SPLITTING MANIFOLD APPROXIMATE FIBRATIONS

J. L. BRYANT AND P. KIRBY

ABSTRACT. Suppose M is a topological m-manifold, X is a generalized n-
manifold satisfying the disjoint disks property (DDP), m >n > 5, f: M — X
is an approximate fibration, with fiber the shape of a closed topological mani-
fold F', and Y is a closed, 1-LCC, codimension three subset of X. We examine
conditions under which f is controlled homeomorphic to an approximate fi-
bration g: M — X such that g|lg71(Y): g %(Y) — Y is, in some sense, an
improvement of f|f~1(Y). One of the main results is that if Y is a gener-
alized manifold, and if f|f~%(Y): f~1(Y) — Y is fiberwise shape equivalent
to a manifold approximate fibration p: E — Y, and Wh(m (F) x Z*) = 0,

k=0,1,..., then f is controlled homeomorphic to a manifold approximation
g: M — X such that glg~*(Y): g7'(Y) — Y controlled homeomorphic to
p: E—Y.

1. INTRODUCTION

Mapping cylinder neighborhoods have proven to be useful devices in studying
geometric properties of ANRs. This has been especially true in working with gener-
alized manifolds (ANR, homology manifolds), since there are generalized manifolds
that are not locally polyhedral, even stably [7]. If N is the boundary of a mapping
cylinder neighborhood W of a generalized manifold X in a topological manifold
M, then W is the mapping cylinder of a manifold approximate fibration (MAF')
f+ N — X whose fiber has the shape of a k-sphere, k = dim M — dim X — 1. If
Y is a topological or generalized submanifold of X, then f~!(Y') may not even be
an ANR, so that W, with its given mapping cylinder structure, may not be very
useful for investigating properties of the pair (X,Y"). It would seem desirable to
find a MAF g: N — X, perhaps in some sense equivalent to f, such that the pair
(N,g1(Y)) is a manifold pair with g=1(Y") locally flat in N.

The purpose of this paper is to show that under fairly general conditions a
MAF f: N — X, with fiber shape equivalent to a closed topological manifold F' is
controlled equivalent to a MAF g: N — X that is split over a stratified generalized
manifold Y in X. As a corollary we will show that if X is a generalized n-manifold
having the disjoint disks property, n > 5, tamely embedded in euclidean space
R™ m —mn > 3, W is a mapping cylinder neighborhood of X in R™ and Y is
a (topological or generalized) submanifold of X, such that dim X — dimY > 3
and Y is tame in X, then there is a mapping cylinder retraction v: W — X such
that y~1(Y) is a locally flat topological submanifold of W (Theorem 3.3). This
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result has been applied in [9], for example, to establish transversality theorems for
submanifolds of a generalized manifold.

2. DEFINITIONS

A generalized n-manifold (n-gm) is a locally compact euclidean neighborhood
retract (ENR) X such that for each z € X,

Z, if k=n,

Hp(X, X —{z};Z) = {0 otherwise

Following Mitchell [17] we say that an ENR X is an n-gm with boundary if the
condition H,(X,X \ {z};Z) = Z is replaced by H,(X,X \ {2};Z) = Z or 0,
and if bdX = {z € X: H,(X, X < {2};Z) = 0} is an (n — 1)-gm embedded in
X. (In [17] Mitchell shows that bdX is a homology (n — 1)-manifold.) An n-gm
X, n > 5, has the disjoint disks property (DDP) if every pair of maps of the 2-
cell B? into X can be approximated arbitrarily closely by maps that have disjoint
images. A subset A of X is 1-LCC in X if for each x € A and neighborhood U
of z in X, there is a neighborhood V' of z in X lying in U such that the inclusion
induced homomorphism 71 (V \ A) — 71 (U \ A) is trivial. A closed set A in X of
codimension at least three will be called tame in X if A is 1-LCC in X.

