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Preface

The algebraic L-theory of quadratic forms relates the topology of manifolds
to their homotopy types. This tract provides a reasonably self-contained ac-
count of this relationship in dimensions > 5, which was established over 20
years ago by the Browder—Novikov—Sullivan—Wall surgery theory for com-
pact differentiable and PL manifolds, and extended to topological manifolds
by Kirby and Siebenmann.

The term ‘algebraic L-theory’ was coined by Wall, to mean the algebraic
K-theory of quadratic forms, alias hermitian K-theory. In the classical
theory of quadratic forms the ground ring is a field, or a ring of integers in an
algebraic number field, and quadratic forms are classified up to isomorphism.
In algebraic L-theory it is necessary to consider quadratic forms over more
general rings, but only up to stable isomorphism. In the applications to
topology the ground ring is the group ring Z[n| of the fundamental group
7 of a manifold.

The structure theory of high-dimensional compact differentiable and PL
manifolds can be expressed in terms of the combinatorial topology of finite
simplicial complexes. By contrast, the structure theory of high-dimensional
compact topological manifolds involves deep geometric properties of Eu-
clidean spaces and demands more prerequisites. For example, compare
Thom’s proof of the combinatorial invariance of the rational Pontrjagin
classes with Novikov’s proof of topological invariance. The current devel-
opment of the controlled and bounded surgery theory of non-compact man-
ifolds promises a better combinatorial understanding of these foundations,
using the algebraic methods of this book and its companion on lower K-
and L-theory, Ranicki [146]. The material in Appendix C is an indication
of the techniques this will entail.

The book is divided into two parts, called Algebra and Topology. In
principle, it is possible to start with the Introduction, and go on to the
topology in Part II, referring back to Part I for novel algebraic concepts. The
reader does not have to be familiar with the previous texts on surgery theory:
Browder [16], Wall [178], Ranicki [145], let alone the research literature*.
This book is not a replacement for any of these. Books and papers need not
be read in the order in which they were written.

The text was typeset in TEX, and the diagrams in MAS-TRX.

* ‘The literature on this subject is voluminous but mostly makes difficult
reading’. This was Watson on integral quadratic forms, but it applies also
to surgery theory.
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Introduction

An n-dimensional manifold M is a paracompact Hausdorff topological space
such that each point x € M has a neighbourhood homeomorphic to the
Euclidean n-space R™. The homology and cohomology of a compact n-
dimensional manifold M are related by the Poincaré duality isomorphisms

H" (M) = H.,(M),

using twisted coefficients in the nonorientable case.

An n-dimensional Poincaré space X is a topological space such that
H™*(X) = H,(X) with arbitrary coefficients. A Poincaré space is finite if
it has the homotopy type of a finite CW complex. A compact n-dimensional
manifold M is a finite n-dimensional Poincaré space, as is any space homo-
topy equivalent to M. However, a finite Poincaré space need not be homo-
topy equivalent to a compact manifold. The manifold structure existence
problem is to decide if a finite Poincaré space is homotopy equivalent to a
compact manifold.

A homotopy equivalence of compact manifolds need not be homotopic
to a homeomorphism. The manifold structure uniqueness problem is to
decide if a homotopy equivalence of compact manifolds is homotopic to a
homeomorphism, or at least h-cobordant to one. The mapping cylinder of a
homotopy equivalence of compact manifolds is a finite Poincaré h-cobordism
with manifold boundary, which is homotopy equivalent rel 0 to a compact
manifold h-cobordism if and only if the homotopy equivalence is h-cobordant
to a homeomorphism. The uniqueness problem is thus a relative version of
the existence problem.

The Browder—Novikov—Sullivan—Wall surgery theory provides computable
obstructions for deciding the manifold structure existence and uniqueness
problems in dimensions > 5. The obstructions use a mixture of the topo-
logical K-theory of vector bundles and the algebraic L-theory of quadratic
forms. A finite Poincaré space is homotopy equivalent to a compact mani-
fold if and only if the Spivak normal fibration admits a topological bundle
reduction such that a corresponding normal map from a manifold to the
Poincaré space has zero surgery obstruction. A homotopy equivalence of
compact manifolds is h-cobordant to a homeomorphism if and only if it is
normal bordant to the identity by a normal bordism with zero rel 0 surgery
obstruction. The theory applies in general only in dimensions > 5 because
it relies on the Whitney trick for removing singularities, just like the h- and
s-cobordism theorems.

The algebraic theory of surgery of Ranicki [143]-[149] is extended here to a
combinatorial treatment of the manifold structure existence and uniqueness
problems, providing an intrinsic characterization of the manifold structures
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in a homotopy type in terms of algebraic transversality properties on the
chain level. The Poincaré duality theorem is shown to have a converse: a
homotopy type contains a compact topological manifold if and only if it
has sufficient local Poincaré duality. A homotopy equivalence of compact
manifolds is homotopic to a homeomorphism if and only if the point inverses
are algebraic Poincaré null-cobordant. The bundles and normal maps in the
traditional approach are relegated from the statements of the results to the
proofs.

An n-dimensional algebraic Poincaré complex is a chain complex C' with
a Poincaré duality chain equivalence C"™* ~ (. Algebraic Poincaré com-
plexes are used here to define the structure groups S,.(X) of a space X. The
structure groups are the value groups for the obstructions to the existence
and uniqueness problems. The total surgery obstruction s(X) € S,(X)
of an n-dimensional Poincaré space X is a homotopy invariant such that
s(X) = 0 if (and for n > 5 only if) X is homotopy equivalent to a com-
pact n-dimensional manifold. The structure invariant s(f) € S,+1(M) of
a homotopy equivalence f: N—— M of compact n-dimensional manifolds is
a homotopy invariant such that s(f) = 0 if (and for n > 5 only if) f is
h-cobordant to a homeomorphism.

Chain homotopy theory can be used to decide if a map of spaces is
a homotopy equivalence: by Whitehead’s theorem a map of connected
CW complexes f: X—Y is a homotopy equivalence if and only if f in-
duces an isomorphism of the fundamental groups f.: m (X)—m1(Y) and a
chain equivalence f: C(X)—C(Y) of the cellular Z[r; (X)]-module chain
complexes of the universal covers X ,XN/ of X,Y. It will be shown here
that the cobordism theory of algebraic Poincaré complexes can be simi-
larly used to decide the existence and uniqueness problems in dimensions
> 5. A finite Poincaré space X is homotopy equivalent to a compact mani-
fold if and only if the Poincaré duality Z[m (X )]-module chain equivalence
[X] N —: C(X)"*—C(X) of the universal cover X is induced up to al-
gebraic Poincaré cobordism by a Poincaré duality of a local system of Z-
module chain complexes. A homotopy equivalence of compact manifolds f
is h-cobordant to a homeomorphism if and only if the chain equivalence f
is induced up to algebraic Poincaré cobordism by an equivalence of local
systems of Z-module chain complexes. Such results are direct descendants
of the h- and s-cobordism theorems, which provided necessary and suffi-
cient cobordism-theoretic and Whitehead torsion conditions for compact
manifolds of dimension > 5 to be homeomorphic.

Generically, assembly is the passage from a local input to a global output.
The input is usually topologically invariant and the output is homotopy
invariant. This is the case in the original geometric assembly map of Quinn,
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and the algebraic L-theory assembly map defined here.

The passage from the topology of compact manifolds to the homotopy
theory of finite Poincaré spaces is the assembly of particular interest here.
In general, it is not possible to reverse the assembly process without some
extra geometric hypotheses. Manifolds of a certain type are said to be rigid
if every homotopy equivalence is homotopic to a homeomorphism, that is
if the uniqueness problem has a unique affirmative solution. The classifi-
cation of surfaces and their homotopy equivalences shows that compact 2-
dimensional manifolds are rigid. Haken 3-dimensional manifolds are rigid,
by the result of Waldhausen. The Mostow rigidity theorem for symmetric
spaces and related results in hyperbolic geometry give the classic instances
of higher dimensional manifolds with rigidity. The Borel conjecture is that
every aspherical Poincaré space Br is homotopy equivalent to a compact
aspherical topological manifold, and that any homotopy equivalence of such
manifolds is homotopic to a homeomorphism. Surgery theory has provided
many examples of groups 7 with sufficient geometry to verify both this
conjecture and the closely related Novikov conjecture on the homotopy in-
variance of the higher signatures. The rigidity of aspherical manifolds with
fundamental group 7 is equivalent to the algebraic L-theory assembly map
for the classifying space Bm being an isomorphism. The more complicated
homotopy theory of manifolds with non-trivial higher homotopy groups is
reflected in non-rigidity, with a corresponding deviation from isomorphism
in the algebraic L-theory assembly map.

The Leray homology spectral sequence for a map f: Y —— X can be viewed
as an assembly process, with input the E?-terms

Epq = Hp(X; {Hy(f7'(2)})
and output the EF°°-terms associated to H,.(Y). The spectral sequence
can be used to prove the Vietoris—Begle mapping theorem: if f is a map
between reasonable spaces (such as paracompact polyhedra) with acyclic
point inverses f~!(z) (x € X) then f is a homology equivalence. The
topologically invariant local condition of f inducing isomorphisms

(fDs+ Ho(f M) — Hi({z}) (z € X)
assembles to the homotopy invariant global condition of f inducing isomor-
phisms

~

fo: H(Y) — H.(X).
There is also a cohomology version, with input
EyY = HP(X; {H'(f"(z))})
and output H*(Y). The dihomology spectral sequences of Zeeman [192] can
be similarly viewed as assembly processes, piecing together the homology
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(resp. cohomology) of a space X from the cohomology (resp. homology)
with coefficients in the local homology (resp. cohomology). The homology
version has input

By = HP(X; {Hp—q(X, X\{z})})

and output H,,_.(X), for any n € Z. The cohomology version has input
Epq = Hy(X; {H""1(X, X\{z})})

and output H"*(X).

An n-dimensional homology manifold X is a topological space such that
the local homology groups at each point z € X are the local homology
groups of R”

7 ifx=n

H.(X, X\{z}) = H.(R",R"\{0}) = {o if % %7 .

For compact X the local fundamental classes [X], € H, (X, X\{z}) assem-
ble to a global fundamental class [X] € H,(X), using twisted coefficients in
the nonorientable case. The dihomology spectral sequences collapse for a
compact homology manifold X, assembling the local Poincaré duality iso-
morphisms

(X],N—: B ({a}) — H.(X,X\{z}) (€ X)

to the global Poincaré duality isomorphisms

(X]Nn—: H"*(X) — H.(X).
The topologically invariant property of the local homology at each point
being that of R™ is assembled to the homotopy invariant property of n-
dimensional Poincaré duality.

The quadratic L-groups L, (R) (n > 0) of Wall [180] were expressed in
Ranicki [144] as the cobordism groups of quadratic Poincaré complexes
(C, 1) over a ring with involution R, with C a f.g. free R-module chain com-
plex and v a quadratic structure inducing Poincaré duality isomorphisms
(1+T)po: H**(C) =2 H.(C).

The algebraic L-theory assembly map

A: H (X;L.) — L.(Z[m(X)])
is a central feature of the combinatorial theory of surgery, with H,(X;L.)
the generalized homology groups of X with coefficients in the 1-connective
quadratic L-theory spectrum IL. of Z . By construction, the structure groups
S«(X) of a space X are the relative homotopy groups of A, designed to fit
into the algebraic surgery exact sequence

A 0
. — Hoy(X;L.) — La(Z[m(X)]) — Sn(X)

— H, 1 (X5L) — ...
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The structure groups S.(X) measure the extent to which the surgery ob-
struction groups L, (Z[m(X)]) fail to be a generalized homology theory, or
equivalently the extent to which the algebraic L-theory assembly maps A
fail to be isomorphisms. The algebraic surgery exact sequence for a com-
pact manifold M is identified in §18 with the Sullivan—Wall surgery exact
sequence for the manifold structure set of M.

The total surgery obstruction s(X) € S,,(X) of an n-dimensional Poincaré
space X is expressed in §17 in terms of a combinatorial formula measuring
the failure on the chain level of the local homology groups H.(X, X\{z})
(x € X) to be isomorphic to H" *({z}) = H.(R",R™"\{0}). The condition
s(X) = 0 is equivalent to the cellular Z[m (X )]-module chain complex C (X)
of the universal cover X being algebraic Poincaré cobordant to the assem-
bly of a local system over X of Z-module chain complexes with Poincaré
duality. The structure invariant s(f) € S,41(M) of a homotopy equiva-
lence f: N—— M of compact n-dimensional manifolds is expressed in §18 in
terms of a combinatorial formula measuring the failure on the chain level
of the local homology groups H.(f *(x)) (x € M) to be isomorphic to
H,.({z}). The condition s(f) = 0 is equivalent to the algebraic mapping
cone C(f: C(N )—>C(]\7 ))«+1 being algebraic Poincaré cobordant to the
assembly of a local system over M of contractible Z-module chain com-
plexes.

The algebraic L-theory assembly map is constructed in §9 as a forgetful
map between two algebraic Poincaré bordism theories, in which the underly-
ing chain complexes are the same, but which differ in the duality conditions
required. There is a strong ‘local’ condition and a weak ‘global’ condition,
corresponding to the difference between a manifold and a Poincaré space,
and between a homeomorphism and a homotopy equivalence. The assembly
of a local algebraic Poincaré complex is a global algebraic Poincaré complex,
by analogy with the passage from integral to rational quadratic forms in al-
gebra, and from manifolds to Poincaré spaces in topology. The algebraic
L-theory assembly maps have the advantage over the analogous topologi-
cal assembly maps in that their fibres can be expressed in terms of local
algebraic Poincaré complexes such that the underlying chain complexes are
globally contractible.

The generalized homology groups of a simplicial complex K with L-theory
coefficients are identified in §13 with the cobordism groups of local algebraic
Poincaré complexes, where local means that there is a simply connected
Poincaré duality condition at each simplex in K. The cobordism groups
of global algebraic Poincaré complexes are the surgery obstruction groups
or some symmetric analogues, where global means that there is a single
non-simply connected Poincaré duality condition over the universal cover
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K. Surgery theory identifies the fibre of the assembly map from compact
manifolds to finite Poincaré spaces in dimensions > 5 with the fibre of
the algebraic L-theory assembly map. Picture this identification as a fibre
square

{ topological manifolds} ———— {local algebraic Poincaré complexes}

assembly assembly

{ Poincaré spaces} ——— { global algebraic Poincaré complexes}

allowing the homotopy types of compact manifolds to be created out of the
homotopy types of finite Poincaré spaces and some extra chain level Poincaré
duality. The assembly maps forget the local structure, and the fibres of
the assembly maps measure the difference between the local and global
structures. The fibre square substantiates the suggestion of Siebenmann
[160, §14] that ‘topological manifolds bear the simplest possible relation to
their underlying homotopy types’.

The surgery obstruction of a normal map (f,b): M— X from a compact
n-dimensional manifold M to a finite n-dimensional Poincaré space X

0. (f,b) € Ln(Z[m (X))
is such that o.(f,b) = 0 if (and for n > 5 only if) (f,b) is normal bor-
dant to a homotopy equivalence. In the original construction of Wall [180]
o.(f,b) was defined after preliminary geometric surgeries to make (f,b)
[n/2]-connected. In Ranicki [145] the surgery obstruction was interpreted
as the cobordism class of an n-dimensional quadratic Poincaré complex
(C(f"),1) over Z[m (X)] associated directly to (f,b), with
fo®) ~ oX) L oy ~ e

the Umkehr chain map.

The algebraic Poincaré cobordism approach to the quadratic L-groups
L.(R) extends to m-ads, and hence to the definition of a quadratic L-
spectrum LL.(R) with homotopy groups

m«(L.(R)) = L.(R) .
In Ranicki [148] the quadratic L-groups L,(A) (n > 0) of n-dimensional

quadratic Poincaré complexes were defined for any additive category with
involution A, with

L.R) = L.(A(R)) , A(R) = {fg. free R-modules} .

In §1 the quadratic L-groups L. (A) are defined still more generally, for any
additive category A with a chain duality, that is a duality involution on the
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chain homotopy category.

The chain complex assembly of Ranicki and Weiss [150] provides a con-
venient framework for dealing with the algebraic L-theory assembly over a
simplicial complex K. The method can be extended to arbitrary topological
spaces using nerves of open covers.

An (R, K)-module M is a f.g. free R-module with a direct sum decompo-
sition

M =Y M)
ceK
with R a commutative ring. An (R, K)-module morphism f: M —N is an
R-module morphism such that
J(M()) S Y N(r) (0 €K).
>0

An (R, K)-module chain complex C'is locally contractible if it is contractible
in the (R, K)-module category, or equivalently if each C(o) (0 € K) is a
contractible f.g. R-module chain complex. The assembly of an (R, K)-
module M is the f.g. free R[m (K )]-module

M(K) = > M(p(5))
seK

with p: K——K the universal covering projection. An (R, K)-module chain
complex C is globally contractible if the assembly C’(IN( ) is a contractible
R[m (K)]-module chain complex. A locally contractible complex is glob-
ally contractible, but a globally contractible complex need not be locally
contractible.

An n-dimensional quadratic complex (C, %) in A (R, K) is locally Poincaré
if the algebraic mapping cone of the (R, K)-module chain map (1 + T')yq:
C"*——( is locally contractible, with each

(1+T)po(0) : Clo)"lolI=* — C(0)/0C(0) (0 € K)
an R-module chain equivalence. (See §5 for the construction of the chain du-
ality on A (R, K).) An n-dimensional quadratic complex (C, %) in A (R, K)
is globally Poincaré if the algebraic mapping cone of (1 + T")ig: C"*—C
is globally contractible, with
(14+T) : C"*(K) ~ C(K)"* — C(K)

an R[m1(K)]-module chain equivalence. Chain complexes with local (resp.
global) Poincaré duality correspond to manifolds (resp. Poincaré spaces).

The generalized homology groups H,.(K;L.(R)) are the cobordism groups
of quadratic locally Poincaré complexes in A (R, K). The algebraic L-theory
assembly map

A Ho(K5L(R)) — La(RIm(K))) 5 (C,9) — (C(K), 9 (K))
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is defined by forgetting the locally Poincaré structure. The geometric assem-
bly map of Quinn [130], [131], [137] pieces together the non-simply connected
surgery obstruction of a normal map of closed manifolds from the simply
connected pieces. Similarly, the algebraic L-theory assembly map A pieces
together a globally Poincaré complex over R[m(K)] from a locally Poincaré
complex in A (R, K).

The main algebraic construction of the text is the algebraic surgery exact
sequence of §14

A o
. — H,(K;L.(R)) — L,(R[mr(K)]) — Sp(R, K)
— H, 1(K;L.(R)) — ... .
The quadratic structure groups S, (R, K) are the cobordism groups of quad-
ratic complexes in A (R, K) which are locally Poincaré and globally con-
tractible.

The algebraic surgery exact sequence is a generalization of the quadratic
L-theory localization exact sequence of Ranicki [146, §3]

. — Ly(R) — L,(S™'R) — L,(R,S) — L, 1(R) — ...,
for the localization R—— S~ R of a ring with involution R inverting a mul-
tiplicative subset S C R of central non-zero divisors invariant under the
involution. The relative L-groups L.(R,S) are the cobordism groups of
quadratic Poincaré complexes (C, 1) over R such that C' is an R-module
chain complex with localization S™'C = S~™'R®p C a contractible S~ R-
module chain complex. In the classic case

R=272,S8=72\{0}, SS'TR =Q
the relative L-groups Lo;(R,S) are the Witt groups of Q/Z-valued (—)*-
quadratic forms on finite abelian groups, and Ls;11(R,S) = 0.

The quadratic structure groups S, (K) are defined in §15 as the 1-connective
versions of S, (Z, K), to fit into the algebraic surgery exact sequence

A o
. — H,(K;L.) — L,(Z[m(K)]) — Su(K)

— H, 1(K;L.) — ...
with L. the 1-connective cover of L.(Z). The Oth space Ly of L. is ho-
motopy equivalent to the homotopy fibre G/TOP of the forgetful map
BTOP—BG from the classifying space for stable topological bundles to

the classifying space for stable spherical fibrations. The homotopy groups
of L. are the simply connected surgery obstruction groups

Z 0
(L) = 70(G/TOP) = Ln(Z) = ; it n = ; (mod 4) .
2
0 3
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The dual cells of a simplicial complex K are the subcomplexes of the
barycentric subdivision K’ defined by

D(o,K) = {0¢01...0, € K'|c<op<0o1<...<0.},
with boundary
0D(0,K) = | J D(1,K) .
T>0
Transversality is functorial in the PL category: Cohen [38] proved that for

a simplicial map f: M—— K’ from a compact n-dimensional PL manifold
M the inverse images of the dual cells
(M(0),0M(0)) = f~(D(0,K),0D(0,K)) (0 € K)

are (n — |o|)-dimensional PL manifolds with boundary. An abstract version
of this transversality is used in §12 to express the groups h,(K) for any
generalized homology theory h as the cobordism groups of ‘h-cycles in K’,
which are compatible assignations at each simplex o € K of a piece of the
coefficient group h.({pt.}). This is the combinatorial analogue of the result
that every generalized homology theory is the cobordism of compact man-
ifolds with singularities of a prescribed type (Sullivan [170], Buoncristiano,
Rourke and Sanderson [22]).

A finite n-dimensional geometric Poincaré complex X is a finite simplicial
complex such that the polyhedron is an n-dimensional Poincaré space. The
total surgery obstruction of X is defined in §17 to be the cobordism class

s(X) = (I')y) € Sp(X)
of an (n — 1)-dimensional quadratic locally Poincaré globally contractible
complex (I',¢) in A (Z, X) with
H,(T'(0))

= H*+1(¢(U) : C(D(U’ X))nﬁ'a‘i*—(j(D(o’a X)? 8D(0-7 X)))

= Hoyjop1([X]o N = C({z})" " —C(X, X\{z}))
measuring the failure of local Poincaré duality at the barycentre x =& € X

of each simplex o € X. The assembly (n—1)-dimensional quadratic Poincaré
complex (I'(X), ¥ (X)) over Z[m (X)] is contractible, with
NX) = C([X]Nn—C(X)" *"—C(X))sy1 =~ 0.

The structure invariant s(f) € S,,+1(M) of a homotopy equivalence f: N
—— M of closed n-dimensional manifolds is defined in §18, measuring the ex-
tent up to algebraic Poincaré cobordism to which the point inverses f~1(z)
are contractible. The invariant is such that s(f) = 0 if (and for n > 5 only
if) f is h-cobordant to a homeomorphism. The total surgery obstruction has
the following interpretation: for n > 5 a finite n-dimensional Poincaré space
X is homotopy equivalent to a compact topological manifold if and only if
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the Poincaré duality chain equivalence has ‘contractible point-inverses’ up
to an appropriate cobordism relation.

The structure set STF(X) of an n-dimensional Poincaré space X is the
set (possibly empty) of h-cobordism classes of pairs

(compact n-dimensional topological manifold M ,
homotopy equivalence f: M—X) .

The structure set of a compact manifold M is non-empty, with base point
(M, 1) € STOP(M).

The structure invariant s(f) € S,4+1(M) of a homotopy equivalence of
compact n-dimensional manifolds f: N——M is defined in §18 to be the
cobordism class

s(f) = (I,¢) € Spa (M)
of an n-dimensional quadratic locally Poincaré complex (I',) in A (Z, M)
with contractible assembly
I'(M) = C(f:C(N)—C(M)) ~ 0.

The Z-module chain complexes I'(0) (o € M) are the quadratic Poincaré
kernels of the normal maps of (n—|o|)-dimensional manifolds with boundary
I+ (9f)"'D(0, M) — g~'D(0, M) (0 €M) .

(For the sake of convenience it is assumed here that M is the polyhedron

of a finite simplicial complex, but this assumption is avoided in §18). The
structure invariant can also be viewed as the rel 0 total surgery obstruction

s(f) = soW,NU-M)eS,11(W) = Sp41(M)
with (W, NU—M) the finite (n+1)-dimensional Poincaré pair with manifold
boundary defined by the mapping cylinder W = N x I Uy M.

The Sullivan—Wall geometric surgery exact sequence of pointed sets for a
compact n-dimensional manifold M with n > 5

. = Lo (Z[m(M)]) — STOF(M)
—— [M,G/TOP] — Ly (Z[r1(M))])

is shown in §18 to be isomorphic to the 1-connective algebraic surgery exact
sequence of abelian groups

s Lt (@ (M)~ Sy (M)

A
— H,(M;L.) — L,(Z[r(M)]) .
The function sending a homotopy equivalence of manifolds to its quadratic
structure invariant defines a bijection

s STOP(M) — Sp1 (M) ; f — s(f)

between the manifold structure set and the quadratic structure group.
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The total surgery obstruction theory also has a version involving White-
head torsion. A Poincaré space X is simple if it has a finite simplicial
complex structure in its homotopy type with respect to which

T((X]N—:C(X)" *—C(X)) = 0 Wh(r) (7 =m(X)).
Compact manifolds are simple Poincaré spaces, with respect to the finite

structure given by the handle decomposition. The simple structure groups
S$(X) are defined to fit into the exact sequence

A o
o Hu(XGL) < Ly(2l]) - 85(X)
— H, 1(X;L.) — ...
with L3 (Z[r]) the simple surgery obstruction groups of Wall [180]. The

simple structure groups S(X) are related to the finite structure groups
S«(X) by an exact sequence

L — SU(X) — Sp(X) — H™(Zy; Wh(r)) — S’ (X) — ...

n—1
analogous to the Rothenberg exact sequence
. — L3(Zlx]) — Ln(Z[r)) — H™(Zo; Whi(r)) — L;

s 1(Z[7)) — ...
The total simple surgery obstruction s(X) € Sg(X) of a simple n-dimensional
Poincaré space X is such that s(X) = 0 if (and for n > 5 only if) X is simple
homotopy equivalent to a compact n-dimensional topological manifold. The
simple structure invariant s(f) € S;, (M) of a simple homotopy equiva-
lence f: N—— M of n-dimensional manifolds is such that s(f) = 0 if (and
for n > 5 only if) f is s-cobordant to a homeomorphism. For n > 5 ‘s-
cobordant’ can be replaced by ‘homotopic to’, by virtue of the s-cobordism
theorem.

The quadratic structure group S, (K) of a simplicial complex K is iden-
tified in §19 with the bordism group of finite n-dimensional Poincaré pairs
(X, 0X) with a reference map (f,0f): (X,0X)— K such that 0f: 0X —K
is Poincaré transverse across the dual cell decomposition of the barycentric
subdivision K’ of K. From this point of view, the total surgery obstruction
of an n-dimensional Poincaré space X is the bordism class

s(X) = (X,0) € Su(X)
with the identity reference map X——X. The quadratic structure group
S, (X) can also be identified with the bordism group of homotopy equiva-
lences f: N—— M of compact (n—1)-dimensional manifolds, with a reference
map M —X. The mapping cylinder W of f defines a finite n-dimensional
Poincaré h-cobordism (W, NU—M ) with NU—M——X Poincaré transverse
by manifold transversality.

The symmetric L-groups L™(R) (n > 0) of Mishchenko [115] and Ran-
icki [144] are the cobordism groups of n-dimensional symmetric Poincaré
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complexes (C, ¢) over R, with duality isomorphisms ¢o: H"*(C) = H.(C).
The quadratic L-groups are 4-periodic L.(R) = L.y4(R). The symmet-
ric L-groups are not 4-periodic in general, with symmetrization maps 1 +
T:L.(R)—L*(R) which are isomorphisms modulo 8-torsion.
An n-dimensional Poincaré space X has a symmetric signature

0" (X) = (C(X),9) € L"(Z[m (X)])
which is homotopy invariant, with

do = [X]N—: CX)"* — C(X)
the Poincaré duality chain equivalence (Mishchenko [115], Ranicki [145]).
The surgery obstruction o, (f,b) of a normal map (f,b): M—X has sym-
metrization the difference of the symmetric signatures

(1+T)o.(f,b) = 0" (M) —o"(X) € L"(Z[m(X)]) .
The symmetric L-groups are the homotopy groups of an Q-spectrum L' (R)
of symmetric Poincaré n-ads over R
(L' (R)) = L*(R) .

The 0-connective simply connected symmetric L-spectrum " = L' (0)(Z) is
a ring spectrum with homotopy groups

Z 0
(L) = L"(Z) = 0Z2 if = ; (mod 4) |
0 3

the 4-periodic symmetric L-groups of Z. The quadratic L-spectrum L. is a
module spectrum over the symmetric L-spectrum L.

The symmetrization maps 1 + T: L,(R)—L*(R) fit into an exact se-
quence

1+T J ~ 0
. — L,(R) — L"(R) — L™(R) — Ly_1(R) — ...

with L* (R) the exponent 8 hyperquadratic L-groups of Ranicki [146]. The 4-
periodic versions of the hyperquadratic L-groups are here called the normal
L-groups of R
* T Tx+4k
VL) =ty DR).

in accordance with the geometric theory of normal spaces of Quinn [132]
and the algebraic theory of normal complexes of Weiss [186]. The normal
L-spectrum NL'(R) has homotopy groups

m(NL(R)) = NL*(R) .
The hyperquadratic L-groups of Z are 4-periodic, so that the normal L-
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groups of Z are given by

Zs 0
- Z
NL™(Z) = L™(Z) = 02 if n = ; (mod 4) .
Zo 3

The simply connected normal L-spectrum NIL'(Z) has a ‘1/2-connective’
version L' = NL'(1/2)(Z), which is 0-connective and fits into a fibration

sequence

14T J o~
L.—L — L,

with homotopy groups

LoZ) =17 ifn=0
(L) = {im(1 + T: Ly(Z)—LYZ)) =0 ifn=1
L™(Z) ifn>2.

The normal L-spectrum L is a ring spectrum, which rationally is just the
Q-coefficient homology spectrum L' ® Q ~ K (Q,0).

A (k — 1)-spherical fibration v: X—BG(k) has a canonical L -orient-
ation U, € H*(T(v); L), with T(v) the Thom space of v and H denoting
reduced cohomology with w (v)-twisted coefficients. The fibration sequence
L.—L'—L" induces an exact sequence of cohomology groups

s HRTW)L) S BMT(w) L) — HRT ()L

5.
— HYT@w),L) — ... .
A topological block bundle v: X —>BTAO/P(I€) has a canonical 1L -orient-
ation U, € H*¥(T(v); L) , with v = Ji: X—BG(k). It was proved in
Levitt and Ranicki [94] that v: X — BG(k) admits a topological block bun-
dle reduction v: X — BT OP(k) if and only if there exists a L'-orientation
U; € H*(T(v); L") such that
J(U,) = U, eim(J: H*(T(v); L) — H"(T(v);L"))
= ker(6: H¥(T(v); L) —H* (T (v);L.)) .
Thus 6(U,) € H*(T(v);L.) is the obstruction to the existence of a topo-
logical block bundle structure on v. If this vanishes and k£ > 3 the structures
are classified by the elements of the abelian group
H¥T(v);L.) = HYX;L.) = [X,G/TOP] = [X,G(k)/TOP(k)] .

Rationally, the symmetric L-spectrum of Z has the homotopy type of a
wedge of Eilenberg-MacLane spectra

LeQ ~ \/K(Q4),

J=0
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and the L'-orientation of an oriented topological block bundle v: X —
BSTOP(k) coincides with the inverse of the Hirzebruch £-genus

U, ®Q = L7'(9) = L(-7) e HNT(v);L)@Q = Y HY(X;Q),
Jj=0

since both are determined by the signatures of submanifolds. See Taylor and
Williams [173] for a general account of the homotopy theory of the algebraic
L-spectra, and for an exposition of the work of Morgan and Sullivan [119]
and Wall [182] on surgery characteristic classes for manifolds and normal
maps in terms of the algebraic L-spectra.

An n-dimensional Poincaré space X has a Spivak normal structure

(vx: X — BG(k), px: S"™F — T(vx))
with vx the normal (k — 1)-spherical fibration defined by a closed regular
neighbourhood (W, W) of an embedding X C S"** (k large)
S oW — W ~ X
and px the collapsing map
px @ STTE —— SR el(SMTR\W) = W/OW = T(vx) .
The total surgery obstruction s(X) € S,,(X) has image
t(X) = 8(Usy) € Hoo1(X;L.) = H*N(T(vx);L.) |
the obstruction to lifting vx: X—BG(k) to a topological block bundle
vx: X—BTOP(k). A particular choice of lift 7x corresponds to a bordism
class of normal maps (f,b): M—— X with M a closed n-dimensional mani-
fold, by the Browder-Novikov transversality construction on px:S"t*—
T(vx) =T (vx), with
f=opxl: M= (px)""(X) — X, b: vyy — ix ,
s(X) = Jo.(f,b) € ker(S,(X)—H,—1(X;L.))
= im(0: L, (Z[m1(X)])—S, (X)) .
It follows that s(X) = 0 if and only if there exists a normal map (f,b): M
—— X with surgery obstruction

o.(f,b) € ker(0: L, (Z[m1(X)])—S, (X))
= im(A: H,(X;L.)—L,(Z[m (X)])) .
This is just the condition for the existence of a topological reduction vy
such that the corresponding bordism class of normal maps (f,b): M—X
has o.(f,b) = 0 € L,(Z[r(X)]). For n > 5 this is the necessary and
sufficient condition given by the Browder—Novikov—Sullivan—Wall theory for
the existence of a topological manifold in the homotopy type of X. The
theory has been extended to the case n = 4, provided the fundamental
group m1(X) is not too large (Freedman and Quinn [56]).
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A closed n-dimensional manifold M has a topologically invariant canonical
L*-homology fundamental class [M]y, € H,(M;L") which assembles to the
symmetric signature

A(M]L) = o"(M) € L™(Z[m (M)]) .
Cap product with [M]r defines the Poincaré duality isomorphism
[MlLn—: [M,G/TOP] = H°(M;L.) — H,(M;L.)
which is used in the identification of the algebraic and geometric surgery
sequences.

A normal map (f,b): N—M of closed n-dimensional manifolds has a
normal imvariant

[f,blL € Hy(M;L.) = H°(M;L.) = [M,G/TOP]
with assembly the surgery obstruction
A([f,0lL) = 0.(f,b) € Lu(Z[m (M)]) ,
and symmetrization the difference of the IL'-homology fundamental classes
(1+D)[f,blL = fe[NJL—[M]L € H,(M;L) .

The localization away from 2 of the L'-orientation [M]y, € H,,(M;L") of

a closed n-dimensional manifold M
(M), ® Z[1/2] € H,(M; L") ® Z[1/2] = KO,(M)® Z[1/2]

is the K O[1/2]-orientation of Sullivan [168]. Rationally

MlL®Q = [MlgNL(M) = Y ([M]on Lr(M))
k>0
€ Hn(M; L) ®Q = Z an4k(M; @)
k>0
is the Poincaré dual of the £-genus L(M) = L(7pr) € H¥*(M;Q) of the sta-
ble tangent bundle 7oy = —vp: M—BSTOP, with [M]g € H,,(M;Q) the
rational fundamental class. Let (f,b): N—— M be a normal map of closed n-

dimensional topological manifolds, as classified by a map ¢: M—G/TOP
such that

(fYon —va : M — G/TOP — BTOP .
The rational surgery obstruction of (f,b) is the assembly
0. (f,0)®Q = A([f,blL®Q) € Ly(Z[m(M)]) ® Q

of the element

[fL®Q = fiNLeQ—[ML®Q
= [MlgN (L(M)U (L(c) — 1))

€H,(M;L)®Q = > H,_4(M;Q) ,
k>0
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with 0 component in H,(M;Q).
The symmetric structure groups S*(X) are defined to fit into an exact
sequence of abelian groups

s HA (XL — IMZm (X)) — S7(X)
— H, 1(X;L) — ... .
The symmetrization of the total surgery obstruction s(X) € S, (X) of an
n-dimensional Poincaré space X is the image of the symmetric signature
o"(X) € L"(Z[m (X))
(1+T)s(X) = 00"(X) € S"(X) .
Thus (14 T)s(X) =0 € S*(X) if and only if there exists an L’-homology

fundamental class [X]i, € H, (X;L") with assembly the symmetric signature
of X

A([X]L) = o"(X) € L"(Z[m (X)) -
The wisible symmetric L-groups V L*(R[rn]) of Weiss [187] are defined for
any commutative ring R and group 7, with similar properties to L*(R|rx]).
The visible analogues of the normal L-groups can be expressed as general-

ized homology groups of the group m with coefficients in NL'(R), so that
there is defined an exact sequence

s Ly(R[]) = VIL™R[x]) — H,(Br:NL'(R))
L (RlA]) — ... .

The 1/2-connective visible symmetric L-groups VL*(X) =V L*(1/2)(Z, X)
are defined in §15 to fit into a commutative braid of exact sequences

Sn+1(X) Hn(X;L) Hn(X7IL‘)
Ho(X;L) VL™ (X)
/ X 1 V X
Hy1 (XL Lo (Z[m (X)]) Sn(X)
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The visible symmetric L-groups V L*(Bmw) of a classifying space Bw are
the versions of V L*(Z[r]) in which the chain complexes are required to be
O-connective (= positive) and the Poincaré duality chain equivalences are
required to be locally 1-connected.

An n-dimensional Poincaré space X has a 1/2-connective visible symmet-
ric signature

o (X) = (C,¢) e VL"(X)

with assembly the symmetric signature

o*(X) = (C(X),$(X)) € L"(Z[m1(X))) -
The main geometric result of the text is the expression in §17 of the total

surgery obstruction of X in terms of the 1/2-connective visible symmetric
signature

s(X) = 00" (X) € S,(X) .
Thus s(X) = 0 € S,(X) if and only if there exists an L’-homology fun-

damental class [X]1, € H,(X;L") with assembly the 1/2-connective visible
symmetric signature

A([X]L) = o"(X) e VL"(X) .

The simply connected symmetric signature of an oriented 4k-dimensional

Poincaré space X is just the signature (alias index)
o"(X) = signature (X)
= signature (H**(X;Q), ¢) € L*(z) = 7,
with ¢ the nonsingular symmetric form
¢ H*(X;Q x H*(X;Q) — Q5 (z,y) — (vUy, [X]o) -
The Hirzebruch formula expresses the signature of an oriented 4k-dimen-
sional manifold M as
signature (M) = (Lx(M),[Mlg) €Z C Q,

with L£i(M) € H**(M;Q) the 4k-dimensional component of the £-genus
L(M) = L(ty) € H*(M;Q), and [M]g € Hyx(M;Q) the rational funda-
mental class. This is a special case of o*(M) = A([M]L), since the signature

of M in L**(Z) = 7Z is the clockwise image of the fundamental I."-homology
class [M]y, € Hy,(M;L’) in the commutative square

Hap(M; L") —A— L% (Z[my (M)])

Hau({+}; L) — A L% ()
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and the anticlockwise image is the evaluation (Lx (M), [M]g).

Let X be a simply connected 4k-dimensional Poincaré space. If the Spivak
normal fibration vx: X——BSG admits a topological reduction vx: X —
BSTOP there exists a normal map (f,b): (M,vy)— (X, Ux) from a 4k-
dimensional manifold M, with surgery obstruction the difference between
the evaluation of the £-genus of Ix on [X]g € Hy,(X; Q) and the signature
of X

0.(f;b) = (07(M) —0"(X))/8
= ((Lr(—7Dx), [X]q) — signature (X))/8 € Lyx(Z) = Z .

There exists a manifold M** with a normal homotopy equivalence (f,b):
(M, vy )— (X, vx) if and only if there exists a topological reduction vy
such that X satisfies the Hirzebruch signature formula with respect to .
The simply-connected assembly map A: Hyx(X;L.)— L4k (Z) is onto, so
that

Sap(X) — Hap—1(X;L.) ;5 s(X) — ¢(X)

is one-one. The total surgery obstruction of X is such that s(X) = 0 €
S4x(X) if and only if the topological reducibility obstruction is ¢(X) =0 €
Hyi—1(X;L.). Thus X is homotopy equivalent to a manifold if and only
if vx admits a topological reduction (Browder [16] for k£ > 2, Freedman
and Quinn [56] for £k = 1). Moreover, it follows from the computation
Lar+1(Z) = 0 that if X is homotopy equivalent to a manifold M** the
structure set of M is in one-one correspondence with the set of topological
reductions vx satisfying the formula, namely

STOP(M) = Syps1(X) = ker(A: Hy(X; L) —Lyi(Z))
C Hu(X;L) = HYX;L.) = [X,G/TOP] .
The symmetric L-theory assembly map for any connected space M factors
through the generalized homology of the fundamental group 71 (M) =«
f* A‘/r
A: H(M;L) — H.(Bm;L) — L"(Z[r])
with f: M —— B the map classifying the universal cover, and A, the assem-
bly map for the classifying space Br. (There is a corresponding factorization
of the quadratic L-theory assembly map). The L’-homology fundamental
class of an n-dimensional manifold M assembles to the symmetric signature
A(M]L) = Ax(f«[M]L) = o*(M) € im(Ar) C L™(Z[r]) .
The evaluation map

Hy,—4(Bm; Q) — Homg(H"~**(Bm;Q), Q)
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(which is an isomorphism if H,(Bm; Q) is finitely generated) sends
[IML®Q = ) f([MlgN Li(M))

k>0

€ H,(Bm;L)®Q = ZHn—4k(B7T§Q)
k>0

to the higher signatures of M, which are the Q-linear morphisms defined by
H"™(BmQ) — Q3 2 — (L(M)U f*z,[M]g) = (z, filML®Q) .
The assembly of f.[M], ® Q is the rational symmetric signature of M
Ax(fi[ML)©Q = o*(M)®Q

€im(A; ® Q: H,(Bm; L") @ Q—L"(Z[7]) @ Q) .
For finite 7 and n = 0(mod 2) this is just the special case of the Atiyah—
Singer index theorem which states that the m-signature of the free action
of m on the universal cover M of a closed manifold M with m (M) = 7 is
a multiple of the regular representation of m. See §22 for the connection
between the symmetric signature and the m-signature.

The Novikov conjecture on the homotopy invariance of the higher signa-
tures of manifolds M with m (M) = 7 is equivalent to the injectivity of the
rational assembly map A, ® Q: H,(Bm; L") ® Qq— L*(Z[r]) ® Q.

For a finitely presented group m and n > 5 every element of the L.-
homology group H,(Bm;LL.) of the classifying space Br is the image of
the normal invariant [f,b]p € H,(M;L.) of a normal map (f,b): N—M
of closed n-dimensional manifolds with 7 (M) = 7. Every element of
Sn41(Bm) is the image of the structure invariant s(f) € S,41(M) of a
homotopy equivalence f: N——M of closed n-dimensional manifolds with
m1(M) = . The kernel of the quadratic L-theory assembly map A,

ker(Ay: Ho.(Bm;L.)— L. (Z[r])) = im(S,y1(Bn)—H,(Bm;L.))

consists of the images of the structure invariants s(f) of homotopy equiva-
lences f: N—— M of closed manifolds with fundamental group 71 (M) = 7.
The image of the assembly map

im(A,: Hy(Bm;L.)—L.(Z[r])) = ker(L«(Z[r])—S.(Bm))
consists of the surgery obstructions of normal maps of closed manifolds
with fundamental group 7. The image of A, for finite 7 was determined by
Hambleton, Milgram, Taylor and Williams [69] and Milgram [109].

The ultimate version of the algebraic L-theory assembly should be topo-
logically invariant, using the language of sheaf theory to dispense with the
combinatorial constructions, i.e. replacing the simplicial chain complex by
the singular chain complex. From this point of view the total surgery ob-
struction s(X) € S,,(X) of an n-dimensional Poincaré space X would mea-
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sure the failure of a morphism of chain complexes of sheaves inducing the
maps

[(X]N = H" " ({z}) — H.(X, X\{z}) (z € X)

to be a quasi-isomorphism, up to the appropriate sheaf cobordism relation.
Although the text is primarily concerned with the applications of algebraic
Poincaré complexes to the topology of manifolds and Poincaré spaces, there
are also applications to the topology of singular and stratified spaces, as well
as to group actions on manifolds — see Zeeman [192], Sullivan [170], McCrory
[106], Goresky and MacPherson [62],[63], Siegel [162], Goresky and Siegel
[64], Pardon [125], Cappell and Shaneson [28], Cappell and Weinberger [31]
and Weinberger [185]. Indeed, the first version of the intersection homology
theory of Goresky and MacPherson [62] used the combinatorial methods
of PL topology, while the second version [63] used topologically invariant
chain complexes of sheaves.



QUMMARY

Summary

§1 develops the L-theory of algebraic Poincaré complexes in an additive
category with chain duality. §2 deals with the algebraic analogue of the
Spivak normal fibration. An ‘algebraic bordism category’ (A,B,C) is an
additive category with chain duality A, together with a pair (B,C C B) of
subcategories of the chain homotopy category of A. In §3 the quadratic
L-groups L, (A,B,C) (n € Z) are defined to be the cobordism groups of
finite chain complexes in B with an n-dimensional quadratic C-Poincaré
duality. The quadratic L-groups L.(R) of a ring with involution R are the
quadratic L-groups L.(A(R)) of the algebraic bordism category A(R) =
(A(R),B(R),C(R)) with B (R) the category of finite chain complexes in
A(R), and C(R) the category of contractible chain complexes in A (R).
The additive category A ,(X) is defined in §4, for any additive category A
and simplicial complex X. In §5 a chain duality on A is extended to a chain
duality on A ,(X). The simply connected assembly functor A ,(X)—A
is defined in §6. The chain duality on A .(X) has a dualizing complex
with respect to a derived Hom, which is obtained in §7. The chain duality
on A, (X) is used in §8 to extend an algebraic bordism category (A, B, C)
to an algebraic bordism category (A .(X),B.(X),C.(X)) depending co-
variantly on X, as a kind of ‘(A,B, C)-coefficient algebraic bordism cat-
egory of X’. The algebraic bordism category obtained in this way from
(A(R),B(R),C(R))isdenoted by (A (R, X),B(R,X),C(R)«(X)). The as-
sembly functor A (R, X)——A(R[m1(X)]) is defined in §9. In §10 this is used
to define an algebraic bordism category (A(R, X),B (R, X),C(R, X)), with
C(R, X) the chain homotopy category of finite chain complexes in A(R, X)
which assemble to a contractible chain complex in A(R[m1(X)]). An alge-
braic analogue of the 7-7 theorem of Wall [180] is used in §10 to identify the
‘geometric’ L-groups L.(A (R, X),B (R, X),C(R, X)) with the ‘algebraic’
L-groups L.(R[m1(X)]). The theory of A-sets is recalled in §11, and ap-
plied to generalized homology theory in §12. The quadratic L-spectrum
L.(A,B,C) of an algebraic bordism category (A,B, C) is defined in §13 to
be an Q-spectrum of Kan A-sets with homotopy groups 7. (LL.(A,B,C)) =
L.(A,B,C). The quadratic L-groups L.(A(R,X),B (R, X),C(R).(X)) are
identified in §13 with the generalized homology groups H,(X;L.(R)). The
braid relating the visible L-groups, the quadratic L-groups and the gen-
eralized homology with L-theory coefficients is constructed in §14, with a
connective version in §15. The symmetric L-theory orientations of topolog-
ical bundles and manifolds are constructed in §16. The theory developed
in §1-§16 is applied in §17 to obtain the total surgery obstruction s(X) and
in §18 to give an algebraic description of the structure set ST (M). In
§19 the total surgery obstruction is identified with the obstruction to geo-
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metric Poincaré transversality. §20 deals with the simply connected case.
The transfer properties of the total surgery obstruction are described in
§21. The rational part of the total surgery obstruction in the case when
the fundamental group is finite is computed in §22 in terms of the mul-
tisignature invariant, and this is used to construct the simplest examples
of Poincaré spaces with non-zero total surgery obstruction. §23 relates the
total surgery obstruction to splitting obstructions along submanifolds. §24
expresses the total surgery obstruction s(X) € S,,(X) of an aspherical n-
dimensional Poincaré space X = B satisfying the Novikov conjectures in
terms of codimension n signatures. §25 deals with the 4-periodic version
of the total surgery obstruction, which applies to the surgery classification
of compact AN R homology manifolds. §26 considers the version of the
theory appropriate to surgery with coefficients. Appendix A develops the
nonorientable case of the theory. Appendix B deals with an alternative
construction of assembly in L-theory, using products. Appendix C relates
assembly to bounded surgery theory.



Part 1

Algebra






1. ALGEBRAIC FOINCARE COMPLEXARKS

§1. Algebraic Poincaré complexes

A chain duality (1.1) on an additive category A is a generalization of an
involution on A, in which the dual of an object in A is a chain complex
in A. A chain duality determines an involution on the derived category
of chain complexes in A and chain homotopy classes of chain maps, al-
lowing the definition of an n-dimensional algebraic Poincaré complex in
A as a finite chain complex which is chain equivalent to its n-dual. The

symmetric I L*(A)
{ quadratic 7 8TOUPS { L.(A)

symmetric
{ quadratic
tion, geometric Poincaré complexes have a symmetric signature in L*(A)
and normal maps have a quadratic signature (= surgery obstruction) in
L.(A) for A = {f.g. free Z|r]-modules} with the standard duality involu-
tion, with 7 the fundamental group.

are defined to be the cobordism groups of

Poincaré complexes in A . As already noted in the Introduc-

Let then A be an additive category. A chain complex in A

d
c:... —Cryqg — C. — Cpqy — ... (rez)

is finite if C, = 0 for all but a finite number of r € Z. C' is n-dimensional
if C. =0 unless 0 <r <n.

The algebraic mapping cone of a chain map f:C——D in A is the chain
complex C(f) in A defined by

J _ <dD (—)Tlf) _
c(f) — 0 dC :

Clf)r = Dr®Croqt — C(f)r—1 = Dro1 ©Cra .
Inclusion and projection define chain maps
D — C(f) , C(f) — SC
with SC' the suspension chain complex defined by
dsc = dc¢: SC, = Cr_1 — SC,_1 = C,_o.
The total complez of a double complex C, . in A with differentials
d': Cpg—Cpo1q » d': Cpg— Cpg1 (pq €Z)

such that d'd’ = 0, d"d” = 0, d'd’ = d"d’" is the chain complex C in A
defined by
de = Z (@ +(=)d): Cr = Z Cpqg — Cro1
ptq=r ptq=r

Given chain complexes C, D in A let Homy (C, D), . be the double complex
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of abelian groups with

HOIHA(C, D)p7q = HomA(CLp,Dq) ,

d(f) = fde: C_py1 — Dy, , d"(f) = dpf: C_p — Dy_1 .
The total complex is the chain complex Homy (C, D) defined by

dHom, c.p) : Homy (C, D), = Z Homy (C—p, Dy)
pt+q=r
— Homy(C,D),—1; f — dpf+(=)"fdc .
Define X"C' to be the chain complex in A with
dE”C’ - (_)TdC : (Enc)r - r—m T (Enc)r—l - Cr—l—n .

The nth homology group H,, (Homa(C, D)) (n € Z) is the abelian group of

chain homotopy classes of chain maps f:¥"C'——D. The isomorphisms of
chain objects

(Z"0), = Creyy — (S"C)y = Crpy s & — (—)"0FD/2g

define an isomorphism of chain complexes ¥"C = S™C.

Let B (A) be the additive category of finite chain complexes in A and chain
maps. The embedding
A ifr=0
0 ifr#0
is used to identify A with the subcategory of B (A) consisting of 0-dimensional
chain complexes.

Given a contravariant additive functor

T: A—B(A); A— T(A)
define an extension of 71" to a contravariant additive functor
T: BA) —BA); C— T(C)

by sending a finite chain complex C' in A to the total complex T'(C) of the
double complex T'(C), . in A defined by

T(C)pq = T(C—p)g d = T(dc) , d' = dT(Cfp)7
that is

1:A—BA); A— A, A, :{

dr) = Z (drc_,) + (=)"T(dc)) :
pH+q=r

(), = Z T(C_p)q — T(C)r-1 .
ptg=r
For any morphism f:C——D in B (A) it is possible to identify
C(T(f):T(D)—T(C)) = STC(f:C—D)

up to natural isomorphism in B (A).
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DEFINITION 1.1 A chain duality (T,e) on an additive category A is a con-
travariant additive functor 7: A——B (A) together with a natural transfor-
mation

e:T2—>1:A—>B(A)

such that for each object A in A
(i) e(T(A)).T(e(A)) = 1: T(A) —T3(A) —T(A),
(ii) e(A): T?(A)—A is a chain equivalence.
The dual of a chain complex C' is the chain complex T'(C), and X"T'(C) is

the n-dual of C.
O

Note that the n-dual X"T'(C) of an n-dimensional chain complex C need
not be n-dimensional.

DEFINITION 1.2 A chain duality on A is O-dimensional if for each object A
in A the dual chain complex T'(A) is O-dimensional. A 0-dimensional chain
duality is an involution on A .

O

In the 0-dimensional case e(A): T?(A)— A is an isomorphism of 0-dimen-
sional chain complexes for each object A in A, and the n-dual ¥"7T(C') of
an n-dimensional chain complex C' is n-dimensional, with

ST(C), = T(C)ren = T(Coy) .

An involution is a contravariant additive functor 7: A——A together with a
natural equivalence ¢/ = e~':1——T2: A——A such that for each object A
in A

¢(T(A)™" = T((A) : T°(4) — T(4) ,

i.e. an involution on A in the sense of Ranicki [148].
Fix an additive category A with a chain duality (T)e).
For any objects M, N in A define the abelian group chain complex

M @4 N = Homu(T(M),N) .

The construction is covariant in both variables, with morphisms g: M —
M’, h: N—— N’ in A inducing abelian group morphisms

gah: M@y N — M @y N’ ;
(f:T(M)——N) — (hfT(g): T(M')—N'") .

The duality isomorphism of abelian group chain complexes

Tun: M@y N — N®y M
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is defined by
TM,N . (M XA N)n = HOHIA(T(M)_n,N)

~

— (N®a M),, = Homy(T(N)_p, M) ;
(f:T(M)—p—N) — (Tu,N(f): T(N)—p—>M)
with
Tun(f) = e(M)T(f) :
T(N)_p — T(T(M)_p)—p CT*(M)g — My = M .
The inverse of Ths,n is

(T n)™t = Ty : Ny M = M ®a N,
since for any f € M ®4 N
TnmTan(f) = e(N)T(e(M)T(f)) = e(N)T*(f) T(e(M))
= fe(T(M))T(e(M)) = feM®yN .

EXAMPLE 1.3 Given a ring R with an involution R—— R;r——7 let AP(R)
be the additive category of f.g. projective (left) R-modules. Define a 0-
dimensional chain duality

T: AP(R) — AP(R) ; P — T(P) = P* = Hompg(P,R)
by
RxP* — P*; (r,f) — (v — f(z).7),

e(P): P — P o — (f — F(@)) .
The tensor product of f.g. projective R-modules P,(Q) is the abelian group
PRrQ = PRyQ/{re@y—zry|lre PyeQ,re R},
such that the slant map defines a natural isomorphism

P®rQ — Homp(P*,Q) = P®unr Q; 2@y — (f — f(z).y) .
The duality isomorphism Tp g: P @p(r) @——C @ar(r) P corresponds to
the transposition isomorphism

Tpo: PRrQ — Q®rP; 20y — y®x.
Similarly for the full subcategory A"(R) C AP(R) of f.g. free R-modules.
O

EXAMPLE 1.4 Given a commutative ring R, a group 7 and a group mor-
phism w: 7——{=%1} let R[r|* denote the group ring R[r| with the w-twisted
involution

~: R[r]Y — R[r]Y; a = ngg —a = Zr’gw(g)g_1 (rg €R) .

ge™ geT
O
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This is the example occurring most frequently in topological applications,
with w an orientation character. In the orientable case w = +1 write R[m]|*
as R[r]. The additive category of f.g. free R-modules is written

A"(R) = A(R).
There is also a version of the theory for based f.g. free R-modules, with

Whitehead torsion considerations.
Given a finite chain complex C in A write

cr =TC), , X"T(C) = C" ™.
For a chain map f: C——C" the components in each degree of the dual chain
map T(f): T(C")—T(C) are written
ff=1T(f): " =TI, —C" =T(C)_, .
Given also a finite chain complex D in A define the abelian group chain
complex
CopsD = HOIDA(T(C),D) .

The duality isomorphism

Tep: Co®aD — D®yC
is defined by
TC,D = Z(—)quCmeZ

(C®s D) = Y. (Cp®uDy)y — (D@4 C)y,
pt+qt+r=n
with inverse

(Te.p)™ = Tpo: D@, C — C®, D .

H, (C ® D) is the abelian group of chain homotopy classes of chain maps
¢: C"*——D in A . The duality isomorphism for C' = D

T = TC70: C@AC—__’C@AC

is an involution (T2 = 1), so that C ®, C' is a Z[Zs]-module chain complex.
symmetric
quadratic
category with involution of Ranicki [144],[148] can now be developed for an
additive category A with chain duality.

Use the standard free Z[Zs]-module resolution of Z

The algebraic theory of surgery on complexes in an additive

W —— 2] — 2T s (2] — Z[Za)]
to define for any finite chain complex C' in A the Z-module chain complexes
W”*C = Homg, (W,C @ C) = Homgz, (W, Homy (TC, C))
{W%C = W ®zz,) (C®4 C) = W ®gz,] Homy (TC,C) .
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The boundary of the n-chain
¢ = {¢s € Homy(C",Cp_ris)|r € Z,s >0} € (W*O),
{@/f = {¢s € Homs (C",Cp—r—s) |7 € Z, s > 0} € (W5, O,
is the (n — 1)-chain with
{ (6¢)s = dc®A0(¢3) + (_)n+571(¢s—1 + (_)ST¢S—1)
(00)s = deg,c(¥s) + (=) 77 (Wsr1 + (=) Ths41)
for s > 0, with ¢_1 = 0.

symmetric
quadratic
in A are defined for n € Z by

{Q”(C) = H,(W*C)

Qn(C) = H,(WyC) .

(ii) A chain map f: C——D of finite chain complexes in A induces a Z[Zs]-
module chain map

DEFINITION 1.5 (i) The Q-groups of a finite chain complex C

fRf: CC — D®yD
and hence Z-module chain maps
o WhC — W%D
{f%: Wy C — Wo D .
i
The morphisms of Q-groups induced by a chain map f: C——D depend
only on the chain homotopy class of f, and are isomorphisms for a chain
equivalence.

symmetric

quadratic (Poincaré) complex

DEFINITION 1.6 (i) An n-dimensional {

in A {(C’ 9) is a finite chain complex C' in A together with an n-cycle

(C. )
W%C n . :Cn—* C ) )
{ z E ((W%C))n (such that the chain map { ?10+ T)Qﬁ;—g”_*——%] is a chain

equivalence in A).
symmetric
quadratic

{f: (C,¢) — (C",¢)
[ (Cop) — (O, )
is a chain map f: C——C" such that
{f%(¢) = ¢' € Q"(C)
fa(¥) = ¢ € Qn(C) .

The map is a homotopy equivalence if f: C——(C" is a chain equivalence.

(ii) A map of n-dimensional { complexes in A
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Note that the chain complex C' in 1.6 is only required to be finite, and
not n-dimensional as in Ranicki [144].
Let f: C——D be a chain map of finite chain complexes in A. An (n+1)-
cycle
{ (60, 0) € C(f*:W*C—W" D), 11
(69, 10) € Cfop: Wos C—We; D)1
¢ € (W*C), : :
together with a collection
e Wyl
{5¢ = {0¢s € (D ®a D)nt1+4s |5 >0}
0 = {6vs € (D ®n D)ny1-s|s = 0}

is an n-cycle {

such that
dp@,p(0¢s) + (=)""*(0¢s—1 + (=)°Tdhs—1)
+ ()" (f @4 f)(¢s) = 0€(D®a D),
dD®AD(5¢s) + (_)nis((sws—i—l + (_)S+1T5¢s+1)
+ ()" (f @a f)(hs) = 0€ (D@ D),
The (n + 1)-cycle
{ (00, ¢0) € C(f @4 f:C @4 C—D @4 D)y
(1 +T)d%po, (1 +T)ibo) € C(f @4 f:C @4 C——D @4 D)py1
determines a chain map
{(5%,%) : DM — CO(f)
(L+T)(6%0, o) : D" — C(f)
with

(590, 60) = (5%) . D™ L O(f), = Dy @ Cyy

bof”
(@ Davn. 1+ D) = (S0

. pntl-r C(f)r = D, oC,_1.

symmetric

DEFINITION 1.7 (i) An (n + 1)-dimensional {quadratic

in A

(Poincaré) pair

{(f:C——>D, (0¢,9))
(f:C—D, (6¢,¢))
is a chain map f: C——D of finite chain complexes together with an (n+1)-
ey { 09:9) €U
(09, 9) € C(for)nta
{(5%,%) p DM — C(f)
(1 +T)(0%0,10) : D" — C(f)

such that the chain map
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is a chain equivalence).
symmetric

. Poincaré complexes
quadratic

(ii) A cobordism of n-dimensional

{ (C, ) { (€, ¢)
(C)" L (C7,9)

{((f f/)C@C,—J)? (5¢7¢@_¢,))
((f f):Cel"—D, (0, v & —y)) .

symmetric

is an (n + 1)-dimensional { quadratic

Poincaré pair

symmetric L™(A)
. -group
quadratic L,(A)
an additive category with chain duality A is the cobordism group of n-
symmetric
quadratic

DEFINITION 1.8 The n-dimensional (nez)

dimensional Poincaré complexes in A .

O

DEFINITION 1.9 Given a finite chain complex C' in A define the double
skew-suspension isomorphism of Z-module chain complexes

{?2: SHWHC) — WH(S2C) ; ¢ — 5%, (520)s = o,
52 SH Wy C) — Wy (S2C) 3  — 52, (S%), = o, .
symmetric

quadratic
with the double skew-suspension maps defining isomorphisms

PROPOSITION 1.10 The n-dimensional { L-groups are 4-periodic,

8% LMA) — L™(A); (C,¢) — (S°C, 5%9)
821 Ln(A) = Lnta(A) 5 (Co9) — (S2C,5%))
forn e Z.
PROOF The functor S?: B (A)—B (A) is an isomorphism of additive cat-

egories.
O

ExAMPLE 1.11 Let R be a ring with involution, so that the additive cat-
egories with duality involution

A"(R) = {f.g. free R-modules} , AP(R) = {f.g. projective R-modules}
are defined as in 1.3.

(i) The quadratic L-groups of A?(R) for ¢ = h (resp. p) are the free (resp.
projective) versions of the 4-periodic quadratic L-groups of Wall [180]

Ln(A%(R)) = L3(R) (neZ).
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(ii) The symmetric L-groups of AY(R) for ¢ = h (resp. p) are the 4-periodic

versions of the free (resp. projective) symmetric L-groups of Mishchenko

[115]

n S O n+4k _ n—+4x
L"(A"(R)) = lim LyT"(R) = Ly™™(R) (n€Z).
k

See Ranicki [144],[148] for proofs of both (i) and (ii). The 4-periodicity

of the symmetric L-groups is ensured by the use of finite rather than n-

dimensional chain complexes in 1.6. See 3.18 below for a further discussion.
m

The 4-periodic L-groups of the additive category A"(R) of a ring with
involution R are written

Ln(Ah(R)) = Ln(R) = Lnta(R),
L"(AMR)) = L™ (R) (neZ).

DEFINITION 1.12 The n-dimensional {Symmet?lc mplex { (, ¢,
quadratic
symmetric
quadratic
symmetric

quadratic

obtained from an n-dimensional { omplex { () by algebmzc

surgery on an (n + 1)-dimensional
{(f‘C——>D (00, ¢))
(f: C—D, (8¢, ¢))
do 0 (=)""gof*
der = [ (=)"f dp  (=)"d¢0
0 0 (-rd
Cl = C.®D DV
—C | = C1®D, oDV

is given in the symmetric case by

®o 0 0
oo = | (5" fTor (—)""Tdpr ()" e
0 1 0

Clnfr — Cmfr D DTL*?"+1 D (TQD)T+1
— C. = C,@® D,y D" "

Os 0 0
oy = | (=) " fThps (=) "t Té¢psr1 O
0 0 0

Cln—r—l—s — Cn—r—l—s D Dn—r—l—s—l—l D (T2D)7’fs+1
—C. = C,®D, 1 ®@D" " (s>1)
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and in the quadratic case by
de 0 (=)™ (1+T)of*
dor = | (=)"f dp  (=)"(1+T)dhof”
0 0 (—)rds
C! = C,®Dpyy @DV
—_— Cl‘fl = CT*l S¥ D'r S¥ an’r‘+2 5

o 0 O
wh=10 00
0 1 0

C/n—r - cnr D Dn—r—l—l D (T2D)7«+1
—C! = C,® Dy @DV

Yo ()T fr 0
o = | 0 ()T O
0 0 0

Clnfrfs — Cnfrfs D anrfs+1 D (T2D)r+s+1

—Cl = C,®Dpy1 @D (5>1).
O

symmetric
quadratic
plexes in A is the equivalence relation generated by homotopy equivalence
and algebraic surgery.

PROOF As for Ranicki [144, 5.1], the special case A = AP(R) = {f.g. project-
ive R-modules}.

PRrROPOSITION 1.13 Cobordism of n-dimensional Poincaré com-

i
DEFINITION 1.14 The boundary of an n-dimensional symmetpc complex
quadratic
(C,9) . . . . symmetric
{ (1) in A is the (n — 1)-dimensional quadratic complex

{3(C,¢>) = (9C,09)
o(C, ) = (0C,09)
symmetric

obtained from (0,0) by surgery on the n-dimensional { quadratic

{ (0:0—C, (¢,0))

In the symmetric case



1. ALGEBRAIC FOINCARE COMPLEXARKS

ve = (T Car)

607“ - r+1 © et — ac17’—1 - Cr S Cn—r—l s

9y = <(—)”‘1’“T¢1 (—)“"0—’“—1)@) |

oCc" "t = O @ (T7C)p1 — 00, =
b, = <<_)M+ST¢S“ 0) :
0 0
8cn77"+571 — CnfTJrs@(TQC)TiSJrl
1 @C"TT (52 1)

r+1 S¥) Cmir )

— 0C, =

and in the quadratic case

(1t D)

dac = T %
0 (—)"de.
607“ - r+1 eC"" — ac17’—1 - Cr @Cn—r—l—l ’
0 0
oo = (7 0).
6071—7“—1 — nr D (T2C)7«+1 SN acr —_ 1 D cn-r ,
()" T 0
Yy = :
4 ( 0 0

807’1,77"7871 — Cmfrfs D (TQC)’)"+S+1
1 ®OT (s> 1) .

— 0C, =

It is immediate from the identity
90 — S=1C(¢g: O *—C)
ST C((1 + T)epo: CF——C)
(C,¢) is Poincaré if and only

) ] symmetric
that an n-dimensional { quadratic complex { (C,)

if the boundary { ggg’ Z)})) is contractible.
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PRrROPOSITION 1.15 The homotopy equivalence classes of n-dimensional
{ symmetric

. complexes in A are in one—one correspondence with the homo-
quadratic
symmetric

. Poincaré pairs in
quadratic

topy equivalence classes of n-dimensional {

A
PROOF As for Ranicki [144, 3.4], the special case A = AP(R).

symmetric (C,9) in A define the

quadratic complex {(07@

Given an n-dimensional {

symmetric
quadratic

68(07 d)) - o . : . n—* (O’ad))
{68(6’, 5 <pC = projection : 0C — C , {(0,8@/}) ) .

Poincaré pair in A

n-dimensional { Poincaré pair

symmetric
quadratic

p=(ri0—p {0 )

apply the algebraic Thom construction to obtain an n-dimensional
symmetric
quadratic

Conversely, given an n-dimensional {

complex

piom — {(D09/C — (€501

,00)/C = (C(f),00/v)
with

5 0 .
(5¢/¢>3 - ((_)nrl¢sf* (_)nT+ST¢s—1) ‘

C(f)rrtstl = prortstlg onrts L O(f), = D@ Cpy
(s>0,0_1=0),
0s 0
(6Y/¥)s = ((—)”lesf* (_)"TST¢S+1) .
Oyt = D g erT L (f), = D, &Gy
(s>0),
which is homotopy equivalent to d0(B/0B).
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symmetric

quadratic
C C,p)=0€e L"(A C

{( ) inAissuchthat{( ) € L™(A) ifa,ndonlyif{( ) is

(C,9) (C,¢) =0¢€ Ln(A) (C, )
homotopy equivalent to the boundary 9(D, ) of an (n + 1)-dimensional

symmetric .
{quadratic complex (D, 0) in A.

It follows from 1.15 that an n-dimensional Poincaré complex
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§2. Algebraic normal complexes

An algebraic normal complex is a chain complex with the normal structure
of a Poincaré complex, but not necessarily the Poincaré duality. Algebraic
normal complexes are analogues of the normal spaces of Quinn [132], which
have the normal structure of Poincaré spaces, but not necessarily the duality.
Indeed, a normal space determines an algebraic normal complex.

The algebraic theory of normal complexes of Ranicki [145] and Weiss
[186] is now generalized to an additive category A with a chain duality
(T: A—B (A),e: T?>——1). Algebraic normal complexes will be used in §3
to describe the difference between symmetric and quadratic L-groups of A .

Use the standard complete (Tate) free Z[Zz]-module resolution of Z

o~

Wi — 2] — ZZs] = 2[Z0] > 7[Zs] — ...
to define for any finite chain complex C' in A the Z-module chain complex

W”C = Homgyz, (W,C @ C) = Homgg,| (W, Homu(TC,C)) .
A chain 6 € (/W%C’)n is a collection of morphisms

0 = {0, € Homy(C" "5 C,)|r,s € Z} ,
with the boundary d(6) € (W%C),,_; given by
d(0)s = dfs + (=)' 0sd" + (=) (051 + (=)°T5-1) :
crortstl ¢, (rs€Z) .

DEFINITION 2.1 (i) The hyperquadratic Q-groups of a finite chain complex
C in A are defined by
Q"(C) = H,(W*C) (nez).

(ii) A chain map f:C——D of finite chain complexes in A induces a Z-
module chain map

f% - W*C — WD
via the Z[Zs]-module chain map f® f:C @y C—D @4 D .

The short exact sequence of Z-module chain complexes
0— W*C — W%C — S(WyC) — 0
induces the long exact sequence of Q-groups of Ranicki [144,1.1]

14T J o~ H
L= @Qu(C) — QM(C) — Q"(C) — Qn(C)
14T

— Q"NC) — ...
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with

_ ®s for s >0 o (1+T)77/1() for s=0
(J9)s = {O fors<0 ’ (A+T)¥)s = {O for s >1

(HO)s = O_5_1fors>0.
DEFINITION 2.2 (i) A chain bundle (C, ) is a chain complex C in A together
with a 0-cycle v € (W7TC)q.
(ii) A map of chain bundles in A
(f7 b) . (Cv 7) - (0/77,)
is a chain map f: C——C" together with a 1-chain b € (/W%TC)l such that
FH) = v = d(b) € WHTC)y .
m
For any chain complex C' in A there is defined a suspension isomorphism
S: WHhC — STHW*SC) ; § —> S0
sending an n-chain 6 € (/W%C)n to the (n 4 1)-chain S6 € (/V[?%SC)HH
with
(S0); = 6,y = (SO = CnTrHE — (SC), = Cry
Hence for any n € Z there is defined an n-fold suspension isomorphism
S": WATC — ST (WO
sending a O-cycle v € (/W%TC’)O to the n-cycle Sy € (/W%C'”_*)n with
(S"Y)s = Ynts: Cr — C7"7"7F (r,5€Z) .
DEFINITION 2.3 Given a chain bundle (C,v) let Q,(C,7v) (n € Z) be the
twisted quadratic Q-groups of Weiss [186], designed to fit into a long exact

sequence
14T Jy

s Qu(C) 5 QUC) S GM(C) o Qua(Ch)

ooy —

with
Ty QUC) — QMC) 5 6 — J(¢) — 5 (S™) .
An element of @,,(C,~) is an equivalence class of pairs
(6.€ (W'C)u, x € (W*C)ns1)
such that
d(¢) = 0€ W*C)uor, J(@) — (0)*(5™y) = d(x) € (W*O) .
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with
H: QU (C) — Qn(Ci7) s x — (0,X) -
The addition in @, (C,~) is by
(0,x) + (¢ X) = (6+ ¢, x+X +§),
with
§s = ¢0(787n+1)¢€) :C" — n—r+s+1 (T’S € Z) .
|
J is induced by a morphism of the simplicial abelian groups K (W)
—K (W%C) associated to the abelian group chain complexes W*C, W”*C
by the Kan—Dold theorem, rather than by a chain map W%CTW%C.
For v = 0 J, = J is induced by the chain map J: W%C—W?”C and

Q+(C,0) = Q.(C).
A map of chain bundles (f,b): (C,v)—(C",~’) induces morphisms of the
twisted quadratic Q-groups

(D)o = Qu(C,y) — Qu(C",4") 5 (6, x) — (70, FPx + (Fdo) " (b)) -

DEFINITION 2.4 (i) An (algebraic) n-dimensional normal complex (C, ) in
A is a finite chain complex C' in A together with a triple

0 = (¢ (W*C)p,y € (WTC)o,x € (W*C)i1)
such that
d(¢) = 0€ (W?C)p_y, d(y) = 0 (WPTC)_, ,

J(6) = (60)"(5™) = d(x) € (WFC)y .
(C,0) is an n-dimensional symmetric complex (C, ¢) with a normal structure

(7, X)-

(ii) An (n+1)-dimensional normal pair (f: C——D, (66, 0)) in A is an (n+1)-
dimensional symmetric pair (f:C——D, (d¢, ¢)) in A together with a map
of chain bundles (f,b): (C,v)—(D,d7) and chains x € (W\%C)n+1, ox €
(/W%D)n+2 such that

J(#) = (¢0)*(S™) = d(x) € (W"C), ,

J(69) — (8¢, $0)*(S™87) + F*(x — (60)*(S™b)) = d(dx) € (W D)1 ,
with (86, 6) short for ((6¢, 07, dx), (&,7,X))-

(iii) A map of n-dimensional normal complexes in A
(f,0) = (C, 0,7, %) — (€', ¢,7",X)

is a bundle map (f,b): (C,~v)—(C’,~’) such that
(f:0)%(d.x) = (¢',X) € Qu(C",7Y) .
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The map is a homotopy equivalence if f: C——(C" is a chain equivalence.
(iv) The normal L-groups NL™(A) (n € Z) are the cobordism groups of
n-dimensional normal complexes in A .

i

REMARK 2.5 Geometric normal (resp. Poincaré) complexes and pairs de-
termine algebraic normal (resp. Poincaré) complexes and pairs. The meth-
ods of Ranicki [145] and Weiss [186] can be combined to associate to any
(k — 1)-spherical fibration v: X — BG(k) over a finite CW complex X a
chain bundle in A (Z[r]") (cf. 1.4)

o' (v) = (C(X),7)
with X any regular covering of X such that the pullback 7: X — BG(k)
is oriented, 7 the group of covering translations, C'(X) the cellular Z[r]-

module chain complex of X, and w: m——{£1} a factorization of the orien-
tation character

w(v): m(X) — =, {£1} .

The hyperquadratic structure « is unique up to equivalence (i.e. only the
homology class v € @O(C()? )~*) is determined), and depends only on the
stable spherical fibration v: X —BG. Let T'(v) be the Thom space of v,
and let U, € H*(T(v),w) be the w-twisted Thom class, with H* denot-
ing reduced cohomology. The Alexander—Whitney—Steenrod diagonal chain
approximation

Az : C(X) — Homg,) (W, C(X) ®z C(X))
induces the ‘symmetric construction’ of Ranicki [145, §1]
ox = 1@ Az Ho(X,w) = Hy(Z" @pprpw C(X))
— Q"(C(X)) = Hy(Homgz,)(W,C(X) @zirw C(X))) -
The composite of the Thom isomorphism and the symmetric construction
. U,N— ¢X ~
Hy 1 (T(v)) — Ho(X,w) — Q"(C(X))

extends to a natural transformation of exact sequences of abelian groups

. — FTH_IH_TT(V)) — 7Tn+k1T(l/)) hy Hn_,_kIT(I/)) — Fn+k(JT(l/)) — ...
= QMHCO(X) — Qu(C(X), ) — QM(C(X)) 5 QM (C(X)) — ...

from the certain exact sequence of Whitehead [190], with h the Hurewicz
map.
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An n-dimensional geometric normal complex (X,vx, px) in the sense of
Quinn [132] is a finite CW complex X together with a (k — 1)-spherical
fibration vx: X —BG(k) and a map px:S"**——T(vx). The algebraic

normal complex of (X, vx, px) with respect to a covering X of X is defined
by

(/J'\*(X, VXapX) = (C(X)7¢777X)
with (C(X),~) = 6*(vx) and (¢,x) € Qn(C(X),~) the image of px €
Tk (T (vx)). The Z[r1(X)]-module duality chain map of *(X) is given
by the cap product

¢o = ox([X])o = [X]n—: C(X)"" — O(X),
with the fundamental class defined by
[X] = h(px)NU,, € Hy(X,w) .
A (finite) n-dimensional geometric Poincaré complex X is a (finite) CW
complex together with an orientation map w: w1 (X)——Zy and a fundamen-

tal class [X] € H,(X,w) such that cap product defines a Z[mr (X )]-module
chain equivalence

X]Nn—: C(X)"* — C(X) .
An embedding X C S™** (k large) determines the normal structure (vx, px)
of Spivak [164], so that X is an n-dimensional geometric normal complex.
The n-dimensional symmetric Poincaré complex in A (Z[r]")

o' (X) = (C(X),9)
is such that Jo*(X) = *(X,vx, px).
i
The following result deals with the analogue for algebraic Poincaré com-

plexes in any additive category with chain duality A of the Spivak normal
structure of a geometric Poincaré complex:

PROPOSITION 2.6 (i) An n-dimensional symmetric complez (C, @) in A has
a normal structure (7, x) if and only if the boundary (n — 1)-dimensional
symmetric Poincaré complexr O(C, ¢) admits a quadratic refinement.

(ii) There is a natural one—one correspondence between the homotopy equiv-
alence classes of n-dimensional symmetric Poincaré complezes (C, ) in A
and those of n-dimensional normal complezes (C, ¢,~y, x) with ¢g: C"~*—
C a chain equivalence.

(iii) There is a natural one—one correspondence between the homotopy equiv-
alence classes of n-dimensional quadratic complexes (C,v) in A and those
of n-dimensional normal complezes (C, ¢,, x) with v = 0.

PROOF (i) Write

a(cv ¢) = (6076¢) ) aC - S_lc(¢0)7
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and let e: C——S0C = C(¢p) be the inclusion. Consider the exact sequences
of Q-groups

147 J o~

Qn-1(0C) — Q"71(90) — Q"71(3C) ,

N YN &%

Q"(C") — Q"(C) — Q"(59C) .
The obstruction J(d¢) € Q" 1(dC) to a quadratic refinement of d(C, )
corresponds under the suspension isomorphism @”*1(60)——%@\”(830) to
the obstruction é%J(¢) € Q"(SOC) to a normal refinement of (C, ¢).
(ii) An n-dimensional symmetric Poincaré complex (C,¢) determines an
n-dimensional normal complex

J(C,9) = (C,,7,x)
with (7, x) unique up to equivalence. The class v € @O(T () is the image
of » € Q™(C) under the composite
I @t s
Q"(C) — Q"(C) —— Q"(C"™) — Q(T0) .
(iii) An n-dimensional quadratic complex (C, 1) determines an n-dimensional
normal complex with v =0 and

(1+T)(C, ) = (C.(1+T),0,x)

such that
(1+T)po ifs>0 0 if s >0
1+T s = s — .
((1+1)9) {0 ifs<0, X boeq ifs <0

Conversely, an n-dimensional normal complex (C, ¢, , x) with v = 0 deter-
mines an n-dimensional quadratic complex (C, ), by virtue of @, (C,0) =

Qn(C).

O

DEFINITION 2.7 (i) An n-dimensional (symmetric, quadratic) pair (f: C—
D, (6¢,1)) in A is an n-dimensional symmetric pair with a quadratic struc-
ture on the boundary, i.e. a chain map f:C——D of finite chain com-
plexes in A together with an (n — 1)-cycle ¢» € (WyC),,—1 and an n-chain
6¢ € (W” D), such that
FPA+Ty = d(6g) € (WD), 1 .
(ii) The pair (f: C——D, (d¢,)) is Poincaré if the chain map
(0¢, (1 +T)¢)o : D" — C(f)
is a chain equivalence.
O

PROPOSITION 2.8 (i) The homotopy equivalence classes of n-dimensional
(symmetric, quadratic) pairs in A are in natural one—one correspondence
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with the homotopy equivalence classes of n-dimensional normal complexes
i A

(ii) The cobordism classes of n-dimensional (normal, symmetric Poincaré)
pairs in A are in natural one—one correspondence with the cobordism classes
of (n — 1)-dimensional quadratic Poincaré complexes in A .

PROOF (i) An n-dimensional normal complex (C,@,7,x) in A determines
the n-dimensional (symmetric, quadratic) Poincaré pair in A

(ic: 0C——=C" ™, (09,))

defined by
ic = (01):0C, = CrpydC" " — C"" |
doc = <dc (_)T¢O) )
0 (-rd

oC, = r+1 D cC" " —0C,_1 = C, O on-r+l :

0
@/10 = ( Xo * * ) :
1"‘7771(1)0 Y—n-1

oCc" = CT+1 @Cn—r I aC(n—r—l - Cn—r @CT+1 s

X—s 0
ws = ( * * ) :
7—”—8¢O Y—n—s—1

oC" = CT+1 D Cnfr E— 807177’7571 = Cnfrfs D CT+S+1 (S > 1) )
§ps = Yon_s: Cp — C"7"H5 (s >0) .
Conversely, an n-dimensional (symmetric, quadratic) Poincaré pair (f: C—

D, (0¢,1)) in A determines an n-dimensional normal complex (C(f), ¢,7, x)
in A with the symmetric structure

,< 090 0) ifs=0
1+T)wof* 0 B

¢s = < ) ifs=1
0 (1+T)o
(MS ) if s> 2
0
C(f eC" b C(f)n—r—l—s = Dn—r—l—s S Cn—r—l—s—l .

The normal structure (7, X) is determined up to equivalence by the Poincaré
duality, with v € Q°(D~*) the image of (6¢/(1+ T)v) € Q™(C(f)) under
the composite

((8¢0,(14T)%p0)*) ™" o T A STT
Q"(C(f)) Q"D"™) — QMD"T) — QD).
(ii) Given an n-dimensional normal pair in A (f: C——D, ((6¢, 07,x), ¢))
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let (C’,¢’) be the (n — 1)-dimensional symmetric complex obtained from
(C,¢) by surgery on (f:C——D, (d¢,®)). The trace of the surgery is an
n-dimensional symmetric pair ((g ¢'): C & C'—D', (¢, ¢ & —¢')) with

g = inclusion : C — D' = C(¢of*: D" '7*—0C),

g = projection : C' = S7'C((0¢, ¢)o: D" *——C(f)) — D’ .
The natural isomorphism

Q\n+1(Dn+17*) i) @n+1(D/nf*_>Cln7*)
sends the chain bundle d¢ € @”H(D”H_*) to a normal structure on the
trace which restricts to 0 € @”(C’ "—*), corresponding to a quadratic refine-
ment ¢’ € Q,_1(C’") of ¢’ € Q""1(C"). The symmetric complex (C, @) is
Poincaré if and only if the quadratic complex (C’, ') is Poincaré.
Conversely, given an (n — 1)-dimensional quadratic Poincaré complex
(C’,4") define an n-dimensional (normal, symmetric Poincaré) pair (C—0,

(0, (1 +T)y)).

