism class of f , there is an obstruction σf ∈ Hn(B;L) which
vanishes if and only if f is normally bordant to a T (ε)-equivalence over
B. Here, Hn(B;L) denotes the nth generalized homology group of B with
coefficients in the simply-connected periodic surgery spectrum.

Theorem 3.5 requires that X be a polyhedron. Nonetheless, if X is an
ENR homology n-manifold, a normal map f : M → X has a well-defined
controlled surgery obstruction over B. Let U be a mapping cylinder neigh-
borhood of X in a large euclidean space RN with projection π : U → X
[55, 43]. For any ε > 0, U is an ε-Poincaré complex of formal dimension
n over B under the control map p ◦ π : U → B [11]. Hence, the composi-

tion M
f→ X ⊆ U can be viewed as an ε-surgery problem f ′ over B. By

Theorem 3.5, for each ε, 0 < ε ≤ ε0, f ′ has a well-defined T (ε)-surgery
obstruction σf ′ ∈ Hn(B;L) over B, where limt→0 T (t) = 0. The controlled
surgery obstruction of f is defined by σf = σf ′ .
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Theorem 3.6. Let p : X → B be a UV 1 map, where X is a compact ENR
homology n-manifold, n ≥ 5. The controlled surgery obstruction σf ∈
Hn(B;L) of f : M → X is well-defined, and σf vanishes if and only if, for
any ε > 0, f is normally bordant to an ε-homotopy equivalence over B.

Definition 3.7. Let X be a compact ENR homology manifold, and let
p : X → B be a control map. An ε-structure on p : X → B is an ε-
homotopy equivalence f : M → X over B, where M is a closed manifold.
Two structures fi : Mi → X , i ∈ {1, 2}, are equivalent if there is a home-
omorphism h : M1 → M2 such that f1 and f2 ◦ h are ε-homotopic over B.
The collection of equivalence classes of ε-structures is denoted by Sε

(
X
↓
B

)
.

Given a Poincaré space X of formal dimension n, let Nn(X) denote the
collection of normal bordism classes of degree-one normal maps to X .

Theorem 3.8. Let X be a compact ENR homology n-manifold, n ≥ 5, and
let p : X → B be a UV 1 control map, where B is a compact metric ENR.
There exist an ε0 > 0 and a function T : (0, ε0]→ (0,∞) that depends only

on n and B such that T (t) ≥ t, lim
t→0

T (t) = 0, and if Sε0
(
X
↓
B

)
6= ∅, there

is an exact sequence

. . . // Hn+1(B;L) // Sε
(
X
↓
B

)
// Nn(X) // Hn(B;L),

for each 0 < ε ≤ ε0, where

Sε

(
X
↓
B

)
= im

(
Sε

(
X
↓
B

)
// ST (ε)

(
X
↓
B

) )
.

Moreover, Sε
(
X
↓
B

)
∼= Sε0

(
X
↓
B

)
if ε ≤ ε0.

4. The resolution obstruction

In this section we discuss various geometric aspects of Quinn’s work
on the resolution conjecture that lead to the invariant I(X), adopting a
variant of his original formulation. For simplicity, we assume that X is a
compact oriented ENR homology n-manifold, n ≥ 5.

Resolutions are fine homotopy equivalences that desingularize homology
manifolds. A map f : M → X is a resolution if and only if f |f−1(U) : f−1(U)
→ U is a homotopy equivalence, for every open set U ⊆ X [36]. This implies
that f : M → X is a resolution if and only if f is a controlled homotopy
equivalence with the identity map of X as control map.

In [27], Ferry and Pedersen showed that there is a degree-one normal
map f : M → X . Our goal is to understand the obstructions to find-
ing a controlled homotopy equivalence over X within the normal bordism
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class of f . Notice that if an obstruction is encountered, we can try to
eliminate it by changing the normal map to X . Therefore, in trying to
construct resolutions, it is more natural to consider the collection Nn(X)
of all normal bordism classes of n-dimensional degree-one normal maps to
X . Recall that there is a one-to-one correspondence between Nn(X) and
(stable) topological reductions of the Spivak normal fibration νX of X . A
topological reduction of νX corresponds to a fiber homotopy class of lifts
to BTop of the map νX : X → BG that classifies the Spivak fibration of
X .

