Jber. d. Dt. Math.-Verein.
80 (1978) 111 —128

The Jordan Curve Theorem Revisited

By MiLos DosTAL and RALPH TINDELL in Hoboken, New Jersey

Introduction'). Among the various theorems which are easy to formulate
but difficult to establish, the Jordan curve theorem (abbreviated in the
sequel as JCT) undoubtedly occupies a special place. Indeed, there is
hardly another theorem which appears as “obvious” as any axiom of
elementary geometry, and whose proof is not obvious at all. This probably
explains why the Jordan curve theorem remained unnoticed until 1887,
when Camille Jordan pointed out and discussed the theorem in his “Cours
d’Analyse” [16] (!). Needless to say, Jordan’s proof was not a proof in the
modern sense; yet it aroused the interest of many mathematicians who
recognized the significance of the theorem for “analysis situs” as well as
complex analysis (?). The first rigorous proof of JCT, given by Oswald
Veblen in 1905 [32], revealed the complexity of the whole matter. In the
subsequent twenty years the theorem was reproved, completed and
generalized by several outstanding topologists (to name but a few: Alex-
ander [1], Antoine [3], Brouwer [7], [8], [9], Kerékjarto [17], [18],
Schoenflies [27], [28], [29]). Thus, while the topological nature and signif-
icance of JCT for the topology of the plane was clearly recognized by the
time Kerékjartd published his classic monograph [18], the theorem
remained for analysts a troublesome matter. To understand whys, it suffices
to quote what Professor Salomon Bochner recently wrote on the work of
Carathéodory (cf. [6], p. 831): “...Actually Carathéodory was planning
the book on complex analysis ahead of the book on the calculus of variations,
but what was holding up the book on complex variables was a widespread
presumption among analysts in 1920’s that any book on complex variables,
if to be complete, and deserve the name, has to contain a complete and
rigorous proof, without any prerequisites, for the theorem of C. Jordan...
The analysts in the 1920’s knew full well that this was a “topological”
theorem... But, for all of that, the complex analysts of the time were still
vying with each other in the quest for producing, for the Theorem of Jordan,

1) By (1), (%), etc., the reader is referred to remarks collected in the concluding Section 3.
The numbering of lemmas, propositions and corollaries follows from this example: (2.9) means
the ninth statement in Section 2.
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a proof to end all such proofs, and Carathéodory was experimenting for
many years with a proof of his own...”. Indeed, several outstanding analysts
of that time did devise new proofs of JCT (cf.,, e.g., Bieberbach [5], Denjoy
[12], Hartogs [15], Pringsheim [24], [25], Schmidt [26]). However,
notwithstanding substantial simplifications achieved in the elementary
proof of JCT by these and other authors, the theorem has remained and
will probably always remain, difficult to establish by purely elementary
means. Partly as a result of this situation, it has become customary to omit
the proof of JCT from textbooks on complex analysis (among the few
exceptions are the books of Dienes [11] and Thron [30]). Moreover, a
direct proof of this theorem rarely appears even in introductory texts on
topology. On the other hand, one soon finds that despite the abundance
of various elementary proofs of JCT in the literature?), few of them are
really complete and of a truly elementary nature (3).

In this note we present an elementary proof of JCT which is based on
very intuitive geometric ideas with “combinatorial” elements reduced to
a minimum. In order to formalize the proof and thus avoid using geometric
illustrations in the arguments, one has to introduce a few auxiliary def-
initions and related notation. This is done in Section 1, where one can
also find those few facts from set topology which are used later in the
proof (4).

We believe that the main advantage of the proof of JCT presented in
Section 2 is that, as an intermediate step, one obtains a very simple proof
of a special case of JCT which is sufficient for the needs of complex analysis.
Namely, it is shown that JCT holds for the class of standard curves (see
the definition below), comprising among others all piecewise regular (i.e.
piecewise smooth) Jordan curves.