O

DEFINITION 2.9 The quadratic boundary of an n-dimensional normal com-
plex (C, ¢,7, x) is the (n — 1)-dimensional quadratic Poincaré complex

9(C, 0,7, x) = (9C, )
defined in 2.8 (i) above, with 9C = S™1C(¢g) the desuspension of the
algebraic mapping cone of the duality chain map ¢¢: C"~*——(C'. This can
also be viewed as the complex associated by 2.8 (ii) to the n-dimensional
(normal, symmetric Poincaré) pair (C——0, (0, (1 + T")%)).
O

DEFINITION 2.10 The n-dimensional hyperquadratic L-group L™(A) (n € Z)
is the cobordism group of n-dimensional (symmetric, quadratic) Poincaré
pairs in A, designed to fit into the quadratic-symmetric exact sequence
14T J o~ o
. — Ly(A) — L™(A) — L™(A) — L,—1(A) — ... .
m

For a ring with involution R and A = AP(R) the hyperquadratic L-
groups L*(A) of 2.10 are just the hyperquadratic L-groups L*(R) of Ranicki
(146, p. 137].

PropPOSITION 2.11 The hyperquadratic L-groups E*(A) are 1somorphic to
the cobordism groups NL*(A) of normal complexes in A

L*(A) = NL*(A),
so that there is defined an eract sequence

14T J 0
. — Ly(A) — L™(A) —— NL™A) — Lp_1(A) —> ...
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with
0: NL"(A) — Ln-1(A) 5 (C, 8,7, x) — (9C, )
given by the quadratic boundary (2.9) of normal complezes.
PROOF The identities L™ (A) = NL™(A) (n € Z) are immediate from 2.8 (i)
and its relative version relating (symmetric, quadratic) Poincaré triads and
normal pairs. See Ranicki [146, §2.1] for algebraic Poincaré triads.
i

In the case A = A?(R) (¢ = h,p) for a ring with involution R write the

normal L-groups as

NL*(A%R)) = NL(R) .

EXAMPLE 2.12 The hyperquadratic L-groups E;‘ (R) (¢ = h,p) of Ranicki
[146,p. 137] are the cobordism groups of (symmetric, quadratic) Poincaré
pairs over a ring with involution R which fit into an exact sequence
14T J o~ Bl
. — LI(R) — Ly(R) — Lj(R) — L! (R) — ....
The relative terms H*(Zy; Ko(R)) in the Rothenberg exact sequences re-
lating the free and projective L-groups of R are the same for the symmetric

and quadratic L-groups
. — L}(R) — LE(R) — H™(Zy; Ko(R)) — LV Y(R) — ...

. — LI(R) — L2(R) —> H"(Zy; Ko(R)) — L"

n—1

(R) — ... .
Thus the free and projective hyperquadratic L-groups of R coincide
L*(R) = Ly(R) = Ly(R).

Similarly, the hyperquadratic L-groups of the categories A"(R) and AP(R)
coincide, being the 4-periodic versions of the hyperquadratic L-groups L*(R)
L"(A"(R)) = L"(A?(R)) = lim L"™(R) (n€2),

k
the direct limits being taken with respect to the double skew-suspension

maps. Use the isomorphisms given by 2.11
NL*(A"(R)) = L*(A(R)) (q=h,p)
to write
NL*(R) = NL;(R) = NL3(R) = lim L*"**(R) .

k
O

REMARK 2.13 The exact sequence of 2.11 for A = A (R) = A"(R) is the
algebraic analogue of the exact sequence of Levitt [92], Jones [80], Quinn
[132] and Hausmann and Vogel [75]

L — QN (K) — Ly(Z[r]) — QF(K) — QY (K) — ...
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with QF (K) (resp. QY (K)) the bordism group of maps X — K from n-
dimensional geometric Poincaré (resp. normal) complexes, with m = 71 (K)
the fundamental group of K and n > 5. The symmetric signature of
Mishchenko [115] and Ranicki [145,§1] defines a map from geometric to
symmetric Poincaré bordism
0" QY (K) — L'(Zlx]) ; X — o"(X) = (C(X),9) .
The hyperquadratic signature of Ranicki [146,p.619] defines a map from
geometric to algebraic normal bordism
5 ON(K) — L™(Z[r)) ; X — °(X) = (C(X), 0,7, X) -

The signature maps fit together to define a map of exact sequences

— QN (K) T —>95[K)—>Q§[K)—>...
. —— LY Z[x]) -2 L, (2[x)) B L(Z]x) -1 LM (Zr]) — . . . .

The normal signature is the stable hyperquadratic signature
50 QY(K) — NL"(Z[x]) = lim L"™**(Z[r]) .
k
The normal signature determines the quadratic signature
o, = 06" : QV(K) — lim Lyyap—1(Z[7])) = Ln_1(Z[r]) .
k
There is also a twisted version for a double covering K" —— K, with the

w-twisted involution on Z[r], and the bordism groups Q.(K,w) of maps
X —— K such that the pullback X*“——X is the orientation double cover.
O

EXAMPLE 2.14 (i) Let R be a ring with involution, and let (B, ) be a
chain bundle over R, with B a free R-module chain complex (not necessarily
finite or finitely generated). The cobordism groups L™ (B, 3) (n > 0) of n-
dimensional symmetric Poincaré complexes (C, ¢, 7, x) in A (R) with a chain
bundle map (f,b): (C,v)— (B, ) fit into an exact sequence

v Lo(R) — LB, B) — Qu(B,B) — Ly 1(R) — ...
with

Ly(R) — L"(B,B) ; (C,v) — ((C, (1 +T),0,7),0),

Ln(Bvﬁ) E— Qn(Bvﬁ) ; ((Cv ¢777X)7(f7 b)) (fv )%(77 ) s

9 : Qn(B,B) — Ln-1(R) ; (¢,x) — (B, ¢,05,%) ,
where (B, ¢, 3,%) the restriction of (B, ¢,3,%) to any finite subcomplex
B C B supporting (¢,%) € Qn(B,). As in Weiss [186] there is defined
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a universal chain bundle (B, ) over R, with § € @O(B**) such that the
algebraic Wu classes of Ranicki [146, 1.4] are isomorphisms

"(8) : Hy(B) — H"(Z3:R) ; ¥ — B_op(2)(z) (reZ).
For the universal chain bundle (B, /) and any finite chain complex C' in
A (R) there is defined an isomorphism

Ho(Hompg(C, B)) — Q°(C™") 5 f — f7(B)
so that the chain bundles (C,y € Q°(C~*)) are classified up to homotopy
equivalence by the chain homotopy classes of chain maps C——B. For
universal (B, ) the forgetful maps define isomorphisms

~

L™(B,B) — L"(R); (C,¢,7.x) — (C,9),

Qn(B,B) — NL"(R); (¢,x) — (B"",0(B,9,6,X)) -
(ii) Let K be a field of characteristic 2 which is perfect, i.e. such that
2 is an isomorphism, so that for all n € Z
H"(Z2:K) = K . Kx H'(Zy:K) — H"(Z2:K) 5 (2,y) — oy

with the identity involution on K. The chain bundle over K
0 0 0

0 0
(B: ... K K K K e, B=1)
is universal. The quadratic Witt group L. (K) is detected by the Arf in-
variant, and the symmetric Witt group L?*(K) is detected by the rank
(mod 2), with isomorphisms

Q2*+1(B7ﬂ) = K/{I‘—FI‘QlIEK}

K—K;z—x

~ a 1
— Ly(K); a — (K® K, (0 1) )

Q2(B,3) = {zcK|z+2>=0} = Zs

— NL*(K) = L*(K); 1 — (K,1)
and Lo, 1(K) = L¥**Y(K) = 0. In particular, this applies to K = Fs.
i
By analogy with the observation of Quinn [132] that the mapping cylinder

of a map of geometric normal complexes defines a cobordism, we have:

PROPOSITION 2.15 The algebraic mapping cylinder of a map of n-dimen-
stonal normal complexes in A

(f, b) : (Cl, d)/? ’7,7 X/) - (Ca ¢7 Y X)
is an (n + 1)-dimensional normal pair in A
M(f,b) =

((f 1)20/ % C_>Ca ((5¢7776X)7 (Qb, ¥ _d)? ’7, ¥ _’77X/ % _X))a b@O),
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which defines a cobordism between (C, ¢,v,x) and (C,d,7v,X)-
PROOF The chains ¢, dx are determined by a chain level representative for
the identity

(f;0)% (9", X)) = (¢,x) € Qu(C,7) .

O

REMARK 2.16 (i) Let A be an additive category with a 0-dimensional chain
duality. An algebraic normal map in A is a normal map of n-dimensional
symmetric Poincaré complexes

(f:0) = (C".¢",7,X') — (C, 0,7, X) -
The algebraic mapping cylinder M(f,b) of 2.15 is an (n + 1)-dimensional
(normal, symmetric Poincaré) pair. The quadratic kernel of (f,b) is the
n-dimensional quadratic Poincaré complex

0*(f7 b) = (C(f')7¢)
obtained by applying the construction of 2.8 (ii) to M(f,b), with f' the
Umkehr chain map defined up to chain homotopy by the composite

—1 * ’
fhe C&C”_* f C/n—x iC/.
The symmetrization of the quadratic kernel is an n-dimensional symmetric
Poincaré complex

(1+T)o.(f,0) = (C(f), A+ T))
such that up to homotopy equivalence

1+ T)ou(f,0) & (C,9) = (C',¢) .
The construction of 2.8 (ii) defines an isomorphism between the cobordism
group of (n 4 1)-dimensional (normal, symmetric Poincaré) pairs in A and

the quadratic L-group L, (A). The quadratic signature of (f,b) is the cobor-
dism class of the quadratic kernel

a.(f,b) = (C(f1):9) € La(A) .

The methods of Ranicki [144], [148] show that o.(f,b) = 0 € L,(A) if and
only if M(f,b) is algebraic normal cobordant rel 0 to a symmetric Poincaré
cobordism between (C, ¢,~, x) and (C’, ¢", 7', x').

(ii) The quadratic kernel o, (f,b) of a geometric normal map (f,b): X'— X
of n-dimensional geometric Poincaré complexes obtained in Ranicki [145] is
the quadratic kernel o, ( f, l~)) of an induced algebraic normal map of n-
dimensional symmetric Poincaré complexes in A(Z[r]")

(f;b) : o*(X") = (C",¢/, 7, X)) — o"(X) = (C,¢,7,X)
with w:m——Zy the orientation map, and C = C(X), C' = C(X') the
cellular chain complexes of the cover X of X and the pullback cover X’ of
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X', The quadratic signature of (f,b) is the cobordism class of (C(f"),v)
o:(f,b) = 0u(f,0) = (C(f):9) € La(AZ[x]")) = Ln(Z[x]") ,

with symmetrization

(1+T)o.(f,0) = o*(X') —0*(X) € L"(Z[r]") .
For X’ = M a manifold and (f,b): M —X a geometric normal map in the
sense of Browder [16] the surgery obstruction of Wall [180] is the quadratic
signature of (f,b) with 7 = 7, (X) and X the universal cover of X.
(iii) Geometric normal complexes can be constructed from geometric Poin-
caré bordisms of degree 1 normal maps of geometric Poincaré complexes,
as follows. Given a normal map (f,b): X’— X of n-dimensional geometric
Poincaré complexes let W ~ X be the mapping cylinder of f, so that
(W; X, X’) is an (n + 1)-dimensional normal complex cobordism. Given
also a geometric Poincaré cobordism (V; X, X’) there is defined an (n + 1)-
dimensional geometric normal complex

Y = VUsgW.
The normal signature of Y is the stable hyperquadratic signature

3*(Y) = (C(Y),,7,x) € NL"™H(Z[mi(Y))) = lim L™H+(Z[m (YV)])
k
with boundary the quadratic signature of (f,b) relative to 71 (X)—m1(Y)

95" (Y) = 0.(f,b) € Ln(Z[m(Y))]) -
(iv) For the mapping cylinder W of the 2-dimensional normal map
(f,b): X' = 8S'x8 — X = §2
determined by the exotic framing of S! x S! with Kervaire-Arf invariant 1
and for the geometric Poincaré cobordism
(V: X, X') = (D*u St x D?; 8%, 81 x 1)
the construction of (iii) gives a simply-connected 3-dimensional geometric
normal complex Y =V Uy W such that
05*(Y) = o.(f,b) = 1€ Ls(Z) = Zs .
Thus Y is not normal bordant to a geometric Poincaré complex, and (a

fortiori) the normal fibration vy: Y ——BSG is not topologically reducible,
with vy: Y ~ §2Vv §3— 83— BSG detected by the generator

1 e m3(BSG) = m(G/TOP) = 75 = Q" = L,(2) = Z, .
O

From now on the normal structure (v,y) will be suppressed from the
terminology of a normal complex (C, ¢, 7, x), which will be written as (C, ¢).
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§3. Algebraic bordism categories

An algebraic bordism category A = (A, B, C) is a triple defined by an addi-
tive category with chain duality A and a pair (B,C C B) of additive cate-
gories of chain complexes in A satisfying certain conditions. The L-groups
L*(A) symmetric
L.(A) of A are defined to be the cobordism groups of {quadratic

NL*(A) normal
complexes in A which are B-contractible and C-Poincaré. The main re-

sult of §3 is the exact sequence relating quadratic, symmetric and normal
L-groups of an algebraic bordism category.

As in §81,2 let A be an additive category with chain duality, and let B (A)
be the additive category of finite chain complexes in A and chain maps.

DEFINITION 3.1 (i) A subcategory C C B (A) is closed if it is a full additive
subcategory such that the algebraic mapping cone C(f) of any chain map
f:C——D in C is an object in C.

(ii) A chain complex C in A is C-contractible if it belongs to C. A chain
map f:C——D in A is a C-equivalence if the algebraic mapping cone C(f)

is C-contractible. ( )
Y . symmetric C,9) . - .
(iii) An n-dimensional { quadratic complex { (C. ) in A is C-contractible

if the chain complexes C' and C"™~* are C-contractible.

(iv) An n-dimensional { Z}g;grrlzgéc complex { Eg’ jz)) in A is C-Poincaré if

the chain complex
oC = S71C0(¢g: C"*—0C)
{ 0C = S7IO((1+ T)tpg: C**—0)
is C-contractible.
i

DEFINITION 3.2 An algebraic bordism category A = (A, B, C) is an additive
category A with a chain duality 7: A—B (A), together with a pair (B, C C
B) of closed subcategories of B (A), such that for any object B in B
(i) the algebraic mapping cone C'(1: B—B) is an object in C,
(ii) the chain equivalence e(B): T?(B) — B is a C-equivalence.
m

ExAMPLE 3.3 For any additive category with chain duality A there is de-
fined an algebraic bordism category

A(A) = (A,B(A),C(A))
with B (A) the category of finite chain complexes in A, and C(A) C B(A)
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the subcategory of contractible complexes.

m
DEFINITION 3.4 Let A = (A, B, C) be an algebraic bordism category.
symmetric (C,9)
(i) An n-dimensional § quadratic complezr ¢ (C,v) in A is an n-dimen-
normal (C,9)

symmetric
sional { quadratic complex in A which is B-contractible and C-Poincaré.

normal
Similarly for pairs and cobordisms.
symmetric L™(A)
(ii) The { quadratic L-groups ¢ L,(A) (n € Z) are the cobordism
normal NL"(A)
symmetric
groups of n-dimensional { quadratic complexes in A.
normal

O

ProOPOSITION 3.5 If A = (A,B,C) is an algebraic bordism category such
that Q*(C) = 0 for any C-contractible finite chain complex C' in A then the
forgetful maps define isomorphisms

NL*(A) — L™A); (C,¢,7,x) — (C,¢) (ne€Z).
PROOF An n-dimensional symmetric complex (C,¢) in A has a normal
structure if and only if

J(¢) € im(¢yt: Q" (C"*)—Q"(C)) .
The hyperquadratic @Q-groups of C, C"~* and 0C = S~1C(¢o: " *—C)
are related by an exact sequence
%
~ ~ P~ ~
. — Q"(00) — QM(C"*) — Q™(C) — Q" 9C) — ... .

If (C, ¢) is C-Poincaré then dC is C-contractible, Q*(9C) = 0 and there is
defined an isomorphism

b = QUECmT) — QMO)
so that (C, ¢) has a normal structure. Similarly for pairs.
m

EXAMPLE 3.6 The algebraic bordism category A(A) = (A, B(A),C(A)) of
3.3 is such that Q*(C) = 0 for C (A)-contractible (= contractible) B (A)-
contractible (=any) finite chain complexes in A, so that

NL*(A(A)) = L*(A(A)) = L*(A) .
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DEFINITION 3.7 A functor of algebraic bordism categories
F: A= (ABC) — AN = (AB,C)
is a (covariant) functor F: A——A’ of the additive categories, such that
(i) F(B) is an object in B’ for any object B in B,
(ii) F(C) is an object in C’ for every object C in C,
(iii) for every object A in A there is given a natural C’-equivalence
G(A): T'"F(A) — FT(A)

with a commutative diagram

T'FT(A) _GTA) | FT?(A)
T'G(A) Fe(A)
e'F(A)

T?F(A) ——"2 . F(A) .

PROPOSITION 3.8 A functor of algebraic bordism categories
F: A= (ABC) — A = (AB,C)

induces morphisms of L-groups

F: L*(A) — L*( "
F: L.(A) — L.(A)
F: NL*(A) — NL*(N)
L*(F)
and there are defined relative L-groups < L.(F)  to fit into a long exact
NL*(F)

sequence
F

. — L"(A) — L™(N) — L"(F) — L" " 1(A) — ...
F

. — Ly(A) — L,(A) — L, (F) — Lp,_1(A) — ...

. — NL™(A) L NL"(AN') — NL"(F) — NLn_l(A) — ..
PRrROOF For any objects M, N in A define a chain map of abelian group
chain complexes

F(M,N): M®y N — F(M)®p F(N) ;
(¢:T(M)—N) — (F(¢)GM): T'F(M)—FT(M)—F(N))
which is compatible with the duality equivalences. An n-dimensional sym-
metric complex (C,¢) in A induces an n-dimensional symmetric complex

(F(C),F(¢)) in A’. Similarly for quadratic and normal complexes, and also
for pairs. Working as in Ranicki [146, §2] define the relative L-group L™(F)
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to be the cobordism group of pairs
((n — 1)-dimensional symmetric complex (C, ¢) in A ,
n-dimensional symmetric pair (F(C)——D, (6¢, F(¢))) in A') .
Similarly for the quadratic and normal cases.
m

PROPOSITION 3.9 Let A be an additive category with chain duality, and let
(BCB(A),CCB,DCC) be a triple of closed subcategories of B (A). The
relative L-groups of the functor of algebraic bordism categories

F: AN = (AB,D) — A = (A,B,C)

defined by inclusion are given up to isomorphism by the absolute L-groups
of the algebraic bordism category N = (A, C, D)
(i) L*(F) = L"~'(A")
(ii) Lp(F) = Lp—1(A")
(iii) NL*(F) = Ln_1(A")
and there are defined exact sequences
o
i) ... — L"(A") — L"(A) — L™"(A) — L" " 1(A") — ...
o
(ii)) ... — Ly(A") — L,(N) — L,(A) — Lp—1(A") — ...
o
(iii) ... — Lp(A”) — NL"(A') — NL"(A) — L, (A") — ...
with 0 given by the boundary of 1.14 for (i) and (ii), and by 2.10 for (iii).
PROOF (i) The relative symmetric L-group L™(F’) is the cobordism group of
n-dimensional symmetric pairs (f: C——D, (¢, ¢)) in (A, B, C) with (C, ¢)

defined in (A,B,D) (i.e. the pair is B-contractible, C-Poincaré and the
boundary is D-Poincaré). Define inverse isomorphisms

~

L"HA,C,D) — L™(F); (C,¢) — ((C,9),(C—0,(0,9))) ,

L"(F) — L"(A,C,D); (f:C—D,(3¢,¢)) — (C",¢)

with (C’,¢") the (n — 1)-dimensional symmetric complex in (A, C,D) ob-
tained from (C,¢) by algebraic surgery on the n-dimensional symmetric
pair (f:C——D, (0¢,®)) in (A, B, C).
(ii) As for (i), with symmetric replaced by quadratic.
(iii) As for (i), with symmetric replaced by normal, and using 2.9 (ii) to
obtain a quadratic structure on the effect of surgery on a normal pair.

i

The exact sequences of 3.9 are generalizations of the localization exact
sequence of Ranicki [146] (cf. 3.13 below), and of the relative L-theory
exact sequences of Vogel [174].
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ExAMPLE 3.10 For any algebraic bordism category A = (A, B, C) the exact
sequence of 3.9 (iii) for the triple (B, B, C) can be written as

14T J 8
. — Lp(A) — NL"(A) — NL"(A) — L,—1(A) — ...
with A = (A,B,B). If A satisfies the hypothesis of 3.5 then NL*(A) can be
replaced by L*(A). In particular, this can be done for the algebraic bordism
category A = A(A) of 3.3 (cf. 3.6), recovering the exact sequence of 2.12
14T J o
. — Ly(A) — L"(A) — NL"(A) — L,1(A) — ... .

O

ExAMPLE 3.11 Given a ring with involution R and ¢ = p (resp. h, s) define
the algebraic bordism category

AY(R) = (AY(R),BI(R),C*(R))
with A?(R) the additive category of f.g. projective (resp. f.g. free, based
f.g. free) R-modules with the duality involution of 1.11, BY(R) = B (A)4(R)
the category of finite chain complexes in A?(R), and C?(R) C B?(R) the
subcategory of contractible complexes C, such that 7(C) = 0 € K;(R) for

q = s. The quadratic L-groups of AY(R) are the type ¢ quadratic L-groups
of R

L.(AY(R)) = Li(R).
Let
{ Ko(R) — Ko(R) ; [P] — [P*]

«: K1(R) — Ki(R); 7(f: R"—R") — 7(f*: R"—R™)
projective class

torsion
intermediate quadratic L-groups L (R) for a *-invariant subgroup X C

be the induced involution of the reduced { group of R. The

{ gogg; can be expressed as the L-groups of an algebraic bordism category
1

LX(R) = {L*(AP(R),BX(R),(CP(R))

" L.(A*(R),B*(R), C*(R))

B? contractible chain complexes

AP(R) . projective class [C] € X C Ky(R)
s with } ~

A*(R) torsion 7(C) € X C K1(R) .

projective, free and simple quadratic L-groups of R are the special cases

L2 = a(r) . LUSRR) = 1),

. BX(R) C BP(R)
with { C B5(R) the subcategory of {

C in the category { The

Lio}g%O(R)(R) — Lfl(R)(R) — Lh(R)
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Ko(R)

Given *-invariant subgroups ¥ C X C {
Ki(R)

the exact sequence of

(B (R), B (R), BY (R))

(C*(R),CY(R),C*(R))
is isomorphic to the Rothenberg exact sequence of Ranicki [144, §9]

. — L} (R) — LY(R) — H™(Zy; X/Y) — L)_|(R) — ...,
corresponding to the isomorphisms
L (A?(R), BY(R), BY (R)) — H™(Z2:X/Y): (C.¢9) — [C]
Ly-1(A%(R),CX(R),CY(R)) — H™(Z2;X/Y) ;
(C, ) — 7((1+T)pg: C*1=*—C) = 7(C)+ (=)"7(C)* .
Similar considerations apply to the symmetric and normal L-groups.

quadratic L-groups given by 3.9 (ii) for the triple {

O

REMARK 3.12 In dealing with the free L-theory of a ring with involution R
the terminology is abbreviated, writing

A"(R) = AR) = (A(R),B(R),C(R)),
L*(A(R)) = Ly*™(R) = L"™™(R),
A(R) = (A(R),B(R),B(R)), NL"(A(R)) = NL"(R) .

ExXAMPLE 3.13 Let R be a ring with involution, and let S C R be a mul-
tiplicative subset of central non-zero divisors which is invariant under the
involution. The localization of R inverting S is the ring with involution

ST'R = {r/s|recR,scS}
with
r/s = rt/st, (r/s) = 7/5 (reR,s,teS).

Define algebraic bordism categories

F(Ra S) = (A (R)a B (R)’ (C(Ra S)) )

A(R,S) = (A(R),C(R,S),C(R))
with C(R, S) C B (R) the closed subcategory of the finite f.g. free R-module
chain complexes C such that the localization

S™1C = ST'ReorC

is in C(S7!'R), i.e. a contractible finite chain complex in A(S™'R). The
localization maps of quadratic L-groups are isomorphisms

~

Ln(F(Ra S)) — Ln(A(S_lR)) = Ln(S_lR)§
(C,) — (S7'C,871) (neZ)
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because

(i) for every finite chain complex C in A (R) localization defines isomor-
phisms of abelian groups

~

) = . -1 _ —1
lim @Q,(D) — lim Q,(S7 D) = Q,(SC) (neZ)
C—D C—D

with the direct limits taken over all the finite chain complexes D in

A (R) with a C (R, S)-equivalence C — D,
(i) every finite chain complex in A(S~!R) is C (S~ R)-equivalent to S~1C
for a finite chain complex C' in A (R).
Let L, (R,S) = L,_1(A(R,S)), the cobordism group of (n — 1)-dimensional
quadratic Poincaré complexes (C, %) in A (R) with C' in C(R, S). The lo-
calization exact sequence of Ranicki [146, §4]

. — L,(R) — L,(S7'R) 2, Ln,(R,S) — L, 1(R) — ...
is isomorphic to the exact sequence of 3.9 (ii)
. = Ln(A(R)) — La(T'(R,5)) — Ln-1(A(R, 5))
— L1 (A(R)) — ... .

The quadratic L-group L,(R,S) is isomorphic to the cobordism group of
n-dimensional quadratic Poincaré complexes in the category of S-torsion
R-modules of homological dimension 1. In particular, the boundary map
forn =0

0: Lo(S™'R) = Ly(T'(R,S)) — Lo(R,S) = L_1(A(R,S))

sends the Witt class of a nonsingular quadratic form S~!(M,\, ) over
S71R induced from a quadratic form (M, \, ) over R to the Witt class of
a nonsingular S~! R/ R-valued quadratic linking form

IS Y M, N\, 1) = (OM,0N,0u) ,
with
OM = coker(\: M—M™) ,

ON: OM x OM — S™'R/R; x — (y — x(2)/s)
(r,ye M*,zeM,se S, \Nz)=sye M") .

Similarly for the symmetric L-groups.
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PROPOSITION 3.14 Given an additive category with chain duality A and
closed subcategories D C C C B C B(A) there is defined a commutative
braid of exact sequences

TN T

L,(A,C,D) NL"(A,B,D) NL"(A,B,B)
L,(A,B,D) NL"(A,B,C)
NL"+1(A,B,B) L,(A,B,C) Ln_1(A,C,D) .

PROOF The exact sequences through L, (A, C,D) are given by 3.9 (ii), and
those through NL*(A,B,B) by 3.9 (iii).
O

For any object C in a closed subcategory C C B (A) the suspension SC' =
C(0: C——0) is also an object in C.

DEFINITION 3.15 (i) A closed subcategory C C B (A) is stable if
(a) C contains the finite chain complexes C' in A such that SC is an object
in C,
(b) C contains the n-duals C"~* (n € Z) of objects C' in C.
(ii) An algebraic bordism category A = (A,B,C) is stable if B and C are
stable closed subcategories of B (A).
O

PROPOSITION 3.16 (i) The double skew-suspension maps of L-groups
S°: LMA) — L(A) 5 (Cr0) — (S°C,9)

5% Lu(A) — Lna(A) 3 () —> (S2C,4p)

5% NLM(A) — NL™(A) 5 (Co¢,7,X) — (S°C.,7.%)
are defined for any algebraic bordism category A = (A,B,C) and all n € Z,
using the double skew-suspension isomorphisms of Q-groups given by 1.9.
(ii) The double skew-suspension maps of L-groups are isomorphisms for a
stable algebraic bordism category A.
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PROOF (i) Trivial.
(ii) For stable A the double skew-suspension functor defines an isomorphism
of categories

=2
S™ : {n-dimensional symmetric complexes in A}

~

— {(n + 4)-dimensional symmetric complexes in A}

for all n € Z by virtue of the stability of B and C. (Actually only 3.15 (i)
(a) is being used here.) Similarly for quadratic and normal complexes, and
also for pairs.

O

EXAMPLE 3.17 (i) The algebraic bordism category A(A) = (A, B (A), C(A))

of 3.3 is stable. The Symmetpc symmetrlc
quadratic quadratic

L-groups of the additive category with chain duality A
{ L*(A(A)) = L*(A)
L.(A(A)) = L.(A).
Also, by 3.5 the normal L-groups of A(A) are the symmetric L-groups of A
NL*(A(A) = L*(A),

since Q*(C) = 0 for any C (A)-contractible (= contractible) finite chain
complex in A .

(ii) The normal L-groups of A(A) = (A,B(A),B(A)) are the normal L-
groups of A

L-groups of A(A) are the {

NL*(A(A)) = NL*(A) .

O

ExXAMPLE 3.18 Given a ring with involution R define the algebraic bordism
category
Ay(R) = (A(R),B4(R),Ci(R))

with A (R) the additive category of f.g. free R-modules, B, (R) the additive
category of finite chain complexes C' in A (R) which are positive (i.e. C, =0
for r < 0), and C4(R) C B, (R) the subcategory of the contractible positive
complexes. The inclusion A4 (R) C A(R) in the algebraic bordism category

A(R) of 3.12 induces the natural maps to the 4-periodic {symmet?lc L-
quadratic
groups of R
{L”(A+(R)) — L"(A(R)) = L*(A(R)) = L"**(R) (nez).
Ln(Ar(R)) — Ln(A(R)) = La(A(R)) = Lnyax(R)
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The symmetric L-groups of A;(R) are the symmetric L-groups of R as
originally defined by Mishchenko [115]

L*(A(R)) = L*(R).

It was shown in Ranicki [144] that the maps {igtgg;:igﬁgg;
{ are not

isomorphisms in general, and also that
are

L.(A(R)) = L«(R)

with L.(R) the original 4-periodic quadratic L-groups of Wall [180].
O

Call L™(R) the connective symmetric L-groups of R, to distinguish them
from the 4-periodic symmetric L-groups L™**(R). See §15 for the general
L-theory of algebraic Poincaré complexes with connectivity conditions.

The algebraic surgery below the middle dimension used in Ranicki [144]
to prove the 4-periodicity of the quadratic L-groups of rings with involution
admits the following generalization for algebraic bordism categories, which
is needed for §6 below.

DEFINITION 3.19 (i) An n-dimensional chain complex C' in A is highly con-
nected if there exist morphisms I': C,,——C\.11 (2r > n) such that

AL +Td = 1: C, — C, (2r>n).

(ii) An n-dimensional chain complex C' in A is highly B-connected if it is
B-equivalent to a highly connected complex.
i

ExaMPLE 3.20 Let (A, B, C) = (A?(R),B?(R),C%(R)) (¢ = p, h, s) for some
ring with involution R. The following conditions on an n-dimensional chain
complex C'in A are equivalent:

(i) C is highly connected,

(ii) C is highly B-connected,
(iii) H"(C) = H,(C) =0 for 2r > n,

(iv) C is C-equivalent to an n-dimensional chain complex D in A such that

D, =0 for 2r > n.
O

DEFINITION 3.21 (i) An n-dimensional quadratic complex (C, 1)) (resp. pair
(f: C—D, (6¢,4))) in A is highly B-connected if the chain complexes C
(resp. C and D) are highly B-connected.
(i) Let L,(A)" (n € Z) be the cobordism group of highly B-connected
n-dimensional quadratic complexes in A = (A, B, C).

O
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DEFINITION 3.22 The algebraic bordism category A = (A, B, C) is connected
if
(i) for each object A in A the dual chain complex T'A is such that (T'A), =
0 for r > 0,
(ii) for every B-contractible chain complex B and k € Z the subcomplex
B[k] C B defined by
B, = {5 r
0  otherwise
is B-contractible.
O

In particular, A = (A, B, C) is connected if T: A—B (A) is 0-dimensional
(1.2) and B =B (A).

If C is a finite chain complex in A which is positive (i.e. C, =0 for r < 0)
and A = (A,B,C) is connected then C ®4 C = Homy (T'C,C) is a positive
Z|Zs]-module chain complex.

PROPOSITION 3.23 For a connected algebraic bordism category A = (A, B, C)
the forgetful maps are isomorphisms

~

La(A)" — Lu(A) 5 (C¥) — (C,9) (n€Z).
PROOF As in Ranicki [144] define inverses

Ln(A) — Ln(A)"™ 5 (Cp) — (C',¢)
by sending an n-dimensional quadratic complex (C,%) in A to the highly
B-connected quadratic complex (C’,;%’) in A obtained by surgery on the
quadratic pair (C—Ck], (0,)), with k the least integer such that 2k >
n.
m

Theorem A of Quillen [129] is an algebraic K-theory analogue of the Vi-
etoris mapping theorem, stating that a functor F: A——A’ of exact cat-
egories with contractible fibres is a homotopy equivalence of categories, and

so induces isomorphisms F: K,(A)— K,(A’) in the algebraic K-groups.
There is an evident algebraic L-theory analogue: a functor of algebraic
bordism categories F: A = (A, B,C)— A’ = (A’,B’,C’) such that
(*) for every n € Z and every B-connected n-dimensional symmetric com-
plex (C, ¢) in A and every B'-connected (n+1)-dimensional symmetric
pair B = (f": F(C)—D', (6¢', F(¢))) in A’ there exists an (n + 1)-
dimensional symmetric pair £ = (f: C—D, (§¢, ¢)) in A with F(E)
B’-equivalent to E’ N
induces isomorphisms F: L*(A) — L*(A’) in the symmetric L-groups, and
L*(F: A—A’) = 0. Similarly for quadratic L-theory. The following highly-
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connected quadratic version is required for the proof of the algebraic w7
theorem in §10 below.

PROPOSITION 3.24 A functor of connected algebraic bordism categories
F: A= (ABC) — A = (AB,C)
such that

(%) for everyn € Z and every highly B-connected n-dimensional quadratic
complex (C,v) in A and every highly B'-connected (n+1)-dimensional
quadratic pair E' = (f": F(C)—D’, (0¢', F(¢))) in A’ there exists an
(n+1)-dimensional quadratic pair E = (f: C——D, (6¢,)) in A with
F(E) B -equivalent to E’

induces isomorphisms F: L,(A)— L,(A’) in the quadratic L-groups, and
L.(F:A—A\")=0.
PrOOF The induced map F": L,,(A)—L,,(A’) is one-one because by 3.23 an
element in the kernel is represented by a highly B-connected n-dimensional
quadratic complex (C, 1) in A for which there exists a highly B’-connected
(n + 1)-dimensional quadratic pair in A’

E" = (f:F(C)—D", (0¢', F(1))) -
The corresponding (n + 1)-dimensional quadratic B-Poincaré pair E =
(f: C—D,(6¢,7)) in A with F(E) B’-equivalent to E’ gives (C,v¢) =
0€ L,(A).
The induced map F: Ly, 1(A)—L,,+1(A’) is onto because by 3.23 every ele-
ment in L, 11 (A’) is represented by a highly B’-connected (n+1)-dimensional
quadratic complex (D’,dv’) in A’ defining a highly B’-connected (n + 1)-
dimensional quadratic pair £/ = (0— D', (§¢’,0)) in A’. The algebraic
Thom construction (Ranicki [144, 3.4]) applied to the corresponding (n+1)-
dimensional quadratic pair F = (f:C—D, (0%,%)) in A with F(FE) B'-
equivalent to £’ is an (n + 1)-dimensional quadratic complex (C(f), 0 /1))
in A such that

F(C(f),00/¢) = (D',6¢") € im(F: Lyt1(A)— L1 (A')) .
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§¢4. Categories over complexes

An additive category A and a simplicial complex K are combined to de-

fine an additive category {i (([I?) of K-based objects in A which depends

{ contravariantly n K. In §5 a chain duality on A is extended to a chain

covariantly

duality on { A (( K))’ allowing the extension of an algebraic bordism cate-
A*(K)

gory A = (A, B, C) to an algebraic bordism category { AL (K)

DEFINITION 4.1 (i) An object M in an additive category A is K-based if it
is expressed as a direct sum
= 2_ M)

ceK
of objects M (o) in A, such that {o € K| M (o) # 0} is finite. A morphism
f: M——N of K-based objects is a collection of morphisms in A

= {f(r,0): M(0)—N(7)|o, 7€ K} .

(ii) Let { ﬁ ((II(()) be the additive category of K-based objects M in A, with

morphisms f: M—— N such that f(7,0): M(0)——N(7) is 0 unless {
so that

T<0o
T>0’

f(M(o)) € > N(7)

7<o

f(M(0)) € 32 N(7) .

T>0
(iii) Forgetting the K-based structure defines the covariant assembly functor

A"(K) — A; M — M*(K) = Y M(o)

AJK)— A; M — MJ(K) = > M(o).

O

EXAMPLE 4.2 The simplicial { chain_ complex A(K)_* of K is a finite
cochain A(K)
(Z)"(K

chain complex in { A(Z), ith

) W
K) "

(
(aU00) =572 ey
A(K) () = Iz |
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Regard the simplicial complex K as a category with one object for each
simplex ¢ € K and one morphism o — 7 for each face inclusion o < 7.

A*[K]
AL[K]

additive functors

DEFINITION 4.3 Let { be the additive category with objects the

{ covariant

contravariant

M: K— A; 0 — Mo]

such that {o € K|M]Jo] # 0} is finite. The morphisms are the natural
transformations of such functors.
O

Assume that the simplicial complex K is locally finite and ordered, so
that for each simplex o € K the set

{K*(J) ={reK|r>o0,|r|=|0o|+1}
K.o) = {reK|r<o,|r|=lo| -1}

is finite and ordered, and its elements are written

{K*(J) = {090, d10,020,...}
K*(O) = {600,610’,620,...}.

DEFINITION 4.4 Define the covariant assembly functor for a simplicial com-
plex K

{IB{A)*[K] = B(A*[K]) — B(A)«(K) = B(A.(K)); C — C*[K]
B(A).[K] = B(A.[K]) — B(A)"(K) = B(A*(K)); C — C,[K]

by sending a finite chain complex C' in { A to the finite chain complex

AL[K]
C*IK]. |JAJ(K) .
{C*[[K]] in {A*((K)) with

C*[K), = Y Clolie . C°[K)(0) = §717Co]
CIK], = Y. Clolpo , C.IKI(0) = SIC[o]

ceK

(c € K).
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The assembly is the total complex of the double complex in A defined by

(
C*[Klpq = Z Clolq
o€K,|o|=—p
CulKlpg = Y., Clolg,
L ceK,|o|=p

d: C*[K]pq — C*[K]p-1,4; clo] — Z(_)i(SiC[U]

d': Cu[K]pg — Cil[K]p-1,4; clo] — Z(—)Z@ic[a] ,
{d” Ky — C* Ky 5 clo] — degg(clo)
d": CiKlpq — CilKlpg—1; clo] — dopw)(clo]) ,

dio € K*(o)

ith
Bio € K. (o) "

the sum in d’ being taken over all the elements {

{ 5;: Clo]—Cl8,0]

o——0,;0

the chain map induced by the inclusion {

0;: Clo]—C[0;0] 0ij0—0.
i
EXAMPLE 4.5 The assembly of the O-dimensional chain complex Z in
A(Z)" K]
defined b
{A (Z).[K] '
Z: K— AZ)CB(A(Z)); 0 — Zlo] = Z
with the identity structure chain maps Z[o| = Z[7] is the simplicial { cEchain
chain
complex of K
L'[K] = A(K)™"
Z.K] = A(K)
already considered in 4.2 above as a chain complex in { ( )I(K)
A (Z)"(K). .

REMARK 4.6 If A is embedded in an abelian category the double complex
{ C*[K]

CLIK] of 4.4 determines a spectral sequence E(C) with E?-terms

o {Hp(K;{Hq(C[a])})
P.q H,(K;{H,(Clo])}) ,
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"[K])

which converges to { g*gg ) with respect to the filtration defined by

F,C*[K], = > C[U]qula\ C C*[K],

06[(,\0’|pr

F,Ci[K]y = > C[U]qfla\ C Ci[K]q

ceK,|o|<p

Define the covariant functors

A*(K) — A*[K]; M — [M], [M][o] = ) M(r)

AK) — ALK]; M — [M], [M][o] = > M(r).
For any object M in {ii((}l(()) and any object N in {ii[[KK]]

Homy- 1] ([M], N) = > Homy(M(c), N[o])
Homy (x)([M],N) = > Homy(M(c),N(o]) .

A direct application of the contravariant duality functor 7T: A—B (A)
T: A*(K)—B(A).(K)
T: A (K)—B (A)*(K) and so does
not define a chain duality on A ,(K). In §5 below the chain duality T: A—
. : . T:A*(K)—B (A*(K))
B (A) will be extended to a chain duality { T: A (K)—B (A .(K))
A"[K]
ALK] .

only gives a contravariant functor {

using

the following embedding of {ﬁ ((II?) in the functor category {

PROPOSITION 4.7 (i) A finite chain complex C in {i ((II(()) is contractible

if and only if each of the chain complezes C(o) (0 € K ) in A is contractible.

(ii) A chain map f: C——D of finite chain complexes in {ﬁ* ((I}?) s a chain
equivalence if and only if each of the diagonal components )
flo,0): C(c) — D(o) (0 € K)
1$ a chain equivalence in A .
PROOF Proposition 2.7 of Ranicki and Weiss [150].
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REMARK 4.8 Given an additive category A let D (A) be the homotopy cat-

egory of finite chain complexes in A and chain homotopy classes of chain

D' (A*[K]) o .
maps. Let {]D) (A LK) be the localization of the triangulated category

D (A*[K]) . : . _ “[K]
{]D) (AL[K]) inverting the chain complexes C' in AL[K] such that each

of the chain complexes Clo] (0 € K) in A is contractible. Using the
methods of Ranicki and Weiss [150,83] it can be shown that the functor
{ A*(K)—A"[K]

A (K)—AL[K]
the homotopy categories

is a full embedding which determines an equivalence of

D (A*(K)) — D'(A*[K]) ; € — [C] ,
D(A,(K)) — D'(A,K]); C — [C].

PROPOSITION 4.9 For any finite chain complex C' in A (K) the assembly
[C«[K] of the finite chain complex [C] in A [K] is naturally chain equivalent
to the finite chain complex C(K) in A obtained by forgetting the K-based
structure.

PROOF Define a natural chain equivalence in A

~

Be + [CLK] — C.(K)

by
e+ [CLIK], = Y (A(AF) @z C(0))n
ceK
— Cu(K), = Z Co)n; a®@b— e(a)b,

oceK

using the chain equivalences e: A(Al°l) —7Z in A (Z) defined by augmen-
tation.
O

REMARK 4.10 The star and link of a simplex o € K in a simplicial complex
K are the subcomplexes defined by

starg (o) = {r€ K|oT € K},
linkg (o) = {reK|ote K,onT=0}.

The dual cell of o is the contractible subcomplex of the barycentric subdi-
vision K’ defined by

D(o,K) = {6¢01...0p € K'|c<0op<o01<...<0p},
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with boundary
0D(0,K) = | J D(,K) = {6001...5, € K'|0 <09 <01 <...<0p}.

T>0
The barycentric subdivision of the link of o € K is isomorphic to the bound-
ary of the dual cell D(o, K)

(linkg (o)) = 9D(0,K) .
The star and link in K’ of the barycentre o € K’ of 0 € K are given by the
joins

(starg (0),linkg/ (o)) = 9o’ * (D(o, K),0D(0, K)) .
The local homology groups of | K| at a point z € |K| in the interior of o € K
are given by
H (K], [K[\{z}) = H.(K,K\stx(0))

with

stg(o)={re K|T >0}
the open star of o in K. Now S™I?IA(K, K\stx(c)) is the cellular chain
complex of the relative CW pair (|D(o, K)|,|0D(0, K)|), with one g-cell

e! = |D(o, K)NT'|

= |JmA.. ReK lo<n<n<...<np <1} (g=|r|—]o)
for each 7 € stx (o). The subdivision chain equivalence
STIA(K, K\stk(0)) = C(ID(0, K)|,0D(0, K)])

— A(|D(0, K)|,[0D(0, K)|)
induces isomorphisms
H.(K, K\stx(0)) = H._|ny(D(0.K),0D(0.K)) .
The following conditions on a locally finite simplicial complex K are equiv-
alent:
(i) the polyhedron |K| is an n-dimensional homology manifold, i.e. the
local homology of |K| at each point x € |K]| is

H.(|K|,|K\{z}) = H.(R",R"\{0}) = {

(ii) K is a combinatorial homology n-manifold, i.e. for each simplex o € K
H. (K, K\stg(0)) = H.(R",R"\{0}),
(iii) each linkg (o) (0 € K) is an (n—|o| —1)-dimensional homology sphere

Z iftx=0,n—|o]—1
0 otherwise ,

Z ifx=mn
0 otherwise,

H,(linkg (o)) = H,(S"171-1) = {

(iv) each 0D(o, K) (0 € K) is an (n—|o|—1)-dimensional homology sphere,
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(v) each (D(o,K),0D(0,K)) (0 € K) is an (n — |o|)-dimensional geomet-
ric Z-coefficient Poincaré pair

H*(D(0, K),0D(0,K)) = H,_y—.(D(0, K)) .
O

By contrast with 4.9, for a finite chain complex C' in A*(K) the assembly
[C]*[K] is not chain equivalent to C*(K). If K is an oriented n-dimensional
homology manifold with boundary 0K then [C]*[K] is chain equivalent to
S7(CH(K)/C(9K)).

EXAMPLE 4.11 As in 4.2 regard the simplicial cochain complex A(K)™* as
a chain complex in A (Z).(K), with
AK) (o) = 871z (0 e K) .
The associated chain complex [A(K)~*] in A (Z).[K] is such that
[AK) ™ lo] = A(K, K\stg(0))™" (0 € K) .
The spectral sequence E([A(K)™*]) of 4.6 is the dihomology spectral se-
quence of Zeeman [192] converging to H*(K), with
E?, = H,(K;{H (K, K\stg(0))}) .

If K is an n-dimensional homology manifold

H"(K,K\stx(0)) = {Z fr=n ek,

0 otherwise
and the spectral sequence collapses to the Poincaré duality isomorphisms

H"(K) = H.(K),
using twisted coefficients in the nonorientable case. See McCrory [106] for

a geometric interpretation of the Zeeman spectral sequence.
O

EXAMPLE 4.12 The simplicial chain complex A(K) is Z-module chain equiv-
alent to the assembly B*[K] of the chain complex B in A (Z)*[K]| defined
by

Blo] = A(K, K\stx(0)) (0 € K),

with a chain equivalence

~

A(K) — B*K]; 0 — G .
For any n-cycle [K] € A, (K) let
[K][o] € Bplo] = An(K,K\stk (o)) (o€ K)
be the image n-cycles. Evaluation on [K] defines a chain map in A (Z)*[K]
6 = ([Kl,-): S"Z — B
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with
K
slo) = (Kllol,—) : §"Zo] = §" — A(K)
— Blo] = A(K,K\stg(0)) .
The assembly of ¢ is the cap product Z-module chain map
¢[K] = [K]n—: S"ZIK] = A(K)"™* — B*[K] ~ A(K).
The following conditions on K are equivalent:
(i) K is an n-dimensional homology manifold with fundamental class
K] € Hp(K), with each ¢[o] (¢ € K) a Z-module chain equivalence,
(ii) ¢: S"Z——B is a chain equivalence in A (Z)*[K].
For a homology manifold K the assembly ¢[K] is the Poincaré duality chain
equivalence.
m

EXAMPLE 4.13 The simplicial chain complex A(K’) of the barycentric sub-
division K’ is the assembly C.(K) = A(K’) of the chain complex C in
A(Z).(K) defined by

C(o) = A(D(0,K),0D(0,K)) (c € K) .

The Z-module chain equivalences given by augmentation

elo]: [Cllo] = A(D(o,K)) % Zio) = Z;7—1 (6 <reK)

define a chain equivalence e: [C] —Z in A (Z),[K], with Z as in 4.5. C is
chain equivalent in A (Z),(K) to the assembly B*[K] of the chain complex
B in A (Z)*|K] of 4.12, with Blo] = A(K, K\stx(c)).
As in McCrory [106, §5] consider the Flexner cap product Z-module chain
map
Agp : A(K) X7, A(K)i* — A(K’)
defined by

Y e(S)S ifr<o
Ap: A(K)@z AN K) — Ap_y(K'); o7 — < 75

0 otherwise
with S running over the r-simplexes of the dual cell of 7 in o

D(o,7) = o' N D(r,K)
= {(6061...6,) € K'|T<o0p<0o1<...<o0,<o0},
with » = p — ¢ and
e(S) = €(og,01)€(01,02) ... €(0r-1,0,) € {+1,—1}
the product of the incidence numbers of the successive codimension 1 pairs

of simplices, defined using the ordering of K. The adjoint of Ap is a Z-
module chain map

AAF : A(K) — HOIHA(Z)*(K)(A(K)_*,A(K/))
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which is shown to be a chain equivalence in 7.3 below. Cap product with
any homology class [K] € H,(K)

¢ = [KlN—: H"*(K) — H.(K') = H.(K)
is induced by the chain map ¢ in A (Z).(K) obtained by the evaluation of
AAFR on any representative n-cycle [K] € A, (K)

¢ = AAp[K] = [K]N—: AK)"™* — A(K') .
The diagonal components of ¢ are the Z-module chain maps

¢(0,0) = ([K][o],—) :
AK)" (o) = Sl — A(K')(0) = A(D(0,K),0D(0, K))
obtained by the evaluations on cycles representing the images of [K]
[Kl[o] € Hy(K,K\stk (o)) = H,_|5(D(0,K),0D(0,K)) .

The following conditions on K are equivalent:

(i) K is an n-dimensional homology manifold with fundamental class
[K] € H,(K), with each ¢(0,0) (0 € K) a Z-module chain equiv-
alence,

(ii)) ¢ = [K]N— A(K)"*—A(K") is a chain equivalence in A (Z).(K).
For a homology manifold K the assembly ¢, (K) is the Poincaré duality
chain equivalence.

m

DEFINITION 4.14 (i) Let X be a topological space with a covering

U X[ = x

veV
by a collection { X [v] | v € V'} of non-empty subspaces X[v] C X. The nerve
of the covering is the simplicial complex K with vertex set K(®) = V| such
that distinct vertices v, vy, ..., v, € V span asimplex 0 = (vovy ...v,) € K
if and only if the intersection

Xo] = Xvo]NX[vi] N...N Xvy]

is non-empty.
(ii) Let K be simplicial complex. A K-dissection of a topological space X
is a collection {X[o]|o € K} of subspaces X[o] C X (some of which may
be empty) indexed by the simplexes o € K, such that

(a) X[o]N X[r] = {X[O’T] if 0,7 € K span a simplex o7 € K

(b) |JX[o] = X .

ceK
The nerve of the covering of X is the subcomplex {c € K| X[o] # 0} C K.

O

0 otherwise ,
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EXAMPLE 4.15 Let X, K be simplicial complexes. If f: X—— K’ is a sim-
plicial map then {X[o] = f~'D(0,K)|o € K} is a K-dissection of X.
Conversely, any K-dissection {X[o]|o € K} of X determines a simplicial
map g: X'— K’ with g1 D(0, K) = X[o]’ (0 € K).

For any K-dissection {X|[o]|o € K} of X define 0X[o] C X]o] to be the
subcomplex

0X[o] = U X[r] (c €K).
T>0
The simplicial chain complex of X is a chain complex C\(K) = A(X) in
A(Z).(K) with
Clo) = A(X]o],0X[o]) , [C]lo] = A(X][o]) (0 € K) .

The assembly [C].[K] is the cellular chain complex of the homotopy colimit
CW complex

[X] = hocolim X[o (HA"’XXU])/{@@Z) (0sa,b)}

ok ceK
with one (p + ¢)-cell for each p-simplex o € K and each ¢-simplex in X|o].
The projection

[X] — X5 (a,0) — b
is a map with contractible point inverses, inducing the chain equivalence
Bc: [Cl«[K] — C.(K) of 4.9. Define a filtration of [X] by

F,[X] = hocolim X|[o]
ceK,|o|<p

_ < [T ax X[a])/{(a,@ib) ~ (B,a,b)} .

ceK,|o|<p
The spectral sequence determined by the corresponding filtration of [C],[K]
is the spectral sequence E(|C]) of 4.6, namely the spectral sequence with
respect to the first grading of the double complex D with

Dpg = Cpiq(FplX]) = Z Aq(X[o]),

o€K,|o|=p

E : E , 0ic—0a)" 1 Dpy > Dp_1,4 ,

= ZdA(X[U]) : Dpg — Dpg—1 -

E([C]) is the Leray—Serre spectral sequence with E2-terms
By, = Hy(K: {Hy(X[o])})
converging to

H[C]K]) = H.«([X]) = H.(X)
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with
E;C;,oq = im(Hp+q(Fp[X])—> p+q(X))/im(Hp+q(Fp71[X])—’ p+q(X))-
O

EXAMPLE 4.16 Given a topological space X let Open(X) be the category
whose objects are the open sets in X and whose morphisms are inclusions
of open sets. Let K be the nerve of a finite open cover U = {U; |j € J}
of X, and let R be a commutative ring. The Cech complex (Bott and Tu

[12,p. 110]) of U with coefficients in a {contr.?warlant functor
covariant

F: Open(X) — B(R) ; U — F(U)
is the assembly R-module chain complex
Cr[K]
C(U,F) =
0 = {¢x
A (R)*[K]
A (R).[K]
Cljoji---jn) = FU;;nU;; 0 ...0U;.) ((Gogr---jn) € K™) .
In particular, for any finite open cover U of a differentiable manifold X there

. contravariant
is defined a { ‘ functor
covarlant

of the { -module chain complex C' defined by

F = {g . Open(X) — B(R) ; U —> {Q*(U)

O (U)
Q)

differential forms on U. The assembly R-module

sending an open subset U C X to the R-module chain complex {

of { compactly supported
chain complex C(U, F) is the {
of X, with homology

compactly supported Cech—deRham complex

H7™(X;R
H.(C(U,F)) = 3 (X;R)
H*(X;R)
_ . 8.5
the { compactly supported deRham cohomology of X, as in [12, { 12.12].D
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§5. Duality

An algebraic bordism category A = (A, B, C) and a locally finite simplicial
complex K will now be shown to determine an algebraic bordism category
{A*(K) = (A*(K),B*(K),C*(K))

A(K) = (AL(K),B.(K),C.(K))
contravariantly
covariantly
quadratic) L-groups of this category will be identified with the generalized
{ cohomology

which depends n K. In §13 below the symmetric (resp.

homology groups of K

{L"(A*(K)) = H~ ( S 1L(A))
L"(A(K)) = Hn(K;L(A))
{ ( "(K)) = H7"(KL.(A))
La(A(K)) = H(K;L.(A))
with coefficients in an -spectrum LL'(A) (resp. L.(A)) of Kan A-sets such
that

(resp. ) (neZ)

mn(L'(A)) = L"(A) (resp. mp(I.(A)) = Ln(A)) .

Algebraic Poincaré complexes in A*(K) are analogues of the ‘mock bun-
dles’ over K used by Buoncristiano, Rourke and Sanderson [22] as cocycles
for generalized cohomology h*(K). For PL bordism h = QFL a (—d)-
dimensional cocycle p: E——K is a d-dimensional mock bundle, a PL map
such that the inverse image p~*(o) (0 € K) is a (d + |o|)-dimensional PL
manifold with boundary p~!(dc). Dually, algebraic Poincaré complexes in
A (K) are analogues of manifold cycles for generalized homology h.(K).
For PL bordism a d-dimensional cycle p: E——K is just a PL map from a
d-dimensional PL manifold E, in which case the inverse image p~!(D(c, K))
(0 € K) is a (d — |o])-dimensional manifold with boundary p=1(0D(c, K)).

For the additive category M (Z) = {Z-modules} write
{M(Z)*(K) = Z2'(K) {M(Z)*[K] = Z'[K]
M(Z)«(K) = Z«(K) ~ |M(Z).[K] = Z.[K]

For any finite chain complexes C, D in A there is defined an abelian group
chain complex C' ®4 D = Homy (T'C, D) as in §3. Given chain complexes

. [ A*[K] . .| Z*|K]
C,D in {A*[K] define a chain complex C' ®, D in {Z*[K] by

(C®a D)lo] = Clo]®a D[o] (o€ K),
and let
Tep: C®pD — D@, C
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be the isomorphism with components
Te,plo] = Teps),pl0] : Clo] ®a Dlo] — Dlo] @4 Clo] (0 € K) .

PROPOSITION 5.1 An algebraic bordism category A = (A, B, C) and a locally
finite ordered simplicial complex K determine an algebraic bordism category

{A*(K) = (A"(K),B*(K),C*(K))
Ad(K) = (A(K),B.(K),C.(K)) .
T: A*[K|—B (A*(K))
_ , T:AL[K]—B (A .(K))
an object M to the chain complex T'M with
 [T(M][o])r—e|
T = | riatioy o
dry(r,0) = (=)' T(M[r]—Mlo]) : (TM),(0) — (TM);1(7)
¢ {027’, lo|=|r|+1, T =00
o<, |lo|=|r]—-1, T =60 .

PROOF Define a contravariant functor { by sending

The contravariant functor defined by the composite
T
T: A*(K) — A*[K] — B(A*(K))
T
T: AK) — ALK] — B(A.(K))
A*(K)
AL (K)
{M@A*(K) N = Homy-(g)(TM,N) = ([M]®x [N])*[K]
M @4,y N = Homy, (i) (TM,N) = ([M]®a [N])«[K] .

is such that for any objects M, N in {

M@y ) N is a chain complex in A with
(M @a-) N)r = 32 3 (M(N) ®a N(10))r+10]
ceK \,u<o
(M@p. )y N)r = 22 > (M) ®a N(p)r—|o) -
ceK \,u>o

The duality isomorphism of Z-module chain complexes
TM,N : M®A*(K) N — N®A*(K) M

Ty : M®A*(K) N — N®A*(K) M
for N =TM sends the 0-cycle
1€ (M ®p+(x)y TM)o = Homp-(g)(TM,TM)o
{ 1e (M XA, (K) TM)O = HOIHA*(K)(TM,TM)O
to a 0-cycle
e(M) € (TM ®@p+(xy M)o = HomA*(K)(TQM, M)
e(M) € (TM XA, (K) M)O = HOIHA*(K)(TQM, M)O ,



0 ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

defining a natural transformation
e: T? — 1: A*(K)
{e: T? — 1: A (K)
such that e(TM).T(e(M)) = 1.

i B*(K) . {IB%(A*(K))
The additive categor is the full subcategory of
gLy {IB%*(K) soty B (A . (K))

with objects the finite chain complexes C' in { AT (K) such that each C(o

_
—

B
B (A (K))

(0 € K) is an object in B. The dual chain complex T'C' is then also defined

. BYK) o Cr(K
in {B*EK; Similarly for {C*gK;

EXAMPLE 5.2 If the chain duality on A is 0O-dimensional (e.g. if A = A (R) =

{f.g. free R-modules}) then the dual of an object M in {ﬁ ((I;{)) is the

chain complex T'M in { With

TM,(¢) = T(M][o]) i {:zlf||a| | = 0 otherwise .

O

EXAMPLE 5.3 The chain complexes B,C in A (Z).(K) defined in 4.2 and
4.15 by

B(o) = S71°1Z, B.(K) = A(K)™,
C(oc) = A(D(0,K),0D(0,K)), Cu(K) = A(K'") ~ A(K)
are dual to each other, with the subdivision chain equivalences in A (Z)
TB(o) = STVIA(K, K\stx (o)) ~ C(0) = A(D(0,K),dD(0,K))

defining a chain equivalence TB ~ C' in A (Z).(K).
O

EXAMPLE 5.4 An m-dimensional quadratic Poincaré complex n-ad over
a ring with involution R in the sense of Levitt and Ranicki [94,§3] is an
(m — n)-dimensional quadratic Poincaré complex in A (R)*(A™).

O

EXAMPLE 5.5 Let C be the chain complex in A (Z).(K) associated to a
K-dissection {X[o]| o € K} of a simplicial complex X in 4.15, with

C(o) = A(X|[o],0X][o]) (c € K) , C.(K)=A(X).
For any n € Z the n-dual of C is the chain complex ¥X"TC = C"™* in
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A (Z),(K) with
C"*(0) = A(X[o])"l7I7",
[C" o] ~ A(X[o],0X[o])" 7" (0 € K),
(C")u(K) = ([Cl[K)"" =~ A(X)"" .

A A-map of simplicial complexes is a simplicial map which is injective on
simplexes.

PROPOSITION 5.6 Let A = (A,B,C) be an algebraic bordism category.

A— . o :
A { simplicial map f:J—K of finite ordered simplicial complexes induces

t antl . : . :
{ COMTAUArantty: . covariant functor of algebraic bordism categories

covariantly
f*: A(K) — A*(J)
ot A(J) — AL(K)
inducing morphisms of the symmetric L-groups
{f* D LMA(K)) = H"(KGL(A) — LM(A*(J)) = H"(J;L°(A))
foi DA = Ha(JL(A) — LMALK)) = Ha(KGL'(A)) .
Similarly for the quadratic L-groups.
PROOF See §13 below for the identifications of the L-groups with the gen-

eralized (co)homology groups.
(i) The functor induced by a A-map f: J— K is defined by

ffr AN K)— A"(J); M — f*M , f*M(oc) = M(fo),
with T(f*M) = f*(TM).
(ii) The functor f.: A(J)—A(K) induced by a simplicial map f: J— K
is given by
for: Au(J) — A(K) ; M — fM, fM(7) = ) M(o),

with

(M) (K) = M(J) = Y M(o).
ocJ
For any object M in A ,(J) define a C-equivalence in A

~

Br(M) = [M].[J] — [fM].[K]
by
Br(M) : [M][J), = (O AAl) @z M(0)), —
oceJ

FMLIE] = (3 M) @7 M(0), s a®b — fasb.
oeJ
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The dual C-equivalences determine a natural C . (K)-equivalence

G(M) = T(B;(M)) : T(f.M) — f.(TM)

making F' = f.: A (J)— A (K) a functor of algebraic bordism categories.
O

EXAMPLE 5.7 Given a simplicial complex K let f: K——{x} be the unique
simplicial map. The assembly of a finite chain complex C' in A ,(K) is the
finite chain complex C,[K] = f.C in A induced by the functor

fot A(K) — AL({x}) = A.
The C-equivalence defined in the proof of 4.9 is given by
Be = Bf(C) : [CL[K] — Cu(K).

O

ExAMPLE 5.8 Let X,J be simplicial complexes such that X has a J-
dissection {X[o]| o € J}, so that as in 4.15 there is defined a chain complex
C in A (Z)«(J) with

Clo) = A(Xlo],0X][0]) , [C]lo] = A(X[o]) (0 €J).
The pushforward of C' with respect to a simplicial map f:J——K is the
chain complex f,.C in A (Z).(K) associated to the K-dissection { f, X [7] | T €
K} of X defined by

LX) = U Xl
oced, f(o)=T7
In particular, if X[o] = g~'D(o, J) for a simplicial map g: X —.J’ then
fX[r] = (f'9)7'D(r,K) (1 € K)
for the composite simplicial map f'g: X —J'— K, since

f'D(r,K) = U D)) (reK).
cel,f(o)=1

REMARK 5.9 The method of 5.1 also applies to show that
{A*[K] = (A"[K], B*[K],C*[K])
A[K] = (ALK, B.[K], C.[K])
is an algebraic bordism category, with the chain duality
T
T: A'[K] — B(A*(K)) — B(A*[K])
T
T: AJK] — B(A.(K)) — B(A.[K])
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such that for any objects M, N in {

M @p, k1 N = Homy, (5)(TM,N) = (M ®a N).[K].

(J

O

EXAMPLE 5.10 The dual in the sense of 5.9 of the object Z in A (Z).[K]
of 4.5 is the chain complex [A(K)™*] in A (Z).[K] associated to the chain

complex A(K)™* in A(Z).(K) of 4.2
TZ = [A(K)™,
with
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§6. Simply connected assembly

Asin §5 let A = (A, B, C) be an algebraic bordism category, and let K be a
locally finite simplicial complex. The simply connected assembly functor of
algebraic bordism categories A,(K)——A will now be defined. The simply
connected assembly map for the algebraic bordism category A = A(R) of

a ring with involution R will be generalized in §9 to a universal assembly
functor A(R).(K)—A(R[r1(K))).

PROPOSITION 6.1 The assembly functor of §4
A(K)— A; M — M.(K)

extends to a simply connected assembly functor of algebraic bordism cat-
symmetric
quadratic

{L”(A*(K)) — L"(A); (C,¢) — (Cu(K), 0.(K))
Ly (Au(K)) — Ln(A) 5 (C9h) — (Cu(K), 9o (K)) -

PROOF For any object M in A ,(K) use the dual of the natural chain equiva-

egories Ny (K)——A inducing assembly maps in the L-groups

lence Bys: [M].[K]— M, (K) given by 4.9 to define a natural C-equivalence

~

Ty = T(M(K)) — T([ML[K]) = (TM).(K) .
In particular, for any finite chain complex C in A ,(K) there is defined an
assembly Z[Zs]-module chain map

C®A*(K) C = HOHIA*(K)(TC, C) —
Hom, ((T'0)«(K), C«(K)) =~ Homy(T(C.(K)), C+(K))

l

O

The Alexander—Whitney—Steenrod diagonal chain approximation of a sim-
plicial complex X is a Z-module chain map

Ax : A(X) — WPA(X) = Homgg, (W, A(X) @z A(X))
called the symmetric construction in Ranicki [145]. The evaluation of Ax
on any n-cycle [X] € A, (X) representing a homology class [X]| € H,,(X)
determines an n-dimensional symmetric complex (A(X), ¢) in A (Z), with
¢ = Ax([X]), such that

do = [X]N—: AX)"" — A(X) .
If X is an n-dimensional Z-coefficient geometric Poincaré complex with fun-

damental class [X]| € H,(X), then ¢q is a chain equivalence and (A(X), ¢)
is an n-dimensional symmetric Poincaré complex in A (Z).



0. SIMPLY CONNECTED ASSEMBLY

EXAMPLE 6.2 Given a K-dissection {X[o]|o € K} of a simplicial complex
X let C be the chain complex in A (Z).(K) defined in 4.15, with

C(o) = A(X|[o],0X][o]) (c € K) , C.(K)=A(X).
The symmetric constructions
Axio) ¢ [Cllo] = A(X]o]) — W%A(X[J]) (0 € K)
fit together to define a Z-module chain map
Ac ¢ [CLIK] — W*C = Homyg,| (W, ([C] @z [C])«[K]) -

The evaluation of A¢ on any n-cycle [X] € [C].[K], representing a homol-
ogy class

[(X] € Ho([Clu[K]) = Hn(Cu(K)) = Hn(X)

determines an n-dimensional symmetric complex (C, ¢) in A (Z).(K) with
¢ = A¢[X], such that the assembly is homotopy equivalent to the n-
dimensional symmetric complex in A (Z)

(Cu(K), 0:(K)) = (AX), Ax([X]))

considered in Ranicki [145]. Let F = E([C]) be the Leray—Serre spectral
sequence associated to the double complex D of 4.15, with E2-terms

E2, = Hy(K:{Hy(X[0o])}) ,

converging to H,(X). For each 0 € K let D[o] be the quotient double
complex of D defined by

Dlolpg = Y, AXI7]),,

T>0,|r|=p
and let
ds 1 A(X) ~ D — Dlo] ~ SIIA(X[0],0X][0])

be the chain map determined by the projection of the total complexes. (See
8.2 below for a direct construction of d,.) The n-dimensional symmetric
complex (C,¢) in A (Z).(K) is such that

po(0) = [X(0)]N—": C" *(0) = A(X[o])""lol=*
— C(0) = A(X[o],0X[0]) ,
with
[X[o]] = 95([X]) € Hyojo)(X[0),0X]0]) (0 € K) .

The spectral sequence E = E([C™*]) of 4.6 is the spectral sequence of the
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double complex D with

Ep,q = Z A(X[o], X[0a])" P71,

ceK,|o|=p

Z Z 0_>5 U 5P,q - E;o—l,q )

= ZdA(X[U],aX[U]) : Dpqg — Dpg-1 -

The E -terms are given by
Eyy = Hy(K; {H""174(X[0],0X[0])}) ,
and F converges to
H.([C"7LIK]) = H" " (X)
with respect to the filtration
F,H" ™(X) = ker <H”_*(X)—>H"_*( U X[a]))
c€K,|o|>p
Cap product with [X] € [C].[K],, defines a map of double complexes
(X]Nn—: D — D
given on the E2-level by the cap products
T2 n—|o|—
{[X[o]ln=}: E,, = Hy(K:{H"1"1"4(X[0], 80X [0])})
— Epq = Hy(K:{H,(X[o])})
and converging to the cap product
(X]Nn—: H"*(X) — H.(X)
on the E*-level. In particular, if each (X[o],0X|[o]) (¢ € K) is an (n —
|o|)-dimensional Z-coefficient geometric Poincaré pair then (C, ¢) is an n-
dimensional symmetric Poincaré complex in A (Z),(K) and X is an n-
dimensional Z-coefficient geometric Poincaré complex. This is a general-

ization of the familiar result that a homology manifold is a Poincaré space.
i

EXAMPLE 6.3 Let {X[o]|oc € K} be the K-dissection of the barycentric
subdivision X = K’ defined by the dual cells

X[o] = D(0,K) (r€K),
which are contractible. In this case the Leray—Serre spectral sequence F of

4.15 collapses, with

Ei,q = H,(K;{H,(D(0,K))}) = {gIP(K) gg;—ég
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and 5.5 gives the Zeeman dihomology spectral sequence E (already discussed
in 4.11) converging to H"*(K), with
E,, = Hy(K:{H""I=4(D(0,K),0D(c, K))}) .

p,q
O

REMARK 6.4 The assembly functor A .(K)——A is defined in 6.1 using
actual colimits, but there is also an assembly functor

AK] —B(A); M — M,[K],
using chain homotopy colimits. By an abstract version of the Eilenberg—

Zilber theorem there is defined for any chain complex C in A ,[K]| an as-
sembly Z-module chain map
ap : (C @y C) K] — Ci[K]®a CL[K] .

As for the construction of the Steenrod squares «q is only Zs-equivariant
up to a chain homotopy aq:a¢T =~ Tag, with a1 Zs-equivariant up to
a higher chain homotopy as:a1T =~ Ta;p, and so on ..., defining a ‘Zso-
isovariant chain map’ {as|s > 0} in the sense of Ranicki [144,§1]. The
simply connected assembly of an n-dimensional symmetric complex (C, ¢)
in A ,[K] is an n-dimensional symmetric complex in A

(C,9)[K] = (CL[K], ¢ [K]) .
In particular, for any n-cycle
K] = ) rr€L.K]y = A(K), (v, €Z)
TEK,|T|=n
there is defined an n-dimensional symmetric complex (Z, ¢) in A (Z).[K],
with

ziol = {§ §h50 CER) LK) = AK).
¢o = > r(181)€(Z@2L):K]n = ) (Zlo] ®2Z[0))no ,
TEK,|T|=n ceK

b0 = 06 (Z02L)u[Klnss (s> 1)
such that the assembly in A (Z) is the n-dimensional symmetric complex
(Z,0):[K] = (A(K), ok ([K]))
considered in Ranicki [145]. By 5.10 the n-dual of Z is the chain complex
in A (Z).[K]
" = S"TZ = [C]
associated to the chain complex C in A (Z).(K) with
Clo) = S" )1z | C.(K) = A(K)"™*,
2" o] = [Cllo] = A(K, K\stk(0))"™" (0 € K) .
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The duality chain map in A (Z).[K]
o = [K]N—: 2" — 1L
has components
¢olo] = ([K][o],—) :Z""[0] = A(K,K\stk(0))"" — Z[o] = Z;
rr ifr>0, 7| = n

— ,
0 otherwise

with [K][o] the image of [K]
[Kllo] = > rm € A(K, K\stg(0))n (0 €K).

T2>0,|T|=n

The assembly duality chain map ¢g[K]: (Z" ") [K]—Z «[K] in A (Z) fits
into a chain homotopy commutative diagram

@)K = (O] — 2]

Z .|K] = A(K)

~

B\ [K]N—
C.(K) = A(K)"™

with B¢ the chain equivalence given by 4.9. Thus K is an n-dimensional Z-
coefficient homology manifold (resp. Poincaré complex) with fundamental
cycle [K] € A(K),, if and only if the chain map ¢o: Z" " ——Z in A (Z).[K]
is such that each

¢olo] : Z"[o] — Z[o] (0 € K)
is a Z-module chain equivalence (resp. the assembly ¢g[K]: (2" ") [K]—
Z .[K] is a Z-module chain equivalence). Identifying

H(Z""[o]) = H" (K, K\stk(0)) = H" (K|, |[K[\{d})

= H"_‘("_*(StarK/(/a\), llHkK/(/O'\)) (O' € K) ,
we again recover the result that a homology manifold is a geometric Poincaré
complex. This is the chain homotopy theoretic version of the spectral se-
quence argument of 6.2.
i
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§7. Derived product and Hom

Borel and Moore [11] defined derived duality in the category of chain com-
plexes of sheaves of R-modules for a Dedekind ring R, using it to prove
Poincaré duality for R-coefficient homology manifolds. It is a special case
of the Verdier duality for chain complexes of sheaves, which plays an impor-
tant role in intersection homology theory — see Goresky and MacPherson
[63,1.12]. The chain duality defined in §5 on the category of chain complexes
in A (R).(K) (for any commutative ring R and finite simplicial complex K)
will now be interpreted as a Verdier duality, with A(K’; R) as the dualizing
complex.

For a Dedekind ring R with field of fractions F' the derived dual of an
R-module M is defined to be the R-module chain complex

TM : ... — 0 — Hompg (M, F) — Hompg(M, F/R) ,

using the injective resolution F——F'/R of R. The derived duality M —T M
has better homological properties than the ordinary duality M — M* =
Hompg(M, R). The homology H.(TC) of the derived dual TC of an R-
module chain complex C' depends only on the homology H,.(C), with uni-
versal coefficient theorem split exact sequences

0 — Extp(H,_1(C), R) —> H,(TC) — Homp(H,(C),R) — 0.

For a finite f.g. free R-module chain complex C' the derived dual T'C is
homology equivalent to the ordinary dual C* = Homg(C, R).
Let A = A (R) = {f.g. free R-modules} for a commutative ring R. From

A (R).[K] : ,
A (R).(K) defined in §6 will be denoted
K]-

A[R, K] L . R,
by {A(R, K), and its objects will be called (f.g. free) { (R, K)-
K]

Given an { E};’, K)

now on, the additive category {
modules.

-module chain complex C' denote the corresponding R-

‘ C[K] C. [K]
module chain complex by { C(K) rather than by { C.(K).

The abelian groups Hompg (M, N), M ®r N are R-modules, for any R-
[R7 K]’
(Rv )'
modules M, N there are defined R-modules and R-module chain complexes
{ Hom[RJ(](M, N) = HomA[R,K](M7 N) { M O[R, K] N=M QA [R,K] N

HOIIl(R’K)(M, N) = HOIDA(R’K)(M, N) , |\ M Q(R,K) N=M XA (R,K) N.

Given (R, K)-module morphisms f: M—— M’ g: N—— N’ there is defined
an R-module morphism

(f*, g4) : Hom(R’K)(M’,N) — Hom(R’K)(M,N') : h — ghf .

modules M, N, since the ground ring R is commutative. Thus for {
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By the definition of (R, K)-module morphisms
Hom g 1c)(M,N) = > Hompg(M(c),[N][o]) .
ceK
Thus it is possible to give the R-module Hom g g)(M, N) the structure of
an (R, K)-module by setting
Hom g x)(M, N)(oc) = Hompg(M(o),[N]lo]) (0 € K),
but this is unnatural: if f is not the identity the R-module morphism (f*, g.)
is not an (R, K)-module morphism.

The following derived products and Hom functors are modelled on the
derived functors appearing in sheaf theory, and allow the resolution of
Hom (g x)(M,N) by an (R, K)-module chain complex RHomg (M, N)
which is natural in both M and N.

DEFINITION 7.1 The derived product M Rp N of (R, K)-modules M, N is
the (R, K)-module with

(MERN)(K) = S M) &g N(#) € M(K) @p N(K)
M uEK ANu#D
(MERN)0) = 3 M\ &N (0€K).
ANp=0oc
The associated [R, K]-module [M Xp NJ is such that
[M®p Nljo] = [M]lo]@r [N][o] (o€ K),
[MXg N|[K] = M ®grr) N = Homg k) (TM,N),

with 4.9 giving an R-module chain equivalence

Bugan : M @rxy N — (M Xz N)(K) .
O
The derived product C' Xg D of (R, K)-module chain complexes C, D is
the (R, K)-module chain complex
(CBrD),= > C,RpD,, dzRy) =z Rdy+(-)de Ry .
ptg=r

The R-module chain complex (C' X D)(K) is a subcomplex of C(K) ®@g
D(K) such that there is defined a chain equivalence

Bergp @ C @iy D = [CXg D][K] = Homg g (TC, D)

— (CXg D)(K)
and
H,((CXgr D)(K)) = Hn(C®r k) D)

= Ho(HOHl(RJ()(Cn_*,D)) (n S Z) .
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EXAMPLE 7.2 Let f: X—K’, g: Y —— K’ be simplicial maps, so that there
are defined (R, K)-module chain complexes C, D as in 4.16, with
C = A(X;R) , [C]lo] = A(f7'D(0,K);R) (0 € K),
D = A(Y:R) , [Dllr] = A(g™'D(r,K);R) (1€ K) .
The derived product CXpg D is chain equivalent to the (R, K)-module chain
complex A(Z; R) associated to a simplicial map h: Z—K’, with Z a tri-
angulation of the pullback polyhedron
1Z] = {(z,y) € [X| x Y]] f(z) =g(y) € |K'| }
and h a simplicial approximation of the map
Z| — |K'| 5 (z,y) — f(z) = g(y) .
The R-module chain complex Hom g g)(A(X; R), A(Y; R)™") is chain equiv-
alent to A(X xY, X x Y\Z; R)~*, with
A(Y;R) (1) = A(g 'D(r,K);R)""™* (€ K).
i

EXAMPLE 7.3 The adjoint of the Flexner chain level cap product (4.13) is
a Z-module chain equivalence

AAp : A(K) — Homg o (A(K) ™, A(K") = A(K')Ry ACK),
by the special case f=g=1: X =Y = K—K of 7.2.
i

EXAMPLE 7.4 The Alexander—Whitney diagonal chain approximation for
K is defined by

Ag : A(K) — A(K)® A(K) ;
(vovy ... V) — Z(vovl c ) @ (ViU - Up)
i=0
Let C be the (Z, K)-module chain complex defined as in 4.15 by
C(K) = AK") , C(0) = A(D(0,K),0D(0,K)) (c € K) .
The Alexander—Whitney diagonal chain map for K’ factors through a (Z, K)-
module chain equivalence

~

Ak A(K') — AKXz AK') C A(K') @7 A(K') .

DEFINITION 7.5 The derived Hom of (R, K)-modules M, N is the (R, K)-
module chain complex

RHom g ) (M, N) = TM Xz N .
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The derived Hom defined for any (R, K)-module chain complexes C, D by
RHom g x)(C,D) = TCXRgr D ,
is such that there is defined an R-module chain equivalence
Bremgp : Homg ky(C, D) = [RHom g k) (C, D)|[K] = [TCXpg D][K]

- RHomg,x(C, D)(K) = (TC Ry D)(K) .
PROPOSITION 7.6 The (R, K)-module chain complex A(K'; R) with
A(K';R)(0) = A(D(0,K),0D(0,K);R) (0 € K)
is a dualizing complex for the chain duality T: A (R, K)—B (A (R, K)) with
respect to the derived Hom, meaning that T is naturally chain equivalent to
the contravariant functor

T' = RHom g x)(— AK';R)) : A(R,K) — B(A (R, K)) ;
M — T'M = RHom g x)(M, A(K'; R)) .

PROOF Use the augmentation R-module chain maps e: A(K'; R)(0)—R
to define a natural transformation 7/—T

T'M(o) = (TM R A(K'; R)(0) — TM(0) @z R = TM(0) ;
z(\) @y(p) — () @ ey(p) .

This is a natural chain equivalence, since the R-module chain maps
1®e: [T'"M][o] = [TM][oc] ®r [A(K'; R)][o]
= [TMllo]®@r A(D(0,K); R) — [TM][c]®r R = [T'M]|[o]
are chain equivalences.
i

More generally, for any (R, K)-module chain complex C' 7.6 gives a natural
(R, K)-module chain equivalence

TC ~ RHOIH(R’K) (C, A(K’; R)) .
A simplicial map f: K——L induces a pullback functor
f*: AR L] — A[R,K|; M — f*M , f*Mlo] = M|[fo] .
EXAMPLE 7.7 The [R, K]-module chain complex associated to the dualizing
(R, K)-module chain complex A(K’; R) is chain equivalent in A [R, K] to
the pullback f*R along the simplicial map f: K—{x} of the [R, {*}]-module
R

[A(K';R)] ~ f*R.
Specifically, the augmentation maps define chain equivalences

o] : [AK";R)|lo] = A(D(0,K);R) — f*Rlo] = R (0 € K) .
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§8. Local Poincaré duality
The following notion of local Poincaré duality is an abstraction of the local
Poincaré duality properties of a homology manifold, and in fact serves to
characterize the geometric Poincaré complexes which are homology mani-
folds. The universal algebraic L-theory assembly map will be defined in §9
by passing from local Poincaré complexes to global Poincaré complexes.
Let R, K be as in §7, with R a commutative ring, K a finite simplicial
complex and A (R, K) the additive category with chain duality defined in

5.1.
DEFINITION 8.1 An n-dimensional Symmetpc complex (€, ¢) in
quadratic (C, )

A(R,K) is locally Poincaré if it is C(R).(K)-Poincaré, i.e. if the dual-
ity is given by an (R, K)-module chain equivalence
{% L Cnt — O
(1+T)p : O — C'.
m

The derived product X of §7 will now be used to associate to an n-

symmetric (C, o) . ‘
quadratic complex {(C’, ) in A(R,K) a collection

{(C,9)[o]| 0 € K} of (1 — loN-dimensiona symmetric ains in
{{<c,w>[ouaef<} fn=loh-d l{quadmtic p )[?MR),
C,¢)lo

C,¢) . . . {(
such that (C, is locally Poincaré if and only if each )

{ (C, ) Y Y (C,)[o]
Poincaré pair in A (R).

dimensional {

is a

By definition, an n-dimensional symimetric complex { (C,¢) inA (R, K)

quadratic (C, )
is an n-dimensional chain complex C' in A (R, K) together with an n-cycle

{ ¢ € (W7C), = Homyz, (W, [C Br C|[K]),

P e (W%C)n = W®Z[Z2] [C Xr C][K]n .

