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Abstract. Suppose M is a topological m-manifold, X is a generalized n-

manifold satisfying the disjoint disks property (DDP ), m > n ≥ 5, f : M → X

is an approximate fibration, with fiber the shape of a closed topological mani-
fold F , and Y is a closed, 1-LCC, codimension three subset of X. We examine

conditions under which f is controlled homeomorphic to an approximate fi-
bration g : M → X such that g|g−1(Y ) : g−1(Y ) → Y is, in some sense, an
improvement of f |f−1(Y ). One of the main results is that if Y is a gener-

alized manifold, and if f |f−1(Y ) : f−1(Y ) → Y is fiberwise shape equivalent
to a manifold approximate fibration p : E → Y , and Wh(π1(F ) × Zk) = 0,
k = 0, 1, . . ., then f is controlled homeomorphic to a manifold approximation
g : M → X such that g|g−1(Y ) : g−1(Y ) → Y controlled homeomorphic to

p : E → Y .

1. Introduction

Mapping cylinder neighborhoods have proven to be useful devices in studying
geometric properties of ANRs. This has been especially true in working with gener-
alized manifolds (ANR homology manifolds), since there are generalized manifolds
that are not locally polyhedral, even stably [7]. If N is the boundary of a mapping
cylinder neighborhood W of a generalized manifold X in a topological manifold
M , then W is the mapping cylinder of a manifold approximate fibration (MAF )
f : N → X whose fiber has the shape of a k-sphere, k = dim M − dim X − 1. If
Y is a topological or generalized submanifold of X, then f−1(Y ) may not even be
an ANR, so that W , with its given mapping cylinder structure, may not be very
useful for investigating properties of the pair (X, Y ). It would seem desirable to
find a MAF g : N → X, perhaps in some sense equivalent to f , such that the pair
(N, g−1(Y )) is a manifold pair with g−1(Y ) locally flat in N .

The purpose of this paper is to show that under fairly general conditions a
MAF f : N → X, with fiber shape equivalent to a closed topological manifold F is
controlled equivalent to a MAF g : N → X that is split over a stratified generalized
manifold Y in X. As a corollary we will show that if X is a generalized n-manifold
having the disjoint disks property, n ≥ 5, tamely embedded in euclidean space
Rm, m − n ≥ 3, W is a mapping cylinder neighborhood of X in Rm, and Y is
a (topological or generalized) submanifold of X, such that dim X − dim Y ≥ 3
and Y is tame in X, then there is a mapping cylinder retraction γ : W → X such
that γ−1(Y ) is a locally flat topological submanifold of W (Theorem 3.3). This
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result has been applied in [9], for example, to establish transversality theorems for
submanifolds of a generalized manifold.

2. Definitions

A generalized n-manifold (n-gm) is a locally compact euclidean neighborhood
retract (ENR) X such that for each x ∈ X,

Hk(X, X − {x}; Z) ∼=

{
Z, if k = n,
0, otherwise.

Following Mitchell [17] we say that an ENR X is an n-gm with boundary if the
condition Hn(X, X r {x}; Z) ∼= Z is replaced by Hn(X, X r {x}; Z) ∼= Z or 0,
and if bdX = {x ∈ X : Hn(X, X r {x}; Z) ∼= 0} is an (n − 1)-gm embedded in
X. (In [17] Mitchell shows that bdX is a homology (n − 1)-manifold.) An n-gm
X, n ≥ 5, has the disjoint disks property (DDP ) if every pair of maps of the 2-
cell B2 into X can be approximated arbitrarily closely by maps that have disjoint
images. A subset A of X is 1-LCC in X if for each x ∈ A and neighborhood U
of x in X, there is a neighborhood V of x in X lying in U such that the inclusion
induced homomorphism π1(V r A) → π1(U r A) is trivial. A closed set A in X of
codimension at least three will be called tame in X if A is 1-LCC in X.