Roughly speaking, a standard curve is any Jordan curve which at (almost)
each point looks like the graph of a function of one variable. More precisely,
consider a continuous map ¢:[0,1] —» R? which is either a Jordan curve
or a Jordan arc?). Fix te (0,1] and suppose that there exist numbers
ti,t5,0 < t, <t <t, <1;a’system of (affine) coordinates (x, y) in R*; and a
function f so that the following holds: Let ¢(t) = (¢,(t), @,(t)) be the
parametric expression of ¢ in coordinates (x,y). Then f is defined on the
interval ¢,([t,,t,]) and ¢, = f-¢,. Hence, ¢ being Jordan, ¢, must
be one-to-one, which — together with the intermediate value property of
continuous functions (cf. ()) — shows that ¢, must be strictly monotonic.

2) See the bibliographical entries at the end of the paper marked by an asterisk.
3) The meaning of these terms is self-evident. Nevertheless, this terminology is formally
introduced (and slightly modified) in Section 1.
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We may clearly assume that ¢, is increasing. Set a = @,(t;), b = ¢,(t,).
Then ¢, is a homeomorphism of [t,t,] onto [a,b]. Writing x = @,(t)
we see that the set ¢([t,,t,]) is actually the graph (in coordinates (x,y))
of the function y = f(x),a < x < b. If t < t,(t = t,,resp.), we shall say
that ¢(f) is a standard point (left-standard point, resp.) of ¢ with respect to
f, (x,y). tyand t, (f, (x,y) and t,, resp.).

Definition. Let ¢:[0,1] - R? be a Jordan curve (Jordan arc, resp.) such
that every point ¢(t), 0 < t < 1, is left-standard (with respect to some f, (x,y)
and t, which all depend on t). Then ¢ will be called standard.

Every standard ¢ contains standard points. Indeed, fix any fe(0,1].
Then ¢(t) is left-standard with respect to some f, (x,y) and t,. But then
every ¢(t),t, <t <, is standard with respect to the same f,(x,y), t, and
t, = t. Therefore, the set of nonstandard points of a standard ¢ is nowhere
dense in the set ¢([0,1]).

Let ¢:[0,1] - R? be a continuous map for which there are numbers
0=t,<t, < <t, = 1suchthatif p(t) = (¢,(t), p,(t)) is the expression
of ¢ (in some fixed system of coordinates (x,y)), then on each interval
[tj-1,t;] the functions @,(t) and ¢,(¢) are continuously differentiable and
(@1(1)* + (¢5(t)* # 0. Then ¢ is called piecewise regular. A simple appli-
cation of the inverse function theorem shows that every piecewise regular
Jordan curve (or arc) is standard. Thus, giving a simple proof of JCT for
standard curves (see (2.1)—(2.6) below) establishes the theorem for all
curves one encounters in classical function theory. This special case is then
used to prove JCT in its full generality (see (2.7)—(2.11)).

1. Preliminaries

A. General notation and terminology. If P and Q are points of the plane R?,
then |P — Q] is their Euclidean distance; FQ— is the straight line segment
with endpoints P, Q; and, for P # Q, I(P,Q) is the straight line determined
by P and Q.

If A and B are subsets of R?, then dist(A4, B) denotes their distance, i.e.
dist(4,B) = inf{|P — Q|: Pe A, Q € B};and A, A,0A and CA denote respec-
tively the interior, closure, baundary and complement of 4 in R%. We say
that a subset S of R? does not disconnect (or separate) R?, if its complement
CS is connected. More generally, given poimnts P,Q € CS, we say that S
does not separate P from Q, provided both P and Q lie in the same com-
ponent of CS. We shall adopt -the following notation: If A4 is a connected
subset of CS, then A4 is contained in a unique component of CS, which we
shall denote K(A4;S). If, for instance, S is a bounded subset of R?, then S

g+
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is contained in some disk 4, hence C4 is a connected subset of CS. Thus
all the components of CS, except K(C4;S) are contained in 4, hence are
bounded. K(C4;5S) is the only unbounded component of CS, and will be
denoted ExtS.