From now on, the (R, K)-module chain complex [C'Xp C][K] = C®g k) C
will be replaced by the (R, K)-module chain equivalent complex (C Xp
C)(K).
DEFINITION 8.2 (i) Given an (R, K)-module chain complex C define the R-
module chain map 9, : C(K)——S191C(0) for each simplex o = (vgv1 ... v|y|)
in K to be the composite

0r: C(K)y = Y C(m)n

dy do djo|
— C(Ul)n—l — C(Ug)n_g —_— ... — C(O)n,‘,ﬂ N

projection

C(O'())n
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with 09 < 01 < ... < 0}, = 0 defined by o; = (vov1...v;) (0 < j < o)
and d;: C(0j_1)n—j+1—C(0j)n—; (1 < j < |o|) the relevant components
of do(ky: O(K)n—jy1——C(K)n—j.

o e Iy . symmetric (C,0) . i
(ii) Given an n-dimensional {quadratic complex { (C. 1)) in A(R,K) de

symmetric
quadratic

{(C,qb)[ff] = (i[o]: 0[Clo]—[C][o], (¢l0], 9¢[0]))
]

fine for each 0 € K an (n — |o|)-dimensional { pair in A (R)

(C,¥)[o] = (i[o]: 0[Cl[o]—[C][a], (¢¥]o], O¢[o]))
with
ilo] = inclusion : 9[C Z Cllo)r = ZC
e symmetric structure (¢lol, 0¢[o]) is the image o ¢ € (W%C)
The 4 quadratic St {( vlo], 0ulo]) 1® the imag f{we(w%c)

under the Z-module chain map

(W*C = Homgyz,) (W, (C Xg C)(K))
0o
I HomZ[ZQ](W, S‘U|(C &R C)(O’))

We,C = W®Z[Zg] (CXRgr C)(K)

o
— W®Z[Zg] S'U‘(C X g C)(O’) ,

identify;ng
(CHRC)(o) = Y. C\)@rC(k)
ANp=0o
= coker(ilo] @ i[0]: 9[Cllo] ® g 9[C][0]—[C[o] ®r [C][0]) -

EXAMPLE 8.3 Let C be the (Z, K)-module chain complex defined as in 4.13
by

C(K) = AK') , C(o) = A(D(0,K),dD(0,K)) (0 € K) .

The Z-module chain map 9,: C(K)—S!?!C(c) of 8.2 induces the natural
maps passing from the global (= ordinary) homology of |K| to the local
homology at o € | K|

b, HAC(K) = LK) = H.(K) = HL(K]) 2o

H. (K], [K\{0}) = H.(K, K\stk(0))
— H.(starg(3),linkw: (3)) = H.(90" * (D(0, K),dD(0, K)))
= H*7|U|(D(O-7 )76D(07K)) = H*f|cr|(c(a))'
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If K is an n-dimensional homology manifold the images of the fundamental
class [K] € H,(K)

9-([K]) = [D(o,K)] € Hn—\ol(D(o-a K),0D(0, K)) (0 € K)

are the fundamental classes of the (n — |o|)-dimensional geometric Poincaré
pairs (D(o, K),0D(0, K)).

symmetric

C
quadratic complex { (C, ¢

. o : (C,9)[o] :
A(R,K) is locally Poincaré if and only if each {(C,w)[a] (0 € K) is

Poincaré pair in A (R).

PROPOSITION 8.4 An n-dimensional {

symmetric
quadratic
PROOF By 4.7 a chain map f:C——D in A (R, K) is a chain equivalence if
and only if the (o, 0)-component f(o,0): C(0)—D(0) is a chain equiva-
lence in A (R) for each o € K. The duality R-module chain map

[Cllo]" 117 = €™ *(0) — [C)[0]/0[C][0] = C(o)
(C,9)lo] is the (o, 0)-component o e duali -module chain
of{( CL)o] the (o, 0) p (t)fthdlty(R,K) dule ch
¢g: C"*—C C, ¢
map{( T)o: C*——C f{w,w)'

an (n — |o|)-dimensional

O

REMARK 8.5 An n-dimensional pseudomanifold is a finite n-dimensional
simplicial complex K such that

(i) every simplex of K is a face of an n-simplex,

(ii) every (n — 1)-simplex of K is a face of exactly two n-simplexes.

The result of McCrory [105] that K is a homology manifold with fun-
damental class [K]| € H,(K) if and only if there exists a cohomology
class U € H"(K x K, K x K\A) with the image in H"(K x K) dual to
A[K] € H,(K x K) can now be proved directly, using the chain duality
theory of §5 and the derived product X of §7.

Assume (for simplicity) that K is oriented and connected, so that the
sum of the n-simplexes is a cycle representing the fundamental class [K] €
H,(K)

K] = Y 7eker(d:Ap(K)—A,_1(K)) .
rek (™
For each simplex ¢ € K the pair (D(o,K),0D(0,K)) is an (n — |o])-
dimensional pseudomanifold with boundary. As in 6.2 there is defined an
n-dimensional symmetric complex in A (Z, K)

(C.¢) = (A(K'), A[K])
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such that
¢o(0) = [D(o,K)]N—: C" (o) = A(D(o, K))" 1717
— C(0) = A(D(0,K),0D(0,K))
with assembly
do(K) = [K]Nn—: C""(K) ~ A(K)" " — C(K) ~ A(K) .
K is a homology manifold if and only if (C,¢) is locally Poincaré. The
diagonal chain approximations are chain equivalences
[Ao][o] = [Clle] = A(D(0, K))
— [O®z Cllo] = A(D(0, K)) ®z A(D(0, K))
so that each of the chain maps in the commutative diagram

] —20 L om0k

l

Bc Bewm, o

C(K) —20 . (CR50)(K)

is a chain equivalence, and
(C®zr C)K) ~ AK) , C(K)®zC(K) ~ A(K xK) .
By 5.5 the dual (Z, K)-module chain complex T'C' is such that
TC(0) = A(D(o,K))"lol=* ~ §7l°lz (¢ e K) , TC(K) ~ A(K)™*,
and
(TC @@y TC)(K) ~ A(K x K, K x K\A)™,
TC(K)®zTC(K) ~ AK x K)™*.
The product K x K (or rather K ® K) is a 2n-dimensional pseudomanifold,
and the diagonal map of polyhedra
A: K| — |K|x|K]; 2 — (z, )
induces a diagonal map in homology
A,: H(K) = H.(|K|) — H.(K x K) = H.(K|x|K|) .
A geometric Thom class for K is an element
UcH"(K xK,KxK\A) = H,(TC ®z,x) TC)(K))
= H,(Homz x)(C,TC))
satisfying one of the equivalent conditions:
(i) the image of U under

j* = inclusion” : H"(K x K, K x K\A)
L HY(K x K) = Ho(TC(K) @z TC(K))
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is an element j*U € H"(K x K) such that
(J'U,ALK)) = 1€Z,
(ii) the (Z, K)-module chain map U: C——C"~* is such that
[¢o]lo] [Ulle] ~ 1: [C]lo] — [C""]lo] — [C][o] (0 € K),
with [C][o] = A(D(0, K)) ~ Z.
We shall now prove the result of McCrory [105] that K is a homology
manifold if and only if there exists a geometric Thom class U.
If K is a homology manifold then (C, ¢) is locally Poincaré, and the inverse

of the (Z, K)-module chain equivalence ¢g: C"~*——C' defines a geometric
Thom class

U = (¢o)” " € Hy(Homz x)(C,TC)) = H"(K x K,K x K\A) .

This is the Thom class of the homology tangent bundle 7x of K (Spanier
[163, p. 294]), the fibration

(K, K\{*}) — (K x K, K x K\A) — K .
The homology block bundle 7k is the normal bundle of the diagonal em-
bedding A C K x K, with U € H"(T(7x)) the Thom class of the Thom
space T'(1x) = (K x K)/(K x K\A).

Conversely, suppose that (C, ¢) admits a geometric Thom class U. Each
[po][o] has a right chain homotopy inverse, and since ¢g ~ T'¢g: C"™* — C
each [¢p][o] also has a left chain homotopy inverse. It follows that each
[po][o] is a chain equivalence, so that ¢q is a (Z, K)-module chain equiva-
lence and K is a homology manifold.

Note that for a pseudomanifold K the composite

A* [K]N—
H"(K xK) — H"(K) — Hy(K) = Z
sends any element z € H"(K x K) with (z, AL[K]) = 1 € Z to the Euler
characteristic of K

[K]NA*(z) = x(K)€Z.
If K admits a geometric Thom class U € H" (K x K, K x K\A) then U has
image the Euler number of the homology tangent bundle 75 of K
A*j*(U) = x(7x) € H'(K) = Z,
and x = j*(U) € H"(K x K) is such that (z, A [K]) =1 € Z. Thus if K is
a homology manifold the Euler characteristic of K is the Euler number of
TK
X(K) = x(7x) € H"(K) = Ho(K) = Z.
(For a differentiable manifold K this is proved in Milnor and Stasheff
[112, pp. 124-130]).

O
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§9. Universal assembly

Universal assembly is the forgetful map from the L-groups of ‘local’ algebraic
bordism categories to the L-groups of ‘global’ algebraic bordism categories,
such as

A Li(A(R)«(K)) = Ho(KGL.(R)) — L (A(R, K)) = Lu(R[m(K)]) .
In 89 only the oriented case is considered; the modifications required for the
nonorientable case are dealt with in Appendix A.

With R, K asin §8, let 7 = w1 (K) be the fundamental group, and let R[]
be the fundamental group ring. The assembly functor B (A[R, K])—B (R)
of 4.4 can be lifted to the universal cover K of K:

DEFINITION 9.1 (i) The [R, K]-module chain complex universal assembly is
the functor

B[R, K] = B(A[R,K]) — B(R[r]); C — C[K]
with
CIK], = ) Clp6li—jo -
seK
Here, p: K—K is the covering projection.
(ii) The (R, K)-module universal assembly is the functor
A(RK) — A(R[x]); M — M(K) = > M(ps),
seK
with the R[r]-module structure induced from the action of  on the universal
cover K by covering translations. An (R, K)-module morphism f: M—N
assembles to the R[r]-module morphism f: M(K)— N(K) with compo-
nents
fr.o) = {I0o) TIST L ai(a) = b(e) — N7) = N(r).
0 otherwise
O
Let C be a f.g. free (R, K)-module chain complex. The R-module chain
equivalence (¢ [C][K]—C(K) of 4.9 lifts to an R[r]-module chain equiv-
alence

fe : [CIIK] — C(K)
so that the universal assembly constructions of 9.1 (i) and (ii) agree up to
chain equivalence.

PROPOSITION 9.2 If f: C——D is a chain map of finite [R, K|-module chain
complezes such that each flo]: Clo]—Dlo] (0 € K) is an R-module chain

equivalence then the universal assembly f[K|:C|K|—D|[K] is an R|r]-
module chain equivalence.
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PROOF A chain map of finite chain complexes in an additive category is a
chain equivalence if and only if the algebraic mapping cone is chain con-
tractible. Thus it suffices to prove that a locally contractible finite [R, K]-
module chain complex C' assembles to a contractible R[r]-module chain
complex C[K]|. The first quadrant spectral sequence E(C) of 4.6 has Es-
terms

Ey, = Hy(K:{H,(Clo])})
and converges to H,(C [IN(D If C is locally contractible then H,(Clo]) =

0 (o0 € K), so that H,(C[K]) =0 and C is globally contractible.
O

EXAMPLE 9.3 The universal assembly of the f.g. free [R, K]-module chain
complex R defined as in 4.5 by
Rlo] = R (0 €K)
is the simplicial R[r]-module chain complex of the universal cover K
RIK] = A(K:R).
O

EXAMPLE 9.4 The Alexander-Whitney—Steenrod diagonal chain approxi-
mation for the universal cover K

A~ : A(K; R) — Homyp, (W, A(K; R) @ A(K; R))

projects to an R-module chain map
Ak = 1® Az : A(K;R) = R®pm A(K;R)

— R ®ppy (Homgg, (W, A(K; R) ®@r A(K; R)))
= Homygz, (W, A(K; R) ®ppm A(K; R)) = WPA(K;R),

with R[r] acting on the left of A(K; R) via the covering translation action
of m on K, and on the right via the composition of the left action and the
involution

R[r] — R[n]; rg —rg™! (reR,gem).
As in Ranicki [145] for any n-cycle [K] € A(K;R), there is defined an
n-dimensional symmetric complex (A(K; R), Ag([K])) in A (R[r]) with
Ag([K])o = [K]N—: A(K;R)"™" — A(K;R) .

As in the simply connected case already considered in 6.4 the geometric
nature of Az allows (A(K; R), ¢) to be expressed as the assembly of an n-
dimensional symmetric complex (R, ¢) in A[R, K|, with R the 0-dimensional
[R, K]-module chain complex given by

Eﬂd:={§ i:;g(oeK),EM1=zMKﬁﬂ~



ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

By 5.6 the n-dual of R is the [R, K]-module chain complex
R"™* = S'"TR = [C]

associated to the (R, K)-module chain complex C' with

Clo) = S" IR, O(K) = A(K;R)"™,

R"lo] = [Cllo] = A(K, K\stg(0); R)"™" (0 € K) .
Write the n-cycle as

K] = Y r7€RK], = AK;R), (r; €R).

TEK,|T|=n

The assembly of the n-dimensional symmetric complex (R, ¢) in A[R, K]
defined by

¢o = Y, r(101)€(ROR)K]n = Y (Blo]®r Ro])no| ,
TeK,|T|=n oceEK
¢s = 0¢€ (E QR E)[K]nJrs (S >1)
is the n-dimensional symmetric complex in A (R[r]) defined above
(R, ¢)[K] = (A(K:R), Ag([K]))

and there is defined a chain homotopy commutative diagram

B[R = [O)R]

RIK] = A(K;R)

~

Bo [K]N—
C(K) = A(K;R)"™*

with B¢ the chain equivalence given by 4.9. Here, ¢o[K] is the assembly of
the [R, K]-module chain map ¢g: R"~*—— R with the components

¢olo] = ([K][o], —) :
R"[o] = A(K, K\stk(0); R)""" — Rlo] = R;

{7“7- ifr>o, 7| = n

T —

0  otherwise

with [K][o] the image of [K]

[Kllo] = Y rreAK K\stg(0);R)n (0 €K).

T>0,|T|=n

K is an n-dimensional R-coefficient homology manifold (resp. Poincaré

complex) with fundamental cycle [K] € A(K; R),, if and only if the [R, K]-

module chain map ¢g: R" *——R is such that each

¢olo] : R"*[o] — Rlo] (0 € K)
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is an R-module chain equivalence (resp. the assembly R[r]-module chain
map
dolK] : B"*[K] — RIK]
is a chain equivalence). In particular, if (R, ¢) is a Poincaré complex in
A [R, K], then the assembly (R, ¢)[K] is a Poincaré complex in A (R[7]), by
9.2. The identifications
H. (B "[o]) = H" (K, K\stk(0); R))

= H"* (starK/ (3), link (8), R)

= H" (K|, |IK\{e}; R) (0 € K)
again recover the familiar result that a homology manifold is a geometric
Poincaré complex. This is the chain homotopy theoretic version of the
spectral sequence argument of 5.6.
O

Let B(R,K) =B (A (R, K)) be the category of finite chain complexes of
f.g. free (R, K)-modules.

DEFINITION 9.5 Given R, K, w as above define three algebraic bordism cat-
egories:
(i) The f.g. free R[m]-module category of 3.6

A(R[r]) = (A(R[x]),B(R[r]),C(R[r])) .
(ii) The local f.g. free (R, K)-module bordism category given by 4.1
with C (R).(K)-equivalences called local equivalences.
(iii) The global f.g. free (R, K)-module bordism category

AR, K) = (A(R,K),B(R,K),C(R,K))
with C (R, K) C B(R, K) the subcategory of the finite f.g. free (R, K)-
module chain complexes C' which assemble to contractible f.g. free R[r]-
module chain complexes C(K). C(R,K)-equivalences are called global

equivalences.
i

PROPOSITION 9.6 Local equivalences are global, and inclusion defines an
assembly functor of algebraic bordism categories

A(R).(K) — AR, K) .
PROOF The universal assembly of a finite chain complex C'in A (R, K) is a
finite chain complex C(K) in A (R[r]) which is chain equivalent (by 4.9) to
the assembly [C][K] of the finite chain complex [C] in A[R, K|. Now apply

9.2.
O
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DEFINITION 9.7

symmetric symmetric
The visible symmetmc L-groups of (R, K) are the normal . L-groups
quadratic quadratic
normal normal
L"(R,K) = L"(A(R,K))
VL"(R,K) = NL"(A(R,K))
(neZ)
L,(R,K) = L,(A(R,K)
NL"(R,K) = NL"(A(R,K))

with
AR,K) = (A(R,K),B(R,K),C(R,K)),

AR,K) = (A(R,K),B(R,K),B(R,K)) .
O

The L-groups defined in 9.7 are all 4-periodic via the double skew-suspen-
sion maps, because the underlying chain complexes are only required to be
finite, allowing non-zero chain objects in negative dimensions. The (poten-
tially) aperiodic versions defined using positive chain complexes are dealt
with in §15.

The exact sequence of 3 10 can be written as

J
 — Lo(R,K) 5 VI"(R,K) - NL'(R,K)

L L, 1(R,K) —
symmetric
visible symmetric
quadratic
normal
A: L*(R, K)—L*(R[n])
A:VL*(R, K)—VL*(R[r])
A: L.(R,K)—L.(R[r])
A:NL*(R,K)— NL*(R[n])
theory universal assembly maps are shown to be isomorphisms in §10 below,
so that the quadratic L-groups of (R, K) are isomorphic to the surgery
obstruction groups

L-theory universal assembly maps

are defined in 9.11 below. The quadratic L-

L.(R,K) = L.(R[r]) .

(Warning: the quadratic L-theory assembly isomorphisms A: L.(R,K) =
L.(R[r]) are not to be confused with the quadratic L-theory assembly maps
A: H (K;L.(R))—L.(R[r]) defined in 14.5 below, which are not in general
isomorphisms. See 9.17 below for an explicit example where the latter A is
not an isomorphism.)
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REMARK 9.8 The wisible symmetric Q-groups of Weiss [187] are defined for
any finite f.g. free R[m]-module chain complex C' to be

VQ*(C) = H.(P ®gx (Homgzz, (W,C ®r C))) ,
with P a projective R[r]-module resolution of R, and there are defined
natural maps

147T: Q.(C)— VQ*(C) , VQ*(C) — Q*(CO) .
In particular, the visible symmetric Q-group VQ°(C) of a 0-dimensional

R[r]-module chain complex C' consists of the visible symmetric forms on
C°, which are the symmetric forms ¢ = ¢* € HomR[W](CO, Cy) such that

d(z)(z) € H*(Zy; R) € H(Zs: R[n]) (z € C°) .
The wvisible symmetric L-groups VL™ (R[r]) (n € Z) of [187] are the cobor-
dism groups of n-dimensional visible symmetric Poincaré complexes (C, ¢ €
VQ"(C)) over R[r]. The symmetric construction of Ranicki [145] has a
visible version
¢x + Ho(X) — VQ"(A(X))
for any space X with universal cover X , so that an n-dimensional geometric

Poincaré complex X has a wisible symmetric signature

0" (X) = (A(X), ox([X])) € VL™(Z[m (X)]) .
By Ranicki and Weiss [150] every finite f.g. free R[r]-module chain complex
is chain equivalent to the universal assembly C(K) of a finite f.g. free
(R, K)-module chain complex C, with K = B the classifying space of .
It is proved in [187] that for any such C the Q-group universal assembly

maps are isomorphisms

Q*(C) — VQ(C(RK)) , Qu.(C) — Q.(C(K)),

and hence that the L-group universal assembly maps are isomorphisms

VL*(R,K(m,1)) — VL*(R[r]) , L.(R,K(m, 1)) — L.(R[nx]).
It is also proved in [187] that Q*(C) = 0 for any globally contractible finite
f.g. free (R, K)-module chain complex C, for any K, so that symmetric
complexes in A(R, K) have canonical normal structures and the forgetful
maps are isomorphisms

VL*(R,K) = NL*(A(R,K)) — L*(R,K) = L*(A(R,K))
(see 3.5). In the special case K = {x} already considered in 3.6
VL*(R,{*}) = NL*(A(R)) = L*(AM(R)) = L*(R).
The visible symmetric L-groups V L*(Z[r]) are closely related to the R.L.
symmetric L-groups L%, ; (Z[r]) of Milgram [108]. For K = {x}

n 1 n+4k
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the free symmetric L-groups made 4-periodic. R.L. stands for Ronnie Lee,
because visible symmetric forms over group rings were first used by Lee

[90].

REMARK 9.9 It will be shown in §13 below that the L-groups of the local
algebraic bordism categories are generalized homology groups
LY(AR).(K)) = H(K L (R))
Ln(A(R)«(K)) = Hp(K;L.(R)) (neZ)
NL"(R,K) = H, (K NL(R))
with coefficients in algebraic L-spectra. In particular, for a classifying space

K = B these are the generalized homology groups of the group .
i

DEFINITION 9.10 Given (R, K)-module chain complexes C, D define the
universal assembly Z-module chain map

BcR gD

ac,p: C®prr)yD = [CXWg D|[K] —— (CKXg D)(K)

YC,D

——— C(K) @pim) D(K) 5 ¢ — $(K)
with Bcw,, p the chain equivalence given by 4.9 and
Yo.p i (CRp D)(K) — C(K) @ppx D(K) 5 2(\) R y(pn) — z(X) @ y(f)
the injection constructed using any lifts of the simplexes A, u € K with

AN # 0 to simplexes A, i € K with AN # 0.
O

The duality R-module isomorphism

~

Tex),px) : C(K)®r D(K) — D(K)®r C(K) ;
@y — (F)Pyx (reC(K)y ye D(K),
restricts to define a duality isomorphism of (R, K)-module chain complexes
Tep: CRrRD — DRRrC; 2Ry — (—)PyR z,

such that there is defined a commutative diagram

C @i D —2L . C(K) @ppm D(K)

Tc,p To®),p(®)
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For C' = D universal assembly is a Z[Zs]-module chain map
a = qo,c C®(R,K) C — C(f() @ R[x] C(IN() ;o — Qb(f()
inducing abelian group morphisms
a” Q"(C) = Hp(Homgz,|(W,(C ®gr,k)C))) —

Q"(C(K)) = Hy,(Homgg,) (W, C(K) ®px C(K))) ,
Qo - Qn(C) = Hn(W Qz[Z,] (C Q(R,K) C)) —
Qu(C(K)) = Hy(W ®gz,) (C(K) @ppm C(K))) (n€ ).

PROPOSITION 9.11 Universal assembly defines functors of algebraic bordism
categories

A: AR,K) — A(R[r]) , A: A(R,K) — A(R[r])
symmetric
visible symmetric

quadratic
normal

t LR, K) — L"(R[x)) ; (C.¢) — (C,9)(K)
+ VL'(R, K) — VL"(R[x)) ; (C,¢) — (C,¢)(K)
t Ln(R, K) — Lu(Rln)) 5 (C.9) — (C,9)(K)
A: NLY(R,K) — NL"(R[x]) ; (C,¢) — (C,¢)(K) .

PROOF The universal assembly functor of the additive categories

A: A(R,K) — A(R[r]); M — M(K)
satisfies condition 3.1 (i), since A(C (R, K)) C C(R[n]) by the definition of
A(R, K). For any object M in A (R, K) the assembly of the 0-cycle
1e (M (R, K) TM)O = HOHI(R’K)(TM, TM)O

inducing universal assembly maps in the L-groups

s s

is a O-cycle
1K) € (M(K) @(r.x) (TM)(K))o = Hompp(T(M(K)), (TM)(K))o

defining a natural C (R[r])-equivalence

B(M) = 1(K): TAM) = T(M(K)) — AT(M) = (TM)(K)
satisfying condition 3.1 (ii).

For finite chain complexes C, D in A (R, K) an n-cycle ¢ € (C ® g, k)
D), is an (R, K)-module chain map ¢: X" TC——D. The assembly n-cycle
P(K) € (C(K) @ppr D(K))p is the R[r]-module chain map given by the
composite

_ _ _  X"B(C)
O(K): C(K)"" = ¥'"T(C(K)) ——

. _ Ae) .
SY(TCO)(K) = (E"TC)K) ——— D(K) .
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Thus ¢: S"TC—D is a C (R, K)-equivalence if and only if ¢(K): C'(K)"~*

—D(K) is a C (R[n])-equivalence. The universal assembly of an n-dimen-
sional symmetric complex (C, ¢) in A(R, K) is an n-dimensional symmetric
complex in A(R[r])

(C,9)(K) = (C(K),¢(K)) ,
with qﬁ([? ) € W%C(I? )n the n-cycle defined by the image of the n-cycle
¢ € (W”(C),, under the Z-module chain map

a1 WC = Homgz,) (W, C ®p,x) C) —

W*C(K) = Homgz,) (W,C(K) @gpm C(K)) .
Similarly for the quadratic and normal cases.
i

EXAMPLE 9.12 As in 4.15 let X be a simplicial complex with a K-dissection
{X|[o]|o € K}, and regard the R-coefficient simplicial chain complex A(X;
R) as a f.g. free (R, K)-module chain complex C' with

Clo) = A(X[o],0X[o];R) , [Cllo] = A(X[o];R),
0X[o] = |J XI7] (c€K).

The Alexander—Whitney—Steenrod diagonal chain approximation of X is an
(R, K)-module chain map

Ag = A: C(K) = AX;R) —
(W2C)(K) = Homgg, (W, (C K O)(K))

(CW?(C(K)) = Homg, (W, A(X; R) ®r A(X; R)))
with

n

Ap(z) = Z(woxl c &) @ (i1 .o wy) € (CRR C)K)y,
i=0

(= (xomy ... 2n) € XM) |

By the naturality of A there is defined a commutative diagram of R-module
chain complexes and chain maps

[C][K] ————— [W*C][K]
Be Bwac

C(K) —-2—— (W"*C)(K) .
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Given an n-cycle
(X] = ) 2,0 €C(K)n = AX;R), = Y A(X[0],0X[0]; R)n
oEK €K
use the chain maps d,: A(X; R)—SI°IA(X[0],0X[0]; R) given by 9.5 to
define (n — |o|)-cycles
X(0)] = 0,(1X)) € A(X[o],0X[0]: R)yo) (0 € K)
The n-cycle
¢ = A([X]) € (W*C)(K),
defines an n-dimensional symmetric complex in A (R, K)
o"(X) = (C,9)
such that
o"(X)[r] = o"(X[r],0X][7]) (1 € K).
The assembly of 0*(X) is an n-dimensional symmetric complex in A (R|[n])
(C(K), ¢(K)) with a chain homotopy commutative diagram

X]N— _ -

C(K)"™* = A(X;R)"* C(K) = A(X;R)

B, Po(K)

([CIED"™ = C""(K)
where A(X; R) is the simplicial R[r]-module chain complex of the pullback
X to X of the universal cover K of K, and ., is the n-dual of the R[rx]-
module chain equivalence 3¢: [C][K]—C(K) = A(X; R) given by 4.9. A
normal structure realizing [X| € H,(X; R) is a pair
(in X —>BG(]€) , PX ¢ Sn+k —>T(Vx) ) (k > 0)

such that [X] is the image of the homotopy class of px under the composite

h . t c
T k(T(vx)) — Hp 1 (T(v)) — Ho(X) — Ho(X; R)
with A the Hurewicz map, ¢ the Thom isomorphism and ¢ the change of
rings for the morphism Z—— R;1——1. Such a geometric normal structure

(vx, px) determines an algebraic normal structure (v, x) for the symmetric
complex ¢*(X) = (C, ¢), and

o' (X) = (C.¢,7,x)
is an n-dimensional normal complex in A (R, K) with chain bundle (C,~) =

3*(1/)().
O
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EXAMPLE 9.13 Given a simplicial complex K set
X =K' |, X[o] = D(o,K)(c€K) , R =17,
in 9.12, so that C' is the (Z, K)-module chain complex of 4.15 with
C(K) = A(K') , C(o)=A(D(0,K),0D(0,K)) (c €K) .

For any n-cycle [K] € A(K'), there is defined an n-dimensional normal
complex (C, ¢) in A (Z, K) with

¢ = A([K]) € H,(W"CO)(K))

¢o(K) = [K]N—: Y"TC(K) ~ AK')"* — C(K) = A(K'),
po(0) = [D(o,K)|N—: Z"TC(c) = A(D(o, K))"~lol=*
— C(0) = A(D(0,K),0D(0,K)) (0 € K) .

geometric Poincaré complex
homology manifold

cycle [K] € A(K"),, if and only if the symmetric complex (C, ¢) is Poincaré.
In both cases there is defined an algebraic normal structure (v, x), and hence
a vistble symmetric signature invariant

K is an n-dimensional with the fundamental

. B VL' (Z,K)
o (K) = (C,¢,7,x) € {Ln(A(Z)*(K)) .

The image of (C, ¢) under the full embedding
A(Z,K) — A[Z, K] ; M —[M]

is homotopy equivalent to the symmetric complex (Z, ¢) of 9.4.
i

EXAMPLE 9.14 Let (f,b): M— K’ be a normal map from a compact n-
dimensional homology manifold M to the barycentric subdivision K’ of an

't . P . Vd 1
geometric fomceare complex K, so that for each 7 € K the

n-dimensional { homology manifold

restriction
(flr],blr]) = (f,0)]
(M[r],0M][r]) = f~H(D(r,K),dD(r,K)) — (D(r, K),0D(r, K))
is a normal map from an (n — |7|)-dimensional homology manifold with
normal
Poincaré
pair. The quadratic construction of Ranicki [145] associates to (f,b) an

globally
locally

o (f,0) = (C(f), %)

boundary to an (n — |7|)-dimensional geometric {

n-dimensional quadratic { Poincaré complex in A (Z, K)
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with C(f') the algebraic mapping cone of the Umkehr chain map in A (Z, K)

\ . (K'n=)7! N fr M-
i AK) — A(K)Y" —— AM)" — A(M)

such that
o (f,0)[r] = ou(fl7],b[7]) (T€K).
The quadratic signature of (f,b) is the cobordism class

L.(A(Z K))
o(fb) € {an@)*(m) .

EXAMPLE 9.15 An n-dimensional normal complex
(K, vi: K—BG(k), pr: ST —T(vk))
determines (as in 9.13) an n-dimensional normal complex ¢*(K) = (C, ¢)
in A (Z,K) with C(K) = A(K’), and such that
o"(K)[r] = ¢"(D(1,K),0D(1,K)) (€ K) .
The normal signature of K is the cobordism class
c"(K)e NL"(Z,K) .

i
visible symmetric
EXAMPLE 9.16 The assembly of the < quadratic signature given by
normal
9.13 Poincaré complex K
{ 9.14 for an n-dimensional geometric ¢ normal map (f,b): M — K’ is the
9.15 normal complex K
visible symmetric
quadratic signature
normal

o*(K) € im(A: VL™ (Z,K)—VL"(Z|m(K)]))
0x(f;b) € im(A: L (Z, K)— Ln (Z[m (K)]))
o*(K) € im(A: NL™"(Z, K)— NL"(Z[m (K)]))
Weiss [187]
of < Wall [180] Also, 0*(K) € L™(Z|m1(K)]) for geometric Poincaré K
Ranicki [146].
is the symmetric signature of Mishchenko [115] and Ranicki [145].

EXAMPLE 9.17 The universal assembly maps
A: H.Bm;L.(Z)) — L.(Z[r)) ,
A: H.Bm;L(Z)) — VL*(Z, Br)
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will now be described in the special case m = Zsy, BZs = RP*°, assuming
the identifications obtained in §10 and §13

L.(Z,Bn) = L.(Z[r]), VL*(Z,Br) = VL*(Z|r]) ,
L.(AZ)o(Br)) = H.(BrsL(Z)) , I*(MZ).(Br)) = H.(BrL(Z)

The computations have been carried out by Wall [180, §14D], Conner (Dover-
mann [46]) and Weiss [187,87]. The Witt groups of the group ring

Z|Zo] = Z[T]/(T* - 1)

with the oriented involution T = T are computed using the cartesian square
of rings with involution

22, — I
Jj_
l,—— 7o
where

J+: ZZy) — Z; a+ b1 — a£bT .

The quadratic L-groups L.(Z[Zs]) fit into the Mayer—Vietoris exact se-
quence of Ranicki [146,6.3.1]

e L(Z(Ze) 2 @) @ L)
— Lp(Zo) — Lp-1(Z2[Zs)) — ... .

Although there is no such Mayer—Vietoris exact sequence for the symmet-
ric L-groups in general (Ranicki [146,6.4.2]) the symmetric Witt group
L°(Z|Z)) fits into the exact sequence

G+ J-)

0 — L%(Z[Zy])) —— L%(Z)® L°(Z) — L°(Zy) — 0
such that up to isomorphism
LO(Z) =7, LO(Z[Z2]) = Z®ZL, LO(Z2) = Zso .

The Witt group V L°(Z[Zs],1) of nonsingular visible symmetric forms over
Z[Zs)] fits into the exact sequences

G+ 3-) -
0 — VIYZ[Zo],1) —2 10Z) & L%(Z) — L(Z) — 0
0 — Lo(Z[Zs]) — VLY(Z[Zs],1) —> LY(Z) — 0

such that up to isomorphism

Lo(Z[Zy)) = VI°(Z[Zs),1) = Z&Z , L°(Z) = NLY(Z) = Zs .
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The quadratic L-theory assembly maps are given by:
A: Hy(BZy;L.(Z) = Y Hn (BZy; Ly(Z))

keZ
(7
s Ho(BZs: Ln(Z)) = Ln(Z) = QZQ
L0
. Y/ ‘0
i)
L (2] = %2 itn={ ) (modd)
Zo \ 3

with ¢, induced by the inclusion
i: 2 — Z[Zs]; a— a.
The visible symmetric L-theory assembly maps are given by
A: Hy(BZy;1(Z)) = > Hp 1(BZy; L¥(Z)) —
keZ
( VLY(Z[Zo),1) ® k;éz H,_4(BZy; L*(Z))
1,0

~

VINZ[Zs)) = § X Hni(BZo; LM(Z))

S H,_r(BZy; L*(Z))
\ k#£3

0

if n= { 1,2 (mod4) .
3

The symmetric L-groups L*(Z[Zz]) are not 4-periodic.

Given a nonsingular symmetric form (M, ¢) over Z[Zs]| let
s+(M,¢) = signatureji(M,¢) € L%(Z) = 7Z.

In terms of the signatures
LY(Z[Zs]) = {(s4,5 ) €Z®Z|sy =s_(mod2)},
VIYZZs]) = {(s4,5_)€Z®7|s, =s_(mod8)},
Lo(ZZ3]) = {(s4,5-) €ZPBZ|s+ =s-=0(mod8)}

and in each case the image of the assembly map A is

im(A) = {(s4,5-)|sy =s_€Z}.

For example
s+(Z[Z),1) = 1, (Z[Zs],1) € im(A) c VLY(Z[Zs]) ,
5:(ZIZa).T) = £1, (ZZa],T) ¢ im(A) C LZ(Z)) -
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The effect of the restriction map
it LZ[Zo]) — L°(2) s (M, ) — (i'M,i'9)
is given by
i'(s4,8_) = sy +s_€L%Z) = 7,
since for any a + bT" € Z[Zs] the eigenvalues of

i'(a+bT) = <Z 2) DLy = 207 — LT

are j+(a+bT) = a+b. Thus for a nonsingular symmetric form (M, ¢) over
Z|Zs] the following conditions are equivalent:
(i) ' (M, 6) = 2. (M, ¢) € Z |
(i) s4(M,¢) =5 (M,) € Z,
(i) (M, ) € im(A: Ho(BZ ;L (2))— LO(Z[Z5)))
and similarly for visible symmetric and quadratic forms. For the applica-

tions to topology see Example 23.5C below.
i
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§10. The algebraic m-m theorem

The geometric -7 theorem of Wall [180, 3.2] is that for n > 6 a normal map
(f,0): (M,0M)—(X,0X) from an n-dimensional manifold with bound-
ary (M,0M) to an n-dimensional geometric Poincaré pair (X,0X) with
m(0X) = m(X) is normal bordant to a homotopy equivalence of pairs.
The 7-7 theorem was used in Chapter 9 of [180] to identify the geometric
surgery obstruction groups L.(K) with the algebraic surgery obstruction
groups of the fundamental group ring Z[m (K)]

Ln(K) = Ln(ZIm(K)]) (n=5),

for any connected CW complex K with a finite 2-skeleton.
An algebraic -7 theorem will now be obtained, in the form of a natural
identification

Ln(A(R,K)) = Ln(R[m(K)]) (n€Z)
for any commutative ring R and any connected ordered simplicial complex
K, with A(R, K) the algebraic bordism category of 9.5 (iii).
Use the base vertex * € K() to define a f.g. free (R, K)-module T' by

To(o) = {R if 0 =

0 otherwise .
Let K be the universal cover of K. Choosing a lift * € KO there is defined
an R[m;(K)]-module isomorphism

~

Rlm(K)] — T(K); 1 — 1() ,

which will be used as an identification.

DEFINITION 10.1 The homology assembly maps are defined for any (R, K)-
module chain complex C to be the R[m(K)]-module morphisms

H,([C][+]) — H(C(K)) (r€Z)

induced in homology by the chain map
HOIH(R,K)(F,C) = [C][*] - HomR[m(K)( (
z(0) — (o) (x <

K),C(K)) = C(K);
o,%<7) .

O

The proof of the algebraic m-7 theorem requires a Hurewicz theorem to
represent homology classes in assembled R[r]-module chain complexes by
(R, K)-module morphisms, just as the proof of the geometric m-m theorem
needs the usual Hurewicz theorem to represent homology by homotopy. This
requires the results of Ranicki and Weiss [150, §4] summarized in the next
paragraph.
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An (R, K)-module chain complex C'is homogeneous if the inclusions define
R-module chain equivalences

[C]lo] — [C][7] (r<o€K).
The homogeneous envelope of a finite chain complex C' in A (R, K) is a
homogeneous (R, K)-module chain complex V°°C with the following prop-
erties:
(i) VO = lim VEC is the direct limit (= union) of a sequence of inclu-

k
sions of finite chain complexes in A (R, K)

c=vccvccvicc ...

such that each inclusion defines a global equivalence VFC—V*+1(C

(ii) the inclusion C——V*°C assembles to an R[m;(K)]-module chain equiv-
alence C'(K)—V>C(K),

(iii) for any finite chain complex B in A (R, K) and any n € Z the abelian
group H,(Hom g k) (B, V>C)) of homotopy classes of (R, K)-module
chain maps X" B——V (' is in one—one correspondence with the equiv-
alence classes of pairs (f:X"B——D, g:C——D) of homotopy classes
of (R, K)-module chain maps with D finite in A (R, K') and g a global
equivalence, subject to the equivalence relation generated by

(f:¥"B—D,9:C—D) ~ (hf:X"B—F, hg: D—F)
for any global equivalence h: D—F in A (R, K),
(iv) the homogeneous envelope V°I" of the 0-dimensional chain complex

I'in A (R, K) is chain equivalent to the (R, K)-module chain complex
A(EK; R) associated to a triangulation EK of the pointed path space

E|K| = |BK| = (|K][, {+}){*1{D
and the projection
p: BIK| — K| 5 & — w(l) |
and [V °°T"|[«] is chain equivalent to the R-module chain complex A(QK;;
R) with QK a triangulation of the pointed loop space
QK| = |9K| = p ' ({x}) = (K], {x})©@01D,

The Hurewicz map m,(X)—H,(X) assembles a homology class from a
homotopy class. One version of the Hurewicz theorem states that if X
is a space with an (n — 1)-connected universal cover X and n > 2 then
7 (X) = m.(X)—H,(X) is an isomorphism for » = n and an epimorphism
for r = n + 1. Similarly:

ProposITION 10.2 If C is a homogeneous (R, K)-module chain complex
which is bounded below and such that

Hq(C(I?)) = 0 forg<n
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then the homology assembly R[m1(K)|-module morphism
H,([C][+]) — H.(C(K))
is an isomorphism for r =n and an epimorphism for r =n + 1.
PRrOOF It suffices to derive the conclusions from the hypothesis that H,([C]
[¥]) = 0 for ¢ < n. By 4.9 C(K) is chain equivalent to [C][K]. As in 4.6
define a filtration of [C][K]
R[CI[K] € R[C]IK] € RIC)K] € ... C [C][K]
by
FOIK]l, = ) [Cllolgol
K |5|<p
and consider the corresponding first quadrant spectral sequence (4.6). The
FEs-terms are given by

B2, = Hy(K;{H,([C)lo])}) = Hy(K;H([C][+])) (= 0forg<n),

using the simple connectivity of the universal cover K and the homogene-
ity of C' to untwist the local coefficient systems. The spectral sequence
converges to H,([C][K]) = H.(C(K)), with

EX = im(Herq(Fp[C][Kl)% p+q(C(K~))) (= 0forg<n).
im(Hpyq(Fp-1[C][K])—Hp14(C(K)))

The assembly map in n-dimensional homology coincides with the isomor-
phism defined by the edge map

ES, = Ho([C)[x]) — Eg5, = Hu(C(K)).
A quotient of the assembly map in (n 4 1)-dimensional homology coincides
with the edge isomorphism

coker(d: B3 ,——Eg 1) = coker(Ha(K; Hy([C][#])— Hni1([C][4]))

— Egpp1 = Hupa(C(K)) -
O

An application of 10.2 to the algebraic mapping cone gives that a chain
map f:C——D of homogeneous finite (R, K)-module chain complexes is
a local chain equivalence if and only if it is a global chain equivalence,
i.e. fis an (R, K)-module chain equivalence if and only if the assembly
f(K):C(K)—D(K) is an R[r|-module chain equivalence.

ExAMPLE 10.3 Let f: X—— K be a simplicial map with barycentric sub-
division f: X’—— K’  so that as in 4.15 there is defined a K-dissection
{X]o]|o € K} of X with

Xlo] = [7'D(0,K) (s €K),
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and hence a (Z, K)-module chain complex C' with
C(o) = A(X]o],0X[o]) , [Cllo] = A(X[o]) (0 € K) , C(K) = A(K').
The iterated mapping cylinder method of Hatcher [74,§2] shows that f is
a quasifibration in the sense of Dold and Thom with fibre F' = f~1(x) if
and only if the inclusions X[o]—X|7] (7 < 0 € K) are homotopy equiv-
alences, in which case C' is a homogeneous (Z, K)-module chain complex
with [C][x] ~ A(F'), and the spectral sequence of 4.6 is the Serre spectral
sequence converging to H,(X) with E2-terms
Brq = Hy(Ki {H(F)}) .

The path space fibration f: X = EK——K with fibre F' = QK determines
the homogeneous (Z, K)-module chain complex B with

B(o) = C(f'l: A(f'"(D(0, K),0D(0, K)))—A(D(0, K),0D(0, K)))

(0 € K),
[B]l¥] = CAQK)—A({x})) = BA(QK, {+}) ,

B(K) ~ A(EK—K) ~ A(K, ).

If K is (n — 1)-connected then H,(B(K)) =0 for ¢ < n and 10.2 gives the
usual Hurewicz theorem, with the assembly map

H([Bllx]) = Hr1(QK, {+}) — H.(B(K)) = H.(K,7)
an isomorphism for r = n_and an epimorphism for r = n + 1. (Here,
m=p 1({*}) C K with p: K—K the covering projection.)
i

Identify I' = TT using the isomorphism
Io(x) = R — TTo(¥) = Homp(R,R) ; r — (s — s1) .

An (R, K)-module chain map f: ¥"I'—C' assembles to an R[m; (K )]-module
chain map

f(K): ©"T(K) = X"R[m(K)] — C(K) ,
that is an n-cycle f(K) € C(K),. Dually, an (R, K)-module chain map
f: C——=%"T" assembles to an R[m;(K)]-module chain map

f(K): C(K) — T'T(K) = S"R[m(K)],
defining an n-cocycle f(IN() € C(IN()".

ProPOSITION 10.4 (i) If C is a finite chain complex in A (R, K) such that
H,(C(K)) =0 forq < n then every element v € H,,(C(K)) form = n,n+1
is represented by a pair (f: X"T'——D, g: C——D) of morphisms in B (R, K)
with g a global equivalence. B

(ii) If C is a finite chain complex in A (R, K) such that H1(C(K)) =0 for
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q > n then every element x € H™(C(K)) for m =n,n—1 is represented by
a pair (f:C—D, g: X""T'—D) of morphisms in B (R, K) with g a global
equivalence.

PROOF (i) By 10.2 the homology assembly map

Hy,(Homyg gy (T, V°C)) = Hp,([VCO[#])
—— Hp(VRC(K)) = Hp(C(K))

is an isomorphism for m = n and an epimorphism for m = n + 1.
(ii) For any finite f.g. free (R, K)-module chain complexes B,C and r € Z
duality defines isomorphisms

H,.((B X V*C)(K)) = H.(Homgp g (TB,V>=C))

— H,((C BpV¥B)(K)) = H,(Homp x)(TC,V>B)) ;

(f:X7"I'B—D,g9:C—D) — (f:X7"TC—D',¢": B—D'")
with
D' = $7C(e(C)oTh:T*C—CaT (X 'C(f®g: X "TB®C—D))) .
Here, f’, g’ are inclusions and h: Y 1O(f @ g)—C is the projection. Let
now C' be such that H(C(K)) = 0 for ¢ > n, so that the dual chain complex
TC in A (R, K) is such that H,((TC)(K)) = H 4(C(K)) =0 for ¢ < —n.
By the proof of (i) the assembly map

Hfm(Hom(R,K)(TC’, VOOF)) = Hfm(Hom(R,K) (TF, VOOC))

s H_,((TO)(K)) = H™(C(K))

is an isomorphism for m = n and an epimorphism for m =n — 1.

The quadratic kernel of an n-dimensional normal map of pairs
(f,0): (M,0M) — (X,0X)
with a reference map X ——|K| was defined in Ranicki [145] to be an n-
dimensional quadratic Poincaré pair in A (Z[m (K)])

0. (f,b) = (COf)—C(f"), (60,41
with f': C(X)—C(M), df': C(0X)—C(dM) the Umkehr chain maps
between the cellular chain complexes of the covers M, X 6M X of M, X,
OM, 0X obtained by pullback from the universal cover K of K. Apply-
ing the algebraic Thom construction (as in 1.15) gives an n-dimensional
quadratic complex in A (Z[m (K)])

(C.9) = (C(F)/COf), 00" /v
with homology and cohomology Z[m (X )]-modules such that
H.(C) = K.(M,0M) = K" *(M),

H*(C) = K*(M,0M) =~ K,_,(M).

1%
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If m(0X) 2 m(X) =2 m(K), n > 5 and (f,b): (M,0M)—(X,0X) is
(i — 1)-connected with 2i < n an element z € K;(M) = H" *(C) can be
killed by geometric surgery on a framed embedded i-sphere S? in the in-
terior of M with a null-homotopy in X if and only if it can be killed by
an algebraic surgery on (C,) using an (n + 1)-dimensional quadratic pair
(x: C—X"""Z[m1 (K)], (59,%)) (as in 1.12). The following result analo-
gously relates algebraic surgery on a quadratic complex in A (R, K) to al-
gebraic surgery on the assembly in A (R[m(K)]). It is clear how to pass
from A (R, K) to A (R[r1(K)]), so only the ‘disassembly’ of a surgery in
A (R[m1(K)]) to a surgery in A (R, K) need be considered.

PropoOSITION 10.5 Let (C,v) be an n-dimensional quadratic complez in
A (R, K). For every (n + 1)-dimensional quadratic pair in A (R[m(K)]) of
the type

B = (f:C(K)—X " Rlm(K)], (60, 4(K)))

with 2 < n and HI(C(K)) = 0 for ¢ > n — i there exists an (n + 1)-
dimenstonal quadratic pair

B = (f:C—D, (5¢,¢))

in A (R, K) with the assembly B(K) homotopy equivalent to B’ relative to
the boundary (C(K),¥(K)).

PrROOF By 10.4 (ii) there exists an (R, K)-module chain map f:C—
Y=Y T which up to R[m;(K)]-module chain homotopy assembles to

fK) = f: C(K) — S H(VoT)(K) = " "R[m (K)] .
Define Z-module chain complexes
E = CQle(fW[f):W gz, (C KrC)(K) —
W ®ziz,) (B VT R X" 'VoI)(K)) ,

E = CA®(f'®f):W Qgz, (C RgC)(K) —

W ®ziz,) (B VO R[m1(K)] Kppr, () " VER[m(K)))) ,
E" = C(W ®zz, (E"'V*T Kz " "'V>T)(K) —

W @ziz,) (E" "V R[m1 (K)] R, 5y Z" "V R[m1 (K)]))

such that E” is chain equivalent to the algebraic mapping cone of the as-
sembly chain map F——F’, with an exact sequence

. — H.(E) — H.(EF') — H.(E") — H,_1(F) — ... (reZ).

By the identification of V°°T" with A(F|K|; R) and by 7.2 it is possible to
identify the R-module chain complex (V°I' K V°°I")(K) with the simpli-
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cial chain complex of a triangulation EK x x EK of the pullback
|EK| x|k |EK| = |EK xg EK|
= {(w,n) € E|K| x E|K| | p(w) = p(n) € |[K|} = QIK],
so that up to Z[Zs]-module chain homotopy
(VT Kr VI')(K) = A(EK xg EK;R) = AQK;R) = [VI[%] .
The homology
H(E') = Hi gtn—iy(W @zz,) AQK; R)—W ®zz,] R[m1(K)])
is the relative R-coefficient homology of the map
EZy %7, QK — EZy Xz, m(K) ; (z,w) — (z,[w])

with [w] € 7(K) = 71 (K) the path component of w € QK. Here EZs
is a contractible space with a free Zs-action, the generator T' € Zy acts on
the pointed loop space QK by the reversal of loops using

T:10,1] —[0,1]; t — 1—1t
and on the group ring R[m;(K)] by the involution inverting group elements.

By the usual Hurewicz theorem H,(E") = 0 for r < 2(n — i) + 1. Since
2i < n (by hypothesis) H,,+1(E") = 0, and the assembly map

Hp1(E) = Quia(f:C—E"'V>T) —
Hyi1(E') = Quyr(C—E"""R[m (K)))

is onto, allowing (§v',¢) € H,,+1(E’) to be lifted to an element (0v,1)) €
H,1(FE). For sufficiently large k > 0

(69, 9) € iIm(Qn41 (C——E"""V ) ——Qn41 (f: C—E""'V>T))
with C——X" VAT a restriction of f:C——X" V=T, so that (5¢’, 1)
can be further lifted to an element (61,%) € Q,y1(C—X""*VET). The
(n + 1)-dimensional quadratic pair in A (R, K)

B = (C—X"""V*T, (8¢, 7)))
assembles to an (n + 1)-dimensional quadratic pair in A (R[m1(K)])
B(K) = (C(K)——X"""VFT(K), (6¢(K), ¥ (K)))
which is homotopy equivalent to the given (n + 1)-dimensional quadratic
pair
B' = (f:C(K)—X"""Rlm(K)], (3¢, %(K)))
relative to the boundary (C(K), ¥ (K)).
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In conclusion:

ALGEBRAIC -7 THEOREM 10.6 The global assembly maps in quadratic
L-theory define isomorphisms

Lyn(R,K) — Ly(R[m(K)]) ; (C,¢) — (C(K),¢(K)) (n€Z).
PROOF Apply the criterion (x) of 3.24 to the maps induced in quadratic L-
theory by the global assembly functor A(R, K)——A(R[71(K)]), using 10.5
to lift surgeries in A (R[m1(K)]) to surgeries in A (R, K).

O
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§11. A-sets

The semi-simplicial sets in the original theory of Kan are abstractions of the
singular complex, with both face and degeneracy operations. The A-sets of
Rourke and Sanderson [155] are ‘semi-simplicial sets without degeneracies’.
The theory of A-sets is used in §12 to provide combinatorial models for
generalized homology and cohomology, and in §13 to construct the algebraic
L-spectra. In §11 only the essential results of the theory are recalled — see
[155] for a full exposition.

A A-set K is a sequence K (™) (n > 0) of sets, together with face maps

9 : KW — K=Y (0 <i<n)
such that
0i0; = 0;-10; fori<j.
A A-set K is locally finite if for each € K(™ and m > 1 the set
{y € KMt 19, 8;,...9; y=x for some iy,%g,...,0m}

is finite.

The realization of a A-set K is the topological space

5] = (JT A" xK™)/ ~

n>0
with ~ the equivalence relation generated by
(a,0:b) ~ (dia,b) (a€ A", be K™,
with 9;: A""1—A"™ (0 < i < n) the inclusion of A"~ as the face opposite
the ith vertex of A™.

An ordering of a simplicial complex K is a partial ordering of the vertex
set K which restricts to a total ordering on the vertices vg < vy < ... < vy,
in any simplex o = (vovy ...v,) € K™, As usual n = |o| is the dimension
of o, and the faces of ¢ are the (n — 1)-dimensional simplexes

8Z'O' == (U()Ul e o U3—1V541 - - .Un) (0 S 1 S n)
and their faces. In dealing with the standard n-simplex A™ write the vertices
as 0,1,2,...,n, ordering them by 0 <1 <2< ...<n.

A simplicial complex K is locally finite if every simplex is the face of only
a finite number of simplices.

ExaMPLE 11.1 A (locally finite) ordered simplicial complex K determines
a (locally finite) A-set K, with realization | K| the polyhedron of K.
O

The product of ordered simplicial complexes K, L is the simplicial complex
K ® L with

(K@L)(O) = KO x O
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such that the vertices (ag, bo), (a1,b1),- .., (an,b,) span an n-simplex o €
(K ® L)™ if and only if
apg<a1 <...<ap, by <by <...<by, (ar,b;) # (ar41,br41) (0 <7 < n)
and the sets {ag, a1,...,an}, {bo,b1,...,b,} span simplexes in K and L.

The geometric product of A-sets K, L is the A-set K® L with one p-simplex
for each equivalence class of triples

(m-simplex o € K, n-simplex 7 € L, p-simplex p € A™ @ A") |

subject to the equivalence relation generated by

(o,7,p) ~ (o',7,p') if there exist A-maps f: A" AT
g: A"—A" such that o = f*o', 7 = ¢"7', (f@9)(p) = ().

ExAMPLE 11.2 The product K ® L of ordered simplicial complexes K, L
agrees with their product as A-sets.
i

PROPOSITION 11.3 The realization of the geometric product K @ L of A-sets
K, L is homeomorphic to the product |K| x |L| of the realizations | K|, |L|

K@ L| = |K|x|L|.
O

A A-map f: K——L of A-sets K, L is defined in the obvious way, with
realization a map of spaces |f|: |K|—|L]|.

Let A} be the subcomplex of A™ obtained by removing the n-simplex
(0,1,...,n) and the (n — 1)-simplex (0,...,i— 1,4+ 1,...,n) opposite the
ith vertex. A A-set K is Kan if it satisfies the Kan extension condition that
every A-map AT — K extends to a A-map A" —K.

Given A-sets K, L define the function A-set L to be the A-set with
(L)) the set of A-maps K ® A" — L, with 9; induced from 9;: A"~ —
A",

PROPOSITION 11.4 For any A-set K and any Kan A-set L the function A-
set L¥ is a Kan A-set such that the realization |L¥| is homotopy equivalent
to the space |L|/K| of functions | K|—|L|.

i

A homotopy of A-maps fo, fi: K——L is an element g € (L¥)M) with
9;g=f (i=0,1), that is a A-map g: K ® A'——L such that

glz®i) = fi(z)e L™ (ze K™ i=01).

PRrROPOSITION 11.5 For any locally finite A-set K and any Kan A-set L ho-
motopy is an equivalence relation on the set of A-maps K——L. Realization
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defines a bijection

(K, L] — (1KLL 5 f — | f]
between the set [K, L] of homotopy classes of A-maps K——L and the set
[| K|, |L|] of homotopy classes of maps |K|—|L]|.
|

A A-set K is finite if there is only a finite number of pairs (n,z € K(™)
with z # 0. A A-map f: K——L is compactly supported if {x € K | f(x) #
() € L} is contained in a finite subobject J C K. Let [K, L]. denote the set
of compactly supported homotopy classes of compactly supported A-maps
K——L, and let L¥X denote the function space of compactly supported A-
maps K —L.

A A-set K is pointed if there is given a base n-simplex § € K™ in each
dimension n >0, with 9;) = (. In dealing with pointed A-sets write L¥X
for the function A-set of A-maps K ® A™——L which preserve the base
simplexes, and [K, L] for the pointed homotopy classes of pointed A-maps.
For any A-set K let K be the pointed A-set with

(K)™ = K™ u{p} (n>0).
The smash product of pointed A-sets K, L is defined by
KANL = KL/ (K0, Ul ®L) .
For a pointed Kan A-set K the pointed homotopy sets
T, (K) = [0A™ K] (n>0)
can be expressed as
T(K) = {t e KMoz =0 K"V 0<i<n}/~,

with the equivalence relation ~ defined by x ~ y if there exists z € K™+

such that
x ifi=0
() otherwise.
For n > 1 7, (K) is a group, with the group law defined by
Tn(K) X T (K) — m(K) 5 (a,b) — ¢
for a,b,c € K™ such that there exists d € K1) with

a ifi=0
_Jc ifi=1
Oid = b ifi=2

() otherwise.
For n > 2, 7, (K) is an abelian group, as usual.
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The following analogue of J. H. C. Whitehead’s theorem holds:

PROPOSITION 11.6 A map of locally finite pointed Kan A-sets f: K——L is
a homotopy equivalence if and only if it induces isomorphisms of homotopy
groups f*3 T (K)—_WT* (L)

i

DEFINITION 11.7 The mapping fibre of a map of pointed Kan A-sets f: K——
L is the Kan A-set M (f) with

M) =
{(z,y) € KM x LD 000 ... 0y =0 € L | 9, p1y = fo € LM}
0= M(S)™ — M(H"V 5 (2,y) — (9, Oiy) -

The map M(f)— K; (x,y)—x fits into a fibration sequence
f
M(f) — k-1 1

inducing a long exact sequence of homotopy groups

. — 1 (L) — T (M(f)) — Wn(K)—f—*—> (L) — ... .

DEFINITION 11.8 The loop A-set of a pointed Kan A-set K is the pointed
Kan A-set

OK = K5
with S the pointed A-set defined by
\(n) _ {8,@} ifn:1
(5%) _{{@} ifn#1,
such that

Tn(QK) = T (K) (n>0) .

QK is the mapping fibre of the unique map {*}—— K, so that
QK™ = {2 e K™Y |000,...0,0 =0 K©, 9,12 =0e K™} |

PROPOSITION 11.9 The realization |M(f)| of the mapping fibre M(f) of a
map f: K——L of pointed A-sets with K locally finite and L Kan is homo-
topy equivalent to the mapping fibre M (| f|) of the realization | f|: |K|—|L|.
In particular, the realization |QK| of the loop A-set QK is homotopy equiv-
alent to the loop space of the realization | K|

QK| ~ QK] .



11, A-5ETS 141

DEFINITION 11.10 An Q-spectrum
F = {F,,F,..—QF,|ncZ}

is a sequence of pointed Kan A-sets IF ,, together with homotopy equivalences
F,+1—QF ,. The homotopy groups of ' are defined by

Wn(F) = 7rn+k(F *k) (nak € Z,n +k > O) :
i
Note that the indexing of ' is the negative of the usual terminology for
an 2-spectrum
G = {G,,G,—0G,;1|neEZ}.

DEFINITION 11.11 The mapping cofibre of a map f: K——L of )-spectra of
Kan A-sets is the Q-spectrum of Kan A-sets

C(f) = {C(f)n =M(f: Kn-y—Ln-1)[n € Z} .

The mapping cofibre fits into a (co)fibration sequence of §2-spectra

I g
K — L — C(f)
with
g = inclusion :
Ln = QLn,1 = M({*}—%Lnfl) e C(f)n = M(f anl—HLnfl)
inducing a long exact sequence of homotopy groups

I g o
. — mp(K) — mp (L) — m(C(f) — o1 (K) — ...

DEFINITION 11.12 The suspension of an Q-spectrum K = {K,|n € Z} is
the Q-spectrum

YK = C(K—{x})
with
XK), = Kn—1 , mi(2K) = m,—1(K) (n€Z).

The mapping cofibre of a map f: K——L of Q2-spectra is just the suspen-
sion of the mapping fibre

C(f) = M(f).
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§12. Generalized homology theory

The connection between generalized homology and stable homotopy theory
due to G. W. Whitehead [189] and the language of A-sets are used to con-
struct combinatorial models for both the cohomology and homology groups
of a locally finite simplicial complex K with coefficients in an (2-spectrum

F.

DEFINITION 12.1 Let F be an Q-spectrum of Kan A-sets, and let K be a
[F-cohomology

locally finite A-set. The { compactly supported F-cohomology $)-spectrum

F-homology
of K is defined by

FE+ = {(F, )5+ |neZ}

Fet = {(Fn)e*|nez)
J

[F -cohomology

with homotopy groups the { compactly supported F-cohomology groups of

[F-homology
K

Hn(K;F) = W—H(FK-‘F) = [K-I-?F—n]
ch(K’F) = W*N(Fgﬂr) = [KJr,an]c

Wn(K+/\F) == li_I'I>17Tn+j(K+/\F,j) .
J

=
=
-
I

Write the F-cohomology €2-spectrum of K as
Ff+ = H(K;F) = {H"(K;F)|nc€Z},
with
H(KF) = (F)5 , n o(H(K;F)) = H'(K;F) .

The n-dimensional F-cohomology group F™(K) of a locally finite A-set K
thus has a direct combinatorial description as the set of homotopy classes
of A-maps Ky ——TF _,,, which may be called ‘F-cocycles in K’. Similarly
for the compactly supported F-cohomology group F7?(K). There follows
a similar description for the F-homology group of a locally finite ordered
simplicial complex K, as the set of cobordism classes of ‘F-cycles in K.
On the -spectrum level it is possible to replace K, A F by a homotopy
equivalent Q-spectrum H.(K;F) which is defined directly in terms of the
simplexes of K and .

Regard the standard n-simplex A" as the simplicial complex with one
k-simplex for each subset o C {0,1,...,n} of k + 1 elements. The bound-
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ary OA™ C A" is the subcomplex consisting of the proper subsets o C
{0,1,...,n}.

A finite ordered simplicial complex J has a canonical embedding as a

subcomplex in DA™ with m + 1 = |J(©)], namely
J — 9A™ T
if JO = {v;|0<1i<m}.

Let ¥™ be the simplicial complex with one k-simplex o* for each (m — k)-
simplex ¢ in A™*! with ¢* < 7% € ¥™ if and only if 7 < 0 € OA™HL,
The face maps in the A-set ¥ are such that

9 - (Z™F) — (mmE=D s or L 9i(0%) = (6;0) (0<i<k<m)
where

51‘ . (aAm+1)(mfk) - (8Am+1)(mfk+1) :

Ui—>i,

o = {0,L,cc.,m+ 1\{jo,j1, - i} — b0 = aUji (0<i<k).

The simplicial map

~

o — 9A™ T o — {0,1,...,m+1}\o

is an isomorphism of simplicial complexes. Regard 3" as the dual cell
decomposition of the barycentric subdivision (9A™1)’| with o* the star of
the barycentre o and (0;0)* C do* the embedding of the star of §;0 in the
link of &.

DEFINITION 12.2 The supplement of a simplicial subcomplex K C dA™+!
is the subcomplex K C ¥™ given by
K = {o"eX"|occdA™\K} .
i

The definition of the supplement goes back to at least Blakers and Massey
[10]. In particular

5Am+1:@7@22m
and if J C K C 9A™*! then K C J C ™.

DEFINITION 12.3 Let F be an Q-spectrum of Kan A-sets.
(i) Given a finite simplicial complex J define the Q-spectrum

H.(J;F) = {H,(J;F)|neZ}
by
Hn(J;F) = H"™(3", ;F),
using the canonical embedding J C 0A™*! (m+1 = |J(©)]), with homotopy
groups
o (H.(J;F)) = H™™(X™ J;F) (n€Z).
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(ii) Given a locally finite ordered simplicial complex K define the Q-spectrum

H.(K;F) = h_;}nH(J,F)
with the direct limit over finite subcomplexes J C K. The homotopy groups
are such that
m (H.(K;F)) = lim H™™(X™ J;F) (n€Z).

J
O

Given a A-set K let A(K) be the abelian group chain complex with
A(K),, the free abelian group generated by K and

dary : AK)y — A(K)p—1; © — Z(—)iﬁim .
=0

PROPOSITION 12.4 The Q-spectrum H .(K;F ) is homotopy equivalent to the
F -homology Q-spectrum K, AT, with

T(H.(K5F)) = mo(Ko AF) = Hy(K3F) (nez).

PROOF Since generalized homology commutes with direct limits, there is
no loss of generality in assuming that K is finite, with canonical embed-
ding K C 9A™*!. By construction H,, (K;F)®) consists of the A-maps
Y™ @ AP——TF,, _,, sending K ® AP to (). Approximate the reduced di-
agonal map S™—|K|; A (Sm/|F|) of G.W.Whitehead [189, p.265] by a
A-map ¥ —— K, A (X™/K), subdividing ¥™ if necessary — see Remark
12.5 below for an explicit construction. The A-map represents the m-cycle

Z c®0c* € (AK)AXE™ K))m
cEK

with adjoint the isomorphism A(K)™~* — A(X™, K) sending the elemen-
tary cochain of 0 € K to the elementary chain of o* € ¥ /K. Define a
map of Q-spectra H.(K;F)— K, AF by

H,(K;F) = (From,0)E"K)
(K AF )~ QMK AT )

— (K4 AF)p = lim (K4 AF ) s
J
((Em,F) ®Ap——>(Fn—m7@))

— E"MAAE—K A (E"/E)ANAE —K L AF,_) .

This is a homotopy equivalence by J. H.C. Whitehead’s theorem, since it
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induces the Alexander S-duality isomorphisms
T, (H.(K;F)) = H" (™ K;F) — 1, (K. AF) = H,(K;F) (n€Z).

O

REMARK 12.5 Regard a simplicial complex K as a category with one object
for each simplex ¢ € K and one morphism oc——7 for each face inclusion
o < 7. The homotopy colimit (Bousfield and Kan [13]) of a contravariant
functor

F: K — {pointed A-sets} ; 0 — F[o]
is the pointed A-set

FIK] = (UIE_[KA“" ® Flo])/ ~ ,

with ~ the equivalence relation generated by

(i) fra®b~a® f*b for any morphism f:o—7 , a € Al°l | be F[r],
(i) Al @0 ~ Al7l @ ¢ forany o, 0’ € K .

Given a subcomplex J C A™*! define a contravariant functor
ym/J ifoeld

G : OA™ — [pointed A-sets} ; 0 — G[o] = {
0 otherwise

with homotopy colimit

GOA™TY] = J A (Z™/)T) .
Quinn [137] proved that the homotopy colimit F[A™*1] of the dual simplex
functor

F: OA™TY — {pointed A-sets} ; 0 — o* = A™I°l

is a subdivision of 3™, allowing the construction of a combinatorial approx-
imation of the reduced diagonal map S™——|J|+ A (S™/|J]) as the A-map

R[OA™TY : F[OA™ T = ¥™ — GOA™ ] = J, A (2™/))
induced by the natural transformation h: F——G with
hlo] = o*: Flo] = A™ Il — Glo] = ¥™/T (0 € J)

the characteristic A-maps.
m

DEFINITION 12.6 An n-dimensional F-cycle in an ordered simplicial com-
plex K is a pair (J,z) with J C K a finite subcomplex and z a 0-simplex

¢ € im(H, (J;F)O—H,(K;F)),
that is a collection

z = {z(o) eF" 1V 5e )

m
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defined using the canonical embedding J C OA™*!, such that

8Z$‘(U) _ {%(510') if 9,0 € J

0<i<m-—lol).
0 fg0gy (Cism=lol

O

In dealing with cycles (J, x) the finite subcomplex J C K will usually be
omitted from the terminology. For finite K it is always possible to take
J=K.

DEFINITION 12.7 A cobordism of n-dimensional F-cycles (Jo, zo), (J1,21)
in K is a l-simplex y € H,,(K;F )™M such that d;y = z; (i = 0, 1), that is a
compactly supported A-map

y: (" NQAY — (Fo_pm,0) (J = JoUJ)
such that

yo®i) = (o) eF" 1D (o egi=0,1).

O

PROPOSITION 12.8 Cobordism is an equivalence relation on n-dimensional
F -cycles in K, such that the set of equivalence classes is the n-dimensional
F -homology group H,(K;F).
PRrROOF Immediate from 12.4.

i

EXAMPLE 12.9 Given an abelian group 7 and an integer n > 0 let K(m,n)
be the Kan A-set defined by forgetting the degeneracies in the Eilenberg—
MacLane simplicial abelian group obtained from the abelian group chain
complex C' with

by the Kan—Dold construction. Let F be the Q2-spectrum defined by
F, = K(r,—n) (n<0), =0(n>0).

An n-dimensional F -cycle (J, ) in a simplicial complex K is determined by
a finite subcomplex J C K, with

x = {z(0)eF" Vg ety (m+1=J0)
determined by a finite collection of group elements
z(o) € Fﬁzm,;%”) =7 (0 € K™)
corresponding to an n-cycle

x = Z xz(o)o € Ap(K;m)

occK ()
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representing a homology class
x € Hy(K;F) = H,(K;n) .
i

The cycle approach to F-homology generalizes to the relative case. Let
(K,L C K) be a pair of ordered locally finite simplicial complexes. For
any finite subcomplex J C K with m 4+ 1 = |J()| the supplements of .J
and J N K are such that J C JNL C Y™, and H.(L;F) C H.(K;F) .
An n-dimensional F -cycle in L is an n-dimensional F -cycle (J, z) in K such
that 2(0) =0 for o € J\(J N L).

DEFINITION 12.10 (i) The relative F-homology Q-spectrum of (K, L)
H.(K,L;F) = {H,(K,L;F)|neZ)}
is defined by
H,o(K,L;F) = lm(F o, 0) 59 ez,

J
with the direct limit taken over finite subcomplexes J C K. The relative

F -homology groups of (K, L) are the homotopy groups of H.(K, L;TF)
m(H.(K,L;F)) = H,(K,L;F) (n€?Z).

(ii) A relative n-dimensional F -cycle (J,z) in (K, L) is an element of

Hn(K,L;F)(O), that is a finite subcomplex J C K together with a col-

lection
z = {z(c) eF" Vg e NINL)

such that
(o) = {x((gia) if 6,0 € J\(JNL)

0 if 6,0 ¢ J (O<ism=lol).

By analogy with 12.8:

ProrosiTiON 12.11 Cobordism of relative cycles is defined as in the abso-
lute case, and H, (K, L;F) is the abelian group of cobordism classes. The
fibration sequence of 2-spectra

H.(;F) — H.(K;F) — H.(K,L;F)
induces the long exact sequence of F -homology groups
.— H,(L;F)— H,(K;F)— H,(K,L;F)— H,, _1(L;F)— ....

PROOF As in the proof of 12.4 it may be assumed that K is finite, with a
canonical embedding K C OA™*!. The homotopy equivalences QF ,,_,,_1

—TF ,,_,» given by the Q-spectrum F and the excisive inclusion
(LAY, KQA'UL®OAY) — (" AL K@ A'ULRJ A UL @0, A)
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may be used to define homotopy equivalences
H, (K, L;F) = (Fp_pm, 0L K)

= (QFn—m—lym)(z’F)
(F s @)(Z® A K@ A'UL ®0AY

(Fr1,0)E" @A K@AUL® QA US™ @ 1A
= mapping cofibre of H,,(L;F) — H,, (K;F) ,

obtaining a homotopy equivalence between H.(K, L;F) and the mapping
cofibre of the inclusion H.(L; F)—H.(K;F).
i

EXAMPLE 12.12 Consider H, (K, L;F) in the special case L C K C 0A™ !
with K = L U A* obtained from L by attaching a k-simplex along a sub-
complex OAF C L. An n-dimensional F-cycle x in (K, L) is an element

z(AF) € Fgﬁ;f) such that 9;x(A*) =0 for 0 <i < m — k, and the map

Hy(K,L;F) — Ty 1 (F o) = mon(F); 2 — z(AF)

is an isomorphism.
O

The Kan extension condition will now be used to define the assembly map
A: H.(K;F({*})) — F.(K')
for any covariant functor
F : {simplicial complexes} — {Q-spectra} ; K — F (K) .

Let ATt ¢ OA™*! be the subcomplex obtained by removing the face
A™ < A1 opposite the vertex m + 1, such that

DAL = AMFLYA™ | AT AA™ = gAML = 9A™
The inclusion
(Am—l—l’aAm—i—l) C (Am—l—l,gAm—l—l)

is a homotopy equivalence such that for a Kan A-set F the induced homo-
topy equivalence

(@, 0)(A"THOATT) 2 gy (AT OATT)

admits a section

g: ®,@)A"TLOATT (g g (AT OATH)

verifying the Kan extension condition. The inclusion
(A™, 0A™) C (A™TL gA™ T
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is a homotopy equivalence, inducing a homotopy equivalence

~

v @, 0)ATTHONTT) ) (AT 08T

PROPOSITION 12.13 For a Kan A-set F the composite A-map
m-+1 m-+1 I6] m-+1 m-+1
N (F, @)(Am, OA™)

is a homotopy equivalence of Kan A-sets.
PROOF Both 3 and v are homotopy equivalences.

o =

i
The geometric realizations of A™*! and A™ may be identified by means
of the homeomorphism
|Am+1| SN |Am| ;
()\0, )\1, ceey )\m—l—l) —

Mo+ Ama1/(m+ 1), A + Asr/(m+ 1), .00, A + A1 /(m + 1))
m—+1
O< Ao AL A1 1, > A =1, AAi. A = 0),
i=0
which maps OA™*! to OA™. This identification is used to visualize a as
sending a A-map
f (AL AT — (F, 0)
to the A-map
affy = | flo): (A™0A™) — (F,0)
oceAm+1
obtained by assembling together the pieces f(o) € F 7D glueing by the
Kan extension condition. N
Given an Q-spectrum F let ©:F,, — QF ,,_; (n € Z) be the given homo-
topy equivalences. Given a subcomplex K C A™*! define A-maps

6: Ho(K:F) = (Fpm,0)E"E)

— (Fr—m—1, @)(Am+2’ OA™T) (meZ)
by sending a A-map
f:E™K)®@ AP — (F,_p,0)
to the A-map
O(f) : (A2 2) @ AP — (F y_py—1,0) ;
O(f(c*@p)) ifo={0,1,....m+2\7 e K

TR U —
H { 0 otherwise .
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DEFINITION 12.14 Given an -spectrum F and a locally finite simplicial
complex K define the assembly to be the map of {2-spectra

A:H.(K;F) = llimH.(;F) —TF
v
using the canonical embeddings J C OA™T! of the finite subcomplexes
J C K, with

@ m-+2 m-+2
A H(JiF) — (F o, 0)A" T 0A™T)
a m m m—+41y—1
(A7) S

= Q"tr,_ .1 — F,,
inducing assembly maps in the homotopy groups
A:m,(H.(K;F)) = H(K;F) — m,(F) (neZ).
i
In terms of the homotopy equivalence H.(K;F) E—>K+ AT of 12.4 the
assembly A is just the map of the F-homology Q-spectra Ky AF —{*}  AF

induced by the unique simplicial map K—{x}
A:H(K;F) ~ K ANF — {x}. AF = F .
An element x € H,,(K;F) is represented by an F-cycle (J C K, x) with
= {z(0)eF"VoecT}.

x
Visualize A: H,(K;F)—m,(F ) as assembling the components z(o) to an
element

Az) = (J (o) eFY
ced
representing

A(z) € H,({x};F) = m(F,) = m(F) .
For a subcomplex J C 9A™T! and o € J let J(0) C ™ be the subcom-

plex consisting of the dual simplexes 7% € ™ of the simplexes 7 € 0A™ !
such that either 7 ¢ J or o £ 7 € J, that is

J(o) = J\stj(o) T E™
with stj(o) ={p€ J|o < p}. If o < p € J then J(p) C J(0), and
U Je) = 5.
oeJ
The relative simplicial pair (J(o),J) has one (m — |7|)-simplex 7* for each
T € sty(0), with

0;(t*) = (1) €d(o) (0<i<m—]|7]).

DEFINITION 12.15 Given a covariant functor

F : {simplicial complexes} — {Q-spectra} ; K — F (K)
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define the local {IF }-coefficient homology Q-spectrum of a subcomplex K C
dA™TL
H.(KG{F}) = {Hn(K;{F})|ncZ}

by

: — lim L J(o),J

H,(K: {F}) = lm lim (F, (Do, 7)),0)/@) 7).

J ocJ
The homotopy groups of H.(K; {F }) are the local {FF }-coefficient homology
groups of K

Hy(K{F}) = m(HL.(K;{F})) (n€Z),
which may also be written as H,,(K;{F (D(o, K))}).

m

EXAMPLE 12.16 If F is constant, with F (K) = F for all K, then H . (K;{F })
is the F-homology spectrum H.(K;F) of 12.3, with

H,(K;{F}) = lim (F,_u(D(o, K)),0)E() )

- (Fnim,@)(Em,F) = H,(K;F) (neZ).
O

DEFINITION 12.17 An n-dimensional {F }-cycle in a simplicial complex K
is an element of H,, (K; {F })(©), that is a collection
t = {2(0) €F p_p(D(o, )™ 1D |6 e T}
with J C K a finite subcomplex and J C A™*! the canonical embedding,
such that
(0 if 9 :
Dia(0) = fix(d;0) %(506,] 0<i<m—|o])
Q) if (51'0' ¢ J
with f;:F (D(d;0,J))—F (D(o,J)) the map induced by the inclusion
D(6,0,J) C D(o,J).
O
As in the constant coefficient case (12.6,12.8) there is a corresponding
notion of cobordism, such that H,(K;{F}) is the cobordism group of n-
dimensional {F }-cycles in K.

DEFINITION 12.18 The local {IF }-coefficient assembly is the map of Q-
spectra

A: H.(K;{F}) — F(K')
given by the composite

A:H.(K: {F}) — H.(K;F(K') — F(K')
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of the forgetful map H.(K; {F })—H .(K;F (K’)) induced by all the inclu-
sions D(o, K) C K’ (0 € K) and the assembly A:H .(K;F (K'))—F (K’)
of 12.14.
O
A functor

F : {simplicial complexes} — {Q-spectra} ; K — F (K)

is homotopy invariant if a homotopy equivalence f: K — L induces a ho-
motopy equivalence of ()-spectra

~

f:F(K) — F(L).

For such F the forgetful map from local [ -coefficient homology to constant
F ({*})-coefficient homology is a homotopy equivalence

H.(K;{F}) — H.(K;F({}))
since each of the unique simplicial maps D(o, K)—{*} (0 € K) is a ho-
motopy equivalence.
DEFINITION 12.19 The constant F ({x})-coefficient assembly for a homotopy
invariant functor F and a subcomplex K C A™*! is the map of Q-spectra
given by the local {IF }-coefficient assembly A of 12.18, using the homotopy
equivalences

H.(K;{F}) —A4— F(K')

% F

H.(K;F ({+}) —4— F(K).

REMARK 12.20 The assembly map A:H.(K;F ({*}))—F (K) of 12.19is a
combinatorial version of the assembly map of Anderson [4] and Quinn [137],
which is defined as follows: a functor

F : { pointed topological spaces} — {spectra}
induces a natural transformation of function spectra
X — xib F()()F({*}) :
with adjoint the assembly map
A:H.(X;F({x}) = XANF({*}) — F(X).
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EXAMPLE 12.21 Let Q°Y(K) = {Q%°(K), |n € Z} be the Q-spectrum
with Q99 (K),, the Kan A-set defined by

Q%9 (K)®) = { (n + k)-dimensional smooth oriented manifold k-ads
(M;00M,01 M, ..., 0 M) such that
OMNIMN...NoM = 0, with a map M—|K]|}

with base simplex the empty manifold k-ad (). The homotopy groups
T (QO(K)) = Q9(K) (n>0)
are the bordism groups of maps M ——|K| from closed smooth oriented
n-dimensional manifolds. The functor
059 . {simplicial complexes} — {Q-spectra} ; K — Q%9(K)
is homotopy invariant, since for any k-simplex M in Q%9(K), there is
defined a (k+1)-simplex M ®1I in Q99 (K ® A'),,, so that the two inclusions
K—K ® A'! induce homotopic A-maps Q%°(K)—Q%°(K @ A!). The
assembly map defines a homotopy equivalence
A H(KQ29({+)) — Q%K)
a combinatorial version of the Pontrjagin—Thom isomorphism and the Atiyah

formulation of bordism as generalized homology. The assembly of an n-
dimensional Q%9 ({x})-coefficient cycle in a subcomplex K C JA™ 1

z = {M(o)" !0 e K}
is a map
Afw): M™ = | M(o) — |K| = |K'|
cEK
from a closed smooth oriented n-manifold such that

A(x) 'D(0,K) = M(o) (0 €K).

The smooth oriented bordism Q-spectrum Q29°(K) is just a combinatorial
version of the Thom suspension spectrum |K|y A MSO , with

MSO = {MSO(j), EMSO(j)—MSO(j+1)|j >0},
O7O(K), > Ho(K;Q79({+})) = lim QP (|K[, A MSO(j)) (n€Z).

J
O
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§13. Algebraic L-spectra

The algebraic L-spectra consist of Kan A-sets with homotopy groups the
algebraic L-groups. Given an algebraic bordism category A = (A,B,C)
there will now be defined an 2-spectrum

L'(A) ={L"(A)[neZ}
L.(A) ={Ln,(A) [neZ}
NL'(A) = {NL"*(A) [n € Z}

symmetric
of Kan A-sets with homotopy groups the { quadratic L-groups of A
normal
m(L'(A) = L™(A)
mn(L.(A)) = L,(A) (neZ).
mn(NL'(A)) = NL™(A)
L (A)
The ¢ L.(A) -cohomology (resp. homology) groups of a simplicial complex
NL'(A)

K will be identified with the ¢ quadratic L-groups

{ symmetric
normal

H"(K;L(A) = L7(A(K))
H"(K;L.(A) = Ln(A"(K))
(K NL'(A)) = NL™"(A*(K))

(KGL(A) = L™(AL(K))
(e § HLSL(A) = Lo(0.(K) )
Ho(K;NL'(A)) = NL(A.(K))
of the algebraic bordism category A*(K) (resp. A.(K)) of §5. The various
algebraic L-spectra are used in Part II to express the geometric properties
of bundles and manifolds in terms of L-theory.

The algebraic surgery classifying spaces and spectra are analogues of the
geometric surgery classifying spaces and spectra, which arose as follows:

REMARK 13.1 (i) The classifying space G/O for fibre homotopy trivialized
vector bundles and its PL analogue G/PL first appeared in the surgery
classification theory of exotic spheres (Kervaire and Milnor [86], Levine [91,
Appendix]). The fibration sequence

PL/O — G/O — G/PL
induces an exact sequence

. —mp4+1(G/PL) — 7, (PL/O) — 7,(G/O) — 7, (G/PL) —
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which for n > 5 is isomorphic to the differentiable surgery exact sequence
= Lny1(Z) — SP(S™) — 1, (G/O) — L, (Z)

with 7, (PL/O) = S°(S™) = 6,, the groups of h-cobordism classes of n-
dimensional exotic spheres, and m,(G/PL) = L,(Z) the simply-connected
surgery obstruction groups. An exotic sphere X" is sent by 7, (PL/O)—
Tn(G/O) to the classifying map S™ ~ ¥"——G/O for the fibre homotopy
trivialization of its stable normal bundle determined by the trivial Spi-
vak normal fibration. This is also the classifying map of the normal map
(f,b) : ¥"——S" with f : ¥"——S5™ a homotopy equivalence representing
the element [f] € SP(S™) of the differentiable structure set, corresponding
to [X"] € O,,.

