CHAPTER 11

Dimension Theory and
Separation Theorems

§ 1. The Invariance of Dimension

Before 1870 mathematicians only dealt with those subsets X of an R™ that
could (at least locally) be “parametrized” by (usually C*) injective maps into
X of open subsets of some R" It was tacitly assumed that the position of a
pointin R" could only be completely determined by a system of n real numbers.
The discovery by Cantor in 1877 of a bijection of R onto R", for any n, came
as a complete surprise and seemed to threaten the bases of analysis. Cantor’s
map was wildly discontinuous, but the discovery of the Peano curve (1890)
showed that there existed continuous (although not injective) maps of R onto
R". The only hope that remained of salvaging the classical notion of dimension
was the one expressed by Dedekind as soon as Cantor had communicated his
theorem to him: there should not exist bicontinuous bijections of R™ onto R*
for m # n. This was elementary for m = 1, n > 1, since a point disconnects R
but not R”; several mathematicians before 1910 were also able to tackle the
casesm = 2 and m = 3, n > m. But the general proof of Dedekind’s conjecture
was only obtained by Brouwer in the first of the series of papers which he
started in 1911 ([89], pp. 430-434).

Brouwer’s proof is based on the key lemma showing that if a continuous
map f of [ — 1, 17" into R"is such that | f(x) — x| < 4 for all x, then f([ —1, 1}")
contains the cube [ —3,347" (chap. I, §3,D). He used that lemma to show that
there may not exist an injective continuous map g of [—1,1]" onto a rare
subset C of R". The proof is by contradiction: Brouwer showed that if such a
map existed, it would be possible to define a continuous maph: C > [ 1,17,
such that h(C) would be rare and |h(g{(x)) — x| < % for all xe [—1,1]", in
contradiction with the lemma.

To construct A, start from a sufficiently fine triangulation T ofa cube K = C
and consider the union F of the n-simplices of T that meet C. Define hy(a) for
each vertex a of an n-simplex ¢ < F as one of the points of [ — 1, 1]" such that
g(hy(a)) € g, then extend h,, to a piecewise affine map h, of F into [ —1, 13" If
h is the restriction of hq to C, then k(o N C) is rare for each n-simplex ¢ < F,
hence h has the required properties provided T has been chosen fine enough.
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From this theorem, Brouwer obtained the invariance of dimension in two
steps:

1. Suppose m > n; a cube K of R™ contains a rare image K’ of [ —1,1]" by
a continuous injection j. If there existed a continuous injective map f:
K - [— 1,17 the map f o j would contradict the theorem.

2.1f a cube K’ of R” contained the image of [ —1,1]™ by a homeomorphism
g, as there exists a continuous injection h: K’ — [ — 1, 17" such that h(K') is
rare, h o g would again contradict the theorem.

These two corollaries imply the nonexistence of a homeomorphism of R™
onto R" for m # n.

§2. The Invariance of Domain

A result closely related to the invariance of dimension was called the “in-
variance of domain™: if A is a compact subset of an R" and f:A > R"is a
continuous injective map, f sends interior points of A to interior points of f{A)
[which implies that it maps the interior of A homeomorphically onto the
interior of f(A)7]. This property implies invariance of dimension: suppose there
existed a homeomorphism f of an open set U # ¢ in R™ onto an open subset
of R" with n < m; one may consider R" as a rare subset of R™, and for V open
nonempty and relatively compact in R™ and V < U, f(V), considered as a
subset of R™, would have no interior point.

This is essentially the argument by which Baire, in 1907, wanted to prove
the invariance of dimension ({40], [41]). He then endeavored to reduce the
invariance of domain to a weak* generalization of the Jordan curve theorem
to n dimensions: if f is a homeomorphism of the closed ball D,: |x| < 1 of R”
onto a subset of R”, the complement of f(S,_;) in R" has two connected
components [traditionally called the “interior” and “exterior” of f(S,_,), the
“exterior” being the unbounded one].

In assuming this result, Baire also had to assume that f(D,) was not
contained in the “exterior” of f(S,_,).f He considered the concentric open balls
B(p):|x| < p for 0 < p < 1 [B(1) = D,], and their boundaries S(p): [x| = p.
Then f(B(1)) is contained by assumption in the “interior” A of f(S(1)), and by
contradiction f(B(1)) = A. Indeed, if that were not the case, there would be a
point y € A not in the closed set f(B(1)) = f(B(1)) u f(S(1)) and hence a ball

* That this is not the real generalization of the Jordan theorem is due to the fact that
a continuous injection of S,_; into R" cannot in general be extended to a continuous
injection of D, into R".

TIf one knows that the order of an “interior” point A with respect to f(S, ;) is +1
(see § 3), it implies the fact that f(D,) is not contained in the “exterior” of f(S,_,), for
as S(p) tends to a point when p tends to 0, the order of A with respect to f(S(p)) would
tend to 0, although it must be constant.
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y of center y and radius r that does not meet f(B(1)). It is impossible for y to
be contained in the “interior” of f(S(p)) for all p, since the diameter of f(S(p))
tends to O with p. Let p, be the gl.b. of the p > 0 such that y is contained in
the “interior” of f(S(p)). Then, for a sequence (¢,) tending to 0, y would be at
a distance > r of the “interior” of f(S(p, — &) and at a distance > r of the
“exterior” of f(S(p, + &), which is impossible by continuity.

Baire, however, could not prove the weak generalization of the Jordan
theorem which he needed.* It was again Brouwer who gave two different
proofs of the invariance of domain. The first one ([89], p. 485) does not use
the Jordan—Brouwer theorem, but what we may call for short the no separation
theorem (NS), for which Brouwer gave a proof in the same paper (see § 4).

(NS) 1If U is a connected open subset of R”, and F < U is a homeomorphic
image of a compact subset A of S,_,, distinct from S,_,, then U — F is
connected.

To deduce the invariance of domain from this, Brouwer argued by contra-
diction: let f be an injective continuous map of U into R”, where U is a
nonempty bounded open set in R”, and suppose there exists a point P e U
such that f(P) is not interior to f(U). Let Q # P be another point of U; by
assumption, there are spheres Z of center f(P) and arbitrary small radius that
are not contained in f(U); take the radius of such a sphere T smaller than the
distance of f(P) to f(Q) and such that F = f "Y(Z n f(U)) is contained in a
closed ball B = U of center P that does not contain Q. By (NS), P and Q may
be joined by a polygonal line L < U that does not meet F; then f(L) = f(U)
would join f(P) and f(Q) without meeting Z n f(U), which is the desired
contradiction.

Brouwer’s second proof([89], pp. 509-510) is simpler and only uses proper-
ties of the degree [or rather of its localization (chap. I, § 3,D)]. With the same
notations, let P e U and let I be a small open ball of center P such that I,
union of I and its boundary, the sphere K, is contained in U. Let H be the
connected component of the open set R* — f(K) that contains f(P), hence
also f(I) since f(I) n f(K) = &; the proof consists in showing that f(I) = H.
Brouwer’s argument, which is only sketched, is clearer if we use the localized
degree d(f,Lp); if f(I) # H it would imply d(f,I,H) =0 since Fr(l)=K
and H n f(K) = . In his proof of invariance of dimension (§ 1), however,
Brouwer had shown that there exists a nonempty open ball ¥ < f(I); then
y = f71(¥') n1is open in R" and the restriction of f to y is a homeomorphism
onto y'; hence d(f,y,7)= +1 (chap. 1, §3D). If pey’, then d(f,Lp) =
d(f,L H) = O; but d(f,1,p) = d(f,7,7) [loc. cit. formula (14)] and therefore the
assumption f(I) # H implies a contradiction.

* He complained in a letter to Brouwer that his bad health prevented him from
mustering the energy needed to elaborate his ideas.
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§3. The Jordan—-Brouwer Theorem

The full generalization of the Jordan curve theorem (now called the Jordan—
Brouwer theorem) was first tackled by Lebesgue and Brouwer in 1911. We
can split the problem into three parts. Given a subset J of R" homeomorphic
to S,

n—1>

(i) The complement R" — J has at least two connected components.
(i) J is the boundary of every connected component of R* — J.
(iii) R" — J has at most two connected components.

A. Lebesgue’s Note

Part (i) is independent of the other two and also of (NS). In March 1911
Lebesgue published a sketch of a proof in a Comptes rendus note ([294], pp.
173—175). At first Brouwer had doubts that this sketch could be elaborated
into a correct proof ([897], p. 452); because of Lebesgue’s imprecise language,
he thought J was any (n — 1)-dimensional compact connected manifold in R".
Later he admitted that (i) could indeed be proved by Lebesgue’s method, but
[probably owing to his contemporary controversy with Lebesgue on the de-
finition of dimension (see § 5)] he did not wish to write out a complete proof
himself. Lebesgue did not write anything on the matter after his Comptes
rendus note, so no complete proof of (i) was available until 1922,

Lebesgue’s method relies on an ingenious interpretation of part (i): for
0<k<n-—1,let L, be a subset of R" homeomorphic to S;; then there
exists a subset L, , , of R", homeomorphic to S, ,_,, and such that L,
and L, ., are “enlactes” (ie., their linking number mod.2 is # 0). For
k=n—1, S,.k—, =S, consists of two points, and the statement is thus
equivalent to (i). For k = 0, the theorem is trivial, and Lebesgue’s proof
is by induction on k. He considered a piecewise affine approximation g to
a homeomorphism f:S, > L,; let A,, A_, and L,_, be the images by [
of the hemispheres D,, D_ and of their common boundary S,_,.* By the
inductive assumption L,_, is linked by a homeomorphic image L,_, of S,_,.
Replacing L,_, by an arbitrarily close piecewise affine approximation h(S,_,),
makes the intersection g(D,) " h(S, ;) finite, and it has an odd number
of points (if not, replace D, by D_). If P is one of these points, by a slight
change of g, it may be taken to be the intersection of a k-simplex of g(S,)
and an (n — k)-simplex ¢ of A(S,_;) and belongs to the interior of these
simplices; then the boundary of ¢ in h(S,_,) links g(S,).