Given an n-gm X, a manifold approzimate fibration with fiber F (MAF) over
X is an approximate fibration p: N — X, where N is a topological manifold, p
is a proper surjection, and the homotopy fiber of p is homotopy equivalent to F.
(Equivalently, each p~!(x) has the shape of the space F.) (See [10], [12]. In [12]
X is also assumed to be a topological manifold.) A manifold stratified space is a
locally compact ANR Z containing a filtration Zy C Z; C --- C Z} = Z such that
each Z; is an ANR and each Z; \ Z;_1, 1 = 0,1,...,k, is a topological manifold
without boundary [21]. We use the convention that Z_; = (). The sets Z; \ Z;_1
are the strata of Z. A space Z will be called a generalized manifold stratified space
if it has a filtration with generalized manifolds as strata. (We don’t require any of
the strata to have the DDP.)

If Z is a (generalized) manifold stratified space, with filtration Zo C Z; C --- C
Z, then a stratified manifold approximate fibration is an approximate fibration
p: N — Z, where N is a manifold stratified space, with filtration Ng C N; C --- C
Ng, such that p: (N; N~ N;—1) — (Z; \ Z;—1) is a MAF. (See [13].) For example,
Quinn shows in [18] that if K is a polyhedron and f: E — K is a topological block
bundle with manifold fiber F, then f is homotopic (through block bundle maps)
to a stratified manifold approximate fibration f’': £ — K. A MAF p: N — X is
said to be split over Y C X if plp~1(Y): p~1(Y) — Y is also a MAF or stratified
MAF accordingly as Y is a (topological or generalized) manifold without boundary
or (generalized) manifold stratified space, respectively, and p~1(Y) is tame in M.
A space F is K-flat if Wh(m(F) x Z¥) =0, for all k = 0,1, .. ..

Suppose that X is a locally compact ANR, A and B are separable metric spaces,
and p: A — X and ¢q: B — X are maps. Assume B is embedded in Hilbert space,
{2, and that ¢ is extended to a neighborhood Vj of B in £;. We generalize the
notion of a controlled map described in [12] as follows. A controlled shape map F°
from A 25 X to B -4 X (or simply F°: A — B if the maps are understood) is
given by a map F': A x [0,1) — V{ such that
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(1) the map (go F)U (p x1): A x [0,1] — X is continuous, and
(2) () CUF(Ax]t1)CB.
0<t<1
Two controlled shape maps F¢,G¢ : A — B are controlled shape homotopic,

denoted F¢ ~, G¢, if there is a third controlled shape map H® from A x I %3 X
to B x I % X, where p1 is the projection to the first factor, defined as follows.
Let Vo, qo: Vo — X, and F : A x [0,1) — Vp be the neighborhood of B, extension
of ¢, and map, respectively, used to define F¢; and let V;, ¢¢ : Vi — X, and
G : Ax[0,1) — V; be the neighborhood of B, the extension of ¢, and the map used
to define G¢. Then H€ is defined by a neighborhood V' of B x I in {5 containing
(Vo UWy) x I, an extension of

(gop1)U(q0)U(q1): (BxTHU (Vyx{0hHhU (Vo x{1}) = X

to V, and a level preserving map H : Ax[0,1)xI — V such that H|Ax[0,1)x{0} =
F and H|B x [0,1) x {1} = G.

For example, given a controlled shape map F¢: A — B represented by F': A x
[0,1) — V, and a neighborhood V' of B in {5, then a change of parameter (i.e.,
a homeomorphism A x [0,1) onto a closed subset of A x [0,1) that commutes
with projection on A) gives a controlled homotopy of F¢ to a controlled shape
map represented by a map F': A x [0,1) — V. Thus, we may assume that a
representative of F'° maps into any preassigned neighborhood of B. Since X is a
ANR, given any two extensions ¢y and ¢; of ¢: B — X to neighborhoods V and
V1, there is a neighborhood V4 of B such that ¢g|Va and ¢1|V2 are homotopic rel
qo|B (= q1|B). Thus, any two controlled shape maps F¢ and G° represented by the
same map F: A x [0,1) — {5 (but, perhaps different extensions to neighborhoods
of B) are controlled shape homotopic. Notice that a controlled shape map from A
to B that can be represented by a map which maps A x [0,1) into B is, in fact, a
controlled map as given in [12] (such is the case when B is an ANR).