(ii) The topological surgery classifying space G/TOP first appeared in the
work of Casson [34] and Sullivan [167] in which block bundles were used
to obtain the obstruction to deforming a homeomorphism f : M——N of
compact n-dimensional PL manifolds (n > 5) to a PL homeomorphism

K(f) = Klvm — frow) € H(M; Zy)
disproving the manifold Hauptvermutung that every homeomorphism of PL
manifolds is homotopic to a PL homeomorphism — see Wall [180,§17A],
Armstrong, Cooke and Rourke [5]. The classifying spaces BPL, BTOP,

BG for PL bundles, topological bundles and spherical fibrations are related
by a commutative braid of fibrations

with k € [BTOP, K(Zy,4)] = H*(BTOP;Zy) the Kirby—Siebenmann in-
variant.

(iii) Quinn [130] defined the geometric surgery spectrum L.(K) of a space
K, with homotopy groups

me(L.(K)) = Li(Z[mi(K)]) -
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The algebraic surgery spectrum L.(R) of a ring with involution R with
m«(L.(R)) = L.«(R)
was first constructed using forms and formations (Ranicki [138], [139]), with
L(K) ~ L.(Zm(K)]) .
The simply-connected surgery spectrum L.({x}) ~ L.(Z) is the 4-periodic
delooping of G/TOP given by the characteristic variety theorem of Sullivan
[168], with
Lo({s}) = Lo(Z) ~ Lo(Z) x G/TOP .

See Ranicki [143],[146], Levitt and Ranicki [94], Weiss and Williams [188]
for other accounts of the quadratic L-spectra. Also, see Siegel [162], Goresky
and Siegel [64], Pardon [125], Cappell and Shaneson [28] and Weinberger
[185] for some of the connections between L-theory, the characteristic variety

theorem, intersection homology theory and stratified spaces.
i

As before, let A = (A, B, C) be an algebraic bordism category.
L™ (A)
(A) (n € Z) be the pointed A-set with m-
NL™(A)
symmetric
simplexes the n-dimensional {quadratic complexes in A*(A™), with the
normal

DEFINITION 13.2 Let

zero complex as base m-simplex (). The face maps are induced from the
standard embeddings 9;: A™ ! ——A™ via the functors

(0" AT(A™) — A*(A™)
i
DEFINITION 13.3 Given a pair of locally finite simplicial complexes (K, J C
K) let
AN(K,J) = (A"(K,J),B*(K,J),C*(K,J))
be the algebraic bordism category defined by the full subcategory of A*(K)
(5.1) with objects C such that C(c) =0 for o € J.

m
L™(A)
ProproSITION 13.4 < L, (A) is a Kan A-set with homotopy groups and
NL™(A)
loop A-set
Tm(L"(A)) = L™F(A) QL"(A) = L"*1(A)
Tm(Ln(A)) = Limin(A) Ln(A) = Lnga(A)

)
mm(NL*(A)) = NL™7(A) QNL”(A) = NL"1(A)



1o. ALGEBRAIC IL-S5PECIRA 1o

formeZ, m+n>0.

PRrROOF Only the quadratic case is considered, the symmetric and normal
cases being entirely similar.

The Kan extension condition is verified using the algebraic analogues of
glueing and crossing with the unit interval I = [0, 1]. See Ranicki [146, §1.7]
for the glueing of quadratic complexes. Crossing with I corresponds to the
following chain complex construction. A pair (C,0C') of chain complexes in
the additive category A is a chain complex C' in A which is expressed as

de = <d30 fﬁ) $Cr = 06, ®Cr — Cp = 90, & Cp
C

so that AC is a subcomplex of C and C = C/9C is a quotient complex.
Define

(D,0D) = (C,0C)® (1,01)
to be the pair with

dac ec ec 0
0 de 0 (=)
0 0 ds ()
0 0 0 dg

D, = 3C, ®C, ®Cp ® Cry
—— Dy = C_ 1 ®Cr1 ®Cry @ Cry
oD, = 0C, & C,&C, , D, = Cry .
Let C ® {0},C ® {1} be the subcomplexes of D defined by
(C®{0}), = {(,9,0,0) € D, |(z,y) € C, = C, & C,},
(C®{1}), = {(2,0,y,0)€ D |(2,y) € C, =0C, ®C} } .

The inclusions

dp =

ir: C®{k} — D (k=0,1)

are chain equivalences, with chain homotopy inverses ji: D—C ® {k} de-
fined by

(@,y+20,0) .. _ [0
(z,0,y+20 |1~

Let A™ C A™ be the subcomplex of A" obtained by removing the in-
teriors of A™ and of a face A™~! < A™. Define the extension of a chain
complex C' in A*(A™) to a chain complex C in A*(A™) by

(C7(A™), T (9A™)) = (C™(A™),C"(9A™)) @ (1,01) ,

Joi Dy (C® Ry 5 (g, 2y w) — {
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with
(C(o) ®{0}), if o € A™
C(o), = (C* (A @ {1}), ifo=Am"
C*(A™),_4 ifo =A™ .

Use the identification of pairs of abelian group chain complexes
(W C) [A™], (Wi, C)*[0A™]) = ((WerC)[A™], (Wi, C)*[0A™]) @ (I, 01)
to define the extension of an m-dimensional quadratic complex (C, ) in
A*(A™) to an n-dimensional quadratic complex (C, %)) in A*(A™) by
¥ = (Jo)u(¥) € (WrC)*[A™], .

The homotopy group m,,(IL,(A)) is the group of equivalence classes of

m-simplexes (C, 1) in L,,(A) such that
0;(Cy,) =0 (0<i<m).

Such simplexes are n-dimensional quadratic complexes (C,v) in A*(A™,

OA™), which are just (m + n)-dimensional quadratic complexes in A. The
homotopy of simplexes corresponds to the cobordism of complexes, so that

Tm(Ln(A)) = Lpgn(A) (m>0,n€Z).

Let (ig,i1,...,4,) denote the r-simplex of A™ with vertices ig,i1,...,1,
given by a sequence 0 < ig < i1 < ... <12, < m. The standard embedding
Oma1: A™ C A™F! identifies A™ with the face of A™*! opposite the vertex
m+1. By definition, an m-simplex of QL,,(A) is an n-dimensional quadratic
complex (C,v) in A*(A™L A™ U {m + 1}), so that

C((m+1)) = 0,

Clig i1, ir)) = 0 (0<ig<ip <...<ip <m).
Except for terminology this is the same as an (n + 1)-dimensional quadratic
complex (C’,4') in A*(A™) with
C'((igy i1, .- ip)) = C((igyit, .. ipmA1)) (0< i <iy <...<ip <m).
This is an m-simplex of LL,,41(A), so that there is an identity of A-sets

QL,(A) = Lp+1(A) .

O
symmetric
DEFINITION 13.5 The ¢ quadratic L-spectrum of an algebraic bordism
normal

category A is the Q-spectrum of Kan A-sets given by 13.4

L'(A) = {L"(A)|n€Z}
L.(A) = {L.(A)|neZ}
NL'(A) = {NL™(A)|n€Z}
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with homotopy groups the L-groups of A

T(L'(A)) = mun(L7F(A)) = L™(A)
{WH(L.(A)) = Tp+k(L_k(A)) = L,(A) (nyk € Z,n+k=>0).
T(NL'(A)) = mpn(NL7E(A)) = NL™(A)

O

ExAMPLE 13.6 For any additive category with chain duality A and the
algebraic bordism category of 3.3

A(A) = (AB(A),C(A))

symmetric symmetric
the ¢ quadratic L-spectrum of A(A) has homotopy groups the < quadratic
normal normal

L-groups of A

T (L' (A(A))) = L*(A)
{W*(L(A(A))) = L.(A)
T (NL'(A(A))) = NL*(A) .

Also, by 3.6
m(L'(AA))) = L*(A) = NL*(A) = m(NL(A(A))),

so that the forgetful map defines a homotopy equivalence

~

NL'(A(A)) — L'(A(A)) .

i
symmetric
PROPOSITION 13.7 The {quadratic L-spectrum of A*(K) (resp. A« (K))
normal
L*(A)
is the ¢ IL.(A) -cohomology (resp. homology) spectrum of the locally finite
NL(A)

stmplicial compler K

{JL'(A*(K)) = H'(K;L(A))
L.(A*(K)) = ]I-]I'(K-IL A))
NL- (

(A (K)) = H- L(A))
L'(A«(K)) = H.(K;L'(A))
(resp {IL (A«(K)) = H.(K;L.(A)) )
NL'(A.(K)) = H.(K;NL(A))

so that on the level of homotopy groups
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LM(A*(K)) = H™"(K;L(A))
Ln(A*(K)) = H™"(K;L.(A))
NL"(A*(K)) = H"(K;NL'(A)) ,
LM(A(K)) = Hn(K;L(A))

(resn. § oA (K)) = L) )

PROOF As in 13.4 consider only the quadratic case, the symmetric and
normal cases being entirely similar. An n-dimensional quadratic complex
in A*(K) is a collection of n-dimensional quadratic complexes in A*(A™),
one for each m-simplex of K, with the common faces in K corresponding to
common faces of the quadratic complexes. Thus the A-maps K —IL, (A)
are just the n-dimensional quadratic complexes in A*(K). For each p > 0
identify

L, (A*(K))®) = {n-dimensional quadratic complexes in A*(K)*(AP)}
= {n-dimensional quadratic complexes in A*(K ® AP) }
= {A-maps (K ® AP),—L,(A)} = H"(K;L.(A)®

and so
L,(A*(K)) = L,(A)%+ = H"(K;L.(A)) .

As in 12.4 there is no loss of generality in taking K to be finite, so that there
is an embedding K C OA™*! for some m > 0, and the supplement K C ¥™
is defined (12.2). There is a natural one—one correspondence between chain
complexes C' in A ,(K) and chain complexes D in A*(X™, K), with

C(o) = D(o*) (c € K) , [Ol[K] = S™[D]*[¥™, K] .
For each p > 0 identify
L, (A (K))? = {n-dimensional quadratic complexes in A, (K)*(AP)}
= {(n — m)-dimensional quadratic complexes in
A (Z™ @ AP K @ AP) ),
= H" ™2™, K;L.(A)® = L,_,(A* (2™, K))®
= {A-maps (X", K) @ AP—L,_,,(A) }
= H,(K;L.(A)®
and so
La(Au(K)) = Ho(K;L(A)) |



1o. ALGEBRAIC IL-S5PECIRA 14l

REMARK 13.8 The identification HY(K;L'(A)) = L°(A*(K)) is an ana-
logue of the identification due to Gelfand and Mishchenko [60] (cf. Mishch-
enko [116,4.2])
K(X) = L°(C(X,0))
of the topological K-group of complex vector bundles over a topological
space X with the symmetric Witt group of the ring C(X, C) of continuous
functions X——C with respect to the involution determined by complex
conjugation z——Z2. See Milnor and Husemoller [113, p. 106] for the corre-
sponding identification of the real K-group
KO(M) = L°(C*(M,R))

with M a differentiable manifold and C>°(M,R) the ring of differentiable
functions M —R with the identity involution.

i

PROPOSITION 13.9 Given an algebraic bordism category A = (A, B, C) let

~

A= (AB,B).
(i) The exact sequence of 3.10
14T J -~ B
. — Lp(A) — NL"(A) — NL"(A) — L,—1(A) — ...
is the exact sequence of homotopy groups of a fibration sequence of 2-spectra
14T J ~
L.(A) — NL'(A) — NL'(A) .

(ii) If @*(C’) = 0 for C-contractible C then the forgetful map defines a
homotopy equivalence of LL-spectra

NL(A) — L(A) .
PROOF (i) The one-one correspondence between the C*(A™)-equivalence
classes of (normal, quadratic) pairs in A*(A™) and the B*(A™)-equivalence
classes of normal complexes in A*(A™) given for any n > 0 by 2.8 (i) defines
a homotopy equivalence of {2-spectra

(mapping cofibre of 1 4 T L.(A)—NL'(A)) — NL'(A) .
(ii) Immediate from 3.5.

O

PROPOSITION 13.10 The relative symmetric L-theory exact sequence of 3.8
for a functor F: A— A\’ of algebraic bordism categories

F
. — L""NF) — L"(A)— L"(A) — L"(F) — L" ' (A) — ...
is the exact sequence of homotopy groups of a fibration sequence of 2-spectra

L(A) —— L(A)) — L'(F)
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and similarly for quadratic and normal L-theory.
PROOF Let L'(F) = {L"(F)|n € Z} be the Q-spectrum of Kan A-sets
with homotopy groups 7, (L'(F')) = L*(F) defined by

L"(F) = mapping cofibre of F:L"(A)—L"(A") .

O

ProPOSITION 13.11 Let A be an additive category with chain duality, and
let (BCB(A),CCB,DCC) be a triple of closed subcategories of B (A).
(i) The exact sequence of 3.9 (i)
. — L"(A,C,D) — L™(A,B,D) — L"(A,B,C)
0
— L™ YA, C,D) — ...

i1s the exact sequence of the homotopy groups of symmetric LL-spectra in a
fibration sequence

L'(A,C,D) — L'(A,B,D) — L'(A,B,C) .

Similarly in the quadratic and normal cases.
(ii) The braid of exact sequences of algebraic L-groups of 8.13

PN

L. (A, C,D) NL"(A,B,D) NL"(A,B,B)
L, (A,B,D) NL"(A,B,C)
NL"+1(A,B,B) L,(A,B,C) L,_1(A,C,D)

consists of the exact sequences of homotopy groups of algebraic IL-spectra in
a braid of fibration sequences
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N TN

(A,C,D) NL(A,B,D) NL'(A,B,B)
(A, B, D) NL(A,B,C)
(A, B,C)

PROOF (i) Inclusion defines a functor F: (A, B, D)— (A, B, C), so that L. (F')
is defined as in 13.10. The inverse isomorphisms of quadratic L-groups de-
fined in 3.9 (ii)

L. 1(A,C,D) L.(F)

«—

are induced by inverse homotopy equivalences of quadratic LL-spectra
YL.(A,C,D) " L.(F)
defined by
YL, (A, C, D)™
= L,—1(A,C, D)™ = L,_1(A*(A™),C*(A™), D*(A™)®
— Ly (F)™ = Ly (F*(a™)© ;
(C, 1) — algebraic mapping cylinder of (C—0, (0,%)) ,
Lo (F)™ = Ly (F*(Aa™)©
— YL, (A, C, D)™ = L,_i(A*(A™),C*(A™),D*(A™)© ;
(f:C—D, (69, ¥)) — (C",¢)
with (C’,1)") the quadratic complex obtained from (C, 1) by algebraic sur-

gery on the quadratic pair (f: C——D, (dv, 1)), and F*(A™) the functor of
algebraic bordism categories

FE(A™) - (A*(A™),B*(A™),D*(A™)) — (A"(A™),B*(A™),C*(A™)) .
(ii) The fibration sequences through NL'(A,B,B) are given by 13.9, and
those through L. (A, C,D) by (i).

O
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§14. The algebraic surgery exact sequence

Given a commutative ring R and a simplicial complex K the visible sym-
metric L-groups VL*(R, K), the generalized homology groups of K with
coefficients in the various L-theories of R and the quadratic L-groups L. (
R[m (K)]) are related by a commutative braid of exact sequences

Sui1(R, K) Hy (K L (R)) H, (K;NL'(R))
\ 1% X /
Hn(K;IL (R)) VL”(R, K)
/’ X‘ 1% X
Hyi1 (K NL(R)) Lo(R[m (K))) Su(R, K)
0

with the ‘quadratic structure group’
Sn(R7 K) = Lnfl(A (Ra K)a C (Ra K)a C (R)*(K))

defined to be the cobordism group of (n — 1)-dimensional quadratic com-
plexes in A (R, K) which are globally contractible and locally Poincaré.

The ‘algebraic surgery exact sequence’ is the exact sequence
. — Hy(K;L.(R)) — Ln(R[m (K)]) — Su(R, K)

— H, 1(K;L.(R)) — ...
relating the generalized homology groups H.(K;L.(R)), the surgery ob-
struction groups L. (R|[m(K)]) and the quadratic structure groups S, (R, K).
The algebraic characterization in §18 of the topological manifold structure

sets actually requires the ‘1/2-connective’ version of the algebraic surgery
exact sequence for R = 7Z, and this will be developed in §15.



14. 1Ok ALGEBRAIC SURGERY BRAACT SEQUENCH 14J

symmetric
DEFINITION 14.1 The < quadratic L-spectrum of a ring with involution

normal

R

(R) = {L"(R)[n€eZ}
{ (R) = {L,(R)[n€Z}
NL'(R) = {NL*(R)|neZ}
(R)) = {L"(A(R))|n€Z}
(R)

symmetric L'(A
is the { quadratic L-spectrum ¢ L.(A(R)) = {L,(A(R))|ne€Z} of
N

normal L(A(R)) = {NL"(A(R))|neZ}
13.5 with
= (A(R),B(R),C(R)).
symmetric
The homotopy groups are the { quadratic L-groups of R
normal
L'(R)) = L*( )
{ « (L (R)) L.(R)
«(NL'(R)) = NL*(R) .

The algebraic L-spectra of 14.1 are the special case K = {x} of:

symmetric

visible symmetric
quadratic

normal

DEFINITION 14.2 The L-spectrum of a pair (R, K)

with R a commutative ring and K a simplicial complex is the algebraic
LL-spectrum
L(R,K) = {L"(R, K)[neZ} = '(A(R K))
VL'(R,K) = {VL"(R,K)|n€Z} = NL'(A(R, K))
L.(R,K) = {L.(R.K)|[n€eZ} = L(A(R,m
NL(A(

)
NL(R,K) = {NL*(R,K)|n€Z} = NL(A(R, K))

of 13.4 for the algebraic bordism categories
AR, K) = (A(R,K),B(R,K),C(R,K)),
AR, K) = (A(R,K),B(R,K),B(R,K)) .
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symmetric
The homotopy groups are the visible symmetric L-groups of (R, K)

quadratic
normal

m(L(R, K)) = L*(R,K)

(VLR K)) = VL*(R,K)

m(L.(R, K)) = L«(R,K)

m(NL(R,K)) = NL*(R,K)

defined in 9.7.
O

REMARK 14.3 It follows from 9.8 that the forgetful map defines a homotopy
equivalence

~

VL' (R,K) — L (R,K) .
In the special case K = {x} already considered in 3.6 this is
VL(R, {+}) = NL'(A(R) = L'(A(R) = L'(R).

2

O

A functor of algebraic bordism categories F: A——A’ induces a map of
algebraic L-spectra

F:L(A) — L)
F:L(A) —L.(N)
F: NL(A) — NL'(A) .
PROPOSITION 14.4 The universal assembly functor of §9
A: AR, K) — AR[m(K))])

induces maps of the algebraic L-spectra

A: L(R,K) — L'(R[m(K)])
A: VL'(R,K) — L'(R[m (K)])
A: L(R,K) — L.(R[m(K)])
A: NL(R, K) — NL'(R[m(K)))

which is a homotopy equivalence L.(R, K) ~ L.(R[n1(K)]) in the quadratic

case.

PROOF The universal assembly maps in quadratic L-theory define isomor-

phisms A: L.(R, K)—L.(R[r1(K)]) by the algebraic -7 theorem (10.6).
O

Recall from §9 the local algebraic bordism category of (R, K)
A(R)*(K) = (A (Ra K)a B (Ra K)a C (R)*(K)) .

An object in C (R).(K) is a finite f.g. free (R, K)-module chain complex C
such that each [C][o] (0 € K) is a contractible finite f.g. free R-module chain
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complex. The assembly C (I? ) over the universal cover K is a contractible
finite f.g. free R[m (K )]-module chain complex, by the algebraic analogue of
the Vietoris theorem (which may be proved using the algebraic Leray—Serre
spectral sequence of the proof of 10.2). Thus C(R).(K) is a subcategory
of C(R,K), and there is defined a forgetful functor of algebraic bordism
categories A(R).(K)—A(R, K).

. symmetric
ProOPOSITION 14.5 (i) The { quadratic L-theory homology Q-spectrum of
. symmetric . .
(R,K) is the quadratic L-spectrum of the algebraic bordism category
A (R, K)
{H-(K;L(R)) = L'(A(R).(K))
H.(K;L.(R)) = L.(AR)«(K)) ,

with homotopy groups
{W*(H-(K;L'(R))) = H.(K;L(R)) = L*(A(R).(K))
T (H.(K;L.(R))) = H.(K;L.(R)) = L.(A(R)
The assembly maps given by 12.19
A: H.(K;L(R)) — L*(R,K) = L*(A(R,K))
{A : H(K;L.(R)) — L.(R,K) = L.(A(R,K))
coincide with the maps induced by the forgetful functor A(R).(K)—
AR, K).
(ii) The normal L-theory homology Q-spectrum of (R, K) is the normal L-
spectrum of the algebraic bordism category A(R, K)

*
~~
~—
~—

~

H.(K;NL'(R)) = NL(A(R,K)) = NL(R,K) ,
with homotopy groups
m.(H.(K;NL(R))) = H.(K;NL(R)) = NL*(R,K) .
The assembly maps given by 12.19
A: H.(K;NL(R)) — NL*(R,K) = L*(A(R,K))
are 1somorphisms.

(iii) The L-homology spectra of (i) and (ii) fit into a fibration sequence
H.(K;L.(R)) — H.(K;L(R)) — H.(K;NL(R)) = NL'(R,K) .
PROOF (i) Only the quadratic case is considered, the symmetric case being
entirely similar. The identification of the quadratic L-theory of A.(R, K)
with the L. (R)-homology of K is the quadratic case of 13.7, with A = A(R).

The covariant functor
L.(R,—) : {simplicial complexes } — { {2-spectra } ;

K — L.(R,K) = L.(A(R, K))
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is homotopy invariant, since for any quadratic Poincaré complex (C,1))
in A(R,K) there is defined a quadratic Poincaré cobordism (C,v) ® I
in A(R,K ® A') (as in the verification of the Kan extension condition in
14.3), so that the two inclusions K—K ® Al induce homotopic A-maps
L.(R,K)—L.(R, K ® A'). Also, there is defined a commutative diagram
of )-spectra

H.(K:{L.(R,D(c,K))}) —2 - L.(R, K"

~ ~

H.(K;L.(R)) A L.(R, K)

with A the local {L.(R, —)}-coefficient assembly of 12.18.
(ii) This is the normal case of 13.7 with A = A(R, K).
(iii) This is the special case of 13.9 (i) with A = A(R).(K).
O

The forgetful map H.(K;L.(R))—L.(R, K) may be composed with the
homotopy equivalence of 14.4 L.(R, K) ~ L.(R[r1(K)]) to define an assem-
bly map

A: H.(K;L.(R)) — L.(R[m(K)]) .

DEFINITION 14.6 (i) The quadratic structure groups of (R, K) are the cobor-
dism groups
of (n — 1)-dimensional quadratic complexes in A (R, K) which are globally

contractible and locally Poincaré.
(ii) The quadratic structure spectrum of (R, K) is the quadratic L-spectrum

S.(R,K) = YL.(A(R,K),C(R,K),C(R)«(K))
with homotopy groups
T (S.(R,K)) = Si(R,K) .
(iii) The algebraic surgery exact sequence is the exact sequence of homotopy

groups
A
..— H,(K;L.(R)) — Ln(R[m(K))])
2, SW(R,K) — H, 1(K;L.(R)) — ...

induced by the fibration sequence of spectra
H.(K;L.(R)) — L.(R[mr(K)]) — S.(R,K) .
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The symmetric structure groups S*(R, K) and the symmetric structure
spectrum S'(R, K) are defined entirely similarly, using symmetric L-theory.

PROPOSITION 14.7 For any commutative ring R and simplicial complex
K there is defined a commutative braid of eract sequences of algebraic L-

groups
Snt1(R, K) Hn(K;L(R)) H,(K;NL'(R))
\ 1% X‘ /
H,(K;L.(R)) VL"(R,K)
/ x 1% X‘
Hn+1(K;NH—‘.(R)) Ln(R[ﬂ-l(K)]) Sn(Ra K)
0

which are the exact sequences of homotopy groups of algebraic IL-spectra in
a braid of fibration sequences
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PROOF These are just the braids of 13.11 for
A =ARK),B=DBRK),C=CRK),D=C(R)K),

using 14.4 to replace L.(A,B,C) by L.(R[m(K)]) and 14.5 (ii) to replace
NL'(A,B,B) by NL(R, K). The universal assembly map

A Hy(K;L.(R)) — Lo(Rlm(K))) ; (C,0) — (C(K),%(K))
is defined in 9.10. The map
9: VL"(R,K) — Sy(R,K) ; (C,¢) — (0C, )

sends an n-dimensional globally Poincaré normal complex in A(R, K) to
the boundary (n — 1)-dimensional globally contractible locally Poincaré
quadratic complex in A (R, K) defined in 2.10.

i

PROPOSITION 14.8 The visible symmetrization maps
14T : L,(R[mr(K)]) — VL"(R,K) (n€Z)
are isomorphisms modulo 8-torsion.
PROOF The relative homotopy groups H,(K;NL'(R)) are 8-torsion, since
m(NL'(R)) = NL"(R) = lim L"™*(R) (neZ),
k
and the hyperquadratic L-groups L* (R) of Ranicki [146, p.137] are 8-torsion.

O



190. VONNLECTIVE L-THEORY 101

§15. Connective L-theory

Let ¢ € Z. An Q-spectrum F is g-connective if m,(F) = 0 for n < q. A
g-connective cover of an Q-spectrum F is a g-connective )-spectrum F (q)
together with a map F (¢)—F inducing isomorphisms m, (F (¢)) = m,(F)
for n > ¢. In general, F(q) is obtained from F by killing the homotopy
groups m,(IF) for n < ¢, using Postnikov decompositions and Eilenberg—
MacLane spectra.

The g-connective L-theory required for the applications to topology will
now be developed. The g-connective covers of the IL-spectra are explicitly
constructed using algebraic Poincaré complexes of the appropriate connec-
tivity, rather than by killing the homotopy groups using the general ma-
chinery.

Let A = (A, B, C) be an algebraic bordism category.

symmetric L*(g)(A)
DEFINITION 15.1 The g-connective § quadratic L-groups < L.{(q)(A) of
normal NL*(q)(A)

A are defined by

L™(g)(A) ) ifn>gq, 0ifn<gq
Ln(g)(A) ) ifn>gq, 0ifn<gq
NL™(g)(A) = NL™A) ifn>gq, 0ifn<q.

= LA
= L,(A
O

Write the p-skeleton of a simplicial complex K as KPl. Similarly, the
p-skeleton of a pointed A-set K is the pointed A-set KP! with

(K[p])(q) _ {K(q) ifg<p
{0}  otherwise .

symmetric
DEFINITION 15.2 The g¢-connective {quadratic IL-spectrum of A is the
normal
Q-spectrum of Kan A-sets
L{g)(A) = {L™(q)(A)[neZ}
L)) = {Lu{g)(A) [n € Z}
NL(q)(A) = {NL™(g)(A) [n € Z}
with
L™ (g)(A)(™) symmetric (C,9)
L,{q)(A)™ = {n-dimensional { quadratic complexesg (C,1)
NL"(g) ()™ normal (C, o)

in A*(A™) such that C is C*((A™)l9="=1)_contractible,
ie. C(0)isin C for 0 € A™ with|o| <¢g—n—-1},
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such that
QL ()(A) = L™ Hg)(A)  (mm(LP{gh(A)) = L™+ (gh(A)
{mn<q><A> = Lo ()(A) {wmdtn (@)(A)) = Lontnla) (4)
ONL™(g)(A) = NL"**{g)(A), \mm(NL™(g)(A)) = NL™™(q)(A),
(L (q)(A)) = L*(g)(A)
{m(L(CD(A)) = L.(q)(A)
m(NL'(g)(A)) = NL*(q)(A),

{ (@) (M)
with ¢ L,{¢)(A) (¢ —n — 1)-connected.
NL"(g)(A)

For a ring with involution R and the algebraic bordism category
A(R) = (A(R),B(R),C(R))
of 3.12 write
L) (A(R)) = L{q)(R) L*{q)(A(R)) = L*(q)(R)
{L<Q>(A(R)) = L{g)(R) {L*<Q>(A(R)) = L.(q)(R)
NL(q)(A(R)) = NL(q)(R) , \NL*(q)(A(R)) = NL*(q)(R) .

Given a simplicial complex K and an abelian group A let A*(K; A) be
the A-coefficient simplicial cochain complex of K.

The following results hold in symmetric, normal and quadratic L-theory,
although they are only stated in the symmetric case:

cohomology

homology of a stmplicial complex

PROPOSITION 15.3 (i) The L'(q)(A)-{

cohomology

homology and the simplicial

K is expressed in terms of the L'(A)—{

Li(A)-coefficient { cochaz’n groups of K by
chain

(H™" (KL (q)(A))
= im(H " (K, Kl L(A) —H (K, K2 L0 (A)))
= coker(6: AT HK; LA(A)) —H (K, Kla—"—1: 1L (A)))
Hy (KL (q)(A))
= im(H, (K9 L (A))——H, (K9 L0 (A)))
[ = coker(0: A,_g41(K; Lq(A))—>Hn(K[" a:1L°(A))) .

homol
(ii) The L' {q)(A)- and L' (g + 1)(A)- conomorogy groups are related by an
homology
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exact sequence
. — (KL (g + 1)(A) — H7"(K; L (g)(A))
— HTM(K;LY(A)) — H "N G L (g +1)(A) — ...,
. Hp (KL (g 4+ 1)(A) — Ho (KL () (A))
— H,_((K;LYA)) — Hp1(K;L{(g+1)(A) — ...
with
( H7"(K;LY(q)(A) — H"(K; LYA)) ;
(C¢) — > (Clo),¢(o))a,

e K (a—m)
Hy (KL (q)(A)) — Hpo(K; LI(A)) ;
(C,9) — > (C(o),9(0))o .

\ cecK(n—aq)

. n—qz1
(i) 1f { n—q > dim(K)

then the natural map defines an isomorphism

{H”(K;L‘<q>(/\)) — H(GL(A)
H, (KL {q)(A) — Ho(K;L(A)) -
PROOF It is convenient to replace L'(g)(A) by the deformation retract
L(g)A) = {L"()(A)|neZ},
with L™(¢)(A) the Kan A-set defined by
L™ (q)(A)"™
= {n-dimensional symmetric complexes in A*(A™, (A™)la=7=11)}
= {n-dimensional symmetric complexes (C, ¢) in A*(A™)
such that C(c) =0 for 0 € A™ with |o| <g—n—1},
such that
QL (q)(A) = L™ (@) , mm(L"(@)(A)) = L™ (g)(A) .
Define an embedding
{H'(K;L'(Q)(A)) — L (¢)(A*(K))
HL(K; L (q)(A) — L (g) (A (K))

_J cohomology
homology
spectrum as follows. For cohomology use the embeddings of A-sets

H"™(K;1L(q) (M) — L"(g)(A(K)) (n € Z)

of the L'(¢)(A) spectrum in the g-connective symmetric L~
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by means of the identifications
H"™(K; L (q)(A)® =
{ n-dimensional symmetric complexes in A" (K ® AP, (K ® Ap)[q—n—l]) }
L™ (q)(A*(K))® =
{ n-dimensional symmetric complexes in A*(K ® AP, K ® ( AP)[q—n—l]) }
and the inclusion
(K © A7, (K © A7) — (K @ A7, K @ (A7)ls=1)

For homology use an embedding K C OA™*! to define embeddings of A-
sets

Hn (KL (q)(A) — L™ (g)(A«(K)) (n € Z)
by means of the identifications
H,.(K;L (g)(A)® = H" (™, K; L ()(A)"
= {(n — m)-dimensional symmetric
complexes in A*(Z™ @ AP, (™ @ AP)a—mtm-ll K @ AP)} |
L™(q)(A«(K))? = L""(q)(A* (™, K),B*(Z", K),C* (2", K))¥
— { n-dimensional symmetric complexes in A, (K)*(AP, (AP)la—n=1)}
= {(n — m)-dimensional symmetric
complexes in A*((E™, K) ®@ (AP, (AP)la—"=1))}
and the inclusion
(" @ AP (2" @ Ap)[qfnerfl] UK @ AP) —
(X K) @ (AP, (AP)an=l)y = (3m @ AP " @ (AP) U UK @ AP) .
(i) Consider the two cases separately, starting with cohomology. Use the
identifications
[ Acmaps K —L"(@)(A)} = {A-maps (K, K="~ —L"(A)}
= { n-dimensional symmetric complexes in A*(K, K14~y }
to define a surjection of homotopy groups
H(K, KU1 (A) = [K, K41 L (A), 0]
— H"(K; L (q)(A) = [Ky, L"(g)(A)] -
An element in the kernel is represented by a A-map
(K, K ) @ {0} — (L™(A),0)
which extends to a A-map
(Ko AL Kl Ug oy uKle Ao AlUK @ {1}) — (L"(A),0) .
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The first map in the exact sequence
H MK @AL K Ug (VUK Ao A'UK @ {1};L(A))

inclusion”

———— H (K {0}, K" Ve {0h 1))
— H"(K;L(g)(A) — 0
is isomorphic to the first map in the exact sequence
anfl(K[qfnfl],K[qfnf2];L~(A)) i)
H ™K, Kl—"1 L (A) — H (K, Kl""=2 (M) .

This gives an identification
H="(K; L (q)(A) = coker(d) ,
and the domain of § can be expressed as a cochain group
HY(gla=n=1 glaen=2l.1/(A)) = AT"7YK; LI(A)) .
The result for homology may now be deduced from the cohomology result.

Embed K C OA™*! for some m >0, and note that the supplement of the
p-skeleton KP! in OA™*1 is given by

Kbl = Kuy@Emm—r-Ucym (p>0).
By duality and the cohomology result
H, (K5 L (g)(A) = H™ (X", K; L (q)(A))
= coker(§: H™ " H(EK U (um)la—ntm—1] Ty (xm)la-ntm=2L 1 (7))
— H™" (2™ KU (Em)[q ndm=1l. (A)))
= coker(9: Hy 1 (K"t K=d. L (A))—H, (K"~9. L' (A)))

— coker(d: Ay g1 (K; LI(A))— H, (K"~ L' (A))) .
(ii) The relative homotopy groups of the pair (L'(¢)(A),L'(¢ + 1)(A)) are
given by

m (L@, L+ D) = {HO Tm=a

so that there is defined a fibration sequence of €)-spectra
L'(¢+1)(A) — L(9)(A) — K.(LU(A),q) -
Here, K.(L9(A), q) is the Q-spectrum of Eilenberg—MacLane spaces with
KAL(A), @) = K(E(A),q—n) (n<aq).
(iii) This follows from
H™(K;L(A) = lim H"(K;L(g)(A))

g——00

H,(K;L'(A) = qgr_nooHn(K;L'(@(A)),
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and the identifications given by (ii)
{ H™(K;L'{n—1)(A) = H™(L{(n—-2)(A)) = ... = H"(K;L(A))
Hp(K;L(n = k)(A)) = Ho(Li(n — k= 1)(A)) = ... = H,(K;L(A)),
with k£ = dim(K).
O
DEFINITION 15.4 (i) A finite chain complex C' in A (R) is g-connective if
H.(C) =0 forr<gq,
or equivalently if C' is chain equivalent to a complex D with D, = 0 for
r<gq.
(ii) A finite chain complex C'in A (R, K) is g-connectiveif each C'(0) (0 € K)
is g-connective, or equivalently if each [C][o] (0 € K) is g-connective.
(iii) An n-dimensional symmetric complex (C, ¢) in A (R, K) is g-connective
if C' and C"™™* are g-connective.
(iv) An n-dimensional symmetric complex (C,¢) in A (R, K) is locally q-
Poincaré if 0C = S71C(¢o: C"*——C) is g-connective.
Similarly for normal and quadratic complexes.
O
Note that the assembly of a g-connective chain complex C in A (R, K) is
a g-connective chain complex C(K) in A (R[m(K)]).

EXAMPLE 15.5 Given a simplicial complex K and any homology class [K] €
H,(K) let (C, ¢) be the n-dimensional symmetric complex defined as in 9.13,
with
Clo) = A(D(0,K),0D(0, K)) (0 € K) ,
¢o(K) = [KlNn—: C""(K) ~ A(K')"* — C(K) = A(K').
If K is n-dimensional then (C, ¢) is 0-connective. (C, ¢) is locally ¢g-Poincaré
if and only if
H,([D(0, K)] N = A(D(0, K))"~ """ —A(D(0, K),D(0, K))) = 0
(ceK,r<q,
in which case
H,(0D(0,K)) = H,(linkg(c)) = H.(S"71°I7Y) (r<q-1).
m
The following conditions on an n-dimensional symmetric complex (C, ¢)
in A(R, K) are equivalent:
(i) (C,¢) is locally g-Poincaré,
(ii) the R-module chain complexes

0C(0) = S'C(do(0): [Cllo]""71"*—C(0)) (0 € K)

are g-connective,
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(iii) the R-module chain complexes
[0C][0] = S7'C([do][o]: C(o)"1717*—[C[0]) (0 € K)
are g-connective.

A simplicial complex K is locally q-Poincaré with respect to a homol-
ogy class [K| € H,(K) if the n-dimensional symmetric complex (C, ¢) in
A (Z,K) defined in 9.13 (with C'(K) = A(K') etc.) is locally g-Poincaré.

REMARK 15.6 The following conditions on a simplicial complex K with a
homology class [K] € H,(K) are equivalent:
(i) K is locally ¢g-Poincaré,
(ii) H,([D(o, K)]N—: A(D(o, K))""lel=*—A(D(0,K),0D(0, K))) = 0
forall o € K, r <gq,
(iii) H,([D(o, K)]N—:A(D(0, K),0D(o, K))*~lol=*—A(D(0, K))) = 0
foralloe K, r <gq.
O

DEFINITION 15.7 (i) The g-connective algebraic bordism categories of a ring
with involution R are

Mg)(R) = (A(R),B(q)(R),C(q)(R)),

AMg)(R) = (A(R),B(q)(R),B{q)(R))
with B(g) (R) the category of g-connective finite chain complexes C'in A (R),
and C(q)(R) = C(R) C B{q)(R) the subcategory of contractible complexes.
(ii) The g-connective algebraic bordism categories of a commutative ring R
and a simplicial complex K are
A<Q>(R7 K) = (A (Rv K)v B<Q>(R7 K)? C<Q>(R7 K)) )

~

AMg) (R, K) = (A(R,K),B(q)(R, K),B(q)(R, K))
with B(g)(R, K) = B(q)(R)«(K) the category of g-connective finite chain
complexes C' in A (R, K) and C(q)(R, K) C B(q)(R, K) the subcategory of
the globally contractible complexes.
O

In the special case K = {x} write the g-connective algebraic bordism
categories as
Ma) (R, {+}) = Mg)(R) ,

~

M) (R, {+}) = Mg)(R) .

It should be noted that the symmetric L-groups L*(A(q)(R)) of the ¢-
connective algebraic bordism category A(g)(R) need not be the same as
the g-connective symmetric L-groups L*(q)(R) of R. Likewise for the other
categories.
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EXAMPLE 15.8 (i) The quadratic L-groups of A(0)(R) coincide with the
0-connective quadratic L-groups of R
Ly (AO)(R)) = Ln(0)(R) = Ln(R) (n=0),
by virtue of the 4-periodicity of the quadratic L-groups, and the map of
quadratic LL-spectra
L.(A0)(R)) — L.(0)(R)
is a homotopy equivalence.
(ii) The symmetric L-groups of A(0)(R) are the connective symmetric L-
groups of 3.18
L"(A0)(R)) = L*(R) (n=0),
while the 0-connective symmetric L-groups of R are the 4-periodic symmet-
ric L-groups of 3.12
L™(0)(R) = L"™™(R) (n>0).
If R is a ring such that the symmetric L-groups L*(R) are 4-periodic (such
as R = Z) then the map of symmetric L-spectra
L (A0)(R)) — L(0)(R)
is a homotopy equivalence. If also L°(R)——NL°(R) is onto then the map
of normal L-spectra
NL(A(0)(R)) — NL0)(R)
is a homotopy equivalence.

O

PROPOSITION 15.9 For any commutative ring R and a simplicial compler K

symmetric
the { quadratic LL-spectrum of the algebraic bordism category A{q)(R).(K)

normal
(given by 4.1) is the homology spectrum of K with coefficients in the corre-

sponding q-connective LL-spectrum of R
L' (A{g)(R)«(K)) = H.(K;L'(Ag)(R))
L.(Mg)(R).(K)) = H.(K;L.(Alg)(R))

NL'(Ag)(R)«(K)) = H.(K;NL'(A(g)(R))) -
Proor Exactly as for 13.7, which is the special case ¢ = —o0.

— —

By analogy with 15.6:

DEFINITION 15.10 (i) The g-connective quadratic structure groups of (R, K)
are the cobordism groups

Sn<Q>(R7K) = Ln—l(A(R7K)7C<Q>(R7K)7(C<Q>(R)*(K)) (nEZ)
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of g-connective (n — 1)-dimensional quadratic complexes (C, %) in A (R, K)
which are globally contractible and locally Poincaré.

(ii) The g-connective quadratic structure spectrum of (R, K) is the quadratic
LL-spectrum

with homotopy groups

(iii) The g-connective algebraic surgery exact sequence is the exact sequence
of homotopy groups

L Ha(Ki L) (R) —— Lu(Alg)(R.K)) —
Su(@)(R, K) — Hyp—1 (KGL(g)(R)) — ...
induced by the fibration sequence of spectra
H.(K;L(q)(R)) — L.(Mq)(R, K)) — S.(¢)(R, K) .
|

The q-connective symmetric structure groups S*(q) (R, K) and the g-conn-
ective symmetric structure spectrum S'(q)(R, K) are defined entirely simi-
larly, using symmetric L-theory.

ProOPOSITION 15.11 (i) The assembly map
Ly (Mq) (R, K)) — Ln(R[m (K)])

is an isomorphism if n > 2q.
(ii) For n > max(2¢ + 1,9+ 2)

Sn{g)(R, K) = ker(S,(R, K[niq])—_}Anfq(KQ Ly-1(R)))
and for n > max(2q+ 1,q+ 3)
Snlg) (R, K) = im(S, (R, KPS, (R, KI"~9)) .

(iii) For n > 2q + 4 the g-connective and (q + 1)-connective quadratic S-
groups are related by an exact sequence

s Hoe (K5 Ly(R)) — Sulq + (R K) —
Sn(@)(R, K) — Hp—q-1(K; Lg(R)) — ... .
(iv) If K is k-dimensional and n > max(q+ k + 1,2q + 4) then
Sh{g)(R,K)=S,(R,K) .
(v) If K is k-dimensional and n > max(q+ k,2q+4) then there are defined
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exact sequences
0 — Sn(g)(R, K) — Sp{q¢ = 1)(R, K) — Hyn—¢(K; Lg—1(R))
— Sp-t{@)(R, K) — Sp-1(g— D(R, K) — ...,
0 — Su1lg— V(R K) — Su_1(g— 2)(R, K) — Hoo(K; Ly_o(R))
— Sp2(¢g—D(R,K) — S;—2(¢ —2)(R,K) — ...
with
Sulg— V(R K) = Su(RK) . Sutlg—2(REK) = Suy(RE) |

PROOF (i) The assembly map L,,(R, K)— L,,(R[71(K)]) is an isomorphism
by the algebraic m-m theorem (10.6). The forgetful map L, (A{q)(R, K))—
L, (R, K) is an isomorphism for n > 2¢, with the inverse

Ln(R, K) — La(Mg)(R, K)) 5 (C,¢) — (€, ¢)

defined by sending an n-dimensional quadratic complex (C,v) in A(R, K)
to the n-dimensional quadratic complex (C’,v’) in A{q)(R, K) obtained by
surgery below the middle dimension using the quadratic pair (C—D, (0,))
with

D. — {CT if 2r >n+1
" 0 otherwise.

(ii) Consider the map of exact sequences

H, (K" L. (g)(R)) —— H,(K;L.(q)(R))
Lo (Mg)(R, K" 1)) ——— L, (Alg)(R, K))
Su(a)(R, K" 1) ——— S, (q)(R, K)

Hy, 1 (K" L{q)(R)) —— Hy1 (K L(q)(R))

L1 (Ag) (R KT 9)) —— L, (Ag) (R, K)) -

The condition n — ¢ > 2 is used to identify
m(K) = m(K),
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and since n — 1 > 2q (i) applies to show that up to isomorphism

Lin(Ma)(R, K1) = Lyn(R[mi (K" 7))

L (R[m(K)]) = Lm(A{g)(R, K))
for m =n,n — 1. By 15.3 (i) the map
H, (K" L.{q)(R)) = Ho(K" % L.(R)) —

H,(K;L{q)(R)) = im(H, (K" L.(R))—H, (K"~ " L.(R)))
is a surjection, so that there is defined an isomorphism

~

Hy 1 (K9 LA{g)(R) —

Hyuo1 (K5 Lo{g)(R)) = im(H,,_y (K0 L (R) —H,_y (K" L(R))) .

An application of the 5-lemma gives an isomorphism

Sn{a)(R, KI"~4) — S,(q)(R, K) .
Consider the map of exact sequences
H, (K" L {q)(R)) —— Hy (K"~ L.(R))
L (Mg)(R, K" 9)) ——— L, (A(R, K"~ 9))

Sula)(R, K"~1) ———— S, (q) (R, K"~ )

Hn_l(K[”_q];L.(q)(R))—> n—1(K[n_q];L~(R))

L (Mg (R, K9)) s Ly (AR, K7
Again, (i) applies to show that up to isomorphism
Lins(Ma) (R K0 D)) = Loy (Rlmy (K" )))

= Ln(Rm(K)]) = Lm(A(R, K))
for m =mn,n — 1. By 15.3 (i) there is defined an isomorphism

Hoy (K9 Lo{q)(R)) — H, (K9 L.(R)) ,
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and there is also defined an exact sequence
0 — Hyp 1 (K" L (g)(R))

- nfl(K[niq%L(R)) — An—q(K; Lg-1(R)) -
It follows that
Sn(@) (R, K) = Sp(q)(R, K"~
= ker(Sp(R, K"~ — A, _,(K; L, 1(R))) .

If n—q > 3 there is defined a map of (co)fibration sequences of {2-spectra

H.(K~9 1. L (R)) ——L.(R, K"~y — S (R, KI"~a~1])

| | |

H.(K"9L(R)) —— L.(R, KI"~1) —— S(R, KI"~)

with L.(R, K[*~9=1)—IL (R, K[»~4) a homotopy equivalence, giving rise
to a homotopy equivalence
homotopy fibre of S.(R, KI"~9~1)—S (R, KI"~4])

~ homotopy cofibre of H.(K"~97: L (R))—H.(K" 9 L.(R)) .
Thus there is defined an exact sequence
Sn(R,K[”*q*”) . Sn(R,K[n*Q]) . Hn,l(K["’q], K[n*qfll;L(R))
(= An—g(K;Lg—1(R)))
and
Sn(q)(R,K) = im(S,(R, K"~ S, (R, K"~4)) |

(iv) There is defined a map of (co)fibration sequences of Q-spectra

H.(K;L.(q+ 1)(R)) —— L.(Alg + 1)(R, K)) —— S.(q + 1)(R, K)

\ i i
(K L (0) () ——— L. (Ma)(R, K)) ——— 8.(q) (R, K)

inducing an exact sequence of relative homotopy groups
. — () — R (B) — m(y) — To1(@) — L.
By (i) mn(8) = 0 for n > 2q + 3, so that for n > 2q + 4
() = mn-1(a) = Hnq-1(K; Lg(R))
(by 15.3 (ii)).
(iv)+(v) Apply (iii) and 15.3 (iii).
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DEFINITION 15.12 (i) The g-connective visible symmetric L-groups of (R, K)
are the cobordism groups

VL™ (q)(R, K) = NL"(Aq)(R, K)) (n€Z)

of g-connective n-dimensional normal globally Poincaré complexes (C, ¢) in
A(R, K).

(ii) The g-connective visible symmetric L-spectrum of (R, K) is the algebraic
LL-spectrum

VL(¢)(R, K) = NL'(A(g)(R, K))
with homotopy groups
T (VL (q)(R, K)) = VL*(¢)(R,K) .

By analogy with 15.7:

PRrROPOSITION 15.13 For any commutative ring R and simplicial complex
K there is defined a commutative braid of exact sequences of algebraic L-

groups
%@(}{ H/(K L'(AW{)) H/(K NL{g)(R))
}(K,L () (R)) }@(R, K)
Hi1 (K NL(g) (R)) L (Alg)(R, K)) Su(a)(R, K)

O

In view of the topological applications it is convenient to introduce the
following ‘1 /2-connective’ hybrids of 0-connective and 1-connective algebraic
LL-spectra, making use of the following algebraic bordism categories.
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DEFINITION 15.14 (i) The 1/2-connective algebraic bordism categories of a
ring with involution R are

A1/2)(R) = (A(R),B(0)(R), C(1)(R)) ,
A(1/2)(R) = (A(R),B(0)(R),B(1)(R)).

(ii) The 1/2-connective algebraic bordism categories of a commutative ring
R and a simplicial complex K are
A(1/2)(R, K) = (A(R, K),B(0)(R, K),C(1)(R, K)) ,

A1/2)(R, K) = (A(R,K),B(O)(R, K),B(1)(R, K)) .

(iii) An n-dimensional normal complex (C, ¢) in A(R, K) is 1/2-connective
if it is defined in A(1/2)(R,K), i.e. if it is O-connective and locally 1-
Poincaré.

(iv) The 1/2-connective {m‘%ble symmetric

L-groups of (R,K) are the
normal

cobordism groups
VL*(1/2)(R,K) = NL*(A(1/2)(R, K))
{NL*<1/2><R,K> — NI*(R(1/2)(R, K))

lobally Poi 5
globally Toticate normal complexes in

of n-dimensional 1/2-connective {

A(R, K).
O

DEFINITION 15.15 The 1/2-connective normal L-spectrum of a ring with
involution R is the Q-spectrum of Kan A-sets

NL(1/2)(R) = NL'(A(1/2)(R))
with
NL"(1/2)(R)™
= {(C,¢) € NL"(A(0)(R)™ | (9C,¥) € Ly—1 (A(1)(R))™}
and homotopy groups

~

m(NL(1/2)(R)) = NL*(A(1/2)(R)) .
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PROPOSITION 15.16 (i) The 1/2-connective normal L-spectrum NIL'(1/2)(R)
fits into a commutative braid of fibrations of Q-spectra

/\/\
\/\/

NL(1/2)(R

U R
\/\/

(ii) The 1/2-connective normal L-groups are such that

(R))

-1

NL™"(R) ifn>1

im(L! — 1 ifn=
NL™(1/2)(R) = LOE]L%)(R) NLR) Z}cn:é

0 ifn<0,

with a long exact sequence
. — L, (1)(R) — L"(0)(R) — NL"(1/2)(R) — L1 (1)(R) — ... .

(iii) For a commutative ring R and a simplicial complex K there are natural
identifications

NL*(1/2)(R,K) = H.(K;NL(1/2)(R)) .

O

DEFINITION 15.17 The 1/2-connective visible symmetric L-spectrum of a
commutative ring R and a simplicial complex K is the Q2-spectrum of Kan
A-sets

VL (1/2)(R,K) = NL'(A(1/2)(R, K))
with
VL™ (1/2)(R, K)™
= {(C,¢) € NL"(A0)(R, K))"™ | (9C, ) € Ly—1 (A(1)(R, K))™ } |
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and homotopy groups
(VL (1/2)(R,K)) = VL*(1/2)(R,K) .
i

PROPOSITION 15.18 (i) The 1/2-connective visible symmetric L-groups
VL*(1/2)(R, K) fit into a commutative braid of exact sequences of algebraic

L-groups
Sn+1<1>(R< yﬂ(/ﬂg ?me(m)
Hy (K L.(1)(R)) VL™ (1/2)(R, K)
H, 1 (K;NL wm(fﬁv)(& K)
The map

Lyp(R[m(K)]) = Lo(A(1)(R,K)) — VL™(1/2)(R, K) ;
(Ca w) - (Cl, (1 + T)w,)
sends an n-dimensional quadratic complex (C,v) in A(R, K) to the sym-
metrization of any globally Poincaré cobordant quadratic complex (C', 1))
in A(1)(R, K).
(ii) The 1/2-connective visible symmetric L-groups VL*(1/2)(R, K) are re-
lated to the 0-connective visible symmetric L-groups

VL™ (0)(R, K) = NL"(A{0)(R,K)) (n>0)

by a commutative braid of exact sequences
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H, (K Lo{ ?L <1@ L1 (A(0)(R, K))
VI"(1/2)(R, K) H,(K;NL'(A{0)(R)))
L, (A{0)(R, K)) VL (0)(R, K) H, 1(K; Lo(R))

(iii) The 1/2-connective visible symmetric L-groups V. L*(1/2)(R, K) fit into
a commutative braid of exact sequences

H, (K L(MQ }@(R{ }(K Lo(R))
VL(1/2)(R, K) Sy {0)(R, K)
Hy (K5 Lo(R)) Su(1)(R, K) Hy—1 (K LI(A0)(R)))

PROOF (i) The 1/2-connective visible symmetric L-spectrum VL' (1/2)(R, K)
fits into a commutative braid of fibrations of {2-spectra
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PN

H.(K; L (A(0)(R))) H.(K;NL(1/2)(R))
H.(K;L.(1)(R)) VL'(1/2)(R, K)
L.(A(1)(R, K)) S.(1)(R

inducing a commutative braid of exact sequences of homotopy groups.
(ii) and (iii) follow from (i).
i
Note that for a ring R with L*(R) 4-periodic and L°(R)— N L°(R) onto

(e.g. R = Z) the 0-connective n-dimensional L-groups of (R, K) are 4-
periodic for n > dim(K), with

VL"(0)(R,K) = VL"(R,K) = VL"™(R,K)
Sn(O)(R,K) = Su(R,K) = Sp44(R, K)
H, (K;L'(A0)(R))) = Hy,(K;L(0)(R))
= H,(K;L'(R) =
H, (K;L(A0)(R))) = Hn(K;L.(0)(R))
= Hn( L.(R)) = Hp+a(K;L.(R))
H,(K;NL'(AO)(R))) = H, (K NIL(O)(R)

Hp s (K L(R))

Also, for n > 2
Ly(A(R,K)) = Lo(AO)(R,K)) = Lo(A(1)(R, K)) = Ln(R[m(K)]) .
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DEFINITION 15.19 The algebraic surgery exact sequence of a simplicial com-
plex K is the exact sequence

L HA (KLY~ L2 (K))

o
— Sp(K) — Hp1(K;L) — ...
given by 15.18 in the special case R = 7Z, with
S«(K) =S.(1)(K), L. = L(1)(Z) .
i

The algebraic surgery exact sequence will be identified in §18 with the
Sullivan—Wall geometric surgery exact sequence for the topological manifold
structure set.






Part 11

Topology
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§16. The L-theory orientation of topology

The algebraic theory of §§1-15 is now applied to construct the L-theory ori-
entations which distinguish topological bundles and manifolds from spheri-
cal fibrations and geometric Poincaré complexes. The geometric interpreta-
tion of such orientations has already been discussed in Ranicki [143], Levitt
and Ranicki [94]: the L-theory orientations are algebraic images of the
geometric Poincaré orientations, which are the homotopy theoretic conse-
quences of the transversality properties characteristic of topological bundles
and manifolds
Topological bundles and spherical fibrations are already distinguished by

the rational homotopy groups of the classifying spaces

m(BG)®Q = m_,®Q = 0 (x>0),

m(BTOP)® Q = 7.(G/TOP)®Q

Q if * =0(mod4)
= L2)oQ = {0 if ¥ 2 0(mod 4) .
The rational cohomology ring H*(BSTOP; Q) = H*(BSO;Q) of the clas-
sifying space BSTOP for stable oriented topological bundles is the poly-
nomial algebra over Q generated by the universal Pontrjagin classes p. €
H*(BSO;Q) (Milnor and Stasheff [114], Novikov [123]). The Pontrjagin
classes are not defined for spherical fibrations, since H*(BSG;Q) = 0 for
* > 0.
Abbreviate
L(0)(z) = L, L.(1)(Z) = L. , NL(1/2)(Z) = L',

VL*(1/2)(Z,X) = VL*(X) , NL*(1/2)(Z,X) = L*(X) .

A spherical fibration v: X —BG(k) will now be given a canonical L-
cohomology Thom class U, € H*(T(v); L), with T(v) the Thom complex,
H* reduced cohomology. Topological reductions 7: X —BTOP(k) of v (if
any) are in one—one correspondence with lifts of [7,, to an LL’-cohomology
Thom class Uy € H F(T(v); L"), with any two lifts differing by an element
of H*(T(v);1L.). Rationally, such lifts correspond to the Pontrjagin classes
p«(7) € H¥*(X;Q), or equivalently the L-genus L£(7) € H¥*(X;Q).

The normal signature of an n-dimensional geometric Poincaré complex X
is a canonical I/[:'—homology fundamental class

[X]e = 6%(X) € Hy(X;L) = L"(X) .
In §17 it will be proved that for n > 5 topological manifold structures in the
homotopy type of X (if any) are in one-one correspondence with lifts of [X]~

to an L'-homology fundamental class [X]| € H,(X;L") with assembly the
‘1/2-connective visible symmetric signature’ A([X|1.) = o*(X) € VL™ (X).
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(Recall that 1/2-connective = 0-connective and locally 1-Poincaré). In the
first instance, only the oriented case is considered: see Appendix A for the
modifications required for the nonorientable case. From now on the same
terminology is used for a simplicial complex X and its polyhedron | X|, and
both are denoted by X.

The difference between the stable theories of spherical fibrations and topo-
logical bundles can be formulated as a fibration sequence of the classifying
spaces

J
G/TOP — BTOP — BG ,

and also in terms of the algebraic L-spectra. See Appendix B below for an
account of the multiplicative structures on the algebraic LL-spectra involved.
See Rourke and Sanderson [154] for the theory of topological block bundles.
For k > 3 the classifying space BTfé/P(k) for k-dimensional topological
block bundles fits into a fibration sequence

G/TOP — BTOP(k) — BG(k)
with BG(k) the classifying space for (k — 1)-spherical fibrations. For k& < 2

there is no difference between spherical fibrations, topological block bundles
and vector bundles, so that BG(k) = BTOP(k) = BO(k).

PROPOSITION 16.1 (Ranicki [143], Levitt and Ranicki [94,1.12]) Let k > 3.
(i) A (k—1)-spherical fibration v: X — BG(k) has a canonical L'-cohomo-
logy orientation

U, € H*(T(v);L") .
(ii) A topological block bundle v: X—>BT/O/P(I€) has a canonical L."-cohomo-
logy orientation

Uy € H*(T(v); L")
with image J(Uy) = U, € H*(T(v); I/[:) the canonical L' -cohomology orien-
tation of the associated (k — 1)-spherical fibration v = J(v): X — BG(k).
(iii) The topological reducibility obstruction of a (k — 1)-spherical fibration
v: X—BG(k)

tv) = 8(U,) € H"Y(T(v);L.)

is such that t(v) = ()Aif/and only if there exists a topological block bundle
reduction v: X —BTOP(k). Here, 0 is the connecting map in the exact

sequence
14T

. . J . ~
. — HMT(v);L.) — H*(T(v);L) — HYT(v);L)
5.
— HYT@)L.) — ... .
(iv) The simply connected surgery obstruction defines a homotopy equiv-
alence between the classifying space G/TOP for fibre homotopy trivialized
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topological bundles and the 0th Kan A-set Lo = 1L(1)o(Z) of the 1-connective
quadratic LL-spectrum IL. of Z

G/TOP — L .
(V)Aﬂihe difference between two topological bundle reductions v,v': X —
BTOP(k) of the same (k—1)-spherical fibration v: X — BG (k) is classified
by a difference element
t(v,7') € [X,G/TOP] = H°(X;L.)
such that
Us = Us = (L+T)(Us Ut(,7) € HHTW)LY)

with Uz U —: HO(X; L. )—>Hk(T( );L.) the L.-cohomology Thom isomor-
phism. If U"": X—>BTOP(k) is yet another reduction of v then
tw, o) = o, v) + ¢, 0" + t(v,7)Ut(, ") € H'(X;L.) .

PROOF The singular complex of the Thom complex T'(v) of a spherical fi-
bration v: X — BG(k) contains as a deformation retract the subcomplex
of the singular simplexes p: A" ——T(v) which are normal transverse at the
zero section X C T(v), with M = p~}(X) an (n — k)-dimensional ge-
ometric normal complex n-ad. The canonical ﬂ'—cohomology orientation
U, € H*(T(v); L") is represented by the A-map U,: T(v)—L* sending p
to the (n—k)-dimensional normal complex 6*(M) = (C, ¢) in A(Z)*(A™) de-
fined in 9.15. A topological block bundle reduction : X —BTOP (k) corre-
sponds to a further deformation retraction of the singular complex of T'(v) to
the subcomplex consisting of the singular simplexes p: A" ——T(v) which are
Z-coefficient Poincaré transverse at the zero section X C T'(v), with M =
p HX)a Z—coefﬁment geometric Poincaré n-ad. The reduction is equivalent
to the lift of U, to the L’-cohomology Thom class Uy € H*(T(v); L") repre-
sented by the A-map Uy;: T(v)—IL~F sending p to the (n — k)-dimensional
symmetric Poincaré complex o*(M) = (C, ¢) in A(Z)*(A™) defined in 9.13.
For further details see [94] and [143].

m

For k > 3 the classifying space BTfOJP(/ﬁ) for k-dimensional topological
block bundles fits into a fibre square

BTOP(k) —— BL'G(k)

| |

BG(k) —— BL'G(k)

with BL'G(k) the classifying space for (k — 1)-spherical fibrations with a
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w1 -twisted L'-orientation, and similarly for BL'G(k).

REMARK 16.2 The canonical L'-cohomology orientation of an oriented topo-
logical bundle 7: X — BSTOP(k) is given rationally by the inverse £-genus

U, ®Q = L7Y(D)
e H¥(T(v);L)®@Q = Y HY™MT(2);Q) = > HY(X;Q) .

320 320
Both the £-genus and the symmetric signature determine and (modulo tor-
sion) are determined by the signatures of submanifolds, as used by Thom to
characterize the £-genus as a combinatorial invariant (Milnor and Stasheff
[114,§20]).
i

REMARK 16.3 The characterization of topological block bundles as L'-
oriented spherical fibrations generalizes the characterization due to Sullivan
[168] of topological block bundles away from 2 as KO[1/2]-oriented spher-
ical fibrations, which is itself a generalization of the Atiyah—Bott—Shapiro
K O-orientation of spin bundles. See Madsen and Milgram [102,5A] for a
homotopy-theoretic account of the K O[1/2]-orientation of PL-bundles. The
characterization of topological block bundles as spherical fibrations with al-
gebraic Poincaré transversality (i.e. an L’-orientation) corresponds to the
characterization of topological block bundles as spherical fibrations with
geometric Poincaré transversality due to Levitt and Morgan [93], Brumfiel
and Morgan [20].

i

If X is an n-dimensional geometric Poincaré complex with Spivak normal
structure (vx: X —BG(k), px: S"TF—T(vx)) then X, = X U {pt.} is
an S-dual of T'(vx), with S-duality isomorphisms

WHEH(T(vx)) 2 ha(X)
for any generalized homology theory h. The topological reducibility ob-
struction of vx

t(vx) € H¥ YT (vx);L.) = Hn,_1(X;L.)
will now be interpreted as the obstruction to lifting the fundamental L-
homology class

(X~ = Uy, € H¥(T(vx);L') = Hn(X;L)
to a fundamental L'-homology class [X]. € H,(X;L’). In the first in-
stance it is shown that every finite geometric Poincaré complex X is homo-
topy equivalent to a compact polyhedron with a 1/2-connective symmetric
normal structure, allowing the direct construction of [X]~ as the cobor-
dism class of an n-dimensional 1/2-connective symmetric normal complex in
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A(Z,X). This will also allow the refinement of the visible symmetric signa-
ture 0*(X) € VL™(Z, X) defined in §9 to a 1/2-connective visible symmetric
signature o*(X) € VL™(X). The total surgery obstruction s(X) € S,,(X)
will be defined in §17 as the boundary of ¢*(X) € VL™(X), such that
s(X) = 0 if and only if 0*(X) = A([X]L) € VL"(X) for a fundamental
L'-homology class [X]L € H,(X;L").

DEFINITION 16.4 An n-circuit is a finite n-dimensional simplicial complex
X such that the sum of all the n-simplexes is a cycle
(X] = > 7eker(dAX)y—AX)n 1) ,
reXx(n)
possibly using twisted coefficients (in the nonorientable case).
i

By the Poincaré disc theorem of Wall [177,2.4] every connected finite
n-dimensional geometric Poincaré complex X is homotopy equivalent to
Y Ue™ for a finite (n — 1)-dimensional CW complex Y, and hence to an
n-circuit. Thus in dealing with the homotopy theory of finite geometric
Poincaré complexes there is no loss of generality in only considering circuits,
and for the remainder of §16 only such complexes will be considered.

Let then X be a finite n-dimensional geometric Poincaré complex which
is an n-circuit. (It is not assumed that each (n —1)-simplex in X is the face
of two n-simplexes, cf. 16.8.) As in 9.13 define an n-dimensional globally
Poincaré normal complex (C, ¢) in A(Z, X) with

C(X) = AX') , C(r) = A(D(r,X),0D(1, X)) (1€ X).
The (Z, X)-module duality chain map
do(X) = [X]Nn—=:C""(X) ~ AX)"" — C(X) ~ A(X)
has components

¢o(t) = [D(r, X)]N—:

C" (1) = AD(r, X)) I"l= — C(r) = A(D(r,X),0D(r, X)) .
For every simplex 7 € X up to chain equivalence

o(r) : S"71MZ — STITIAX, X\(7}) ; 1 — [X][7],
and
H* (¢O(T)) =
H.([D(7, X)]N = : A(D(7, X))"" " =*—A(D(7, X),0D(r, X)),

with an exact sequence

nefrl-r(payy SO0 ;
. — H ({T}) —_— 7’+\T|(X7X\{T}) -

H(¢o(1)) — H" T ({(3}) — ... .
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The n-dimensional normal complex (C,¢) in A (Z, X) is 0-connective and

globally Poincaré, and the boundary (n — 1)-dimensional quadratic complex
in A(Z,X)
9(C,¢) = (9C,¢)
is 0-connective, locally Poincaré and globally contractible, with
9C(r) = S7'C(¢o(r): C"*(1)—C(1))
H.(9C(7)) = Hut1(¢o(7)) (T€X).
For each n-simplex p € X() the (—1)-dimensional quadratic complex
(0C(p), ¥ (p))in A (Z) is contractible (since D(p, X) = {p} is a 0-dimensional
Poincaré complex), so that for each (n — 1)-simplex 7 € X~V the 0-
dimensional quadratic complex (OC(7),% (7)) in A (Z) is Poincaré. In view
of the exact sequence given by 15.11 (iii)
. Sp(X) — S, {0)0(Z, X) — Hyp—1(X; Lo(Z)) — Sp—1(X) — ...
the image of (0C,¢) € S,,(0)(Z, X) is the element
(X) = ), 7(0C(r),(n))
reX(n-1)
€ Hy1(X; Lo(Z) = Hooy(X;L{1)(Z)—L.(0)(Z))
which is the obstruction to the existence of a 0-connective locally Poincaré
globally contractible quadratic cobordism (0C & 0C'— D, (v, & —'))
between (0C, ) and a 1-connective locally Poincaré globally contractible

quadratic complex (0C’,4’) in A (Z,X). Such a complex is the boundary
of the union n-dimensional normal complex in A (Z, X)

(C,¢") = (C,¢) Up (D,(1+T)d¢)
which is 1/2-connective and globally Poincaré with
(0C",¥") = 0(C",¢') .
Each (n — 1)-simplex 7 € X1 is the face of an even number (say 2m. )
of n-simplexes, and D(7, X) is the one-vertex union of 2m, l-simplexes.

The 1-dimensional normal pair (D(1, X),dD(1, X)) may be resolved by a
normal degree 1 map
(E(T7 X)7 aD(Tv X)) - (D(T7 X)7 aD(Tv X))

from a 1-dimensional manifold with boundary (D(r, X),0D(r, X)), with
D(7, X) the disjoint union of m, l-simplexes. The resolution determines
a vanishing of the obstruction ¢(X) € H,,_1(X; Lo(Z)) on the chain level,
corresponding to a 1/2-connective globally Poincaré n-dimensional normal
complex (C’,¢') in A (Z, X).
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DEFINITION 16.5 The 1/2-connective visible symmetric signature of a finite
n-dimensional geometric Poincaré complex X is the cobordism class

o"(X) = (C',¢) e VL™(X),

with (C’, ¢') as defined above.
O

The visible symmetric signature o*(X) = (C,¢) € VL™(Z,X) of 9.13 is
the image of the 1/2-connective visible symmetric signature under the natu-
ral map VL"(X)—V L"(Z, X) which forgets the 1/2-connective structure.

DEFINITION 16.6 A chain map f: C——D in A (Z, X) is a global 1-equivalence
if the algebraic mapping cone C(f) is 2-connective and globally contractible.
i

The following conditions on an n-dimensional symmetric complex (C, ¢)
in A (Z, X) are equivalent:
(i) (C,¢) is locally 1-Poincaré and globally Poincaré,
(ii) the duality chain map ¢g: C"~*——C is a global 1-equivalence,
(iii) the (n — 1)-dimensional quadratic complex 0(C, ¢) is 1-connective, lo-
cally Poincaré and globally contractible.

PROPOSITION 16.7 The following conditions on a finite n-dimensional ge-
ometric Poincaré complex X are equivalent:

(i) the 1/2-connective visible symmetric signature o*(X) € VL™(X) is the
assembly of an IL'-homology fundamental class [ XL € H,(X;1L")

oc"(X) = A([X]L) e VL™(X)

(ii) o*(X) € VL™(X) is represented by a 0-connective n-dimensional glob-
ally Poincaré normal complex (C',¢") in A (Z, X) which is globally 1-equiv-
alent to a 0-connective n-dimensional locally Poincaré normal complex (B, 0)
in A (Z, X), with

(XL = (B,0) € Ho(X;L) , o(X) = (C",¢)) e VL™(X) .

PROOF (ii) = (i) Globally 1-equivalent globally 1-Poincaré complexes are
globally 1-Poincaré cobordant.

(i) = (ii) Let (C",¢") be a 0-connective n-dimensional locally Poincaré
normal complex in A (Z, X) realizing [X]|, € H,(X;L"), and let (C' &
C"—D,(6¢,¢" & —¢")) be a 0-connective globally Poincaré cobordism
in A (Z, X) realizing 0*(X) — A([X]L) =0 € VL™(X). The relative bound-
ary construction gives a 0-connective (n + 1)-dimensional locally Poincaré
normal triad in A (Z, X)
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(C & C") a[) 8¢ © —0¢" —— 356
(C/ oy C//)n—* N (D/(C/ D C//))n—l—l—* 0—— ¢ 0
with

oC" = STIC(¢y:C" T ——C")
locally contractible and
20" = S710(¢gy: O —(C")
0D = 57'C(d¢o: (D/(C" ® C"))"t—*—D)
globally contractible. The union n-dimensional normal complex
(B,0) = (C™7*,0) Uacr,a¢) (0D, 06¢)/0C"
is locally Poincaré, and the projection
(B,#) — (B,0)/0D = (C",¢)

is a global 1-equivalence.
i

REMARK 16.8 An n-dimensional pseudomanifold X is an n-circuit such
that each (n — 1)-simplex is the face of two m-simplexes (cf. 8.5). An
n-dimensional pseudomanifold X is normal if the natural maps define iso-
morphisms

Ho(X) — Ho(X,X\{z}) (z€X).

Normal pseudomanifolds are called normal circuits by McCrory [104]. The
following conditions on an n-dimensional pseudomanifold X are equivalent:
(i) X is normal,
(ii) the link of each simplex of dimension < n — 2 is connected,
(iii) the local homology groups H, (X, X\{7}) (7 € X) are infinite cyclic,
with generators

D(r,X)] = X]lr] = > »

p>T,|pl=n
€ Hn*|7'\ (D(T7 X)7 aD(Tv X)) = Hn(X7 X\{?})
the images of the fundamental class of X

X] = ) TeH.(X),

TEX,|T|=n
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(iv) the O-connective n-dimensional normal complex (C, ¢) in A (Z, X') with
C(X) = AX") , C(r) = A(D(1,X),0D(t, X)),
do(r) = [D(r,X)]N—: C"*(1) = A(D(r, X)) I7I=~
— C(1) = A(D(1,X),0D(1,X)) (7 € X)
is locally 1-Poincaré, with
Hi(¢o(7)) = 0 (r<1,7€X),
(v) the locally Poincaré (n — 1)-dimensional quadratic complex (9C, 1) in
A(Z,X) is 1-connective, with
H.(0C(t)) =0 (r<0,7€X).

The equivalence of (i) and (ii) is due to Goresky and MacPherson [62, p. 151].
The equivalence of (i) and (iv) is the special case ¢ = 1 of 15.6.
For an n-dimensional geometric Poincaré complex which is a normal pseudo-
manifold the 1/2-connective visible symmetric signature o*(X) € VL"(X)
is represented by the 0-connective locally 1-Poincaré globally Poincaré sym-
metric complex (C, ¢) in A (Z, X)

o (X) = (C,9) e VL™(X) .

O

DEFINITION 16.9 (i) The canonical I/[:'—homology fundamental class of an
n-dimensional normal complex X is the cobordism class

(XTp = (€ ¢) € Ho(X51)
with C(X) = A(X').
(ii) An n-dimensional geometric Poincaré complex X is topologically re-
ducible if the Spivak normal fibration vx: X — BG admits a topological
reduction vx: X— BTOP.

(iii) The topological reducibility obstruction of an n-dimensional geometric
Poincaré complex X is the image

t(X) = 0[X]~€ H,—1(X5L.)
of [X]~ € H, (X L") under the connecting map 0 in the exact sequence
14T
. — H,(X;L.) — H,(X;L)

J 8
— H,(X;L) — H, 1(X;L) — ....
O

PROPOSITION 16.10 An n-dimensional geometric Poincaré complex X 1is
topologically reducible if and only if t(X)=0¢€ H,_1(X;L.).
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PROOF Let (vx: X—BG(k), px: Stk T(vx)) be a Spivak normal str-
ucture. The fundamental L'-homology class of X is the S-dual of the canon-
ical L -orientation of vx
(X]e = U,y € Ho(X3L) = HYT(vx);L) ,
and t(X) is the S-dual of the topological reducibility obstruction of vx
t(X) = 6(Uny) = t(vx) € Hoor(X;L) = H"YT(vx);L.) .
i

A polyhedron K is an n-dimensional combinatorial < homotopy manifold

homology
PL

if the links of i-simplexes are ¢ homotopy (n — i — 1)-spheres.
homology

REMARK 16.11 (i) A triangulation (K, h) of a topological space M is a poly-
hedron K with a homeomorphism h: K—— M. If M is an n-dimensional
topological manifold then K is an n-dimensional combinatorial homology
manifold. Siebenmann [159] showed that for n > 5 an n-dimensional com-
binatorial homotopy manifold is an n-dimensional topological manifold.
(ii) A triangulation (K, h) of a topological manifold M is combinatorial if K
is a combinatorial manifold. A PL manifold is a topological manifold with a
PL equivalence class of combinatorial triangulations. The Hauptvermutung
for manifolds was that every homeomorphism of compact PL manifolds is
homotopic to a PL homeomorphism. The Casson—Sullivan invariant for a
homeomorphism f: N—— M of compact n-dimensional PL manifolds (Arm-
strong et al. [5])

k(f) = K(M—TOP/PL) € H*(M;Zs) = H,_3(M;Zs)
is such that x(f) = 0 if (and for n > 5 only if) f is homotopic to a PL
homeomorphism (13.1), with M —TOP/PL = K(Zs,3) the classifying
map for the topological trivialization determined by f of the difference
Uy — (f_l)*VNI M—BPL of stable PL normal bundles. For n > 5 every
element
ke SPH(T™) = [T, TOP/PL] = H3(T™;Zs)
is realized as k = k(f) for a homeomorphism f : T""——T" from a fake PL
n-dimensional torus 7'", with a normal map
(F,B) : (W"H T T™) — T" x ([0, 1]; {0}, {1})
on a PL cobordism (W™, T™ T, such that F|p» = id., F|pm = f,
providing counterexamples to the Hauptvermutung for manifolds. The rel
0 surgery obstruction

0.(F,B) = (C,¢) € Lnt1(Z[Z"]) = Hppa (T 1)
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is represented by an (n + 1)-dimensional quadratic Poincaré complex (C, 1))
in A(Z).(T™), and

f(f) = D (signature(C(0),4(0))/8) o
O-G(Tn)(n—3)
c HS(Tn;ZQ) = nfg(Tn;Zg)

is an image of 0, (F, B) € Ly,41(Z[Z"]). The surgery-theoretic classification
of the PL structures on 7" (by Casson, Hsiang, Shaneson and Wall) is an
essential ingredient of the obstruction theory of Kirby and Siebenmann [87]
for the existence and uniqueness of combinatorial triangulations on compact
topological manifolds in dimensions > 5.

(iii) The Kirby—Siebenmann invariant of a compact n-dimensional topolog-
ical manifold M

k(M) € HY (M;Zs) = H,_4(M;Zs)

is such that k(M) = 0 if (and for n > 5 only if) M admits a combinatorial
triangulation. By construction, (M) is the homotopy class of the composite

k(M) : M M, BTOP — B(TOP/PL) = K(Zs,4),
and is such that x(M) = 0 if and only if vp;: M—BTOP lifts to a PL
reduction vy;: M—— BPL. The invariant is realized by compact topological
manifolds in each dimension > 5 which do not admit combinatorial trian-
gulation. For example, if f: T""——T™, (F, B), W™ are as in (ii) then the
(n + 1)-dimensional topological manifold
NPl = Wn+1 Ufuid, T" x [O, 1]
is equipped with a normal map (g,c) : N**!——=T"*! such that
U*(g, C) = (J*(F? B)a O)
€ L1 (Z[Z™Y)) = Lo (Z[Z") © Lu(Z[Z")) |

g«k(N) = (s(f),0)
€ Hy_s(T"" Y Zy) = Hyp_s(T" Zo) & Hy—u(T"; Zo) .
(iv) Let 03 be the cobordism group of oriented 3-dimensional combinatorial
manifolds which are homotopy spheres, modulo those which bound con-
tractible 4-dimensional combinatorial manifolds. Cohen [39, §4] defined an
invariant of a compact n-dimensional combinatorial homotopy manifold K
o(K) = ) [linkg(o)]o € HY(K;03) = Hy_4(K;05)
ceK(n—4
such that ¢(K) = 0 if and only if K admits a PL resolution, i.e. a trans-

versely cellular PL map M — K from an n-dimensional combinatorial man-

ifold M.
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(v) Let 62 be the cobordism group of oriented 3-dimensional combinato-
rial homology manifolds which are homology spheres, modulo those which
bound acyclic 4-dimensional combinatorial manifolds. Let a: 0 ——Z, be
the Kervaire-Milnor-Rohlin epimorphism, with

a(X3) = signature (W)/8 € Zy

for any parallelizable 4-dimensional combinatorial manifold W with bound-
ary OW = ¥3. If A = (K, h) is a triangulation of a compact n-dimensional
topological manifold M the element

ka(M) = Z linkg (0)] o € HY(M;0%) = H,_,(M;0%)
cceK(n—4)
is such that ka(M) = 0 if (and for n > 5 only if) A is a combinatorial

triangulation of M. The combinatorial triangulation obstruction is an image
of the triangulation obstruction

k(M) = a(ka(M)) = Z (signature W (o)/8) o
ceK(n—4)
€ HY(M;Zy) = Hp_4(M;Zs) ,

with W (o) a parallelizable 4-dimensional combinatorial manifold with bo-
undary OW (o) = linkg (o).

(vi) A triangulation (K, h) of a topological manifold M is non-combinatorial
if K is not a combinatorial manifold. Non-simply connected combinatorial
homology (n — 2)-spheres H provided examples of non-combinatorial tri-
angulations (X2H, h) of S™ (n > 5), with a copy of H as the link of each
1-simplex in the suspension circle of the double suspension $2H (Edwards,
see Daverman [43,11.12]).

(vii) Galewski and Stern [58],[59] showed that for n > 5 a compact n-
dimensional combinatorial homology manifold has the homotopy type of a
compact n-dimensional topological manifold, and that a compact n-dimen-
sional topological manifold M admits a triangulation if and only if the
Kirby—Siebenmann invariant x(M) € H*(M;Zsz) is such that

§k(M) = 0€ H°(M;ker(a)) ,
with 0 the connecting map in the coefficient exact sequence

. — HY(M;ker(a)) — HY(M;01) = HY(M;Z,)

é
— H°(M;ker(a)) — ... .

(viii) The Casson invariant of 3-dimensional combinatorial homology spheres
shows that certain compact 4-dimensional topological manifolds are not tri-
angulable (Akbulut and McCarthy [1,p.xvi]). In particular, the Freedman
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manifold M* with

o*(M) = (Z% Eg) =8¢ L Z) = 7,

k(M) = 1€ HYM;Zy) = Zs
is not triangulable (Freedman and Quinn [56, 10.1]).
(ix) Compact n-dimensional topological manifolds with n > 5 are finite CW
complexes, by virtue of the topological handlebody decomposition obtained
by Kirby and Siebenmann [87] for n > 6 and by Quinn for n =5 ([56,9.1]).
At present, it is not known if every compact topological manifold of dimen-
sion > 5 is triangulable.
(x) Edwards [47] showed that for n > 5 an n-dimensional combinatorial
homology manifold K is a topological manifold if and only if the link of
each simplex o € K is simply-connected.

i

The following conditions on a finite n-dimensional geometric Poincaré
complex X are equivalent:
(i) X is an n-dimensional combinatorial homology manifold,
(ii) the algebraic normal complex (C,¢) in A (Z, X) with C(X) = A(X")
is locally Poincaré,
(iii) the quadratic boundary (0C, 1) is locally contractible.

Transversality is a generic property of maps on manifolds, but not of maps
on geometric Poincaré complexes.

DEFINITION 16.12 Let X, Y be compact polyhedra, with Y an n-dimensional
geometric Poincaré complex. A simplicial map h: Y —— X" is Poincaré trans-
verse if each

(Y(7),0Y (1)) = h Y(D(r,X),0D(r, X)) (1€ X)

is an (n — |7|)-dimensional Z-coefficient Poincaré pair.
O

EXAMPLE 16.13 If Y is an n-dimensional combinatorial homology manifold
then every simplicial map h:Y——X'’ is Poincaré transverse, since each
(Y(7),0Y (7)) (t € Y) is an (n — |7|)-dimensional combinatorial homology
manifold with boundary.

i

In dealing with the L-theoretic properties of topological manifolds in §17
use will be made of the following version of an ‘intrinsic transversality struc-
ture’ of Levitt and Ranicki [94].

DEFINITION 16.14 A transversality structure I1 = (X,Y, g, h) on a finite n-
dimensional Poincaré space Z consists of compact polyhedra X, Y together
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with homotopy equivalences g: Y ——Z, h: Y —— X’ such that h is simplicial
and Poincaré transverse.
i

PROPOSITION 16.15 A transversality structure 11 = (X,Y,g,h) on a fi-
nite n-dimensional Poincaré space Z determines a fundamental I -homology
class

[Zln = (9h™").(C,¢) € Ha(Z; 1)

with (C, ¢) the n-dimensional locally Poincaré normal complex in A(Z).(X)
defined by

C(r) = AY(7),0Y (7)) (€ X).
The 1/2-connective visible symmetric signature of Z is the assembly of [Z]|n
o (Z) = A([Z]n) e VL™(Z)

and the total surgery obstruction is s(Z) =0 € S, (Z).
O

In §17 it will be proved that a finite n-dimensional Poincaré space Z
admits a transversality structure I if (and for n > 5 only if) Z is homotopy
equivalent to a compact n-dimensional topological manifold. In the first
instance we have:

PROPOSITION 16.16 If M is a finite n-dimensional Poincaré space which is
either (i) a combinatorial homology manifold
or  (ii) a topological manifold
then M has a canonical transversality structure 11 = (X,Y, g, h) and hence
a canonical fundamental IL'-homology class

M) = [M]n € Hn,(M; 1)
with the following properties:
(a) The assembly of [M]y, is the 1/2-connective visible symmetric signature
o*(M) = A([M]L) e VL™(M) .
(b) [M]L has image the canonical L'-homology fundamental class
JIM], = [M]e € H,(M;L) .