Given an n-gm X, a manifold approximate fibration with fiber F (MAF ) over
X is an approximate fibration p : N → X, where N is a topological manifold, p
is a proper surjection, and the homotopy fiber of p is homotopy equivalent to F .
(Equivalently, each p−1(x) has the shape of the space F .) (See [10], [12]. In [12]
X is also assumed to be a topological manifold.) A manifold stratified space is a
locally compact ANR Z containing a filtration Z0 ⊆ Z1 ⊆ · · · ⊆ Zk = Z such that
each Zi is an ANR and each Zi r Zi−1, i = 0, 1, . . . , k, is a topological manifold
without boundary [21]. We use the convention that Z−1 = ∅. The sets Zi r Zi−1

are the strata of Z. A space Z will be called a generalized manifold stratified space
if it has a filtration with generalized manifolds as strata. (We don’t require any of
the strata to have the DDP .)

If Z is a (generalized) manifold stratified space, with filtration Z0 ⊆ Z1 ⊆ · · · ⊆
Zk, then a stratified manifold approximate fibration is an approximate fibration
p : N → Z, where N is a manifold stratified space, with filtration N0 ⊆ N1 ⊆ · · · ⊆
Nk, such that p : (Ni r Ni−1) → (Zi r Zi−1) is a MAF . (See [13].) For example,
Quinn shows in [18] that if K is a polyhedron and f : E → K is a topological block
bundle with manifold fiber F , then f is homotopic (through block bundle maps)
to a stratified manifold approximate fibration f ′ : E → K. A MAF p : N → X is
said to be split over Y ⊆ X if p|p−1(Y ) : p−1(Y ) → Y is also a MAF or stratified
MAF accordingly as Y is a (topological or generalized) manifold without boundary
or (generalized) manifold stratified space, respectively, and p−1(Y ) is tame in M .
A space F is K-flat if Wh(π1(F )× Zk) = 0, for all k = 0, 1, . . ..

Suppose that X is a locally compact ANR, A and B are separable metric spaces,
and p : A → X and q : B → X are maps. Assume B is embedded in Hilbert space,
`2, and that q is extended to a neighborhood V0 of B in `2. We generalize the
notion of a controlled map described in [12] as follows. A controlled shape map F c

from A
p−→ X to B

q−→ X (or simply F c : A → B if the maps are understood) is
given by a map F : A× [0, 1) → V0 such that
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(1) the map (q ◦ F ) ∪ (p× 1) : A× [0, 1] → X is continuous, and
(2)

⋂
0≤t<1

C`(F (A× [t, 1))) ⊆ B.

Two controlled shape maps F c, Gc : A → B are controlled shape homotopic,
denoted F c 'c Gc, if there is a third controlled shape map Hc from A × I

p◦p1−→ X

to B × I
q◦p1−→ X, where p1 is the projection to the first factor, defined as follows.

Let V0, q0 : V0 → X, and F : A× [0, 1) → V0 be the neighborhood of B, extension
of q, and map, respectively, used to define F c; and let V1, q1 : V1 → X, and
G : A× [0, 1) → V1 be the neighborhood of B, the extension of q, and the map used
to define Gc. Then Hc is defined by a neighborhood V of B × I in `2 containing
(V0 ∪ V1)× I, an extension of

(q ◦ p1) ∪ (q0) ∪ (q1) : (B × I) ∪ (V0 × {0}) ∪ (V0 × {1}) → X

to V , and a level preserving map H : A×[0, 1)×I → V such that H|A×[0, 1)×{0} =
F and H|B × [0, 1)× {1} = G.

For example, given a controlled shape map F c : A → B represented by F : A ×
[0, 1) → V0 and a neighborhood V of B in `2, then a change of parameter (i.e.,
a homeomorphism A × [0, 1) onto a closed subset of A × [0, 1) that commutes
with projection on A) gives a controlled homotopy of F c to a controlled shape
map represented by a map F ′ : A × [0, 1) → V . Thus, we may assume that a
representative of F c maps into any preassigned neighborhood of B. Since X is a
ANR, given any two extensions q0 and q1 of q : B → X to neighborhoods V0 and
V1, there is a neighborhood V2 of B such that q0|V2 and q1|V2 are homotopic rel
q0|B (= q1|B). Thus, any two controlled shape maps F c and Gc represented by the
same map F : A × [0, 1) → `2 (but, perhaps different extensions to neighborhoods
of B) are controlled shape homotopic. Notice that a controlled shape map from A
to B that can be represented by a map which maps A× [0, 1) into B is, in fact, a
controlled map as given in [12] (such is the case when B is an ANR).

3. Statement of Results

We can now state the main results of this paper. Throughout the paper X will
denote a generalized n-manifold, n ≥ 5, without boundary satisfying the DDP .