3. STATEMENT OF RESULTS

We can now state the main results of this paper. Throughout the paper X will
denote a generalized n-manifold, n > 5, without boundary satisfying the DDP.

Theorem 3.1. Suppose that M is a topological m-manifold, m > 6, and f: M — X
is a MAF with fiber shape equivalent to a closed, connected, topological manifold
F such that F is K-flat. Suppose Y is generalized manifold stratified space, with
filtration Yy C - -+ C Yy, embedded as a tame, closed subset of X, dim X —dimY > 3,
such that flf~1(Y): f~1(Y) — Y s controlled shape equivalent to a surjective
stratified MAF p: E — Y. If E;_1 has a mapping cylinder neighborhood in E;,
i =1,...,k, then f is controlled homeomorphic to a MAF g: M — X such that
g YY) E, E is tame in M, and glg~*(Y) = p.

It is perhaps worth emphasizing that the strata of Y are not assumed to have
any general position properties such as the DDP.

Next, we state two applications of Theorem 3.1. The first is an immediate
corollary.

Corollary 3.2. SupposeY is a topological manifold or polyhedron, dim X —dimY >
3, tamely embedded as a closed set in X, and f: M — X (m > 6) is a MAF such
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that the associated Hurewicz fibration has a topological reduction. Then f is con-
trolled homeomorphic to a MAF g: M — X that is split over Y.

Proof. By the classification theorem of [12], the Hurewicz fibration j?: M- X
associated to f is controlled homotopy equivalent to f. Thus, if fis fiber homotopy
equivalent to a bundle map p: E — X, then the restriction of p to p~1(Y) is
controlled shape equivalent to f|f~*(Y): f~1(Y) — Y.

O

The next theorem is the main application of Theorem 3.1.

Theorem 3.3. Suppose that X is compact and is embedded as a tame subset of
a topological m-manifold M, m —n > 3 and that Y is a compact topological or
generalized manifold, dim X — dimY > 3, tamely embedded in X. Then there is a
mapping cylinder neighborhood W of X in M with retraction ~v: W — X that splits
overY.

Proof. We shall only prove the case in which Y = ). Let W be a mapping
cylinder neighborhood of X in M as guaranteed by [16] and [26], with mapping
cylinder retraction 7: W — X. Assume that W is the mapping cylinder of a map
f:OW — X. In order to get f|f~1(Y): f~3(Y) — Y controlled shape equivalent
to a MAF we shall apply the mapping cylinder neighborhood classification of [8,
Theorem 3.3], which we now recall.

Given a compact generalized n-manifold Z (with or without the DDP), let Ny (Z)
denote the collection of germs of codimension ¢ manifold neighborhoods V"**4 of
Z in which Z is tamely embedded. Two embeddings t;: Z — Vi, k = 1,2, repre-
sent the same element of N, (Z) if there are neighborhoods Ny of Z in Vj, and a
homeomorphism h: N; — Ny such that h oty = 15. Let BTopq+k7k be the clas-
sification space for topological microbundle pairs € C (¥4, where €* denotes the
trivial microbundle of rank k, and let BT'op, = limy—..c BT0op, - Theorem 3.3
of [8] asserts that there is a bijection Ny(Z) — BTop, when ¢ > 3. (This re-
quires that Z be compact.) The bijection NV, (X) — BTop, (¢ = m —n) associates
the neighborhood W of X with a microbundle pair €¥ C ¢¥+7 over X having the
property that the (¢ — 1)-spherical fibration ¢: £ — X associated to the inclusion
€k C (F+4 restricted to X is controlled homotopy equivalent to f: OW — X. This
implies that f|f~1(Y) is controlled shape equivalent to ¢|¢~!(Y'), which is the fi-
bration associated to €*|Y C (4*|Y. Applying Theorem 3.3 of [8] again (or just
the classification theorem of [23] if Y is a topological manifold), we get ¢|¢~1(Y)
controlled homotopy equivalent to a MAF q: OF — Y, whose mapping cylinder F
is a topological manifold. (See, e.g., [9, Proposition 2.1].)