(¢) The canonical " -cohomology orientation Us,, € H*(T(var); L") of the
topological normal block bundle vy;: M—>BT,O/P(k) of an embedding M™ C
Stk s the S-dual of [M]y, € H,, (M;L").

(d) If N*=F C M™ is a codimension k submanifold with a normal block
bundle v = vnc e N—>BTfO/P(l€) then the canonical L -homology funda-
mental classes [M], € H,(M;L"), [N]L € H,—k(N;L") and the canonical
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L’ -cohomology orientation U, € H*(T(v);1L") are related by
J«[MlLNU, = [Ny € Hy—p(N;L7),
i«[Nl = [MLnj*U, € Hyp_(M;L")
with
i = inclusion: N — M , j = projection: My = M U {pt.} —T(v).
PROOF (i) The canonical transversality structure is defined by
(X,Y,g,h) = (M, M id.,id.)
and the corresponding canonical LL'-homology fundamental class of M is the
cobordism class
(M), = (C,¢) € H,(M;L)
of the n-dimensional symmetric Poincaré complex (C, ¢) in A (Z).(M) with
C(M)=A(M").
(ii) Any map f: M—X to a compact polyhedron X can be made topolog-
ically transverse, with the inverse images
(M(e),0M(0)) = f~/(D(0,X),0D(c, X)) (o € X)
(n—|o|)-dimensional submanifolds, some of which may be empty. Let (Y, Z)
be a closed neighbourhood of M in R™** (k large), a compact (n + k)-
dimensional PL manifold with boundary which is the total space of a topo-
logical (D*, S*~1)-bundle vy; : M——BTOP(k). By Quinn [133] Y can
be taken to be the mapping cylinder of a map e: Z——M. Make e PL
transverse, and define an X-dissection {Y(0)|o € X} of Y by
Y (o) = mapping cylinder of e|:e M (0c)—M(c) (0 € X) .
The projection g: Y ——M is a hereditary homotopy equivalence, so that
each (Y(0),0Y (0)) is a simplicial (n — |o|)-dimensional geometric Poincaré
pair homotopy equivalent to (M (c),0M (c)). The composite
h= fg: v - m -1 x

is such that

h™'D(0,X) = g'M(0) = Y(0) (0 €X).
In particular, if f: M——X is a homotopy equivalence in the preferred sim-
ple homotopy type of M (e.g. the inclusion M C Y), then (X,Y,q,h)

defines the canonical transversality structure on M.
i

REMARK 16.17 (i) By 16.2 the canonical L'-homology fundamental class of

an oriented n-dimensional manifold M™ is given rationally by the Poincaré
dual of the L-genus L(M) € H*(M;Q)

MlL®Q = L(M)N[M]g € H,(M;L)®Q = Y Hy 4x(M;Q) ,
k>0
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with [M]g € H,(M;Q) the Q-coefficient fundamental class. See 24.2 (i)
for the evaluation of the signatures of submanifolds N** ¢ M™ in terms of
ML®Q e H,(M;L")®Q.
(ii) The identity o*(M) = A([M]L) € VL™(M) is a non-simply connected
generalization of the Hirzebruch signature formula in the case n = 4k

signature (M) = (L(M),[M]q) € L**(Z) = Z .
Also, for any free action of a finite group G on M the identity

o (M/G) = A([M/G]L) e VL"(M/G)

gives the corresponding special case of the Atiyah—Singer index theorem,
that the G-signature of such an action is a multiple of the character of the
regular representation. See §22 for rational surgery obstruction theory with

finite fundamental group.
i
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§17. The total surgery obstruction

The total surgery obstruction s(X) € S, (X) of a finite n-dimensional ge-
ometric Poincaré complex X is the invariant introduced in Ranicki [143],
such that s(X) = 0 if (and for n > 5 only if) X is homotopy equivalent to
a compact n-dimensional topological manifold M™. Moreover, if s(X) =0
and n > 5 the manifold structure set STOF(X) is in unnatural bijective
correspondence with S,,11(X), as will be shown in §18. Provided the funda-
mental group 71 (X) is ‘good’ in the sense of Freedman and Quinn [56] these
results also hold for n = 4. In view of the close connections between the
obstruction theories for the existence and uniqueness of manifold structures
it is convenient to treat the actual invariants simultaneously, as will be done
in §20 in the simply connected case, in §22 for finite fundamental groups,
and in §23 for generalized free products and HN N extensions.

The total surgery obstruction unifies the two stages of the obstruction
provided by the Browder—Novikov—Sullivan—Wall surgery theory for the ex-
istence of a manifold structure in the homotopy type of a geometric Poincaré
complex. The first stage is the topological K-theory obstruction to the ex-
istence of a topological bundle. The second stage is the algebraic L-theory
surgery obstruction to the existence of a homotopy equivalence respecting
a choice of topological bundle reduction. As in §16 only the oriented case
is considered: see Appendix A for the nonorientable case.

The various generalized homology groups, L-groups and structure groups

are related by the following commutative braid of exact sequences, the spe-
cial case of 15.18 (i) for R=7Z, n > 2:

Sn1(X) Ho(X;1L) Ho (X1
Ho (X1 VLX)
/ X 1% X
Hy 1 (X510) Ln(Z[m(X)]) Sn(X)
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The terminology is as in §16, with
L(0)(Z) = L, L.(1)(Z) = L. , NL(1/2)(zZ) = L,
S«(1)(Z,X) = Su(X) , VL*(1/2)(Z,X) = VL*(X) .
Given a finite n-dimensional geometric Poincaré complex X let (C’,¢’)
be the 1/2-connective globally Poincaré n-dimensional normal complex in

A(Z,X) used in 16.5 to define the 1/2-connective visible symmetric signa-
ture o*(X) = (C",¢') e VL™(X).

DEFINITION 17.1 The total surgery obstruction of a finite n-dimensional
geometric Poincaré complex X is the cobordism class
s(X) = 0" (X) € S, (X)

represented by the boundary 1-connective locally Poincaré globally con-
tractible (n — 1)-dimensional quadratic complex 9(C’,¢") = (9C’,%’) in
A(Z,X).

|

Since OC'(r) is contractible for n-simplexes 7 € X (™ the quadratic com-
plex do*(X) is locally equivalent to a complex in A (Z, X["~1), so that for
n > 3 the total surgery obstruction can be regarded as an element

s(X) = 00" (X) €S,(X) = S, (0)(2, X" = 8§, (z, x""1) |
using 15.11 (ii) to identify the S-groups.
PRrROPOSITION 17.2 The following conditions on a finite n-dimensional ge-

ometric Poincaré complex X are equivalent:
(i) the total surgery obstruction vanishes

s(X) = 0€8,(X),

(ii) the 1/2-connective visible symmetric signature of X is the assembly
A([X]L) of an IL"'-homology fundamental class [ Xy, € H,(X;L")

o (X) = A([X]L) e VL™(X) .

ProOOF Immediate from the exact sequence given by 15.18 (i)

A 1o}
. — H,(X;L) — VLX) — Sp(X) — H, 1 (XGL) — ...

O

REMARK 17.3 For a finite n-dimensional geometric Poincaré complex X
which is a normal pseudomanifold (16.8) the 1/2-connective visible sym-

metric signature of X is represented by the 0-connective locally 1-Poincaré
globally Poincaré symmetric complex (C, ¢) in A (Z, X ) with C(X) = A(X")

o (X) = (C,¢) e VL"(X) ,
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and the total surgery obstruction is represented by the 1-connective lo-
cally Poincaré globally contractible (n — 1)-dimensional quadratic complex

A(C, ¢) = (9C, ) in A (Z, X)
s(X) = (0C,¢) € Sp(X) .
Note that X is an n-dimensional combinatorial homology manifold if and
only if (C, ¢) is locally Poincaré, in which case the 1/2-connective visible
symmetric signature is the assembly
o"(X) = A([X]L) e VL™(X)
of the canonical IL'-homology fundamental class
(XL = (C,¢) € Ho(X;L) ,
and the total surgery obstruction is
s(X) = 00"(X) = 0€S,(X).
i
The total surgery obstruction s(X) € S,(X) of a finite n-dimensional
geometric Poincaré complex X measures the failure of the links of the sim-
plexes 7 € X to be homology (n — |7| — 1)-spheres up to chain cobordism:

this is the equivalence relation appropriate for deciding if X is homotopy
equivalent to a compact topological manifold.

THEOREM 17.4 (Ranicki [143]) The total surgery obstruction s(X) € S, (X)
of a finite n-dimensional geometric Poincaré complex X is such that s(X) =
0 if (and for n > 5 only if) X is homotopy equivalent to a compact n-
dimensional topological manifold.

PROOF Let

(v: X—BG(k), p: S"TF—T (1))
be the Spivak normal structure determined by an embedding X C S"** (k
large). The topological reducibility obstruction
HX) = [s(X)] = §(U,) = t(v) € Hya(X;L.) = H* (T (v);L.)

is the primary obstruction both to the vanishing of s(X) and to the exis-
tence of a topological manifold in the homotopy type of X. Assume this
obstruction vanishes. -

Given a choice of reduction 7: X — BT'O P (k) apply the Browder—Novikov
transversality construction to obtain a degree 1 normal map

(f=plb): M = p"'(X) — X
from an n-dimensional topological manifold M, making p: S"**—T(v) =

T(v) transverse regular at the zero section X C T'(v). Let IT = (Y, Z, g, h)
be the canonical transversality structure on M given by 16.16. The degree
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1 normal map of n-dimensional geometric Poincaré complexes

(f:b)
(FEB): Y ~ 72 ~ M — X

has the same surgery obstruction as (f, b)
o.(F,B) = o0.(f,b) € L,(Z[m(X)]) .
Choosing a simplicial approximation F: Y —— X"’ there is obtained a degree
1 normal map
{(F(1), B(1))} : {Y(1) = F'D(7,X)} — {D(, X)} (7 € X)
from a cycle of (n — |7|)-dimensional geometric Z-coefficient Poincaré pairs
(Y(7),0Y (7)) to a cycle of (n — |7|)-dimensional geometric normal pairs
(D(r,X),0D(r, X)) with geometric Poincaré assembly |J_ D(r,X) = X'.
The quadratic kernel is an n-dimensional quadratic globally Poincaré com-
plex in A (Z, X)
(C.9) = {(CF[)) ¥(B())| e X},
with quadratic signature the surgery obstruction
(C(X), (X)) = 0x(F,B) = 0.(f,b) € Ln(Z[m(X)])
and image
0o (F,B) = —00"(X) = —s(X) € S,(X) .
The surgery obstruction is 0 if (and for n > 5 only if) (f,b) is normal bor-
dant to a homotopy equivalence.

Now suppose that 7, 7': X — BT OP(k) are two topological block bun-
dle reductions of the Spivak normal fibration v, giving rise to degree 1
normal maps (f,b): M—X, (f',b'): N—X. The quadratic kernel com-
plexes (C, 1), (C’,4') have the same boundary (n—1)-dimensional quadratic

globally contractible locally Poincaré complex in A (Z, X) (up to homotopy
equivalence)

o(C,) = 9(C", YY) = —do*(X),
and the union (C,) U (C’, —1’) is a 1-connective n-dimensional quadratic
locally Poincaré complex in A (Z, X). The assembly of the element

(C, ) U(C", —¢) € Ln(A(1)(Z)+(X)) = Hn(X;L.)
is the difference of the surgery obstructions
A((C)u (T, =¢)) = (C(X),¥(X)) = (C"(X), 4 (X))
= 0.(f,0) = o (V) € Ly(Z[m (X)]) -
The symmetric L-spectrum L is a ring spectrum. (See Appendix B
for the multiplicative structure of the L-spectra). The S-dual of the LL'-

coefficient Thom class Uy € H*(T(v); L") of a topological block bundle re-
duction 7: X — BT OP(k) of v is a fundamental L'-coefficient class [X]; €



1/(. 1HE TOTAL SURGERY OBSTRUCTION 199

H,(X;L"). The quadratic L-spectrum L. is an L'-module spectrum, and
there is defined an LL.-coefficient Poincaré duality isomorphism

U

(X]yN—: [X,G/TOP] = H(X:L) =25 HEMT@):L) = Hy(X:L).

The topological block bundle reductions 7': X —BTOP(k) (k large) of v
are classified relative to by the homotopy classes of maps X —G/TOP.
The difference ¢(7, ') € [X,G/TOP] (16.1 (v)) corresponds to the element
(C,y)yu (C',—yY") € H,(X;LL.) constructed above, so that

o.(f,b) — o (f, V) = A(t(r,v)) € im(A: H,(X;L.)—L,(Z[r(X)])) .
Thus if s(X) € ker(S,(X)—H,,_1(X;L.)) there exist topological block
bundle reductions 7 of v, and the surgery obstructions o.(f,b) of the asso-

ciated degree 1 normal maps (f,b): M—X define a coset of the image of
the assembly map

im(A: H,(X;L.)— L, (Z[m(X)])) C L,(Z[m1(X)])
(confirming the suggestion of Wall [182, §9]).

The total surgery obstruction s(X) is therefore such that s(X) = 0 €
S, (X) if and only if there exists a reduction 7 for which o,(f,b) = 0 €
L, (Z[m1(X)]). For m > 5 this is the necessary and sufficient condition
given by the Browder—Novikov—Sullivan—Wall theory for X to be homotopy
equivalent to a compact n-dimensional topological manifold.

i

ExAMPLE 17.5 The total surgery obstruction of a compact n-dimensional
combinatorial homology manifold X is s(X) =0 € S,,(X), by virtue of the
canonical fundamental L’-homology class [X], € H,(X;L") (16.16). 17.4
gives an alternative proof of the result of Galewski and Stern [58] that for
n > 5 X is homotopy equivalent to a compact n-dimensional topological
manifold.

i

COROLLARY 17.6 A finite n-dimensional geometric Poincaré complexr X

admits a transversality structure I1 = (Y, Z, g, h) if (and for n > 5 only if)

X is homotopy equivalent to a compact n-dimensional topological manifold.
i

COROLLARY 17.7 The total surgery obstruction of a topologically reducible
finite n-dimensional geometric Poincaré compler X 1is given by

S(X) = —00.(f,b)
€ im(0: Ly, (Z[m (X)])—Sn(X)) = ker(S,(X)—H,—1(X;L.)) ,
with 0, (f,b) € L,(Z[m(X)]) the surgery obstruction of any degree 1 normal
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map (f,b): M——X from a compact n-dimensional manifold M.
i

See 19.7 below for the generalization of 17.7 to a degree 1 normal map
(f,b):Y—X of finite n-dimensional geometric Poincaré complexes, with
b: vy —vx afibre map of the Spivak normal fibrations rather than a bundle
map of topological reductions. The formula of 19.7 is

s(Y) = s(X) = 00.(f,b) € Sn(X) ,

expressing the difference of the total surgery obstructions in terms of the
quadratic signature o, (f,b) € Ly, (Z]m (X)]).

REMARK 17.8 The algebraic surgery exact sequence of a polyhedron X

e Hy(XGL) o L(Z[m(X)]) — S (X) — Hy 1 (X3L) — ...

can be viewed as the L-theory localization exact sequence for the assembly
functor

A : {locally Poincaré complexes} — { globally Poincaré complexes}

inverting all the globally contractible chain complexes. The total surgery
obstruction s(X) € S, (X) of an n-dimensional geometric Poincaré complex
X is thus an analogue of the boundary construction of quadratic forms
on finite abelian groups from integral lattices in rational quadratic forms
(cf. 3.13 and Ranicki [146,§83,4]). The peripheral invariant of Conner and
Raymond [40] and Alexander, Hamrick and Vick [2] for actions of cyclic
groups on manifolds and the intersection homology peripheral invariant of
Goresky and Siegel [64] and Cappell and Shaneson [28] are defined similarly.
m

The connections between the total surgery obstruction and geometric
Poincaré transversality are described in §19 below.
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§18. The structure set

The relative version of the total surgery obstruction theory of §17 will now
be used to identify the Sullivan—Wall surgery exact sequence of a manifold
with the algebraic surgery exact sequence of §15. For n > 5 the structure set
STOP (M) of an n-dimensional manifold M is identified with the quadratic
structure group S,,41(M).

DEFINITION 18.1 The structure set STOF(X) of a finite n-dimensional
geometric Poincaré complex X is the set of the h-cobordism classes of pairs
(compact n-dimensional manifold M , homotopy equivalence f: M—X) .

m

By 17.4 for n > 5 the structure set ST9F(X) is non-empty if and only if
5(X) =0 € S,(X). The structure set STF (M) of a manifold M is pointed,
with base point (M, 1) € STOP(M).

More generally, the structure set SJ9F(X) of a finite n-dimensional geo-
metric Poincaré pair (X,0X) with compact manifold boundary 0X is de-
fined to be the set of the reld h-cobordism classes of homotopy equiva-
lences f: (M,0M)—(X,0X) from compact manifolds with boundary such
that f|:OM——0X is a homeomorphism. By the rel 9 version of 17.4 for
n > 5 SYOP(X) is non-empty if and only if s(X) =0 € S,,(X). Note that
SEOP(X) = STOP(X) in the closed case 0X = ().

DEFINITION 18.2 Let (M,0M) be a compact n-dimensional manifold with
boundary, with n > 5. The geometric surgery exact sequence computing the
structure sets SYOF (M x D?) (i > 0) is the exact sequence of Sullivan [166]
and Wall [180, 10.8]

. — Lyyit1(Z[m (M)])) — SFOF (M x DY)
o [M x D, 0(M x D'); G/TOP, {+}] — Lysi(Zlm (M)))
— ... — Ly (Z[m (M) — SEOP (M)

0
— [M,0M; G/TOP, {x}| — L,(Z[r1(M)]) .
O
An element t € [M,0M; G/TOP, {x}] classifies a topological block bundle
reduction 7: M—BTOP(k) of the Spivak normal fibration Jvy: M—
BG(k) (k large) such that v| = vgp: OM ——BTOP(k). The surgery ob-
struction map
0 (M,0M; G/TOP, {+}] — Ly(Zlm (M)
sends such an element ¢ to the surgery obstruction
0(t) = 0.(f,0) € Ln(Z[m (M)])
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of the degree 1 normal map of n-dimensional manifolds with boundary ob-
tained by the Browder—Novikov transversality construction on the degree
1 map p: (D"F, Sntk=1) o (T(9), T(¥|os)) determined by an embedding
(M,0M) C (D*tF Sntk=1) (k large)
(f,b) = p|: (N,ON) = p~'(M,0M) — (M,0M)
with 0f: ON—0OM a homeomorphism. The group L, 1(Z[r1(M)]) acts
on STOF (M) by
Ly1(Z[m (M)]) x STOF(M) — STOP (M) ;
(.CI?, (N07 fO)) - ‘T(NOa fO) = (N17 fl) ’

with fo: No—— M, f1: Ny—— M homotopy equivalences of n-dimensional
manifolds with boundary which are related by a degree 1 normal bordism

(g,¢) = (W"*1 No, Ni) — M x ((0,1]; {0}, {1})
with rel 9 surgery obstruction
0x(g,¢) = = € Ly (Z[m (M)]) .
Two elements (Ny, f1), (Na, fo) € S?;OP(M) have the same image in
[M,0M;G/TOP,{x}] if and only if
(N2, f2) = @(Ni, f1) € SFOT(M)
for some = € Ly, 41(Z[m1(M)]).

For the remainder of §18 only the closed case OM = () is considered,
but there are evident relative versions for the bounded case. In particular,
SEFOP (M) is identified with the quadratic structure group S,+1(M) also in
the case OM # ().

The following invariants are the essential ingredients in the passage from
the geometric surgery exact sequence of 18.2 to the algebraic surgery exact
sequence of 15.19.

PRrOPOSITION 18.3 (i) A normal map of closed n-dimensional manifolds
(f,b): N—M determines an element, the normal invariant
[f, bl € Hn (ML) |
with assembly the surgery obstruction of (f,b)
A(lf,blL) = 0u(f;b) € im(A: Hy(M; 1) — L (Z[m1 (M)]))
= ker(L,(Z[r1(M)])—Sn(M)) ,

and symmetrization the difference of the canonical " -homology fundamental
classes

(1+T)[f7b]JL = f*[N]JL_[M]JLGHn(MSL.)-

Let t(b) € H(M;L.) = [M,G/TOP)] be the normal invariant classifying
the fibre homotopy trivialized stable bundle vy — vyr: M—— BTOP, with
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vy the stable normal bundle of M and vy the target of b:vy——vp;. The
normal invariant is the image of t(b) € [M,G/TOP] under the L. -coefficient
Poincaré duality isomorphism

[Mlyn—: H°(M;L.) — H,(M;L.)
defined by cap product with the canonical L' -coefficient fundamental class
M) € H,(M;L"). The normal invariant is such that [f,b]. = 0 €
H, (M;L") if and only if (f,b) is normal bordant to the 1: M—— M.
(ii) A homotopy equivalence of closed n-dimensional manifolds f: N— M
determines an element, the structure invariant

S(f) € Sn+1(M) ’

with image the normal invariant of the normal map (f,b): N— M with
b:uy—(f~1)*vn the induced map of stable bundles over f

t(f) = [S(f)] = [fa b]]L S im<Sn+1(M)—_>Hn(M;L-))
= ker(A: H,(M;L.)—L,(Zm (M))])) .
As in (i) the normal invariant is such that t(f) = 0 if and only if (f,b): N

—— M 1is normal bordant to 1: M —— M, in which case the structure invari-
ant s(f) is the image of the reld surgery obstruction of any normal bordism

(91, £), (e 1,0)) : (W' M, N) — M x ([0,1]; {0}, {1}) ,
that is
s(f) = low(g;0)] € im(Ln 41 (Z[m1(M)])—Sn41(M))
= ker(Sp+1(M)—H,(M;L.)) .
PROOF (i) Let X be the polyhedron of an n-dimensional geometric Poincaré
complex with a homotopy equivalence g: M—— X, such that both g and
gf: N—X are topologically transverse across the dual cell decomposition

{D(1,X) |7 € X} of X. The restrictions of f define a cycle of degree 1
normal maps of (n — |7|)-dimensional manifolds with boundary

{(f(7), (7))} + AN(7)} — {M(7)}
with
M(r) = g7'D(r,X) , N(r) = (¢f)"'D(r. X) (r€X),
such that M(7) = {pt.} for n-simplexes 7 € X (™). The kernel cycle
{(C(f()),wb(r) |Te X}

of (n — |7|)-dimensional quadratic Poincaré pairs in A (Z) is a 1-connective
n-dimensional quadratic Poincaré complex in A (Z),(X) allowing the defi-
nition

~—
N
<
—~
S
—~
\]
~—
~—
~—
——

£l = {(C(f(r)’
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(ii) If f: N—— M is a homotopy equivalence the quadratic complex of (i) is
globally contractible, allowing the definition

s(f) = {CU(M)),p(0(1)))} € Snr1(X) = Sy (M) .
(Equivalently, define the structure invariant s(f) of a homotopy equivalence
f: N—M of compact n-dimensional manifolds to be rel 0 total surgery
obstruction of a finite (n 4+ 1)-dimensional geometric Poincaré pair with
compact manifold boundary

s(f) = sa(W,NU—M) € Spp1 (W) = Spsr(M),

with W = N x I Uy M the mapping cylinder.)
m

ExAMPLE 18.4 The normal invariant of a normal map of closed oriented
n-dimensional manifolds (f,b): N—— M is given modulo torsion by the dif-
ference between the Poincaré duals of the L-genera of M and N

[f0lb®Q = fo(L(N)N[N]g) — L(M)N[M]g
€ Hy(M;L)®Q = H,_4.(M;Q) .
O

THEOREM 18.5 (Ranicki [143]) The Sullivan—-Wall geometric surgery exact
sequence of a compact n-dimensional manifold M with n > 5 is isomorphic
to the algebraic surgery exact sequence, by an isomorphism

- — Lo (Zmy (M)]) — STOP (M) — [M, G/TOP) %> L, (2[m (M)

P

s Loy (2 (M)]) =L S 1 (M) —— Ho (ML) A L (2] (M)

and for all 1 >0

SEOP(M x DY, M x S71) = Spprip1 (M),

[M x D', M x S°',G/TOP,{*}] = H "(M;L.) = H,.;(M;L.) .
In particular, H,(M;L.) = [M,G/TOP] is the bordism group of normal
maps (f,b): N—M of closed n-dimensional manifolds.

PROOF An embedding M C S"** (k large) determines a topological normal
structure

(7: M—BTOP(k), p: S"TF—T()) .
By 18.3 (i) the normal invariant defines a bijection

t: [M,G/TOP] — H,(M:L.): ¢ — [f,0s.,
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namely the Poincaré duality isomorphism

~

t = [Mlon—: [M,G/TOP] = H°(M;L.) — H,(M;L.) .

The surgery obstruction map 6 thus factorizes as the composite
6: [M,G/TOP] = HOM;L) —— Hy(M;L.) —— Ln(Zlm (M)]) .
Use the structure invariant of 18.3 (ii) to define a bijection
s STOP(M) — Sppa (M) 5 (N, f) — s(f)

Similarly for the higher structures.
i

In particular, for any closed n-dimensional manifold M and any element
x € Sp41(M) there exists a closed n-manifold N with a homotopy equiva-
lence f: N——M such that s(f) = x.

COROLLARY 18.6 Let K be a space with finitely presented 1 (K).
(i) Ho(K;L.) consists of the images of the normal invariants [f, bl of nor-
mal maps (f,b): N——M of closed n-dimensional manifolds with a reference
map M— K.
(ii) The image of the assembly map A: H,,(K;1L.)— L, (Z]|m1 (K)]) consists
of the surgery obstructions o.(f,b) of the normal maps (f,b): N—M of
closed n-dimensional manifolds with a reference map M—K.
(iii) Sp41(K) consists of the images of the structure invariants s(f) of ho-
motopy equivalences (f,b): N—— M of closed n-dimensional manifolds with
a reference map M— K.
(iv) The image of S,41(K)—H,(K;L.) consists of the images of the
normal invariants [f,b]L of homotopy equivalences (f,b): N——M of closed
n-dimensional manifolds with a reference map M— K.

i

ExXAMPLE 18.7 For n > 4 the manifold structure set of the n-sphere S™ is
STOFP(8™) = S,.1(S™) = 0.

This is the TOP version of the n-dimensional Poincaré conjecture (Smale,
Stallings, Newman, Freedman), according to which any homotopy equiva-
lence M"™ ~ S™ from a compact n-dimensional topological manifold M is
homotopic to a homeomorphism.

i

See §20 for S,.(M) in the simply connected case w1 (M) = {1}.

REMARK 18.8 The simply connected surgery classifying space Ly ~ G/TOP
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is such that
G/TOP ®Z[1/2] ~ BO®Z[1/2]

G/TOP® Loy ~ |[ K(Zw),45) x || K(Z2,45 +2)

=1 7320
with Zy) = Z[1/odd] the localization of Z at 2, so that for any space X
H(X;L)[1/2] = KOLAX)[1/2] = Qu(X) @, (gpr.y) L«(Z2)[1/2]
H(X;L.)@) = HH*—4j(X§Z(2)) < [ [ Heeaj—2(X;2Z2) .
Jj=1 j>0

Wall [180, p. 266] used bordism theory and the surgery product formula to
define the L-theory assembly map away from 2

A Ho(X;L)[1/2] — Lo(Z[m (X)][1/2]
by sending the bordism class of an n-dimensional manifold M equipped with
a reference map M —— X to the symmetric signature of Mishchenko [115]
A(M) = o*(M) € Lo(ZIm(X))[1/2] = L™(Zm(X))[1/2] .
Up to a power of 2 this is a surgery obstruction
80*(M) = (1+T)ou(1 x (f,b): M x Q®——M x S%) € L™(Z[r(X))]) ,
with (f,b): Q®*——S® the 8-dimensional normal map determined by the
framed 3-connected 8-dimensional Milnor PL manifold Q® with signature
o*(Q®) = (7%, Es) = 8cL¥(Z) = Z.
The factorization of the surgery map as
0: [M,G/TOP] — QTP (Br x G/TOP, Br x {x})
— La(@l)) (x = m(M)
is due to Sullivan and Wall [180, 13B.3] (originally in the PL category), with
[M,G/TOP] — QTOP(Br x G/TOP, Bt x {*}) ;
(9: M—G/TOP) = ((f,b): N—M) —

(N m (M x G/TOP, M x {x}) — (Bm x G/TOP, Br x {x})) .
See Appendix B for an expression of this factorization using the multiplica-
tive properties of the algebraic LL-spectra. The factorization of 6 through
the assembly map A was first proposed by Quinn [131]: see Mishchenko and
Solovev [118], Nicas [121, §3.3], Levitt and Ranicki [94, §3.2] for the geomet-
ric construction of A in the case when M is a PL manifold. In Ranicki [143]
the factorization of # through the algebraic assembly map A was obtained by
means of the theory of normal complexes and geometric Poincaré complexes
due to Quinn [132]: see the Appendix to Hambleton, Milgram, Taylor and
Williams [69] for an exposition of this approach. The factorization was used
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in [69] and Milgram [109] to compute the surgery obstructions of normal
maps of closed manifolds (= the image of A: H,(Bm;L.)—L.(Z[r])) for
finite groups 7.

O

REMARK 18.9 (i) A simplicial map f: J— K’ is transversely cellular if J
is an n-dimensional PL manifold and the inverse images of the dual cells
of i-simplexes in 0 € K are (n — i)-dimensional PL balls f~'D(o, K) C J.
Cohen [38], [39] proved that a transversely cellular map of compact PL man-
ifolds is homotopic to a PL homeomorphism, and that for n > 5 a proper
surjective PL map of n-dimensional combinatorial homotopy manifolds with
contractible point inverses is homotopic to a homeomorphism.

(ii) A map f: N—M of ANR spaces (e.g. manifolds) is cell-like if it is
proper, surjective and such that for each x € M and each neighbourhood
U of f~(x) in N there exists a neighbourhood V C U of f~!(z) such that
the inclusion V——U is null-homotopic. A proper surjective map of finite-
dimensional AN R spaces is cell-like if and only if it is a hereditary proper
homotopy equivalence, i.e. such that the restriction f|: f=*(U)—U is a
proper homotopy equivalence for every open subset U C M. A PL map
f: N——M of compact polyhedra is cell-like if and only if the point inverses
f~1(x) are contractible, in which case 7(f) = 0 € Wh(m(M)) (as is true for
any cell-like map of compact AN R spaces). Siebenmann [161] proved that
for n > 5 a proper surjective map f: N——M of n-dimensional manifolds
is cell-like if and only if f is a uniform limit of homeomorphisms. More
generally, Chapman and Ferry [35] showed that for n > 5 any sufficiently
controlled homotopy equivalence of n-dimensional manifolds can be approx-
imated by a homeomorphism. The structure invariant s(f) € S, 11(M) of
a homotopy equivalence f: N——M of compact n-dimensional manifolds
measures the failure of f to be cell-like on the chain level, i.e. for the point
inverses f~(z) (r € M) to be acyclic, up to the chain level cobordism
relation appropriate for deciding if f is homotopic to a homeomorphism (at
least for n > 5). If f is cell-like then each of the simplicial maps

f(r) = fl: N(r) = (¢f)"'D(1,X) — M(r) = g"'D(1,X) (7€ X)
in the definition of s(f) can be chosen to be a homotopy equivalence, with
g: M ~ X as in 18.3, so that

S(f) = 0e Sn+1(M) .
Thus for n > 5 a cell-like map f: N—— M of compact n-dimensional mani-
folds is homotopic to a homeomorphism and

(N.f) = (M,1) = 0€STOP(M) = S, (M).
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§19. Geometric Poincaré complexes

The total surgery obstruction of §17 and the structure invariant of §18
are now interpreted in terms of geometric Poincaré bordism theory. The
total surgery obstruction s(X) € S, (X) of a finite n-dimensional geomet-
ric Poincaré complex X is identified with the obstruction to the identity
X —X being bordant to a Poincaré transverse map.

The main source of geometric Poincaré complexes is of course:

ExaMPLE 19.1 A compact n-dimensional topological manifold is a finite
n-dimensional geometric Poincaré complex.
i

EXAMPLE 19.2 Browder [14] showed that finite H-spaces are geometric
Poincaré complexes, providing the first examples of Poincaré spaces other
than manifolds or quotients of finite group actions on manifolds (which
are QQ-coefficient Poincaré complexes). Finite H-spaces are topologically
reducible, with trivial Spivak normal fibration, so that simply-connected
ones are homotopy equivalent to compact topological manifolds.

i

EXAMPLE 19.3 Gitler and Stasheff [61] used the first exotic class e; €
H*(BG;Zs) to show that a certain simply-connected finite 5-dimensional
geometric Poincaré complex X = (S52V.S3)Ue’ is not topologically reducible,
and hence not homotopy equivalent to a compact topological manifold. In
fact, X can be chosen to be the total space of a fibration $?—X —53
classified by an element in m3(BG(3)) with image 1 € 7m3(B(G/TOP)) =
mo(G/TOP) = Zy. See Madsen and Milgram [102, pp. 32-34] for the classi-
fication of all the 5-dimensional geometric Poincaré complexes of the type
(52 v S$3)Ue®. See Frank [55] for non-reducible geometric Poincaré com-
plexes detected by the exotic classes e; € H*(BG;Zy,) for odd prime p.

i

EXAMPLE 19.4 Wall [177,5.4.1] constructed for each prime p a reducible
finite 4-dimensional geometric Poincaré complex X with 71(X) = Z,
X = €OU61UU62U63U64
10
such that X and the universal cover X are orientable with signature
o*(X) = o*(X) = 8eLXZ) = Z.
Signature is multiplicative for orientable finite covers of orientable compact
manifolds, and o*(X) # po*(X), so X cannot be homotopy equivalent to a

closed manifold; higher-dimensional examples are obtained by considering
the products X x (CP2)* (k > 1). See 22.28 for the systematic construction
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of such examples, which are detected by the multisignature invariant.
i

The realization theorem of Wall [180] for the surgery obstruction groups
L, (Z[r]) (n > 5) provides the following systematic construction of topo-
logically reducible finite geometric Poincaré complexes. Every finitely pre-
sented group 7 is the fundamental group © = (M) of a compact (n — 1)-
dimensional manifold M"~!. Every element x € L,(Z[r]) is the reld
surgery obstruction x = o, (f,b) of a normal map

(F:b) (W™ M= A=) — M x ([0, 1); {0}, {1})
with
flar = identity : M — M x {0} ,
flar = homotopy equivalence : M —— M x {1} .
The topologically reducible n-dimensional geometric Poincaré complex
X = WUsr M x[0,1]
has fundamental group 71(X) = 7 x Z but the extraneous Z-factor can

be ignored (or removed by Poincaré m;-surgery as in Browder [17]). The
normal map of n-dimensional geometric Poincaré complexes

(fL,b)Ul: X = WUsy M x[0,1] — M xS' = M x[0,1]Us M x [0,1]
has quadratic signature o, ((f,b)Ul) = z € L, (Z[r]) . Also, if (g,¢): N—X
is a normal map from a closed n-dimensional manifold N corresponding to
the topological reduction of X then o0.(g,c¢) = —x € L, (Z[r]). See Ran-
icki [145] for the definition and the composition formula for the quadratic
signature of a normal map of geometric Poincaré complexes.

PROPOSITION 19.5 The topologically reducible finite n-dimensional geomet-
ric Poincaré complex X with m(X) = 7 constructed from x € L, (Z[r]) has
total surgery obstruction

s(X) = 0(x) € im(0: L, (Z[r])—S, (X)) = ker(S,(X)—H,_1(X;L.)),
and s(X) =0 €S, (X) if and only if x € im(A: H,,(X;L.)—L,,(Z[r])).

Proor The Spivak normal fibration vx has a topological reduction such
that the corresponding normal map (g, ¢): N*—— X has surgery obstruction

O'*(g,C) = _O-*(f7 b) = —xc LH(Z[W]) :
The total surgery obstruction of X is given by 17.7 to be
s(X) = —00.(g,c) = 0(x) € Sp(X) .

The equivalence of s(X) = 0 and z € im(A) is immediate from the exact

sequence

A 5]
Ho(X;L) —— Lo(Zm(X)]) — Sa(X) .
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The construction of geometric Poincaré complexes from surgery obstruc-
tions defines a map

La(ZIm(K)]) — QLK) 3 & — X
for any space K with finitely presented 71 (K) and n > 5.
The exact sequence of Levitt [92], Jones [80], Quinn [132], Hausmann and
Vogel [75] relating geometric Poincaré and normal cobordism
> QL (K) — La(Z[m(K)]) — Q7 (K) — Q)(K) — ...
has the following generalization:
PROPOSITION 19.6 (Ranicki [143])

(i) For any polyhedron K with finitely presented i (K) and n > 5 there is
defined a commutative braid of exact sequences

Sn—l—l(K) Hn(K; QP) H?’L(K; QN)
H,(K;L.) Q) (K)
Hya (K Q) L(Zlm (K))) S, (K)

with QF = QF ({x}) (resp. QN = QN({x})) the geometric Poincaré (resp.
normal) bordism spectrum of a point and

s: QP(K) — S,(K) ; (f: X—K) — f.s(X)
the total surgery obstruction map. The quadratic structure group S, (K) is
the bordism group of maps (f,0f): (X,0X)—K from finite n-dimensional
geometric Poincaré pairs (X, 0X) such that 0f: 0X — K is Poincaré trans-
verse.
(ii) A finite n-dimensional geometric Poincaré complexz X has total surgery
obstruction s(X) = 0 € S,,(X) if (and for n > 5 only if) there exists an QF -
homology fundamental class [X|p € H,(X;QF) with assembly the Poincaré
bordism class of 1: X — X

A(X]p) = (LX—X) € QP(X) .
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PROOF (i) The geometric normal complex bordism spectrum of a point is
the Thom spectrum of the universal oriented spherical fibration over the
classifying space BSG

QN = (Vs Pn|neZ} = MSG , QN ({*}), = lim QY MSG(j —n) .
J
The normal complex assembly maps are isomorphisms
A H(K; Q) — ON(K)
by normal complex transversality (Quinn [132]). The map s is defined by
the total surgery obstruction
s Qﬁ(K) — Sp(K) ; (X—K) — s(X) .
The geometric Poincaré bordism spectrum of a point
QF = {QP({x})n|n e Z}
consists of the A-sets with
QF ({«})®) = {(n + k)-dimensional oriented finite geometric Poincaré
k-ads (X;00X,0:1X,...,0,X) such that %X N X N...NKX = 0},
with the empty complexes as base simplexes (). As in §12 assume that K
is a subcomplex of OA™T! for some m > 0. By 12.6 H,(K; QP) is the
cobordism group of n-dimensional QF-cycles in K
X = {(X(n el =)l re K},
so that (X(7); 00X (7),...,0m—-/X(7)) is an (n — |7|)-dimensional geomet-
ric Poincaré (m — |7])-ad with
X((SZT) if ;7€ K
0; X =

(7) { 0 if 6,7 ¢ K
The assembly of X is the bordism class (A(X), f) € QF(K) of the union
n-dimensional geometric Poincaré complex

AX) = [Jxm

TeK

0<i<m-—|7]).

with f: A(X)—— K’ a Poincaré transverse simplicial map such that
f'D(1,K) = X(1) (T€K).

(ii) Immediate from (i).
O

See Levitt and Ranicki [94] for a geometric interpretation of an QF-
homology fundamental class [X]p € H,,(X;QF) such that

A(X)p) = (LLX—X) € QF(X)

as an ‘intrinsic transversality structure’.
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COROLLARY 19.7 If (f,b): Y —X is a normal map of finite n-dimensional
geometric Poincaré complexes then the difference of the total surgery ob-
structions is the image of the quadratic signature o, (f,b) € Ly, (Zm(X)])

s(Y)—s(X) = 00.(f,b) € im(9: L,(Z[m1(X)])—S, (X)) .
ProoF The mapping cylinder W =Y x I Uy X of f defines an (n + 1)-
dimensional normal pair (W,Y U —X) with boundary the n-dimensional
geometric Poincaré complex Y L — X, such that

o (W, Y U-X) = o.(f,b) € Q1 (X) = L,(Z[m (X)) .

i

The symmetric L-groups are not geometrically realizable, in that the sym-

metric signature map
o QP(K) — L(Z[m(K))) : (X—K) — o*(X)

is not onto in general. For example, the (2k — 1)-connected 4k-dimensional
symmetric Poincaré complex (S?*Z[Zs], T) over Z[Z3] is not in the image
of 0*: QL (BZy )——L*(Z[Zy]) for any k > 1 (Ranicki [146, 7.6.8], see also
9.17).

The fibre of the 1/2-connective visible symmetric signature map

o QP (K) — VL' (K) ; (X—K) — o*(X)

is a homology theory:

COROLLARY 19.8 For any polyhedron K with finitely presented w1 (K) and
n > 5 there is defined a commutative braid of exact sequences

/\/\

Spa1(K) H, K,L) H, (K;QEP)
H,(K; QP) VL"(K)
Hyp1 (K Q5P)) " (K) Sn(K

vv

with Q-P) the fibre of the simply connected symmetric signature map o*: QF
—L.

O
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REMARK 19.9 The simply connected normal signature map o*: Q¥ —L
is a rational homotopy equivalence, with both spectra having the rational
homotopy type of the Eilenberg-MacLane spectrum K.(Q,0) for rational
homology:

ANeoQ ~ MSG®Q ~ K.(Q,0)
by the finiteness of the stable homotopy groups of spheres 7f = 7,41 (BSG)
for * > 1, and

L'®Q = cofibre(1+T:L.—L)®Q ~ K.(Q,0)
by virtue of the symmetrization map 1+ T L,(Z)—L*(Z) being an iso-
morphism modulo 8-torsion. The natural map

QEP) = fibre (0*:Q,P—>IL') — fibre (8*:Q{V—>IE')
induces isomorphisms of homotopy groups, except possibly in dimensions

4,5 (in which it at least induces isomorphisms modulo torsion). The 1/2-
connective visible symmetric signature map

o* : QF(X) — VL™(X)
is a rational isomorphism for all n > 0.
|

Given a map f:Y——X there are defined relative S-groups S.(f) to fit
into a commutative diagram

. — H,(Y;L.) —— L,(Zm(Y)]) — S,(Y)— H,—1(Y;L.) —...
. — H,(X;L.) — L, (Z[m(X)]) — Sp(X) — Hp—1(X5L) — . ..

s Ho(f3 L) ——— Lo(f) ———Su(f) — Hpor(fL) — ...

.— H, 1(Y;L.) — Ly, 1(Zm(Y)]) — Sp—1(Y) — Hp—2(Y;L.) — ...

with exact rows and columns. The total surgery obstruction of a finite
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n-dimensional geometric Poincaré pair (X,Y’) is an element
s(X,Y) e S, (X,Y) = S, (Y—X)
of the relative S-group of the inclusion Y —— X, with image the total surgery
obstruction of Y
[s(X,Y)] = s(Y) €Spa(Y) .
As in the absolute case (Y = () the image
t(X,Y) = [s(X,Y)] € H,_1(X,Y;L.) = H*" YT (vx);L.)

is the obstruction to a topological reduction of the Spivak normal fibration
vx: X—BG(k). The total surgery obstruction is such that s(X,Y) =0
if (and for n > 6 only if) (X,Y) is homotopy equivalent to a compact n-
dimensional topological manifold with boundary (M™,0M). For n > 6 the
structure set of (M™, M) is given by

STOP(M,0M) = Sp41(M,0M) .
REMARK 19.10 The total surgery obstruction of a finite n-dimensional ge-
ometric Poincaré pair (X,Y’) such that
m(Y) = m(X)
is just the topological reducibility obstruction
s(X,Y) = t(X,Y)eS,(X,Y) = H,1(X,Y;L.) .

Thus vx: X—BG is topologically reducible if (and for n > 6 only if)
(X,Y) is homotopy equivalent to a compact n-dimensional topological man-
ifold with boundary — this is the -7 theorem of Wall [180, 3.3] and its trivial
converse.

m
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§20. The simply connected case

We now turn to the simply connected case w1 (X ) = {1}. The total surgery
obstruction s(X) € S, (X) of an n-dimensional geometric Poincaré complex
X has image the obstruction ¢(X) € H,,_1(X;L.) to a topological reduction
of the Spivak normal fibration of X. The simply connected case has the
distinctive feature that S, (X)—H,_1(X;L.) is injective, so that s(X) is
determined by ¢(X). See Browder [16] for a detailed exposition of simply
connected surgery obstruction theory in dimensions > 5, and Freedman and
Quinn [56] for the extension to the 4-dimensional case.
The simply connected surgery obstruction groups are given by

Z 0
L,(Z) = %2 iftn= ; (mod 4) .
0 3

The cobordism class of an n-dimensional quadratic Poincaré complex (C, 1))

over Z is given by
(€ ) = (1/8) signature (Hay (C') /torsion, A, i)
’ | Arf invariant (Hopy1(C; Zo ), A, 1)
Z 4k
@ = {2 wa={F

with (X, ) the (=)"/?-quadratic form determined by 1. The surgery ob-
struction o, (f,b) € L,(Z) of an n-dimensional normal map (f,b): M—X
with 71(X) = {1} is the cobordism class of the kernel n-dimensional quad-
ratic Poincaré complex (C, ) over Z, with

H.(C) = K.M) = ker(fi: Hi(M)—H.(X)),

K.(M) @ H.(X) = H.(M) .
so that
signature (Ko (M;R), A, 1) /8
o.(f.h) = (Cop) = {EME ,
Arf invariant (Kop+1(M;Z2 ), A, 1)
7 4k
e L,(Z) = if n =
(Z) {22 n {4/<;+2
with (X, p) the (—)"/2-quadratic form on the kernel module
Kn/2(M) = ker(f* Hn/2(M)—> TL/2(X))
defined by geometric intersection and self-intersection numbers.
See Kervaire and Milnor [86] and Levine [91] for the original applications
of simply connected surgery theory to the classification of differentiable ho-

motopy spheres. For ¢ > 3 every element = € Ly;(Z) is the surgery obstruc-
tion z = 0. (g, ¢) of a normal map (g, ¢): Q**—S% with Q a closed framed
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(i—1)-connected 2i-dimensional PL manifold constructed by plumbing. For
i=4andx = 1 € Lg(Z) = Z such a manifold Q% may be obtained by coning
off the boundary of a differentiable 8-dimensional manifold with boundary
one of the 7-dimensional exotic spheres of Milnor [111]. For ¢ = 5 and
v =1¢€ Lio(Z) = Zy this gives the PL manifold Q'° without differentiable
structure of Kervaire [85].

~

REMARK 20.1 The structure invariant of a homotopy equivalence f: N"* —
M™ of closed simply connected n-dimensional manifolds is given modulo
torsion by the difference between the Poincaré duals of the L-genera of M
and N (cf. 18.4)

s(f)©@Q = LM)N[M]g — f«(£L(N)N[N]g)
eSn—l—l(M)@Q = ker (Hn—4*(M; Q)—> n—4*({pt-};Q))
= Y Hy w(M;Q) .

4k+#n

For a simply connected polyhedron K the assembly maps
A: H,(K;L.) — H,{pt.;;L.) = L,(Z) (n>1)
are onto. It follows that the normal invariant maps
Sn(K) — H,—1(KGL.) 5 res(X) — riot(X)

are injective, with 7, s(X) € S,,(K) the image of the total surgery obstruc-
tion s(X) € S,,(X) of an n-dimensional geometric Poincaré complex X with
a reference map r: X — K, and r,t(X) € H,_1(K;L.) the image of the
topological reducibility obstruction ¢#(X) = t(vx) € H,_1(X;L.).

ExAMPLE 20.2 For a simply connected n-dimensional geometric Poincaré
complex X the total surgery obstruction s(X) € S,,(X) is such that s(X) =
0 if and only if £(X) = 0. If ¢(X) = 0 there exists a topological reduction
v: X —BSTOP for which the corresponding normal map (f,b): M"—X
has surgery obstruction o, (f,b) =0 € L,(Z), and if also n > 4 then (f,b) is

normal bordant to a homotopy equivalence M’ — X for a manifold M.
O

Thus for n > 4 a simply connected n-dimensional geometric Poincaré
complex X is homotopy equivalent to a topological manifold if and only if
the Spivak normal fibration vx: X — BSG admits a topological reduction
v: X—BSTOP. In the even-dimensional case not every such reduction
corresponds to a normal map ( f, b): M™—— X with zero surgery obstruction.
If the corresponding normal map (f,b) has surgery obstruction o (f,b) =
x € Lp(Z) and —x = 0.(g,c) for a normal map (g,c): N"——S™ then the
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normal map obtained by connected sum
(f,0) = (f,b)#(g,¢): M = M"#N" — X = X#S5"
has surgery obstruction

o (f,0) = 04(f,b) +04x(g,¢) = x—x = 0€ L,(Z)

~

and (f',b) is normal bordant to a homotopy equivalence M"" — X

ProPOSITION 20.3 For n > 4 the structure set of a simply connected n-
dimensional topological manifold M s given by

STOP(M) = Sp41(M)
_ Jker(A:H,(M;L.)—Lyn(Z)) ., _ [0 o
B {HH<M;L.> an_{1< 42)-

PRrOOF This is immediate from L, 1(Z) = 0 and the exact sequence

s Hoy(MiL) o Lo(Z) — Su(M) — Hy 1 (MiL) — ... .
O

EXAMPLE 20.4 The topological manifold structure set of S* x S"~* for
n—kk>2is

STOP(sk % Sn—k) _ Sn+1(sk % Sn—k)
= ker(h:[S* x S"% G/TOP]—L,(Z))
= Lk(Z) D Ln_k(Z) ,

giving concrete examples of homotopy equivalences of manifolds which are
not homotopic to homeomorphisms, as in Novikov [122] (in the smooth
case). In particular, in the stable range 2k + 1 < n a non-zero element

x 7& 0e Lk(Z) = Wk(G/TOP)
= 41 (BTOP(n — k +1)—BG(n — k + 1))
(such as ¢ = 1 € Ly(Z) = Zy for k = 2, n = 6) is realized by a fibre

homotopy trivialized topological block bundle #: Sk—HBT,OJP(n —k+1).
The total space of the sphere bundle
SmF — S(n) — S*
is an n-dimensional manifold equipped with a homotopy equivalence f: S(n)"
3—>Sk x S™~% such that the structure invariant is non-zero
s(f) = (2,00 #0e8TOP(S% x " ") = Ly(Z)® L, +(Z)

so that f is not homotopic to a homeomorphism.
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The simply connected symmetric signature of a 4k-dimensional geometric

Poincaré complex X is just the ordinary signature
o*(X) = signature (H?*(X),¢) € L**(Z) = 7Z .
The Hirzebruch formula expresses the signature of an oriented 4k-dimension-
al manifold M** in terms of the L-genus L(M) = L(7yr) € H*(M; Q)
o*(M) = signature (M) = (L(M),[M]g) € L**(Z) = Z .

The defect in the signature formula for Poincaré complexes was used by
Browder [15] to detect the failure of a simply connected 4k-dimensional ge-
ometric Poincaré complex X to be homotopy equivalent to a (differentiable)
manifold, just as the defect in the signature formula for manifolds with
boundary had been previously used by Milnor [111] and Kervaire and Mil-
nor [86] in the detection and classification of exotic spheres. A topological
reduction 7: X — BSTOP of the Spivak normal fibration vx: X — BSG
determines a normal map (f,b): M**—— X with surgery obstruction given
by the difference between the evaluation of the £-genus £(—7) € H*(X;Q)
on [X]g € H4,(X;Q) and the signature of X

o.(f,b) = signature (Ko (M), A\, p)/8
= (signature (M) — signature (X))/8
— ((L(~9), [X]g) — o*(X))/8 € Lan(Z) = Z.
If ,0/: X——BSTOP are two topological reductions then the surgery ob-

structions of corresponding normal maps (f,b): M*—— X, (f',b'): M'** —
X differ by the assembly of the difference element

t(0,7') € Hp(X; L) = [X,G/TOP],
that is
o(f,0) — o (f1,V) = A(t(D,7")) € Lar(Z) -
For k > 2 a topological reduction v is realized by a 4k—dir£ensional topo-

logical manifold M** with a homotopy equivalence h: M — X such that
vy = h*v: M—— BSTOP if and only if the signature satisfies
0" (X) = (L(-p),[X]o) € L*(Z) = Z.
For a simply connected (4k + 2)-dimensional geometric Poincaré complex

X with a topological reduction v: X — BST'OP the surgery obstruction of
the corresponding normal map (f,b): M**+2— X is given by

o«(f,b) = Arf invariant (Kog1(M;Z2), A, 1)

€ Lyp12(Z) = Lypi2(Zo) = Zg

with (Kok41(M;Zs ), A, 1) the nonsingular quadratic form defined on the
kernel Zso-module

K2k+1(M; Zg ) = ker(f*: H2k+1(M; ZQ )—>H2k_|_1(X; Z2 ))
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by geometric intersection and self-intersection numbers, or (equivalently) by
functional Steenrod squares. There exists a (4k+2)-dimensional topological

manifold M*¥+2 with a homotopy equivalence h: M — X for which vy, =
h*v: M—— BSTOP if and only if this Arf invariant is 0.

For a simply connected 2:¢-dimensional geometric Poincaré complex X
with a topologically reducible vx: X——BSG there exists a normal map
(f,b): M?*— X with surgery obstruction o.(f,b) = 0 € Ly;(Z), so that
s(X) = 0 € Sy(X) and X is homotopy equivalent to a manifold. This
follows formally from

and m.(G/TOP) = L.(Z). For every i > 3 and every x € Lo;(Z) plumb-
ing can be used to construct a differentiable 2i-dimensional manifold with
boundary (W?2!,0W) and a normal map

(F7 B) : (W7 aW) - (D%v S2i_1)
which restricts to a homotopy equivalence F|: OW — S§2—1 with
o.(F,B) = x € Ly(Z) .
(See Browder [16, V] for details.) By the (2i — 1)-dimensional PL Poincaré

conjecture the homotopy equivalence F|: OW — S2—1 may be taken to be
a PL homeomorphism. Thus if X is a simply connected 2:-dimensional
geometric Poincaré complex with a topological reduction v: X — BSTOP
for which the corresponding normal map (f,b): M*—— X has surgery ob-
struction o, (f,b) = —x € Ly;(Z) there exists a normal map

(f,0) = (f,b)U(F,B): M™" = c(M\D*)Ug W —X
with surgery obstruction

o.(f, V) = ou(f,0)+0.(F,B) = —z+x = 0€ Ly(Z) ,

so that (f’,¥’) is normal bordant to a homotopy equivalence M’ — X.
For a simply connected (2i + 1)-dimensional geometric Poincaré complex

X with ¢ > 2 every topological reduction v: X — BSTOP is such that

there ’cgdsts a topological manifold M?*! with a homotopy equivalence

h: M— X and vy = h*: M——BSTOP, since the surgery obstruction
takes values in Lo;41(Z) = 0.

ExAMPLE 20.5 A finite H-space X is a geometric Poincaré complex (Brow-
der [14]) with fibre homotopy trivial Spivak normal fibration vx, so that in
the simply connected case s(X) = 0 and (at least for n > 4) X is homotopy
equivalent to a topological manifold. See Cappell and Weinberger [30] for
manifold structures on non-simply connected finite H-spaces.

O
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§21. Transfer

The L-theory transfer maps associated to fibrations give generalized product
formulae for the various signatures, and also the total surgery obstructions.
The transfer maps for coverings give the Morita theory isomorphisms in the
projective L-groups, which are used in §22 to describe the rational L-theory
of finite fundamental groups.

See Ranicki [144, §8], [145, §8] for the L-theory products for any rings with
involution R, S

L™(R)® L"(S) — L™ (R®S),
Lin(R) ® L™(S) — Lunsn(R® S)

and for the applications to topology, generalizing the Eilenberg—Zilber the-
orem

AX xY) ~ AX)®A((Y) .
On the chain level the L-theory products are given by the tensor product
pairing
{ R-module chain complexes} x { S-module chain complexes}

— { R ® S-module chain complexes} ; (C,D) — C® D .

geometric Poincaré complex X
normal map (f,b): M—X
n-dimensional geometric Poincaré complex Y is an (m + n)-dimensional
geometric Poincaré complex . symmetric
{ normal map with { quadratic

The product of an m-dimensional { and an

signature

o (X XY) = o*(X)®@c*(Y) e L™ (Z[r (X xY)])
o ((f,b) x I: M xY—X xY)
= 0:(f,0) @0"(Y) € Lynin(Z[m (X xY)]) .

In the simply connected case m1(X) = m1(Y) = {1} these are the usual
product formulae for the signature and Kervaire-Arf invariant (Browder
[16,1I1.5]). See Appendix B for the corresponding product structures on
the algebraic LL-spectra. On the cycle level these structures define products
in the 1/2-connective visible symmetric L-groups

VLI™(X)XxVL"(Y) — VL™ ™(X xY); (C,¢)®(D,0) — (CRD, p®0)
for any polyhedra X, Y.

PROPOSITION 21.1 The product of a finite m-dimensional geometric Poinc-
aré complex X and a finite n-dimensional geometric Poincaré complex Y
is a finite (m + n)-dimensional geometric Poincaré complex X XY with
1/2-connective visible symmetric signature

o (X xY) = c"(X)@c*(Y) e VL T"(X xY)
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and total surgery obstruction
sS(XxY) = 00" (X xY) = 9(c"(X)®c"(Y)) € Spgn(X xY) .
i

p
A fibration F'—— F —— B with the fibre F' a finite m-dimensional geo-
metric Poincaré complex induces transfer maps in the quadratic L-groups

Pt Ly(Z[m(B)])) — Lintn(Z[m(E)))
which were described geometrically by Quinn [130] and algebraically in Liick
and Ranicki [99]. An n-dimensional normal map (f,b): M— X and a refer-
ence map X — B lift to an (m-+n)-dimensional normal map (f',b'): M'—
X' and a reference map X '—F such that

p'ou(f:b) = 0u(f,0") € Linyn(Zlmi(E)]) .

From now on, it will be assumed that the fibration is defined by a simplicial
map p: E—— B of finite simplicial complexes which is a PL fibration in the
sense of Hatcher [74], with the fibre ' = p~!({x}) a finite m-dimensional ge-
ometric Poincaré complex. In terms of the cycle theory of §14 the quadratic

L-theory transfer maps are given by
|

p i Ln(Zm(B)]) = Ln(A(Z, B))

— Lipsn(Z[m(B)]) = Linta(AMZ, E)) 5 (C,¢) — (C,97)
with (C;v¢) = {C(1),%(7) |7 € B} a globally Poincaré cycle of (n — |7|)-
dimensional quadratic complexes over (Z, B) (= n-dimensional quadratic
Poincaré complex in A(Z, B)), and

(Chy') = {(CHo),¢'(0)) |0 € E}
the lifted globally Poincaré cycle of (m + n — |7|)-dimensional quadratic
complexes over (Z, E) with

C'(0) = A(D(o,E),0D(0,E))® C(po) .
The cycle approach extends to define compatible transfer maps in the 1/2-
connective visible symmetric L-groups
p': VL'(B) — VL™™E); (C,¢) — (C',¢)

and also in the normal L-theory ]/I:'—homology groups

p! : Hn(BﬂE') - m-l—n(ESIE') .
If F' is an m-dimensional homology manifold locally Poincaré cycles lift to

locally Poincaré cycles, so in this case the method also gives transfer maps
in the IL.-homology groups

p': Hy(B;L.) — Hypyin(E;L)
and the structure groups

p! : Sn(B) - Sm+n(E) ) (C7¢) - (C!vw!) )
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with a map of exact sequences

.— H,(B;L') — VL"(B) —— S, (B) —— H,_1(B;L") — ...

S

o= Hpin(B;L) - VLI™T™(E) — Spyn(E) — Hyppn—1 (B;L) — ...

PROPOSITION 21.2 Let F—>EL>B be a PL fibration with the base B
a finite n-dimensional geometric Poincaré complex and the fibre F' a finite
m-dimensional geometric Poincaré complex, so that the total space E is a
finite (m + n)-dimensional geometric Poincaré complex.

(i) The 1/2-connective visible symmetric signature of E is the transfer

o*(E) = p'o*(B) € VL™™(E)

of the 1/2-connective visible symmetric signature o*(B) € VL™(B), and the
total surgery obstruction is

s(E) = 00*(E) = 0p'c*(B) € Span(E) .

(ii) If F is an m-dimensional homology manifold the total surgery obstruc-
tion of E is the transfer

s(F) = p!s(B) € Spmin(E)

of the total surgery obstruction s(B) € S, (B).
O

P
REMARK 21.3 For any PL fibration F'— F —— B with the fibre F a finite
m-~dimensional geometric Poincaré complex the composite

pw' La(Z[r1(B)]) — L (Z[r1(E)]) — L4 (Z[m(B)])

is shown in Liick and Ranicki [100] to depend only the 7 (B)-equivariant
Witt class o*(F,p) € L™(m(B),Z) of the symmetric Poincaré complex
of F' over Z with the chain homotopy m(B)-action by fibre transport.
See [100] for the equivariant L-groups L*(w,Z) and the assembly map
A:H ™(B;L")—L™(m(B),Z). If B is a compact n-dimensional homol-
ogy manifold and F' is a compact m-dimensional homology manifold then
E is a compact (m + n)-dimensional homology manifold, and the A-map
B——IL~™(Z) sending each simplex 7 € B to the symmetric Poincaré fibre
o*(p~'71) over Z represents an element [F,p|;, € H~"(B;LL’) with assembly
A([F,plL) = o*(F,p) € L™(m(B),Z). The canonical L'-homology funda-
mental class [E|, € Hy,4p,(E; L) has image

piElL = [FplLN[BlL € Hpqn(B; L) .



Z1. LRANDBFER <l

This is a generalization of the characteristic class formula of Atiyah [6]
expressing the signature of the total space E of a differentiable fibre bundle
in the case m = 2i, m+n = 0(mod 4) as a higher signature (cf. 24.3 below)

signature (E) = pio™(E) = A(pi[E]L)
= (L(B)Uux,[Blg) € L""™(Z) = Z
with = ch([[g) € H?**(B;Q) the modified Chern character (involving
N real .
multiplication by powers of 2) of the { complex K-theory signature 'k €

{ KO(B)
KU(B)
with fibres H*(F,;R) (z € B) for i = {? (mod 2)

of the flat bundle T of nonsingular (—)’-symmetric forms over B

[Fpl®l = ch([lx) € H¥(BL) ©Q € H*(B;Q) .
In the special case when 71(B) acts trivially on H*(F;R) this gives the
product formula of Chern, Hirzebruch and Serre [36]

signature (E)) = signature (B) signature (F) € Z .

O

REMARK 21.4 A finite d-sheeted covering is a fibration F— F LB with
the fibre F' a 0-dimensional manifold consisting of d points. It is convenient
to write B = X, E = X. The covering is classified by the subgroup
7 =mX)Cr = m(X)
of finite index d. The transfer maps in the quadratic L-groups
p': Ly(Z[x]) — Ly (Z[)
are given algebraically by the functor
p': {Z[r]-modules } — { Z[7]-modules} ; M — M"

sending a Z[r]-module M to the Z[7]-module M' obtained by restricting
the action to Z[w] C Z[r]. The transfer maps define a map of exact sequences

C—— Hy(X;L) —— VLX) — Sy (

=
:
?

=



4106 ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

Also, there are defined commutative diagrams
H,(X:L)—2—~1"2) ‘(D) A1)

[T

H,(X:L)—4 1"2z) H.(X.L)—2 12
with A the simply connected assembly, and d- multiplication by
o (p~t(pt.)) = de LY(Z) =17

If X is a finite n-dimensional geometric Poincaré complex then so is X, with
total surgery obstruction given by 21.2 (ii) to be

s(X) = p's(X) €S, (X) .
The normal L-theory fundamental class [X]~ € H,(X; L) of X lifts to the

normal L-theory fundamental class of X
|

p' Xl = [X]o € Ho(X;L),
so that for n = 4k the mod 8 signature is multiplicative

signature (X) = d-signature (X) € L**(Z) = Zs .
If s(X) = 0 then s(X) = 0 and there exists a symmetric L-theory funda-
mental class [X]|, € H,(X;L’) such that

p'Xh = [X)L € Hy(X;L)

is a symmetric L-theory fundamental class for X. Thus for n = 4k the
actual signature is multiplicative for finite geometric Poincaré complexes X
with s(X) =0

signature (X) = d - signature (X) € L*(Z) = Z .
See §22 for further discussion of the multiplicativity of signature for finite
coverings.

m

Next, we consider the Morita theory for projective K- and L-groups.

Given a ring R and an integer d > 1 let M4(R) ring of d x d matrices with
entries in R. Regard R? = Z R as an (R, M4(R))-bimodule by

R x R x My(R) — R*; (x, (v:), (21)) nyjzjk ,
and as an (My(R), R)-bimodule by

Mg(R) x R x R — R ; ((wj), (yx), 2) — (Z%W)
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The Morita equivalence of categories

~

p: {f.g. projective My(R)-modules} — {f.g. projective R-modules} ;
P— P = R'®@uyym P
has inverse
p~t: {f.g. projective R-modules } =
{f.g. projective My(R)-modules} ; @ — R*®r Q .

The Morita isomorphism of the projective class groups

~

p: Ko(Ma(R)) — Ko(R) ; [P] — [P']
is such that
pIMa(R)] = d[R] , p[RY = [R] € Ko(R) .

For any ring with involution R and € = =£1 let {L (£, 3 be the

{ ZZ{:;;;;EEC L-groups of R (Ranicki [144]), such that
L*(R,1) = L*(R)

{L*(R, 1) = L(R) .

L°(R,¢)

Lo(R, €) is the Witt group of nonsingular

The 0-dimensional L-group {

- tri L
{ COVIICMIC ¢ ms over R. The e-symmetrization maps

e-quadratic
14T, : Li(R,e) — L*(R,¢€)
are isomorphisms modulo 8-torsion, so that
L.(R,¢)[1/2] = L*(R,€)[1/2].
The e-quadratic L-groups are 4-periodic
L.(R,e) = L.i2(R,—€) = Liia(R,e) .
The e-symmetric L-groups are 4-periodic for a Dedekind ring with involution

R, and are 4-periodic modulo 2-primary torsion for any R.

DEFINITION 21.5 Given a ring with involution R and a nonsingular e-
symmetric form (R%, ¢) over R let My(R)? denote the d x d matrix ring
Mq(R)

My(R)? = Hompg(R? R%)
with the involution

Ma(R)? — My(R)? ; f — ¢ f*¢ .
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PROPOSITION 21.6 The projective L-groups of R and My(R)? are related
n-symmetric

n-quadratic L-groups

by Morita isomorphisms of projective {

pi y(Ro) — Ly(Ma(R)?,en)
ps LE(Rn) — LEMa(R)?, en)
with n = +1. The Morita isomorphism p: L(My(R)?) iLg(R, €) sends
the unit element 1 = (Mg(R)?,1) € LY(Ma(R)?) to
w(1) = [(Ma(R)?)',1°] = (R%,¢) € Ly(R.e) .

PRrRoOOF The Morita equivalence of additive categories with involution

p: {f.g. projective My(R)®-modules } =
{f.g. projective R-modules} ; P — P'
induces an isomorphism of the projective £1-quadratic L-groups
w LE(My(R)®,m) — LE(R,en) 5 [P,0] — [P',6"].
Similarly for the projective +1-symmetric L-groups L.

O

REMARK 21.7 Let p: X——X be a finite d-sheeted covering as in 21.4, so
that the fibre F' = p~1({*}) is the discrete space with d points and

pr:7 = mX) — 71 = m(X)
is the inclusion of a subgroup of finite index d. The algebraic K-theory
transfer maps associated to p are the composites

~

pt = pir: Ku(Zlr)) — K.(Ma(Z[7])) — K.(Z[7))
with ¢, induced by the inclusion of rings
i © Zr] — Homgm (i'Z[r],i'Z[r]) = Ma(Z[7])
and y the Morita isomorphisms, such that p'Z[r] = Z[7]? . The projective
L-theory transfer maps associated to p are the composites
p' = v (2] — LA(Ma(ZE)?) — L2(Z[m)
with p the Morita isomorphisms of 21.6 for the nonsingular symmetric form

o*(F) = (p'Z[r], ) over Z[7], with ¢ = 101®...®1. For the free L-groups
actually considered in 21.4 the transfer maps are

~

p' = pir: Lu(Z[x]) — L{(My(Z[7))?) — L.(Z[7))
with
I = im(Ky(Z)) = dZ C Ko(My(Z[7))) = Z .
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§22. Finite fundamental group

The computation of the structure groups S, (X) of a space X requires the
calculation of the generalized homology groups H.(X;L.), the L-groups
L.(Z[r]) (m = m(X)) and the assembly map A: H.(X;L.)—— L. (Z[r]).
The classical methods of algebraic topology can deal with H,(X;1L.), but the
more recent methods of algebraic K- and L-theory are required for L. (Z[r])
and A. In fact, it is quite difficult to obtain S, (X) in general, but for finite 7
there is a highly evolved computational technique fulfilling the programme
set out by Wall [176,4.9] for using localization and completion to determine
the L-theory of Z[r| from the classification of quadratic forms over algebraic
number fields and rings of algebraic integers. Apart from Wall himself, this
has involved the work (in alphabetic order) of Bak, Carlsson, Connolly,
Hambleton, Kolster, Milgram, Pardon, Taylor, Williams and others.

The topological spherical space form problem is the study of free actions
of finite groups on spheres, or equivalently of compact manifolds with finite
fundamental group and the sphere S™ as universal cover. A finite group
7 acts freely on a CW complex X homotopy equivalent to S™ with trivial
action on H,(X) if and only if the cohomology of 7 is periodic of order g
dividing n + 1, with g necessarily even and n necessarily odd. The quotient
X /7 is a finitely dominated n-dimensional geometric Poincaré complex with
fundamental group 7 and universal cover X. There exists such an action of
on X with X /7 homotopy equivalent to a compact n-dimensional manifold if
(and for n > 5 only if) 7 acts freely on S™. Swan [172] applied algebraic K-
theory to the spherical space form problem. The subsequent investigation
of the spherical space form problem was one of the motivations for the
development of non-simply-connected surgery theory in general, and the
computation of L.(Z[r]) for finite 7 in particular. Madsen, Thomas and
Wall [103] used surgery theory to classify the finite groups which act freely
on spheres. Madsen and Milgram then classified the actions in dimensions
> 5. See Davis and Milgram [44] for a survey.

The computations of L.(Z[r]) have included the determination of the as-
sembly map A: H,(Bm;L.)— L. (Z[r]) for finite 7 by Hambleton, Milgram,
Taylor and Williams [69] and Milgram [109]. The multisignature, Arf invari-
ants, various semi-invariants and Whitehead torsion are used there to detect
the surgery obstructions in im(A) C L, (Z[r]) of normal maps of closed man-
ifolds with finite fundamental group m. It appears that such invariants also
suffice to detect the surgery obstructions in L.(Z[rn]) of normal maps of
finite geometric Poincaré complexes with finite fundamental group 7. Such
a detection should allow the total surgery obstruction s(X) € S, (X) of
a finite geometric Poincaré complex X with finite 71(X) to be expressed
in terms of the underlying homotopy type and these surgery invariants.
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See Hambleton and Madsen [67] for the detection of the projective surgery
obstructions in LY (Z[r]) of normal maps of finitely dominated geometric
Poincaré complexes with finite fundamental group 7 in terms of the mul-
tisignature, Arf invariants and various semi-invariants as well as the Wall
finiteness obstruction, which together with the underlying homotopy type
can be used to at least express the projective total surgery obstruction
sP(X) € SP(X) (Appendix C) in terms of computable invariants.

The multisignature is the fundamental invariant of surgery obstruction
theory with finite fundamental group 7. It is a collection of integers indexed
by the irreducible real representations of 7, generalizing the signature in the
simply connected case. The multisignature suffices for the computation of
the projective L-groups LY(R[r]) = L3 (R[r]), and for the determination of
the quadratic L-groups L. (Z[r]) and the quadratic structure groups S, (B)
modulo torsion. In 22.36 below it is explicitly verified that for an oriented
finite n-dimensional geometric Poincaré complex X with a map m (X)—7
to a finite group 7 the multisignature determines the image of the total
surgery obstruction s(X) € S,,(X) in S,,(B7) modulo torsion. For the sake
of brevity only the oriented case is considered in §22.

There are two distinct approaches to the multisignature, both of which
were applied to the L-theory of finite groups by Wall [180,13A,B|:

(i) The K-theoretic G-signature method of Atiyah and Singer [7] and
Petrie [128], which depends on the character theory of finite-dimensional F-
representations of a compact Lie group G, with F' =R or C. Only the case
of a discrete finite group is considered here, with G = 7. The ‘K-theory F-
multisignature’ for L2*(F[n]) consists of the rank invariants of the algebraic
K-group Ko(F[n]) giving a natural isomorphism L)*(F|[r]) = Ko(F[r]),
with the complex conjugation involution if ' = C. There is a similar (but
more complicated) result for L)**2?(F[x]).

(ii) The L-theoretic method of Wall [176],[180], Frohlich and McEvett
[57] and Lewis [95], which depends on the algebraic properties of the ring
F[r] for a finite group 7, with F any field of characteristic 0. The ‘L-theory
F-multisignature’ for L2*(F[r]) consists of the signature invariants of the
L-groups of the division rings appearing in the Wedderburn decomposition
of F[r] as a product of matrix algebras over division rings.

The K- and L-theory F-multisignatures coincide whenever both are de-
fined. The Q-multisignature coincides with the R-multisignature.

DEFINITION 22.1 (i) Given a commutative ring with involution F' and a
group 7 let the group ring F[r| have the involution

“t Flrn] — Fln]; Z@gg—> ngg_l (ag € F) .

ge™ geT
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The involution on F[r] is real if it is the identity on F.
The involution on F[r| is hermitian if it is not the identity on F.
(ii) For F'= Clet C* (resp. C ™) denote C with the identity (resp. complex
conjugation) involution, so that C*[x] (resp. C~[x]) is C [x] with the real
(resp. hermitian) involution.

O

For a finite group = and any field F' of characteristic not divisible by ||
the ring F'[n] is semi-simple, by Maschke’s theorem, so every F[r]-module
is projective. For any involution on F' the F[r]-dual of a f.g. F[r]-module
M is a f.g. F[r]-module M* = Hom g, (M, F[r]), with F[r] acting by

Fln] x M* — M”*; (ag, f) — (z — f(z)ag™") (a€ F,gem).

The F-module isomorphism

Homp (M, F) — M*; f — (2 — 3 f(gz)g™)
gem
is an F'[r]-module isomorphism, with F'[r] acting by
F[r] x Homp(M, F) — Homp (M, F) ; (ag, f) — (x — f(gz)a) .
For € = 41 the e-symmetric forms (M, ¢) over F|r] are in one-one cor-
respondence with the e-symmetric forms (M, ¢') over F which are m-equi
variant, that is

¢ (g2, 9y) = ¢'(z,y) €R (z,y€ M,gem).
The forms (M, ¢), (M, ¢") correspond if

d(z,y) = Y o'(gz,y)g € Fln],
gem
or equivalently

¢'(x,y) = coefficient of 1 in ¢(z,y) € F C Flx] .

LEMMA 22.2 Let F =R or C~. A f.g. F[r|-module M supports a nonsin-
gular symmetric form (M,0) over F[r| which is positive definite:
0'(x,z) >0 (ze M\{0}).
Any two such forms 6(0), 6(1) are homotopic, i.e. related by a continuous
map 0: [ —Homp (M, M*) with each (M,0(t)) (t € 1) positive definite.
PROOF The underlying F-module of M supports a positive definite symmet-
ric form (M, 60y) over F', which is unique up to homotopy. The symmetric
form (M, 6"') over F obtained by averaging
0'(z,y) = (1/|7))> bolgz,gy) € F (x,y € M)
gem

is positive definite and m-equivariant, corresponding to a nonsingular sym-
metric form (M, 0) over Fr].

m
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Let F = R or C~, as before. Given a f.g. F[r]-module M and an
endomorphism f: M—— M let
ff =010 M — M

be the endomorphism adjoint with respect to the nonsingular symmetric
form (M, 6) over F[r] with the form (M,#') over F positive definite.

The following definition of the multisignature is just a translation into
the language of algebraic K-theory of the definition of the G-signature due
to Atiyah and Singer [7,pp.578-579] in the case of a discrete finite group
G =m.

DEFINITION 22.3 Let FF = R or C~. The K-theory F-multisignature of a
projective nonsingular e-symmetric form (M, ¢) over F[x] is the element
[M7 ¢] € KO(F[T(]?e)
defined as follows:
(i) If e = +1 then Ko(F[r],€) = Ko(F[r]) (by definition). The F[r]-module
morphism f = 0~ 1¢: M—— DM is self-adjoint, that is f* = f, and may be
diagonalized by the spectral theorem with real eigenvalues. The positive
and negative eigenspaces M, M_ are m-invariant, so that they are f.g.
projective F[r]-modules, and
(M, ¢] = [My]—[M_] € Ko(F[n]) .
(ii) If F = C~ and € = —1 then Ky(F[r],€) = Ko(C|[n]) (by definition).
The K-theory F-multisignature of (M, ¢) is defined to be the K-theory F-
multisignature (as in (i)) of the nonsingular symmetric form (M, i¢) over
C ™[]
(M, ¢] = [M,ig] = [My]—[M_] € Ko(Clr]) .
(iii) If ¥ = R and € = —1 then
Ko(F[r],e) = {z—a"[z € Ko(C[n]) } C Ko(Clr])
(by definition). The R[r]-module morphism f = 0~1¢: M——M is skew-
adjoint, that is f* = —f. If (ff*)*/? denotes the positive square root of ff*
the automorphism
Jo= f/GM M — M

is such that J? = —1 and commutes with the action of 7. Let (M, J),
(M, —J) be the f.g. projective C [r]-modules defined by the two m-invariant
complex structures J, —J on M. The K-theory R-multisignature of (M, ¢)
is given by

(M, ¢] = [M,J]—[M,—-J] € Ko(Rl[r], =1) C Ko(C|[]) .
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This is the K-theory C-multisignature (as in (i)) of the nonsingular sym-
metric form (C ®gr M,i® ¢) over C ~[r], with
CerM)y ={l@zFi®Jz|lzeM} = (M,+J).
O

ProPOSITION 22.4 The K-theory F-multisignature defines isomorphisms

Ly(Flnl,e) — Ko(Fln],€) ; (M,¢) — [M,¢] (F=RorC").
PROOF For € = 1 the inverse isomorphism is defined by sending a projective
class [M] € Ko(F[r]) to the Witt class [M,6] € L)(F[x]) of the positive
definite nonsingular symmetric form (M, 6) over F[rn] given by 22.2. Simi-
larly for (F,e) = (C—,—1), with [M] sent to (M,i). For (F,e) = (R, —1)
see 22.19 below.

m

Let F' be a field of characteristic 0, and let m be a finite group. The
L-theory multisignature for L;(F'[r]) is an analogue of ‘multirank’ for the
projective class group Ko(F[r]). Both the multirank and the multisignature
are collections of integer-valued rank invariants indexed by the irreducible
F-representations of the finite group 7, obtained as follows.

By Wedderburn’s theorem F[r] is a finite product of simple rings
Flr] = Si(F,m) x So(F,m) x ... X Sopm)(F, ) ,
starting with S;(F,m) = F. Each of the factors is a matrix algebra
Sj(F.m) = Mg, (D;j(F,7))
over a simple finite-dimensional F-algebra
D;(F,m) = Endpp(F;)

which is the endomorphism ring of the corresponding simple f.g. projective
Flr]-module P; = D;(F,7)% ™) with centre F. Let G be the Galois
group of the field extension of F' obtained by adjoining the |7 |th roots of 1.
G is a subgroup of Z° |, the multiplicative group of units in Z,\{0}. Two

7|’
elements z,y € 7 are F'-conjugate if

29 = hlyhen
for some g € G, h € m. The number of simple factors in F[r] is given by
a(F, )
= no. of isomorphism classes of irreducible F-representations of 7

= no. of F-conjugacy classes in 7 .

See Serre [157,12.4] or Curtis and Reiner [42,21.5] for the details. For
each isomorphism class of simple finite-dimensional algebras D over F' let
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ap(F,m) be the number of factors S;(F,w) in F[r] with D;(F,7) = D, so
that

al(F,m) = ZaD(F,W).

For a division ring R f.g. projective R-modules are f.g. free, and rank
defines an isomorphism

~

Ko(R) — Z; [R"]~[R"] — m—n.
The algebraic K-groups of a product of rings R = Ry X Ry are given by
K*(Rl X Rg) = K*(Rl) @K*(RQ) .

For any finite group 7

a(F,m) a(F,m) a(F,m)
Ko(F[rl) = Y0 KolS(F) = Y. Ko(Dy(Fw) = 3. 7.

The F-multirank of a f.g. projective F[r]-module P is the collection of
aF, ) rank invariants

rj(P) = [8;(F,m) ®@pr Pl € Ko(S;(F,m)) = Ko(Dj(F,7)) = Z,
one for each simple factor S;(F,n7) in F[r|. The F-multirank defines an
isomorphism

. a(Fm)
r.(P) : Ko(F[r]) — Z Z; [P] — (ri(P),r2(P),...,7arm)(P)) ,
j=1

with 7.((D;)%) = (0,...,0,1,0,...,0) and r.(S;) = (0,...,0,d;,0,...,0)
(dj = d;(F,m)). The inclusion i: F— F[r| induces a rudimentary algebraic
K-theory assembly map

dq
. do
i = .
do(F,m)
a(F,r)
Ho(Bm;K(F)) = Ko(F) = Z — Ko(F[r]) = ) Zj;
71=1

[F] = 1 — r(Flr]) = (di,da,...,doFx))
with K(F') the algebraic K-theory spectrum of F'. The transfer map is given
by
a(F,m)
i! = (Cldl cads ... Ca(F,W)doz(FJr)): KO(F[W]) = Z Z—>K0(F) =7
j=1
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with ¢; = dimp(D;(F,m)), and
a(F,m)
i!i[ = Z Cj(dj)Q = |7T| : K()(F) = Z——>K()(F) = 7.
j=1
The reduced projective class group Ko(Z[x]) is finite for a finite group =

by a theorem of Swan, and every f.g. projective Z[r]-module P induces a
f.g. free Q[r]-module Q[7] @z~ P, so that

im(Ko(Z[r])—Ko(Q[r])) = {0}
and the Q-multirank is not useful for detecting Ko(Z[x]). The F-multitorsion
is defined for any field F' of characteristic 0 by means of the identification

a(F,m)
Ki(Flr) = Y. Ku(Dy(F,m) .
j=1

By a theorem of Bass the torsion group K;(Z[n]) and the Whitehead group
W h(m) are finitely generated for finite 7, with the same rank

dimg Q ® K1(Z[r]) = dimgQ® Wh(r) = (R, 7) — a(Q, )
detected by the Q-multitorsion subject to the restrictions given by the
Dirichlet unit theorem: each of the «(Q, ) simple factors S = My(D)
in Q[r] contributes (R, S) — 1, with (R, .S) the number of simple factors
in R®qg S.
The character of an F-representation p: m——GLg4(F) is the (conjugacy)
class function

x(p): m— F; g — tr(p(g)) -
Let Rp(m) be the F-coefficient character group of 7, the free abelian group of
Z-linear combinations of the characters of the irreducible F-representations.
The F-multirank also defines an isomorphism
~ a(F,m)
Ko(F[x]) — Rp(n); [Pl — > r;(P)x(p))
j=1

with p; the irreducible F-representation
p; . ™ — Autp(D;(F,m)%) = GLe,q,(F)
of degree c;d; defined by the composite
T F[r] S;(F,m) = EndDj(F’W)(Dj(F, W)dj) .