B. Curves, paths and arcs. If ¢ is a mapping of a subset 4 of R? into R?, {¢)
will denote the range of ¢, i.e. {¢)> = @(4). A curve ¢ in the plane R? is a
continuous mapping of the unit circle S* into R?; if this mapping is one-
to-one, ¢ is called a Jordan curve. In particular, by a curve we shall always
mean a closed curve. A path A from a point P to a point Q is a continuous
mapping of the unit interval [0,1] of the real numbers into R? such that
A(0) = Pand A(1) = Q.If P # Q, the points P, Q will be called endpoints of A
(or of {A)). We shall then write A = A{P,Q} to indicate that 1 is a path with
endpoints P,Q; and the set {P,Q} will be denoted by A. If A is a path and
I any interval, I C [0,1], then AI (rather than the usual symbol A(I)) will
denote the set {i(t):teI}. Hence the meaning of A(a,b], A[a,b], etc., is
clear. Moreover, we shall write 1 for A(0,1).

Given a fixed cartesian coordinate system (x,y) in R?, the natural para-
metrization x(t) = cos2xt, y(t) = sin2nt,0 < t < 1, of the circle S! asso-
ciates with each curve ¢ a unique path t— @(x(t), y(¢)). This path will be
called the canonical parametrization of ¢, and will be denoted by the same
letter. Hence we shall often speak about a curve ¢(t),0 < t < 1, meaning
actually the canonical parametrization of ¢.

A path 4:[0,1] - R? which is one-to-one will be called an arc. Hence
by an arc we shall mean what is usually called a Jordan arc. In this case
A = (AD\ A If ¢ is either a Jordan curve or an arc, and A is an arc such that
{AY c@), A is said to be a subarc of ¢. If ¢ is an arc and A a subarc of ¢
with endpoints P, Q, we shall write A = ¢ {P,Q} to indicate that A is “the
part of (@) from P to Q”. If ¢ is a Jordan curve, P,Q € (), P + Q, and
A is a point of (@), distinct from the points P, Q (4 is a subarc of ¢, not
containing P and Q, resp.), then ¢{P,A4,Q} will denote any subarc 4 of ¢
such that A = A{P,Q}, A€ I(4 C 1,resp.)*).

Finally, given four distinct points A, A,, B; and B, on a Jordan curve
¢, we shall say that the pairs 4,, 4, and B,, B, are interlaced on ¢, provided
{@{A,,B,,A,}> v <{p{A,,B,,A,}> = {(p). Being interlaced is clearly a
topological property, i.e. invariant under homeomorphisms of {¢) (). It
is easy to see that the role of both pairs is symmetric.

C. Polygonal paths. A path « is called polygonal, provided there exists a
homeomorphism (i.e. a “change of parameter”) & : [0,1] — [0,1]and numbers
t;, 0 =ty <ty < <t =1suchthat «od is linear on each subinterval

4)If A, A* are two subarcs with this property, then obviously <A) = (A*).
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[t;—4,¢;], but is not linear on any larger subinterval of [0,1]. It is easy to
see that the points 4; = a(a(t;)), called vertices of a, actually do not depend

k
on 4, and clearly <a) = (acd) =) A4;_,A4;. A curve ¢ is said to be
i=1
polygonal, if its canonical parametrization is a polygonal path.
A straightforward application of uniform continuity yields the following
lemma (cf. [4], Satz 48, p. 72):

(1.1) Lemma. Given a path « = a{P,Q} and ¢ > 0, there is a polygonal path
@ = a{P,Q}, whose vertices lie on {a), such that |a(t) — a(t)| < ¢ for each
t €[0,1]. In particular, each of the sets {a),{a) lies in the (closed) e-neigh-
borhood of the other.

The next lemma is a simple consequence of Lemma (1.1) combined with
an obvious reduction of a polygonal path to a polygonal subarc (°):

(1.2) Lemma. An open subset U C R? is connected if and only if for any
two distinct points P, Q of U, there exists a polygonal arc A = A{P,Q} such
that {(Ay C U.

D. The Jordan curve theorem. Outline of the proof. Our aim is to give an
elementary proof of the celebrated

(1.3) Jordan curve theorem. Let ¢ be a Jordan curve. Then

(a) <) is the boundary of each component of C{¢@).

(b) C{@) has exactly two components, one bounded, denoted Int{¢), and
the other unbounded, namely Ext{¢).

The main steps of the proof of JCT, presented in the next section, are
as follows:

(i) JCT is established for standard curves®) (cf. (2.1)—(2.6)). Then it is
shown that

(ii) arcs do not disconnect the plane (cf. (2.9)).
From the last statement one easily obtains part (a) of (1.3). Indeed, we have
the following lemma:

(1.4) Lemma. If no subarc of a Jordan curve ¢ separates R, then {¢) is the
boundary of each component of C{¢).