BTop

��
X

<<y
y

y
y νX // BG

Any two reductions differ by the action of a unique element of [X,G/Top ],
where G/Top is the homotopy fiber of BTop → BG. Hence, [X,G/Top ]
acts freely and transitively onNn(X), since Nn(X) 6= ∅. When X is a mani-
fold, this action induces a canonical identification η : Nn(X)→ [X,G/Top ]
since there is a preferred element of Nn(X), namely, the bordism class of
the identity map of X , which corresponds to the (stable) Top reduction of
νX given by the normal bundle of an embedding of X in a large euclidean
space. We refer to η(f) ∈ [X,G/Top] as the normal invariant of f .

To motivate our discussion, we first consider the case where X is a
closed manifold, although this assumption trivializes the problem from the
standpoint of existence of resolutions. Siebenmann’s CE-approximation
theorem states that cell-like maps of closed n-manifolds, n ≥ 5, can be
approximated by homeomorphisms [49]. Hence, if X is a manifold, we are
to consider the obstructions to finding a homeomorphism in the normal
bordism class of f . Such homeomorphism exists if and only if the normal
invariant η(f) vanishes [53].

Sullivan’s description of the homotopy type type of G/Top [52] shows
that, rationally, the normal invariant is detected by the difference of the
rational L-classes of M and X , respectively. Let

LX = 1 + `1 + `2 + . . . ∈ H4∗(X ;Q)

be the total L-class of Xn. The ith class `i ∈ H4i(X ;Q) is determined
(after stabilizing X by crossing it, say, with a sphere if 4i ≥ n−1

2 ) by the
signature of 4i-dimensional submanifolds N4i ⊆ X with framed normal
bundles. Hence, up to finite indeterminacies, the normal invariant of f
is detected by the difference of the signatures of these characteristic sub-
manifolds and their transverse inverse images. Notice that when X is a
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manifold, we can disregard 0-dimensional submanifolds, since the trans-
verse inverse image of a point under a degree-one map can be assumed to
be a point.

Carrying out this type of program for studying the existence of resolu-
tions involves, among other things, defining (at least implicitly) character-
istic classes for ENR homology manifolds. This has been done in [17], but
following [10, 27] we take a controlled-surgery approach to the problem and
argue that the Spivak normal fibration of an ENR homology manifold has
a canonical Top reduction.

By Theorem 3.6, associated to a normal map f : M → X there is a
controlled surgery obstruction σf ∈ Hn(X ;L) ∼= [X,G/Top × Z ] such
that σf = 0 if and only if, for any ε > 0, f is normally bordant to an
ε-homotopy equivalence. Under the natural (free) action of [X,G/Top ]
on Hn(X ;L) ∼= [X,G/Top× Z ], controlled surgery obstructions induce a
[X,G/Top ]-equivariant injection

Nn(X) // Hn(X ;L).

Let f : M → X be a normal map. Letting [X,G/Top ] act on f , we can
assume that the image of σf under the projection Hn(X ;L) ∼= [X,G/Top×
Z ]→ [X,G/Top ] vanishes, so that σf ∈ [X,Z ] ⊆ [X,G/Top×Z ]. Hence,
if X is connected, σf is an integer. The local index of X is defined by

I(X) = 8σf + 1 ∈ 8Z+ 1.

Since the Z-component of σf is persistent under the action of [X,G/Top ],
this is the closest we can get to a resolution. This construction yields a
preferred normal bordism class of normal maps to X (and therefore, a
canonical Top reduction of νX) and induces an identification η : Nn(X)→
[X,G/Top]. Rationally, the action of [X,G/Top ] on f can be interpreted
as the analogue of changing the normal map f so that the signatures of
the transverse preimages f−1(N) and N be the same for (stable) framed
submanifolds N4i ⊆ X , i > 0, when X is a manifold. This suggests that
the Z-component of σf be interpreted as a difference of signatures in di-
mension zero and that I(X) be viewed as the 0-dimensional L-class of X .
This is the approach taken by Quinn in [44, 46], which explains the local
nature of the invariant.