We may now apply Theorem 3.1 to f: OW — X and p: OF — Y to get a
controlled homeomorphism from OW L, X to OW —% X such that g HY)
OF and glg~'(Y) = p. Let H: W x [0,1) — OW represent the inverse of this
controlled homeomorphism. Assume mapping cylinders are parameterized so that
their domains are at the 0 level. Then we can define a homeomorphism h from the
mapping cylinder M, of g to W by

h(z,t) = (H(z,t),t), if0<t<l1,
B e if z€ X.

This provides W with the desired mapping cylinder structure.
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The proof when Y # @ follows from the relative version of the classification
theorem of [8].
O

It would be nice to apply Theorem 3.1 to the case in which Y is a polyhedron,
but we do not know whether the spherical fibration ¢: & — Y is equivalent to a
stratified MAF. If W is a mapping cylinder of X in euclidean space, however, then
the result does in fact follow.

Corollary 3.4. Suppose that X is embedded as a tame subset of euclidean space
R™, m >6 and m—n > 3, and that 'Y s a closed polyhedron, dim X —dimY > 3,
tamely embedded in X. Then there is a mapping cylinder neighborhood W of X in
M with retraction v: W — X that splits over Y.

Proof. As above, assume W is the mapping cylinder of a map f: OW — X and
that m: W — X is the mapping cylinder projection. Then the associated Hurewicz
fibration to f is the Spivak normal fibration for X, v: £ — X. By the classification
theorem of [12], v: & — X is controlled homotopy equivalent to f. On the other
hand, by [11] v: £ — X has a stable topological reduction, hence, an unstable
reduction, since we are in codimension at least 3 [14]. Thus, f|f~*(Y): f~1(Y) —
Y is controlled shape equivalent to a bundle map p: Fy — Y. This gives a bundle
map to which we may apply Theorem 3.1. The desired mapping cylinder projection
~v: W — X is obtained as in Theorem 3.3.

O

4. SPLITTING A MAF OVER A GENERALIZED MANIFOLD WITHOUT BOUNDARY

In this section we shall prove a special case of the splitting theorem in which Y is
a tame, generalized submanifold of X without boundary. We suppose the following
setting.
(1) M is a topological m-manifold, m > 6.
(2) f: M — X is a proper, surjective, MAF with fiber shape equivalent to a
closed, connected, topological manifold F' such that F' is K-flat,
(3) Y C X is a generalized manifold,
(4) dim X —dimY > 3,
(5) Y is closed and tame in X, and
6) flf~H(Y): f~YY) — Y is controlled shape equivalent toa MAF p: E — Y.
The idea of the proof is to embed E in M near f~!(Y) and then get a sequence
of finer and finer controlled ambient isotopies over Y taking E closer and closer to
f71(Y). By stacking the inverses of these isotopies, we get the desired controlled
homeomorphism of M.
Represent the inverse of a controlled shape equivalence from f|f~*(Y): f~1(Y) —
Y to the MAF p: E — Y by a map

o: Ex[0,1) — M.
For any subset Z C X, we will let Z= f~Y(Z). The first lemma provides “mapping
cylinder-like” neighborhoods of Y.