B. Brouwer’s First Paper on the Jordan—Brouwer Theorem

Brouwer published two papers on the Jordan—Brouwer theorem. The first
one ([89], pp. 489-494), exclusively deals with part (iii) of the problem. Part

* This seems to be the first occurrence of this splitting of the sphere, which will be used
again and again later in many contexts.
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(ii) is dismissed with the remark that it follows from the (NS) theorem (§ 2), for
which he had written a proof in an earlier paper (see §4), without giving any
detail. For any point x4 € J, it is enough to delete from J the interior of an
arbitrarily small (n — 1)-simplex o of a sufficiently fine triangulation of J
containing x,. If G; and G, are two connected componentsof R* — J, y, € G,
and y, € G,, there is, by the (NS) theorem, a polygonal arc joining y, and y,
in R" — (J — 0); on that arc there are points of G, and points of G, at a
distance from x, smaller than the diameter of g; this proves (ii).

The proof of (iii) occupies four pages; it is quite involved and, in spite of its
length, full of cryptic statements that make it very hard to follow in detail.
What follows is my own interpretation and simplification of what I think are
the main points of Brouwer’s arguments. He repeatedly uses a lemma first
stated in the paper on the (NS) theorem ([89], p. 478):

(L) The boundary F of a pseudomanifold-with-boundary P (chap. 1, § 3,A),
of dimension n, is a disjoint union of closed (n — 1)-dimensional pseudomani-
folds F;.

Simple examples show that, if taken literally, this is not correct, for an
(n — 2)-simplex of F may be contained in more than two (n — 1)-simplices of
F. Brouwer acknowledges this but dismisses the matter by saying that p-
simplices of F, for p < n — 2, that appear to contradict the fact that the F; are
pseudomanifolds and are pairwise disjoint, should be “demultiplied” (“als
verschieden zu betrachten sind”) so to speak. It would have been clearer if he
had bothered to give a proof, and said that one can do away with those
occurrences by slightly moving the vertices of F!

The proof of (iii) is essentially based on the idea of linking number, which
Brouwer only defined in a general way six months later; here it is used in the
particular case of a polygonal Jordan curve L and the frontier j of an (n — 1)-
simplex o of a (curvilinear) triangulation T of J; his arguments can be simplified
by using the definition of linking numbers as degrees of mappings (chap. I,
§3,C). Let E be the unbounded component of R — J, G another (bounded)
component, P a point of G; the bulk of Brouwer’s proof consists in constructing
a polygonal Jordan curve L containing P and such that 1k(L,j)= +1.

He first constructed in R" an infinite locally finite (n — 1)-dimensional
simplicial complex ¢ = G whose closure in R"is g \ j. Starting with the cubical
subdivisions A, of R" whose vertices are the points of 27*Z", for each integer
7, let g, be the union of the closed cubes of A, that meet the interior of ¢ and
have a distance at least \/;/2"1 from J” = J — o; if 7 is taken large enough,
P does not belong to any ., for k > 0. The union V, of the p,,, for k > Ois
a kind of “thickening” of ¢ in R" with a “decent” boundary; V, uJ” is closed
and connected, and V, nJ” = j. Define I, as the intersection of G and of the
open component in R” of the complement of V, U J” that contains P; g is the
part of the boundary of I, contained in V,, the union of the g,, where g, is a
finite rectilinear cell complex, the cells of which are cells in the frontiers of
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some of the cubes whose union is g, for 7 + k < v. After subdividing of the
cubes into simplices and using lemma (L), one sees that g, is the disjoint union
of finitely many (n — 1)-dimensional pseudomanifolds.

To construct L, one first joins P to a point R on one of the rectilinear
simplices of g, by a polygonal arc L, contained* in I,. On the other hand, one
can join P, by a polygonal arc L, contained in I, to a point B’ arbitrarily close
to a point of J — ¢ [using (ii)]; then [again using (ii)], one can join B’ to a
point B” in E by a line segment of arbitrarily small length s,. Similarly, one
can join R to a point A’ of V, arbitrarily close to a point in the interior of o,
by a polygonal arc L; in V_; then, again using (i), a line segment s, of
arbitrarily small length joins A’ to a point A” in E; finally, one may join A”
and B” by a polygonal arc L, contained in E. The polygonal Jordan curve L
is the union of L,, L,, 8,, L,, 8,,and L,.

If g were a closed pseudomanifold with boundary j, one would have
1k(L,j) = +1,since L meets g in the single point R. But the argument by which
Brouwer proved the equivalence of the definition of the linking number as a
degree and its definition by counting intersection points does not apply to
“open” complexes such as g. To circumvent this difficulty, Brouwer apparently
considered the connected component ¥y, of g, containing R, which is a recti-
linear (n — 1)-dimensional pseudomanifold with boundary #,, and he takes
for granted that #, tends to j when v tends to + o0, but gives no proof for this
statement. Taking v large enough and a sufficiently fine triangulation of y,, a
simplicial mapping ¢ of 4, into j can be defined, homotopic to the identity,
so that Ik(L, n,) is equal to the degree of the map (x, y)— (@(x) — y)/|@(x) — ¥l
of 7, x Linto S,_;; by the multiplicative property of the degree, this implies
that

Ik(L,n,) = deg(). Ik(L,j) n

but for y, and #,, the equivalence of the two definitions of the linking number
applies, so that Ik(L,n,} = + 1, and from (1) it follows that Ik(L,j} = +1.
Now assume there exists a third (bounded) component G’ of R” — J, and
construct the corresponding intersection I, of G’ and an open component in
R" of the complement of V, n J”. If g’ is the part of the boundary of I, contained
in V,, the construction of the polygonal Jordan curve L showsthat L n g’ = &,
if s; and s, are small enough. But then Ik(L,j) = 0 by the argument made
above where g is replaced by ¢’; this brings the required contradiction.

C. Brouwer’s Second Paper on the Jordan—Brouwer Theorem

This paper immediately follows the first one in Mathematische Annalen ([89],
pp. 498-505). In it Brouwer capitalized on the hard work he did in the first

* To simplify the language, we say that a polygonal arc is “contained” in an open set
1, if the complement of its extremities is a subset of I.
 Note that ¢ need not be injective.
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paper to obtain additional properties of the “Jordan hypersurfaces” in R",
generalizing results Schoenflies had proved for Jordan curves in R

(I) J is accessible from both components I and E (the “interior” and “ex-
terior” of J) of R® — J. This means that for any point A of J, there is a Jordan
arc having A as one extremity and contained in I (resp. in E). The idea is to
consider a sequence (T,) of triangulations of J obtained by repeated sub-
divisions of T, and a decreasing sequence (o,) of (n — 1)-simplices of the
triangulation T,, whose diameter tends to 0, such that A is interior to each
o,. For each k, Brouwer constructed a “thickening” V¥ of o, as in the first
paper, for a sufficiently large 7,, in such a way that V&' is contained in the
interior of V. Then, starting from a point P, € I not in V!, he constructed
a sequence of polygonal arcs L,, joining a point P, € V& — V&*D (0 a point
Pis € VETD — V& Dand contained in V¥ ~ L. The union of the L, and of the
point A is the required Jordan arc. The same argument applies for a point in E.

(I} A similar argument proves the property called “Unbewaltheit” by
Schoenflies: if Q and Q' are two points of J, and m(Q, Q') is the infimum of
the diameters of Jordan arcs joining Q and Q’ in I (resp. E), then m(Q, Q")
tends to 0 with the distance d(Q, Q') of the two points in R”. This time one
considers a sequence (Q,, Q)) of pairs of points of J with d(Q,, Q) tending to
0, and a sequence (g, ) of (n — 1)-simplices of triangulations of J, whose diame-
ter tends to 0, and are such that both Q, and Q, are in the interior of ¢,. The
construction in T) shows that m(Q,, Q}) is at most the diameter of a “thick-
ening” V&, which obviously tends to 0 when the diameter of 6, tends to 0 and
7, tends to + co.

(I11) Finally, Brouwer sketched a proof that the order of a point P € I with
respect to J (chap. 1, §3,B) is +1 (that order is of course constant in I). With
the notations of the first paper, he took for granted that there exists an
(n — 1)-simplex o of the triangulation T of J, and a half-line D of origin a
suitable point P of I, such that D~ J” = (. To show this, take the first point
of intersection Q of J and of an oriented line D, that meets I and does not
meet the (n — 2)-simplices of T; then if o is the (n — 1)-simplex of T containing
Q, the distance of Q to J” = J — g is > 0. There is therefore a point P € Dy N 1
close enough to Q that the half-line D of origin P and containing Q satisfies
the requirement.

Next he took a subdivision T, of T, and considered the piecewise affine map
hof J into R” coinciding with the identity on the vertices of T ; k is homotopic
with the identity by a homotopy F whose image does not contain P if T, is
fine enough. Hence the order of P with respect to J is, up to sign, the sum of
the intersection numbers of D and of the rectilinear complex J, = h(J) [one
may always suppose that D does not meet the (n — 2)-simplices of T,].
Brouwer stated without proof that this number mis + 1. Itis possible to supply
a simple argument justifying this claim by using the construction of the
first paper: first take a polygonal arc L’ joining P to a point P’ of D nE,
which does not meet J§ = h(J"), and next a polygonal arc L” joining P’ to
P and which does not meet o, = k(o). If L = L’ U L”, the construction gives
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Ik(L,j,) = + 1, where j, = h(j). Now, if L, is the segment of D joining P and
P’, then by definition Ik(L, u L",j;) = +m. If Ly is the loop Lo U L, it is only
necessary to show that lk(Lg,j;) = 0, and as L{, does not meet J7, and j, is
homotopic to a point in the complex J7, this is obvious.

There is also in this second paper a curious section in which Brouwer
claimed to have proved (by a fairly intricate construction) the orientability of
J. Did he forget that by definition J is homeomorphic to S,_;, and that S, ,
is orientable as a “manifold” in his sense, for any triangulation, according to
his own definition of orientability ([89], p. 458)?