Theorem 3.1. Suppose that M is a topological m-manifold, m ≥ 6, and f : M → X
is a MAF with fiber shape equivalent to a closed, connected, topological manifold
F such that F is K-flat. Suppose Y is generalized manifold stratified space, with
filtration Y0 ⊆ · · · ⊆ Yk, embedded as a tame, closed subset of X, dim X−dim Y ≥ 3,
such that f |f−1(Y ) : f−1(Y ) → Y is controlled shape equivalent to a surjective
stratified MAF p : E → Y . If Ei−1 has a mapping cylinder neighborhood in Ei,
i = 1, . . . , k, then f is controlled homeomorphic to a MAF g : M → X such that
g−1(Y ) ∼= E, E is tame in M , and g|g−1(Y ) = p.

It is perhaps worth emphasizing that the strata of Y are not assumed to have
any general position properties such as the DDP .

Next, we state two applications of Theorem 3.1. The first is an immediate
corollary.

Corollary 3.2. Suppose Y is a topological manifold or polyhedron, dim X−dim Y ≥
3, tamely embedded as a closed set in X, and f : M → X (m ≥ 6) is a MAF such
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that the associated Hurewicz fibration has a topological reduction. Then f is con-
trolled homeomorphic to a MAF g : M → X that is split over Y .

Proof. By the classification theorem of [12], the Hurewicz fibration f̂ : M̂ → X

associated to f is controlled homotopy equivalent to f . Thus, if f̂ is fiber homotopy
equivalent to a bundle map p : E → X, then the restriction of p to p−1(Y ) is
controlled shape equivalent to f |f−1(Y ) : f−1(Y ) → Y .

�

The next theorem is the main application of Theorem 3.1.

Theorem 3.3. Suppose that X is compact and is embedded as a tame subset of
a topological m-manifold M , m − n ≥ 3 and that Y is a compact topological or
generalized manifold, dim X − dim Y ≥ 3, tamely embedded in X. Then there is a
mapping cylinder neighborhood W of X in M with retraction γ : W → X that splits
over Y .

Proof. We shall only prove the case in which ∂Y = Ø. Let W be a mapping
cylinder neighborhood of X in M as guaranteed by [16] and [26], with mapping
cylinder retraction π : W → X. Assume that W is the mapping cylinder of a map
f : ∂W → X. In order to get f |f−1(Y ) : f−1(Y ) → Y controlled shape equivalent
to a MAF we shall apply the mapping cylinder neighborhood classification of [8,
Theorem 3.3], which we now recall.

Given a compact generalized n-manifold Z (with or without the DDP ), letNq(Z)
denote the collection of germs of codimension q manifold neighborhoods V n+q of
Z in which Z is tamely embedded. Two embeddings ιk : Z → Vk, k = 1, 2, repre-
sent the same element of Nq(Z) if there are neighborhoods Nk of Z in Vk and a
homeomorphism h : N1 → N2 such that h ◦ ι1 = ι2. Let BT opq+k,k be the clas-
sification space for topological microbundle pairs εk ⊆ ζk+q, where εk denotes the
trivial microbundle of rank k, and let BT opq = limk→∞BT opq+k,k. Theorem 3.3
of [8] asserts that there is a bijection Nq(Z) → BT opq when q ≥ 3. (This re-
quires that Z be compact.) The bijection Nq(X) → BT opq (q = m− n) associates
the neighborhood W of X with a microbundle pair εk ⊆ ζk+q over X having the
property that the (q − 1)-spherical fibration φ : E → X associated to the inclusion
εk ⊆ ζk+q restricted to X is controlled homotopy equivalent to f : ∂W → X. This
implies that f |f−1(Y ) is controlled shape equivalent to φ|φ−1(Y ), which is the fi-
bration associated to εk|Y ⊆ ζq+k|Y . Applying Theorem 3.3 of [8] again (or just
the classification theorem of [23] if Y is a topological manifold), we get φ|φ−1(Y )
controlled homotopy equivalent to a MAF q : ∂E → Y , whose mapping cylinder E
is a topological manifold. (See, e.g., [9, Proposition 2.1].)