Lemma 4.1. M <Y has a tame end over Y. Thus, there is a neighborhood N
of Y in M such that N is a topological manifold with boundary ON and N \Y =
ON x [0,1), where the collar structure is controlled over Y.
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Proof. Let U be a neighborhood of Y in X that retracts to Y via a retraction
r:U — Y. Then ro f: U—Y gives a control map for a neighborhood of the
end of M\ Y over Y. Since Y is a locally contractible, small connected open sets
V in Y have the property that f |‘A/ V — V is controlled shape equivalent to the
projection V- x F — V. Thus, since Y is tame in X, the homotopy fiber of the
inclusion Y C M is homotopy equivalent to a sphere of dimension > 2, hence, is
simply connected. This implies that the end of M ~ Y over Y has locally constant
fundamental group isomorphic to 71 (F). Quinn’s end theorem [18] then applies to

give a controlled collar of a neighborhood of the end of M \ Y over Y.
O

Let N be a neighborhood of Y as given by the conclusion of Lemma 4.1, and let
c: ON x [0,1) = N ~ Y be a homeomorphism giving a controlled collar structure
over Y. For each t € [0,1) let Ny = N ~ ¢(ON x [0,t)). Then for any € > 0
we can find a ¢ € [0,1) such that N; isotopically deforms into any preassigned
neighborhood of Y by an e-isotopy over Y that is fixed on a smaller neighborhood
of Y. In particular, for every € > 0 there is a ¢ € [0,1) such that the inclusion
Y C N, is an e-shape equivalence over Y. Thus, we have following lemma, whose
proof is immediate. (If Y is not compact, then here, and in the remainder of the
section, € and ¢ may be functions of y € Y.)

Lemma 4.2. For every € > 0 there exists t € [0,1) such that o(E X [s,1)) C Ny

and o: E x {s1} — N; is an e-homotopy equivalence over Y for every s; € [s,1).
We shall now suppose that our parameters have been arranged so that o(FE x

[t,1)) C intN; for all ¢t € [0,1). We will need to use the following version of Ferry-

Pedersen’s controlled m—7 Theorem [11]. Its proof requires only minor adjustments
to the argument given for the Bounded © — 7 Theorem in [11].

Theorem 4.3 (Simply Connected Controlled m# — m Theorem). If B is a finite
polyhedron, then there exist T > 0 and eg > 0 so that if (P",0P), n > 6, is an
e-Poincaré duality space over B and € < €y, and

(M, M) —'—~ (P,8P)

ip
B
is an e-surgery problem with bundle information assumed as part of the notation so
that both p: P — B and p|: OB — B are UV, then we may do surgery to obtain
a normal bordism from (M,0M) — (P,0P) to (M',0M') — (P,0P), where the
second map is a Te-homotopy equivalence of pairs.
The next lemma is a controlled version of Corollary 11.3.4 of [25]. It is a con-
sequence of Theorem 4.3, Lemma 4.2, and Browder’s “Top Hat” Theorem [5], (see
also, Theorem 11.3 of [25]).

Lemma 4.4. For every € > 0 there exists t € [0,1) such that o|E x{s}: Ex{s} —
Ny is e-homotopic over'Y to a locally flat embedding for every s € [t, 1).

For 0 < t; < 2 < 1, let N[t1,ta] = U, <p<yp, Nt X {t} © M x [0,1], and let
N|[t] = NJt,t]. Analogous to the relative version of Corollary 11.3.4 of [25] we also
get a relative version of Lemma 4.4.
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Lemma 4.5. For every e > 0 there exists t € [0,1) such that ift <t; <ty <1 and
if o|E x {tx} is a locally flat embedding, k = 1,2, then o|E X [t1,ta]: E X [t1,t2] —
M X [t1,t2] is e-homotopic to a locally flat embedding o12: (E X [t1,t2], Ex{t1}, E X
{ta}) — (N[t1,t2], N x {t1}, N x {t2}) that agrees with o|E X {t} for k =1,2.