§4. The No Separation Theorem

In Mathematische Annalen, this paper precedes the one on the Jordan—
Brouwer theorem, and is entitled “Proof of the invariance of domain,” al-
though invariance of domain is only mentioned in the last section; the bulk
of the paper (six pages) consists in the proof of what we have called in §2
the “no separation theorem.” It is certainly the most intricate proof of all
Brouwer’s theorems and the most difficult to follow; the details are so sketchy
that I find it impossible to give more than a summary of the main arguments
as I understand them.

A preliminary result is a generalization of a theorem of Janiszewski on sets
of the plane [267]: let P, Q be two points of S,_;, X and Y be two disjoint
relatively closed subsets of the open ball B,: |x| < 1. Suppose P and Q are not
separated by X nor by Y in B, a statement which Brouwer interpreted as
meaning that there are Jordan arcs L, M, joining P and Q in B, such that
LnX=MnY = ¢ then P and Q are not separated by X U Y, i.e,, there is
a Jordan arc N joining P and Q in B, such that N n(X U Y) = &J. Brouwer’s
proof consists in approximating X and Y by neighborhoods that are sub-
complexes of a sufficiently fine triangulation T of B,, and showing that the
theorem may be proved when X and Y are replaced by these neighborhoods.
In that simpler case Brouwer used, in addition to lemma (L) of §3, the
following unproved assertion:

(L) A subcomplex K of T separates P and Q if and only if any polygonal
arc joining P and Q in B, and which does not meet any (n — 2)-simplex of T,
meets K in an odd number of points.

He then simply observed that if a polygonal arc joining P and Q in B, and
having empty intersections with the (n — 2)-simplices of T meets each of the
subcomplexes X, Y in an even number of points, it also meets X UY in an
even number of points.

Brouwer then used this theorem to show that if the points P, Qin S,_; are
separated in B, by a relatively closed subset X of B,, then they also are
separated by a suitably chosen connected component of X.
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The proof of (NS) proper is by contradiction, and can be divided into three
steps.

First step. Let J be a “Jordan hypersurface” in R", M be a closed subset of
J distinct from J. By arguments that are not at all clear, Brouwer claimed that
the assumption that R" — M has more than one connected component leads
to the following situation: P is a frontier point of M in J, D is an open ball of
R" with center at P, H is the (n — 1)-dimensional sphere, boundary of D in R”,
A, B are two points of H separated by M n D in D. From the preliminary
result he deduced that there is a connected set ¢ contained in M n D, relatively
closed in D, containing P and separating A and B in D. Let u be the intersection
tnH, contained in HA M, and G the connected component of M —u in J
containing ¢. The first step in Brouwer’s argument was to show that ¢ # G;
otherwise P would be an interior point of t = G, contrary to the assumption
that P is a frontier point of M in J. For a sufficiently fine triangulation T of J
there is therefore an (n — 1)-simplex of T contained in G — ¢.

Second step. For the second and third step Brouwer found it easier to
transform R" — {B} by an inversion of pole B, bringing about the following
situation (where we use the same notation for elements of the former situation
and for their transforms by inversion): D is now an open half space of R",
having a hyperplane H as its frontier, and one has A € H; u is a closed subset
of H that does not contain A; G < D is a homeomorphic image of a subset
of J, open in J; u = G n H; finally ¢ is a subset of G, relatively closed in G,
u=tnH,and G — t contains an (n — 1)-simplex ¢ of a triangulation T of J.
If n: H— {A} > S is the projection from A of H — {A} onto an (n — 2)-
dimensional sphere S < H of center A, then, as A ¢ u, the restriction p: u —» S
of 7 to u is defined. The second step of the proof consists in extending p to a
continuous map p: t U u — S. As nothing is known of the connected set ¢, p is
in fact extended to a continuous map py: (G — o) u — S, and then p is the
restriction of py to t U n.

Begin by triangulating the open subset G of J by the usual method, taking
a sequence (T,) of successive subdivisions of T, whose mesh tends to 0. G,
is the union of the simplices of T, contained in G, and G, = G,,,; g, =
G,.; — G, converges uniformly to u, and G is the union of the g,. Next define
Do in two steps:

First take a sufficiently large number r, and define p, on the union G; of
all the g, for v > r by projecting each vertex of all g, for v > r on H by the
orthogonal projection f: R" — H; p, is then defined on the vertices of G; as
the map = o f. Extend it to a piecewise affine map G, — S (using barycentric
coordinates in the simplices of each T, and in simplices of S). This defines p,
on the frontier E, in G of the union G} of the G, forv < r.

Next define p, on G — o by extending it “backward,” so to speak, from E,;
for each (n — 1)-simplex o, in G; with one of its faces 7, in E,, assign an
arbitrary value in S to the only vertex of ¢, not in 7,; then p, can be extended
from 1, to the whole of g, as a piecewise affine map (again using barycentric
coordinates in curvilinear simplices). Then p, is defined on the union of these
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simplices o,, hence it is known on the frontier E, , of the union of the
remaining simplices of Gy, and the procedure can be repeated. This would not
work if one wanted to define p, in the whole set G (there would be an
“obstruction” in o); but it does work for G — o.

Third step. Let N be the connected component of the open complement of
t in the half space D, such that A € N. Let T’ be a triangulation of the half
space D, such that the n-simplices of T’ that meet H have as an intersection
with H a p-simplex of their frontier (p < n — 1); these intersections form a
triangulation T” of H. Then construct a triangulation in the usual way for the
set N'U(H — u) (open in D) by taking successive subdivisions T’, of T’ with
mesh tending to 0, and defining N, as the union of the simplices of T’, contained
in Nu (H — u); A may always be supposed interior to an (n — 1)}-simplex g,
of that triangulation. By lemma (L), the frontier of N, in R" is the union of
N, ~nH (which contains A} and a union L, of pseudomanifolds-with-boundary,
and F, = L, nH is a union of closed (n — 2)-dimensional pseudomanifolds.

For each vertex C of L not in H let C, be a point of ¢ at a distance d(C, t)
of C, and let ¢(C) = p(C,) e S;if Ce F,, let g(C) = n(C). Then extend g to L,
as a piecewise affine map in S (using barycentric coordinates as above); g is
then a continuous map of L, into S.

The contradiction needed to end the proof consists in computing, for
sufficiently large values of v, the degree of the restriction g|F, (as a mapping
into S} in two different ways, using the fact that F, is both the intersection
L, H and the frontier of N, » H in H. For the first computation take v large
enough; for any (n — 1}-simplex o, in L,, g(g;) is then contained in a half
sphere of S8 (depending on a,). The degree of the restriction of g to the
boundary of o, is then 0. By the additivity of the degree and the fact that any
(n — 2)-simplex of L, is the face of two (n — 1)-simplices except those in F, the
degree of g|F, is 0. .

For the second computation, consider the (n — 1)-simplices of N, n H; it
may be assumed that they are so small that, with the exception of g, (which
contains A), their images by 7 each belong to a half sphere of S; the degree of
the restriction of 7 to the boundary of each such simplex is therefore 0. The
additivity of the degree then shows that the degree of g|F, = =n|F, is the same
as the degree of the restriction of 7 to the boundary of oy, and it is clear that
the latter is + 1.

§5. The Notion of Dimension for Separable Metric
Spaces

The theorem on the invariance of dimension (§ 1) did not give a definition of
the word “dimension” as a number attached to a topological space and
invariant under homeomorphisms except for spaces locally homeomorphic to
R" (“pure” C° manifolds), and even for these spaces the introduction of the
auxiliary space R" was not satisfactory for a notion that should have been an
intrinsic one. This incongruity was stressed by Poincaré in 1903 [371] and
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again in 1912, the last year of his life [372], in articles written for a nonmathe-
matical public. He pointed out that, just as in classical geometry, one thought
of a surface as “limiting” a solid, a curve as “limiting” a surface, and a point
as “limiting” a curve, it should be possible to define the “dimension” of a
connected space by an inductive process: the dimension should be one if the
space may be disconnected by points, two if it may be disconnected by sets of
dimension 1, three if it may be disconnected by sets of dimenion 2, “and so on.”

Meanwhile, in October 1910, Lebesgue, who had heard from Blumenthal
of Brouwer’s proof of the invariance of dimension (then in the process of being
published in Mathematische Annalen, of which Blumenthal was one of the
editors) sketched, in a letter to Blumenthal (which the latter published im-
mediately after Brouwer’s proof) another proof, based on a completely new
and remarkable idea ([293], pp. 170-171). Observing that for a covering of a
plane domain by sufficiently small closed “bricks” there always are points of
the domain belonging to at least three bricks, he stated as a theorem that for
any finite covering (E;) of an open bounded connected set D in R” by suf-
ficiently small closed sets there always are points in D belonging to at least
n + 1 sets. He added that for a cube D it is always possible to find a finite
covering by arbitrary small parallelotopes for which no point of D belongs to
more than n + 1 sets of the covering (both statements of course together imply
the invariance of dimension).

This last part was easy enough to show by a simple arrangement of “bricks”
in the cube D; but although Lebesgue’s sketch of a proof for the first statement
was later seen to be capable of yielding a correct argument, the way in which
he tried to apply it led to incorrect statements, as Brouwer almost immediately
observed. The proof is easily reduced to the case in which D is the cube [0, 1]",
and the E; are unions of closed cubes of side 1/2°, having as vertices points of
27Z" for sufficiently large v; it is only necessary to suppose that no E; meets
both opposite faces C;, C; of D (defined, respectively, by x; = Oand x; = 1) for
1 <i < n. Lebesgue’s idea was to inductively construct nonempty closed sets
K, oK, o oK, for which it could be proved that each K, contains
points belonging to at least i + 1 sets E; (cf. [261], p. 43). He thought he could
define the K, by taking the union G, of those E, that meet C,, and letting K,
be a connected component of the frontier of G, in R” contained in D, different
from C, and meeting both C, and C; for 2 < i < n. He could then take the
union G, of those E; not contained in G, and meeting both K, and C,, and
let K, be a connected component of the frontier of G, N K, not contained
in C, and meeting both C, and C; for 3 < i < n. Lebesgue claimed he could
proceed inductively in this way (without giving any detail) to define the K,;
however Brouwer found a counterexample (for n = 3) where Lebesgue’s pro-
cedure does not yield any set K, having the properties he claimed ([89],
p. 545). 1t was only in 1921 that Lebesgue published a correct proof of his
theorem ([295], pp. 177-206).