We may now apply Theorem 3.1 to f : ∂W → X and p : ∂E → Y to get a
controlled homeomorphism from ∂W

f−→ X to ∂W
g−→ X such that g−1(Y ) ∼=

∂E and g|g−1(Y ) = p. Let H : ∂W × [0, 1) → ∂W represent the inverse of this
controlled homeomorphism. Assume mapping cylinders are parameterized so that
their domains are at the 0 level. Then we can define a homeomorphism h from the
mapping cylinder Mg of g to W by

h(z, t) =

{
(H(z, t), t), if 0 ≤ t < 1,
z, if z ∈ X.

This provides W with the desired mapping cylinder structure.
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The proof when ∂Y 6= Ø follows from the relative version of the classification
theorem of [8].

�

It would be nice to apply Theorem 3.1 to the case in which Y is a polyhedron,
but we do not know whether the spherical fibration φ : E → Y is equivalent to a
stratified MAF . If W is a mapping cylinder of X in euclidean space, however, then
the result does in fact follow.

Corollary 3.4. Suppose that X is embedded as a tame subset of euclidean space
Rm, m ≥ 6 and m− n ≥ 3, and that Y is a closed polyhedron, dim X − dim Y ≥ 3,
tamely embedded in X. Then there is a mapping cylinder neighborhood W of X in
M with retraction γ : W → X that splits over Y .

Proof. As above, assume W is the mapping cylinder of a map f : ∂W → X and
that π : W → X is the mapping cylinder projection. Then the associated Hurewicz
fibration to f is the Spivak normal fibration for X, ν : E → X. By the classification
theorem of [12], ν : E → X is controlled homotopy equivalent to f . On the other
hand, by [11] ν : E → X has a stable topological reduction, hence, an unstable
reduction, since we are in codimension at least 3 [14]. Thus, f |f−1(Y ) : f−1(Y ) →
Y is controlled shape equivalent to a bundle map p : E0 → Y . This gives a bundle
map to which we may apply Theorem 3.1. The desired mapping cylinder projection
γ : W → X is obtained as in Theorem 3.3.

�

4. Splitting a MAF over a Generalized Manifold without Boundary

In this section we shall prove a special case of the splitting theorem in which Y is
a tame, generalized submanifold of X without boundary. We suppose the following
setting.

(1) M is a topological m-manifold, m ≥ 6.
(2) f : M → X is a proper, surjective, MAF with fiber shape equivalent to a

closed, connected, topological manifold F such that F is K-flat,
(3) Y ⊆ X is a generalized manifold,
(4) dim X − dim Y ≥ 3,
(5) Y is closed and tame in X, and
(6) f |f−1(Y ) : f−1(Y ) → Y is controlled shape equivalent to a MAF p : E → Y .

The idea of the proof is to embed E in M near f−1(Y ) and then get a sequence
of finer and finer controlled ambient isotopies over Y taking E closer and closer to
f−1(Y ). By stacking the inverses of these isotopies, we get the desired controlled
homeomorphism of M .

Represent the inverse of a controlled shape equivalence from f |f−1(Y ) : f−1(Y ) →
Y to the MAF p : E → Y by a map

σ : E × [0, 1) → M.

For any subset Z ⊆ X, we will let Ẑ = f−1(Z). The first lemma provides “mapping
cylinder-like” neighborhoods of Ŷ .

Lemma 4.1. M r Ŷ has a tame end over Y . Thus, there is a neighborhood N

of Ŷ in M such that N is a topological manifold with boundary ∂N and N r Ŷ ∼=
∂N × [0, 1), where the collar structure is controlled over Y .



6 J. L. BRYANT AND P. KIRBY

Proof. Let U be a neighborhood of Y in X that retracts to Y via a retraction
r : U → Y . Then r ◦ f : Û → Y gives a control map for a neighborhood of the
end of M r Ŷ over Y . Since Y is a locally contractible, small connected open sets
V in Y have the property that f |V̂ : V̂ → V is controlled shape equivalent to the
projection V × F → V . Thus, since Y is tame in X, the homotopy fiber of the
inclusion Ŷ ⊆ M is homotopy equivalent to a sphere of dimension ≥ 2, hence, is
simply connected. This implies that the end of M r Ŷ over Y has locally constant
fundamental group isomorphic to π1(F ). Quinn’s end theorem [18] then applies to
give a controlled collar of a neighborhood of the end of M r Ŷ over Y .