Proof of Theorem 3.1, for a generalized manifold Y without boundary. Lett; = 1—
Z.J%l, i = 0,1,2,.... Consider the map o as a map of F x [0,1) — M x [0,1).
After a change of parameter, if necessary, we can apply Lemmas 4.4 and 4.5 to
assume that a representative o: E x [0,1) — M of the controlled equivalence from

E vy % Y, as a map to M x [0,1), satisfies o|E x [t;i—1,t;]: (E X

i1, ], B X {tica ), B x {ti}) — (Neoy X [tima, b, Nep oy x {tioa}, Ny, x {t})
is a locally flat embedding. Using the end theorem and thin h-cobordism theo-
rem [18], we see that Ny, , X [t;—1,t;] has the structure of a mapping cylinder (of
triples) over o(FE X [t;—1,t;]). Using the approximate lifting property we see that,
for any preassigned ¢ > 0, there is a smaller (mapping cylinder) neighborhood U;
of o(F X [t;—1,t;]), obtained by shrinking down the mapping cylinder structure
on Ny, , X [ti—1,t;], that is a d-h-cobordism over o(F x {t;}). (Here the control
map is the composition of the mapping cylinder retraction with the projection of
o(E X [ti—1,t;]) onto o(E x {t;}).) The thin h-cobordism theorem then provides a
small product structure on U; over o(E x {t;}). By the relative thin h-cobordism
theorem we can extend this to a small product structure on N, | X [t;_1,t;] over
Y that agrees with the natural (vertical) one on ONy,_, X [ti—1,t;]. The prod-
uct structure on U; gives a proper embedding 7: E X [t;—1,t;] — U; that is close
to o|E X [ti—1,t;] (over o(E x {t;})) and agrees with ¢ on E x {¢;_1}. Appying
Miller’s isotopy theorem [15], we can get a small ambient isotopy of Ny, , x {¢;} tak-
ing 7|E x {t;} to o|E x {t;}. As a consequence of these moves we produce a small
pseudoisotopy of H.: Ny, _, X [ti—1,t;] — Ni,_, X [ti—1,t;] taking o(E x {t;—1})
to o(E x {t;}). By Quinn’s pseudoisotopy theorem [20], there is small isotopy
of Nti—l X [tifl,ti], fixed on 8Nti_1 X [tifl,ti] @] (Nti—l X {tifl,ti}), taking Hz/
to an isotopy H;: Ny,_, X [ti—1,t;] — N¢_, X [ti—1,t;]. By extending via the
identity outside each Ny, , X [t;—1,t;], we get an isotopy that we shall still call
H;: M x[ti—1,t;] = M x[t;—1,t;]. Stacking these isotopies produces a level preserv-
ing homeomorphism H: M x[0,1) — M x [0,1). Let g = lim¢—1(f o Hy)|(M x {t}).
Then H~! represents a controlled homeomorphism H¢ from g to f.

O

5. SPLITTING A MAF OVER A STRATIFIED SPACE

As one might naturally expect, the proof of the general case proceeds by induc-
tion over the strata. The special case proved in Section 4 gets the induction started.
We assume, then, the following setting.

(1) f: M — X is a MAF with fiber shape equivalent to a closed connected
topological manifold F' such that F' is K-flat.

(2) Y C X is a generalized manifold stratified space with filtration Yy C Y7 C

e C Y,

dim X —dimY > 3.

Y is closed and tame in X.

f |}A/ Y — Y is controlled shape equivalent to a stratified MAF p: E — Y.

3
4
5
6) For ¢ > 1, each F;_; has a mapping cylinder neighborhood in FE;.

(3)
(4)
()
(6)
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1

(7) For some fixed j > 1, %_1
plEj-1.

As before, A = F71(A), for any subset A of X. Set Z =Y,;_1, V =Y; \Y,_1,
X' =X~Z, M =M~Z, and E' = E; ~ E;_1. Applying the special case we
may assume that f|M': M’ — X' is split over V so that V = E' and is tame in M,
and f|‘7 = p|E' This gives a (continuous) map f|M — X such that 7~ E,_4
VR, f|Z = p|Ej_1, and f|V = p|E’. The only problem is that the union
Y ZuvV may not be homeomorphic to E;. Once we have corrected this defect,
the inductive step will be complete.