In the meantime Brouwer had taken up Poincaré’s idea in 1913, and had
given it mathematical content ([89], pp. 540-546). He first observed that
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Poincaré’s tentative definition had to be slightly modified to really conform
to intuition*: if one deletes the vertex of a cone with two sheets in R3, the cone
is disconnected although no one would consider its dimension to be 1! For a
space E,! Brouwer said that two disjoint closed sets F, F' are separated by a
set C if any connected subset of E that meets F and F’ also meets C*; he then
defined a space of dimension 0 as one containing no connected set with more
than one point, and a space E of dimension n > 0 by the property that n is the
smallest integer > O such that any two disjoint closed subsets of E are sepa-
rated by a subset of dimension < n — 1. That definition can immediately be
localized: a space E has dimension n at a point P if P has a fundamental system
of neighborhoods of dimension ».

The bulk of Brouwer’s paper is devoted to proving that, with his definition
of dimension, R” has dimension n at every point. By induction on n, it is easy
to show that this dimension is < n. To prove thatitis > n,an argument similar
to Lebesgue’s reduced the proof to a simplicial version of Lebesgue’s theorem:

(S) Leto = A A, --A,,, beann-simplex in R”, and consider a triangulation
T of o in rectilinear simplices, none of which meets both A;A, - A, and
A, 1Ayt Ay, for any v < n. Define g; inductively for 1 < j < n by letting
y be the subcomplex of T, union of all the n-simplices of T having A, as one
of their vertices; lemma (L) of § 3 shows that y is a pseudomanifold-with-
boundary; the part o, of that boundary, the union of the (n — 1)-simplices that
does not contain A,, is a union of closed pseudomanifolds, and A, ¢ 6. In
general, o, is defined by induction on v < n: let p, be the subcomplex of a,,
union of the (n — v)-simplices of 5, that meet A;A,---A,,,, but do not meet
AjA, ALA, A, this is again a pseudomanifold-with-boundary; the
part g,,, of that boundary which is the union of the (n — v — 1)-simplices of
o, that do not meet A;A,- - A, is a union of closed pseudomanifolds. Then
the g,, which form a decreasing sequence of sets, are all nonempty.

The proof uses the properties of the degree of a map, and, as usual, is very
sketchy and has to be interpreted to make sense. Let #, be the projection of
o—(AjA, - A)) onto A, A, A, [n(M) being the intersection of
A, .1 A, with the v-dimensional linear affine variety generated by M and
A;A, Al Let p, be the restriction of , to g,.

* A similar observation had already been made by Riesz [396].

t This paper is the only one of the period 1911-1913 in which Brouwer considers
general topological spaces. He says his spaces must be “Normalmenge in Fréchetschen
Sinne” (?) but does not use any property beyond the definition of a topological space.
¥ In the paper as it was first published, he had written “closed connected subset” instead
of “connected subset”; after Urysohn had pointed out to him that this definition was
incompatible with the proof of the main theorem of Brouwer’s paper, the latter
published in 1923 a corrected version ([89], p. 547), which he elaborated in a 1924
paper ([89], pp. 554—-557).
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The induction starts with the obvious remark that the degree of p, is equal
to 1.* The main point of the proof is to show that if the degree of p, is 1, so
is the degree of p,.,; this of course implies that o, # (¥ for all v.

The passage from v tov + 1isdone by consideringeach (n — v — 1)-simplex
of 6, n(Ay--A A, 5"+ A,.,), which is the face of a unique (n — v)-simplex
of g,; it follows easily, by a continuity argument, that the restriction of p, ,,
too, N (Ay-*AyA L, A,y considered as a mappinginto A, ., * A,,;, has
degree 1. On the other hand, the restriction of p,., to the frontier of each
(n — v)-simplex meeting A, - A A, ., - A,,; has degree 0. By additivity of
the degree, it follows that, deleting all these simplices from o,, which by
definition gives as remnant ¥y, ,,, the restriction of p,,, to o,,, has degree 1.

§6. Later Developments

The first complete proofs of the “no separation” (§ 4) and Jordan—Brouwer (§ 3)
theorems entirely devoid of the obscurities linked to the fantastic complexity
of Brouwer’s constructions were given by Alexander in 1922. They constitute
the first and second steps, respectively, in the proof of his duality theorem
(Part 1, chap. 11, §6). As we have seen, these proofs, based on convenient
splittings of a cube or a sphere, are reminiscent of the (later) Mayer—Vietoris
theorems. Indeed the use of the general Mayer—Vietoris exact sequence in
cohomology (Part 1, chap. IV, § 6) very easily determines the whole de Rham
cohomology H'(R" — X) (Part 1, chap. 111, § 3) when X is homeomorphic to a
cube or to a sphere, and the “no separation” and Jordan—Brouwer theorems
are just consequences of the computation of H*(R" — X).

Another way of obtaining these theorems was used by Leray [324] who
proved a general result containing both as special cases’: if K and K’ are two
homeomorphic compact subsets of R”, then R” — K and R” — K’ have the
same cardinal number (finite or infinite) of connected components. This fol-
lows from the multiplicative property of the localized degree [chap. I, §3,
formula (13)] and the purely algebraic property of invariance of (linear)
dimension of a vector space over Q.

Although Brouwer gave a definition of the notion of dimension applying
to arbitrary spaces, he was obviously chiefly interested in proving that for R*
that definition gives the number n. This is probably the reason why his paper
was considered merely another way of proving the invariance of dimension,
and the fact that he had given a general definition of dimension was neglected.
At any rate, when in 1922 Urysohn and Menger proposed (independently of

* As a simplex is not 2 “manifold” in Brouwer’s sense, it is in fact the localized degree
d(p,.1,M) which is equal to 1, where I is the interior of the simplex A,A5* - A, and
M is a point of I. Similarly for the p,, v > 2.

1t also contains the “invariance of closed curves” that Brouwer had attempted to
prove ([89], pp. 523-526).
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each other) a definition that is equivalent to Brouwer’s for locally connected
or compact separable metric spaces, they were at first unaware of Brouwer’s
priority.

The Urysohn—Menger definition applies to all separable metric spaces. For
them the empty set has dimension — 1, and the dimension of 2 nonempty space
is the least integer n > 0 for which every point has a fundamental system of
neighborhoods whose boundaries have dimension < n(the dimension is taken
to be + oo if there is no such integer n).*

This definition’s consequences were studied in the period, extending to
about 1940, during which dimension theory became a very active branch of
mathematics. But apart from the Brouwer theorem on the dimension of R"
the methods of proof in that theory belonged to general (also called “set-
theoretic”) topology and made no use of triangulations or homology.! We will
therefore not describe all the results of that theory, but refer the reader to
[261]. Some of results, however have interesting connections with algebraic
topology.

First, Lebesgue’s theorem furnishes (for separable metric spaces) an alterna-
tive definition of dimension. The order of a finite open covering R of a space E
is the largest integer p such that there exists p + 1 distinct sets of R with
nonempty intersection. If m(R) is the g.l.b. of the orders of the finite open
coverings of E finer than R, Lebesgue’s theorem says that for R” the Lu.b. of
the m(R) for all finite open coverings R of R" is equal to n. For a general space
E this Lu.b. is the dimension of E as defined by Urysohn and Menger.

From this it follows at once that for a separable metric space E of dimension
n, the Cech homology groups H »(E; G) based on finite open coverings (Part 1,
chap. IV, § 2)are all O for p > n. Surprisingly enough this is not true for singular
homology groups: there exist compact metric spaces of finite dimension for
which infinitely many singular homology groups are # 0 [44]. On the other
hand, there are obviously contractible compact spaces of any finite dimension,
so that there are no very strong links between dimension and homology of a
space. In Part 3, chap. 11, we shall see that homotopy theory is much closer
to the notion of dimension.

With the arrival of sheaf cohomology (Part 1, chap. IV, §7,C), another
notion of “dimension” of a space could be defined. A space X, on which is
given a family @ of supports (Part 1, chap. 1V, § 7,C), has finite ®-dimension
if there is an integer n > 0 such that

HL(X; #)y=0 forevery i > nand every sheaf # over X; )

the smallest integer n having that property is called the ®-dimension of X and

* Brouwer’s definition differs from that of Urysohn—Menger because he takes totally
disconnected spaces to have dimension 0, whereas for the Urysohn—Menger definition,
there are totally disconnected spaces of arbitrary finite dimension ([261], p. 23).

" Brouwer’s proof was later replaced by a purely combinatorial lemma of Sperner
(303, p. 376).
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written dimg X; when @ is the family of all closed sets in X, n is called the
cohomological dimension of X (or simply dimension) if no confusion arises. If
@, > ®, are two families of supports on X, and if X has ®,-dimension < n,
then it has ®,-dimension < n. If Y is a subset of X that is locally closed, and
if X has ®-dimension < n, then Y has @®'-dimension < n, where @ =d Y.
When X is metrizable and has cohomological dimension < n, the same is true
for every subset of X. For a paracompact space X to have cohomological
dimension < n it is necessary and sufficient that each point of X have a
neighborhood of cohomological dimension < n. If a compact metric space has
dimension < n in the sense of Urysohn—Menger, it also has a cohomological
dimension < n ([66], [87]).

The condition (2) may be restricted by considering only sheaves & of
modules over a fixed Dedekind ring A; if (2) holds for all such sheaves # and
all paracompactifying families ®, one says the dimension of X over A is < n,
and the smallest integer n having that property is the dimension of X over A,
written dim, X; it is also the smallest integer n for which the cohomology with
compact supports H**!(U; A} = 0 for all open subsets U of X [208]. When
dim, X < n, the Borel- Moore homology (Part 1, chap. 1V, § 7,F) satisfies

HP(X;A)=0 for g > n+ 1and any family ® of supports; 3
HijX;A)=0 forg>n+1landallxeX. 4

If # is the constant sheaf A, or if ® is paracompactifying, there is a canonical
isomorphism

HY(X, #) 3 To (XA @ F)  ([66], pp. 151-152). &)



CHAPTER 111

Fixed Points

§1. The Theorems of Brouwer

Brouwer had been considering continuous maps of the sphere 8, into itself as
early as 1909; he first studied the particular case of a bijection® f (which is
therefore bicontinuous) preserving orientation, and he gave a proof that in
that case there exists at least one fixed point x for f, i.e, such that f(x) = x;
the proof is very long (nine pages) and involved, using intricate arguments on
deformations of curves on S, ([89], pp. 195-205). In 1910 he gave another
proof of the same result as a corollary to the existence of at least one singular
point for a continuous vector field on S, (§ 3) by another intricate argument
([89], pp- 303-318).