Proof Let U be a component of C{¢). Since a boundary point of U can
be in neither U nor any of the components of C{¢), we have dU C {¢).
If U were a proper subset of {¢), then dU would be contained in {4) for
some subarc A of ¢. Hence U n C{A) = U n C{4), so that U would be

%) See the Introduction.
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both closed and open in C{4), hence U would be a component of C{4)
(because U # @). Since C{A) is connected by our hypothesis and U is
nonempty, we would then conclude U = C{4). This, however, is impossible,
because () N C{1) # @ and {p) " U = @. Hence ¢ = 0U.

Part (a) of (1.3) is then used to show that

(iii) {@) disconnects the plane R? (see (2.11)); and finally, that

(iv) there are at most two components of C{¢) (see (2.11)), which com-
pletes the proof of JCT.

We shall also use the fact that for certain Jordan curves statements (a)
and (b) of (1.3) are trivial to establish:

(1.5) Lemma. Let ¢ be a Jordan curve such that {¢) is either a circle or a
(boundary of a) rectangle or a triangle. Then (a) and (b) of (1.3) hold for ¢.

Indeed, in each of the three cases one can give a very simple proof; but
one can also prove directly from definitions that (1.3) holds for any starlike
curve ¢, and (1.5) then follows.

2. Proof of the Jordan Curve Theorem
k - m o
Two polygonal paths o and B, <o) = () 4;_,4;,{B> = () B;_,B;, are
i=1 j=1

called transversal, if no vertex of one lies on the other. This implies that
for each pair (i,j) of integers, 1 < i< k,1 <j<m,theset 4,_; 4, B;_ B;
is either empty or consists of one point. The number of pairs (i,j) for which
the latter is true is called the intersection number of the paths o and B,
and is denoted by w(x;B)>?). The notions of transversality and intersection
number can be extended to the case when () is replaced by a straight line
and o as above. In either case we have the following:

(2.1) Lemma. (i) w(et; f) = w(B;a) = iw(Ai_lAi;ﬁ); (ii) if B> is a straight

i=

line or a triangle (i.e. {f) = ByB, U B, B, U B, B,), then K(A,;{BD) =
K(A,; <{B>) if and only if w(a;p) is an even integer.

Proof. Part (i) follows by induction on k. Part (ii): First, assume that {f)
is a nondegenerate triangle, i.e. By, By, B, noncollinear. Let T be the convex
hull of the points B, B,, B,. Let k =1, ie. {(a) = A4, and let
)y n{P) # 0, ie. w(a;f)>0. Set 1 =1(4,y,4,). By the postulate of
Pasch (cf. (*)), I n {B) = {C,,C,}; hence by convexity of T, C;C, = [N T.
Considering the mutual position of the points 4, 4,, C,, C, on the line [,
the proof easily follows. The inductive step is an immediate consequence
of the case k = 1. For {B) degenerate, i.e. By, B,, B, collinear, the lemma is

5) See page 128.
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trivial, because by definition of w(a;f), each point of {a) N (B) is now
counted twice. Finally, if (8 is a straight line, the lemma is a direct con-
sequence of an equivalent formulation of the postulate of Pasch (cf. (})).

(22) Lemma (7). Let @ be asin(1.5)and X ,, Y, and X ,, Y, two interlaced pairs
of points on . Let 6, =0,{X, Y}, i =1,2, be given paths such that
(61U d;) N Q> = @ and K(d,; {p)) = K(¢,; {@D). Then the paths o, and
g, intersect, i.e. (o,) N (G, * 0.

Proof. I. Let o, and ¢, be polygonal.