Let W be a mapping cylinder neighborhood of V in M. Since V has a controlled
collar at infinity over Z and m > 6, we can use the End Theorem [18][19] to see
that (W, W) has a collar at infinity, controlled over Z (not Z). Since E’ has a
collar at infinity, controlled over E;_1, V has a collar at infinity, controlled over Z.
It is not difficult, using a uniqueness of collar argument, to get the collar of the end
of (W,0W) to agree with the collar on V. Since Z is tame in M, we can extend
this collaring to a collar of M'(= M ~ Z) at the end determined by 7 that is also
controlled over Z.

On the other hand, 7 is tame in M so that M’ has a collar at the end determined
by Z , controlled over Z (not just over Z). By the uniqueness of end structures
[18][19], there is an isotopy hy, ¢ € [0,1], of M, fixed outside a neighborhood of Z
and controlled over Z taking the collar controlled over Z to the one controlled over
Z. The finishing homeomorphism, hl M' — M’ re-embeds W into M’ so that
its collar at the end determined by 7 is now controlled over Z and we now have
ZUhl( ) = Ej;. It is possible to arrange the isotopy h, of M’ so that, for 0 < ¢ < 1,
h; extends to M via the identity on Z. Thus, we get a controlled homeomorphism
of M from f to a map that satisfies property 7 with j + 1 replacing j.

E;_1, )A/j_l is tame in M, and f|f/j_1 =

6. SPLITTING IN CODIMENSION ONE

We conclude the paper with a codimension one version of the splitting theorem,
which is an easy application of the end theorem. Although we do not get the theo-
rem for an arbritrary stratified subset Y of X, we are able to drop the assumption
that the approximate fibration over Y is equivalent to a known MAF.

Theorem 6.1. Suppose that M is a topological m-manifold M, f: M — X is a
MAF with fiber homotopy equivalent to a closed topological manifold F' such that F
is K-flat, and Y is a generalized (n — 1)-manifold without boundary embedded as a
closed, locally two-sided, 1-LCC subset of X. Then f is controlled homeomorphic
to a MAF g: M — X such that g~ (YY) is a locally flat (m — 1)-dimensional
submanifold of M and glg=*(Y) is a MAF.

Proof. Let W be a neighborhood of Y in X that is separated by Y. Then WY
has two ends over Y, each of which is tame. By the end theorem [18] we can find
controlled collars Uy = Ny x [0,00) over Y. Let U = U4 U YUU_. Then U is a
thin h-cobordism over Y, hence, a controlled product: U & Ny x [—1,1]. Let us
rename Ny (= N_) N and reparameterize the controlled collars (over Y) so that
UNY 2N x [-1,0) UN x (0,1]. For 0 <t <1 set Nyy = N x {£t}, and let U;
be the closed region in U bounded by N_; U N;. Then Uy is a §;-thin h-cobordism,
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where §; — 0 as ¢ — 0, hence, an ¢ product, where ¢, — 0 as t — 0. (If Y is not
compact, we may have to change the ¢ parameter first and let §; and ¢; be functions
onY.)

Construct a sequence of ambient isotopies of M as follows. H! is fixed on
the complement of U, slides N% to N% along the controlled collar structure on

N x (0,1], and takes N x [%, %} to U%, matching up the product structures. This

can be done with an (essentially) e;-isotopy. In general, H' is fixed outside U 1,

slides NV_ 1 to N 4 along the controlled collar structure on N x (0, 1], and takes
N x [H%Q, H%l] to U . matching up the product structures. Stacking these isotopies
gives a controlled homeomorphism H: M x[0,1) — M whose inverse is a controlled
homeomorphism from f to a map g: M — X such that g=*(Y) 2 N(= N x {1}).

O

If Y is not locally two-sided in X, then there is a double cover p: (X,Y) — (X,Y)

such that Y is locally two-sided in X. f: M — X then pulls back to a MAF
f : M — X that splits over Y. The question is whether this splitting can be done
equivariantly with respect to the Z/2-action on f : M — X. This leads to the
following more general question.
Question. Suppose (X,Y) is a generalized manifold pair, where X has the DDP
and Y is tame in X, f: M — X is a MAF'. Suppose G is a group acting on M and
the pair (X,Y) such that f is G-equivariant and the induced map f: M/G— X/G
is a stratified MAF. Given that f splits over Y, under what conditions does f split
over Y/G?