EXAMPLE 22.5 (i) The element [F| = [F[r]] € Ko(F|[r]) corresponds to
the character
g=1

T — F; g— |7T‘if{
* ! {0 g#1
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of the regular F-representation F'[r] of m with degree |7|.

(ii) Regarded as a character, the K-theory F-multisignature (22.3) of a
nonsingular e-symmetric form (M, ¢) over Fr] (F =R or C7) is the class
function

(M, ¢] : 7 — {g i g — o(g,(M, ) = { glae+) — tr(glar-)

r(
tr(gl(a,g)) — tr(glas,g))
) o

(R,1) or (C—,£1)

i (Fe) = {(]R,—l) .

In particular, for (M, ¢) = (F[r], 1) this is the character of the regular F-
representation, as in (i).
i

If {p1,p2,...,Pa(Fx)} is a complete set of irreducible F-representations

of ™ with characters {x1, X2, .., Xa(F,x)} then the central idempotent
ej(F,m) = ej(F,n)* € F[n]
with
ej(F77T)F[7T] = Sj(Fvﬂ-) ) ej(Fvﬂ-)ek(Fvﬂ-) =0 (] 7& k)
is given by
ej(Fym) = (fi/In)) Y x;(9)9™" € Flx]
gem

for some f; € F.

As a purely algebraic invariant the multisignature is a generalization of
the signatures used by Hasse [73] and Landherr [89] to classify quadratic

and hermitian forms over algebraic number fields. The total signature map
on the symmetric Witt group LY(F) of a field F with the identity involution

o = iaj . LY(F) — za:LO(]R) = iZ
J=1 Jj=1 j=1

has one component for each embedding ¢;: F C R (Milnor and Husemoller
[113,3.3.10], Scharlau [156,3.6]). The kernel of o is the torsion subgroup of
L°(F), with 2-primary torsion only. The image of ¢ is constrained by the
congruences

0j(M,¢) =dimp(M) (mod2) (1<j<a)
for any nonsingular symmetric form (M, ¢) over F'. For an algebraic number
field F' the image of ¢ is such that

and o is an isomorphism modulo 2—pr1mary torsion [113,p.65]. For any
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field F of characteristic # 2 L,(F) = L*(F) and every nonsingular skew-
symmetric form over F is hyperbolic, so that Lo(F) = L?(F) = 0.
The product decomposition
a(F,m)

Flr] = H Ma, (p,m)(D;(F, )

reduces the computation of L, (F[r]) for finite 7 to that of L. (D) for division
rings with involution D which are finite-dimensional algebras over F'. By
assumption F' has characteristic 0, so that 1/2 € F' and there is no difference
between the quadratic and symmetric L-groups

L.(Flr]) = L*(Flr]) .

The calculations are particularly easy for projective L-theory Ly, since this
has better categorical properties than the free L-theory L*, while differing
from it in at most 2-primary torsion:

PROPOSITION 22.6 For any ring with involution A the forgetful maps L*(A)
—>L;§(A) from the free to the projective L-groups are isomorphisms modulo
2-primary torsion, so that

L (A2 = L,(A)[1/2] .
PROOF Immediate from the exact sequence of Ranicki [139]
. — L"(A) — Lj(A) — H™(Zsy; Ko(A)) — L1 (A) — ...

since the Tate Zs -cohomology groups H* are of exponent 2.
i

PROPOSITION 22.7 (i) The odd-dimensional projective L-groups of a semi-
simple ring A with involution vanish:
2%+1 _
Ly (A) = 0.
(ii) For a finite group © and any field F with |7| f char(F)
2%+1 _
Ly (F[r]) = 0.
PROOF (i) The proof of L}, | ; (A) = 0 in Ranicki [141] extends to symmetric
L-theory.
(ii) Immediate from (i), since F'[r] is semi-simple.
m
A division ring D is such that Ko(D) = 0, and so L*(D) = L;(D) for any
involution on D. Also, D is simple, so that L?**1(D) = 0. Let D* = D\{0},
and for e = £1 let

D! = {zeD*|z=cex}.
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Every nonsingular e-symmetric form over D is equivalent in the Witt group
n

to a diagonal form ) (D, x,,) with z,, € D?, so that the morphism

m=1

ZID?] — L%(D,€) ; [z] — (D,2)

is onto.
PROPOSITION 22.8 The e-symmetric Witt group L°(D,€) of a division ring
with involution D is given in terms of generators and relations by
L°(D,e) = Z[D?]/N.
with N the subgroup of Z|D?] generated by elements of the type
(2] = laza] , [2] + [=2] , [x] + [y] = [z +y] = [z(z +y) Y]
for any a € D*, xz,y € D? with x +y # 0.
PROOF See Scharlau [156,2.9] and Cibils [37]. (For a field F' of character-
istic # 2 with the identity involution such a presentation of L°(F,1) was

originally obtained by Witt himself).
O

The projective L-theory of products is given by:

PROPOSITION 22.9 Let R be a ring which is a product
R = Ry xRy .
For an involution on R which preserves the factors (R; = R;)
Ly(R) = L,(B1) @ Ly(R2) ,
while for an involution which interchanges the factors (Ry = Ra)
Ly(R) = 0.
Similarly for the quadratic L-groups L. .
PrROOF The central idempotents
e1 = (1,0) , eo = (0,1) € R = Ry X Ry
are such that
eiR = R, () = ei,e1+es = 1,ee0 =0€R (i=1,2).

An involution on R preserves the factors if and only if €; = e; in which case
there are defined isomorphisms

LY(R) — L(Ry) & Li(Ra) ; (C,6) — (10, €10) @ (e2C, e20) .

An involution on R interchanges the factors if and only if €; = e5, in which
case for every projective symmetric Poincaré complex (C,¢) over R there
is defined a null-cobordism (C——e;C, (0,9)), and so Ly(R) = 0.

m
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A simple factor S;(F, w) of F[r] is preserved by the involution
Si(F,m) = Sj(F,7)
if and only if the idempotent e;(F, ) € F[r] is such that
B = e;(Fm) € Fla .

PROPOSITION 22.10 The projective L-groups of F[r| are such that

LFlE) = Y LS, (R)
JjeJ(F,m)
with
JF,m) = {j195;=95;} C{1,2,...,a(F,7m)}
the indexing set for the simple factors S; = S;(F,w) preserved by the invo-
lution on F[r|, depending on the choice of involution on the ground field F .
(In fact, L2*T1(F[x]) =0, by 22.7.)
PRrROOF Immediate from 22.9, since the simple factors S;(F,7) of F[r]| not
preserved by the involution come in pairs S;(F,7) x S;(F,m)°? with the
hyperbolic involution (z,y)—(y, ).
i

From now on, only the ground fields F' = C, R, Q will be considered.

PROPOSITION 22.11 Let D be a division ring such that My(D) is a simple
factor of F[r] for some finite group 7. For any involution on D and e = +1
the e-symmetric Witt group L°(D,€) is a countable abelian group of finite
rank, with 2-primary torsion only.
PROOF See Wall [181].

i

The 2-primary torsion in L(D, €) may well be infinitely generated in the
case F' = Q (Hasse-Witt invariants), e.g. if D = Q, e = +1

Q1) = L°Q) = L’'R)e @@ L°F,) = Z® (Zo)® & (Zs)™

q prime
with F, the finite field of ¢ elements and
Lo ifqg=2
LY(F,) = { Zo®Zy ifqg= 1(mod4)
Zy if ¢ = 3(mod4)

(Milnor and Husemoller [113,1V §§1,2]).

TERMINOLOGY 22.12 Given a division ring with involution D as in 22.11
let 7*(D) > 0 be the rank of the (—)*-symmetric Witt group of D, so that

LD, (5)"[1/2) = > z[1/2].

k(D)
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i

The rank of the Witt group L?*(D) = L°(D, (—)*) of a division ring with

involution D is the number of the signatures given by the embeddings of D
in R, H and C ~, whose L-theory is tabulated in 22.16 below.

The following definition of the multisignature is just a translation into
the language of algebraic L-theory of the definition due to Wall [176,4.9],
[180, p. 164].

DEFINITION 22.13 The L-theory F-multisignature of a nonsingular (—1)*-

symmetric form (M, ¢) over F[r]| for a finite group = is the collection of

o (F, ) signature invariants

05(M,9) = [S;(F,m) @pim (M, 0)] € im(LH(S5(F,m)— > Z)
rk(D;(F,m))

with o*(F,m)= > r*(D;(F,)).
JEJ(F,m)

PROPOSITION 22.14 The L-theory F-multisignature map

o = Z oj : L*(F[r]) — Z Z 7 = Z Z

JEJ(F,m) JEJ(F,m) rk (D, (F,m)) ak(F,m)

1$ an 1somorphism modulo 2-primary torsion, with

L*(FlD/2 = Y LDy(Fm)[1/2) — )Y Z[1/2].

JjEJ(F;m) ok (F,m)
PROOF Immediate from 21.6 and 22.10.
i

The («, 3)-quaternion algebra over a field F' is the division F-algebra with
centre F' defined for any «, 8 € F'® by

o, B
< - ) = {w+zit+yj+zk|lwz,y,z€ F}

with
P =a, 2 =p8,10 = —ji=4k, kK = —af.
Now specialize to the case F' = R. The ring R[rx] is a product of simple
finite-dimensional algebras over R. Such an algebra is a matrix ring My(D)
with D one of R, H, C.

The quaternion ring

—1,-1
H = ( ® ) = {w+zi+yj+zk|w, x,y,z R}

is given the quaternion conjugation involution

H—H;v =w+ait+yj+zk—0v = w—at—yj—zk .
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DEFINITION 22.15 Let D be one of the rings with involution R, H, C .
The signature of a nonsingular symmetric form (M, ¢) over D is defined by

n

signature (M, ¢) = Z sign x,, € Z

m=1

using any diagonalization (M, ¢) = i (D, z), with x,, € D}, = R\{0}.
Equivalently, m
signature (M, ¢) = [Mi]—[M_] € Ko(D) = Z
for any decomposition (M, ¢) = (M4, ¢4) @ (M_, ¢_) into positive definite
and negative definite parts.
O

PROPOSITION 22.16 (i) The L-groups of R are given by

L"(R) = {? ifn{zg(modél)

with tsomorphisms

signature : L*(R) — Ky(R) = Z,
so that r°(R) = 1, 7(R) = 0.
(ii) The L-groups of H are given by

Z 0
L"(H) = < Zy ifn=<2 (mod4)
0 1,3

with isomorphisms
signature : L*(H) — Ko(H) = Z,
so that T°(H) = 1, »*(H) = 0. The generator 1 € LY 2(H) = Zy is

represented by the nonsingular skew-symmetric form (H, 7).
(iii) The L-groups of C~ are given by

L"(Cc~) = {Z ifn = {0 (mod 2)
0 1
with tsomorphisms
signature : L**(C~) — Ko(C) = Z

so that r°(C~) =r}(C~) = 1.
(iv) The L-groups of C* are given by

L"(C*) = {OZ2 ifn{
so that r°(C*) =r}(C*) =0.

Y

40 (mod 4)
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The number of simple factors S; = S;(R, ) = My, (D;(R, 7)) in R[r] is
a(R,7) = no. of irreducible R-representations of 7
= no. of conjugacy classes of unordered pairs {g,¢g~ '} in 7
= ar(R,7) + ac(R, 7) + ag(R, 7)

with ap(R,7) the number of simple factors S; such that D;(R,7) = D.
The projective class group of R[x] is given by

a(R,m) a(R,m)
KoR[r]) = Y Ko(Sj(R,m) = > Ko(D;(R,7))
j=1 j=1
= Y K®o Y KMo Y K = Y Z.
ar (R,m) ap(R,) ac(R,m) a(R,m)

Every simple factor S;(R, ) in R[x] is preserved by the involution, and the
duality involution *: Ko(R[7])— Ko (R[r]) is the identity.

In order to obtain the corresponding computation of L2*(R[x]) it is nec-
essary to consider the action of the involution on R[7] on the simple factors
Sj (R, 7'(') .

Let A be a central simple algebra over a field K of characteristic # 2,
with dimg (A) = d?. Involutions

I:A— A;a—a

are classified by the dimensions of the I-invariant subspaces

At = H%Zy;A) = {acAla=a},

A™ = HY(Z9;A) = {ac Ala= —a}
with A = AT @ A~ as follows:

(I) (first kind, orthogonal type)
dimg(AT) = d(d+1)/2, dimg(A™) = d(d—-1)/2,
in which case I|: K— K is the identity,
(IT) (first kind, symplectic type)
dimg(AT) = d(d—1)/2, dimg (A7) = d(d+1)/2,
in which case I|: K— K is the identity,
(ITT) (second kind, unitary type) d is even and
dimg (AT) = dimg (A7) = d'/2,
in which case I|: K——K is not the identity.
See Scharlau [156, §8.7] for further details.

ExAMPLE 22.17 Let (V, ¢) be a nonsingular e-symmetric form over a field
with involution K of characteristic # 2, and let dimg (V') = d. Define an
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involution on the d?-dimensional central simple K-algebra A = Homg (V, V)
by
[:A— A f—0¢'f.

Let My(K)? be the matrix ring with involution defined in 21.5. A choice of
basis for V determines an identification A = M4(K)?. Use the isomorphism
A = Homg(V,V) — Homg(V,V*); f — of

to identify I with the e-duality involution
I: Homg(V,V*) — Homg (V,V*); f — ef* .
The I-invariant subspaces
A* = {f € Homg (V, V") |ef" = £/}

are the spaces of te-symmetric forms on V. The involution I: A— A cor-
responds to the e-transposition involution x ® y—ey ® x on V* @i V*
under the isomorphism

V*eg V' — Homg(V.V"); f@®g — (x — (y — f(2)9(y))) ,
allowing the identifications
A = Sym(V* @ V") , A7 = A(V* @k V") .
For the identity involution on F' and € = +1 (resp. —1) the involution on A
is of the first kind and the orthogonal (resp. symplectic) type (I) (resp. (II)).

If (V,¢) admits a complex structure, an automorphism J: (V, ¢)—(V, ¢)
such that J? = —1, there is defined an isomorphism

ATV — A7 0 — J6
and the involution on A is of the second kind and unitary type.

O

The round free quadratic L-groups L”(R) are the quadratic L-groups of
a ring with involution R defined using f.g. free R-modules of even rank,
which differ from the projective and free L-groups by the exact sequences

. — H" N (Zy; Ko(R)) — Lj(R) — LA(R)
—— H™"(Zy; Ko(R)) — ...,
<o — H"(Zy;im(Ko (Z)—Ko(R))) — L},(R) — Li(R)
—— H™(Zy:im(Ko(Z)—Ky(R))) — ... .

Similarly for the round free symmetric L-groups L:(R). See Hambleton,
Ranicki and Taylor [70] for further details.

THEOREM 22.18 Let 7 be a finite group.
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(i) The projective L-groups of R[r| are given by

Sz 0

a(R,m)

Ly (R[x]) = S Zoa S 7 ifn={2 (modd),
am(R,m) ac(R,m)
0 1,3

with the Z-components detected by the R-multisignature.
(ii) The round free L-groups of R[rn| are given by

(> 2Z (0
a(R,m)
S Z 1
L' (R[r]) = ¢ ar(Rm) ifn= (mod 4) ,
S 2% 2
ac(R,m)
L0 3

with 27, denoting the corresponding subgroup of Z C Ly (R[x]).
(iii) The free L-groups of R[r| are given by

(Z® > 27 (0
a(R,m)—1
o Zs 1
L"(R[r]) = < or(Rm)—1 ifn = (mod4) .
S 2% 2
ac(R,m)
L0 3

PROOF (i) Each of the idempotents e; = e;(R, 7) € R[n]is such that e; = e;,

so that the involution on R[r| preserves each simple factor
Sj (R? 7T) = Mdj (DJ (R7 ﬂ-)) (dj = dj (Ra W)) )
and as a ring with involution

R[r] = S1(R,7) x So(R,7) X ... X Sqm,x) (R, 7).

Each D;(R,7) is one of R, H, C with the standard involution, respectively
the identity, quaternion conjugation, and complex conjugation. The three
types are distinguished by the type of the involution on S;(R, ), or by the

ring structure of C ®g S;(R, ), as follows:

(I) (orthogonal) D;(R,7) = R if the involution on S;(R, x) is of the or-

thogonal type, with
C g S(R,T) = My)(C).

(IT) (symplectic) D;(R,7) = H if the involution on S;(R, 7) is of the sym-

plectic type, with
C ®r Sj(R, T = M2dj (C) .
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(III) (unitary) D;(R,w) = C if the involution on S;(R, 7) is of the unitary
type, with
C ®pr Sj(R, 7T) Mdj ((C) X Mdj ((C) .
By the Morita isomorphisms of 21.6
o (R, )
Ly (R[r]) > LF(Si(R,m)
j=1
Yo *Re Y LFM)e » L*C)
ar(R,m) ap(R,) ac(R,m)
and by 22.16
r(Dj(R,m)) = 1,
o’ (R, )

ar(R,7) + an(R, 7) + ac(R,7) = a(R,7),
{(1) if D;(R,7) = {EorH,
ol (R, ) ac(R,m) .
(ii) Immediate from (i) and the exact sequence
. — LYR[x]) — Ly (R[x]) — H™(Z2; Ko(R[x)))
— L Y(R[x]) — ...
with
Az Ko(Rl]) = {éc()(R[w])/zKo(Rm) N {(1) mod2)
(iii) Immediate from (i) and the exact sequence
. — L"(R[r]) — Ly(R[x]) — H"(Zz; Ko(R[x)))
— L"'R[r]) — ... .
O
PROPOSITION 22.19 Let ' = R or C~

The K-theory F-multisignature
(22.3) coincides with the L-theory F-multisignature o (22.13), defining iso-
morphisms

r(D;(R, 7))

o L;*(R[ﬂ']) — Ko(R

= Y Z,

a(R,m)
o L;‘;*“(R[w]) — Ko(R| = >
ac(R,m)
with
KoR[r],-1) = {x-XIx€ > Z}CKy(Clr]) = Y Z
ac(R,m)

a(C,m)
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indexed by the conjugate pairs of irreducible C-representations of m of the
unitary type (I11).
PrROOF Immediate from 22.18.

i

The only simple finite-dimensional algebra over C is C itself, so that the
simple factors in the Wedderburn decomposition
a(C,m)

Clr] = H S;(C, )

are matrix algebras S;(C,7) = My, (C), one for each degree d; irreducible
C-representation of w. The type of an irreducible C-representation p of
degree d is distinguished by the Frobenius—Schur number associated to its
character y
clp) = (1/17) ) x(g*) eC.
gem

This is the coefficient of the trivial representation C in the C-representation
of degree d(d+1)/2
Sym(V @c V) = H°(Zy;V @c V)
of symmetric forms on V* = Homc(V, C) over C*, with V' = C% the repre-
sentation space of p (cf. 22.17). Equivalently, the type of the representation
is determined by the type of form supported by V over C *[r], as follows:

(I) (orthogonal) ¢(p) = 1 if and only if x = X is real and p is equivalent
to an R-representation of degree d, i.e. if there exists a C[r]-module
isomorphism V' = C[r] ®g[x) Vo for some f.g. R[r]-module Vs which is
a d-dimensional real vector space. This is the case if and only if there
exists a nonsingular symmetric form (V,¢) over C*[r]. The simple
factor M4(R) of R[x| induces the simple factor C ®@g My(R) = My(C)
of C[n].

(IT) (symplectic) c¢(p) = —1 if and only if x = x is real but p is not
equivalent to an R-representation, in which case d is even and there
exists an irreducible R-representation o of degree d/2 of quaternionic
type. This is the case if and only if there exists a nonsingular skew-
symmetric form (V, ¢) over C*[r]. The simple factor M/, (H) of R[]
induces the simple factor C ®@g M/o(H) = My(C) of C|x].

(ITI) (unitary) c(p) = 0 if and only if x # x is not real, so that it is
purely imaginary and p is not isomorphic to the complex conjugate
representation p. This is the case if and only if V' is not C [r]-module
isomorphic to its C T [r]-dual V*. The simple factor My(C) of R[]
induces a product of simple factors C ®@g M4(C) = My(C) x My(C) in
C [n] interchanged by the real involution.



4. OINITE FUNDAMBNTAL GROUP 499

See Serre [157,§13] and Curtis and Reiner [42,§73A] for further details.

ExAMPLE 22.20 (i) For any finite group 7 the trivial irreducible C-represent-
ation of degree 1

T — GL1(C); g — 1

is of the orthogonal type (I).
(i) Let Qg = (z,y|z* = 1,22 = y?, zyxz~! = y~!) be the quaternion group
of order 8. The irreducible C-representation p of degree 2 defined by

0 0 -1
% — 6L ie— (o ") v— (] )

is of the symplectic type (II).
(iii) Let Z,, = (T'|T™ = 1) be the cyclic group of order m. The irreducible
C-representations of Z,, of degree 1 defined by

p; ¢ Ly — GLi(C) ; T — &¥™49/™ (0 < j < m)

are of the orthogonal type (I) if j = 0 or m/2 (m even), and of the unitary
type (III) otherwise, with p; = pp—; .

O
The number of simple factors S;(C, ) in C[n] is
a(C,m) = no. of irreducible C-representations of 7
= no. of conjugacy classes in m
= ar(R,7) + ag(R, 7) + 2ac (R, 7)
with

D) or(R,m) 1
(IT) ag(R, ) = no. of irreducible C-representations p withc(p) = ¢ —1
(TI1) 2 (R, 7) 0.

PROPOSITION 22.21 (i) The projective L-groups of Ct x| are given by

> Ly 0

CU]R(R,TI')

Ly(CH[x]) = S Zy ifn=42 (mod4).
ap(R,)
) 1,3

The inclusion iT: R[x|—C T[] induces
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it = ) 10000: Ly'Rx) = Y Zo Y Zo > Z

ar(R,m) agr(R,T) ap(R,) ac(R,m)
— L*(CH[x]) = ) Zp,
CU]R(R 7I')

it =0: LyPRE) = > Zow Y Z
ap(R,) ac(R,m)
— Ly (CHr]) = ) Zy .
an(R,m)
(ii) The projective L-groups of C~[r]| are given by

_ 2. Z 0
Ly(C™[n]) = {g(c,w) ifn = { ) (mod 2) ,
with the Z-components detected by the C~-multisignature. The inclusion

i : R[] —C ~[n] induces

21@22@26):

ar (R,m) am(R,m) ac(R,m)
B - ¥ 28 X 28 ¥ 2
agr(R,m) ap(R,m) ac(R,m)
— L (CT[) = > Ze Y Ze Y (Zaz),
ag (R, ) ap(R,7) ac(R,m)
iy =0® Y <_11) :
ac(R,m)
LyPRA) = > Zeo Y Z
ap(R,) ac(R,m)
— e - X 2o Y Zo ¥ (@en
ar(R,) ap (R,) ac(R,n)

REMARK 22.22 For any ring A and a non-square central unit a € A let

AlVa] = Alf]/(t* — a)
be the quadratic extension ring obtained by adjoining the square roots of a.
Given an involution : A—— A with @ = a let A[\/a|", A[\/a]~ denote the
rings with involution defined by A[y/a| with the involution on A extended
by

T AValt — AVal* ;s 2+ yva — TEVa.
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(In the classic case A = R, a = —1, A[\/a] = C). Jacobson’s work on
hermitian forms over quadratic field extensions was used by Milnor and
Husemoller [113, p. 116] to obtain an exact sequence

0 — LY(A[Va]™) — Lo(A) — Lo(A[valh)

in the case when A is a field with the identity involution. See Wall [180, 12C],
Hambleton [65], Harsiladze [72], Hambleton, Taylor and Williams [71], Lewis
[96], Ranicki [147] for various generalizations to the L-theory of quadratic
extensions of more general rings with involution A. The isomorphisms
of relative L-groups of the induction and transfer maps of the inclusions
it: A——A[\/a]* obtained in [147] for any A

Li(ij: A—A[Va]™) = Loa(iv: AVa]"—A)

Lo((i7) " A——A[Va]™) 2= Lia((@1)" AlVa]t—A4)

and the skew-suspension isomorphisms

~

La(AlVa]™) = Las2(AlVa]7) ; (C,¢) — (SC, vaSy)

were combined into a commutative braid of exact sequences

/\/\/\

L (A] AlVa]®) (4)

\/\/\/

n—l—l ZI n—l—l(( ) (

/\/\/\

If the rings A and A[y/a] are semisimple then

Ln+1

Lg*+1(A) = Lg*+1(A[\/a]i) =0,

so that in the projective version of the braid with even n the L-groups at
the bottom are all 0 and the L-groups at the top fit into an octagon
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LST) Ly(Alva]™)
Ly(AlVa]™) Lo(4)

AN /

Ly(A) ——L3(Alva]™)

of exact sequences of projective Witt groups. The projective L-groups of
R[x], C*[r], C~[r] computed in 22.18 and 22.21 fit into this octagon with
A=Rlr], a= -1, A[ya]* = C*[r],
i
The transfer map associated to the inclusion i: R—R[7]
i' o Ly(R[n]) — L™(R) ; (C,¢) — (C',¢)
sends a f.g. projective n-dimensional symmetric Poincaré complex (C, ¢)
over R[] to the f.g. free n-dimensional symmetric Poincaré complex (C', ¢")
over R with C'' obtained from C by the restriction of the R[n]-action to
R C R[n] and
¢'(x)(y) = coefficient of 1 in ¢(z)(y) € R C R[x] .
For n = 4k the signature
i'(C.¢) = (C'¢") e L™(R) = Z
is determined by the L-theory R-multisignature according to
i! = (Cldl Cng Coz(R,ﬂ')doz(R,ﬂ')) :
a(R,m)
LER[) = 32— I*®) = 2,
j=1

with
1 R
¢; = ¢;(R,m) = dimg(D;(R, 7)) = ¢ 2 if D;(R,7r) = < C ,
4 H
d; = d;(R,7).

In terms of the character of the K-theory R-multisignature (22.5 (ii))
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PROPOSITION 22.23 (i) The R-coefficient algebraic L-theory assembly map
of a finite group m

A Hi(Bm;L'(R)) — L;(R[r])
1 given by the composite
A: H.(BmL(R)) — L*(R) — L (R[x)
with i: R—R[x] the inclusion. In the non-zero case * = 4k

i[ == (Zdj’zdj’zdj):
D;=R D;=C

D;=H
L*™R) = Z — LFRA) = Y ze Y ze Y Z,
ag (R, ) ap (R, ) ac(R,m)
with Dj = Dj(R, ﬂ'), dj = dj(R, 7T).
(ii) The transfer map is given by

i! = ( Z dj, Z 4dj, Z 2dj) :
D;=R D D;=C

j=H

LYRx]) = Y zo Y Ze > Z— L*R) = Z

(XR(R,T(') Oé]HI(RﬂT) a(C(Rvﬂ')
with
i'ho= ) (d)P+ Y Ady)P+ Y 2(dy)?
DJ-:R Dj:H Dj:(C

= |n|: L*R) = Z — L*R) = Z.

EXAMPLE 22.24 The irreducible C-representations of the cyclic group Z,,
are the representations

P Ly — C 5 T — ™9/M (0 < § < m)
classified in 22.20 (iii), so that
(R, Zp) = ar(R,Zp) + ac(R,Zy,) , au(R,Z,,) = 0,

1 (m—1)/2
Re @ C dd
(m—1)/2 . . o}
R|Z,,| = if m is
2] RP® @ C { even .

(m—2)/2
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The projective L-groups of R[Z,,] are given by
7o © 4
(m—1)/2
7’0 © Z,
(m—2)/2
e Z

_ odd
L2z 1) = 4TV s {
o T HR[Z]) o 7 even |
(m—2)/2
Lf,*“(R[Zm]) =0.

The 4k-dimensional assembly map

L (R[Zpn]) =

A: Hy(BZy,;L'(R)) = iH4j(BZm;L4k_4j(R))

J=0

— Ho(BZp; L*(R)) = L*™R) = Z — L¥(R[Z,,))
has image the cyclic subgroup generated by A(1) = (1,1,...,1), and the
(4k 4 2)-dimensional assembly map has image 0. The projective Witt class
of a nonsingular symmetric form over R[Z,,] is in the image of the assembly
map if and only if the R-multisignature components are equal. The 4k-
dimensional transfer map is given by

S {(12 .. 2)

(112 ...2)
Z® & L .
4k _ (m—1)/2 4k . . . 0
L, (R[Zm)) Zz@( @)/ 7 L"(R) = Zifmis {even.
m—2)/2

REMARK 22.25 The C ~-coefficient algebraic L-theory assembly map
A H (Brm;L'(C™)) — L,(C™[r])
is given by the composite
A: H(BmL(C")) — L*(C~) — Li(C[x]) .
The inclusion i: C ~——C ~[r] induces

i = (D;Rdj S 24, DJZ::Cde) ) :

D;=H
PHCT) =zZ—LFC ) = ) Zo Y Ze Y (ZoZ),
Oé]R(R,T(') OZ]HI(RJ") a(C(Rzﬂ')
with D; = D;(R, ), dj = d;(R,m) as in 22.23. The transfer map is given
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by
D;=R D,=H D;=C
L#*(C = > Ze Y 7o ) (ZoZ) — L*C") =1
ar (R,m) ap(R,) ac(R,m)
with
ifiy= Y ()24 D Ad)?+ Y 2dp)? = Inl
D;=R D;=H D;=C

L*(C™) = Z— L?*C™) = Z.

A nonsingular symmetric form (M, ¢) over R[x] is such that
(M, ) € im(A: Hy(Br; L (R)— Ly (R[]))

if and only if the character of the K-theory R-multisignature (22.5 (ii)) is a
multiple of the character of the regular R-representation R[], as originally
proved by Wall [180,13B.1].

Let j: R[r]—S1 (R, 7) = R be the projection, with kernel

ker(j HS (R, m) .

The induced map
i L*Rlr]) — L*(R)
sends a 4k-dimensional symmetric Poincaré complex (C, ¢) over R[7] to the

signature of the 4k-dimensional symmetric Poincaré complex R ®g(- (C, ¢)
over R, with components

ji=(10...0): LI*R[x]) = Y Z— L*¥R) = Z.

In terms of the character of the K-theory R-multisignature (22.5 (ii))
H(M,¢) = (1/|x))> o(g,(M,¢)) eZCR,
gem

the coefficient of the trivial representation R in the virtual R-representation
[M,¢] = [Mi] — [M_] € Ko(R[n]) (cf. Hirzebruch and Zagier [78,p. 31]).

PROPOSITION 22.26 (i) For any element x € im(A) C L3¥(R[x]) the signa-
ture of the transferi'(x) € L*(R) is || times the signature of the projection
ji(z) € L*(R), that is

i'(x) = |r|ji(z) € L*R) = Z.



440 ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

(ii) For a regular covering M of a compact 4k-dimensional manifold M with
finite group of covering translations w
signature (M) = |r|signature (M) € L*(R) = Z .
PROOF (i) This is immediate from 22.23.
(ii) Apply (i) to the symmetric signature o* (M) = (A(M), ¢) € L¥(R[x]).
i

The multiplicativity of the signature for finite coverings of manifolds (21.4,
22.26) is traditionally proved by the Hirzebruch formula

signature (M) = (L(M),[M]g) € L*(Z) = Z .

PROPOSITION 22.27 Let X be a finite 4k-dimensional geometric Poincaré
complex, and let X be a reqular cover of X with finite group of covering
translations w. The symmetric signature

0" (X) = (A(X),¢) € L"™(R[x])
s such that

i'c*(X) = signature (X) ,
jr1o0*(X) = signature (X) € L*(R) = Z .
If X is homotopy equivalent to a compact topological manifold then
o*(X) = A([X]L) € im(A: Hap(X; L' (R))— L* (R[n]))
and by 22.26
i'o"(X) = |rljio"(X) € L*(R) ,
signature (X) = |r|signature (X) € Z .
i

The examples of geometric Poincaré complexes with non-multiplicative
signature constructed by Wall [177] will now be related to elements z €
L4k (Z]Z,]) which are not in the image of the assembly map A: Hyy,(BZg; L.)
— Lar(Z[Z)).

EXAMPLE 22.28 The quadratic L-groups L.(Z[Z,]) (¢ prime) can be com-
puted using the Rim-Milnor cartesian square of rings with involution

Z[Zq] - [f
Z

Z) = Z[2)/(0+ 24+ 22+ 4207 (z=271

q
where
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is the extension of Z by the primitive gth root of unity ¢ = ¢2™"/? with the
complex conjugation involution. As in Ranicki [146,6.3] there is defined an
L-theory Mayer—Vietoris exact sequence
0 — Lap(Z[Zq]) — Lar(Z) ® Lax(Z[(])
— Lup(Zq) — Lak—1(Z[Z4]) — 0 .

As in Wall [177] the pullback construction can be used to obtain a non-
singular quadratic form (K, \, u) over Z[Z,] with K = Z[Z,]® a f.g. free
Z|Z4]-module of rank 8, such that

Z®Z[Zq] (K7)‘7M) = (Z87E8) = 1€L4k(Z) = 7,

Z[¢) @iz, (K, A p) = Hi(Z[C]*) = 0 € La(Z[(])
with H, (Z[¢]*) the hyperbolic form of rank 8 over Z[(]. The Witt class
(K, A\, 1) € La(Z[Z4)]) does not belong to the image of the assembly map
(K, A, ) & im(A: Hyp(BZg; L) — Lai(Z[Z,]))
since the R-multisignature is such that
R (1+T)(K,\u) = (8,0)¢im(4A) = {(s,s,...,5)|s€Z}

YASY/ if q=2

C L (R[Zg) = L¥(R) ® L*(R]) = {Z e Y Z ifq#2.
(q—1)/2

As in 19.5 the element = = (K, A\, t) € Lay(Z[Z,)) is realized by the surgery

obstruction z = o, (f,b) of a normal map (f,b): M*——X to a finite 4k-

dimensional geometric Poincaré complex X with 71 (X) = Z,, and
s(X) = —[ou(f,0)] = —[z] # 0
€ im(Lyx(Z[Z4])—Sar(BZ,)) = coker(A: Hup(BZy; L.)— L4k (Z[Z,])) -
The signature of the universal cover X of X is not multiplicative, with
o (X) = o"(X) =8, o"(X) # qo*(X)eL*™Z) = Z.
Thus s(X) # 0 € Sg(X) and X is not homotopy equivalent to a compact

manifold (cf. 19.4).
O

Next, consider the L-theory of the rational group ring Qx| for a finite
group 7, which is built up from the Witt groups of quadratic and hermitian
forms over algebraic number fields and quaternion algebras.

DEFINITION 22.29 (i) For any field F' let ng(F) be the number of embed-
dings F' C R, one for each ordering of F', and let nc(F') be the number of
conjugate pairs of embeddings F' C C.

(ii) For any field with involution F' let n¢(F, Zs ) be the number of conjugate
pairs of embeddings F C C~.
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(iii) A field F' is totally real if nc(F') = 0.
(iv) A field F is totally imaginary if ng(F) = 0.

An algebraic number field F' is a finite extension of Q with degree
dimg(F) = nr(F)+2nc(F) .

ProposiTION 22.30 (Milnor and Husemoller [113], Scharlau [156], Wall

[181])

(i) If F is a field of characteristic # 2 with the identity involution then
r(F) = ng(F) , r(F) = 0.

(ii) If D is a division ring with an involution with the centre an algebraic

number field F' with a non-trivial involution then

(D) = (D) = nc(F.Zs) .
a?
(iii) If D = (?ﬁ) s a 4-dimensional quaternion algebra over an algebraic

number field I such that either (a) the involution is by i=—i, j = —j,
k = —k and the identity on F, and o, 3 € F* are totally negative (= have
negative valuation for each embedding F' C R) or (b) the involution is by
i =1, 7 =74, k= —k and the identity on F, and o, 3 € F* are not both
totally negative, then
(D) = ng(F) , r'(D) = 0.

PROOF (i) The total signature map

Z signature : L**(F) — Z L*[R) = Z Z

TLR(F) TLR(F) 'I’LR(F)
is an isomorphism modulo 2-primary torsion.
(ii) Consider first the special case D = F. Let Fy = {z € F'|zZ = z} be the
fixed field of the involution, so that F' = Fy(y/a) is a quadratic extension of
Fy for some a € F\Fy and x + yy/a =  — yy/a (z,y € Fy). Let ng (Fp, a)
(resp. ng (Fo,a)) be the number of embeddings e: Fy C R such that e(a) > 0
(resp. e(a) < 0), so that

nc(F,Zy) = ng(Fo,a) , ne(Fy) = ng(Fo,a) +ng (Fo,a)

ng(F) = 2ng (Fy,a) , nc(F) = 2nc(Fy) + ng (Fo,a) ,
in agreement with the exact octagon of 22.22. The total signature map
Z signature : L**(F) — Z L*(C7) = Z Z
nc(F,Z2) ne(F,Zz ) nc(F\Zz)
is an isomorphism modulo 2-primary torsion.

For arbitrary D each complex embedding F' C C gives a map
L**(D) — L*(Cer D)[1/2] = L*(Ma(C7))[1/2] = Z[1/2]
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and the total signature map

Z signature : L?*(D) — Z Z[1/2]

nc(F,Zz ) ne(F.2Z2 )
is again an isomorphism modulo 2-primary torsion.
(iii) (a) Each real embedding F' C R gives a map

o) — () = v = |

The total signature map

Y signature : L“((i’f)) — Y ) = Yz

’I’L]R(F) nR(F) nR(F)

Z ifk=0
Zo ifk=1.

is an isomorphism modulo 2-primary torsion.
(iii) (b) Each real embedding F' C R gives a map

(D) — L2’“<(“’—ﬁ)> My (R))(1/2

R

The total signature map

Z signature : L4*((

nr(F)

) dOL™®R)[1/2 = > Z[1/2)

nR(F) ’I’L]R(F)
is an isomorphism modulo 2-primary torsion.
|

Given an irreducible C-representation p of 7 let Q(x) be the field extension
of Q obtained by adjoining all the characters x(g) = tr(p(g)) € C (g € 7).
Two such representations p, p’ are Galois conjugate if Q(x) = Q(x’) and
X' (9) = x(7(g)) (g € ) for some Galois automorphism v € Gal(Q(x)/Q).
The C-representation of 7 induced from an irreducible Q-representation of
7 is the sum of Galois conjugacy classes of an irreducible C-representation.

The number of simple factors My(D) in Q[n] is
a(Q, )

= no. of irreducible Q-representations of 7

= no. of conjugacy classes of cyclic subgroups of 7

= no. of Galois conjugacy classes of irreducible C-representations of 7 .

The involution on Q[r] preserves each of the simple factors S = My(D). As
a ring with involution

S = My(D)?
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in the terminology of 21.5, for some nonsingular e-symmetric form (D9, ¢)
over a central simple Q-algebra with involution D with e = £1, so that by
21.6

L.(D)

+1
LP(S) = L.(D,e) = ife =
(%) (D:e) {L*+2(D) { —1.
As before, D is one of three types:

(I) (orthogonal) xy = x is real and p is equivalent to an R-representation.
In this case the centre Q(x) of D is totally real with the identity
involution, € can be chosen to be +1 and

Reg My(D) = [] Ma®).
nr(Q(x))
o, B
Either D = Q(x) with the identity involution, or D = (Q( )) with
X
a, B € Q(x)* not both totally negative and with the involution i = i,

(IT) (symplectic) x = x is real but p is not equivalent to an R-represent-
ation. In this case the centre Q(x) of D is totally real with the identity
involution, € can be chosen to be 4+1 and

Reg My(D) = [] Ma(H).
n2(Q(x))

a?
D = <Q( ﬂ)) is a quaternion algebra over Q(x), with «, 3 totally
X
negative and with the involution i = —i, j = —j, k = —k.
(ITI) (unitary) x # x is not real. In this case the centre Q(x) of D is to-
tally imaginary with non-trivial involution such that nc(Q(x),Zs ) =
nc(Q(x)), € can be chosen to be +1 and

Reg My(D) = [[ Ma(C).
ne(Q())

ProrosITION 22.31 (Wall [181])
(i) Let S = My(D)? be a simple factor of the ring with involution Q[r] for
a finite group 7, with (D¢, ¢) a nonsingular symmetric form over a division
ring with involution D with centre Q(x). The L-groups of S and R ®g D
coincide modulo 2-primary torsion, with
Z|1/2
L ($)[1/2] = L"(Rog D)[1/2] = {T%})) Y {%
0 2k+1

0 4%
given by the multisignature. The rank { Tl(D) f{ §4*§12)()D)

(D) 0 18 the number



4. OINITE FUNDAMBNTAL GROUP 291

of simple factors in R ®q D of { type, that is

unitary
nr(Q(x)) 0 (1)
(D) = { nr(Q(x)) , m(D) = {0 in the case ¢ (II)
nc(Q(x)) nc(Q(x)) (I11) .

(ii) The L-groups of Qx| =[] S are such that
L*(Q[r])[1/2] = j{:1f< )[1/2]

= Y L"(R®g D)[1/2] = L*(R[x))[1/2],
S

with S = My(D)? as in (i).
O

ExAMPLE 22.32 The Wedderburn decomposition of the rational group ring
of the cyclic group Z,, is
= JJ @@
dlm

with Q(d) = Q(e?™"/?) the cyclotomic number field obtained from Q by
adjoining the dth roots of unity. Now Q(d) is totally real for d = 1,2 and
totally imaginary for d > 3, with one embedding

@(d) - C : e27ri/d - 627r1lu/d

for each unit v € Z3 C Z4. Thus

me@) = {g it {52,

nel@d) = nel@).ze) = {0 15257

with ¢(d) = | Z$| the Euler function, the number of positive integers < d
which are coprime to d. By 22.30 the symmetric Witt group of Q(d) is such

that
. 7Z[1/2 . Jd=1,2
LA(Q(a)[1/2] = {Zhéz}wd)/? if {d >3,

By 22.31 the symmetric Witt group of Q[Z,,] is such that

Z[1/2)m+n/2 - (odd
0
LY(Q[Z.))[1/2] = E LY( { Z[1/2)(m+2)/2 if m is even |

using Y ¢(d) = m. This agrees with the computation of LY(R[Zy,]) in
22.24.
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The Q-multisignature gives as much information in L-theory as the R-
multisignature:

PROPOSITION 22.33 The L-groups of Q[r] and R[r| for a finite group m
agree modulo 2-primary torsion

>, Z[1/2] 0

a(R,m)

QD2 = @ADL = > z1/2 #n={2 (modd)
ac(R,m) 1,3
0

detected by the R-multisignature. (In fact, LZ*+t(Q[x]) = 0).
PRrOOF Write the simple factors My, (g ) (D;(Q, 7)) of Q[r] as

Sj = Ma;(D;) (1<j<a(Qm)).
The involution on Q[r] preserves each S;, so that by 22.10
a(Q,m)

LQk Z LQk

Let (D;lj , ;) be a nonsingular €;-symmetric form over D; such that
Sj = My, (D)%, L3*(S;) = L*(Dj,¢;) -
The projective L-groups L2*(Q[n]) are given by
a(Q,)

LQk Z LQk J, Ej

The contributions to the Q—multlslgnature of all the simple factors S; of
Q[n] are thus just the R-multisignatures of the induced products of simple
factors R ®q S; of R[ﬂ'] with

Q7)) = Z +ch = oR,7) = 'R, 7),

X=X XF#X
(@7 = ) ne(Qx) = ac(®R,7) = o' (R,7).
XFX

i

The computation of the L-theory of Q[r] is now applied to the compu-
tation of the L-theory of Z[r] modulo 2-primary torsion, and hence the
determination of the image of the total surgery obstruction in S, (B7) mod-
ulo torsion.
PROPOSITION 22.34 (i) The symmetrization and localization maps
L.(Z[r]) — L*(Z[x]) , L.(Z[r]) — L.(Q[x]) , L*(Z[r]) — L*(Qlr])
are isomorphisms modulo 2-primary torsion for any group m, so that

Lo(Z[m)[1/2] = L.@Q[r)[1/2] = L*(Z[=])[1/2] = L*(@Q[])[1/2] .
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(ii) For a finite group m
Lo (Z[7)[1/2] = La(Q[r])[1/2] = La(R[x])[1/2]

Z(1/2
{ > [/]# _{Qk

ak(R,m)
0 2% + 1

a(R, ) (0
ac(R, ) for k = {1 (mod 2).

(iii) The reduced quadratic L-groups
L.(Zlx]) = L.(Z—Z[r])

with o (R, 7) = o*(Q, 7) = {

are such that
L.(Z[r)) = L.(Z)® L.(Z[r]) .

For a finite group w the reduced L-groups are detected modulo 2-primary
torsion by the reduced R-multisignature

a(R,m)
coker(A = 21 d;: Z— % Z) [1/2]
L@m)/2 = § s g e
ac(R,m)
0
0
anE 2 (m0d4) (dj :dj(R,ﬂ')) .
1,3

PROOF (i) The profinite completion of Z and its fraction field (the finite
adeles) are given by

Z =lmz/mz = [[ Z, , @ = @\{o})'Z = [[ @, Z,),
m q prime q

using the g-adic completions of Z and Q
Zy = Im Z/q"Z , Q, = (Z,\{0})7'Z, .

k
The L-groups of the inclusions
i: Zlx] — Q[x] , 7: Z[r] — Q]

are related by a natural transformation of localization exact sequences

. — LP(Z[r]) — Lf (Q[r]) — Lf (1) — LP

n—1

(Z[r]) — ...
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~ _

with excision isomorphisms LX (i) = LX(4) of the relative L-groups, where

*
~ ~ ~

X = im(Ko(Z[r])—Ko(Q[n])) , X = im(Ko(Z[r])—Ko(Q[r])) -
(If 7 is finite then X = {0} by a result of Swan). The projective symmetric
Witt group of Z

Lyz) = [[L°2Z,) = L2Zs) & [] L°(Fy)
q q72
is a ring with 1 of exponent 8, which acts on LX (7). See Ranicki [142,4.4],
[144, §8], [146,§3.6] for further details.
(ii) Immediate from (i) and 22.33.
(iii) Immediate from (ii).
O
REMARK 22.35 The computation of L.(Z[r]) (7 finite) modulo 2-primary
torsion was originally obtained by Wall [180, pp. 167-168], [181] using the
work of Kneser on Galois cohomology to formulate the L-theory Hasse prin-
ciple
L (Z[x)[1/2] = L(Q[x])[1/2] ® L.(R[x])[1/2] .
Tan Hambleton has pointed out that the action of L°(Q) on L, (Q[r]) gives
a direct derivation of
L (Z[m])[1/2] = L.(R[x])[1/2] ,
which avoids the detailed analysis in 22.33 of L.(Q[n])[1/2], as follows. The
symmetric Witt ring of @

r@ - (I #@)e (X rw)
q prime q
- (reve ] 2w )o (X e
q#2 q
has exponent 8, so that L*(@[ﬂ'])[l/Q] = 0. In fact
L (R[r])[1/2] = L.(R[x])[1/2]
for any ring R with Z C R C Q, with any decoration subgroup X C
K;(R[r]) (i = 0,1). See Bak and Kolster [8], Carlsson and Milgram [33],
Kolster [88], Hambleton and Madsen [67] for the computation of the torsion
in the projective L-groups L%(Z[r]), which is all 2-primary.
i
The classifying space Bm of a finite group 7 has the rational homotopy
type of a point: the transfer map p' associated to the universal covering
projection p: EFr—— B is such that

pwp' = |7|: ho(Bn) — h.(Ew) — h,(Bn)
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for any generalized homology theory h,, with Em ~ {pt.} and h.(E7n) =
h«({pt.}). It follows that the maps

H,({pt.};L.) = L,(Z) — H,(Bm;L.) (n>0)
are isomorphisms modulo torsion. The natural transformation of exact se-
quences

.—>LR[Z) Z[r]) — Ln (T[w])LLn[(Z)—L..
. — H,(Bm;L.) — R Z|r]) — S, (B7) —— H,_1(Bm;L.) —

is an isomorphism modulo torsion, with
S2x1(Bm) ®Q = Lo (Z[r]) ®Q =

THEOREM 22.36 Let X be aﬁnithlﬁ—dimensional geometric Poincaré com-
plex, with a regular finite cover X classified by a morphism m(X)——m to
a finite group .
(i) The symmetric signature o*(X) = (C(X), ) € L*(Z[r]) is determined
modulo 2-primary torsion by the R-multisignature of the nonsingular (—)*-
symmetric form (H*(X;R), ¢o) over R[x]
o*(X) = R-multisignature (H*(X;R), ¢o)
D/
c L2*(R[x]) = o if k= 0 (mod 2)
P S Z 1 )

ac(R,m)
with L?*(Z[r])[1/2] = L2*(R[x])[1/2].
(ii) The image in Sor(Bm) of the total surgery obstruction s(X) € Sox(X)
15 determined up to torsion by the reduced R-multisignature

5(X)]®Q = c*(X)®Q € Sop(Br)®Q = Lox(Z[r]) ® Q
a(R,n)

coker(A = > diR,7m):Q— > @> 0
>, Q

ac(R,n)

| (mod 2) .

PROOF The symmetrization maps
14T : Su(X) = S(1).(X) — S(1)"(X)
are isomorphisms modulo 2-primary torsion for any space X, and
(1+T)s(X) = [0"(X)] € im(L"(Z[m (X)]) —S" (X))

for any finite n-dimensional geometric Poincaré complex X.
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EXAMPLE 22.37 Let X be a finite 2k-dimensional geometric Poincaré com-
plex, with a regular m-fold cyclic cover X classified by a morphism 7 (X)—
Zp,. The multisignature of X with respect to X is an element

o* (R, Zy)

0" (X) = (51,82, Sar®zn) € L' (R(Zm]) = ) Z
j=1

with
1)/2 —1)/2
(m +2)/2 (m—2)/2 even
(cf. 22.24, 22.32). The total surgery obstruction s(X) € Sor(X) has image

s(X)]®Q = (51,52, 8ak(RZn))
coker<(1 1...1):Q— > @)
ao(Rva)
> Q

al(R,Zy,)

itk = {?(mon) .
For k = 0(mod 2) there is one multisignature component s; for each irre-
ducible R-representation of Z,, = (T'|T™ = 1)
byt Doy — D; = R ifyj :1‘0r (m+2)/2 (m even)
C otherwise ;

T ., e2mij/m 0<j< aO(R, Zm))

with
signature (X) = s, € LY*(R) = 7Z,
a®(R,Zm)
signature (X) = Z cjs; € L*(R) = Z (c; = dimg(D;)) .
j=1

The total surgery obstruction is such that

[s(X)]®Q = 0€ So(BZn) ®Q
if and only if the multisignature components are equal

signature (X) = s1 = s2 = ... = Sq0mrz,) €%,
in which case
a®(R,Z,)
signature (X) = < Z cj)sl = msignature (X) € Z
j=1
confirming the multiplicativity of the signature for finite covers of manifolds
(21.4, 22.26) in the cyclic case.
i
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§23. Splitting

The algebraic methods appropriate to the computation of L, (Z[r]) and
S«(Bm) for finite groups 7 do not in general extend to infinite groups .
At present, systematic computations are possible only for infinite groups
which are geometric in some sense, such as the following.

(i) m is an n-dimensional Poincaré duality group, i.e. such that the classi-
fying space B is an n-dimensional geometric Poincaré complex. Differential
and hyperbolic geometry provide many examples of Poincaré duality groups
7 acting freely on an open contractible n-dimensional manifolds with com-
pact quotient, such as the torsion-free crystallographic groups acting on
R"™. The generic result expected in this case is that the assembly map
A: H,(Bm;1L.)—L«(Z[r]) is an isomorphism for * > n, with S,(B7) =0
for * > n and s(Bw) =0 € S, (Bw) = Z, so that B is homotopy equivalent
to an aspherical compact n-dimensional topological manifold with topologi-
cal rigidity. This is the strongest form of the Novikov and Borel conjectures,
which will be discussed (but alas not proved) in §24 below.

(ii) 7 acts on a tree with compact quotient, so that by the Bass—Serre the-
ory 7 is either an amalgamated free product or an HNN extension. The
generic result available in this case is that if 7 is obtained from the trivial
group {1} by a sequence of amalgamated free products and HNN exten-
sions then S,(Bw) can be expressed in terms of the Tate Zs-cohomology
groups of the duality involution on the algebraic K-theory of Z[r|, the UNil-
groups of Cappell [23] and the generalized Browder—Livesay LN-groups of
Wall [180, §12C], which arise from the codimension 1 splitting obstruction
theory. It is this splitting theory which will be considered now.

DEFINITION 23.1 A homotopy equivalence f: M’'—— M of compact n-dimen-
sional manifolds splits along a compact submanifold N"~7 C M™" if f is
h-cobordant a homotopy equivalence (also denoted by f) transverse regular
at N C M, such that the restriction f|: N’ = f~1(N)——N is a homotopy
equivalence of compact (n — ¢)-dimensional manifolds.

i

If a homotopy equivalence of compact manifolds f: M’'—— M is h-cobord-
ant to a homeomorphism then f splits along every submanifold N C M.
Conversely, if f: M'——M does not split along some submanifold N C M
then f cannot be h-cobordant (let alone homotopic) to a homeomorphism.

In general, homotopy equivalences do not split along submanifolds. Surgery
theory provides various K- and L-theory obstructions to splitting, whose
vanishing is both necessary and sufficient for splitting if n—qg > 5, and which
are also the obstructions to transversality for geometric Poincaré complexes.
There is also an obstruction theory for the more delicate problem of split-
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ting up to homotopy, i.e. replacing h-cobordisms by s-cobordisms, which
involves Whitehead torsion. See Ranicki [146, §7] for a preliminary account
of the splitting obstruction theory from the chain complex point of view.

The geometric codimension ¢ splitting obstruction LS-groups LS. (®) of
Wall [180, §11] are defined using normal maps with reference maps to a space
X which is expressed as a union

X = E(f) US(E) 7
with (E(£),S(€)) the (D9, 59 1)-bundle associated to a topological block
bundle £:Y——BTOP(q) over a subspace Y C X, for some ¢ > 1. By

the Seifert—Van Kampen theorem the fundamental group(oid)s fit into a
pushout square

m(5(§)) —— m(2)

| e

7T1(Y) 4>7T1(X) .

The LS-groups are designed to fit into an exact sequence
. —— LS, () — L, (¢"Y — Z)

— Lp(X) — LSp—q-1(®) — ...

with L,(X) = L.(Z[m1(X)]). In the original setting of [180] these were the
obstruction groups appropriate to simple homotopy equivalences. Here, only
ordinary homotopy equivalences are being considered, with free L-groups
and the corresponding modification in the definition of LS,(®). The free
and simple LS-groups differ in 2-primary torsion only, being related by the
appropriate Rothenberg-type exact sequence.

A map from a compact n-dimensional manifold r: M"——X = E(&) Ug(e)
Z can be made transverse regular at the zero section Y C E(§) C X, with

r N Y)=N""9¢Cc M"
a codimension ¢ compact submanifold and the restriction
s =r: N1 = 1Y) — Y
such that
vnem = 5°€: N — BTOP(q) , M = E(wnem)Uf7(2).
PROPOSITION 23.2 Let M™ be a closed n-dimensional manifold with a -
isomorphism reference map r: M"——X = E(§) Ug(¢) Z transverse reqular

at Y C X, such that the restriction r|: N"=% = r=1(Y)—Y s also a
m1-1somorphism.
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(i) The codimension q splitting obstruction of a homotopy equivalence f: M’
—M of compact n-dimensional manifolds is the image of the structure
invariant s(f) € Sp41(X)
sy(f) = [s(f)] € im(Sp41(X)—LS—(®)) ,

such that sy (f) = 0 if (and for n —q > 6 only if) f splits along N C M.
The image of the splitting obstruction

sy (f)] = 04(g,¢) € im(A: Hy—(Y;L.)—L,,—(Y))
is the surgery obstruction of the normal map of compact (n— q)-dimensional
manifolds obtained by codimension q transversality

(9.¢) = fl: (N7 = f7H(N) — N .
(ii) For n —q > 6 every element x € LS,,_,1+1(®) is realized as the reld

codimension q splitting obstruction x = sy (F') of a homotopy equivalence
of compact (n + 1)-dimensional manifolds with boundary

Fo (WM M™) — M™ < ([0,1]; {0}, {1})
such that
F|y = identity: M — M x {0},
Flyr = split homotopy equivalence : M’ — M x {1} .
PROOF See Wall [180, §11].
m

PROPOSITION 23.3 The exact sequence of Ranicki [146,7.2.6] relating the
codimension q splitting obstruction groups LS,(®) and the quadratic struc-
ture groups S, for X = E(§) Ug(e) Z

. —— LSy 4(®) — S,(£"Y — Z) — S, (X)

— LS, _q—1(®) — ...
extends to a commutative braid of eract sequences

/\/\

H( VIn(X LSy_q_1(®)
\/ \(/
/ \ / N

H, 1(X;L).
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The codimension ¢ Poincaré transversality obstruction theory is a deloop-
ing of the codimension ¢ splitting obstruction theory for homotopy equiva-
lences of compact manifolds.

PROPOSITION 23.4 (i) If P is an n-dimensional geometric Poincaré com-
plex with a map f: P—X = E(§) Ug(e) Z then

sy(P) = [00%(P)] = [s(P)] € LSn—q-1(®)
is the codimension q Poincaré transversality obstruction, such that sy (P) =
0 if (and for n —q > 6 only if) there exists a geometric Poincaré bordism

(g: £ f1) + (@ P P) — X
such that (f')~1(Y) C P’ is a codimension q Poincaré subcomplex.

(ii) The geometric Poincaré bordism groups fit into the commutative braid
of exact sequences analogous to the braids of 19.6 (i) and 23.3

/\/\

H,(X;0F) LSn—g-1(®)
Ql ") Sn(X)
L H,_1(X;QF)

with QF = QF ({*}) the Poincaré bordism spectrum of a point.

For ¢ > 3 the fundamental groups are all the same
m(X) = m(Y) = m(Z) = m(S()) (= 7, say)
and LS, (®) = L.(Z[r]). For LS, (®) in the case ¢ = 2 see Ranicki [146, 7.8].

For ¢ = 1 with X, Y connected, there are the usual three cases:
(A) the normal bundle ¢ is trivial, and the complement Z = X\Y is dis-
connected, with components Z;, Zs, so that the fundamental group
of X is the amalgamated free product

7T1(X) = 71'1(Z1) *71'1(Y) 71'1(22)
determined by the two group morphisms
(1) : m(Y) — m(Z1) , (i2)s: m(Y) — mi(22)

induced by the inclusions i1: Y — 2771, i90: Y — 2o,
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(B) the normal bundle ¢ is trivial, and the complement Z is connected, so
that the fundamental group of X is the H NN extension

7T1(X) = 7T1(Z) *71'1(Y) Z
determined by the two group morphisms
(11)s , (i2)s : m(Y) — m(Z)

induced by the two inclusions #1,15: Y —Z.
(C) the normal bundle ¢ is non-trivial.
If the group morphisms (i), (i2)« in cases (A) and (B) are injections then
the LS-groups are direct sums

LSp_1(®) = UNilyy1(®) ® H"(Zy ;1)

of the UNil-groups of Cappell [23] and the Tate Zs-cohomology groups with
respect to the duality Zs-action on the algebraic K-group

I = im(0: Wh(m(X))—JN(o(Z[?Tl(Y)]))

_ {ker((il)*eaug)*:f:fo(Z[ {(Y)]) = Ko(Z[m1(21)) & Ko(Z[m1(Z2))))
ker((i1). — (i2)s: Ko(Z[m1(Y)]) — Ko(Z[m1(2))))
)

for {§B> .

Here, 9: Wh(m1(X))— Ko(Z[r1(Y)]) is a component of the connecting map
in the algebraic K-theory exact sequence of Waldhausen [175]

. — Wh(m(Y)) @ Nil ) — Wh(n1(Z1)) ® Wh(m1(Z2))

(@
— Wh(mi (X)) = Ko(Z[m1(Y)]) & Nilg(®) — ...
. — Wh(m (Y ))@Nlll(@) —>Wh(7r1( )
) )

\ — Wh(m (X) —>K0( [m1(Y)] @Nllo( ) — ..

The split surjection LS, 1 (<I>)—>H "(Zs ;1) fits into a commutative square

Spi1(X) —— H" ™ (Zy; Wh(m (X))
9

LSp_1(®) ——— H™(Zy; 1)
with
Sni1(X) — H" ™ (Zy; Wh(m(X))) 5 (C,p) — 7(C(X))

the map which sends the cobordism class of an n-dimensional locally Poincaré
globally contractible complex (C, ) in A (Z, X) to the Tate Zy-cohomology
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class of the Whitehead torsion of the assembly contractible Z[m (X )]-module
chain complex C(X)
T(C(X)) = (=)' r(C(X))* € Wh(m (X)) -

For n > 5 every element x € L, 1(X) is realized as the rel 9 surgery
obstruction o, (F, B) of a normal map of compact (n+ 1)-dimensional man-
ifolds with boundary

(F,B): (WM™, M™) — M x ([0,1]; {0}, {1})

such that

F|y = identity : M — M x {0},

Fly = f = homotopy equivalence : M — M x {1}
with a 7-isomorphism reference map r: M —X = E(£) Ug(¢) Z transverse
regular at Y C X, such that N"~! = »=1(Y) € M™ is a codimension 1
submanifold with m (N) = 71(Y), and such that F' is transverse regular at
N x [0,1] € M x [0,1] with

(VH NPT N = FHN < ([0,1); {0}, {1})) € (W™ M™, M)

a codimension 1 cobordism. If z € UNil,41(®) C L,41(X) the surgery

obstruction may be identified with the structure invariant of A and also
with the codimension 1 splitting obstruction

v = o.(F.B) = s(f) = sy(f)
€ im(UNil,,41(®) € Lyp+1(X)) = im(UNil,41(P) € S,41(X))
= im(UNil,,11(®) C LS,—1(®)) .
The identification space
P = WUy M x[0,1]

is an (n + 1)-dimensional geometric Poincaré complex with a reference map
e: P— X such that

Q =¢e'(Y) = VU, Nx[0,1]CP
is a codimension 1 normal subcomplex, with
(g;¢) = fl: Nt = f7HN) — N7

the normal map of compact (n—1)-dimensional manifolds defined by restric-
tion. The element x € UNil,11(®) may also be identified with the image
of the total surgery obstruction of P, and with the codimension 1 Poincaré
transversality obstruction to making ) C P a codimension 1 Poincaré sub-
complex

r = [s(P)] = sy(P) e UNil,41(®) .
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EXAMPLE 23.5A Let Y = {pt.} C X = B(Zy xZs ) = RP>* VRP>. Cappell
[23], [24] constructed non-trivial elements

x 7& 0e UN114k+2((I)) - L4k~+2(Z[ZQ * ZQ]) ,

and used them to obtain homotopy equivalences of compact (4k+ 1)-dimen-
sional manifolds

f . M4k+1 N RIP)4]€+1 #RP4]§+1 (]{3 Z 1)

which do not split along the separating codimension 1 4k-sphere S** C
RPA*+1 4 RP*+1 - with

S(f) = 75 0e UNil4k+2((I)) = LS4k((I)) C S4kv+2(B(Z2 * Zio )) .

EXAMPLE 23.5B Let X =Y x S!, m(Y) = 7, so that
m(X) = axZ , Zm(X)] = Zr)[z,27'] @=271).
The algebraic splitting theorem of Ranicki [140]
Ly(Zlr)lz,27Y) = Ly(Z[x]) @ Lj,_, (Z[x))

n—1
extends to an algebraic splitting theorem
Sn(X) = Su(Y) @ Sﬁfl(Y)
with SY(Y") the projective S-groups defined to fit into the exact sequence
. — H,(Y;L.) — L2 (Z[m (Y)]) — SE(Y) — Hp,—1 (VL) — ... .
(See Appendix C for more on St). The UNil-groups vanish in this case, and
the codimension 1 splitting obstruction groups are given by
LS.(®) = H™(Zy: Ko(Zlr)) .
with an exact sequence
— S, (V)@ Sp-1(Y) — Sp(X) — LS, _2(P)
— S (V) Sp2(Y) — ... .

The codimension 1 splitting obstruction along Y x {*} € X = Y xS of a ho-
motopy equivalence of compact (n — 1)-dimensional manifolds f: M'— M
with respect to a map M——X is the image of the structure invariant
s(f) € Sn(X)
sy(f) = [s(f)] = [BT(f)] € LSy-2(®) = H"'(Za; Ko(Z[r]))

with B: Wh(r x Z)— Ko(Z[r]) the Bass—Heller-Swan projection, as in the
splitting theorem of Farrell and Hsiang [48]. See Milgram and Ranicki [110],
Ranicki [149] for a chain complex treatment of this codimension 1 splitting

obstruction, and the extension to lower K- and L-theory.
i
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In case (C) if X, Y are connected and 71 (X ) = 71(Y) then Z is connected
and 71(Z) = m1(S(€)) is the fundamental group of a nontrivial double cover
S(€) of Y, so that 71 (X) = 7 is an extension of 71(Z) = 7’ by Zs

i 3
{1} s ! s Zg {1} .
It is necessary to use the nonorientable version of the theory here (cf. Ap-
pendix A). Given a choice of orientation map w: 7——Zy let

w o= wi: 7 — Zsy .

The LS-groups are the generalized Browder—Livesay LN-groups of Wall
[180,12C], with
LS,(®) = LN,(i%:Z[x' )" —Z[x]") = Leio(Z['], )

for an appropriate ‘antistructure’ o on Z[n’] depending on the choice of w.
(The isomorphism L. (i]) = L,.1(i; ) was obtained by Wall [180,12.9.2] in
the split case " = m X Zsy, and by Hambleton [65] in general. See 22.22 for
a discussion of this phenomenon in the split case.) See Ranicki [146,§7.6]
for the chain complex treatment. The map

i't : Ln(Z[7]") — LN, _2(i") = Ln(Z[r'],a); (C,¢) — (i'C,i'tw)
in the exact sequence
= Ln((i) " Z[x]"€ — Z[x'1) — L (Z[x]")

L INpo(i®) — L1 (%)) — ...
sends an n-dimensional quadratic Poincaré complex (C, ) over Z[r]" to
the n-dimensional quadratic Poincaré complex (i'C,i'tv) over (Z[n'], ),
for some fixed choice of ¢t € w\n’'. Similarly for the map

i't . VL™(Br®) = VL™(Z[x]") — LN,_2(i®) ; (C,¢) — (i'C,i't¢)
in the exact sequence
i't
. — VL"((*)") — VL™(Z[r]") — LN,_2(i")
—s VL") — ...
The visible symmetric structure ¢ € VQ™(C) determines the a-twisted

quadratic structure i't¢ € @Q,(i'C,a) by the algebraic analogue of the
‘antiquadratic construction’ of [146, pp. 687-735].

EXAMPLE 23.5C Let Y = RP>®~! ¢ X = RP*, with the oriented involu-
tion w = + on
Zim(X)] = Z[Z]) = Z[T)/(T*-1),
so that 7/ = {1}, r =Zo, t =T, w(T) = +1. The codimension 1 splitting
obstruction groups in this case are given by Wall [180, 13A.10] to be
LS, (®) = LN,(it:Z—7ZZ3]") = Lynyo(7Z) .
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From the tabulation of A: H,(BZ3 ;1L.(Z))— L.(Z[Z5]*) in 9.17 the quad-
ratic S-groups of BZs; = RP° in the oriented case are given by
> Hy i(BZ3; Ly (Z))
So(BZ}) = LN, _o(it) @ { "

> Hy-1(BZ3; L-1(Z))
kEZ

ifn = {(1) (mod 2) .

The map
i't . VL*(BZ3) — Sur(BZ3) — LNuyp_2(it) = Lap(Z)

sends a 4k-dimensional visible symmetric Poincaré complex (C,¢) over
Z|Zs]T to

i't(C,¢) = (1/8)signature (C,i't¢) € Lyp(Z) = Z .
As in 9.17 let

s+(C,¢) = signatureji(C, ) € L*(Z) = 7,
with
Jt : Lls) — Z ; a+bT — a+b.
For any a + bT' € Z[Zs] the eigenvalues of
i't(a+bT) = <Z Z

are j+(b+ aT) = b=+ a, so that

i't(C,¢) = (54(C,¢) —5-(C,9))/8 € Lap(Z) = Z.

If f: M'*F =1 M*—1 is a homotopy equivalence of oriented compact
(4k —1)-dimensional manifolds and e: M ——RP classifies an oriented dou-
ble cover M = e*S> then the codimension 1 splitting obstruction of the
structure invariant s(f) € Syx(BZ3) is just the desuspension invariant of
Browder and Livesay [18§]

[s(f)] = i'to.(g,c) = (1/8)signature (i'C,i't )
€ LNu(i™) = LNaw—2(i*) = La(Z) = Z,
with o.(g,¢) = (C, ) the kernel (4k — 2)-dimensional quadratic Poincaré

complex over Z[Zs]~ of the normal map of nonorientable compact (4k — 2)-
dimensional manifolds

(g,C) — f| . N/4k—2 _ (ef)_l(R]Poo_l) ———>N4k_2 —_ 6_1(R]Poo_1)
obtained by codimension 1 transversality at RP*~! C RP>. See Lopez
de Medrano [98] for the surgery classification of involutions on simply

connected high-dimensional compact manifolds. The splitting obstruction
groups LN, (i*:Z—Z[Z]*) are denoted by BL,,1(%) in [98].

) D22y = 2L — LT
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For the remainder of 23.5C let (W,0W') be an oriented 4k-dimensional
geometric Poincaré pair with an oriented double cover (W,0W).
The multisignature components of the 4k-dimensional visible symmetric
complex (A(W,0W), ¢) over Z[Zs|™
S:I:(W) = S:I:(A(Wv 6W)7 ¢) = Signaturej:l:(A(W7 6W)7 ¢) €L

are such that

signature (W) = sy (W) , signature (W) = sy (W)+s_(W)eZ.
The Zy-signature of W (22.1) is the signature of the 4k-dimensional quadratic
complex (A(W,0W),i't ¢) over Z
signature (W, T) = signature (A(W,0W),i't ¢)
= sy (W)—s_(W)e8Z C Z.

The signature of the cover fails to be multiplicative by

2signature (W) — signature (W) = s (W) —s_(W)
= signature (W,T) € 8Z C Z .
The signature defect for finite covers of compact 4k-dimensional manifolds
with boundary has been studied by Hirzebruch [77] and his school (Jénich,
Knapp, Kreck, Neumann, Ossa, Zagier) using the methods of the Atiyah-
Singer index theorem, which also apply in the case k = 1.

Let OW = (), so that W is an oriented finite 4k-dimensional geomet-
ric Poincaré complex with an oriented double cover W. The total surgery
obstruction s(W) € Sy (W) has image the codimension 1 Poincaré transver-
sality obstruction

sy (W) = [s(W)] = signature (W,T)/8 = (s (W) —s_(W))/8

= (2signature (W) — signature (WW))/8
ELN4k_2(i+) = L4k(Z) =7,

which has been studied by Hambleton and Milgram [68].

If (W** OW) is an oriented compact 4k-dimensional manifold with bound-
ary and (f,b): (W'* OW’)—— (W, 0W) is a normal map which restricts to
a homotopy equivalence on the boundaries

ho= 0f : oW — oW
then the rel 0 surgery obstruction is given by
0u(£.0) = (54(W) = 5:(W), s (W) = s_(W))
€ Ly (Z|Zs]T) = ZSDZ .
The identification space
P =Wu,-w
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is an oriented 4k-dimensional geometric Poincaré complex with an oriented
double cover P classified by a map P——X = RP>. The structure invariant
s(h) € Sy (OW) and the total surgery obstruction s(P) € Sy, (P) have the
same image

[s(h)] = [s(P)] = [ou(f,b)] € im(La(Z[Z2]")—Sur(BZ])) ,

and the codimension 1 splitting obstruction along Y = RP>~! C X is given
by the Browder—Livesay invariant

sy(h) = sy(P) = signature (P,T)/8
= (2signature (P) — signature (P))/8
= (signature (W/, T) — signature (W, T))/8
€ LNy, _o(i") = Lu(Z) = 7.

If (W4*_ 9W) is an oriented compact 4k-dimensional manifold with bound-
ary then the classifying map

e: (W,0W) — RP*®

for the double cover (W4k, OW) can be made transverse regular at RP>®~! C
RP> with

(VH*=HaV) = e "(RP>1) C (W, oW)

a codimension 1 nonorientable submanifold. The double cover V of V is
oriented, and separates W as

W =W UsW"_
with T(Wi) — W™ . The singular symmetric forms on Hgk(Wi) and
Hj, (W) have the same radical quotients, so that

signature (Wi) = signature (W) € Z .

The signature defect is

signature (W,T) = 2signature (W) — signature (W)

= signature (W+) + signature (W ) — signature (W)
= the signature non-additivity invariant of Wall [178]
= the p-invariant of Wall [180,13B.2] € Z .

This invariant depends only on the (4k — 1)-dimensional boundary manifold
oW, for if (W', OW"’) is another oriented manifold with the same boundary
OW' = OW the union P* = W’'Uy —W is a closed oriented 4k-dimensional
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manifold such that
signature (W’, T) — signature (W, T)
= signature (P, T)

= 2signature (P) — signature (P)
=0€Z
by Novikov additivity and the multiplicativity of the signature for finite
covers of manifolds. See Hirzebruch and Zagier [78,4.2] and Neumann [120]
for the connections with the Atiyah—Patodi—Singer a-, - and n-invariants
of odd-dimensional manifolds.
m
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§24. Higher signatures

The higher signatures are non-simply connected generalizations of the L-
genus, corresponding to the rational part of the canonical L'-orientation of
compact topological manifolds. A general discussion of the connections be-
tween the algebraic L-theory assembly map and the Novikov conjecture on
the homotopy invariance of the higher signatures is followed by the particu-
lar discussion of the homotopy types of the classifying spaces Br of Poincaré
duality groups satisfying the conjecture. The total surgery obstruction of
such geometric Poincaré complexes is detected by codimension n signatures.

DEFINITION 24.1 (i) The higher signature of an oriented compact n-dimen-
sional manifold M™ with respect to a cohomology class z € H"~%*(M; Q)
is

ox(M) = (L(M)Uz,[M]g) €Q,
with L(M) = L(ty) = L7 vy) € H¥*(M;Q) the L-genus and [M]g €
H, (M;Q) the rational fundamental class.
(ii) A higher signature o, (M) is universal if x = f*y is the pullback of a
class y € H" 4 (Bm; Q) (r = m1(M)) along a classifying map f: M — Bt
for the universal cover of M.
O

A universal higher signature o+, (M) is usually written as o, (M).
EXAMPLE 24.2 (i) For z = 1 € H°(M;Q) the universal higher signature

o.(M) € Q of an oriented compact n-dimensional manifold M with n =
0(mod 4) is just the ordinary signature, since by the Hirzebruch formula

o1(M) = (L(M),[M]g) = signature (M) e Z C Q.
If n # 0(mod 4) then o1 (M) = 0.
(ii) Given an oriented compact n-dimensional manifold M™ and an oriented

compact 4k-dimensional submanifold N4¢ C M™ write the inverse £-genus
of the normal block bundle vncpr: N—BSTOP(n — 4k) as

LN, M) = L Yvncar) € H*(N;Q) .
Let i: N—— M be the inclusion, and let
r = i'L(N,M) e H*+4 (M Q)
be the image of L(N, M) under the Umkehr map

i's H*(N;Q) & Hyp-1.(N; Q) — Hyp_au(M;Q) = H* 444 (0M; Q) .
It follows from the identity vy = vncy @ i*var: N—BSTOP that
L(N) = L(N,M)Ui*L(M) € H*(N;Q) .
The corresponding higher signature of M is the ordinary signature of N
o:(M) = (L(M)Uz,[M]g) = (L(N),[N]g) = signature (N) € Z .
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The special case N4 = M™ is (i), with z = 1 € H'(M;Q) = Q. In the
special case N = {pt.} C M™ the element z = i'(1) =1 € H"(M;Q) =
Q is such that o,(M) = signature(N) = 1 € Z C Q. As in Thom’s
combinatorial construction the £-genus £(M) € H**(M;Q) is characterized
by the signatures of compact submanifolds N 4k C M™ with trivial normal
bundle vycpr = € 4*: N—BSTOP(n — 4k)
LM)*: Hy(M;Q) =2 H"*(M;Q) — Q; 2 — 0,(M) = signature (N)
with i,[N]o € Hyx(M;Q) the Poincaré dual of z = i'(1) € H" *(M;Q)
and L(N, M) = 1. In general, these higher signatures are not universal.
(iii) The cap product of the canonical L'-homology class [B];, € H,(B;L")
of a compact n-dimensional manifold B and an L’-cohomology class I" €
H~™(B;L’) is an L'-homology class [B]LNI" € H,,4,(B; L") (Appendix B).
If m = 2i, n = 2j with i + j = 0(mod 2) the product [B], NI" determines
a nonsingular symmetric form ¢ on the jth cohomology H’(B; {H*(T)}) of
B with coefficients in the flat bundle H*(T") of nonsingular (—)%-symmetric
forms over Z. The signature of this form is given by the simply connected
assembly

signature (H (B; {H(I')}),¢) = A(Bl.NT) e L*H)(Z) = Z ,
and hence as a universal higher signature

signature (H’ (B; {H"(I)}), ¢) = 0,(B) €Z CQ

with z = ch([[g) € H%*(Bm; Q) the modified Chern character of the topo-
ggggg (for i = {(1) (mod2)) deter-
mined by the action of 71(B) = 7 on the local system of (—)’-symmetric
forms on H?(T'), as in the work of Atiyah [6], Lusztig [101] and Meyer [107]
on the non-multiplicativity of the signature of a fibre bundle (cf. 21.3).
The signature of a compact 2(i + j)-dimensional manifold E which is the
total space of a fibre bundle F—— E—— B with the base B a compact 2j-
dimensional manifold and the fibre F' a compact 2i-dimensional manifold is
given by the higher signature

signature (E) = signature (H? (B; {H(I')}), ¢) = 0.(B) € L*")(7) = Z
with I' € H=?!(B;L’) such that H*(I') = H*(F), as in Liick and Ran-
icki [100]. g
PROPOSITION 24.3 (i) The canonical L -orientation [M]y, € H,(M;L") of

an oriented compact n-dimensional manifold M determines and is deter-
mined modulo torsion by the higher signature map

H" ™ (M;Q) — Q; o — 0.(M) .
(ii) The normal invariant [f, bl € Hy,(M;L.) of a normal map (f,b): N—
M of closed oriented n-dimensional manifolds determines and is determined

logical K-theory signature [['|x € {
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modulo torsion by the differences of the higher signatures
Hn74*(M; Q) —Q;r— Uf*m(N) - Ux(M) :
PROOF (i) Both the higher signatures and [M]L ® Q determine and are
determined by the signatures of compact submanifolds of M, with
ox(M) = (LIM)N[M]g)Nz = (ML®Q)Nz e Hy(BmQ) = Q
for any x € H"~**(M; Q). The universal coefficient isomorphism
Homg(H"~**(M;Q),Q) = H, 4.(M;Q)

sends the higher signature map z——o, (M) to the element

MLeQ = LM)N[M]g € Hyp—4:(M;Q) .
(ii) This follows from (i), since 1 + T H,(M;L.)— H,.(M;L'(1)(Z)) is an
isomorphism modulo 8-torsion, and

(L+T)[f,ble = fuNlL — [M]L € Hn(M; L (1)(Z)) -
i

CONJECTURE 24.4 (Novikov) The universal higher signatures are homotopy
invariant for any group .
O

Write the quadratic L-theory assembly map for the classifying space Brw
of a group 7 as
Ay : Ho(Bm;L.(Z)) — L.«(Z[n]) .
ProPOSITION 24.5 The following versions of the Novikov conjecture are
equivalent for any group m:

(i) the universal higher signatures are homotopy invariant, i.e. for any
homotopy equivalence h: N—— M of oriented compact n-dimensional
manifolds with m (M) = 7 (N) = 7 and every x € H"~*(Bn; Q)

o.(M) = 0,(N)€Q,

(ii) the rational canonical L' -homology classes are homotopy invariant,
i.e. for any homotopy equivalence h: N——M of oriented compact n-
dimensional manifolds with mi(M) =m(N) ==

ML®Q = hWNL®Qe Hy(M;L)®Q ,
(iii) the rational assembly map
4,9Q: H.(BmL.(2)®Q = » H. 4;(BmQ) — L.(Z[r]) ®Q
JEZ
18 injective,
(iv) the dual of the rational assembly map
(A ®Q)* : Homg(L.(Z[7]) ® Q,Q) — Z H*~%(Bm;Q)
JEL
18 surjective.
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PROOF (i) <= (ii) Working as in the proof of 24.3 (i) the image f % [M]L €
H, (Bm;L") determines and is determined modulo torsion by the universal
higher signatures o, (M) € Q (z € H"**(Bm;Q)).
(ili) = (ii) Symmetric and quadratic L-theory only differ in 2-primary
torsion, so (iii) is equivalent to the injectivity of the rational assembly map
in symmetric L-theory
4, 9Q: H.(BmL)®Q = Y H. 4;(Bm;Q) — L*(Z[r)) ® Q.
JEL
For any compact n-dimensional manifold M with 71 (M) = 7 and classifying
map f: M——Bmr the assembly of f.[M], € H,(Bm;L") is the homotopy
invariant symmetric signature
Arf ML, = AIM], = o*(M) € L"(Z[x]) .
(ii) = (iii) Every element in S,;;(Bw) is the image of the structure in-
variant s(h) of a homotopy equivalence h: N—— M of closed manifolds with
fundamental group m. The kernel of the assembly map

ker(Ay: Ho(Bm;L.(Z))—L.(Z|r])) = im(Siy1(Bm)—H.(Bm;L.(Z)))
consists of the images of the normal invariants [h]1, of such homotopy equiv-

alences h, which are given modulo 2-primary torsion (and a fortiori ratio-
nally) by the differences of the canonical I.’-homology classes

PL®Q = hNL®Q—-[MLoQ
€ H.(Bm;L.(Z))®Q = H.(Bm;L(Z2)®Q.
A cohomology class x € H*(Bm; Q) is such that the function M —o, (M)
is a homotopy invariant if and only if
ker(A @ Q)Nx = 0€ Hy(Bm;Q) = Q.
(This is the case if and only if x € H*(Bm;Q) is in the image of the Q-
dual assembly map (4, @ Q)*.) If ker(A, ® Q) = 0 then every class = €
H*(Bm; Q) satisfies this condition.
(iii) <= (iv) Trivial.
O
REMARK 24.6 The equivalence of the Novikov conjecture for 7 and the
rational injectivity of the assembly map A, was first established by Wall

[180, §17H], Mishchenko and Solovev [118] and Kaminker and Miller [81].
O

Only infinite groups 7 need be considered for the Novikov conjecture,
since for finite 7

H.(Bm;L.(2)) ®Q = H.({pt.;;L.(Z))®Q = L.(Z)®Q,
and A; @ Q: L.(Z) ® Q—L.(Z[r]) ® Q is the injection induced by the
inclusion Z—Z[r].
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REMARK 24.7 The Novikov conjecture for the free abelian groups Z" (n >
1) was proved (more or less explicitly) by Novikov [123], [124], Rohlin [152],
Farrell and Hsiang [48], Kasparov [83], Lusztig [101], Shaneson [158], Ran-
icki [140], Cappell [25] using a variety of topological, analytic and algebraic
methods. This case is especially significant, on account of the related prop-
erties of the n-torus BZ"™ = T™ used in the work of Novikov [123] on the
topological invariance of the rational Pontrjagin classes, and in the work of
Kirby and Siebenmann [87] on topological manifolds.

i

REMARK 24.8 Cappell [25] used codimension 1 splitting methods (§23) to
construct a class of groups 7 satisfying the Novikov conjecture. The class is
closed under free products with amalgamation and H NN extensions which
are ‘square root closed’, and includes the trivial group {1} and the free
abelian groups Z™ (n > 1). See Stark [165] for an extension of the class.

i

REMARK 24.9 The Novikov conjecture is related to Atiyah—Singer index
theory, C*-algebras, hyperbolic geometry, differential geometry, cyclic ho-
mology, equivariant and controlled topology. The following list of references
is only a small sample of the literature: Connes and Moscovici [41], Farrell
and Hsiang [49], Kasparov [84], Mishchenko and Fomenko [117], Rosenberg
[153]. See Mishchenko [116] and Weinberger [183] for surveys.

i

REMARK 24.10 In the analytic approaches to the Novikov conjecture the
group ring Z[n] is embedded in the reduced C*-algebra C} (7). The analytic
index in Ko(C}(m)) is identified with the image of the symmetric signature
in L?*(Z[nx]), using an isomorphism L?*(C(r)) = Ko(C# (7)) generalizing
the multisignature (see Kaminker and Miller [82], for example). The al-
gebraic L-theory assembly map A, corresponds to a topological K-theory
assembly map (: K,(Bn)—K.(C} (7)), and it is § which is proved to be
a rational split injection in various cases.