It was only in 1911, in the paper in which he gave the definition of the degree
of a map (chap. I, § 2), that he realized that this notion could be used to prove
that a continuous map f of S, into itself, satisfying the only condition that
deg(f) # (— 1)"*", has at least one fixed point. Equivalently, he showed that
if f has no fixed point, then deg(f) = (— 1)"*!; but his first proof is far from
simple, and uses the computation (done earlier in that paper) of the sum of
the indices of a continuous vector field on 8, having only isolated singularities
(see § 3). Fixing a point O on §,, he considered, for every point P # O for which
f(P) # O, the unit vector tangent at P to the arc of the circle through O, P and
f(P) having extremities at P and f(P) and not containing O." To apply his
theorem on vector fields, he had to define the vector field in the neighborhood
of O and of the points of f ~(O) where the previous definition is meaningless.

Finally, in the next paper he published in 1911 ([89], pp. 454-472), Brouwer
arrived at a very simple proof without using vector fields: if f has no fixed
point, the consideration of the great circle joining x and f(x) at once provides
a homotopy of f to the antipodal map x> —x for which the degree is
obviously (—1)**1,

* Brouwer only assumed that f is injective, but by degree theory (which he had not
invented at that time) it follows that / is necessarily bijective.
" He had already used that device in 1910 for # = 2 ([89], p. 315).

J. Dieudonné, A History of Algebraic and Differential Topology, 1900—1960,
Modern Birkhéauser Classics, DOI 10.1007/978-0-8176-4907-4 9,
© Birkhduser Boston, a part of Springer Science+Business Media, LLC 2009
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Being linked to the as yet unfamiliar notion of degree, this result did not
attract much attention from the mathematicians of that time. Things were
quite different for the corollary Brouwer added concerning a continuous map
g of a cube 1" into itself. He showed that such a map always has at least one
fixed point. His argument consisted in replacing 1" by the homeomorphic
upper hemisphere D, of the sphere S, and extending g to a continuous map
f:8, - D, by taking f(x) = g(s(x}) in the lower hemisphere D_, s being the
symmetry with respect to the equator; then deg(f) = Osince fis not surjective,
and a fixed point of f must of necessity be a fixed point of g. The interest
aroused by this result was due to its unexpected generality, which made
possible its application to existence proofs in analysis, using much weaker
assumptions than had been customary in earlier existence theorems; later it
was realized that Brouwer’s fixed point theorem could even be used in infinite-
dimensional spaces, under assumptions allowing suitable approximations by
finite dimensional compact sets (see chap. VII).

§2. The Lefschetz Formula

It is clear that for a continuous map f of a compact space X into itself the
existence of fixed points will in general depend not only on the space X, but
on f itself (the Brouwer case X = I" being an exception). This fact was given
precise expression in a remarkable formula discovered by Lefschetz in 1926
[300].

Lefschetz limited himself to a combinatorial manifold X (Part 1, chap. I1, § 4),
but considerably enlarged the concept of “fixed point.” He first observed that
it was a special case of “coincidences” for two continuous maps f, g of X into
itself, namely, the points x € X such that f(x) = g(x). As he was at that time
working on the topology of product spaces, he translated that notion in terms
of the graphs T'(f) and I'(g) of f and ¢ in the product space X x X which is
also a combinatorial manifold: a “coincidence” is the first projection in X of
a common point of T'(f) and I'(g). Lefschetz was thus led back to a problem
of intersection, a question on which we have seen he was also working (Part
1, chap. I1, §§4 and 5).

It is quite obvious that he was strongly influenced by the similar problems
in algebraic geometry, and in particular by the theory of correspondences,
studied since the middle of the nineteenth century by Chasles and the school
of “enumerative geometry” (de Jonquiéres, Zeuthen, Schubert), then by Hurwitz
in the theory of Riemann surfaces, and which had been thoroughly investi-
gated by Severi in the first years of the twentieth century; this influence
explains the rather unusual frame within which Lefschetz developed his theory.

Let X be a compact, connected, orientable combinatorial manifold without
boundary, of dimension n, Lefschetz studied that he calls a “transformation”
T in X, by which he means an n-cycle I'; in the product space X x X. If T’ is
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a second “transformation” in X, the algebraic intersection number* (I'y. ')
is defined (Part 1, chap. IV, §4). Once homology bases (distinct or not}, (y}),
(8)), are known for H.(X;Q), as well as their multiplication table in the
“Intersection ring” H.(X x X;Q), the y} x 8] for p + g =r form a base of
H,(X x X;Q) by Kiinneth’s theorem, and the intersection products of these
elements in H,(X x X; Q) are given by formula (30) of Part 1, chap. I1,§ 5. The
number (I';. ') could therefore be computed at once from the expressions
Tr= ¥ elGix&)  Tr= 3 &hx oL, M
ogpn o<p<n
But Lefschetz’s original idea was to look for another computation of that
number by introducing actions of T and T’ on the homology groups H,(X; Q).
Even before singular homology had been defined, it was possible to associate
to every continuous map f: X — Y of finite cell complexes, a homomorphism

L HX Q) - HY;Q)

of graded vector spaces, by simplicial approximation (Part 1, chap. 11, § 3).
Lefschetz [probably inspired by similar processes in algebraic geometry,
the images of divisors by correspondences (see [299])], extended this idea
to his “transformations.” He considered a homology class a, e H,(X; Q)
and its product a, x [X] by the fundamental class of X (chap. I, §3,A)
in H,,,(X x X;Q); its intersection It.(a, x [X]) with Ty is a class in
H,(X x X;Q), and the image of that class by the homomorphism (pr,), in
H,(X; Q) is, by definition, the image T ,(«,) by the action of T on H,(X; Q).

From his intersection theory (Part 1, chap. 11, §4), Lefschetz deduced the
fundamental result

(Tr. (4 x 8- = (= DP(To (). 6)-,) 2
which gave him the expressions of the ¢! as linear forms in the coefficients of
the matrix () of the homomorphism (T,),, the restriction of T, to H,(X; Q).
From these expressions he derived the expression of (I';. I'7.) as function of
the matrices of the (T,), and (T},),. He did not at first express this formula in
terms of traces of matrices, but in a second paper [301] he obtained such an
expression, and in particular when T' is the identity (so that I'y. is the diagonal
A of X x X, which is an n-cycle), he arrived at the famous Lefschetz formula

Tr- A= 3, (=1 Tr((T,),) 3
0<p<n
When the cycle I't and the diagonal A intersect “transversally” in a finite
number of points, the left-hand side of (3) could be interpreted as the “algebraic
number of fixed points” of the “transformation” T.

* We abuse language by writing an intersection number for cycles instead of writing
it for their homology classes.
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In 1928 Hopf returned to the initial problem of the existence of fixed points
for an arbitrary continuous map f: X — X, but this time he considered not
merely a combinatorial manifold X, but an arbitrary finite euclidean simplicial
complex of dimension n. He associated to such a map, according to (3), what
came to be called the Lefschetz number of f

AN = T (—PTH(S),) @
0o<p<n
and he proved first that if f has no fixed point, then A(f) =

As X is compact, the assumption implies that | f(x) — x| é >0 for all
x e X. There is therefore a subdivision K of the triangulation of X and a
simplicial approximation g of f for that triangulation, homotopic to f and
such that |g(x) — x| > 6/2 > 0 for x € X; since g, = f,, it is enough to prove
the theorem for g instead of £. 1f(6;), < <, is the canonical basis of the Q-vector
space C,(K) of the p-chains of K, and if the diameters of the simplices of K
are small enough, the endomorphism g, of C,(T) corresponding to g (Part 1,
chap. I1, § 3) is such that

§,(0) = +o, foranindex k # jif g(o)} is not degenerate,
d,(0)=0 otherwise;

this implies that Tr(g,) = 0. From this Hopf concluded that all he had to do
was prove the formula that he rightly considered the natural generalization
of the Euler-Poincaré formula [Part 1, chap. I, § 3, formula (4)]:

n

3, (-1 Trg) = 3 (<17 Te(g),) ©)

for every simplicial map g: X — X; it reduces to the Euler—Poincaré formula
when g is the identity. The proof is similar, using the fact that §,(Z,) = Z,,
d,(B,) < B, for cycles and boundaries and that

Tr(g,) = Tr(§,1Z,) + Tr(g,—1B,-1),
Tr((94),) = Te(g,lZ,) — Tr(F,|B,).

When A(f)# 0 and X is again a combinatorial manifold, so that (3) is
applicable for T = f, Hopf gave an interpretation of the left-hand member
when f has only a finite number of fixed points, by defining for each fixed
point a of f an index j,, the definition of which is meaningful for any C°
manifold, triangulable or not. Consider a homeomorphism # of an open
neighborhood of a in X [with h(a) = 0], onto an open neighborhood of 0 in
R"; then, for sufficiently small p > 0, g = hfh ™! is defined in the ball B: |x| < p
and is a continuous map B — R", with only one fixed point 0. The map
x> g(x)/|g(x)| is defined on S: |x| = p and maps S into S, _;, so that its degree
is defined; it is independent of p and of the choice of the homeomorphism 4,
and its value is by definition the index j,. Hopf’s interpretation of (3) for T = f
is then
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Ja= A(S), ©)
acFix(f)
Fix(f) being the finite set of fixed points of f.