Case 1a: K(d,;<{@)) = K(d,;<¢)) = Int{p) (cf. (1.5). Obviously we
may assume that ¢, and o, are transversal, since otherwise {¢,» N {(c,> # @
as desired. It suffices to show that

w(c,,0,) is an odd integer. (*)

Let {o;> = U Ai_ AL, Ah = X, AL, = X,(i = 1,2). We shall prove () by

induction on m,. If m, = 1, then by the convexity of the region Int{e),
we have Int{p) nI(X,,Y;) = X,Y, (%), hence A}_ A} nl(X,,Y,) =
Aj_1A; n X,Y,. Applying (2.1) to « = o, and B = I(X,,Y,) we conclude
that w(c,;0,) is odd ). Assume now that () holds for m, <n —1,n > 1,
and any m,. We shall prove that () holds for m, = n and m, arbitrary. Fix
Zelp{X,X,,Y}) so that A} é<o,) = ZA} UA}AS U A3Z for j=
1,...,myand |Z — X,| < miné., where §; is defined as follows:

;= dxst(Xz,I(A2 Al Ul(A}_|, AD) v (4], 4D)

if the segments A!_ A%, X,A? intersect; and 0; =dist(4}_,A4},X,A})
otherwise. By our ch01ce of Z,

w(o,;ZA3}) = w(o; X,A}); o, and o, are transversal. (1)
Let o be such that {65y = ZA? U () A}_ A},i = 1,2. The paths g,, 03
J>i

being transversal (cf. (1)), w(o,;0%) is an odd integer by the induction
hypothesis. Since by (1), w(s,;03) = w(a,;0,), it suffices to show that the
integers w(c;;03) and w(o,;g}) have the same odd-even parity. By (2.1) (i)
this amounts to showing that the integers w(al;ﬂg) and w(a,;Z A2?) +
w(o,; A2 A3) have the same parity; but this follows immediately, since by
(2.1) (i) their sum equals w(a,;0;), which by (2.1) (ii) is an even number®?),

Case Ib: K(6,;<{®)) = K(¢,;{¢)) = Ext{e). Choose a point P and a
disk 4 centered at P so that 4 C Int{¢). If T is any point of ¢, set T’ =

%) That K(X,;B) # K(Y,;p) follows easily from the special choice of ¢, but can also be
established by a simple convexity argument for any convex ¢.
62) See page 128.
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PT n04"). The mapping T +— T’ being a homeomorphism of {(¢) onto
04, the pairs X, Y and X}, Y, are interlaced on 04. Let ¢} be a path such
that (o) = XX, u {(a;) U ~Y,-_i/?,i = 1,2. Applying the reflection r with
respect to the circle 94 and then Case I a to the paths r o a¥, 7 o 0% (cf. ¢?)), we
obtainr({o¥)) N r({e%¥)) + @,hencealso @ + {o}) N {a%) = (o) n{0,)
which completes the proof.

II. 6,,0, arbitrary. Assume that there exists a pair of paths o,,0,
satisfying the hypotheses of the lemma but for which {g,) N {(a,) = 0.
Hence there exists ¢ > 0 such that dist({a,),{s,>) > & (cf. (4)). By (1.1) it
is easy to find polygonal paths 6,, 6, which satisfy the assumptions of the
lemma and lie in the ¢/2-neighborhood of ¢,,0,, resp. Hence {(6,) N <d,) =
@, a contradiction.

(2.3) Lemma. Consider a continuous function f:[a,b] - (c,d). If y(t) =
(t.f(t)),a < t < b, is the graph of f, then the set W = ((a,b) x (c,d))\{y)
has exactly two components.

Proof. Set G; = {(x,y)e W:(—1)'y > (—=1)f (x)} (i = 0,1). Then each G;
is a connected set. Indeed, let ¢ > 0 be such that f([a,b]) C (c + &,d — ¢).
If P; = (x;,y))(i = 1,2) are two distinct points of G,, then assuming x, < x,
and setting Pj = (x;,d —¢) (i = 1,2), consider any path ¢ such that
{6) = P,P; U P{P, U P,P,. Then ¢ = ¢{P,,P,} and <{o) C G,. If
X; = X,, then it suffices to take ¢ such that {¢) = P, P,. Similarly one
shows that G, is connected. Since G,, G, are clearly open disjoint sets and

Gy U G; = W, they are also closed in W. Hence each of them is a component
of W.