If I(X) = 1, there is a normal map f : M → X such that σf = 0.
Let εi → 0 be a decreasing sequence. Theorem 3.6 implies that, for each
i > 0, there is an εi-structure fi : Mi → X , so that Sεi 6= ∅. Under
the identification Nn(X) ∼= [X,G/Top] ∼= Hn(X ;G/Top), the controlled
surgery sequence of Theorem 3.8 can be expressed as
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Hn+1(X ;G/Top)→ Hn+1(X ;L)→

Sε

(
X
↓
X

)
→ Hn(X ;G/Top)→ Hn(X ;L).

It follows from the Atiyah-Hirzebruch spectral sequence thatHi(X ;G/Top)
→ Hi(X ;L) is injective if i = n, and an isomorphism if i = n + 1. This

shows that Sεi
(
X
↓
X

)
= 0, if εi is small enough. Then, viewing fi and fi+1

as equivalent εi-structures on X , we obtain homeomorphisms hi : Mi →
Mi+1 such that fi+1 ◦ hi and fi are T (εi)-homotopic over X . Consider the
sequence

f∗i = fi ◦ hi−1 ◦ · · · ◦ h1 : M1 → X.

For each i > 0, f∗i is an εi-equivalence over X and

d(f∗i+1, f
∗
i ) = d(fi+1 ◦ hi, fi) < T (εi).

If εi > 0 is so small that
∑
T (εi) < ∞, the sequence {f∗i } converges to a

resolution of X .

5. Periodicity in manifold theory

A beautiful periodicity phenomenon emerges from the surgery classifica-
tion of compact manifolds. All essential elements in the theory exhibit an
almost 4-periodic behavior with respect to the dimension n. Siebenmann
periodicity is the most geometric form of this phenomenon.

Definition 5.1. Let X be a compact manifold. A structure on X is a sim-
ple homotopy equivalence f : M → X that restricts to a homeomorphism
f : ∂M → ∂X on the boundary, where M is a topological manifold. The
structures fi : Mi → X , i ∈ {1, 2}, are equivalent if there is a homeomor-
phism h : M1 →M2 making the diagram

M1

h

��

f1

''NNNNNNNNNNNNN

X

M2

f2

77ppppppppppppp

homotopy commute rel (∂). The structure set S(X) is the collection of all
equivalence classes of structures on X .



Homology manifolds 335

The following theorem is proved in [35], with a correction by Nicas in
[41].

Theorem 5.2 (Siebenmann periodicity). If Xn is a compact connected
manifold of dimension ≥ 5, there is an exact sequence

0 // S(X)
℘ // S(X ×D4) σ // Z.

Moreover, ℘ is an isomorphism if ∂X 6= ∅.

The map σ associates to a structure f : W → X × D4, the signature
of the transverse inverse image of {∗} × D4. Siebenmann’s construction
of the map ℘ was indirect. In [18], Cappell and Weinberger describe a
geometric realization of the periodicity map ℘ : S(M)→ S(M ×D4) using
the Casson-Sullivan embedding theorem and branched circle fibrations.

The structure set S(Sn) of the n-sphere, n ≥ 4, contains a single ele-
ment, by the generalized Poincaré conjecture. However, it can be shown
that S(Sn × D4) ∼= Z, so that periodicity does fail for closed manifolds.
This suggests that there may be “unidentified manifolds” that yield a fully
periodic theory of manifolds.

Quinn’s work on the resolution problem shows that the local index that
obstructs the existence of resolutions and the Z-factor that prevents peri-
odicity from holding for closed manifolds have the same geometric nature,
a fact to our knowledge first observed by Cappell. This indicates that the
non-resolvable homology manifolds in the recognition problem are the same
as the missing manifolds in Siebenmann periodicity, and creates an inter-
esting link between the classification theory of manifolds and the resolution
conjecture.

6. Classification of enr homology manifolds

The first examples of nonresolvable ENR homology manifolds were pro-
duced in 1992 by Bryant, Ferry, Mio and Weinberger using techniques of
controlled topology [9]. In this section, we outline the construction of exam-
ples modeled on simply-connected PL manifolds, where the central ideas
are already present. For a more general discussion, we refer the reader to
[10].

Theorem 6.1 (BFMW). Let Mn be a simply-connected closed PL man-
ifold, n ≥ 6. Given σ ∈ 8Z + 1, there exists a closed ENR homology
n-manifold X homotopy equivalent to M such that I(X) = σ.