O

The simply connected L-groups are detected by the signatures of nonsin-
gular symmetric and quadratic forms over Z, with isomorphisms

LYZ) — Z; (C,¢) — signature (C, ¢) ,

Ly(Z) — Z; (C,¢) — (signature (C,))/8 .
If K = Bm is an aspherical n-dimensional geometric Poincaré complex satis-
fying a strong form of the Novikov conjecture the total surgery obstruction

s(K) € Sp(K) = Lo(Z)
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is now interpreted as the difference between local and global codimension n
signatures.

In the first instance an equivalence is established between three formula-
tions of the algebraic L-theory assembly maps being isomorphisms in the
4-periodic range.

LEMMA 24.11 For any n-dimensional simplicial complex K the following
three conditions are equivalent:
N(K) : the 0-connective quadratic S-groups of K are such that
Sm(0)(Z,K) = 0 form>n,
N(K), : the 0-connective quadratic L-theory assembly maps
A s Hp(K;LA0)(Z) — Lin(Z[]) (7 = mi(K))
are isomorphisms for m > n,

N(K)* : the 0-connective visible symmetric L-theory assembly maps
A: Hp,(K;L(0)(Z)) — VL™(0)(Z, K)
are isomorphisms for m > n.
PRrOOF All the groups and maps involved are 4-periodic for dimension rea-
sons and by the 4-periodicity of quadratic L-theory, except that the map

Sn{0)(Z, K)—S,,+4(0)(Z, K) may possibly fail to be onto. The cokernel of
this map is isomorphic to the cokernel of the first map in the exact sequence

Hy, 1 (K;L.(0)(Z)) — Hpqs(K;LA0)(Z)) — Hn(K; L3(Z)) ,
which is onto since L3(Z) = 0. Thus each of the conditions N(K), N(K).,
N(K)* is 4-periodic. The implications N(K) <= N(K), <= N(K)* now
follow from the commutative braid of exact sequences
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DEFINITION 24.12 An n-dimensional Poincaré duality group 7 is a group
such that the classifying space B7 is an n-dimensional Poincaré space.
i

Poincaré duality groups are finitely presented, infinite and torsion-free.

DEFINITION 24.13 An n-dimensional Novikov group 7 is an n-dimensional
Poincaré duality group such that the classifying space K = B satisfies any
one of the three equivalent conditions N(K), N(K)., N(K)* of 24.11.

i

The strong form of the Novikov conjecture (24.4) is that condition N (K)
holds for any n-dimensional Poincaré duality group =, and that s(K) =0 €
Sn(K) = Lo(Z), so that K is homotopy equivalent to an aspherical com-
pact n-dimensional topological manifold. This includes the Borel conjecture
concerning the rigidity of aspherical manifolds, since it implies that for any
aspherical compact n-dimensional manifold M with m (M) =7, M ~ K

STOP(M) = Sn+1(M) = Sn—I-l(K) = {0} )
so that any homotopy equivalence f: N—— M of compact aspherical mani-
folds is homotopic to a homeomorphism (at least for n > 5).

REMARK 24.14 Many examples of Novikov groups arise geometrically as
the fundamental groups m = w1 (M) of aspherical compact manifolds M =
Br with topological rigidity, such that SY¢F (M x D, M x S=1) = 0 for
i > 0. See Farrell and Hsiang [49], Farrell and Jones [50], [51], Ferry and
Weinberger [54], Yamasaki [191]. The methods of controlled topology are
particularly relevant here (see Appendix C).
i
For any n-dimensional simplicial complex K define also the 4-periodic
condition:

N(K)g : the rational O-connective quadratic L-theory assembly maps
A2Q: Hp(K;L(0)(2))2Q — Ln(Z[r])@Q (7 = m(K))

are monomorphisms for m > n.
For K = B this is just condition 24.5 (iv), so that N(Bm)q is equivalent
to the Novikov conjecture (24.4). Davis [45, §11] has shown that N(Bm)g
is true for all the groups m with B the homotopy type of a finite complex

if and only if N(B7)q is true for all the groups 7 with B7 the homotopy
type of an aspherical compact topological manifold.

PROPOSITION 24.15 If 7 is an n-dimensional Novikov group with classifying

space K = Bt then
Sm(K) = Hy(K;Ly(Z)) = {L0<Z> if m=n

0 if m>n+1.
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If s(tK) =0 € S, (K) = Lo(Z) then (at least for n > 5) the homotopy type
of K contains an aspherical compact topological n-manifold M, and
SEOP(M x D', M x S = Sppip1i(M) = Sppin1(K) = 0 (i>0).
PrROOF Immediate from the exact sequence given by 15.11 (iii)
- St (ON(Z, K) — Hiul(K Lo(Z) — Sin(K)
— S (0)(Z,K) — ...,

and the identification in 18.5 of the Sullivan—Wall geometric surgery exact
sequence with the algebraic surgery sequence.
i

EXAMPLE 24.16 The free abelian group Z" of rank n is an n-dimensional
Novikov group, with classifying space K(Z™,1) = T™ the n-torus. The
assembly maps are isomorphisms

A: Ho(T™L(0)(Z) — VL™O)Z,T") = L™(ZZ")

At Hp (T LAOYZ)) — Ly (Z]Z")

for m > n by the Laurent polynomial extension splitting theorems of Shane-
son [158], Wall [180, 13A.8], Novikov [124], Ranicki [140], Milgram and Ran-
icki [110] (and Wh(Z™) = 0), so that

Sm(0)(T") = 0 for m>n.
T™ is a manifold, and
S(T™) = 0 € S,(T") = Lo(Z),
SFOP(T™ x DY, T™ x 871 = Spyi1(T™) = Spyig1(0)(T™) = 0 (i > 0).
m

REMARK 24.17 Let m, ™ be n-dimensional Novikov groups such that 7 C 7
is a subgroup of finite index [7m: 7] = d. Asin 21.4 there is defined a d-sheeted
covering

p: K = Bf — K = Br

with the total surgery obstruction of K the transfer of the total surgery
obstruction of K

The transfer map p': H,,(K; Lo(Z)— H, (K; Lo(Z) is an isomorphism, be-
ing the Poincaré dual of

p* = 1: HY(K;Lo(Z)) = Z =, HY(K;Ly(Z)) = 7.
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It follows from the commutative square
H,(K; Lo(Z)) ——=— Su(K)

! |

p|= p’

Hy(K; Lo(Z)) ——— Sy(K)

that p':S,(K)—S,(K) is also an isomorphism, so that s(K) = 0 if and
only if s(K) = 0. If K is homotopy equivalent to a compact topological
manifold (s(K) = 0) then so is the finite cover K, i.e. only the converse
statement is of interest.

i
DEFINITION 24.18 Let m be an n-dimensional Novikov group, with classi-
fying space K = Brmr.

(i) The codimension n {

symmetric
quadratic
B VIMOZK) o H(KLA0)(Z) — Ho(K;I%(2)) = 19(2)

B Lo(@lr)) "o Hy(K;LA0)(Z) — Ho(K; Lo(Z)) = Lo(Z)
with
H,(K;L(0)(Z)) — Hn(K;L°(Z)) ; (C,¢) — ;(n)(0(7)7¢(T))7

Hp(K;LA0)(Z)) — Hn(K; Lo(2)) 5 (C,) — X2 (C(7), (7)) .

TeK(n)
(ii) The global codimension n signature of an n-dimensional 0-connective

. , | normal (C, )
globally Poincaré {qua dratic complex { ) in A(Z,K) is

(C,
{Bgloba%c, ¢) = B(C(K).¢(K)) € L'(Z),
Bolotal(C,vp) = B(C(K),y(K)) € Lo(Z)
with { (C(K), $(K)) € VL™(0)(Z, K)
T () (E)) € Lo(Zix)
K of K.
(iii) The local codimension n signature of an n-dimensional 1/2-connective

signature map is the composite

the assembly over the universal cover

normal (C, ) . .
{quadratic complex { (C, ) in A(Z,K) is

Blocd(C¢) = %:(n)(C(T),¢(T))T € Ho(K;LY(Z)) = L°Z),

Blocal(C4p) = ;(n)(C(T),w(T))Te H,(K: Lo(Z)) = Lo(Z) .
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normal

Note that for any n-dimensional 0-connective locally Poincaré .
quadratic

complex { gg: i)) in A (Z, K) and any n-simplex 7 € K™
(Brori0:6) = Beri€,) = (00 € 120).
BIr(Coyp) = Bl (Cp) = (C(1),9(7)) € Lo(Z) -

ExAMPLE 24.19 If X is a compact n-dimensional topological manifold with
a map X — K = B to the classifying space of an n-dimensional Novikov
group 7, and (C, ¢) is the 0-connective locally Poincaré n-dimensional sym-
metric complex in A (Z, K) representing the image in H,, (K ;L") of the fun-
damental L'-homology class [X];, € H,(X;L") then
Bo*(X) = BY"(C,¢) = B C,¢) e L(Z) = Z .

In 24.22 below this codimension n symmetric signature will be identified
with the degree of the map X— K.

i

The difference between local and global codimension n signatures detects
the total surgery obstruction for the classifying spaces of Novikov groups:

PROPOSITION 24.20 Let m be an n-dimensional Novikov group, with classi-
fying space K = Brr.

(i) The difference between local and global codimension n quadratic signa-
tures defines an isomorphism

Sn(K) — LO(Z) )

(C ) — BN (D/C, 8¢ /v) — BY(D/C,6¢/9) .
Here, (C,1) is an (n — 1)-dimensional 1-connective locally Poincaré glob-
ally contractible quadratic complex in A(Z,K), and (D/C,0¢ /) is the
n-dimensional 0-connective globally Poincaré quadratic complex in A (Z, K)
defined by the algebraic Thom complex of any 0-connective locally Poincaré
null-cobordism (C——D, (1, 1))).
(ii) The n-dimensional 1/2-connective visible symmetric L-group of K is
such that

VL"(K) = Hy(K;L(0)(Z)) ® Lo(Z)

with an isomorphism

~

VL"(K) — H,(K;L(0)(Z)) ® Lo(Z) ;
(C,¢) — (ATHC(K), (K)), (B (C, ¢) — B (C, $))/8) ,

and
d: VLK) — S,(K) = Lo(Z) ;

(C’ d)) - (BglObal(Ca ¢) - Blocal(C, d)))/S :
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(iii) The total surgery obstruction of K is
s(K) = 00*(1/2)(K)
= (B9l (1/2)(K) — Bowwlo™ (1/2)(K)) /8
= (Bo™(0)(K) —1)/8 € Sp(K) = Lo(Z) = Z,
with 0*{(q)(K) € VL™(q)(Z, K) the q-connective visible symmetric signature
of K for q=0,1/2.

PROOF (i) Note first that for any simplicial complex K there is defined a
commutative braid of exact sequences

/\/\

Hy (K Lo(Z)) Hyy (K L(1)(2)) ™1 (K)])

\/\/

and that there is defined an isomorphism

~

H, (K5 L1)(Z) — L(0)(Z)) — Ha(K; Lo(Z)) 3
(C—D, (54, ¢)) — Y (D(r)/C(7),8¢(7) /(7))

TeK(n)

with (C——D, (61),1)) an n-dimensional locally Poincaré quadratic pair in
A (Z, K) such that C' is 1-connective and D is O-connective. For K = Br it
is also the case that S,,11(0)(Z, K) = S,,(0)(Z, K) = 0, so there is defined
an isomorphism

~

Ho (K Lo(Z)) — Su(1)(Z,K) = S,(K)

with the inverse specified in the statement.
(ii) Since S,4+1(0)(Z, K) = S,(0)(Z, K) = 0 the diagram of 15.18 (iii) in-
cludes a commutative braid of exact sequences
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/\

H,(K;1L(0)(Z)) VL (0)(Z, K)

VLK 0
/ &) /
H, (K; Lo(Z)) S

\/

defining a direct sum system

n(K)

—

VL™ (0)(Z, K) = Hn(K;L(0)(Z))

—_—

VLn(K) — Sn(K) = Hn(K; LO(Z)) :
In particular, the quadratic boundary map
0: VL"(K) — Sn(K) ; (C,¢) — 0(C,¢) = (9C, %)

is a split surjection, with kernel isomorphic to VL™(0)(Z, K). For any
n-dimensional 1/2-connective globally Poincaré normal complex (C,¢) in
A(Z,K) the image of (C,¢) € VL™(K) in the algebraic normal complex
cobordism group

Ho(K; L) = Ho(K;L(1)(Z) —L(0)(Z))

is represented by the n-dimensional 0-connective locally Poincaré normal
pair (90C—D, (0, (1 + T)v)) with D = C"*1=* (D/0C,0/(1 + T)y) =
(C, ¢). The symmetric version of (i) now allows the identification

(1+T)(0C,v)
= B9l (D/9C,0/(1+ T)) — Bl (D/dC,0/(1 + T)v)
= BI"YC, ¢) — B(C,¢) € Hu(K;LO(Z)) = L°(Z),
with
1+T =8: Lo(Z) = 2 — L°Z) = Z.

(iii) The n-dimensional 1/2-connective globally Poincaré normal complex
(C,¢) in A (Z,K) with C = A(K") representing 0*(1/2)(Z, K) = (C, ¢) €
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VL™ (K) has codimension n symmetric signatures
Bl (C, ) = BU*<0>(K) :

Bl (Cig) = Y T = =1 e H,(K;Lz)) = L°Z) = Z.
TeK(n)
Now apply (ii).

ExXAMPLE 24.21 The O-connective visible symmetric signature of T" is
o"(T") = A([T"|.) = (0,...,0,1)
e VL™ (0)(Z,T") = L™(Z[Z"))

n n
= L"(Z)® (1)L”1(Z) O...0 <k)L”’“(Z) ©...0L%Z) .
The codimension n symmetric signature of 7" is the generator
BU*(Tn) — Bglobala*(Tn) _ Blocala*(Tn) — (Z, 1) = LO(Z) — 7.
The 1/2-connective visible symmetric signature of T™ is
o"(T™) = ((0,...,0,1),0) € VL™(T") = L™(Z[Z"]) ® Lo(Z) ,

and the total surgery obstruction is s(7") =0 € S,,(T") = Lo(Z).
O

PROPOSITION 24.22 Let X be an n-dimensional geometric Poincaré complex
with a morphism e: m (X )——7 to an n-dimensional Novikov group .
(i) The total surgery obstruction s(X) € S,,(X) has image

s(X) = 9(C,¢) = (BY"(C,¢) ~ B"(C,¢))/8
eSW(K) = Lo(Z) = Z,
with (C,¢) = o*(X) the n-dimensional 1/2-connective globally Poincaré

normal complex in A (Z, K) associated to a map e: X — K = Br inducing
e:m (X)—m, and

Bglobal(c«’ ¢) _ BO'*(X) ,
Blocal(C ¢) = (degree of e: X—K) € L°(Z) = 7 .

(ii) If (f,b): Y —X is a normal map of n-dimensional geometric Poincaré
complexes the difference of the images in S, (K) of the total surgery ob-
structions of X, Y is the codimension n quadratic signature of the surgery
obstruction o.(f,b) € L, (Z[n])

s(Y)—s(X) = Bo.(f,b) € Sy(K) = Lo(Z) .
(iii) If vx: X—BG admits a topological reduction vx: X —BTOP then
the image in S, (K) of the total surgery obstruction s(X) € S, (X) is given
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up to sign by the codimension n quadratic signature of the surgery ob-
struction o.(f,b) € L,(Z[r]) of the corresponding topological normal map
(f,0): M—X
s(X) = —Bo.(f,b) € Sp(K) = Lo(Z) .

PROOF (i) The 1/2-connective visible symmetric signature o*(X) € VL"(K)
is represented by the m-dimensional 1/2-connective globally Poincaré nor-
mal complex (C, ¢) in A (Z, K) of the n-dimensional normal complex cycle
{X(7)|m € K} defined by the inverse images of the dual cells

X(r) = e 'D(1,K) ,
with (X (7),0X (7)) an (n — |7|)-dimensional normal pair and
C(r) = A(X(7),0X(1)) .
As in §16 assume that K is an n-dimensional simplicial complex with fun-
damental class

K] = Y 7 =1€cH,(K) = Z
TEK (M)
and similarly for X. The degree of e: X—— K is the number d € Z such
that

e [X] = d[K] € Hy(K) = Z,

which on the chain level can be expressed as

eX] = ) elp) = Z( > 1)T

peEX (™ TEK() NpeX (M e(p)=T
= d( > T) = d[K] € Au(K) .
TeK(n)

The degree d is thus the algebraic number of n-simplexes p € X in the
inverse image e~!(7) of any n-simplex 7 € K™, which is the algebraic num-
ber of vertices p € X' in the 0-dimensional geometric Poincaré complex
X(r) = e '(7) = U 7,
pEX (M e(p)=7
and also the symmetric signature of X (7)
o* (X (7)) = Y (Z1) =del’Z) = Z.
pEX (M) e(p)=T
The local codimension n symmetric signature of ¢*(X) is thus
B(C,g) = ), 7(C(7).0(7)) = de Hy(K:L0(Z)) = L(Z) = Z.
TEK ()
(ii) Apply Y——K to the identification s(Y) — s(X) = do.(f,b) € S,(Y)
given by 19.7.
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(iii) Apply e: X — K to the identification s(X) = —0do.(f,b) € S,(X).
Alternatively, substitute s(M) =0 € S,,(M) in the formula s(M) — s(X) =
Bo.(f,b) given by (ii).

O

REMARK 24.23 A resolution (M, f) of a space X is a topological manifold
M together with a proper cell-like surjection f: M——X. Quinn [135], [136]
investigated the resolution of compact AN R homology manifolds by com-
pact topological manifolds, using controlled surgery theory and algebraic
Poincaré complexes to formulate the following obstruction. (It is now known
that this obstruction is realized, see 25.13). A compact AN R is homotopy
equivalent to a finite CW complex by the result of West, so that a com-
pact n-dimensional AN R homology manifold X is a finite n-dimensional
Poincaré space. Let X; C X be a neighbourhood of a point zg € X. As
in [135,4.1] there is defined a finite n-dimensional geometric Poincaré com-
plex Y with a normal map (f,b):Y——T" such that the proper normal
map (f,b):Y—T" = R" is bordant to a proper normal map X; —R".
The codimension n symmetric signatures of the associated 0-connective n-
dimensional globally Poincaré normal complex (C,¢) = o*(Y) in A (Z,T™)
are

Bglobal(c, ¢) = Bo*(Y),
Blocal(C, ¢) — (degree of f:Y—>Tn) = 1le LO(Z) = 7.

The local signature obstruction of [136] to a resolution of X by a compact
topological manifold is defined by

i(X) = B9 (C ¢) — BUC ¢p) = (Bo*(Y)—1)/8€ Ly(Z) = Z .
(Unfortunately, the local signature Ba*(Y) € LY(Z) of [136] arises here as
a global codimension n signature.) The total surgery obstruction s(X) €
Sn(X) =S$,(1)(Z, X) is the image of

i(X) = 9o.(f,0) = s(Y)€Su(T") = Hn(X;Lo(Z)) = Lo(Z)
under the map in the exact sequence

. — Sp+1(0)(Z, X)) — H,(X;Lo(Z)) — Sp(1)(Z, X)

— Sp(0)(Z,X) — ... .

For n > 5 X is homotopy equivalent to a topological manifold (not neces-
sarily a resolution) if and only if i(X) € im(S,,+1(0)(Z, X)—Ly(Z)). The
resolution obstruction of a homology manifold X is an invariant of the con-
trolled chain equivalence inducing the Poincaré duality H"*(X) = H,(X).
See §25 and Appendix C for some further discussion of the surgery classifi-

cation of compact AN R homology manifolds and controlled topology.
i
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§25. The 4-periodic theory

The 4-periodic theory is the version of surgery in which the 1-connective
L-spectrum L. = L.(1)(Z) is replaced by the 4-periodic spectrum L. (Z), cor-
responding to the difference in the codimension n transversality properties
of nm-dimensional topological manifolds and n-dimensional AN R homology
manifolds. The algebraic and topological properties of the 4-periodic the-
ory will now be investigated, including an interpretation of the difference
between the 4-periodic and 1-connective theories in terms of the local and
global signatures of §24.

The 4-periodicity of surgery was first observed experimentally by Kervaire
and Milnor [86], in the simply connected high-dimensional case arising in the
classification of compact (n — 1)-dimensional differentiable manifolds which
are homotopy spheres and bound framed n-dimensional manifolds W", with
n > 5. After framed surgery below the middle dimension W can be taken
to be [(n — 2)/2]-connected. The obstruction to making W contractible
by surgery in the middle dimension is an element of the simply-connected
surgery obstruction group L, (Z). For n = 2i this is the Witt class of the
(—)i-quadratic intersection form on H;(W). In particular, for n = 4k > 8
the Fg-plumbing of 8 copies of Tgar: S2F——BSO(2k) is a framed (2k — 1)-
connected 4k-dimensional differentiable manifold W** with boundary an
exotic (4k — 1)-dimensional sphere ¥4*~1 and symmetric intersection form

(Ha(W),N) = (Z°,Es)
such that the corresponding surgery obstruction is
signature(W)/8 = 1€ Ly (Z) = Z .

There is no obstruction for n = 2i 4+ 1, since Lo;y1(Z) = 0. The simply-
connected surgery obstruction is 4-periodic since [(n — 2)/2]-connected n-
dimensional manifolds have the same homological intersection properties as
[(n+2)/2]-connected (n + 4)-dimensional manifolds. The simply-connected
surgery obstruction groups L, (Z) = m,(G/TOP) are 4-periodic, but the
groups of h-cobordism classes of exotic spheres 6,, = 7, (TOP/O) are not
4-periodic.

The 4-periodicity persists in surgery on n-dimensional normal maps (f,b):
M"™— X, which can be made [n/2]-connected by surgery below the mid-
dle dimension. The non-simply connected obstruction to surgery on (f,b)
depends only on the middle-dimensional chain level intersection properties
of the Z[m (X)]-module homology kernels

K. (M) = ker(fo: H.(M)—H.(X)) ,

which are the same for [n/2]-connected n-dimensional normal maps and
[(n + 4)/2]-connected (n + 4)-dimensional normal maps. The surgery ob-
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struction groups L,(m) = L.(Z[rn]) of Wall [180] were defined algebraically
to be such that

L(Zr]) = Lita(Zl7])

with the 4-periodicity isomorphisms realized geometrically as products with
the complex projective plane CP?

~

—xCP?: L,(Z[r)) — Lnya(Z[r]) ;
o ((f,0): M—X) — o.((f,b) x 1: M x CP?*—X x CP?) .

The expression of L, (Z[r]) as cobordism groups of quadratic Poincaré com-
plexes in Ranicki [143] allowed the 4-periodicity isomorphisms to be realized
algebraically as products with the symmetric signature of CP?

o*(CP?) = signature (CP?) = 1€ L*Z) = Z,

and also as the double skew-suspension maps

S? = —®0"(CP?) : Ly(Z[r]) — Lnta(Z[n)) ;
(C.¥) — (§7C,8%) = (C,9) ® o™ (CP?) .
The classifying space G /O for differentiable surgery is 4-periodic modulo
torsion, since it has the rational homotopy type

G/0®Q ~ BO®Q ~ [[K(Q.4)) .
j=1
The classifying space G/TOP for topological surgery is 4-periodic, with a
homotopy equivalence
Q'G/TOP ~ Lo(Z) x G/TOP .
The geometric surgery spectra of Quinn [130] and the quadratic L-theory

spectra of Ranicki [138] with homotopy groups L, realize the 4-periodicity
on the spectrum level, with

in the simply-connected case.

In order to obtain an algebraic formulation of the surgery exact sequence
and the total surgery obstruction for topological manifolds it was neces-
sary to kill the Oth homotopy group mo(IL(0).(Z)) = Lo(Z) in {0).(Z) and
work with the 1-connective quadratic L-theory spectrum L. = L(1).(Z),
as in §15. The controlled and bounded surgery of Quinn [135], [136] and
Ferry and Pedersen [53] have shown that the original O-connective 4-periodic
surgery spectra are related to the surgery exact sequence and total surgery
obstruction for compact AN R homology manifolds.

Products with the L'-coefficient fundamental class [C P?];, € H,(CP? L")

— @ [CPL : Sp(X) — Snia(X x CP?)
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are not in general isomorphisms, fitting into an exact sequence
o Hyp (X x S% L) — Sp(X) — Spya(X x CP?)
— n+3(X X SQ;L.) —
However, for an n-dimensional polyhedron X the 1-connective quadratic

S-groups S, (X) = S.(1)(Z, X) are themselves 4-periodic in dimensions >
n + 2, with the double skew-suspension maps

§2: Sm(X) — Smpa(X) 5 (C,y) — (82C,5%y)
isomorphisms for m > n + 2. In this 4-periodicity range the 1-connective
S-groups coincide with the S-groups S.(Z, X) = S.(0)(Z, X) appearing in
the 4-periodic algebraic surgery exact sequence of §14

s Hp(XGL(Z) — Ln(Z[m (X))
— Spn(Z2,X) — Hp 1 (X5LA(Z) — ... .
Abbreviate
L.(0)(Z) = L. , VL' ({x}) = VL(O)(Z,{*}) =
VLY 0)(Z,X) = VL*(X) , S.{0)(Z,X) = S.(X) ,
writing the corresponding assembly maps A as A.
ProrosiTION 25.1 (i) Up to homotopy equivalence
L = K.(Ly(Z),0) VL

with K.(Lo(Z),0) the Eilenberg-MacLane spectrum of Lo(Z)-coefficient ho-
mology, so that for any space X

H.(X;L) = H.o(X;Lo(Z)) ® H(X;L) .

(ii) For any space X there are defined commutative braids of exact sequences

N

H,(X;L.) Lo (Z[m (X)]) X)
\ / \ /
H,(X;L) S (X)
Sp+1(X) H,(X; Lo(Z)) H,_1(X;L.)
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X Lo(Z))

(X;IL') )
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PROOF (i) The inclusion L'—1L" is split by the forgetful map L'—IL".
(ii) The braids of exact sequences are induced from the braids of fibrations
of spectra given by 15.18.

O

REMARK 25.2 The fibration
L. — L. — K.(Lo(Z),0)

splits when localized at 2, but not away from 2. Taylor and Williams
[173, Thm. A] show that the 0-connective quadratic L-spectrum of any ring
with involution A is such that

L.{0)(A)[1/2] = boAg V XboA; V X2boAs V E2boAs

L.{0)(A) @ = \/ K.(L;j(A) @), )
where boA; denotes connectlve KO theory with coefficients in the group
A; = L;(A)[1/2]. For A =7 this gives
L[1/2] = L(O)(Z)[1/2) = bo[1/2],
L.[1/2] = L.(1)(Z)[1/2] = bo(1)[1/2] .

PROPOSITION 25.3 Let X be an n-dimensional polyhedron.
(i) The Si-groups of X are such that

Sm(X) = Spn(Z,X) = Spya(X) form>n,
Sn(X) = Sp(0)(Z,X) = Sp(Z,X) form>n+1,q¢<0,
Sm(X) = Sp(X) form>n+2,
with an exact sequence
0 — Spy1(X) — Spp1(X) — Ha(X; Lo(2))
— Sp(X) — Sp(X) .
(ii) The VL*-groups of X are such that
VL™ X) = VL™(Z,X) = VL™™*(X) form >n ,
VL™(X) = VL™{(q)(Z,X) = VL™(Z,X) form>n+1,¢<0,
VL™X) = VL™(X) form>n+2,
with an exact sequence
0 — VL' (X) — VE™(X) — Ho(X; Lo(Z)
— VL™(X) — VL™(X) .
(iii) If (C——D, (0%, %)) is an n-dimensional locally Poincaré globally con-
tractible quadratic pair in A (Z, X) with C' 1-connective and D 0-connective

22
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then the image in S, (X) of the homology class
z = Y ((D/O)(7), (8¢/$)(T))T € Hn(X; Lo(Z))
TeX((n)
15 the cobordism class
[2] = (C,9) € ker(Sp(X)—8,(X)) = im(Hn(X; Lo(Z))—Sn (X)) -
(iv) If (E—F, (0¢, ®)) is an (n+ 1)-dimensional globally Poincaré normal
pair in A (Z,X) with (E,¢) 1/2-connective and F 0-connective then the

homology class x € H,(X; Lo(Z)) determined in (ii) by the n-dimensional
locally Poincaré globally contractible quadratic pair (0E——OF,0(d¢, ¢))

z = Y ((0F/0E)(7),0(3¢/¢)(r))T € Hn(X; Lo(Z))
TeX(n)
1s such that
[z] = O(E,¢) € im(H,(X; Lo(Z))—Sn(X)) ,

(1+T)x) = > (E(),é(r)7 € Ho(X;L°(2)) .
TeX(n)
(v) The diagram

H, (X "(X)

L)— 4 VL
& /
VLX)

J@ 0

Sn(X)
/ \_
(Z)) Sn

Hn(X;LO (X)

commutes.
PROOF (i) The double skew-suspension maps define an isomorphism of exact

sequences
. — Hp(X5L(g+1) —— Hp(X;L(q) —— Hi—g(X; Ly (Z)) — . ..

o> Hypqa(X5L(g+5)) » Hipga(X5 L (g +4)) = Hp— g (X Lgya(Z)) - . ..

for any m, q € Z, with L.{q) = L.(¢)(Z). The natural map
H, (X;L.(0)) = Hppa(X5L.(4)) — Hppa(X;L.(0))
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is an isomorphism for m > n — 1, being the composite of the isomorphisms
in the middle of each of the exact sequences

Hoo5(X5 Li(Z)) = 0 — Hypoa(X3 Lok + 1)) — Hyn 2 (X3 L(K))
— Hyppqa(X; Ly(Z)) = 0
for k =0,1,2,3. A 5-lemma argument applied to these and the 4-periodicity
isomorphisms L,, (Z[m1(X)]) & Ly14(Z[71(X)]) gives that the double skew-
suspension maps S,,(X)——S,,44(X) are isomorphisms for m > n. The
relationship between the S,- and S,-groups is given by the exact sequence
of 15.11 (i)
. — Hy(X; Lo(Z)) — Sp(X) — Si(X)

— Hp (X Lo(2)) — ...,
noting that H,,(X;Lo(Z)) = 0 for m > n + 1. Also, 15.18 (iii) gives an
exact sequence

Hyp1 (X5 Lo1(Z) = 0 — Sp(X) — Su(-1)(Z, X)
— H,(X;L_1(Z))=0

and by 15.11 (v)

Sh(X) = Su(-1)(Z,X) = Su(Z,X) .
(ii) This follows from (i) and the commutative braids of exact sequences
given by 25.1.
(iii) and (iv). These identities are formal consequences of the identifications
in §15 of the 0- and 1-connective quadratic L-spectra with the appropriately
connective quadratic Poincaré complexes.
(v) Let (C, %) be an n-dimensional quadratic complex in A(0)(Z).(X), rep-
resenting an element

(C, ) € Ln(A0)(Z).(X)) = Hn(X;L.)
with images

1+T)(C¢) = (C,(1+T)p) e VL"(X) ,
[Cog] = D (C(r),%(7)T € Hu(X; Lo(Z)) -
TeX(n)
Since L, (A(0)(Z, X)) = L, (A{1)(Z, X)) (by 15.11 (i)) there exists an (n +
1)-dimensional quadratic pair in A(0)(Z, X)
P = (C"eC—D, (¢, ©—¢))

with C” 1-connective and D 0-connective. The assembly of (C, ) is repre-
sented by (C’, 1))

AC ) = (C'Y)) € Ln(Z[m(X)]) = Lo(M1)(Z, X)),
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so the composite

_ A 14T
H,(X;L.) — L,(Z|m(X)]) — VL"(X)

sends (C,v) € H,(X;L.) to (C', (1 + T)y') € VL™(X). The boundary of
P is an n-dimensional locally Poincaré globally contractible quadratic pair
in A(0)(Z, X)
OP = (0C"®0C — 0D, 0(5¢, " ® —1))
with
9C, = Crp1®C" ", 0C, = Cr ®eC™ ",
OD, = D,y @ D" oo™ aC"" (reZ)

such that 9C is locally contractible, 9C’ is 1-connective and 0D is 0-
connective. The composite

Hu(XiT) == La(Zlmi (X)) — VI"(X) — $,(X)
sends (C, ) € H,(X;L.) to 9(C',9’") € Sp(X). For each n-simplex 7 €
X ™) the 0-dimensional quadratic Poincaré complex in A(0)(Z)
oP(r) = ((0D/(0C" @ 0C))(7), (6¢/ (' & —¢))(7))
is cobordant to (C(7), (7)), so that
0Pl = Y oP(rr = Y (CO)w(r)r = [C.4] € Ha(X: Lo(D)
TeX(n) TeX(n)
An application of (ii) gives
o(C",¢") = [oP] = [C,4]
€ ker(S, (X)—S, (X)) = im(H,(X; Lo(Z))—S,(X)) ,
verifying the commutativity of the diagram.
O

REMARK 25.4 For a compact n-dimensional topological manifold M™ with
n > 5 18.5 gives that for ¢ > 1

SEOT(M x D™ M x S™3) = Spii15(M) = Spyita(M)

= SYOP(M x D', M x S7') = S, i1 (M) .

Also, the initial part of the exact sequence
0 — Sus1 (M) — Spi1 (M) — Hy (M; Lo(Z)) — Su(M) — S.(M)
can be expressed as

0 — STOP (M) — SEOP(M x D*, M x S3) — Lo(Z) .

See Kirby and Siebenmann [87, Appendix C to Essay V], Nicas [121] and
Cappell and Weinberger [29] for geometric interpretations of this almost
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4-periodicity of the topological manifold structure sets.
i

DEFINITION 25.5 The 4-periodic visible symmetric signature of a finite n-
dimensional geometric Poincaré complex X

7" (X)e VL™(X)
is the 0-connective visible symmetric signature defined in §9, which is an
image of the 1/2-connective visible symmetric signature o*(X) € VL"(X)

defined in §15.
m

DEFINITION 25.6 The 4-periodic total surgery obstruction of a finite n-
dimensional geometric Poincaré complex X is the image of the total surgery
obstruction s(X) € S,,(X) in the 4-periodic quadratic structure group

5(X) = [s(X)] €Sn(X),
or equivalently as the boundary of the 4-periodic visible symmetric signature
5(X) = 05%(X) €S,(X) .

O

PROPOSITION 25.7 Let X be a finite n-dimensional geometric Poincaré
complez.
(i) The following conditions on X are equivalent:

(a) the 4-periodic total surgery obstruction is
5(X) =0€S,(X),
(b) there exists an L -homology fundamental class [X|1, € H,(X;L") with
assembly

A(XTL) = (X)) e VL"(X) ,
(c) there exists an L' -homology fundamental class [X|x € Hy,(X;L") with
assembly
A([X]p) = o"(X) € VL(X).
(ii) If the Spivak normal fibration vx: X — BG admits a topological reduc-

tion v: X —BTOP and there exists an element x € H,(X;L.) such that
the surgery obstruction of a corresponding normal map (f,b): M—X s

o.(f,b) = A(x) € im(A: H,(X;L.)— L, (Z[r(X)]))
then
5(X) = Oegn(X),
s(X) = [i(x)] € ker(S,(X)—8,(X)) = im(Hn(X; Lo(Z))—Sn(X)) ,
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with i(x) € H,(X; Lo(Z)) the image of x under the natural map
H,(X:L) = Ho(X: Lo (0)(Z) — Ho(X: mo(Lo{0)(Z))) = Hy(X: Lo(Z).

PROOF (i) Immediate from the exact sequences
A o _
— H,(X;L) — VL"(X) — S,(X) — Hp,—1(X;L) — ..

)

_ A o _ _
— H(X5L) — VLX) — Sp(X) — Hp 1 (X5L) — ...
(ii) The natural map H,(X;L.)— H,(X; Lo(Z)) coincides with the com-
posite
(&R
H,(X:L.) HYX;L.) = [X,Lo(Z) x G/TOP]
projection 0 [(X]Nn—

— X, Lo(2)] = H'(X;Lo(Z)) ——— Hn(X;Lo(Z)) ,
with [ X, = f«[M]L € H,(X; L") the L -coefficient fundamental class of X
determined by (f,b), and [X] € H,(X) the ordinary (Z-coefficient) funda-
mental class. The identities (X ) = 0, s(X) = [i(z)] follow from 25.3 (iv).

O

The resolution obstruction of a compact n-dimensional AN R homology
manifold M

i(M) € H,(M; Lo(Z)) = Lo(Z)
was defined by Quinn [136] as the difference of local and global codimension

n signatures (24.23).

PROPOSITION 25.8 Let X be a finite n-dimensional geometric Poincaré
complex which is homotopy equivalent to a compact n-dimensional ANR
homology manifold M. The total surgery obstruction of X is the image of
the resolution obstruction of M

s(X) = [i(M)]
€ im(Ho(X; Lo(2))—8n(X)) = ker(S,(X)—8a(X)) |
and the j-periodic total surgery obstruction of X is
5(X) = 0€S,(X) .
Moreover, a choice of homotopy equivalence M ~ X determines an IL'-
homology fundamental class [X]L, € H,(X; L") with assembly
A([X]) = 7*(X) e VI"(X) |
and an 1L -homology fundamental class (X]g € H,(X;L") with assembly
A([X]p) = o*(X) € VI'(X).
PRrROOF The total surgery obstruction of M is determined by a normal map
(f,b): N—M from a compact topological manifold N associated to the
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canonical topological reduction vy;: M——BTOP of the Spivak normal fi-
bration vy;: M—— BG (Ferry and Pedersen [53])

s(M) = —[o.(f,0)]
€ im(Ly (Z[my (M)]) =8, (M)) = ker(Sp(M)——Hy_1(M;L.)) .
The canonical .'-homology fundamental class of M is defined by
(M = f«[N]L € Ho(M;L)
with assembly the 4-periodic visible symmetric signature of M
A(M)) = 7*(M) e VI"(M) .
The canonical L'-homology fundamental class of M is defined by
Ml = (i(M), [M]L) € Hy(M;T) = Hy(M; Lo(Z)) ® Ho(M; L)
with assembly the 1/2-connective visible symmetric signature of M
A([Mlp) = o*(M) € VLM(M) .
and such that
s(M) = 90" (M) = [i(M)] = —[o.(f,b)] € Sn(M) .
The surgery obstruction of (f,b) is the assembly of
(—i(M),0) € H,(M;L.) = H,(M;Lo(Z)) ® H,(M;L.) ,
that is
0.(£,6) = A(=i(M),0) € im(A: Hy (M L) — L (Z[m1 (M)
= ker(0: L,(Z[m1(M)])—S,,(M)) .
The 0-connective visible symmetric signature of M is
o*(M) = o*(N)— (1+T)o.(f,b) = A(M]L)+ (1 +T)A®i(M))
= A([M]p) € im(A: H,(M;L)—VL"(M)) .
i
Normal maps (f,b): (N,vn)—(M,vps) of closed n-dimensional mani-
folds are classified by the normal invariant (18.3 (i))
[f,blL € [M,G/TOP] = H°(M;L.) = H,(M;L.)

represented by the fibre homotopy trivialized difference vy, — vy;: M—
BTOP, with v, the stable normal bundle.

DEFINITION 25.9 The 4-periodic normal invariant of a normal map (f,b):
(N,vn)—(M,vpr) of compact n-dimensional AN R homology manifolds

[fv b]f = (Z(N)_Z(M)7[f7 b]]L)
€ [M,Ly(Z) x G/TOP] = H°(M;L.) = H,(M;L.)
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with [f,b]L = t(b) € [M,G/TOP)] represented by the fibre homotopy trivi-
alized difference vy; — vy;: M—— BT OP, with vy, the canonical topological
reduction of the Spivak normal fibration.

|

The 4-periodic normal invariant will also be written as
t(i,b) = [f, bz € Ho(M;L.)
in terms of
(1,b) = (i(N)—i(M),t(b)) € H,(M; Lo(Z) ® H,(M;L.) .
The surgery obstruction of a normal map (f,b): N——M of closed n-

dimensional AN R homology manifolds is the assembly of the 4-periodic
normal invariant

€ im(A: H,(M;L.)— L, (Z[r1(M)])) = ker(L,(Z[r(M)])—S,(M)) .
EXAMPLE 25.10 Given a compact n-dimensional AN R homology manifold
M let (f,b): N——M be the normal map associated to the canonical topo-

logical reduction of M, with N a compact n-dimensional AN R topological
manifold. The 4-periodic normal invariant of (f,b) is

£ B = (=i(M),0) € Ho(MsL.) = Hy(M; Lo(Z)) & Ha(M;sL.) .

The structure invariant (18.3) of a homotopy equivalence f: N——M of
compact n-dimensional topological manifolds is the rel 9 total surgery ob-
struction

s(f) = 3o(NxIUy M,MUN)e€S,41(M)
with image the normal invariant
[s(F)] = [f bl
€ im(S,41(M)—H,(M;L.)) = ker(A: H,(M;L.)—L,(Z[m (M)])) .
of the normal map (f,b): (N,vn)— (M, (f~1)*vx), with vy the stable

normal bundle.

DEFINITION 25.11 The 4-periodic structure invariant of a homotopy equiv-
alence f: N——M of compact n-dimensional AN R homology manifolds is
the rel 9 4-periodic total surgery obstruction

5(f) = 59(NxTUy M,MUN) €S,+1(M)
with image the 4-periodic normal invariant
[5(N] = [f.0lg = () —i(M), [f,blL)
€ im(S,11(M)—H,(M;L.)) = ker(A: H,(M;L.)— L, (Z[r(M))]))
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of the normal map (f,b): (N, vn)— (M, (f~1)*vy), with vy: N—BTOP
the canonical topological reduction.
i

The resolution obstruction ¢(M) is not a homotopy invariant, with i(M) =
i(N) € Lo(Z) for a homotopy equivalence f: N——M if and only if

5(f) € ker(Sp1(M)——H,(M; Ly(Z))) = im(Sp11(M)—S,411(M)) .

As in §19 write the geometric Poincaré and normal bordism spectra of a
point as

QF = QF({x}) , ¥ = a¥({+}) .
Define

Q. = cofibre(L. — L. v QF) = fibre(QY —%L.),

so that for any space K there is defined a commutative braid of exact
sequences

The relation between the 4-periodic theory and geometric Poincaré bor-
dism is given by the following generalization of 19.6:

PROPOSITION 25.12 (i) For any polyhedron K with finitely presented 71 (K)
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and n > 5 there is defined a commutative braids of exact sequences

AN TN

2 (K QP) B QF (K) Sn(K)
\ _P% \ /
H,(K;Q. ) Sn(K)
NG T
Sn41(K) H,(K; Ly(Z)) H, 1(K;QF)

(ii) A finite n-dimensional geometric Poincaré complex X has 4-periodic
total surgery obstruction 5(X) =0 € S,(X) if (and for n >5 only if) there
exists an Q{D—homology fundamental class [ X5 € Hyp(X; ﬁp) with assembly
the geometric Poincaré bordism class of 1: X — X

A(X]p) = (1: X—X) c Ol (X),

in which case the total surgery obstruction of X is given by
s(X) = [i[X]5] € im(H,(X; Lo(Z))—S, (X)) = ker(S,(X)—Sp(X)).
i
The structure set SZTOF (M) of a compact n-dimensional AN R homology
manifold M is defined to be the set of h-cobordism classes of pairs
(compact n-dimensional AN R homology manifold N,
homotopy equivalence f: N——M) .

REMARK 25.13 Bryant, Ferry, Mio and Weinberger [21] have announced
the existence of nonresolvable compact n-dimensional AN R homology man-
ifolds realizing the Quinn resolution obstruction in each dimension n > 5. It
follows that the 4-periodic total surgery obstruction of a finite n-dimensional
geometric Poincaré complex X is such that 5(X) = 0 € S,(X) if (and for
n > 5 only if) X is homotopy equivalent to a compact n-dimensional AN R
homology manifold M, in which case the total surgery obstruction of X is
the image of the resolution obstruction of M

S(X) = [i(M)] € im(Ho(X; Lo(Z)—Sn(X)) = ker(Sn(X)—8a(X)) .

It also follows that the structure set SZTOF (M) of a compact n-dimensional
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AN R homology manifold M fits into an exact sequence of pointed sets
- — Ly (Z[m (M) — SHTOP (A1)
— [M, Lo(Z) x G/TOP| — L, (Z[m1(M)])

with the 4-periodic structure and normal invariants defining a bijection with
the 4-periodic algebraic surgery exact sequence

. — L1 (Z[r]) — STTOP (M) — [M, Lo(Z) x G/TOP] — L, (Z[x])

o

s Loyt (Zl]) — Sp 1y (M) ———— H,(M; L) — A L, (Z[))

with m = 71 (M). The generator 1 € Ly(Z) is realized by a nonresolv-
able compact n-dimensional AN R homology manifold X" with a homotopy
equivalence f:»"——S" such that

i(X") = 5(f) = 1eSHTOP(s™) = §,,1(8") = Lo(Z) = Z .

REMARK 25.14 The 4-periodic total surgery obstruction 5(B) of the classi-
fying space BT of an n-dimensional Novikov group 7 takes value in S, (B7) =
{0}, so that by 25.13 B is homotopy equivalent to a compact n-dimensional
AN R homology manifold M (at least for n > 5) such that

s(M) = i(M)eS,(M) = S,(Br) = Lo(Z) ,

STTOP(M) = §na(M) = Sy (Bm) = {0} .
In particular, M is resolvable if and only if M is homotopy equivalent to
a manifold. Ferry and Pedersen [53] used bounded surgery to show that
any compact AN R homology manifold in the homotopy type of a compact

aspherical manifold with a Novikov fundamental group 7 is resolvable.
m

ExAMPLE 25.15 The 4-periodic quadratic L-theory assembly maps for T
are isomorphisms (24.16)

A: H(T™L.) — L.(Z[Z"]) ,
so that

S« (T") = 0, S(T") = H.(T";Lo(Z)) (x>n)

and the ‘4-periodic’ geometric Poincaré bordism assembly maps of 25.12 (i)
are isomorphisms for 7"

A H (1)) — QP (1) .
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In each dimension n > 4 the element
i(1) = (1,0) € QL(T") = H(T™Q)) = Lo(Z) & Hu(T":27)

is represented by a normal map (f,b):Y——T" from a topologically re-
ducible finite n-dimensional geometric Poincaré complex Y, with surgery
obstruction

" /n
n(1) = L0 L@z = Lwe (X (1)nm)
k=1
and codimension n quadratic signature

Bo.(f,b) = (Z%,Es) = 1€ Lo(Z) = Z.
The visible symmetric signature of Y is
a'(Y) = o"(T")+ (1+T)o.(f,b) = (1,(9,0))
eVL™(T") = Lo(Z)® L™(Z[Z"]) ,
with components the 4-periodic visible symmetric signature
" (Y) = (9,0)

eVL™(T") = L*(Z[z"]) = L°(Z)& < > <Z)Lk(Z)) :
k=1
and the image of the total surgery obstruction

s(V) = 1€S,(T") = Lo(Z) .
The actual total surgery obstruction s(Y) € S, (Y) is the image of 1 €
H, (Y;Ly(Z)) = Lo(Z) under the map in the exact sequence
S, (Y) — Hp(Y;Lo(Z)) — Sp(Y) — Sp(Y) — ... .

For n = 4 there is an explicit construction of Y4 in Quinn [136, §2]

vt = ((T4)<3> Vv \/52) Uq €t
48

attaching a 4-cell to a 3-complex by a Whitehead product « realizing the
nonsingular quadratic form over Z[Z%] of rank 48 representing the image of
1 € Lo(Z) under the geometrically significant split injection of Ranicki [140]

o (TY ® — : Lo(Z) — L4(Z[Z%)) .
For n > 5 the product
(f,b) xid. : Y™ = Y*xT"* — T4 x1"* = 1"
has codimension n quadratic signature 1 by the surgery product formula
of Ranicki [145]. In each case the 4-periodic total surgery obstruction is

5(Y) = 0 € S,(Y), and the total surgery obstruction s(Y) € S,(Y) is
the image of 1 € H,(Y;Lo(Z)) = Lo(Z). By 25.13 each Y™ is homotopy
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equivalent to a nonresolvable compact AN R homology manifold.
i

See Appendix C for some further discussion of assembly and controlled
topology.

REMARK 25.16 See Hambleton and Hausmann [66, p. 234] for the construc-
tion in each dimension n > 4 of a finite n-dimensional geometric Poincaré
complex Y such that
(i) the fundamental group 7;(Y’) = 7 is an n-dimensional Novikov group
(in the class of Cappell [25]) with the homology of S™, such that

L.(Zlx)) = H.(BmL) = HA(SMT) = Lo o(Z)® L(7)
(ii) the classifying map Y —— B7 induces an isomorphism of integral ho-
mology, with
H.(Y) = H.(Brm) = H.(5"),
(iii) the 4-periodic visible symmetric signature of Y is
a*(Y) = (9,0)
cVL™(Y) = H,(Y;L) = H,(SL) = LYZ) e L™(Z),
and the 4-periodic total surgery obstruction of Y is
5(Y) = d5*(Y) = 0€S,(Y) = {0},
(iv) the visible symmetric signature of Y is
o"(Y) = (LT"(Y) e VL"(Y) = Lo(Z)®VL"(Y) ,
and the total surgery obstruction of Y is
s(Y) = 0c"(Y) =1
€ S,(Y) = coker(H,(Y;L.)—L,(Z[r]))
= coker(H,(S™;L.)—H,(S™;L.)) = Lo(Z) = 7Z.
By 25.13 each Y is homotopy equivalent to a nonresolvable compact AN R

homology manifold.
i

REMARK 25.17 Let M be a compact n-dimensional AN R homology man-
ifold, and let (f,b): N——M be a normal map associated to the canonical
topological reduction v,; of the Spivak normal fibration, with N a genuine
manifold (as in the proof of 25.8). The Poincaré dual of the £-genus
L(M) = L(-vm) € H*(M;Q)
is the rational part of the canonical L'-homology fundamental class [M],
[M]Qm‘c(M) = [M]]L® 1le Hn(MvL) ®Q == Hn—4*(M;Q) )
with [M]g € H,(M;Q) the Q-coefficient fundamental class. Every map
g: M——S"~% can be made symmetric Poincaré transverse at a point in
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S™~ with [M]zNg*(1) € H;(M) represented by an i-dimensional symmetric
Pomcare complex ‘g~ 1(pt.)” over Z such that

g[M]L = o*(g7(pt)) € Ho(S"5L) = LY(Z),
with 1 € H"%(S""%) = Z. The composite gf: N—S""" can be made
topologically transverse, and ‘(gf)~!(pt.)” is the symmetric complex of a

framed i-dimensional submanifold (¢gf)~*(pt.) C N. For i = 45 the Hirze-
bruch signature formula gives

o ({(g)~ pt.)) = o"((gf)" (pt.))
= (Lj(=vn), [Nle N (gf)"(1))

i(=
= (L;j(-on),[NloNg*(1)) € L¥(Z) = Z .
6

The algebraic normal map (2.16 (i)) of 4j-dimensional symmetric Poincaré
complexes over Z

(0 (gf) ) — g7 (pt)’
has quadratic signature the assembly of a 4j-dimensional component of
[i{(M)] € Hy(M;L.)

o.("(f,0)) =
with symmetrization

1+ D)o ((f,0)) = o*((af) " (pt.)) — o* (g (pt.)) € LY(Z) = Z.
Every element z € Hy;(M;Q) is of the form =z = [M]g N ¢g*(1)/m for some
g M—S"% m € Z\{0}. The L-genus of a compact ANR homology
manifold is thus characterized by the signatures of symmetric Poincaré sub-
complexes

(L;(M), =)+ Hyj(M;Q) — LY(Z)®Q = Q;
r = [Mlgng*(1)/m —

* (¢ —1 ’ 0o
eanay = {7 e
o* (‘g7 (pt.))/m + 8i(M)x ifj=0,
generalizing the combinatorial definition due to Thom of the £-genus of a
PL manifold (and hence the rational Pontrjagin classes) using the signatures
of submanifolds — see Milnor and Stasheff [114, §20], and also Appendix C.16
below.

0 if j>0

{i(M)g*[M] ifj:()} € Ly(Z) = Z,

O
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§26. Surgery with coefficients

There is also a version of the total surgery obstruction theory for the A-
homology coefficient surgery theory of Cappell and Shaneson [26], which
arises in the surgery classification of codimension 2 submanifolds (cf. Ran-
icki [146, §§7.8,7.9]).

For A-homology surgery the Wall L-groups L. (Z[r]) of a group ring Z|r]
are replaced by the I'-groups I',. (F) of a ‘locally epic’ morphism F: Z[r|—A
of rings with involution. (A ring morphism is locally epic if for every finite
subset Ag C A there exists a unit v € A such that uAy C im(F).) By
definition, T'y;(F) is the Witt group of A-nonsingular (—)’-quadratic forms

over Z[r], and T'g;41(F) is the Witt group of A-nonsingular (—)’-quadratic

formations over Z[r]. The forgetful map I',,(F)——L,(A) is {onto for
one—one

n { oL with T (1: Z[x]—Z[x]) = L.(Z[x]). In the terminology of §3 the

I'-groups are given by

L' (F) = Lu(A(Z[r]), B (Z[x]),C(F))
with A (Z[r]) the additive category of f.g. free Z[r|-modules, B (Z[r]) the
category of finite chain complexes in A (Z[r]) and C(F) C B(Z[rn]) the
subcategory of the chain complexes C' which are A-contractible, i.e. such
that A®z C is a contractible chain complex in A (A). For the fundamental
group m = m1(X) of a simplicial complex X the A-coefficient version of the
algebraic 7-7 theorem of §10 gives the identification

with C(Z, X,A) € C(Z,X) the subcategory of A-contractible complexes,
so that I';,(F) is the cobordism group of n-dimensional quadratic cycles in
X which are globally A-Poincaré. Define

the cobordism group of 1-connective (n — 1)-dimensional quadratic cycles
in X which are locally Poincaré and globally A-contractible. The groups
S«(X;A) are the A-coefficient total surgery obstruction groups of Ranicki
[146, p. 774], which fit into a I'-theory assembly exact sequence
A

. — Hy(XGL) — Th(F) — Sp(X;A) — Hp 1 (XGL) — L

with
A
A: H,(X;L.) — L,(Z|n]) — Tn(F) .

There is a A-coefficient version of the visible symmetric L-theory, with a
commutative braid of exact sequences
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Sn-l—l(X;A) Hn(XvL) Hn(XvL)
\ 1% X /’
H,(X;L.) VI™(X;A)

Hn+1(X§ I/[: ) Fn(f:) Sn(X7 A)

0

The A-coefficient visible symmetric L-group VL™(X;A) of a simplicial
complex X is the cobordism group of 1/2-connective globally A-Poincaré
n-dimensional algebraic normal complexes in A (Z, X).

An n-dimensional geometric A-Poincaré complexr X is an n-dimensional
normal complex with A-Poincaré duality isomorphisms

(XN =+ H""(X5A) — H (X54) ,
with respect to a locally epic morphism F:Z[m(X)]—A of rings with
involution. The A-coefficient visible symmetric signature of X is defined by
0" (X;A) = (A(X),¢) e VL™(X;A) ,
working as in 16.5 to make (A(X),®) 1/2-connective. The A-coefficient
total surgery obstruction of X is defined by
s(X;A) = 900*(X;5A) € Sp(X5A) .
As in the absolute case F = 1: Z[r|—A = Z[r] (17.4):
PROPOSITION 26.1 The A-coefficient total surgery obstruction of a finite
n-dimensional geometric A-Poincaré complex X is such that s(X;A) = 0
if (and for n > 5 only if) X is A-homology equivalent to a compact n-

dimensional topological manifold.
i

The A-coefficient structure set STOF (M) of a compact n-dimensional
topological manifold M™ is the pointed set of A-coefficient h-cobordism
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classes of pairs
(compact n-dimensional topological manifold N™ ,
A-homology equivalence h: N"——M™")
with base point (M,id) = 0 € SATOP (M) .
As in the absolute case (15.19,18.2) for any simplicial complex M and
any locally epic F: Z[m1(M)]—A there is defined a A-coefficient algebraic
surgery exact sequence

— a1 (F) — Sppr(M;A) — H, (ML) i Cp(F) — ...,
and for any n-dimensional manifold M™ with n > 5 there is defined a A-
coefficient geometric surgery eract sequence

. — Ty (F) — SATOP (M) — [M,G/TOP] — T,(F) .
As in the absolute case (18.5):
PROPOSITION 26.2 The A-coefficient algebraic and geometric surgery exact

sequences of a compact n-dimensional topological manifold M™ with n > 5
are related by an isomorphism

—— T (F) —— SMMOP (M) —— [M,G/TOP] —— T',(

FE

Tt (F) —9 St (M A) —— Ho(M;L) —4-

O

The relative I'-groups I'.(®) of a commutative square of locally epic mor-
phisms of rings with involution

Zr] —L—— Z[n]
F' P F

AN— S A
fit into an exact sequence
L — T (F) — Ty (F) — Ty (®) — Ty 1 (F) —
By [146,2.4.6] (a special case of 3.9)
[n(®) = Ln(A(Z[r]), C(F),C(F)
is the cobordism group of (n—1)-dimensional quadratic complexes in A (Z[r])

which are A-contractible and A’-Poincaré. The various groups are related
by a commutative braid of exact sequences
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/\/\

H,(X;L.) T (F)

N
-

N

Lpi1(P) Sn(X;A) H,_+(

\/\/

PROPOSITION 26.3 The A-coefficient total surgery obstruction s(X;A) €
Sh(X;A) of a finite n-dimensional geometric A-Poincaré complexr X has
image [s(X;A)] =0 € T',(®) if (and for n > 5 only if ) X is A-homology
equivalent to a finite n-dimensional geometric A'-Poincaré complez.

i

ExXAMPLE 26.4 For the augmentation
F:Z7) = Zz,z27' ) —Z; 2 — 1 (2=271)
the Z-coefficient rel 0 total surgery obstruction defines a bijection
SETOP(pntl x 81 8™ x §1) = Sni3(SYHZ) 5 f — s2(f;2) .
Since S, (S!') = 0 (for * > 2) the Z-homology structure group S, 3(S';Z)
is isomorphic to the relative I'-group I';,+3(®) of the commutative square

27 —— Z[Z]
d

27 — Z.

Cappell and Shaneson [26] identified I';,15(®) for n > 4 with the cobor-

dism group C,, of locally flat knots k: S™ C S™*2. The following natural

(iso)morphism C,,——S,,43(S';Z) was defined in Ranicki [146,7.9.4]. The

complement of a knot k is the (n + 2)-dimensional manifold with boundary
(X,0X) = (cl(S"TA\U), S™ x Sh)

with U = k(S™) x D? C S"*"2 a closed regular neighbourhood of k£(S™) in
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S7+2. The knot complement is equipped with a normal map

(f,b) : (X,0X) — (D"t x S, 6™ x S1)
which is a Z-homology equivalence, and the identity on the boundary.
The Blanchfield complex of k ([146,p.822]) is the Z-contractible (n + 2)-
dimensional quadratic Poincaré complex o.(f,b) = (C, ) over Z[Z], with
H.(C) = H. (X) the reduced homology of the canonical infinite cyclic cover
X of X. For n > 4 the cobordism class of the knot £ is given by

(k:S™ C S™2) = 2(f,Z) = (C,)

€ SETOP(Dntl x 81 8" x S1) = S,13(S17Z) = T,,3(®) = C, .
O

REMARK 26.5 Let f:Y—X be a map of compact polyhedra, with X an
n-dimensional geometric Poincaré complex. If f is a homotopy equivalence
the induced maps fi:S,(Y)——S,(X) are isomorphisms, and Y is an n-
dimensional geometric Poincaré complex with total surgery obstruction
s(V) = (f)7's(X) €Sn(Y) .

If f is a Z-homology equivalence (= stable homotopy equivalence for finite
CW complexes) the induced maps f.: H,(Y;L.)— H,(X;L.) are isomor-
phisms, and Y is an n-dimensional Z-coefficient geometric Poincaré com-

plex with Spivak normal fibration vy = f*rx:Y——BG and topological
reducibility obstruction

tY) = (fo)7'H(X) € Hoa(Y3L) .
The image of the total surgery obstruction s(X) € S,,(X)
[s(X)] € Sn(f) = La(f: Z[m1(Y)]—Z[m1(X)])
is an obstruction to Y being a geometric Poincaré complex with f.s(Y) =
s(X). See Hambleton and Hausmann [66] for a study of this ‘minus’ prob-
lem for geometric Poincaré complexes, in the context of the Quillen plus

construction.
O

REMARK 26.6 The results of §§16-25 for n-dimensional manifolds and ge-
ometric Poincaré complexes with n > 5 also apply to the case n = 4, pro-
vided the fundamental group 7 is not too large — see Freedman and Quinn
[56]. However, as explained in [56,11.8] there is a failure of 4-dimensional
homology surgery already in the case m1(X) = Z, which is detected by
the Casson—Gordon invariants of the cobordism group C; of classical knots
k:S' c S3. Thus the results of §26 do not in general apply to n = 4.

i
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Appendix A. The nonorientable case
This appendix deals with the modifications required for the twisted case, in
which the simplicial complex K is equipped with a nontrivial double cover
K™. In particular, the universal assembly functors of §9 are generalized to
w-twisted universal assembly functors of algebraic bordism categories

A: AR)(K,w) — AR, K,w) ,

A: AR, K,w) — A(R[7]Y) ,

A: AR, K,w) — A(R[x]") .

The nonorientable version of L-theory appears in the codimension 1 split-
ting obstruction theory of type (C) (as described in §23), and has been used
to determine the image of the assembly map A: H.(Bm;1L.)— L. (Z[r]) for
finite groups 7 in the orientable case, using appropriate index 2 subgroups —
see Wall [180, 12C], Hambleton [65], Cappell and Shaneson [27], Harsiladze
[72], Hambleton, Taylor and Williams [71] and Hambleton, Milgram, Taylor
and Williams [69].

The fundamental group of the double cover K

T (K") = «v

is a subgroup of 71 (K) = 7 of index 2, and the orientation character is
given by

vir g {1 B

—1 otherwise .

Let R be a commutative ring, as before, and let R[n]* be the group ring
R[r] with the w-twisted involution as in 1.4. The tensor product over R[mr|"
of f.g. free R[r]-modules M, N is the abelian group

M @Rjxjw N = M @4 (riz)w) N

= M@r N/{z@gy—w(g)g 'z@ylze M,ye N,gen}.
Regard M, N as R[r"]-modules via the inclusion R[r*|— R[n], and let
Z[Z3] act on the abelian group M ®pg(rw] N by

T: M®@grv) N — M Qppv1 N 2Qy — tx @1y,
using any element ¢ € 7\7", and the oriented involution on R[r"]. Let Z~
denote the Z[Zs]-module defined by Z with T' € Zy acting by T'(1) = —1.
The natural isomorphism of abelian groups
7~ @upzy) (M @pprw) N) — M Qppre N3 1@ (z@y) — 2@y
will be used to identify
/e Qz[Z,] (M @ R[rw] N) = M@R[ﬂ-]w N .

Let

T: KY — KY; 0 —To
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be the covering translation, a free involution.

DEFINITION Al An (R, K, w)-module M is a f.g. free (R, K")-module such

that

M(To) = M(o) (0 € K*).
A morphism of (R, K,w)-modules f: M——N is an (R, K")-module mor-
phism such that
f(Ir,To) = f(r,0):
M(To) = M(o) — N(T1) = N(1) (e <1€ K").
m
Given (R, K,w)-modules M ,N let Z[Zs] act on the abelian group
M ®4 (r,xw) N by
T: M®yrKre)y N — My (R Kw) N ;
z(o)®y(oc) — z(To)®@y(To) (c € KY).
DEFINITION A2 Let A (R, K,w) be the additive category of (R, K,w)-
modules and morphisms, and let
B(R,K,w) = B(A(R,K,w))
be the additive category of finite chain complexes in A (R, K, w). A (R, K, w)
has a chain duality
T: AR, K,w) — B(R,K,w); M — TM

characterized by the identities

Homy (g, gw)(TM,N) = M ®x (rxuw)N = Z~ @gz,) (M @4 (r,kw)N)
m

The universal cover K of K (assumed connected) is also the universal
cover of K. The universal assembly of an (R, K, w)-module M is a f.g.
free R[m]-module

M(K) = Y M@“s),
GEK
with p": K——K"™ the covering projection.
DEFINITION A3 Given R, K, K%, w, " there are defined algebraic bordism

categories:
(i) the local f.g. free (R, K, w)-module bordism category

A(R).(K,w) = (A(R, K,w),B(R, K,w),C(R).(K,w)) ,
with C(R).(K,w) C B(R, K,w) the full subcategory of (R, K,w)-
module chain complexes C' such that each C(o) (o € K%) is a con-
tractible R-module chain complex;
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(ii) the global f.g. free (R, K, w)-module bordism category
AR, K,w) = (A(R,K,w),B(R,K,w),C(R, K,w)) ,
with C (R, K,w) C B (R, K, w) the full subcategory of (R, K, w)-mod-
ule chain complexes C such that the assembly R[r]-module chain com-

plex C(K) is contractible.
O

PROPOSITION A4 (i) Inclusion defines a twisted universal assembly functor
of algebraic bordism categories

A: AR)(K,w) — AR, K,w) .
(ii) The universal assembly functor A: A (R, K, w)—A (R[n]|") extends to
twisted universal assembly functors of algebraic bordism categories
A: AR, K,w) — A(R[x]") , A: A(R,K,w) — A(R[x]"),
with

AR, K,w) = (A(R,K,w),B(R,K,w),B(R,K,w)) .
O

DEFINITION A5 The assembly chain map for (R, K, w)-module chain com-
plexes C, D

0~4ch : C®A(R,Kw) D — C(I?) ®R[ﬂ-]w D(I?)

is a Z[Zz]-module chain map, and so induces a twisted universal assembly
chain map

acp = 1®acp: CQriw D = Z~ Rz, (C &R, xw) D)
— C(K) @pmw D(K) = Z~ @gyz,) (C(K) @pprw) D(K)); ¢ — ¢(K),
with C ® (g kw) D short for C ®4 (r,x,w) D. Here, the Z[Zy]-actions are

those induced from T: K¥ ——K™Y.
O

In the special case C' = D the assembly of A5 is a Z[Zs]-module chain
map

a = ac,c: CORKrw C— C(K) QR[r]w C(K); ¢ — ¢(K)
inducing abelian group morphisms
a” Q"(C) = Hyp(Homgz,(W,(C ®r,kw C))) —
QU (C(R)) = Hy(Homs(z,) (W, (C(K) @i C(K))) |
ay, : Qu(C) = Hy(W @ziz,) (C @R,k w) C)) —
Qu(C(K)) = Ho(W &zz,] (C(K) @pirw C(K))) (n€Z) .

Here, the Z[Zs]-actions are given by the duality involutions.
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The twisted version of 9.11 is given by:

PropPOSITION A6 Twisted universal assembly defines functors of algebraic
bordism categories

A: AR, K,w) — AR[x]®) , A: AR, K,w) — A(R[7]*)

symmetric
inducing twisted universal assembly maps in the visible 5y mmetric L-
quadratic
normal
groups
Az LR, K,w) = L"(AR, K,w)) — L"(R[x]")
AL VIR K w) = NEYAR Kow) — VIR
n
A: Ln(R, K, w) = Ln(A(R, K, ))—>L (R[x]")
A: NL"(R,K,w) = NL"(A(R,K,w)) — NL"(R[r]") .
O

The twisted version of 9.16 is given by:
Poincaré complex K

ExXAMPLE A7 An n-dimensional geometric {normal map (f,0): M—K’'

normal complex K
with orientation map

w = wi(vg): ® = m(K) — {£1}
{ visible symmetric
has a twisted ¢ quadratic signature
normal
o (K) e VL™(Z,K,w)
o.(f,b) € Lp(Z, K, w)
0" (K)e NL"(Z,K,w)

symmetric o*(K) € Ln( [7]*)
with assembly the twisted { quadratic signature ¢ o.(f,b) € L, (Z[r]")
normal 0" (K) e NL"(Z[z]").

O

The algebraic -7 theorem of §10 has an evident twisted version for a dou-
ble cover K" of K, with the twisted assembly maps defining isomorphisms

~

L.(R,K,w) — L,(R[r1(K)]") .

DEFINITION A8 The twisted universal assembly map on the twisted general-
ized homology groups with quadratic L-theory coefficients is the composite

A: Hy(K,w;L.(R)) = L,(A(R)«(K,w)) — Lp(R, K,w) — L, (R[r]")
of the morphisms given by A4 and A6, with L, (R, K,w) = L,(R[r]|").
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The cycle approach to generalized homology of §12 can be extended to
twisted coefficients, as follows.
Given pointed A-sets J, K with involutions let K. 2]2 be the function A-set

with (K7 )®) the set of Zo-equivariant A-maps J A (AP); —K.

DEFINITION A9 Let F be an 2-spectrum with an involution 7: F —[F , and
let K be a locally finite A-set with a double cover K —— K. The w-twisted

{ [F -cohomology 0.

F -homology spectrum of K is defined by

K K
Fz, = {(Fn)g, In€Z}

Kjf Nz, F = {h_ﬂ)l Qj(Ki] Nz, anj)|n€Z}
j
[F -cohomology

F -homology groups of K

with homotopy groups the w-twisted {

HY(K,wiF) = 7_,(F37) = [K¥,F_.]z,

Hn(KvwaF) = WH(K}ﬁ /\Z2 F) = li_r'>n7Tn+j(K$ /\ZQ F—j) :
J

In the untwisted case of the trivial double cover K% = K U K
H.(K,w;F) = H.(K;F) , H(K,w;F) = H*(K;F) .

The w-twisted F-cohomology group H"(K,w;F) of a locally finite sim-
plicial complex K has a direct combinatorial description as the set of Zo-
equivariant homotopy classes of Zj-equivariant A-maps KY{ ——TF _,,, which
may be called ‘w-twisted F-cocycles in K’. The w-twisted [F-homology
group H, (K,w;F) has a similar description as the set of cobordism classes
of ‘w-twisted F-cycles in K’, by analogy with the untwisted case.

Construct a Zo-equivariant embedding of K in some 9A?™*! as fol-
lows. Let T: K*¥——K"™ be the free involution defined by the covering
translation, and let {vg,v1,...,v,} be the vertices of K. Choose lifts
{00, 01, ..., 0} to half the vertices of K™, so that the other half are given
by {T%o, T1,...,T0my}. Define a free action of Zy on JA?™+! by

T:8A2m+1i6A2m+l'i—>{i+m+l lfOSZSm
’ t—m—1 ifm+1<:<2m+1,

and define a Zs-equivariant embedding
KY — 9A?>™ L - 50 — i To, — i+m+1.
The simplicial complex ¥?™ and the supplement K" C ¥2m of Kv C

OA?>™+1 are defined as in the untwisted case. 2™ comes equipped with a
free involution

T:¥?" — ¥ 5% To* .
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The inclusion K = ——%2™ is a Zo-equivariant map covering the inclusion
K = K"/2y — RP*™ =%2"/7, .
DEFINITION A10 Given a simplicial complex K with a double cover K* —
K and a Zs-equivariant embedding K% C 0A?2™+! Jet
H.(K,w;F) = {H,(K,w;F)|necZ}
be the 2-spectrum defined by
Hn(Ka w; F) = hi>n (Fn—2m7 @)(Z?m”]w) )
with the direct limit taken over the ﬁ]nite subcomplexes J C K and using the

canonical Zs-equivariant embedding J¥ C 0A?™+! with homotopy groups
T (H.(K,w;F)) = lim H*"""(RP*™, J,w;F) (n€Z).

J
O

PROPOSITION A1l The Q-spectrum H .(K,w;F ) is homotopy equivalent to
the w-twisted I -homology §2-spectrum K Nz, T, with homotopy groups
Tn(H.(K,w;F)) = (K Ny, F) = Hy(K,w;F) (neZ).
PROOF As for A4, using the w-twisted S-duality isomorphisms
T (H. (K, w;F)) = H*™ *(RP*" K,w;F)

~

There are also twisted assembly maps:

DEFINITION A12 Given an §2-spectrum with involution ', and a Zs-invariant
subcomplex K% C 9A?™+! define the w-twisted assembly to be the com-
posite map of (2-spectra

A: H.(K,w;F) e H.(KY;F) - F
inducing w-twisted assembly maps in the homotopy groups
A:m,(H.(K,w;F)) = Hy(K,w;F) — 7, (F) (n€Z),
with w' the transfer map forgetting the Zo-equivariance

2m oW
w' H,(K,w;F) = (angm,w)(zf K

— H (K" F) = (F g, )7
and A:H.(K"Y;F)—TF the assembly map of 12.14.
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DEFINITION A13 Given a covariant functor
F : {simplicial complexes with a double cover}
— {Q-spectra with involution} ; (K,w) — F (K, w)
define the local {F }-coefficient homology Q-spectrum of (K, w)
H.(K,w;{F}) = {Hn(K, wi{F})|necZ}
by
H,(K,w;{F}) = lim (F, s, (D(c, K),0'),0)E @K
GER™
with o € K the projection of 6 € K™. The local {F }-coefficient homology
groups of (K, w) are the homotopy groups of H . (K, w;{F })
Hy (K, w;{F}) = mp(H.(K,w;{F})) (n€Z).
O
As in the untwisted case (12.6, 12.8) it is possible to express H,, (K, w; {F })
as the cobordism group of n-dimensional {F }-cycles in (K, w), which are
collections

z = {x(6) € Fpom(D(o, K), w2 15D) |5 ¢ K}

such that
0; =
(i) 9;x(5) {(Z) if 0,6 ¢ K
(ii) =(To) = Txz(o),
with ©;:F (D(d;0, K),w')—F (D(0, K),w’) induced by the inclusion
D(6;0,K) C D(0, K).

(0<i<2m—|o])

DEFINITION A14 The local w-twisted {F }-coefficient assembly is the map
of )-spectra

A: H.(K,w;{F}) — F(K' v
given by the composite
A
A: H(K,w;{F}) — H.(K,w;F (K w')) — F(K' w)

of the forgetful map H.(K,w;{F })—H.(K,w;F (K’,w’)) induced by all
the inclusions D(o, K) C K’ (0 € K) and the w-twisted assembly of A12

A: H.(K,w;F(K' vw)) — F(K' ).

For a homotopy invariant functor

F : {simplicial complexes with a double cover}

— {Q-spectra with involution} ; (K,w) — F (K, w)
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the forgetful map from local w-twisted {IF }-coefficient homology to constant
w-twisted I ({*})-coefficient homology is a homotopy equivalence

H.(K,wi{F}) — H.(K,w;{F({x})}) .
DEFINITION A15 The constant w-twisted F ({*})-coefficient assembly for a
homotopy invariant functor F and a pair (K, w)

A HL(K, wiF ({})) — F (K, w)

is given by the local w-twisted {IF }-coefficient assembly A of Al4, using the
homotopy equivalences

H.(K,w; {F}) ~ H.(K,w;{F({+})}) , F(K o) ~ F(K,uw).

O

EXAMPLE A16 Let Q%9 (K, w) = {Q°°(K,w), |n € Z} be the Q-spectrum
consisting of the Kan A-sets Q%Y (K, w),, with k-simplexes
QIO (K, w)f) =
{(n + k)-dimensional smooth oriented manifold k-ads

(M;@OM,ﬁlM,...,akM) such that 80Mﬂ81Mﬂ...08kM = Q),

with an orientation-reversing free involution M i>M

and a Zg-equivariant map f: M—|K"| }
and base simplex the empty manifold k-ad (). Let

T: Q% (K, w) — Q5°(K,w)
be the orientation-reversing involution. The homotopy groups
T, (9 (K,w)) = QY9(K,w) (n>0)

are the bordism groups of Zg-equivariant maps M —|K"™| from closed ori-
ented n-dimensional manifolds with an orientation-reversing free involution.
The functor

Q59 : {simplicial complexes with double cover} —

{Q-spectra with involution} ; (K,w) — Q5 (K, w)

is homotopy invariant, and the assembly map of A15 is a homotopy equiv-
alence

A H.(K,w;Q%9({x})) — Q99K w),
being a combinatorial version of the Pontrjagin—-Thom isomorphism. (In
fact, Q5C(K,w) is just a combinatorial version of the Thom spectrum

|K™|, Az, MSO.) The assembly of an n-dimensional Q%9 ({x})-coefficient
cycle in (K, w)
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is a Zs-equivariant map
Alw): M" = | M(G) — |K"| = [(K")]
FEKW
from a closed smooth oriented n-manifold with an orientation-reversing free
involution, such that

A(x)"'D(6,K") = M(5) (6 € KY).
In the untwisted case of the trivial double cover
KY = KUK , Q%9 (K,w) = Q°°(K)

the spectrum is the oriented smooth bordism 2-spectrum of 12.21.
|

The results of §13 concerning the algebraic L-spectra also have twisted
versions. Only the following special case of the twisted version of 13.7 is
spelled out:

PRrOPOSITION A17 The quadratic LL-spectrum of the twisted algebraic bor-

dism category A(R)«(K,w) of A3 is the twisted generalized homology spec-
trum of (K,w) of A10

L.(A(R).(K,w)) = H.(K,w;L.(R)),
so that on the level of homotopy groups
L,(A(R)«(K,w)) = H,(K,w;L.(R)) (n€Z).
i

The algebraic surgery exact sequence of §14 also has a twisted version,
with K replaced by (K, w). Define an assembly map
A: H.(K,w;L.(R)) — L.(R[r1(K)]")
by composing the forgetful map H.(K, w;L.(R))—L.(R, K,w) with the
homotopy equivalence L.(R, K,w) ~ L.(R[r1(K)]*) given by 10.6. Only
the twisted version of 14.6 is spelled out:

DEFINITION A18 (i) The twisted quadratic structure groups of (R, K, w) are
the cobordism groups
Sp(R,K,w) = L, 1(A(R,K,w),C(R,K,w),C(R)«(K,w)) (n€Z)

of (n—1)-dimensional quadratic complexes in A (R, K, w) which are globally
contractible and locally Poincaré.
(ii) The twisted quadratic structure spectrum of (R, K, w) is the Q-spectrum

S(R,K,w) = YXL.(A(R,K,w),C(R,K,w),C(R).(K,w))
with homotopy groups
m(S. (R, K,w)) = S«(R,K,w) .
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(iii) The twisted algebraic surgery exact sequence is the exact sequence of
homotopy groups
s oK w L(R)) — Ly(Rlm(K)]*) —
Sn(R, K,w) — H,_1(K,w;L.(R)) — ...
induced by the fibration sequence of spectra
H.(K,w;L.(R)) — L.(R[m (K)]*) — S.(R, K,w) .
i

The results of §§15-26 extend to the nonorientable case in a straightfor-
ward manner.
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Appendix B. Assembly via products
The quadratic L-theory assembly map of §14

A: H (K;L.(Z)) — L.(Z[r(K))])
will now be reconciled with the construction of A proposed in Ranicki [143]
by means of a ‘preassembly’ map A: K, ——IL°(Z[m1(K)]) and a pairing of
spectra

®: L(Z[m(K)]) NL(Z) — L.(Z[m(K)]) .
Although only the quadratic case is considered, there is an entirely analo-
gous treatment for the symmetric L-theory assembly map.
B1. The cartesian product of A-sets X, Y is the A-set X x Y with
(X x V)™ = X xy™ - gi(z,y) = (0i(2),0i(y)) -
The A-map
XXY —X®Y,; (A"SX,A"=Y) — (A"SA"Q A" =X ®Y)

is a homotopy equivalence for Kan A-sets X, Y (Rourke and Sanderson
[155]), inducing a homotopy equivalence of the realizations

X xY| ~ [ X@Y| = |[X|x|Y].
It follows that the cartesian smash product of pointed Kan A-sets X, Y

XAY = (X xY)/(X x0yUbx xY)

is homotopy equivalent to the geometric smash product, with | X A Y| ~

[XIATY].

B2. Let A™ have vertices 0,1, ...,n. Define a cell structure on the realiza-
tion |A™| with one (p + ¢)-cell for each sequence (jo,j1,-- -, Jp; ko, - - -, kq)
of integers such that

O0<jo<n<...<jp<ko<ki<...<ky<n,
the convex hull of the vertices jp//l?q/ (0<p <p, 0<4q <q)inthe barycen-
tric subdivision (A™)". This is the combinatorial diagonal approximation.

B3. Write a geometric or chain complex n-ad as C' = {C(0) | o € A™}, with
C(o) C C(r) for 0 < 7 € A™. Use the combinatorial diagonal approxi-
mation of B2 to define the product of n-ads C', D to be the n-ad C ® D
with

(C®D)(01...n) = U C(jo---Jp) @ D(ko ... ky)

0§j0<...<jp§k0<...<kq§n

= UC(O...@')@D(i...n).