�

Let N be a neighborhood of Ŷ as given by the conclusion of Lemma 4.1, and let
c : ∂N × [0, 1) → N r Ŷ be a homeomorphism giving a controlled collar structure
over Y . For each t ∈ [0, 1) let Nt = N r c(∂N × [0, t)). Then for any ε > 0
we can find a t ∈ [0, 1) such that Nt isotopically deforms into any preassigned
neighborhood of Ŷ by an ε-isotopy over Y that is fixed on a smaller neighborhood
of Ŷ . In particular, for every ε > 0 there is a t ∈ [0, 1) such that the inclusion
Ŷ ⊆ Nt is an ε-shape equivalence over Y . Thus, we have following lemma, whose
proof is immediate. (If Y is not compact, then here, and in the remainder of the
section, ε and t may be functions of y ∈ Y .)

Lemma 4.2. For every ε > 0 there exists t ∈ [0, 1) such that σ(E × [s, 1)) ⊆ Nt

and σ : E × {s1} → Nt is an ε-homotopy equivalence over Y for every s1 ∈ [s, 1).

We shall now suppose that our parameters have been arranged so that σ(E ×
[t, 1)) ⊆ intNt for all t ∈ [0, 1). We will need to use the following version of Ferry-
Pedersen’s controlled π−π Theorem [11]. Its proof requires only minor adjustments
to the argument given for the Bounded π − π Theorem in [11].

Theorem 4.3 (Simply Connected Controlled π − π Theorem). If B is a finite
polyhedron, then there exist T > 0 and ε0 > 0 so that if (Pn, ∂P ), n ≥ 6, is an
ε-Poincaré duality space over B and ε ≤ ε0, and

(M,∂M)
φ // (P, ∂P )

p

��
B

is an ε-surgery problem with bundle information assumed as part of the notation so
that both p : P → B and p| : ∂B → B are UV 1, then we may do surgery to obtain
a normal bordism from (M,∂M) → (P, ∂P ) to (M ′, ∂M ′) → (P, ∂P ), where the
second map is a Tε-homotopy equivalence of pairs.

The next lemma is a controlled version of Corollary 11.3.4 of [25]. It is a con-
sequence of Theorem 4.3, Lemma 4.2, and Browder’s “Top Hat” Theorem [5], (see
also, Theorem 11.3 of [25]).

Lemma 4.4. For every ε > 0 there exists t ∈ [0, 1) such that σ|E×{s} : E×{s} →
Nt is ε-homotopic over Y to a locally flat embedding for every s ∈ [t, 1).

For 0 ≤ t1 ≤ t2 < 1, let N [t1, t2] =
⋃

t1≤t≤t2
Nt × {t} ⊆ M × [0, 1], and let

N [t] = N [t, t]. Analogous to the relative version of Corollary 11.3.4 of [25] we also
get a relative version of Lemma 4.4.



SPLITTING MANIFOLD APPROXIMATE FIBRATIONS 7

Lemma 4.5. For every ε > 0 there exists t ∈ [0, 1) such that if t ≤ t1 < t2 < 1 and
if σ|E ×{tk} is a locally flat embedding, k = 1, 2, then σ|E × [t1, t2] : E × [t1, t2] →
M× [t1, t2] is ε-homotopic to a locally flat embedding σ12 : (E× [t1, t2], E×{t1}, E×
{t2}) → (N [t1, t2], N × {t1}, N × {t2}) that agrees with σ|E × {tk} for k = 1, 2.

Proof of Theorem 3.1, for a generalized manifold Y without boundary. Let ti = 1−
1

i+1 , i = 0, 1, 2, . . . . Consider the map σ as a map of E × [0, 1) → M × [0, 1).
After a change of parameter, if necessary, we can apply Lemmas 4.4 and 4.5 to
assume that a representative σ : E × [0, 1) → M of the controlled equivalence from