Variants of the methods employed in the construction yield an s-cobor-
dism classification of ENR homology n-manifolds within a fixed simple
homotopy type and an identification of the (simple) types realized by closed
homology manifolds of dimension ≥ 6 in terms of Ranicki’s total surgery
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obstruction [47]. We only state the classification theorem [10, 11], whose
proof requires relative versions of the arguments to be presented.

Definition 6.2. Let Mn be a compact manifold. A homology manifold
structure on M is a simple homotopy equivalence f : (X, ∂X)→ (M,∂M),
where X is an ENR homology n-manifold with the DDP and f restricts to
a homeomorphism on the boundary. The homology structure set SH(M)
of M is the set of all s-cobordism classes of homology manifold structures
on M .

Remark . We consider s-cobordism classes of structures since the validity
of the s-cobordism theorem in this category is still an open problem.

Since a structure f : X → M restricts to a homeomorphism on the
boundary, if ∂M 6= ∅ we have that ∂X is a manifold. Adding a collar
∂X × I to X gives a homology manifold Y containing manifold points.
Since Quinn’s index is local, I(X) = I(Y ) = 1 and X is a manifold. By the
manifold s-cobordism theorem, SH(M) = S(M), so that SH(M) consists
entirely of manifold structures if ∂M 6= ∅.

Theorem 6.3 (BFMW). If Mn is a closed manifold, n ≥ 6, there is an
exact sequence

. . .→ Hn+1(M ;L)→ Ln+1(Zπ1(M))→
SH(M)→ Hn(M ;L) A→ Ln(Zπ1(M)),

where Li is the ith Wall surgery obstruction group of the group π1(M),
L is the simply-connected periodic surgery spectrum, and A denotes the
assembly map.

This classification implies that homology manifold structures produce a
fully periodic manifold theory.

Corollary 6.4. The Siebenmann periodicity map ℘ : SH(M) → SH(M ×
D4) is an isomorphism, if Mn is a compact manifold, n ≥ 6.

Sketch of the proof of Theorem 6.1. We perform a sequence of cut-paste
constructions on the manifold M to obtain a sequence {Xi} of Poincaré
complexes that converges (in a large euclidean space) to an ENR homology
manifold X with the required properties. There are two properties of the
sequence that must be carefully monitored during the construction:

(i) Controlled Poincaré duality.

As pointed out earlier, homology manifolds satisfy a local form of Poinca-
ré duality. Therefore, the approximating complexes are constructed so that
Xi, i ≥ 2, are Poincaré complexes with ever finer control over Xi−1.

(ii) Convergence.
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We need the limit space X to inherit the fine Poincaré duality and the
local contractibility of the complexes Xi. This is achieved by connecting
successive stages of the construction via maps pi : Xi+1 → Xi which are
fine homotopy equivalences over Xi−1.

If the maps pi : Xi+1 → Xi are fine equivalences, they are, in particular,
finely 2-connected. Control improvement theorems imply that once enough
control has been obtained at the fundamental group level, arbitrarily fine
control can be achieved under a small deformation [1, 25]. Hence, through-
out the construction we require that all maps beUV 1 (see Definition 3.3) so
that the construction of controlled homotopy equivalences can be reduced
to homological estimates via appropriate forms of the Hurewicz theorem
[43].

Constructing X1. Gluing manifolds by a homotopy equivalence of their
boundaries, we obtain Poincaré spaces. We use a controlled version of this
procedure to construct ε-Poincaré spaces. Let C1 be a regular neighbor-
hood of the 2-skeleton of a triangulation of M , D1 be the closure of the
complement of C1 in M , and N1 = ∂C1.

N 1

C 1

1D

M

Figure 6.1

If the triangulation is fine enough, there is a small deformation of the
inclusion N1 ↪→ M to a UV 1 map q : N1 → M . A controlled analogue
of Wall’s realization theorem (Theorem 5.8 of [53]) applied to the control
map q : N1 →M gives a degree-one normal map Fσ : (V,N1, N

′
1)→ (N1 ×

I,N1 × {0}, N1 × {1}) satisfying:

(a) Fσ|N1 = id.
(b) fσ = Fσ|N ′1 is a fine homotopy equivalence over M .
(c) The controlled surgery obstruction of Fσ rel ∂ overM is σ∈Hn(M ;L).