There is one piece of the product for each cell in |A™|.
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B4. For any rings with involution R, S use the chain complex n-ad product
of B3 to define spectrum-level products

®: LY(R)AL/(S) — L' (R® S) ,
®: L'(R)AL;(S) — Lit;(R®S)
inducing the products of Ranicki [144,§8] on the level of homotopy groups
®: L(R)®L(S) — L(R®S) ,
® LZ(R) ®L](S) — Li+j(R® S) .
(These products can also be defined using bisimplicial sets.) In particular,
L°(Z) is a ring spectrum, and Lg(Z) is an LY(Z)-module spectrum. For
commutative rings R, S with the identity involution and a subcomplex

K C OA™*! the n-ad products can also be used to define spectrum-level
products

® : Li(R.K) ALy(S) — Li;(R® 9).K) ,
®: L' (R, K)AL;(S) — Li1;(R® S, K) .
B5. For any subcomplex K C A™*! define the framed (smooth or topo-

logical) framed Q-spectrum

Q" (K) = {QI"(K); = " ()0 i e z)

m

by analogy with
L(Z.K) = {LY(Z,K) =L"""2Z)&" K |iecz} .
Use the construction of the symmetric signature to define a map
o QIN(K) — L(Z.K); M — (A(M),p(M)) .
The framed bordism spectrum Q7" ({*}) of a point is an Q-spectrum homo-
topy equivalent to the Q-spectrum of the sphere spectrum S°, and

QIM(K) ~ KA QI ({+))
QM (K)i = lim QHSK, (~, 27Ky for i <0)

J
where ~; denotes stable homotopy equivalence. Use the products of B4 to

define a product of Kan A-sets
® : U ({#)i A Lj(Z) — Liy;(Z)

and define also products

®: QIT(K); NLj(Z) i LYZ.K) N1L;(Z) =, Liyi(Z.K) .
By 13.7 there is an identification
Li(Z.K) = H,(K,L.(Z)) ,
and for each i € Z the products
®: UK AL_j(Z) — L;_j(Z.K) (j € Z)
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induce a homotopy equivalence

lim (07 (K): AL—;(Z)) —
J
H;(K,L.(2)) = lim YL ;(Z,K) = Li(Z.K) .
J

The inclusion K, —Q/"(K)g is a stable homotopy equivalence, and the
ith space of the homology spectrum H.(K;L.(Z)) is such that

Hi(K;L.(Z) = lim @/(Q(K); AL—j(Z)) ~ Ky ALi(Z) .

B6. Given an algebraic bordism category A let
NL(A) = {NL*(A)|i € Z}

be the normal symmetric L-spectrum of 13.5. Let
NL.(A) ={NL;(A) |i e Z}

be the normal quadratic L-spectrum defined using quadratic n-ads which are
not required to be Poincaré. NL.(A) is contractible, since every quadratic
complex (C, 1) bounds the quadratic pair (C—0, (0,%)). The normal L-
spaces fit into fibration sequences

LY(Z.K) — NLYZ.K) 2, L, 1(Z.K) ,
LY(Z,K) — NLY(Z.K) 2, L, 1(Z,K),
L;(Z,K) — NL;(Z.K) 2, Li_1(Z.K) ,
Li(Z, K) —> NLi(Z.K) — Li_1(Z,K) .

B7. The normal symmetric L-spectrum NL'(Z) is a ring spectrum with
products

® : NLY(Z) ANLY(Z) — NL'*(Z) ,
acting on the normal quadratic L-spectrum NIL.(Z) by products
® : NLY(Z) ANL;(Z) — NL;;(Z) .
The products
® : NLY(Z.K) ANL;(Z) — NL;4;(Z.K)
restrict to products

®: LY(Z,K)A\L;(Z) — Li+;(Z,K) ,
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and there is defined a commutative diagram
Q7 (K); AL (Z) ——2—— Liy (Z.K)

L(Z K) ALj(Z) —— B Ly (2. K)

A

Li(Z, K) AL;(Z) —2— L, ;(Z, K)

~

L (Z[my (K)]) AL (Z) —2— Liy; (ZIm (K))) -

By B5 the products ® : Q/"(K); AL;(Z)—L;1;(Z.K) induce homotopy
equivalences
lim 9907 (K); A L (2))
j
~ H(K,L.(Z)) = lim QL;_;(Z.K) = L(Z.K) .
J

B8. The symmetric signature is a map of {2-spectra
o* = 1AU: Q"(K) ~, K, AS® — LYZ,K) ~, K, AL,
with
U = (Z1): Q" ({+})o = §* — L°(2)
the unit of the ring spectrum IL'(Z), representing
(7,1) = 1€L%Z) = 7.

Define the preassembly pointed A-map

A: Ky — O (K)y — LY(Z.K) —— L@ (K))) ;
(A" ) — (C(A™), 6(A")

by sending the characteristic map of an n-simplex A"——K to the n-
dimensional symmetric Poincaré n-ad over Z[m; (K)] of the pullback A" — K
from the universal cover K of K , with A* the symmetric L-theory assembly.
The preassembly A is the composite

0 1IAU 0 0 A* 0
A Ky = K NS — K, ALYZ) ~, LYZ.K) — L%(Z[m(K))) .
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Thus the assembly map in quadratic L-theory factorizes as the composite
A: Ho(KiL.(2Z)) = Lo(Z.K) =~ lim (Q/7 (K)o AL_;(Z))
J
A . .
— Ho(L%(Z[m (K)]); L.(2)) ~ lim Q7 (L°(Z[m (K)]) AL—;(Z))
J
®
— Lo(Z[m(K)]) = lim YL_;(Z[m (K)]) .
J
On the level of homotopy groups this can be written as

A: H (K;L.(Z) = H.(Q"(K)y;L.(Z))

A . ®
— H.(L°(Z[m(K)]); L.(Z)) — Lu(Zm(K))) .
This is the construction of assembly via products.

B9. From the multiplicative point of view the Sullivan—Wall factorization
of the surgery map for an n-dimensional topological manifold M through
bordism is given by

0 = A: [M,G/TOP] = H°(M;L.) = H,(M;L.) = H,(M;L.AS%)

e H,(M;L. N MSTOP) = H,(M, AlLy; MSTOP)
= QTOP(M x G/TOP, M x {x})
— QTOP(Br x G/TOP, Br x {*}) — Ln(Z[r]) (x = m(M)) ,
with
U: S — MSTOP = QT°P({x})

the unit in the oriented topological bordism spectrum of a point. The map
induced by 1 AU is an injection, which is split by the map induced by the
composite

1Nc™ &
L AMSTOP — L.AL — L.

with ¢*: MSTOP—I" the symmetric signature map. M STOP is a ring
spectrum, and L.(R) is an M.STOP-module spectrum for any ring with
involution R: see Taylor and Williams [173] for the homotopy theoretic
consequences, such as the decomposition at 2 as a generalized Eilenberg—
MacLane spectrum

L.(R) ®Z(2) \/K (2),i) .

B10. An automorphism f:(M,0)—(M,0) of a nonsingular symmetric
form (M, 0) over a ring with involution R determines a 1-dimensional sym-



ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

944

metric Poincaré complex A(f) = (C, ¢) by
d=1-f:C, = M*"—C, = M*,
o = {f*O:Cle——eCO:M*
T 800 = M — 0 = M*,

(ﬁl:gZCl:M—HCl:M*,

corresponding to the nonsingular symmetric formation over R
(MaeM0e—-0;A,(f®1)A),
with A = {(z,2) € M & M |x € M} the diagonal lagrangian in the non-
singular symmetric form (M & M, 0 & —6). For example, the 1-dimensional
symmetric Poincaré complex of the circle S! is

o(S) = A(x(2[2),1)—(Z[Z],1))

with the involution z = 27! on Z[Z] = Z[z, 27!], and
d=1-2z"1:0 = 7Z]Z) — Cy = Z[7Z] .
The preassembly map A: Br, ——IL%(Z[r]) sends the 1-simplex
g€ (Bry)W = mu{0}
determined by an element g € 7 to the 1-dimensional symmetric Poincaré

complex over Z|[r]
g:0"(8") = A(g: (Z[n],1)—(Z[7],1)) = (C,¢)
with
d=1-g': 0 = Zr] — Cy = Z[n] .
Loday [97] constructed the assembly map A,: H.(Bm;L.)— L.(Z[r]) away

from 2, using products and the action of 7 on hermitian K-theory induced

by the inclusion
m — Aut(Z[r],1) = GLi(Z[r]); g — g -

The methods of this appendix show that this construction does indeed agree

with the surgery assembly map, as conjectured in [97].
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Appendix C. Assembly via bounded topology

The applications of algebraic L-theory to compact topological manifolds
depend on the torus trick of Kirby and Siebenmann [87]. The controlled
and bounded topology of non-compact manifolds subsequently developed by
Chapman, Ferry and Quinn has led to an interesting hybrid of algebra and
topology involving the lower K-groups of Bass [9] and the lower L-groups
of Ranicki [140], [149], in which the algebraic operations are required to be
small when measured in some metric space. The controlled surgery theories
of Quinn [133]-[136], Yamasaki [191] and the bounded surgery theory of
Ferry and Pedersen [53] have found wide applications to the structure theory
of ANR homology manifolds, group actions, fibrations and rigidity. See
Ferry, Hambleton and Pedersen [52] and Weinberger [185] for surveys of the
applications.

Controlled and bounded topology offer an alternative construction of the
4-periodic algebraic L-theory assembly maps

A: H(X;L.(Z)) — L.(Z[m(X)]) ,

using the lower L-groups and the Bass—Heller—-Swan computation K_;(Z) =
0 (¢ > 1) to express the L. (Z)-coefficient generalized homology groups as the
R?-bounded surgery obstruction groups for large i > 1. The 4-periodic alge-
braic L-theory assembly map will now be obtained using bounded topology,
and some of the consequences of this approach will be explored. The gen-
eralized homology groups with L-theory coefficients arise as the cobordism
groups of bounded algebraic Poincaré complexes, and the assembly maps
are the forgetful maps to the unbounded cobordism groups. See Ranicki
and Yamasaki [151] for a chain complex approach to assembly in controlled
K-theory, which also applies to controlled L-theory.

C1. The projective L-groups LY (R) of Novikov [124] and Ranicki [139], [140]
are defined for any ring with involution R, using quadratic structures on f.g.
projective R-modules. The projective L-groups are related to the free L-
groups L"(R) = L.(R) by splittings
Lo(Rlz,27"]) = La(R)® Ly _1(R) (2=27")
and a Rothenberg-type exact sequence
. — L,(R) — LP(R) — H™(Zs; Ko(R)) — Ln_1(R) — ... .

The projective surgery theory of Pedersen and Ranicki [126] involves the
projective S-groups SY(X) which are defined to fit into an exact sequence

A
. — H,(X;L) — LP(Z[m(X)]) — SE(X) — Hp—1(X;L) — ...
for any space X, and are such that
Sp(X xS = S, (X)eS?_ [ (X).
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The projective assembly map is the composite

A
A Hy(XGL) — Lp(Z[mi(X)]) — Ly(Z[m(X)]) -
If X is a finitely dominated n-dimensional geometric Poincaré complex then
X x St is homotopy equivalent to a finite (n + 1)-dimensional geometric

Poincaré complex, by the Mather trick. The projective total surgery ob-
struction sP(X) € SP(X) of [126] is such that

S(X x8') = (0,7(X)) € Sps1(X x S') = Spp1(X) ®SH(X) .
Thus sP(X) = 0 if (and for n > 4 only if) X x S! is homotopy equivalent
to a compact (n + 1)-dimensional topological manifold.

The lower L-groups L{™"(R) (i > 1) of Ranicki [140],[149] are the L-
theoretic analogues of the lower K-groups K_;(R) of Bass [9, XII]. The free
and projective L-groups

L.(R) = L!R) = L<1><R> . LX(R) = LY(R)
are related to the lower L-groups L >(R) by splittings
LRl =) = LI (R @ LTY(R) (2 0)

n

and exact sequences
= LN (R) —— LT (R) — H"(Z23 Ki(R)) — Ly (R) — ...
with K_;(R) = K_;(R) for i > 1. For any space X the free and projective
S-groups
S.(X) = si(X) = s(X) , sp(X)=8"(X)
are related to the lower S-groups Siﬂ) (X) by splittings
s (X x 81 = si(xX) e s (X) (> 0)

and a commutative braid of exact sequences

H,( ) LS (zr]) H"™(Zy; K_i(Z[r]))
L™ (zr) S& 7 (X)
H™Y(Zy; K_i(Z[r))) SYTH(X) H,_1(X;L.)
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with 7 = m1(X). For ¢ > 0 the lower total surgery obstruction of a finitely
dominated n-dimensional geometric Poincaré complex X is the image of the
projective total surgery obstruction

sSTUX) = ["(X0)] es(X),

and is such that s(~9(X) = 0 if (and for n +i > 4 only if) X x T°*!
is homotopy equivalent to a compact (n + ¢ + 1)-dimensional topological
manifold.

C2. Given a metric space X and an additive category A let C x(A) be the
X-bounded additive category defined by Pedersen and Weibel [127]. The
objects of C x(A) are formal direct sums

M =) M)

of objects M (x) in A . The morphisms f: M——N in C x(A) are collections
of morphisms in A

o= Afy,x): M(x)—N(y)|z,y € X}
such that there exists a number b > 0 with f(y,z) = 0 if d(z,y) > b. An
involution *: A——A ; A—— A* extends to an involution of C x(A) by

x: Cx(A) — Cx(A);

M = ZXM(:I:) — M = Z;M*(x) , M*(x) = M(z)* .

L*(Cx(A))

symmetric .
L-groups are related by symmetrization
group {«L*((LX(AQ) y Sy

The quadratic
maps

14T : L.(Cx(A)) — L*(C x(A))

which are isomorphisms modulo 8-torsion, since the ring EO(Z) = Zg acts
on the relative groups.

C3. Given a group 7 and an additive category A let A [r] be the additive
category with one object M [r] for each object M in A, and
Homy () (M|[r], N[n]) = Homy (M, N)[r]

the additive group of formal linear combinations ) f,g with f, : M—N
gem
morphisms in A such that {g € 7| f; # 0} is finite. An involution on A is

extended to an involution on A [r] by
*: Alr] — Alr| ;

M[r] — (M[r))" = M*[x] . f = ) fo9— f" =D (f)9™"

gem geT™



240 ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

For any commutative ring R there is an identification

AM(R)[r] = AMR[x))
with A"(R) the additive category of based f.g. free R-modules. Write the
category C x (A"(R[r])) as C x(R[x]).

C4. The bounded surgery theory of Ferry and Pedersen [53] applies to
geometric Poincaré complexes and manifolds which are ‘X-bounded’ for
some metric space X, i.e. equipped with a proper map to X such that
the diameters of cells are uniformly bounded in X . In the first instance
the theory applies to ‘allowable’ metric spaces and Poincaré complexes with
constant ‘bounded fundamental group’ w, and the same hypotheses will
be in force here. The main construction of [53] associates to a normal
map (f,b): J— K from an n-dimensional X-bounded manifold J to an X-
bounded geometric Poincaré complex K an X-bounded surgery obstruction

0.(f,b) € Ln(C x (Z[n]))

such that o.(f,b) = 0 if (and for n > 5 only if) (f,b) is normal bordant to
an X-bounded homotopy equivalence. The surgery obstruction o,(f,b) €
L,,(C x(Z[r])) is the cobordism class of an n-dimensional quadratic Poincaré
complex in C x(Z[r]) which may be obtained either by considering the
middle-dimensional form/formation remaining after surgery below the mid-
dle dimension as in [53], or else using the quadratic Poincaré kernel of
the algebraic normal map o*(J)——0c*(K) of symmetric Poincaré com-
plexes in C x(Z[r]) given by 2.16. An n-dimensional X-bounded geomet-
ric Poincaré complex K has a Spivak normal fibration vg: K—— BG, such
that the topological reductions vg: K—— BT OP are in one—one correspon-
dence with the bordism classes of normal maps (f,b): (J,v;)— (K, V)
from n-dimensional X-bounded manifolds, as in the classical compact case
X = {pt.}. There exists a topological reduction rx: K—BTOP such
that o.(f,b) = 0 € L,(Cx(Z[r])) if (and for n > 5 only if) K is X-
bounded homotopy equivalent to an X-bounded topological manifold. For
an X-bounded topological manifold K the X-bounded structure set S°(K)
fits into the bounded version of the Sullivan—Wall surgery exact sequence

. — L1 (Cx(Z[r]))) — S*(K) — [K,G/TOP] — L, (C x(Z[x])) .
The X-bounded symmetric signature of an n-dimensional geometric X-
bounded geometric Poincaré complex K is the algebraic Poincaré cobordism
class

o' (K) = (C(K),¢k) € L"(Cx(Z[r])) ,
with C(K) the cellular chain complex in C x (Z[r]) of the universal cover

K and ¢x = A([K]) the evaluation of an Alexander—Whitney—Steenrod
diagonal chain approximation A on the locally finite fundamental class
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[K] € HY (K). The X-bounded symmetric signature is an X-bounded ho-
motopy invariant. The X-bounded surgery obstruction of an n-dimensional
X-bounded normal map (f,b): J— K has symmetrization

(1+T)ou(f,0) = o7(J) = o"(K) € L"(Cx(Z[r])) -

C5. Let K be a simplicial complex which is locally finite and finite-dimen-
sional. Given an additive category A let AY (K) be the additive category
of K-based objects in A, the category with objects formal direct sums
M =Y M)
ceK
of objects M (o) in A. A morphism f: M——N in AZI(K) is a collection of
morphisms in A
f = {f(T,O’):M(O')—>N(T) |O-77— € K}
such that f(r,0) = 0: M(0)——N(7) unless 7 > o. (For finite K this is
just the K-based category A ,(K) of §4.) Given an involution *: A—A ;
A——A* define a chain duality T: AY (K)—A!/ (K) by the method of §5.
The dual of an object M in AY (K) is a chain complex T'M in AY (K) with
M(r)* ifr=—lo
TM, (o) = {Tga (1) o]
0 otherwise .
Working as in §14 it is possible to identify the algebraic L-groups of AY (K)
with the locally finite generalized homology groups
La(AY(K)) = HJ(K;L.(A) (n€Z).
Assume that the diameters of the simplices of K are uniformly bounded, i.e.
there exists a number b > 0 such that d(z,y) < bif z,y € |o| for any simplex
o € K. Regard the polyhedron of K (also denoted by K') as a metric space
using a proper embedding K C R¥ for a sufficiently large N > 0, so that the
K-bounded additive category with involution C g (A) is defined as above.
Let K be a regular covering of K with group of covering translations .
Define an assembly functor by forgetting all but the bounded aspects of the
simplicial structure and passing to the cover
A: AY(K) — Cg(Ar]); M — M,
sending an object M in A (K) to the object M in C k(A [n]) defined by
]/W\(x) _ { M (o)[r] if x =7 is the barycentre of o € K
0 otherwise .
Working as in 6.1 the chain duality on AYf (K) is related to the involution
on C g (A) by a natural chain equivalence in C g (A)

T3 : TM — (M)*.
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The assembly functor of algebraic bordism categories
A MAY(K)) — MCr(A[)
(with A as in 3.3) induces natural assembly maps of L-groups
A Ly(AY(K)) = HJ(K;L.(A)) — La(Ck(A[r]) (n€Z).
If K = J is the universal cover of a finite simplicial complex J the simply
connected assembly map

A: Lo(AY(J)) = H(J;L.(A)) — Lu(C5(4))
(with m = {1}) is related to the universal assembly map of §9
A Hy(J;L.(A)) — Ln(Alp]) (p=mi(J))
by a commutative diagram

H,(J;L.(A)) — A L(A[p])

trf trf

HY (T;L.(A) —A— L, (C5(a)) .

The infinite transfer map
trf: Lp(AL(J)) = Ho(J;L.(A)) — L,(AY(J)) = HY(J;L.(A))
is induced by the functor
AJT)— AT(T)s M = Y M(e) — M = > M(ps)
oeJ seJ
with p: J—J the covering projection. The infinite transfer map

trf: Ln(Afp]) = La(C5(A)?) — Ln(C5(A))
is induced by the inclusion C+(A)?——C+(A) of the p-invariant subcate-

gory, with objects the lifts M of objects M in C;(A) and p-equivariant
morphisms. The forgetful functor

C+(A)? — Alp] ; M — M
is an equivalence of additive categories with involution, since J is finite.

C6. Given a metric space X and an X-bounded simplicial complex K with
constant bounded fundamental group 7 let S2(K) be the relative groups in
the bounded algebraic surgery exact sequence

... — HY(K;L.) A L, (C x(2Z[x])) — S(K)

— HY (K;L) — ...
with L. =L.(1)(Z) as in §17, and

A
A: HY(KL) —— L.(Cx(Z[])) — L.(Cx(Zlx))) .
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The bordism group Q2F (K) of n-dimensional X-bounded geometric Poincaré
complexes with a map to K fits into a commutative braid of exact sequences

)
)

Sho1(

=
<
=
=)
=

HY(K;QN)

2/
£
\

=
=
=2
P
s

(o
»

generalizing 19.6 (= the special case when X is compact). Define the 1/2-
connective X -bounded visible symmetric L-groups V Ly (K) to be the cobor-
dism groups of visible symmetric Poincaré complexes (C, ¢) in A (Z)} (K)
which are globally O-connective and locally 1-Poincaré at oo, by analogy
with the 1/2-connective visible symmetric L-groups VL*(K) of §15. As in
15.18 (i) there is defined a commutative braid of exact sequences

)
)

Sho1(

=z
=)
=
&=
=)
=
&

s/
\
£
\

B
&
<
h
T_S
3

£
\
y

=
3
=
9
t~
3
@
>
N
A
2]
RESE
=

<
<

The 1/2-connective X -bounded visible symmetric signature of an n-dimen-
sional X-bounded geometric Poincaré complex K is

o' (K) = (C(K),AlK]) e VLy(K) .
The X -bounded total surgery obstruction of K
sP(K) = 90*(K) € St (K)
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is such that s®(K) = 0 if (and for n > 5 only if) K is X-bounded ho-
motopy equivalent to an n-dimensional X-bounded topological manifold.
The algebraic surgery exact sequence is related to the geometric surgery
exact sequence of Ferry and Pedersen [53] for an n-dimensional X-bounded
manifold K by an isomorphism

. = Lnt1(Cx (Z[n])) — §"(K) — [K,G/TOP] — L (Cx (Z[r)))

L

. — L1 (Cx (Z[x])) — Sy (K) — HY (K L) — L, (Cx (Z[x)))
with
S SK) — Shoy(K) ; (f: J—K) — s"(f) = sh(W,J U —K)

given by the X-bounded reld total surgery obstruction of the mapping
cylinder W = JxIU; K of the X-bounded homotopy equivalence f: J— K,
and

t = [K]Nn—: [K,G/TOP] = H°(K;L.) — HY(K;L.)
the Poincaré duality isomorphism defined by cap product with the locally
finite IL"-coefficient orientation [K] € HY (K; L") (L' = L(0)(Z)).

C7. Let Px(A) denote the idempotent completion of C x (A), the additive
category in which an object is a pair
(M = object of C x(A), p=p*: M—M)
and a morphism f: (M,p)— (N, q) is a morphism f: M—N in C x(A)
such that
qfp = f: M — N .

The algebraic K-theoretic methods of Pedersen and Weibel [127], Carlsson
[32] and Ranicki [149] give an exact sequence for the algebraic K-groups of
CXI UXs (A)
- — lim K3 (Cpx,,x,) (A)) — K1(Cx, (A)) @ K1(Cx, (A))
b
— K1 (Cx,ux,(A) — lim Ko(Py,(x;,x5)(A) — ...
b

with

Nb(Xl,XQ) = {JI e X1 UXs | d(:z:,yz) < b for some Yi € X, 1= 1,2} .

An involution x: A——A; A— A* is extended to an involution of Px(A)
by

*: Px(A) — Px(A); (M,p) — (M,p)" = (M7, p7) .
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The quadratic L-groups of C x(A) and Px(A) are related by an exact se-
quence

. — Ln(Cx(A)) — Ln(Px(A)) — H"(Zo; Ko(Px(A)))

— L,-1(Cx(A) — ...
involving the Tate Zs-cohomology groups of the duality involution on the
reduced projective class group

Ko(Px(A)) = coker(Ko(C x(A))—Ko(Px(A))) .
The quadratic L-groups of Cx,yux,(A) fit into the Mayer—Vietoris exact
sequence of [149,14.4]

T h_r>n Ln(CNb(X1,X2)(A)) - Ln((cxl (A)) D Ln((cxz (A))
b
— Ly (Cx,ux, () — lim L1 (Cp (x,,x0) (A)) — -
b
with

Y = im(K1(Cx, (A)) & K1(Cx, (A)) —K1(Cx,ux,(A))) .
Similarly for the symmetric L-groups L*.
C8. Let X be a metric space with a K-dissection (4.14)
X = |J X[
ceK
for a finite simplicial complex K with fundamental group m = m (K). Work-
ing as in 13.7 the generalized homology group H, (K;{L.(Cx[s(A))}) can
be identified with the cobordism group of n-dimensional quadratic Poincaré
cycles

(C,9) = {(C(0),¥(0)) |0 € K}
such that (C(c),9(0)) is defined in Cx[5)(A), and there is defined an as-

sembly map for any regular covering p: K—— K with group of covering
translations 7
A Hy (K {L.(Cx0)(A))}) — Ln(Cx(A[n])) ;
(C,9p) — (C(K),p(K)) = |J (Cws),v(ps)) -
GEK
For any bound b > 0 and any n-simplex o = (vpv; ... v,) € K let
Np(X[o]) = {z € X |d(x,y;) <bfor some y; € X[v;],1<i<n}.

The algebraic transversality of [149,§14] shows that every n-dimensional
quadratic complex in C x (A) is homotopy equivalent to the assembly

AC ) = (C(K),y(K))
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of an n-dimensional quadratic cycle (C, ) (although not necessarily one
which is Poincaré) such that (C(0),1(c)) is defined in Cy;,(x[o)(A) for
some bound b > 0. Working as in §13 the relative group S,, (K, X, A) in the
bounded algebraic surgery exact sequence

s lim Hy (K {L(Coi (o) (A))) —— La(C x(4))
b

o
— Sp(K, X, A) — lim Hy oy (KL (Cpy (x [0y (A)}) — -+
b

can be identified with the cobordism group of (n —1)-dimensional quadratic
Poincaré cycles (C,v) such that (C(0),v¢(0)) is defined in Cy; (x[o)(A)
for some bound b > 0, and the assembly C(K) is contractible in C x(A).
It follows from the Mayer—Vietoris exact sequences of [149,§14] that the
groups S, (K, X,A) are 2-primary torsion, and can be expressed in terms
of the duality Zs-action on algebraic K-theory. In particular, for the case
K = A! = {0,1,01} of a space X which is expressed as a union of two
subspaces

X = X[0JuX[1] , X[0]lnX[1] = X]01],
Hn(Ka {L(CNb(X[a])(A))})
= Ln(Chn,(x01)) (A)—Chr (x10)) (A) X Cpry(x1p(A))

1 T n .
Sh(AY, X, A) = hzn H"™(Zs; Iy)
with

Iy = ker(Ko(Py, (xpo1)(A) — Ko(Ps, x70) (A)) @ Ko(Pas, x)) (A))) -

C9. The open cone of a subspace K C SV is the metric space

O(K) = {txr e RN |t € [0,00), 2 € K} CRVT!.
For a compact polyhedron K C SV define a K-dissection of O(K ™) by

O(K™)[o] = O(D(0,K)") (0 €K),

with KT = K U {pt.}. The assembly maps given by C5 and C8

A HI(O(K*);L.(A) — Li(Corx+)(A)) ,

A Ho (K {L(Cor+)0)(A)}) — Li(Cor+)(A))
are related as follows. Projections define homotopy equivalences of spectra,

L.(Co(x+)o)(A)) — L.(Cr(A)) (o€ K),
and product with the generator
o*(R) = 1€ LYCg(2)) = L°2Z) = Z
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defines a homotopy equivalence
o*(R) ® — : YL.(Pg(A)) — L.(Cg(A))

with Po(A) the idempotent completion of A. The assembly map of C8
factors through the assembly map of C5

A: HY(O(KT);L.(A) = H. 1(K;L.(A) —
H (KL (Cor+)01(A)}) = Ho(K;L.(Cr(A))) = Heer (K;L.(Po(A)))

A
— Li(Cor+)(A)) ,
with both assembly maps isomorphisms modulo 2-primary torsion.
C10. Pedersen and Weibel [127] identified the torsion group of the R-

bounded category Cr(A) of an additive category A with the class group
of the idempotent completion Py(A)

K1(Cr(A)) = Ko(Po(A)) ,
and expressed the lower K-groups of A as
K_i(A) = Ki(Crini(A)) = Ko(Pai(A) (i>1).

The lower quadratic L-groups Lffi> (A) of an additive category with invo-
lution A are defined in Ranicki [149], and shown to be such that

LE(A) = Ly (Crinn(A)) = Luyi(Pri(A))
L (AL 27Y) = L8V e LIT(A) (i >0)
with
Alz,z"Y1=4[zZ] , L(A) = LoA) , L%A) = L.(Py(A)) .
Also, there are defined exact sequences
o — LTNA) — LEO(A) — H™(Za; K_i(Po(A)))

— L) — ... (i20)

n—1
with I?_i(]P’O(A)) = K_;(A) for i > 1. The lower L-groups of a ring with
involution R are the special cases
L7 (AMR) = LE(R) .
C11. For any compact polyhedron K there is defined an isomorphism of
algebraic surgery exact sequences

S HY (K x RGL) A Ly (Cri(Zla])) — SE4a (K x RY) —
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with 7 = m(K). If K is an n-dimensional geometric Poincaré complex
then for any i > 1 the lower total surgery obstruction (C1) to K x T being
homotopy equivalent to a compact (n + i)-dimensional manifold coincides
with the R’-bounded total surgery obstruction (C6) to K x R* being R*-
bounded homotopy equivalent to an R-bounded open (n + 7)-dimensional
manifold

S(K) = s'(K xR e SU(K) = S, (K xRY) .

n

A homotopy equivalence f: M — K xT* from a compact (n+i)-dimensional
manifold M lifts to a Z'-equivariant R’-bounded homotopy equivalence
f: M—K xR?. Conversely, if n+14 > 5 an Ri-bounded homotopy equiva-
lence g: L— K x R* from an R’-bounded open (n+1)-dimensional manifold
L can be ‘wrapped up’ to a Z*-equivariant lift f: L = M—K x R’ of a
homotopy equivalence f: M——K x T from a compact (n + i)-dimensional
manifold M . See Hughes and Ranicki [79] for an algebraic treatment of
wrapping up.

The R’-bounded geometric Poincaré complex bordism groups Q27 (K xR?)
(C6) fit into an exact sequence

. — Lu4i(Cri(Z[n])) — QIL(K x RY)

— HJ (K x REQN) — Ly yi 1 (Cae(Z[r)) — ..
with
Lnyi(Cri(Z[n))) = LY (2Z[n) , HY (K xRGQN) = H,(K;QN).

In particular, for ¢ = 1 the R-bounded geometric Poincaré complex bordism
groups Q7 (K xR) coincide with the finitely dominated geometric Poincaré
complex bordism groups QF(K) of Pedersen and Ranicki [126]

QK xR) = QN (K),

and there is defined an isomorphism of exact sequences

. — L1 (Cr(Z[r])) — Q55 (K x R) — HJ (K x R; Q) — ..

—— LP(Zr]) ————— P (K) ————— H,(K; Q) —— ... .
The ultimate lower quadratic L-groups and L-spectrum of an additive cat-

egory A are defined by
(—o0) _ 1 (=) (—o0) — I (=)
L (8) = tim L (4) | LE9(4) = lm LD (4)

? ?
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with
(L (4) = LE(A) .
For any ¢+ > 0 products with the generator
o*(R") = 1€ L'(Cpi(2)) = LY(Z) = Z

define homotopy equivalences of the non-connective quadratic LL-spectra

o'R)®—: L(Z) = {Li(Z)|i=20}
— L7 (@) = (Lo(Cx(2) |20},
since they induce isomorphisms in the homotopy groups

" (R*)® —: m(L.(2)) = L.(Z)

~

- (—o0)

— m(L. 7 (Z) = Litoo(Cr=(Z))
(using K_;(Z) = 0 for ¢ > 1). Thus the deloopings by lower L-theory
correspond to the deloopings by dimension shift.

C13. Pedersen and Weibel [127] identify the algebraic K-theory of Pk (A)
for a compact polyhedron K C SV with the reduced generalized homology
groups of K with coefficients in the algebraic K-theory spectrum K(Py(A))
of the idempotent completion Py(A)

K.(Pogiy(A)) = Ha 1(K;K(Po(A))) .

The Mayer—Vietoris exact sequences of Ranicki [149,§14] show that the
assembly maps in the ultimate lower quadratic L-groups are isomorphisms

A HY(O(K); LN (A) = Hooy (K LEN(A)) — LT (Cogxy(A)) -
The simply connected assembly maps are isomorphisms
A: HY(OK);L.(Z)) = H._1(K;L.(Z))

~

— L™ (Cow)(2)) = Lu(Cow)(Z))
since K_;(Z) =0 fori>1.

C14. For any pair of metric spaces (X,Y C X) and any additive category
A let Cx y (A) be the additive category with the objects M of C x(A) and
morphisms [f]: M——N the equivalence classes of morphisms f: M— N
in Cx(A) which agree more than a bounded distance away from Y. A
morphism in Cx y (A) is thus a ‘germ’ of morphisms in Cx (A) which agree
far away from Cy (A), by analogy with the germs at Y of functions defined
on X. The germ category Cx y(A) was introduced by Munkholm in the
special case (X,Y) = (R¥,{0}) (Anderson and Munkholm [3, VIL.3]). See
Ferry, Hambleton and Pedersen [52] for a survey of the applications of the
germ categories. The X-bounded topology away from Y is measured by
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the algebraic K- and L-groups of Cx y (A). See Ranicki [149,4.1,14.2] for
the exact sequences

. — K1(Cy(A)) — Ki(Cx(A)) — Ki(Cx,y(A))
— Ko(Py(A)) — Ko(Px(A)) — ...
. — L} (Py(A)) — Lp(Cx(A)) — Ln(Cx,y(A))
— Ly (Py(A)) — Ly 1(Cx(A)) — ...

n—1

with J = ker(Ky(Py(A))—Ko(Px(A))). For a compact subspace K C
SN the forgetful map
Cox+)(A) — Cok+),050(A) = Coxy {01 (A)
induces isomorphisms in algebraic K- and L-theory
K.(Cor+)(A) = Ki(Corx),{0y(A))

L(Cox+)(A)) = Li(Cox),{0y(A))
so that O(K™)-bounded surgery and (O(K), {0})-bounded surgery are es-
sentially the same, namely O(K )-bounded surgery at co (= away from {0}).
Ferry and Pedersen [53] use O(K)-bounded surgery at oo and the controlled

end theory of Quinn [134],[135] as a substitute for K-controlled surgery.
Since K_;(Z) =0 fori >1
L«(Cox),10y(Z)) = Li(Cox+)(Z))
= HJ(O(K");L.(Z)) = H.1(K;L.(2)) .
Similarly for the bounded symmetric L-groups, and also for the bounded
visible symmetric L-groups.

For any subspace K C S¥ with the homotopy type of a compact n-
dimensional polyhedron the bounded L-theory braid of C6

AA

St (0 1,0 HY L (O(K*);L)
n+1 VLn+1
Hfbiz Lyn1(Cox+)(Z St 11 (O(K™))

vv
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can be written as

AA

Hyp1(K; Lo(Z L)

\/\/
/\/\

n (K5 Lo(Z))

with L" = K.(Lo(Z),0) VL as in §25. Similarly, the bounded geometric
Poincaré bordism braid of C6

/\/\

S’?’L+2 n—l—l n+1 QN)
l
Hn{l—l Q?LI—T—l
Hlf (C +
n+2 n—l—l O(K*) n+1 ))

vv

can be written as
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H,1(K; Lo(Z)) H,(K;QF) H,(K;QN)
H,(K;L.) H,(K;Q. )
NG
H, 1 (K; QM) H,(K;L.) H,(K; Ly(Z))

with ﬁ,P = K.(Lo(Z),0) v QF. The O(K™)-bounded visible symmetric
signature of an O(K™)-bounded (n + 1)-dimensional geometric Poincaré
complex X is a cobordism class

o"(X) = (C(X),AlX])

e VLTHO(K™)) = H,(K;L) = H,(K;Lo(Z)) ® H,(K; L)
with components the O(KT)-bounded total surgery obstruction

s'(X) = 00"(X) €8, 1 (O(K™)) = Hy(K;Lo(Z))
and the O(K™)-bounded symmetric signature
o*(X) = (O(X),A[X]) € L™ (Coxe)(Z) = Ha(K;L') .

The O(K™)-bounded total surgery obstruction can be expressed as the dif-
ference of local and global codimension n signatures at oo, by analogy with
the expression in 24.20 of the total surgery obstruction s(Bmw) € S,,(Bw) =

H, (Bm; Lo(Z)) of the classifying space Bm of an n-dimensional Novikov
group 7 as the difference of local and global codimension n signatures.

C15. A compact n-dimensional ANR homology manifold X is an X-
controlled Poincaré complex (Quinn [135]), and X x R has the O(X™)-
bounded homotopy type of an (n+1)-dimensional O(X *)-bounded Poincaré
complex via the projection map
o . tr ift>0

X xR — O(X) = O(X)V(=00,0] 5 (w,t) — {I7 7=0
(Ferry and Pedersen [53]). The O(X™)-bounded total surgery obstruction
s’(X x R) € S5, (O(X™T)) is identified in [53] with the resolution obstruc-
tion i(X) € Lo(Z) of Quinn [136]

s'(X xR) = i(X) €S, (0(X™)) = Hu(X;Lo(Z)) = Lo(Z) .
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A resolution of X corresponds to an O(X )-bounded homotopy equivalence
f: M—X X R from an O(X")-bounded open (n + 1)-dimensional mani-
fold M . There exists a resolution of X if and only if the O(X™)-bounded
Poincaré duality chain equivalence

(X xRlNn—": C(X xR)""™* — C(X xR)
is sufficiently close to being ‘cell-like’. Let (f,b): M — X be an n-dimension-
al normal map from a topological manifold M determined as in 25.8 by the

canonical topological reduction vx: X——BTOP of the Spivak normal fi-
bration. The canonical LL'-homology fundamental class of M is

M)y = o*(M xR) € L' (Cor+)()) = Ha(M;L)
with codimension n signature
BM]y, = 1€ H,(M;L%Z) = L°(Z) = Z.
The canonical L'-homology fundamental class of X is the image
(Xl = fMlL = o"(M xR) € L""H(Cox+)(Z)) = Hu(X;L),
with codimension n signature
B[X|L = 1€ H(X;L%7Z)) = LYZ) = Z.
The canonical L'-homology fundamental class of X (25.10) is given by
Xl = (i(X), [X]0)
e VLITHOX™) = Hy(X;L) = Ho(X; Lo(Z) ® Hy(X;L)
with codimension n signature

BlX]r = 8i(X)+1€ H,(X;L%Z)) = L°(Z) = Z.

The (n+ 1)-dimensional O(X ™)-bounded normal map (f,b) x 1: M x R—
X x R has O(X™)-bounded surgery obstruction

o.((f;0) x 1) = (=i(X),0)
€ Lnt1(Cox+)(2)) = Hu(X;5L.) = Hu(X; Lo(Z) ® Ha(X;1L)
The O(X™)-bounded symmetric signature of X x R
o (X xR) = o"(M xR)— (1+T)o.((f,0) x1) = XL+ (1 +T)i(X)
€ L"(Co(x+)(2)) = Hu(X3L7) = Ho(X;L%(Z)) & Ha(X;L(1)(Z)) -
is thus the image of [X]|- € H,(X;L’) under the map
(1 +7T 1 0) :
0 0 1
H, (X3 L) = Hn(X3Lo(Z)) & Ho (X3 L(2)) & Ho (X;1(1)(2))
— H\(X;L) = Ho(X;L%(Z)) & Ha(X;1L(1)(Z)) -

C16. If h: M'——M is a homeomorphism of compact n-dimensional AN R
homology manifolds then h x 1: M/ x R— M x R is an O(M™)-bounded



o3y ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

homotopy equivalence of (n + 1)-dimensional O(M™)-bounded geometric
Poincaré complexes. The 1/2-connective O(M™)-bounded visible symmet-
ric signature of M x R

o (M xR) = ([M]v,i(M))
e VLY (O(M™)) = Hy(M;L) ® H,(M; Lo(Z))
is an O(M™)-bounded homotopy invariant of M x R, and hence a topologi-
cal invariant of M. The topological invariance of the canonical I."-homology
fundamental class [M]y, € H, (M;L") is an integral version of the topologi-
cal invariance of the rational Pontrjagin classes due to Novikov [123].
Rationally, the LL'-orientation of a compact oriented n-dimensional topo-
logical manifold M is the Poincaré dual of the L£-genus £L(M) = L(1ar) €
H*(M;Q)
M@l = [Mlgn£L(M) € Hp1:(M;Q) ,

with [Ml]g € H,(M;Q) the Q-coefficient fundamental class. The usual
Hirzebruch L-polynomial relations
Le(M) = Li(p1,p2,---,px) € H*¥(M;Q) (k>0),

express the £-genus in terms of the rational Pontrjagin classes p. = p.(7a) €
H**(M;Q) of the stable tangent bundle 7y = —y;: M——BSTOP. Con-
versely, the rational Pontrjagin classes are determined by the L-genus, for
example p; = 3L; € H*(M;Q). Originally, the expression for the £-genus
in terms of the signatures of submanifolds was obtained for differentiable
manifolds, but successive developments have shown that it also applies for
PL, topological and AN R homology manifolds (taking account of the res-
olution obstruction, as in 25.17).

For a compact oriented n-dimensional topological manifold M"™ the 4k-
dimensional component Ly (M) € H*(M;Q) of the L-genus is detected by
the signatures of compact 4k-dimensional submanifolds N** ¢ M™ x R7 (j
large) with trivial normal bundle

(Ly(M),i,[N]g) = signature(N) € L*(z) = 7,
since every element in Hyy(M; Q) is a rational multiple of an element of the
form

z = ix[N]g = [M]gNg™(1)

€ Hiy(M;Q) = Hup(M xR;Q) (1€ H}(R™) =7Z)

with
g: M" xR — R™ (m =n+j— 4k)

a proper map transverse regular at 0 € R and

i = inclusion : N** = ¢71(0) — M" xR .
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The topological invariance of the rational Pontrjagin classes is thus a direct
consequence of topological transversality for high-dimensional manifolds,
which was established subsequently by Kirby and Siebenmann [87]. How-
ever, it is instructive to interpret the original argument of Novikov [123] for
the topological invariance of the rational Pontrjagin classes of differentiable
and PL manifolds in terms of bounded topology, as follows.

Let h: M'—— M be a homeomorphism of compact n-dimensional oriented
PL manifolds. Let x, g, N be as above, so that

(Lp(M),z) = signature(N) € L*(Z) = Z,
and let
o = (b H).(z) € Hy(M';Q) .
It is required to prove that
(Lip(M'),2') = signature(N) € L**(Z) = Z.
The inverse image of an open regular neighbourhood N 4k R™ Cc M™ xRJ
of N in M x R’ is an open codimension 0 PL submanifold
Wt = (hx 1g;) YN x R™) C M’ x R
with a homeomorphism
H = (hx1gi)|: W — N xR™.
Making H PL transverse regular at N x {0} C N x R™ there is obtained a
normal map of closed 4k-dimensional PL manifolds
(f,b) = H|: N'* = =Y (N x{0}) — N
with simply-connected surgery obstruction
o.(f,b) = (signature(N’) — signature(NN))/8
= (£R(M), 2') = (L4(M),2)) /8 € Lun(Z) = Z..
Approximate the homeomorphism H by an R"-bounded homotopy equiva-

lence W ~ N xR™ of R™-bounded open (4k+m)-dimensional PL manifolds
with R™-bounded symmetric signature

o*(W) = o*(N xR™)
= signature(N’) = signature(N)
€ L™ (Crm(Z)) = L*™(Z) = 7.
Equivalently, identify
o.(H) = 0.(f,b) = 0€ Lyg1m(Crm(Z)) = Lyp(Z) = Z .
Equivalently, use geometric ‘wrapping up’ to identify W with the pullback

cover V = e*(N x R™) of a compact (4k + m)-dimensional PL manifold
V along a homeomorphism e: V——N x T™ with a lift to a Z™-equivariant
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homeomorphism

and
o (V) = o"(N xT™)

= (signature(N’),0) = (signature(N),0)

e L4k+m(Z[Zm]) _ L4k(Z) ® (Z (m) L4k+z’(Z)) )
i
i=1
The evaluation of L(M') € H*(M';Q) on 2’ = (h™1).(z) € Hy(M';Q) is
thus given by
(Lrp(M"),z"y = signature(N') = signature(N)
= (Lx(M),xz) = (W Lp(M),2") €7,
and
L(M') = h*L(M)e H*(M;Q) .

See Sullivan and Teleman [171] and Weinberger [184] for analytic proofs
of the topological invariance of the rational Pontrjagin classes p.(mas) €
H*(M;Q) of a compact oriented topological manifold M. The most sys-
tematic way of obtaining the topological invariance of the L’-orientation
[M]L € H,(M;L) is to follow up the proposal in the Introduction of devel-
oping the sheaf-theoretic versions of the methods of this text, allowing the
construction of [M]y, directly from the local homology sheaf.



DIBLIOGRAPRY ITEI

Bibliography

[1] S. AkBULUT and J. D. McCARTHY Casson’s invariant for oriented ho-
mology 3-spheres. Mathematical Notes 36, Princeton University
Press (1990)

[2] J. ALEXANDER, G. HAMRICK and J. VICK Linking forms and maps of
odd order. Trans. Am. Math. Soc. 221, 169-185 (1976)

[3] D.R. ANDERSON and H.J. MUNKHOLM Boundedly Controlled Topol-
ogy. Lecture Notes in Mathematics 1323, Springer (1988)

[4] D. W. ANDERSON Chain functors and homology theories. Proceed-
ings 1971 Seattle Algebraic Topology Symposium, Lecture Notes
in Mathematics 249, Springer, 1-12 (1971)

[5] M. A. ARMSTRONG, G.E.Co0OKE and C.P.ROURKE The Princeton
notes on the Hauptvermutung. Warwick University notes (1972)
in The Hauptvermutung Book (ed. A.Ranicki), K-Monographs in
Mathematics 1, 105-190, Kluwer (1996)

[6] M. ATiyAH The signature of fibre bundles. Papers in the honour of
Kodaira, Tokyo University Press, 73-84 (1969)

[7] M. AtivyaH and I. M. SINGER The index of elliptic operators III. Ann.
Math. 87, 546-604 (1968)

[8] A.BAK and M. KOLSTER The computation of odd-dimensional projec-
tive surgery groups for finite groups. Topology 21, 35—63 (1982)

[9] H.Bass Algebraic K-theory. Benjamin (1968)

[10] A.L.BLAKERS and W. S. MASSEY The homotopy groups of a triad II.
Ann. Math. 55, 192-201 (1952)

[11] A.BoREL and J. MOORE Homology theory for locally compact spaces.
Michigan Math. J. 7, 137-159 (1960)

[12] R.BotT and L. Tu Differential forms in algebraic topology. Springer
(1982)

[13] A.K.BousrIELD and D. M. KAN Homotopy limits, completions and
localizations. Lecture Notes in Mathematics 304, Springer (1972)

[14] W.BROWDER Torsion in H-spaces. Ann. Math. 74, 24-51 (1961)

[15] W. BROWDER Homotopy type of differentiable manifolds. Proceedings
Arhus Colloguium, 42-46 (1962)

[16] W.BROWDER Surgery on simply connected manifolds. Springer (1972)

[17] W.BROWDER Poincaré spaces, their normal fibrations and surgery.
Inventiones Math. 17, 191-202 (1972)

[18] W.BROWDER and G. LIVESAY Fixed point free involutions on homo-
topy spheres. Tohoku J. Math. 25, 69-88 (1973)

[19] W.BROWDER and F.QUINN A surgery theory for G-manifolds and
stratified sets. Proceedings 1973 Tokyo Conference on Manifolds,
Tokyo University Press, 27-36 (1975)



DL ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

[20] G.BRUMFIEL and J. MORGAN The homotopy—theoretic consequences
of N. Levitt’s obstruction theory to transversality for spherical
fibrations. Pacific J. Math. 67, 1-100 (1976)

[21] J. BryANT, S. FERRY, W.MI10 and S. WEINBERGER The topology of
homology manifolds. Bull. Am. Math. Soc. 28, 324-328 (1993)

[22] S. BUONCRISTIANO, C. P. ROURKE and B. J. SANDERSON A geometric
approach to homology theory. Lond. Math. Soc. Lecture Notes
18, Cambridge University Press (1976)

[23] S. CAPPELL Manifolds with fundamental group a generalized free prod-
uct. Bull. Am. Math. Soc. 80, 1193-1198 (1974)

[24] S. CAPPELL On connected sums of manifolds. Topology 13, 395-400
(1974)

[25] S. CAPPELL On homotopy invariance of higher signatures. Inventiones
Math. 33, 171-179 (1976)

[26] S.CAPPELL and J. SHANESON The codimension two placement prob-
lem, and homology equivalent manifolds. Ann. Math. 99, 277-348
(1974)

[27] S. CAPPELL and J. SHANESON Pseudo-free actions I. Proceedings 1978
Arhus Topology Conference, Lecture Notes in Mathematics 763,
Springer, 395-447 (1979)

[28] S. CAPPELL and J.SHANESON Singular spaces, characteristic classes,
and intersection homology. Ann. Math. 134, 325-374 (1991)

[29] S. CAPPELL and S. WEINBERGER A geometric interpretation of Sieben-
mann’s periodicity phenomenon. Proceedings 1985 Georgia Con-
ference on Geometry and Topology, Dekker, 47-52 (1987)

[30] S.CApPPELL and S. WEINBERGER Which H-spaces are manifolds? I.
Topology 27, 377-386 (1988)

[31] S. CAPPELL and S. WEINBERGER Classification de certains espaces stra-
tifiés C. R. Acad. Sci. Paris 313, Série I, 399-401 (1991)

[32] G.CARLSSON Homotopy fixed points in the algebraic K-theory of cer-
tain infinite discrete groups. Advances in Homotopy Theory (Cor-
tona, 1988), Lond. Math. Soc. Lecture Notes 139, Cambridge
University Press, 5-10 (1989)

[33] G.CARLSSON and J. MILGRAM The structure of odd L-groups. Pro-
ceedings 1978 Waterloo Algebraic Topology Conference, Lecture
Notes in Mathematics 741, Springer, 1-72 (1979)

[34] A.J. CAsSON, Generalisations and applications of block bundles (1967),
in The Hauptvermutung Book (ed. A.Ranicki), K-Monographs in
Mathematics 1, Kluwer, 33-67 (1996)

[35] T. A. CHAPMAN and S. FERRY Approximating homotopy equivalences
by homeomorphisms. Amer. J. Math. 101, 583-607 (1979)



DIBLIOGRAPRY IEI

[36] S.S. CHERN, F. HIRZEBRUCH and J. P. SERRE On the index of a fibered
manifold. Proc. Am. Math. Soc. 8, 587-596 (1957)

[37] C. CiBILS Groupe de Witt d’'une algebre avec involution. [’Enseigne-
ment Math. 29, 27-43 (1983)

[38] M. CoHEN Simplicial structures and transverse cellularity. Ann. Math.
85, 218-245 (1967)

[39] M. CoHEN Homeomorphisms between homotopy manifolds and their
resolutions. Inventiones Math. 10, 239-250 (1970)

[40] P. CONNER and F. RAYMOND A quadratic form on the quotient of a
periodic map. Semigroup Forum 7, 310-333 (1974)

[41] A.ConNEs and H. Moscovict Cyclic homology, the Novikov conjec-
ture, and hyperbolic groups. Topology 29, 345-388 (1990)

[42] C. W. Curtis and I. REINER Methods of representation theory, with
applications to finite groups and orders. Wiley, Vol. T (1981), Vol.
I (1987)

[43] R.DAVERMAN Decompositions of manifolds. Academic Press (1986)

[44] J.Davis and J. MILGRAM A survey of the spherical space form prob-
lem. Mathematical Reports 2, Harwood (1984)

[45] M. Davis Coxeter groups and aspherical manifolds. Proceedings 1982
Arhus Algebraic Topology Conference, Lecture Notes in Mathemat-
ics 1051, Springer, 197-221 (1984)

[46] K. H. DOVERMANN Zsy-surgery theory. Michigan Math. J. 28, 267-287
(1981)

[47] R.D.EDWARDS The topology of manifolds and cell-like maps. Proc.
1978 1. C. M. Helsinki, 111-127 (1980)

[48] F.T. FARRELL and W. C. HSIANG Manifolds with m; = Gx,T . Amer.
J. Math. 95, 813-845 (1973)

[49] F.T.FARRELL and W. C. HsIANG On Novikov’s conjecture for non-
positively curved manifolds. Ann. Math. 113, 197-209 (1981)

[50] F.T.FARRELL and L.E.JONES A topological analogue of Mostow’s
rigidity theorem. J. Am. Math. Soc. 2, 257-370 (1989)

[51] F.T.FARRELL and L. E. JONES Classical aspherical manifolds CBMS
Regional Conference Series in Mathematics 75, American Mathe-
matical Society (1990)

[52] S. FERRY, I. HAMBLETON and E. K. PEDERSEN A survey of bounded
surgery theory and applications. Algebraic Topology and Its Ap-
plications, Springer, 57-80 (1993)

[53] S. FERRY and E. K. PEDERSEN Epsilon surgery. Novikov conjectures,
Index Theorems and Rigidity. Vol. 2, L. M. S. Lecture Notes 227,
Cambridge, 167-226 (1995)

[54] S. FERRY and S. WEINBERGER Curvature, tangentiality and controlled



J220

[55]
[56]
[57]

[58]

[59]

[60]

[61]
[62]
[63]
[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

topology. Inventiones Math. 105, 401-415 (1991)

D. FRANK The first exotic class of a manifold. Trans. Am. Math. Soc.
146, 387-395 (1969)

M. FREEDMAN and F. QUINN The topology of 4-manifolds. Princeton
University Press (1990)

A.FROHLICH and A. MCEVETT The representation of groups by au-
tomorphisms of forms. J. Algebra 12, 114-133 (1969)

D. E. GALEWSKI and R. J. STERN The relationship between homology
and topological manifolds via homology transversality. Inventiones
Math. 39, 277-292 (1977)

D. E. GALEWSKI and R. J. STERN Classification of simplicial triangu-
lations of topological manifolds. Ann. Math. 111, 1-34 (1980)

I. M. GELFAND and A.S. MISHCHENKO Quadratic forms over commu-
tative group rings and K-theory. Funct. Anal. Appl. 2, 277-281
(1969)

S. GITLER and J. STASHEFF The first exotic class of BF. Topology 4,
257-266 (1965)

M. GORESKY and R. MACPHERSON Intersection homology theory. Top-
ology 19, 135-162 (1980)

M. GORESKY and R. MACPHERSON Intersection homology II. Inven-
tiones Math. 71, 77-129 (1983)

M. GORESKY and P. SIEGEL Linking pairings on singular spaces. Comm.
Math. Helv. 58, 96-110 (1983)

I. HAMBLETON Projective surgery obstructions on closed manifolds.
Proceedings 1980 Oberwolfach Algebraic K -theory Conference, Vol.
II, Lecture Notes in Mathematics 967, Springer, 101-131 (1982)

I. HAMBLETON and J. C. HAUSMANN Acyclic maps and Poincaré spaces.
Proceedings 1982 Arhus Algebraic Topology Conference, Lecture
Notes in Mathematics 1051, Springer, 222-245 (1984)

I. HAMBLETON and I. MADSEN On the computation of the projective
surgery obstruction groups. K-theory 7, 537-574 (1993)

I. HAMBLETON and J. MILGRAM Poincaré transversality for double cov-
ers. Canad. J. Math. 30, 1319-1330 (1978)

I. HAMBLETON, J. MILGRAM, L. TAYLOR and B. WILLIAMS Surgery
with finite fundamental group. Proc. Lond. Math. Soc. 56 (3),
349-379 (1988)

I. HAMBLETON, A. RANICKI and L. TAYLOR Round L-theory. J. Pure
App. Alg. 47, 131-154 (1987)

I. HAMBLETON, L. TAYLOR and B. WILLIAMS An introduction to maps
between surgery obstruction groups. Proceedings 1982 Arhus Al-
gebraic Topology Conference, Lecture Notes in Mathematics 1051,



DIBLIOGRAPRY DY

Springer, 49-127 (1984)

[72] A.HARSILADZE Hermitian K-theory and quadratic extensions. Trudy
Moskov. Math. Obshch. 41, 3-36 (1980)

[73] H. HASSE Aquivalenz quadratischer Formen in einem beliebigen alge-
braischen Zahlkorper. J. reine u. angew. Math. 153, 158-162
(1924)

[74] A.HATCHER Higher simple homotopy theory. Ann. Math. 102, 101-
137 (1975)

[75] J. C. HAUSMANN and P. VOGEL Geometry on Poincaré spaces. Math-
ematical Notes 41, Princeton University Press (1993)

[76] F. HIRZEBRUCH Topological methods in algebraic geometry. Springer
(1966)

[77] F.HIRZEBRUCH Involutionen auf Mannigfaltigkeiten. Proceedings Con-
ference on Transformation Groups, New Orleans 1967, Springer,
148-166 (1968)

[78] F.HIRZEBRUCH and D.ZAGIER The Atiyah—Singer theorem and ele-
mentary number theory. Publish or Perish (1974)

[79] B. HUGHES and A. RANICKI Ends of compleres. Cambridge Tracts in
Mathematics 123, Cambridge (1996)

[80] L. E. JONEs Patch spaces: a geometric representation for Poincaré
spaces. Ann. Math. 97, 276-306 (1973) Corrigendum: ibid. 102,
183-185 (1975)

[81] J. KAMINKER and J.G.MILLER A comment on the Novikov conjec-
ture. Proc. Am. Math. Soc. 83, 656—658 (1981)

[82] J. KAMINKER and J. G. MILLER Homotopy invariance of the analytic
index of signature operators over C*-algebras. J. Operator Theory
14, 113-127 (1985)

[83] G.KaspAROV On the homotopy invariance of rational Pontrjagin num-
bers. Dokl. Akad. Nauk SSSR 190, 1022-1025 (1970)

[84] G.KaspArROV Equivariant K K-theory and the Novikov conjecture. In-
ventiones Math. 91, 147-202 (1988)

[85] M. KERVAIRE A manifold which does not admit a differentiable struc-
ture. Comm. Math. Helv. 34, 257-270 (1960)

[86] M. KERVAIRE and J. MILNOR Groups of homotopy spheres 1. Ann.
Math. 77, 504-537 (1963)

[87] R.KirBY and L. SIEBENMANN Foundational essays on topological man-
ifolds, smoothings, and triangulations. Ann. Math. Stud. 88,
Princeton University Press (1977)

[88] M. KOLSTER Even-dimensional projective surgery groups of finite
groups. Proceedings 1980 Oberwolfach Algebraic K-theory Con-
ference, Vol. II, Lecture Notes in Mathematics 976, Springer,



2320 ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

239-279 (1982)
[89] W. LANDHERR Aquivalenz Hermitescher Formen iiber einen beliebigen
algebraischen Zahlkoérper. Abh. Math. Sem. Univ. Hamburg 11,
245-248 (1935)
[90] R.LEE Semicharacteristic classes. Topology 12, 183-199 (1973)
[91] J. LEVINE Lectures on groups of homotopy spheres. Algebraic and geo-
metric topology, Proc. 1983 Rutgers Topology Conference, Lecture
Notes in Mathematics 1126, Springer, 62-95 (1985)
[92] N.LEVITT Poincaré duality cobordism. Ann. Math. 96, 211-244
(1972)
[93] N.LEvITT and J. MORGAN Transversality structures and PL struc-
tures on spherical fibrations. Bull. Am. Math. Soc. 78, 1064—
1068 (1972)
[94] N.LEvITT and A.RANICKI Intrinsic transversality structures. Pacific
J. Math. 129, 85-144 (1987)
[95] D. W. LEwis Forms over real algebras and the multisignature of a man-
ifold. Adv. Math. 23, 272-284 (1977)
[96] D. W.LEwis Exact sequences of Witt groups of equivariant forms.
I’Enseignement Math. 29, 45-51 (1983)
[97] J.—L.LopAy K-théorie algébrique et représentations de groupes. Ann.
scient. Ec. Norm. Sup. (4) 9, 309-377 (1976)
[98] S. LoPEZ DE MEDRANO Involutions on manifolds Springer (1971)
[99] W. LUCK and A. RANICKI Surgery transfer. Proceedings 1987 Géttingen
Conference on Algebraic Topology, Lecture Notes in Mathematics
1361, Springer, 167-246 (1989)
[100] W.LUCK and A.RANICKI Surgery obstructions of fibre bundles. J.
Pure App. Alg. 81, 139-189 (1992)
[101] G.LuszTiG Novikov’s signature and families of elliptic operators. J.
Diff. Geo. T, 229-256 (1971)
[102] I. MADSEN and J. MILGRAM The classifying spaces for surgery and
cobordism of manifolds. Ann. Math. Stud. 92, Princeton Univer-
sity Press (1979)
[103] I. MADSEN, C. B. THOMAS and C.T.C. WALL The topological space
form problem. Topology 15, 375-382 (1976)
[104] C. McCRrORY Cone complexes and PL transversality. Trans. Am.
Math. Soc. 207, 269-291 (1975)
[105] C. McCRORY A characterization of homology manifolds. J. Lond.
Math. Soc. 16 (2), 149-159 (1977)
[106] C. MCCRORY Zeeman’s filtration of homology. Trans. Am. Math.
Soc. 250, 147-166 (1979)
[107] W.MEYER Die Signatur von lokalen Koeffizientensystemen und Faser-



DIBLIOGRAPRY Jtd

biindeln. Bonner Math. Schriften 53 (1972)

[108] J. MILGRAM Orientations for Poincaré duality spaces and applications.
Proceedings 1986 Arcata Conference on Algebraic Topology, Lec-
ture Notes in Mathematics 1370, Springer, 293-324 (1989)

[109] J. MILGRAM Surgery with finite fundamental group. Pacific J. Math.
151, L. 65-115, I 117-150 (1991)

[110] J. MiLGrRAM and A.RANICKI The L-theory of Laurent polynomial ex-
tensions and genus 0 function fields. J. reine u. angew. Math.
406, 121-166 (1990)

[111] J. MILNOR On manifolds homeomorphic to the 7—sphere. Ann. Math.
64, 399-405 (1956)

[112] J. MILNOR Introduction to algebraic K-theory. Ann. Math. Stud. 72,
Princeton University Press (1971)

[113] J. MILNOR and D.HUSEMOLLER Symmetric bilinear forms. Springer
(1973)

[114] J. MILNOR and J. STASHEFF Characteristic classes. Ann. Math. Stud.
76, Princeton University Press (1974)

[115] A.S. MisHCHENKO Homotopy invariants of non—simply connected man-
ifolds. III. Higher signatures. Izv. Akad. Nauk SSSR, ser. mat.
35, 1316-1355 (1971)

[116] A.S. MisHCHENKO Hermitian K-theory. The theory of characteristic
classes. The method of functional analysis. Uspeki Mat. 31, 69—
134 (1976) English translation: Russian Math. Surv. 31:2, 71-138
(1976)

[117] A.S. MisHCHENKO and A. T. FOMENKO The index of elliptic operators
over C*-algebras. Izv. Akad. Nauk SSSR, ser. mat. 43, 831-859
(1979) English translation: Math. USSR - Izv. 15, 87 (1980)

[118] A.S. MisHCHENKO and Y. P.SoOLOVEV A classifying space for hermi-
tian K-theory. Trudy Sem. Vect. and Tensor Anal. 18, 140-168
(1976)

[119] J. MORGAN and D.SULLIVAN The transversality characteristic class
and linking cycles in surgery theory. Ann. Math. 99, 463-544
(1974)

[120] W.NEUMANN Signature related invariants of manifolds I. Monodromy
and v-invariants. Topology 18, 147-172 (1979)

[121] A.NIcAs Induction theorems for groups of homotopy manifold struc-
tures. Memoirs Am. Math. Soc. 267 (1982)

[122] S. P.Novikov Homotopy equivalent smooth manifolds I. Izv. Akad.
Nauk SSSR, ser. mat. 28, 365474 (1965)

[123] S.P.Novikov On manifolds with free abelian fundamental group and
applications (Pontrjagin classes, smoothings, high—dimensional



JJU ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

knots). Izv. Akad. Nauk SSSR, ser. mat. 30, 208-246 (1966)

[124] S. P.Novikov The algebraic construction and properties of hermitian
analogues of K-theory for rings with involution, from the point of
view of the hamiltonian formalism. Some applications to differen-
tial topology and the theory of characteristic classes. Izv. Akad.
Nauk SSSR, ser. mat. 34, 253-288, 478-500 (1970)

[125] W. PARDON Intersection homology Poincaré spaces and the character-
istic variety theorem. Comm. Math. Helv. 65, 198-233 (1990)

[126] E. K. PEDERSEN and A. RANICKI Projective surgery theory. Topology
19, 239-254 (1980)

[127] E. K. PEDERSEN and C. WEIBEL K-theory homology of spaces. Pro-
ceedings 1986 Arcata Conference on Algebraic Topology, Lecture
Notes in Mathematics 1370, Springer, 346-361 (1989)

[128] T. PETRIE The Atiyah—Singer invariant, the Wall groups L, (7, 1), and
the function (te® +1)/(te® —1). Ann. Math. 92, 174-187 (1970)

[129] D. QUILLEN Higher algebraic K-theory. Proceedings 1972 Battelle Seat-
tle Algebraic K-theory Conference, Vol. I, Lecture Notes in Math-
ematics 341, Springer, 85-147 (1973)

[130] F. QUINN A geometric formulation of surgery. Topology of manifolds,
Proceedings 1969 Georgia Topology Conference, Markham Press,
500-511 (1970)

[131] F. QUINN B(rop,)~ and the surgery obstruction. Bull. Am. Math.
Soc. 77, 596-600 (1971)

[132] F. QUINN Surgery on Poincaré and normal spaces. Bull. Am. Math.
Soc. 78, 262-267 (1972)

[133] F. QUINN Ends of maps I. Ann. Math. 110, 275-331 (1979)

[134] F. QUINN Ends of maps II. Inventiones Math. 68, 353-424 (1982)

[135] F. QUINN Resolutions of homology manifolds, and the topological char-
acterization of manifolds. Inventiones Math. 72, 267-284 (1983)
Corrigendum: ibid. 85, 653 (1986)

[136] F. QUINN An obstruction to the resolution of homology manifolds.
Michigan Math. J. 34, 284-291 (1987)

[137] F. QUINN Assembly maps in bordism-type theories. Nowikov conjec-
tures, Index Theorems and Rigidity. Vol. 1, L. M. S. Lecture Notes
226, Cambridge, 201-271 (1995)

[138] A.RANICKI An algebraic formulation of surgery. Trinity College, Cam-
bridge fellowship dissertation (1972)

[139] A.RANICKI Algebraic L-theory I. Foundations. Proc. Lond. Math.
Soc. 27 (3), 101-125 (1973)

[140] A.RaNICKI Algebraic L-theory II. Laurent extensions. Proc. Lond.
Math. Soc. 27 (3), 126-158 (1973)



DIBLIOGRAPRY JJ1

[141] A.RANICKI On the algebraic L-theory of semisimple rings. J. Algebra
50, 242-243 (1978)

[142] A.RANICKI Localization in quadratic L-theory. Proceedings 1978 Wa-
terloo Algebraic Topology Conference, Lecture Notes in Mathemat-
ics 741, Springer, 102-157 (1979)

[143] A.RANICKI The total surgery obstruction. Proceedings 1978 Arhus
Topology Conference, Lecture Notes in Mathematics 763, Springer,
275-316 (1979)

[144] A.RANICKI The algebraic theory of surgery, I. Foundations. Proc.
Lond. Math. Soc. 40 (3), 87-192 (1980)

[145] A.RANICKI The algebraic theory of surgery, II. Applications to topol-
ogy. Proc. Lond. Math. Soc. 40 (3), 193287 (1980)

[146] A.RANICKI Ezact sequences in the algebraic theory of surgery. Math-
ematical Notes 26, Princeton University Press (1981)

[147] A.RANICKI The L-theory of twisted quadratic extensions. Canad. J.
Math. 39, 345-364 (1987)

[148] A.RaNick! Additive L-theory. K-theory 3, 163-195 (1989)

[149] A.RANICKI Lower K- and L-theory. Lond. Math. Soc. Lecture Notes
178, Cambridge University Press (1992)

[150] A.RaNickI and M. WEISS Chain complexes and assembly. Math. Z.
204, 157-185 (1990)

[151] A.RANICKI and M. YAMASAKI Controlled K-theory. Topology and Its

Applications 61, 1-59 (1995)

[152] V. A.ROHLIN The Pontrjagin—Hirzebruch class in codimension 2. Izv.
Akad. Nauk SSSR, ser. mat. 30, 705-718 (1966)

[153] J. ROSENBERG C*-algebras, positive scalar curvature, and the Novikov
conjecture I11. Topology 25, 319-336 (1987)

[154] C.P.ROURKE and B. J. SANDERSON On topological neighbourhoods.
Compositio Math. 22, 387-424 (1970)

[155] C.P.ROURKE and B.J. SANDERSON A-sets I: Homotopy theory. Qu.
J. Math. Ozford (2) 22, 321-338 (1971)

[156] W.SCHARLAU Quadratic and hermitian forms. Springer (1985)

[157] J.P.SERRE Linear representations of finite groups. Springer (1977)

[158] J. SHANESON Wall’s surgery obstruction groups for G x Z. Ann. Math.
90, 296-334 (1969)

[159] L. SIEBENMANN Are nontriangulable manifolds triangulable? Proceed-
ings 1969 Georgia Topology Conference, Markham Press, 77-84
(1970)

[160] L. SIEBENMANN Topological manifolds. Proceedings 1970 Nice I. C. M. ,
Gauthier—Villars, Vol. 2, 133-163 (1971) (also in [87], 307-337)

[161] L. SIEBENMANN Approximating cellular maps by homeomorphisms.



JJ4 ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

Topology 11, 271-294 (1972)

[162] P.SIEGEL Witt spaces: a geometric cycle theory for KO homology at
odd primes. Am. J. Math. 105, 1067-1105 (1983)

[163] E. SPANIER Algebraic topology McGraw—Hill (1966)

[164] M. SPIvAK Spaces satisfying Poincaré duality. Topology 6, 77-102
(1967)

[165] C. W.STARK L-theory and graphs of free abelian groups. J. Pure App.
Alg. 47, 299-309 (1987)

[166] D.SULLIVAN Triangulating homotopy equivalences. Princeton Ph.D.
thesis (1965)

[167] D.SuLLIVAN, Triangulating homotopy equivalences and homeomor-
phisms. Geometric topology seminar notes. (1967),
in The Hauptvermutung Book (ed. A.Ranicki), K-Monographs in
Mathematics 1, Kluwer, 69-103 (1996)

[168] D.SULLIVAN Geometric Topology I. Localization, Periodicity and Ga-
lois symmetry. M.1.T. notes (1970)

[169] D.SULLIVAN Geometric periodicity and the invariants of manifolds.
Proceedings 1970 Amsterdam Conference on Manifolds, Lecture
Notes in Mathematics 197, Springer, 44-75 (1971)

[170] D. SULLIVAN Singularities in spaces. Proceedings Liverpool Singulari-
ties Symposium (1969/70), Vol. II, Lecture Notes in Mathematics
209, Springer, 196-206 (1971)

[171] D. SuLLivaN and N. TELEMAN An analytic proof of Novikov’s theorem
on rational Pontrjagin classes. Pub. Math. I. H. E. S. 58, 291-293
(1983)

[172] R.SWAN Periodic resolutions for finite groups. Ann. Math. 72, 267
201 (1960)

[173] L. TAYLOR and B. WILLIAMS Surgery spaces: formulae and structure.
Proceedings 1978 Waterloo Algebraic Topology Conference, Lecture
Notes in Mathematics 741, Springer, 170-195 (1979)

[174] P.VOGEL Une nouvelle famille de groupes en L-théorie algébrique.
Proceedings 1982 Bielefeld Algebraic K -theory Conference, Lecture
Notes in Mathematics 1046, Springer, 385-421 (1984)

[175] F. WALDHAUSEN Algebraic K-theory of generalized free products. Ann.
Math. 108, 135-256 (1978)

[176] C.T.C. WALL Surgery of non—simply connected manifolds. Ann. Math.
84, 217-276 (1966)

[177] C.T.C. WALL Poincaré complexes. Ann. Math. 86, 213-245 (1967)

[178] C.T.C. WALL Non-additivity of the signature. Inventiones Math. 7,
269-274 (1969)

[179] C.T.C. WALL On the axiomatic foundations of the theory of Hermi-



DIBLIOGRAPRY (21919}

tian forms. Proc. Camb. Phil. Soc. 67, 243-250 (1970)

[180] C.T.C. WALL Surgery on compact manifolds. Academic Press (1970)

[181] C.T.C. WALL On the classification of hermitian forms II. Semisimple
rings. Inventiones Math. 18, 119-141 (1972)

[182] C.T.C. WALL Formulae for surgery obstructions. Topology 15, 189—
210 (1976)

[183] S. WEINBERGER Aspects of the Novikov conjecture. Contemp. Math.
105, 281-297 (1990)

[184] S. WEINBERGER An analytic proof of the topological invariance of ra-
tional Pontrjagin classes. (preprint)

[185] S. WEINBERGER The topological classification of stratified spaces. Chi-
cago (1994)

[186] M. WEIss Surgery and the generalized Kervaire invariant. Proc. Lond.
Math. Soc. 51 (3), I. 146-192, I1. 193-230 (1985)

[187] M. WEIss Visible L-theory. Forum Math. 4, 465-498 (1992)

[188] M. WEIss and B. WILLIAMS Automorphisms of manifolds and alge-
braic K-theory II. J. Pure App. Alg. 62, 47-107 (1989)

[189] G. W. WHITEHEAD Generalized homology theories. Trans. Am. Math.
Soc. 102, 227-283 (1962)

[190] J. H. C. WHITEHEAD A certain exact sequence. Ann. Math. 52, 51—
110 (1950)

[191] M. YAMASAKI L-groups of crystallographic groups. Inventiones Math.
88, 571-602 (1987)

[192] E. C.ZEEMAN Dihomology ITI. A generalization of the Poincaré duality
for manifolds. Proc. Lond. Math. Soc. 13 (3), 155-183 (1963)



JJa ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

Index ac,p:C @ g,gwy D
algebraic —C(K) DR () D(K), 309
bordism category A:Hy (K, w;L.(R))
A= (A,B,C), 51 — Ly, (R[r]"), 310
AY(R) (¢ =p, h,s), 55 A:H.(K,w;F)—TF, 312
A4 (R), 59 A:H . (K, w;{F})—F(K' w'), 313
A*(K), 75 A:H (K, w;F({*}))—F(K,w), 314
A (K), 75
A(R).(K), 97 based object, 63
A(R,K), 97 boundary
A(R).(K,w), 308 dual cell 0D(o, K), 68
A(R, K, w), 309 normal complex, 45
connected, 61 quadratic complex, 34
functor, 53 symmetric complex, 34

mapping cone, 25

normal complex, 40 canonical fundamental class
Y

surgery, 33 manifold [X]y,, 186
exact sequence, 148 normal complex [X]nr, 181
twisted, 316 transversality structure [Z]r, 186
a(F, ), ap(F, ) canonical orientation
simple factors in F[r], 225 spherical fibration U,,, 174
of (F, ) topological bundle Uy, 174
F-multisignature components, 232 category, R-module
assembly based f.g. free A*(R), 55
A*(K)—>A 63 f.g. projective AP(R), 28
AL (K)—A, 63 f.g. free A"(R), 28
B(A)*[K]—B(A*(K)), 64 f.g. free A(R), 29
B(A)*[K]—B(A.(K)), 64 C-contractible
B(A).[K]—B(A.[K]), 64 chain complex, 51
AL (K)—A, 80 quadratic complex, 51
A(R, K)—A(R][r]), 94 symmetric complex, 51
B[R, K| —B(R][r]), 94 @—equivalence, 51
acp: C®(R x) D gecﬁ ?HPEIGX, 73 N
ech—deRham complex,
—OK) M D( ) 100 chain bundle (C,~), 39
H..([C][)) = H.(C(K)), 109 chain complex category
A-H. (K F)—F, 130 B(A), 26
A:H(K: {F{x }})H (K) 132 B(R), 56
A:H,(K;L.(R))—L.(R[r]), 148 C(R)
éﬂ.H*(BW L.(Z))—L.(Z[r]), 271 B, (R), 59



chain complex
dimension, 25
dual TC, 27
finite, 25
highly connected, 60
highly B-connected, 60
homogeneous, 110
n-dual ¥"7T(C), 27
pair, 137
suspension SC, 25
0-dimensional, 27
chain duality, 27
closed subcategory, 51
cobordism
cycle, 126
quadratic Poincaré complex, 32
symmetric Poincaré complex, 32
codimension ¢
Poincaré transversality
obstruction, 260
splitting obstruction, 259
cohomology groups
H*(K;TF), 122
H*(K,w;F), 311
cohomology spectrum
FE+, 122
Fy+, 311
combinatorial diagonal
approximation, 317
compactly supported
Cech-deRham complex, 73

cohomology groups H; (K;TF), 122

cohomology spectrum FX+, 122
1/2-connective
algebraic bordism categories

A(1/2)(R, K), A(1/2)(R, K), 164

normal
complex, 164
L-groups NL*(1/2)(R, K), 164
L-spectrum NLL*(1/2)(R), 164
visible symmetric

L-groups VL*(1/2)(R, K), 164

DEX

9JJ

L-spectrum VL*(1/2)(R, K), 165

signature, 179
C-Poincaré
quadratic complex, 51
symmetric complex, 51
cycle, 125
{F}-cycle, 131
relative, 127

degree d;(F,m), 225
A-map, 118
compactly supported, 119
homotopy, 118
simplicial complexes, 77
A-set, 117
finite, 119
function, 118
geometric product, 118
Kan, 118
locally finite, 117
loop, 120
mapping fibre, 120
pointed, 119
realization, 117
spectrum, 121
derived Hom, 87
derived product X, 86
dissection, 71
division algebra D;(F, ), 225
double skew-suspension, S2, 32
dual cell D(o, K), 67
dual cell D(o,T), 70

geometric Thom class, 92
global equivalence, 97
global 1-equivalence, 179

highly B-connected
quadratic complex, 60
quadratic pair, 60

homogeneous envelope, 110

homology groups



J9J0 ALGEBRAIC L-THREORY AND TOPOLOGICAL MANIFOLDS

H,.(K;F), 122
H.(K;{F}), 131
H,(K,w;F), 311

H.(K,w;{F}), 313
homology spectrum

K, AF, 122

H.(K;{F}), 131

KY Nz, F, 311

H.(K,w;{F}), 313
homotopy colimit, 125
homotopy equivalence

normal complexes, 41

quadratic complexes, 30

symmetric complexes, 30
homotopy invariant functor, 132

idempotent e;(F, ), 228
involution, 27

L-groups

connective symmetric
L*(R), 60

highly B-connected
L,(M)he, 60

hyperquadratic
L*(A), 45

normal
NL*(A), 41
NL*(A), 52
NL*(R,K), 98
L*(X), 173
NL*(R, K,w), 310

quadratic
L, (A) 32

«(R, K,w), 310
reduced quadratic
L.(Zr]), 253

round
L7 (R), 235
L*(R), 235
symmetric

L*(A), 32

(

L*(A )

L*(R, )
L*(R.e), 219
L*(R, K, w), 310

visible symmetric

VL*(R,K), 98
VL*(R[x]), 9
VL*(X), 173

VL (X ) 286
VL*( - M), 303
VL*(R, K, w), 310
VLK), 329

link, 67

local equivalence, 97
locally Poincaré
quadratic complex, 89
symmetric complex, 89
locally g-Poincaré
simplicial complex, 157
symmetric complex, 156
LS-groups LS, (®), 258
LL-spectrum
normal
NL'(A), 138
NL'(R), 145
NL(R, K), 145
L, 173
quadratic
L.(A), 138
L.(R), 145
L.(R,K), 145
L., 173
L., 286
symmetric
L'(A), 138
L'(R), 145



L(R,K), 145
L, 173
L', 286
visible symmetric
VL(R, K), 145
map

algebraic normal complexes, 40

chain bundles, 39

quadratic complexes, 30

symmetric complexes, 30
mapping cofibre, 121
multirank 7. (P), 226
multisignature

K-theory, 224

L-theory, 232

nerve, 71
normal
complex
algebraic, 40
geometric, 42
invariant
normal map [f, b]r, 196
TOP reduction t(b), 196
homotopy equivalence t(f), 197
4-periodic [f, b]g, 294
4-periodic £(i,b), 295
map, algebraic, 49
pair, algebraic, 40
pseudomanifold, 180
structure, algebraic (v, x), 40
Novikov
conjecture, 271
group, 275
number of embeddings of field F
complex nc(F), 248
involution nc¢(F, Zs), 248
negative ng (Fp,a), 248
positive ng (Fp, a), 248
real ng(F), 248

DEX

(o I9 N}

open star, 68

Poincaré complex
geometric, 42
quadratic (C, ), 30
symmetric (C, ¢), 30
topologically reducible, 181
Poincaré duality group, 275
Poincaré pair
quadratic, 31
symmetric, 31
Poincaré transverse, 185
preassembly, 320
pseudomanifold, 91

g-connective
algebraic bordism category

AMa)(R), Mq)(R),
Mg} (R, K), Mg)(R, K), 157
complex
chain, 156
normal, 156
quadratic, 156
symmetric, 156
cover F(g), 151
L-groups
normal NL*(q)(A), 151
quadratic L.(q)(A), 151
symmetric L*(g)(A), 151
VL*(q)(A), 163
[L-spectrum
normal NL*(g)(A), 151
quadratic L. {(q)(A), 151
symmetric L*(g)(A), 151
visible symmetric VIL'(¢)(A), 163
spectrum, 151
structure groups
quadratic S, (¢)(R, K), 158
symmetric S*(¢)(R, K), 159
structure spectrum
quadratic S.{(q)(R, K), 159
symmetric S'(¢)(R, K), 159
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Q-groups R
hyperquadratic @Q*(C), 38
quadratic Q.(C), 30
symmetric @*(C), 30
twisted quadratic Q.(C,7), 39
visible symmetric VQ*(C), 99

quadratic kernel, 49

rank of Witt group r*(D), 232
relative F-homology, 127
resolution, 283

(R, K)-modules, 85

[R, K]-modules, 85

(R, K, w)-module, 308

signature, 233
bounded visible o*, 329
codimension n
global, 277
local, 277
quadratic, 277
symmetric, 277
higher, 269
hyperquadratic o*, 47
normal o*, 47
normal, 105
quadratic oy, 49
quadratic, 105
symmetric o*, 47
visible symmetric o*, 99
visible symmetric, 104
4-periodic 7%, 292
simple factor S;(F, ), 225
stable
algebraic bordism subcategory, 58
closed subcategory, 58
star, 67
structure group
quadratic
S«(R,K), 148
S«(X), 190
SE(Y), 263
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S« (X), 286
S«(R, K,w), 315
symmetric
S*(R, K), 149
structure invariant s(f), 197
4-periodic 3(f), 295
structure set STOF(X), 195
A-coefficient SATOF (M), 303
structure spectrum
quadratic
S.(R,K), 148
S.(R, K,w), 315
symmetric
S(R, K), 149
supplement, 123
surgery exact sequence
algebraic, 169
geometric, 195
A-coefficient, 304
g-connective algebraic, 159
suspension
chain complex SC, 25
spectrum XK, 121
(symmetric, quadratic) pair, 43

topological reducibility obstruction
difference element t(7,7'), 175
homotopy equivalence t(f), 197
Poincaré complex t(X), 181
spherical fibration ¢(v), 174

total complex, 25

total surgery obstruction s(X), 190
bounded s°(K), 329
4-periodic 5(X), 292
A-coefficient s(X;A), 303
lower s{~9(X), 325
projective sP(X), 324

totally
imaginary, 248
real, 248

transfer, 215

transversality structure, 185