E
p−→ Y to Ŷ

f |Ŷ−→ Y , as a map to M × [0, 1), satisfies σ|E × [ti−1, ti] : (E ×
[ti−1, ti], E × {ti−1}, E × {ti}) → (Nti−1 × [ti−1, ti], Nti−1 × {ti−1}, Nti−1 × {ti})
is a locally flat embedding. Using the end theorem and thin h-cobordism theo-
rem [18], we see that Nti−1 × [ti−1, ti] has the structure of a mapping cylinder (of
triples) over σ(E × [ti−1, ti]). Using the approximate lifting property we see that,
for any preassigned δ > 0, there is a smaller (mapping cylinder) neighborhood Ui

of σ(E × [ti−1, ti]), obtained by shrinking down the mapping cylinder structure
on Nti−1 × [ti−1, ti], that is a δ-h-cobordism over σ(E × {ti}). (Here the control
map is the composition of the mapping cylinder retraction with the projection of
σ(E × [ti−1, ti]) onto σ(E × {ti}).) The thin h-cobordism theorem then provides a
small product structure on Ui over σ(E × {ti}). By the relative thin h-cobordism
theorem we can extend this to a small product structure on Nti−1 × [ti−1, ti] over
Y that agrees with the natural (vertical) one on ∂Nti−1 × [ti−1, ti]. The prod-
uct structure on Ui gives a proper embedding τ : E × [ti−1, ti] → Ui that is close
to σ|E × [ti−1, ti] (over σ(E × {ti})) and agrees with σ on E × {ti−1}. Appying
Miller’s isotopy theorem [15], we can get a small ambient isotopy of Nti−1×{ti} tak-
ing τ |E × {ti} to σ|E × {ti}. As a consequence of these moves we produce a small
pseudoisotopy of H ′

i : Nti−1 × [ti−1, ti] → Nti−1 × [ti−1, ti] taking σ(E × {ti−1})
to σ(E × {ti}). By Quinn’s pseudoisotopy theorem [20], there is small isotopy
of Nti−1 × [ti−1, ti], fixed on ∂Nti−1 × [ti−1, ti] ∪ (Nti−1 × {ti−1, ti}), taking H ′

i

to an isotopy Hi : Nti−1 × [ti−1, ti] → Nti−1 × [ti−1, ti]. By extending via the
identity outside each Nti−1 × [ti−1, ti], we get an isotopy that we shall still call
Hi : M×[ti−1, ti] → M×[ti−1, ti]. Stacking these isotopies produces a level preserv-
ing homeomorphism H : M× [0, 1) → M× [0, 1). Let g = limt→1(f ◦Ht)|(M×{t}).
Then H−1 represents a controlled homeomorphism Hc from g to f .

�

5. Splitting a MAF over a Stratified Space

As one might naturally expect, the proof of the general case proceeds by induc-
tion over the strata. The special case proved in Section 4 gets the induction started.
We assume, then, the following setting.

(1) f : M → X is a MAF with fiber shape equivalent to a closed connected
topological manifold F such that F is K-flat.

(2) Y ⊆ X is a generalized manifold stratified space with filtration Y0 ⊆ Y1 ⊆
· · · ⊆ Yk,

(3) dim X − dim Y ≥ 3.
(4) Y is closed and tame in X.
(5) f |Ŷ : Ŷ → Y is controlled shape equivalent to a stratified MAF p : E → Y .
(6) For i > 1, each Ei−1 has a mapping cylinder neighborhood in Ei.
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(7) For some fixed j ≥ 1, Ŷj−1
∼= Ej−1, Ŷj−1 is tame in M , and f |Ŷj−1 =

p|Ej−1.

As before, Â = f−1(A), for any subset A of X. Set Z = Yj−1, V = Yj r Yj−1,
X ′ = X r Z, M ′ = M r Ẑ, and E′ = Ej r Ej−1. Applying the special case we
may assume that f |M ′ : M ′ → X ′ is split over V so that V̂ ∼= E′ and is tame in M ,
and f |V̂ = p|E′. This gives a (continuous) map f |M → X such that Ẑ ∼= Ej−1,
V̂ ∼= E′, f |Ẑ = p|Ej−1, and f |V̂ = p|E′. The only problem is that the union
Ŷj = Ẑ ∪ V̂ may not be homeomorphic to Ej . Once we have corrected this defect,
the inductive step will be complete.

Let W be a mapping cylinder neighborhood of V̂ in M ′. Since V̂ has a controlled
collar at infinity over Ẑ and m ≥ 6, we can use the End Theorem [18][19] to see
that (W,∂W ) has a collar at infinity, controlled over Z (not Ẑ). Since E′ has a
collar at infinity, controlled over Ej−1, V̂ has a collar at infinity, controlled over Z.
It is not difficult, using a uniqueness of collar argument, to get the collar of the end
of (W,∂W ) to agree with the collar on V̂ . Since Ẑ is tame in M , we can extend
this collaring to a collar of M ′(= M r Ẑ) at the end determined by Ẑ that is also
controlled over Z.