(2.4) Lemma®). Let ¢:[0,1] - R? be either a Jordan curve or an arc. Let
o(t) be a standard point of @ with respect to some f,(x,y), t,,t,. Set (a,f (a)) =
o(ty), (b,f (b)) = @(ty). Then, for any disk A centered at ¢(t) = (X,y), there
exists a rectangle R = [X — ¢, % + & ] x [J — &,,7 + ¢&,] with the follow-
ing property:

(S) R C4,[x —&,x + &) C(a,b) and there are numberst_and t,,0 < t_
<f<t, <1, such that o(ty) =X + &1, f(X £ &) |f(x) — 7l <&, if
1% — %] < &1, <> NOR = {(t_), 9(t.,)},{p> N R = o(t_,1,).

If the point (%) is only left-standard, thent = t,, X = b, and (S) is replaced
by

7) The existence of the intersection T easily follows if we define 4 as the disk (centered at P)
with radius ¢ < dist(P,{¢>). Then {¢) lies in C4.
8) In (2.4), (2.5) and (2.6) we use the terminology and notation discussed in the Introduction.
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(S) RCA,x —¢, > a, and there exists a number t_e(0,t) such that
P(t_) = (X — e, f(X — £)),0[0,{] "R = ¢[t_,t] and ¢[0,t] "OR =
{o(t)}

Proof. Let ¢(f) be a standard point. For any X, = (x,,y,) € R? set
1 Xoll = max{|x,l,|yol}. Then there exists g, > 0 so that || X — @(?)|| > &
for any X in the compact set (@) \ @(t,,t,). Let e€ (0,¢,) be so small that
Ri=[x—¢ex+e]x[J—¢ej+e]cA[x—ex+e]lClab)IfI=
(x — &,x + ¢") is the largest open interval containing X for which
IC[x—¢ex+¢] and |f(x) — J| <e for all xel, set & = (1/2)min
(¢,€"), &, = ¢ Then the rectangle R = [X — &,,%X + &,] X [J — &,7 + &,]
and the numbers t, defined by ¢(t,) = (X + &,,f(X £ ¢,)) have all the
required properties. (One has to use the fact that ¢[t,,t,] is the graph of f)
The proof of (S') is analogous but simpler.

(2.5) Proposition. Standard arcs do not disconnect the plane.

Proof. Let 4:[0,1] — R? be a standard arc. It suffices to show that given
any pair of points P,Qe C{(A),P # Q, A does not separate them. Set
U = {te[0,1]: A[0,t] does not separate P,Q}. Clearly, 0€ U. Hence U is
a nonempty interval which does not reduce to {0}, because U is open in
[0,1]. Indeed, ift € U, t < 1,then by continuity of 4, for somee > 0,¢t + ¢€ U,
whence [0,t + ¢] C U, because U is an interval. Thus, if we show that
to = supU € U, then necessarily t, = 1, and the proposition will follow.
Applying (2.4) (S') to ¢ = A,t = t, and any 4 such that P,Q ¢ 4, we obtain
the rectangle R and the number ¢_ < t. Fix an arbitrary t' € (t _, t,). U being
aninterval,t'e U, hence thereisanarc o = o { P,Q} such that {a) N A[0,t'] = @.
Let a,,, be maximal subarcs®) of the form a; = «{P,P'}, a, = a{Q’, Q}
for which &; " R = @, i = 1,2. (Here we are assuming that (a) " R # 0,
since otherwise <a) N A[0,t,] = @, as desired.) Hence P’,Q'€OR. Let
¢ = ¢{P',Q'} be any arc such that (¢) C OR and A(t_) ¢ (). Take any path
such that o = o' {P,Q},<a'> = <{a;) U (@) u<a,). Then by (2.4) (S') we
see that
> N A[0,t5] = <&'> MBR N A[0,t] C (oD n{A(t_)} =@ .

Therefore, t,e U.

(2.6) Proposition. If a Jordan curve ¢ contains at least one standard point,
then (@) disconnects the plane R*. Moreover, if ¢ is a standard curve, then
the Jordan curve theorem holds for ¢.