REFERENCES

[1] D. R. Anderson and H. J. Munkholm, Bounded Controlled Topology, Lecture Notes in Math-
ematics 1323, Springer-Verlag, Berlin-Heidelberg, 1988.
[2] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62(1968), 223-254.
[3] , Concerning the notion of the shape of compacta, Proc. Internat. Top. Symp. Herceg-
novi 1968, Beograd 1969, 98 - 104.
[4] W. Browder, J. Levine,and G. R. Livesay, Finding a boundary for an open manifold, Amer.
J. Math. 87(1965), 1017-1028.
[5] W. Browder, Embedding smooth manifolds, Proc. Internat. Cong. Math. (Moscow, 1966), 712
- 719.
[6] W. Browder, Surgery on simply connected manifolds, Springer-Verlag, Berlin-New York, 1970
[7] J. Bryant, S. Ferry, W. Mio, and S. Weinberger, Topology of homology manifolds, Ann. of
Math.(2) 143 (1996), 435-467.
[8] J. Bryant and W. Mio, Embeddings of homology manifolds in codimensions > 3, to appear
in Topology.
, Transversality in generalized manifolds, Top. and its Applications, 94(1999), 7 — 12.
[10] D. Coram and P. Duvall, Approzimate fibrations, Rocky Mountain J. Math. 7(1977), 275-288.
[11] S. Ferry and E. Pedersen, Epsilon surgery, Novikov Conjectures, Index Theorems and Rigid-
ity, Vol. 2. Oberwolfach, 1993, pp. 167-226, London Mathematical Society Lecture Series,
Vol. 227, Cambidge University Press, Cambridge, 1995.
[12] C. B. Hughes, L. R. Taylor, and E. B. Williams, Bundle theories for topological manifolds,
Trans. Amer. Math. Soc. 319 (1990), 1-65.
[13] C. B. Hughes, Stratification of mapping cylinders, preprint.
[14] R. Kirby and L. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings,
and Triangulations, Princeton University Press, Princeton, N. J., 1977.
[15] R. Miller, Close isotopies on piecewise-linear manifolds, Trans. Amer. Math. Soc.151(1970),
597-628.




10 J. L. BRYANT AND P. KIRBY

[16] , Mapping cylinder neighborhoods of some ANR’s, Ann. of Math. (2) 103(1976), 417—
427.

[17] W.J.R. Mitchell, Defining the boundary of a homology manifold, Proc. Amer. Math. Soc.
110(1990), no. 2, 509-513.

[18] F. Quinn, Ends of maps I, Ann. of Math. 110(1979), 275-331.

[19] , Ends of maps III, J. of Diff. Geom. 17 (1982), 503-521.
[20] , Ends of maps IV, Amer. J. of Math. 108 (1996), 1139-1161.
[21] , Homotopically stratified sets, J. Amer. Math. Soc. 1(1988), 441-499.

[22] A. Ranicki, The algebraic theory of surgery II. Applications to topology, Proc. Lond. Math.
Soc.40(1980), 163-287.

(23] C.P. Rourke and B. J. Sanderson, On topological neighborhoods, Compositio Math. 22(1970),
387-424.

[24] L. Siebenmann, Doctoral Dissertation, Princeton University, 1965. Dissertation Abstracts,
27 (June 1966), pp.2044-2045, University Microfilms Ltd., 300 N. Zeeb Rd., Box 1346 Ann
Arbor, Michigan.

[25] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, 1970.

[26] J. E. West, Mapping Hilbert cube manifolds to ANR’s: a solution to a conjecture of Borsuk,
Ann. of Math. 106 (1977), 1-18.

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL 32306
E-mail address, J. L. Bryant: bryant@math.fsu.edu
E-mail address, P. Kirby: pkirby@math.fsu.edu