On the other hand, Ẑ is tame in M so that M ′ has a collar at the end determined
by Ẑ, controlled over Ẑ (not just over Z). By the uniqueness of end structures
[18][19], there is an isotopy ht, t ∈ [0, 1], of M ′, fixed outside a neighborhood of Ẑ
and controlled over Z taking the collar controlled over Z to the one controlled over
Ẑ. The finishing homeomorphism, h1 : M ′ → M ′, re-embeds W into M ′ so that
its collar at the end determined by Ẑ is now controlled over Ẑ, and we now have
Ẑ∪h1(V̂ ) ∼= Ej . It is possible to arrange the isotopy ht of M ′ so that, for 0 ≤ t < 1,
ht extends to M via the identity on Ẑ. Thus, we get a controlled homeomorphism
of M from f to a map that satisfies property 7 with j + 1 replacing j.

6. Splitting in Codimension One

We conclude the paper with a codimension one version of the splitting theorem,
which is an easy application of the end theorem. Although we do not get the theo-
rem for an arbritrary stratified subset Y of X, we are able to drop the assumption
that the approximate fibration over Y is equivalent to a known MAF .

Theorem 6.1. Suppose that M is a topological m-manifold M , f : M → X is a
MAF with fiber homotopy equivalent to a closed topological manifold F such that F
is K-flat, and Y is a generalized (n− 1)-manifold without boundary embedded as a
closed, locally two-sided, 1-LCC subset of X. Then f is controlled homeomorphic
to a MAF g : M → X such that g−1(Y ) is a locally flat (m − 1)-dimensional
submanifold of M and g|g−1(Y ) is a MAF .

Proof. Let W be a neighborhood of Y in X that is separated by Y . Then Ŵ r Ŷ
has two ends over Y , each of which is tame. By the end theorem [18] we can find
controlled collars U± ∼= N± × [0,∞) over Y . Let U = U+ ∪ Ŷ ∪ U−. Then U is a
thin h-cobordism over Y , hence, a controlled product: U ∼= N+ × [−1, 1]. Let us
rename N+(∼= N−) N and reparameterize the controlled collars (over Y ) so that
U r Ŷ ∼= N × [−1, 0) ∪N × (0, 1]. For 0 < t ≤ 1 set N±t = N × {±t}, and let Ut

be the closed region in U bounded by N−t ∪Nt. Then Ut is a δt-thin h-cobordism,
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where δt → 0 as t → 0, hence, an εt product, where εt → 0 as t → 0. (If Y is not
compact, we may have to change the t parameter first and let δt and εt be functions
on Y .)

Construct a sequence of ambient isotopies of M as follows. H1 is fixed on
the complement of U , slides N 1

2
to N 1

3
along the controlled collar structure on

N × (0, 1], and takes N × [ 13 , 1
2 ] to U 1

3
, matching up the product structures. This

can be done with an (essentially) ε1-isotopy. In general, Hi is fixed outside U 1
i
,

slides N 1
i+1

to N 1
i+2

along the controlled collar structure on N × (0, 1], and takes
N×[ 1

i+2 , 1
i+1 ] to U 1

i+2
, matching up the product structures. Stacking these isotopies

gives a controlled homeomorphism H : M× [0, 1) → M whose inverse is a controlled
homeomorphism from f to a map g : M → X such that g−1(Y ) ∼= N(= N × { 1

2}).
�

If Y is not locally two-sided in X, then there is a double cover p : (X̃, Ỹ ) → (X, Y )
such that Ỹ is locally two-sided in X̃. f : M → X then pulls back to a MAF
f̃ : M̃ → X̃ that splits over Ỹ . The question is whether this splitting can be done
equivariantly with respect to the Z/2-action on f̃ : M̃ → X̃. This leads to the
following more general question.
Question. Suppose (X, Y ) is a generalized manifold pair, where X has the DDP
and Y is tame in X, f : M → X is a MAF . Suppose G is a group acting on M and
the pair (X, Y ) such that f is G-equivariant and the induced map f̂ : M/G → X/G

is a stratified MAF . Given that f splits over Y , under what conditions does f̂ split
over Y/G?
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