Hopf’s first proof of (6) ([241a], p. 153) is particularly interesting. In the
neighborhood of a fixed point a, he modified both the cell complex X and the
map f. One may assume that a is contained in an n-simplex g, of frontier 7,
and (with the preceding notation) the homeomorphism k maps & onto B and
7 onto S; a homotopy can modify f in a neighborhood of a in such a way that
f(z) does not meet 6. Then Hopf added a new n-simplex ¢’ to X by gluing it
to ¢ along 7 in such a way that ¢ U ¢’ becomes homeomorphic to §,, T being
mapped on the “equator” S,.,. Transferring to 6 U o’ the symmetry with
respect to the equator gives an automorphism s of & U ¢/, exchanging ¢ and
¢’ and leaving the points of 7 invariant. Next Hopf changed f in g, replacing
it by f = s o f, and defined fin ¢’ equal to f o s.

Doing this for every fixed point of f yields a cell complex X’ and a continuous
map f of X' into itself with no fixed point; A(f) = 0; but the construction gives
the relation

AN =AMN~- T s
acFix(f)
hence the result. This is one of the first examples of the use of attachment of
new cells to a cell complex that later became an important tool (see chap. V,
§3).

Hopf’s second proof [241b] starts from a triangulation T of X such that all
the fixed points of f belong to n-simplices. He refined T to a sufficiently iterated
subdivision T’, for which he constructed a simplicial approximation g homo-
topic to f, such that there are no fixed r-simplices of T for g when r < n; then
Tr(g,) = 0 for r < nand Tr(J,) = ¥ acrixifar SO that formula (6) becomes a
consequence of (5).

Lefschetz endeavored to generalize his formula to compact metric spaces
using Vietoris homology, but Hopf provided him with an example of a
compact subset X of R? and a continuous map without fixed point for which
A(f) # 0 both for singular and Vietoris homology: X is the union of two
concentric circles and a spiral curve winding between both and asymptotic to
each of them, whereas f is just a rotation of a fixed angle w for points on each
circle and on the spiral ([304], p. 347). Later Lefschetz realized that the validity
of the formula could be recovered by making assumptions on the “local
connectedness in the sense of homology” on X (cf. chap. IV) [46].

§3. The Index Formula

We have already mentioned (chap. I, §2) that in 1881 Poincaré, in his work
on global theory of differential equations, had introduced the notion of index
for a vector field on the sphere S,. He was studying in R? the integral curves
of a differential equation
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where X and Y are polynomials. He took a point O in R® not in the plane, and
projected from O the vector field (X, Y) on a sphere S of center O, extending
it by continuity on the “equator” of S (section by the plane parallel to R2).
This gave him a vector field on S, symmetrical with respect to O. He showed
that there were always at least two (symmetrical) singular points of the field
(i.e., points where the field vanishes). Then he restricted himself to “general”
such fields in the following sense: (1) X and Y have the same degree m; (2) if
X,., Y, are their homogeneous parts of degree m, xY,, — yX,, is not identically
0; (3) the curves X = 0 and Y = 0 intersect transversally in points not on the
equator; (4) the roots of the homogeneous equation xY,, — yX,, =0 are
simple.

Next Poincaré introduced the notion of index of any closed curve on an
hemisphere of S containing no singular point: if & (resp. k) is the number of
points where Y/X passed from —oo to +oo (resp. from + 00 to —oo) when
moving on the (positively oriented) curve, the index is defined as i = (h — k)/2.
He showed that i = +1 for a small enough curve around a singular point,
and took that value as the index of the singular point; he then proved the
remarkable result that the sum of the indices of the singular points is equal to
2([365], p. 29).

In 1909 Brouwer, who at that time probably was not aware of Poincaré’s
paper, considered a vector field on S, that he only supposed continuous (where-
as in Poincaré’s case, the field is analytic at nonsingular points}), he wanted to
prove that there exists at least one singular point. He argued by contradiction,
using the detailed study of the trajectories of the vector field (he could not use
local uniqueness since the field is not supposed to be C') ([89], p. 279).

In his 1911 paper on the definition of the degree ([89], pp. 454-472)
Brouwer considered, for any n, a vector field on 8, that he merely supposed
continuous, with at most finitely many singular points; he proceeded to prove
that the sum of the indices of the singular points is 2 for even n, 0 for odd n.
To apply his definition of the degree to that problem he used a very com-
plicated and obscure process, starting from a simplicial triangulation T of S,
obtained by intersections of §, with hyperplanes, among which is the equator;
T is supposed symmetrical with respect to the equator and the singular points
of the vector field are all contained in the interior of n-simplices of T. If T is
fine enough, the sum of the indices of the singular points of the vector field is
given by a sum of degrees of maps, written ¢,, and c¢,,. To define c,,, project
each n-simplex s;, of T in the northern hemisphere stereographically on the
tangent hyperplane H, at the north pole, consider the map of the frontier
of the projected simplex in §,_; given by the (stereographically projected)
vector field in H,, and take its degree c,,; do the same for the southern
hemisphere, stereographically projected on the tangent hyperplane H, at the
south pole. to eet the deerees c.... Brouwer showed that. owing to the svmmetrv
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of T with respect to the equator, the sum of the degrees c,, and c,, (for all
n-simplices of T) reduces to the sum of the degrees of two maps of the equator
S, into itself. He then claimed that the computation of that sum could be
reduced to the case of a constant vector field on §,_,, but his description of
what he does to reach that result is so sketchy and intricate that it is hard to
decide if his procedure really constitutes a proof.

In 1925 ([238], p. 2) Hopf announced that Brouwer’s theorem for vector
fields on S, would generalize to arbitrary compact “manifolds” X: for a
continuous vector field on X, with finitely many singular points, the sum of
the indices of these points is equal to the Euler—Poincaré characteristic. Hopf
indicated that this result could be derived from the theory of fixed points of
continuous maps. Alexandroff and Hopf showed in their book ([30], p. 549)
how this can be done very simply for a C! manifold X and a C! vector field
Z on X by considering the flow (x, £} F;(x, t) of Z. Recall that this is defined
for all x e X and all ¢t € R; if v(t) = F(x, 1), t— v(¢) is the integral curve of the
field Z starting from x = v(0), i.e,, v'(t) = Z(v(t}). A compactness argument
shows that there is an interval |¢| < ¢ such that the fixed points of the map
x> Fy(x, t) are exactly the singular points of Z for any ¢ in that interval, with
the same indices. Since that map is also obviously homotopic to the identity,
the result follows from formula (6). It can be generalized to a vector field Z
on a C! manifold X that is merely supposed continuous, for such a field is
homotopic to a C! vector field with the same singular points.

The notion of vector field on X is not clearly defined for a combinatorial
manifold X, since there may be several distinct differential structures on X (or
none at all) compatible with the topology. In 1928 [240] Hopf considered
vectors attached to each point of X and satisfying conditions depending not
only on the topology of X but on its triangulation, and he proved that they
still satisfy the index formula.



CHAPTER IV

Local Homological Properties

§1. Local Invariants

Local properties of topological spaces were considered at the beginning of the
twentieth century, chiefly by Schoenflies, who was a pioneer in that matter.
They were mainly studied for subsets of RZ, and without any intervention of
homological notions. Examples of these properties are accessibility and “Un-
bewaltheit,” which we saw developed by Brouwer using simplicial methods
but still no homology (chap. 11, § 3,C). After 1910 the concept of local con-
nectedness*® was also the theme of many papers in “point-set” (or “analytic”)
topology (see [517] and [518], chap. I).

The fact that all contractible spaces have the same homology showed that
homology is a very coarse notion to use for the description of properties of a
space invariant under homeomorphism. At the end of the 1920s the idea
emerged that, just as global connectedness of a space is a property that gives
very little information, and “localizing” it gives much more, so one could
perhaps “localize” homology groups of any dimension in order to make a
deeper study of the topology of a space.

In this chapter, it shall always be understood that “homology group” means
reduced homology group (Part 1, chap. IV, §6,E).

The first instance of such ideas probably occurs in print in a footnote of a
1928 paper by Alexandroff ([27], p. 181, note 63), in which he introduces the
notion of “r-local connectedness” for any r > 0; we shall examine it in § 2; he
mentions that Alexander had considered the same definition but did not
publish it.

A. Local Homology Groups and Local Betti Numbers

It was only in 1934 that Alexandroff [28], Cech [122], and Seifert and Threlfall
in their book ([421], chap. VIII) independently gave definitions of “local”
homology groups or Betti numbers.

* For the many uncertainties and even priority claims to which the notion of con-
nectedness gave rise in the early 1900s, see [89], p. 486.

J. Dieudonné, 4 History of Algebraic and Differential Topology, 1900—1960,
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Alexandroff only considered compact subspaces of R” and Vietoris ho-
mology (Part 1, chap. IV, § 2} with rational coefficients; Seifert and Threlfall
limited themselves to locally finite simplicial complexes and simplicial homo-
logy; Cech gave definitions for arbitrary topological spaces and used Cech
homology based on finite open coverings(Part 1, chap. IV, § 2) with coefficients
in Q or in a finite field .

Both Alexandroff and Cech referred to Lefschetz’s “relative homology”
(Part 1, chap. 11, § 6), whereas Seifert and Threlfall gave direct definitions and
only mentioned relative homology in a footnote. The natural procedure stem-
ming from relative homology would be to take the relative homology groups
H,(X,X — {x};G) as local invariants at a point x € X for some homology
theory (Part 1, chap. 1V, §6,B), and if that theory satisfies the excision axiom
(loc.cit.) these groups may be replaced by H,(V,V — {x};G) where V is an
arbitrary open neighborhood of x; however, this is not the way the authors
mentioned above proceeded.

They attached to any point x € X an “r-dimensional Betti number p,(x) at
x” for every r > 0, in the following way (reformulated for convenience in the
present language, and for any homology theory with coefficients in a field).
Consider two open neighborhoods U o V of x, and the natural map

HXX-U->HXX-V)

write p, y,v the rank of that homomorphism [dimension of the image of
H,(X, X — U}], which decreases when V decreases and hence has a limit p,
(finite integer or +oo) for the directed set U(x) of open neighborhoods of x.
Furthermore, when U decreases p, y increases and hence has a limit p,(x) for
the directed set U(x). Observe that instead of the dimension p, v, the homo-
logy groups H,(X,X — U) themselves may be considered, and one can take
direct limits over the directed set U(x). The group obtained in that manner is
not necessarily isomorphic to H{X, X — {x}).