Proof. Let ¢() be a standard point of ¢ for some function f, a system of
coordinates (x,y) in R?, etc. Let ¢(f) = (X, 7). Then there exists a rectangle

) maximal in the sense of inclusion of their images.
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R and numbers t_,t, as in (2.4) (S) (for a fixed 4). Set A, = ¢(t,) and
B, = (X,7 + ¢&,). We claim that K(B_;<{¢)) # K(B,;<{¢)). Assume the
contrary. Then for some path « = a{B_,B,},{a) n {(p) = @. Let 4’ be
a disk centered at ¢(f) such that 4’ C R and 4’ n {a) = @. Applying (2.4)
(S) to ¢(f) and A’, we obtain the rectangle R’ = [x — &},% + &,] x [J — &5,
y + €,] and the numbers t_, t',. Set A, = ¢(ty), By = (X,y + &,). Let o
be any path suchthat o' = o’{B",B,} anll (o«’> = (a) UB, B, UB_B'_,
and let ¢’ be an arc such that {(¢') = (@) \@(t_,t",). Since R" C 4" CR
and <{a) N {p) = O, we have {a') N {p') = @. Let Y be a Jordan curve
such that {y) = 0R'. By (24) (S), (@' U @) n{Y> = @ and the points
A"_, A, lie in opposite “vertical” sides of {(y). Since B’_, B’, lie in opposite
“horizontal” sides of {y), the pairs {4’_,A4’,} and {B_, B’} are interlaced
on y. This, together with the obvious inclusion & U ¢’ C Ext{y), implies
by (2.2) that <a') n <¢’> +# @ which is impossible, since clearly
)N =LKy n<p) = 0.

Now let ¢ be a standard curve. By (1.4) and (2.5), ¢ satisfies part (a) of
(1.3). We have just shown that (@) disconnects R2. Let R be the rectangle
corresponding by (2.4) (S) to any chosen standard point on ¢. Then part
(a) of (1.3) combined with (2.3) show that C{¢) has at most two components.

(2.7) Remark. If ¢ is a Jordan curve, let I(¢) be the union of all bounded
components of C{¢). Since I(¢) and Ext{¢) are disjoint open sets, the
decomposition I(p) U (@) L Ext{p) = R? implies 0I(p) C {¢), hence

1(9)\<@) = I(9). (If (1.3) (@) holds for ¢, then (¢} C dl(9), ie. I(p) =
I(p) U {p).) With this notation we have the following:

(2.8) Lemma. (i) Let ¢ (Y, resp.) be a Jordan curve satisfying part (a) (part
(b), resp.) of (1.3) and let () C I(p). Then Int{y) C I(g).

(ii) Let ¢ be a Jordan curve and ay,...,a, arcs such that {(a;) N {@p) = 4;
for all i and &, N &, = @ whenever k # 8. Moreover, assume that the Jordan
curve theorem holds for any Jordan curve y satisfying {x> C <o) v {a;>
U uLla,y. Then, for any arc B such that {B)> C {pd>\(a; U -+ U a,),

there exists a Jordan curve Y such that {B) C {y> C{p>uU U {o;» and
Int{y) C (Intl{p))\ U <> 10

Proof. (i) Let 4 be a disk such that I(¢) C 4. Fix Z € 94. Then Z € Ext{¢)
N Ext{y ) (cf. paragraph A of Section 1). Notice that by (1.3) (a) CI(¢p) =
(@) u Ext{p) = Ext{p). Suppose that there exists a point X € Int{y)
N CI(gp) = Int{y) N Ext{p). We may clearly assume that X e Int{y)

1%) Notice that by our hypothesis JCT holds for both ¢ and y.
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N Ext{@). By (1.2) thereexistsanarc A = A{X,Z}suchthat (¢) N {1) = @.
Since Z e Ext{y) and X e Int{y>, (Y> n <L) #+ @. Hence, if Y is any
point of (> N (A, thenby (2.7), Y € I(p)\{@> = I(¢). Therefore, Ext{¢p) =
K(Z;{9>) = K({A);<9)) = K(Y;<@D) C I(p), which is impossible.