Since the image of σ under the surgery forget-control map Hn(M ;L)→
Ln(e) is trivial, doing surgery on V we can assume that V = N1 × I, and
in particular that N ′1 = N1. Using fσ : N1 → N1 as gluing map, form the
complex X1 = D1 ∪fσ C1 as indicated in Figure 6.2.
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D 11C f σ
C

Figure 6.2

Here, Cfσ is the mapping cylinder of fσ. The construction of X1 allows
us to extend the control map q : N1 →M to a UV 1 homotopy equivalence
p0 : X1 →M such that the restrictions of p0 to C1 and D1 are close to the
respective inclusions. In a large euclidean space RL, gently perturb p0 to
an embedding. This defines a metric on X1 and completes the first stage
of the construction. Notice that the control on the Poincaré duality of X1

over M is only constrained by the magnitude of the controlled equivalence
fσ : N1 → N1, which can be chosen to be arbitrarily fine.
Constructing X2. Starting with a UV 1 homotopy equivalence M → X1, we
perform a similar cut-paste construction on M along the boundary N2 of
a regular neighborhood C2 of the 2-skeleton of a much finer triangulation
of M . As in the construction of p0 : X1 →M , we obtain a UV 1 homotopy
equivalence p′1 : X ′2 → X1. The difference in this step is that we modify
p′1 to a fine equivalence over M , with a view toward fast convergence. By
construction, the controlled surgery obstruction of p′1 with respect to the
control map p0 : X1 → M is zero. Surgery on X ′2 can be done as in the
manifold case, by moving spheres off of the 2-dimensional spine of C2 and
pushing them away from the singular set under small deformations. This
gives a fine UV 1 homotopy equivalence p1 : X2 → X1 over M . Control on
p1 is only limited by the Poincaré duality of X1 over M , since X2 can be
constructed to be a much finer Poincaré space than X1.

Mildly perturb p1 : X2 → X1 to an embedding of X2 into a small regular
neighborhood V1 of X1 ⊆ RL. By the thin h-cobordism theorem [43], we
can assume that the region between V1 and a small regular neighborhood
V2 of X2 in V1 admits a fine product structure over M .

V1

X2

X1 .

V2

.

Figure 6.3
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Iterating the construction, we obtain fine homotopy equivalences pi:Xi+1

→ Xi over Xi−1. The control on pi+1 depends only on the Poincaré duality
of Xi over Xi−1 which can be chosen to be so fine that the region between
small regular neighborhoods Vi and Vi+1 of Xi and Xi+1, respectively, ad-
mits a controlled product structure over Xi−1. As before, the Poincaré
duality of Xi+1 over Xi can be assumed to be as fine as necessary in the
next stage of the construction.

Let X =
∞
∩
i=1

Vi be the intersection of the nested sequence Vi of regu-

lar neighborhoods of Xi. Concatenating the product structures on Vi r
int (Vi+1), i ≥ 1, gives a deformation retraction p : V1 → X , provided that
the product structures are sufficiently fine. This shows that X is an ENR.
The map p actually defines a mapping cylinder structure on the neighbor-
hood V1 of X .

In order to show that X is a homology manifold, we first reinterpret
controlled Poincaré duality in terms of lifting properties, via a controlled
analogue of Spivak’s thesis [51]. Let ρ = p|∂V1 : ∂V1 → X , and let ρi : ∂Vi →
Xi denote the restriction of the regular neighborhood projection Vi → Xi

to ∂Vi. Proposition 4.5 of [10] implies that given δ > 0, ρi has the δ-
homotopy lifting property, provided that i is large enough. Hence, the
projection ∂V1 → Xi obtained from the product structure connecting ∂V1

to ∂Vi also has the δ-homotopy lifting property, for i large enough. Since
the homotopy equivalences Xi → X become finer as i→∞, it follows that
ρ : ∂V1 → X has the ε-homotopy lifting property, for every ε > 0, i.e., ρ is a
manifold approximate fibration over X . This implies that X is a homology
manifold [22].

The approximate homology manifolds Xi were constructed to carry
the resolution obstruction σ, in the sense that there is a normal map
φi : M → Xi with controlled surgery obstruction σ ∈ Hn(Xi−1;L). Since
the sequence {Xi} converges to X , a change of control space argument
implies that I(X) = σ. This concludes the construction.