Suppose x has a fundamental decreasing system of neighborhoods (U,,),
such that X — U, is a strong deformation retract (Part 1, chap. IV, §6,B) of
X — {x} and of X — U, for n > m. It then follows from the exact sequence of
relative homology [Part 1, chap. IV, § 6,B, formula (94)] that the maps

HXX-U,) > HXX-U)->HEXX - {x})

are all bijective; hence the groups obtained by the preceding limit processes
actually are the H,(X,X — {x}), which then deserve to be called the local
homology groups at x.

This is particularly the case when X is a C%-manifold or a locally finite
simplicial complex. In the first case, if the dimension of X at the point x isn > 0,

HX,X - {x})=0 forj#n
H, (X,X — {x};A)>~ A for any ring A. n

In the second case (the only one considered by Seifert and Threlfall), if St(x)
is the star of x for a triangulation of X, X — St(x) is a strong deformation
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retract of X — {x}. As H,(St(x})) = O for all p > 0, since St(x) is contractible,
H,(X.X — {x}) ~ H,y(K.) @

where K, is the subcomplex St(x) — St(x) of the triangulation of X. This is
actually the definition given by Seifert and Threlfall for the local homology
groups, and of course they had to prove it independent of the triangulation
of X ([421], pp. 120-125). They used these groups to show that some proper-
ties, defined a priori with respect to some triangulation, are in fact indepen-
dent of the choice of that triangulation; for instance, this is the case for the
unjon of the j-simplices that are not on the frontier of a (j + 1)-simplex
[0 < j < dimX)].

B. Application to the Local Degree

Let u be a C* map of R" into R" such that u(0) = 0, »(R" — {0}) = R* — {0},
so that u defines an endomorphism u* of H" (R" — {0}; Z), which is iso-
morphic to Z. Then u*({) = ¢{ for any cohomology class {, and c € Z; the
integer c is called the local degree of u at 0, and written deggy(w). If the jacobian
Jofuat0is # 0, then degy(u) = 1ifJ > 0 and degy(u) = —1ifJ <O.

Now consider two smooth manifolds X, Y, both oriented and having the
same dimensionn > 2, and let f: X —> Y be a C® map. A point a € X is isolated
for f if there is an open neighborhood U of a such that f(x) # f(a) for
xeU-— {a}. One may assume that U is the domain of a chart ¢: U —» R" of
X such that p(U) = R" and ¢(a) = 0 and there is a chart §: V- R* of Y such
that f(Uyc V, y(V)=R" and ¢(f(a)) = 0. Then define the local degree
deg, f at the point a as deg,f =degy( o fo @™1); it does not depend
on the choices of U, V, ¢, and ¢. If the tangent mapping T,(f) is a bijec-
tion of T,(X) onto T, (Y), then deg, f = 1 if T,(f) preserves orientations,
deg,f = —1lifnot.

Let Z be another smooth oriented manifold of dimension n,and g: Y - Z
be a C* map such that f(a) is isolated for g; then a is isolated for g o f, and

deg,(g o f) = degy,g-deg, f.

Finally, suppose X and Y are compact and connected and that there is a
point y, € Y such that f~(y,) = {x,,X,,...,X,}, a finite set. The x; are iso-
lated for f, and

degf = Zl deg, f.
£

C. Later Developments

The papers of Alexandroff and Cech defined Betti numbers p,(x) but not
groups attached to a point x. Alexandroff proposed definitions of other groups
at a point x, the dimension of which may be different from p,(x). One of his
definitions is similar to one that is better understood within the context of
Borel-Moore homology: the definitions and notations of Part 1, chap. IV,
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§7,G give the homology graded sheaf #,(%,.(X;L)) for the generalized chain
complex of sheaves ,.(X; L), written #(X; L). The stalk (#}(X; L)), at a point
x can be called the j-th local homology group at x; the exact sequence of relative
homology shows that it is isomorphic to the Borel-Moore relative homology
group Hy(X, X — {x};L).

The work of Alexandroff and Cech was considerably enlarged and diversi-
fied by Wilder between 1935 and 1955. He conclusively showed how all the
results (mainly relative to plane sets) obtained by the “point-set topologists”
of the Polish and American schools who shunned simplicial methods could
be enormously generalized and put in their proper perspective by the use of
homological notions [518]. He not only used Cech homology, but also Cech
cohomology with compact supports and coefficients in a field (which did not
yet exist when Alexandroff and Cech wrote their papers): for two open neigh-
borhoods U > V of x in a locally compact space X, there is a natural homo-
morphism H}(V) —» H{(U) (Part 1, chap. IV, § 7,G). If p{ v is the dimension of
the image of that homomorphism, the numbers p{; v behave exactly as the
numbers p, y v of Alexandroff; hence, by the same limit processes 2 number
p'(x)can be attached to each x € X, called the local co-Betti number at x, which
is an integer or +oo; Wilder showed that in fact p,(x) = p"(x) for all xe X
([518], p. 191).

Wilder’s book contains a large number of local properties linked to homo-
logy and cohomology. Since it was written when modern algebraic techniques
(Part 1, chap. IV, § 5) had not yet been introduced into algebraic topology, it
would be worthwhile rewriting it with the help of these techniques, which very
likely would make it shorter and more perspicuous,

In the remainder of this chapter, we shall restrict our description to the
notions and results of [ 518] that have proved most striking and useful in other
directions in algebraic topology (see [385]).

D. Phragmén—Brouwer Theorems and Unicoherence

As an illustration of Wilder’s ideas, I think it worthwhile to insert as a small
digression an example of topological properties that are put into a better light
when they are connected with notions of algebraic topology.

In 1885 Phragmén published a short note on topology of plane sets [361] in
which he proved the following property: if A is a compact connected subset
of R%, and U is the unbounded connected component of the open set R? — A,
then the frontier of U is connected. His method consisted in decomposing R?
into squares with sides of length 27™, considering the union of those squares
that met the frontier of U, and letting m tend to infinity.

In one of his first topological papers, in which he gave a new proof of the
Jordan theorem for plane curves, Brouwer extended Phragmén’s result by
showing that the frontier of any connected component of RZ — A is connected
([89], p. 378). Later it was discovered that this property is linked to several
others, and “point-set topologists” were able to extend them when R? is
replaced by much more general spaces X. But apparently it was only in the
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Alexandroff-Hopf ([30], p. 292) book that these properties were shown to
depend on the fact that H,(X; Z) = 0. The key property is:

If X is a Hausdorff arcwise connected space, such that H (X;Z) = 0, and if A,
B are two nonempty disjoint closed sets such that X — A and X — B are
arcwise connected (neither A nor B “cuts” the space), then X — (A U B) also
is arcwise connected (A U B does not “cut” the space). This is an immediate
consequence of the Mayer—V ietoris homology exact sequence.

Elementary arguments of “point-set topology” easily produce from that
property the following so-called “Phragmén—Brouwer theorems,” under the
additional assumption that X is locally arcwise connected.

(i) If A, B are two closed nonempty sets in X such that A B = ¥, and if x,
y belong both to the same connected component of X — A and to the same
connected component of X — B, then they also belong to the same con-
nected component of X — (A U B).

(ii) If A is a closed, connected, nonempty subset of X, each connected com-
ponent of X — A has a connected frontier.

(iii) If A, B are two closed connected subsets of X such that X = A U B, then
A n B is connected (a property that was much studied under the name of
“unicoherence”).

(iv)If A is a closed subset of X, and C,, C, two nonempty connected
components of X — A having the same frontier B, then B is connected.

§2. Homological and Cohomological Local
Connectedness

In a locally connected space X each x € X has a fundamental system of open
neighborhoods that are connected. It follows from the definitions (Part 1,
chap. IV, §3) that for Alexander—Spanier cohomology, 0-cocycles are just
locally constant functions; hence for a connected space X the reduced coho-
mology A°(X) = 0. Conversely, if 2 compact space K is the union of two
nonempty open and closed sets U;, U,, then a function constant in U, and
constant in U, but with different values is locally constant; hence AI°(K) # 0.
From this it follows at once that for locally compact spaces X, saying that X
is locally connected is equivalent to saying that p°(x) = 0 for all x e X.

This leads to the generalization of local connectedness formulated by
Alexandroff in 1929 and mentioned in §1. He said that X is homologically
locally connected in dimension q > 0 (later abbreviated into g — Ic) at a point
x, iffor every open neighborhood U of x there is an open neighborhood V <« U
of x such that every g-cycle in V bounds in U. There is, however, no direct
relation between that property and the fact that p,(x) = 0, as Alexandroff
himself showed by examples ([28], p. 9). What p,(x) =0 [or equivalently
p(x) = 0] means is the corresponding notion for Cech~Alexander cohomol-
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ogy with coefficients in a field: X is cohomologically locally connected in
dimension g (abbreviated to g — clc) at the point x if for any open neighbor-
hood U of x there is an open neighborhood V = U of x such that the image
of the homomorphism H4(U) - H(V) s 0.

Examples show that at a point x of a locally compact space X, X may be
q — Ic for all integers g in an arbitrary finite set, but not g — Ic for the other
values of g ([304], p. 92). In 1935 Lefschetz [307] and Wilder defined the
property of being Ic" at a point as meaning that the space is g — Ic at that
point for all values ¢ < n. They needed this for their definition of generalized
manifolds (see § 3); the notion was studied in detail by Begle for compact spaces
[46]. There is a corresponding notion (clc”) for cohomology.

Results concerning these notions are now best expressed in the context of
Borel-Moore homology. In their notation (L being a Dedekind ring) the
locally compact space X is homologically (resp. cohomologically) locally
connected in dimension g [abbreviated to g — hlc, (resp. g — clcy )] at the
point x if, for any neighborhood U of x, there is a neighborhood V < U of x
such that the image of the homomorphism

Hg(V;L) - Hy(U;L) [resp. H(U;L) - HY(V;L)] 3)

is 0. The space is ¢ — hlc, (resp. g — clc, ) if it has that property at every point,
and hlc] (resp. clcf)ifitis g — hlc, (resp. g — clc, ) for allintegers g < r. Finally,
X is hlc (resp. clc, ) if for any neighborhood U of any point x it is possible to
choose the neighborhood V < U independently of q such that the image of the
map (3) is O for every g.

For a hlc] space X and an L-module B, there is for every g < r a split exact
sequence

0 - Ext(H;_, (X; L), B) » H%(X; B) » Hom(H(X; L), B) » 0 @

corresponding to the exact sequence for H (X;B) applicable to all locally
compact spaces [Part 1, chap. IV, § 7,G), formula (184)].

Property hlc] implies clc}, but clc] only implies hlc]™'. When L is a field,
however, hlc] and clc] are equivalent, and hlc] and clc] are always equivalent.

If X is compact and hlc], then the L-modules H,(X; L) and HY(X;L) are
finitely generated for q < r; Ext(H?*'(X; L), L) is then the torsion submodule
of H,(X; L) and Ext(H,_,(X; L), L) the torsion submodule of HY(X; L).

We conclude this section with the remark that singular homology can be
used for the definition of local properties instead of Cech homology or
Borel-Moore homology. This was done in 1935 by Lefschetz,* who defined
properties ¢ — HLC, HLC", and HLC by replacing Cech homology by singu-
lar homology in the definitions of ¢ — Ic, Ic", and hlc. The important property

* Do not confuse these notions with other concepts of “local connectedness” based on
homotopy rather than on homology, which we shall consider in Part 3, chap. IL, § 2,B.
They were also introduced by Lefschetz, who used the symbol LC (with indices or
exponents) to designate them (the H in HLC stands for “homology”™).
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of HL.C spaces is that for them Alexander—Spanier cohomology is naturally
isomorphic to singular cohomology.

§3. Duality in Manifolds and Generalized Manifolds

A. Fundamental Classes and Duality

Local properties of a C® manifold M are used to extend the concept of
“fundamental class” in the homology of a compact manifold (chap. I, §3,A)
to “relative fundamental classes” for a noncompact one.

Suppose M is an oriented smooth n-dimensional manifold (connected or
not). Choose an orientation on R” and on S, _, and let y, be the generator of
the group H,(R", R" — {0}; Z) ~ Z that is mapped on [S,_,] by the isomor-
phism H,(R"R" — {0};Z) 5 H,_,(S,-,;Z). For any chart ¢: V > R" pre-
serving orientation, and x € V such that ¢(x) = 0, there is an isomorphism
0. H(V,V — {x};Z) 5 H(R",R" — {0};Z). Thus H,(V,V — {x};Z) = 0 for
p # nand H,(V,V — {x}; Z)is isomorphic to H,(R", R" — {0}; Z). By excision,
this gives a composite isomorphism

H,(M,M — {x};Z) > H,(R" R" — {0};Z)

which is independent of the chart @; let p, be the element of H,(M,M — {x}; Z)
mapped onto y, by that isomorphism. Now let K = M be any compact subset.
Then there exists a unique class puy x € H,(M,M — K;Z), called the funda-
mental class relative to K, such that for any x € K the image of p, ¢ by the
homomorphism

Je HuM,M — K;Z) > H,(M,M — {x};Z)

deduced from the natural injection is the class u,. The proof uses a technique
similar to the one in H. Cartan’s paper of 1945 [106]. Consider first the case
M = R" and then the case in which K is small enough, then apply the
Mayer-Vietoris exact sequence to treat the union of finitely many such
compact sets by induction on their number. Poincaré duality for homology
and cohomology of M with integer coefficients can then be obtained by
considering M as union of an increasing sequence (K,,) such that each K, is
acompact neighborhood of K, . Let z,, be a relative n-cycle whose homology
class is pmy,x € H{(M,M — K,;Z). Then, for each p-cocycle f on M with
compact support, the class of the cap product z,,~ f is the same for all
sufficiently large m and only depends on the class ¢ of f in H?(M; Z). Call Dy¢
that class in H,_,(M; Z); then the homomorphism

Dy: H(M; Z) - H,_,(M; Z)

is bijective (Poincaré duality).
In a similar way for a closed subset A of M, there is an isomorphism

Dy at H2(A;Z) > H,,(M,M — A;Z)
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for Alexander—Spanier cohomology with compact supports and singular
homology (Alexander duality).

There are analogous results for nonorientable manifolds and coefficients
in F,.

B. Duality in Generalized Manifolds

Until 1930 Poincar¢ and Alexander duality theorems for integer coefficients
had only been proved for orientable compact triangulable C°-manifolds. This
was soon felt to be an unsatisfactory situation, since the notion of triangula-
tion depends on auxiliary subspaces R", whereas the duality theorems only
deal with homology and cohomology; even an extension to all C°-manifolds
(for which triangulability was unknown) would have suffered from the same
defect. Starting with Cech [121] and Lefschetz [306] in 1933 topologists
endeavored to define classes of spaces by purely homological conditions which
would include both combinatorial manifolds and C°-manifolds, and for which
the duality theorems would hold.

The general idea was to impose homological properties known to hold for
C°-manifolds on these spaces, particularly local homological conditions (§ 2).
Several definitions were proposed in succession by Wilder, Alexandroff and
Pontrjagin [31], P. Smith [437] and Begle [46]. Here again the introduction
of Borel-Moore homology, with substantial improvements by Bredon [87],
brought a more satisfactory state of the theory.

If L is a Dedekind ring, a locally compact space X is a homology n-manifold
over L (abbreviated n — hm, ) if:

1. The cohomological dimension dim; X of X over L (chap. I, § 6) is finite.
2. The relative Borel-Moore homology

L forg=n

0 forg#n )

H,(X.X — {x}:L) ={

for any x e X.

These conditions imply that the cohomological dimension dim; X <n + 1
and that the sheaves #(X; L) are O for ¢ # n. Bredon has also proved that
O = H#,(X; L) 18 locally isomorphic to the constant sheaf L. One says O is the
orientation sheaf and X is orientable over L if O is isomorphic to L; an iso-
morphism of ¢ onto L is called an orientation of X over L.

We have seen that in 1945 H. Cartan had already started to drop assump-
tions of differentiability or triangulability in the theory of “manifolds” (Part 1,
chap. 1V, § 5,A). In 1947 he realized that sheaf theory (which he still used at
that time in Leray’s formulation) provided a way to “localize” the concept of
orientation. In his 1950-1951 Seminar he defined a generalized cochain
complex (with indices <0) of sheaves of singular chains and introduced an
orientation sheaf in that context, with the help of which he could prove
Poincaré and Alexander duality theorems for C°-manifolds.
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In the context of Borel-Moore homology the duality theorems are derived
from a spectral sequence applicable to all locally compact spaces X with finite
cohomological dimension. Suppose dim; X < n, and let " be the generalized
cochain complex of sheaves defined by

B = Gyn-gX:L) ®)

s0 that #1(#') =0 for g <0, and #°(#') = #,(X;L). Then ([66], p. 152)
for any paracompactifying family of supports @ there is a spectral sequence
having as E, terms

E%? = He(X; #4(£")) ™

and H%(T,(#")) for abutment with a suitable filtration.
If X is now a homology n-manifold over L and dimgX < +o00, there is a
natural isomorphism

Hy(X; 0 ®@ L) 3 HY_,(X; L) ®

(“Poincaré duality”). In addition, if A is a closed set in X, and dimg, X < +0,
there are natural isomorphisms

H5(X,X — A;0 ® L) 3 HYG (A L) ©)
Hinx-aX — A0 @ L) 3 HY_ (X, A;L) (10)

(“Alexander duality”).

In the Borel-Moore theory a generalized n-manifold X over L (abbreviated
n — gm, ), also called cohomology n-manifold (n — cm, ), is an n — hm, which
is also clcy (§2), and dim; X < n. If L is a field, a metric n — hm, space is also
an—cm.

Using excision and the K iinneth theorem, it is easy to see that combinatorial
manifolds of dimension » in the sense of Alexander (Part 1, chap. 11, §4) are
generalized n-manifolds over Z.

CC°-manifolds are trivially generalized manifolds, but generalized manifolds
are genuine generalizations of C°-manifolds. There are generalized manifolds
of dimension 4 in which for some points x there is an open neighborhood U
of x such that for no open neighborhood V < U of x is V — {x} simply
connected ([421], p. 241).

The main interest of generalized manifolds is that they are much easier to
work with than C%-manifolds. For instance, if a product A x B of locally
compact spaces is a generalized manifold, both A and B are generalized
manifolds. In the theory of transformation groups, fixed point sets and “slices”
in a generalized manifold are generalized manifolds.

Wilder’s general program was to find conditions under which the Schoenflies
results for R? could be extended to generalized manifolds. A whole chapter of
his book ([518], chap. 12) is devoted to the notion of accessibility. He gene-
ralized Schoenflies’ “Unbewaltheit” (chap. 11,§ ) to the notion of uniform local
g-connectedness: in a compact space X, an open subset D is uniformly locally
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connected in dimension g (abbreviated to g — ulc) if for every finite open
covering U = (U,) of X there exists a finite open covering B = (V) of X finer
than U and such that, for any Vj, there exists a U, > V; for which the image
ofthemap H,(V; " D) - H (U,n D)is0; Disulc" ifitisq — ulcfor0 < g <r.

—

We only mention here a few of the numerous properties proved by Wilder.

.If X is an orientable n — gm which is a homology sphere [H,(X) = 0 for

g #n] and M is a compact (n — 1) — gm contained in X, then the com-
ponents of X — M are ulc"™L.

If X is as in 1 and M < X is the common frontier in X of at least

two connected open sets, one of which is ulc”™2, then M is an orientable
(n—1)—gm.

If X is an orientable n — gm such that H;(X) =0 and U < X is an open
connected set which is ulc"~2 and has a connected frontier B in X, then B
is an orientable (n — 1) — gm.

. Finally, if X is an orientable generalized manifold and f: X — Y a surjective

continuous map of X onto a Hausdorff space Y, such that the reduced
homology of each fiber f~}(y) is 0, then Y is an orientable generalized
manifold and f: H.(X) > H.(Y) is an isomorphism [a remarkable refine-
ment of the Vietoris-Begle theorem (Part 1, chap. 1V, § 7,B and 7,E)].
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