7. Concluding remarks

The existence of nonresolvable ENR homology manifolds raises numer-
ous questions about the geometric topology of these spaces. In [10], we
summarized several of these questions in a conjecture.

Conjecture (BFMW). There exist spaces R4
k, k ∈ Z, such that every

connected DDP homology n-manifold X with local index I(X) = 8k + 1,
n ≥ 5, is locally homeomorphic to R4

k ×Rn−4. ENR homology n-manifolds
with the DDP are topologically homogeneous, the s-cobordism theorem holds
for these spaces, and structures on closed DDP homology manifolds Xn are
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classified (up to homeomorphisms) by a surgery exact sequence

· · · → Hn+1(X ;L)→ Ln+1(Zπ1(X))→
SH(X)→ Hn(X ;L)→ Ln(Zπ1(X)).

Remark . This exact sequence has been established in [10] up to s-cobor-
disms of homology manifolds.

Recall that a topological spaceX is homogeneous if for any pair of points
a, b ∈ X , there is a homeomorphism h : X → X such that h(a) = b. The
topological homogeneity of DDP homology manifolds seems to be a problem
of fundamental importance. A positive solution would strongly support the
contention that DDP homology manifolds form the natural class in which
to develop manifold theory in higher dimensions and would also settle the
long standing question “Are homogeneous ENRs manifolds?”, proposed by
Bing and Borsuk in [5].

The validity of Edward’s CE-approximation theorem in this class of
spaces is a recurring theme in the study of the topology of homology man-
ifolds. Can a cell-like map f : X → Y of DDP homology n-manifolds,
n ≥ 5, be approximated by homeomorphisms? Homogeneity and many
other questions can be reduced to (variants of) this approximation prob-
lem.

Homology manifolds are also related to important rigidity questions. For
example, the existence of a nonresolvable closed aspherical ENR homology
n-manifold X , n ≥ 5, would imply that either the integral Novikov conjec-
ture or the Poincaré duality group conjecture are false for the group π1(X).
Indeed, if the assembly map

A : H∗(X ;L) // L∗(Zπ1(X))

is an isomorphism, the homology-manifold structure set SH(X) contains a
single element. Therefore, if M is a closed manifold homotopy equivalent to
X , then X is s-cobordant to M . This implies that I(X) = 1, contradicting
the assumption that X is not resolvable. Hence, π1(X) would be a Poincaré
duality group which is not the fundamental group of any closed aspherical
manifold [27].

Can a map of DDP homology manifolds be made transverse to a codi-
mension q tamely embedded homology manifold? In her thesis, Johnston
established map transversality (up to s-cobordisms) in the case the homol-
ogy submanifolds have bundle neighborhoods [32] (see also [33]). Although
the existence of such neighborhoods is, in general, obstructed (since indices
satisfy a product formula), it seems plausible that there exist an appropri-
ate notion of normal structure for these subobjects that yield general map
transversality. When the ambient spaces are topological manifolds, q ≥ 3,
and the homology submanifolds have dimension ≥ 5, mapping cylinders
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of spherical manifold approximate fibrations appear to provide the right
structures [43]. This is consistent with the fact that, for manifolds, Marin’s
topological transversality is equivalent to the neighborhood transversality
of Rourke and Sanderson [39]. In [12], approximate fibrations are used
to extend to homology manifolds the classification of tame codimension
q manifold neighborhoods of topological manifolds, q ≥ 3, obtained by
Rourke and Sanderson [48]. This classification is used to prove various
embedding theorems in codimensions ≥ 3.

Smith theory [50] and the work of Cappell and Weinberger on propaga-
tion of group actions [19] indicate that nonstandard homology manifolds
may occur as fixed sets of semifree periodic dynamical systems on mani-
folds. Homology manifolds also arise as limits of sequences of riemannian
manifolds in Gromov-Hausdorff space [30]. Results of Bestvina [2] show
that boundaries of Poincaré duality groups are homology manifolds, fur-
ther suggesting that exotic ENR homology manifolds may become natural
geometric models for various phenomena.
Acknowledgements. I wish to thank Andrew Ranicki for many comments
and suggestions, and John Bryant for numerous discussions during several
years of collaboration.
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