(ii) It follows from our hypotheses that

&<y =0 foralli; a;n{o;) =@ forall i +j. )

We shall proceed by induction on n. Let n = 1,0, = a; {X,Y}. If
a; C Ext{p),set y = ¢. If &; C Inte, let Yy be any Jordan curve such that
Py =<@{X,B,Y})u<a;) and use (i). Assuming that (ii) holds whenever
the number of o;s is less than n(n > 1), suppose we are given n arcs o; as in
the lemma. Applying the case n = 1 to ¢ and «,, we obtain a Jordan curve
' such that {f) C (Y') C<pp e,y and Int{y’) C (Int{p))\<a,).
Renumbering a;,...,a,_,, if necessary, we may assume that
a;> N Int{Y’) # @ precisely for all i < k for some k < n (if kK = 0, there
is nothing to prove, hence we assume k > 1). Since {(Y'> C (@) U a,),
it follows from (2) that &; n {Y') = @ for all i < n — 1. Hence, for each
i <k, a CInt{y'), and thus also a; C Int(Y’) N <o) = KY'> U IntY'))
N {@) C Y, whence {a;») N Y'Y = a,for 1 < i < k. Applying the induc-
tion hypothesis to y' and a,,...,a,, we obtain a Jordan curve ¥ such that
B> C Yy YD ulap v uloyy CLppulay v ulyy and
Int{y) C (Int{yYH)\ Koy ) L U o) C(Intdpd)\(Ketyp U L <ar,), the

last inclusion following from the definition of the number k.

(2.9) Proposition. Arcs do not disconnect the plane.

Proof. We shall use the notation of the proof of (2.5). As before, it suffices
to show that t, = supU € U. Let 4, be a closed disk centered at A(t,), so
small that the points 1(0), P, Q lie outside 4,. Set t, = inf{t: A[t,t,] C 4,};
then A(t,) €94, and A(t,,t,] C 4,. Let 4, be a concentric disk so small that
4, A[0,t,] = @. Hence, 4, C 4,, and if we set t, = inf{t: A[t,to] C 4,},
then t, < t, < t,. Therefore, t, € U'!) and so by (1.1) there exists a poly-
gonal arc u = u{P,Q} such that {u)> n A[0,t,] = @.If (u) N 4, = 0, then
also <{uy ni[0,to] = @, ie. t,eU. We may therefore assume that
ud A, + @, which yields (u) N d4, # @'?). Since u is a polygonal arc
and 04, a circle, the set {u) N 04, is finite and thus defines a decomposition
of u into subarcs u,,...,u, such that for each i=1,...,m, we have:
it C {P,Q} U ({u) N d4,); either f; C A, or ;" A, = @;and ;N ji;= O

') Indeed, U is an interval containing [0, ).
12) Here we are tacitly applying (1.5) to 94,.
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whenever i # j. Assume that u, = u,{P,,Q,} is such that ji, N4, # 0.
Hence ji, C 4, and P,,Q, € 84,. We shall define a new arc y;, = u,{P,,0,}
such that {u}> n 4[0,t,] = Q. Repeating this construction for every index i
for which fi; n 4, + @, and replacing the subarc y; of u by p} we finally
obtain a path y' = p/'{P,Q} such that {¢'> n A[0,t,] = @, which shows
that t,e U.

Construction of uy: Let B = B{P,,Q,} be an arc such that () C 04,,
A(ty) ¢ (B> and let ¢ be any Jordan curve for which (@) = {f) U {u).
The intersection of the circle 04, and the polygonal line (u, ) is a finite set.
Hence there are arcs aj,...,a, with the following properties: <{«;» C 34,
(for all j); oy U v a, =<{p) N4, ={p)N04,; and o;nd; = @ if
i # j. By (2.6) we can apply (2.8) (ii) (°) and obtain a curve y, for which JCT
holds and such that (8> C (¥> C () U 04, and Int{y> C (Int{p>)\04,. By
(2.8) (i) we see that Int{¢p) C 51, and since A(t,) ¢ {¢)>, we conclude that
A(t,) € Ext{p). This, together with A(t,,t,] N <> C Alt;,t,] " <{pd = O,
implies A[t,,t,] C Ext{e) C Ext{y), hence also A[0,t,] " {Y> = @. If we
show that A(t,,t,] N {¥) = @, we can clearly take any y; such that {(u;» =
{YO\B. It suffices to show that A, N (¥) = @. Since Int(y) C (Int{p))\d4,,
the connected set Int{y) is the disjoint union of the open sets Int{y> n 4,
and Int{y> n C4,, hence one of these sets must be empty. If we had
Int{y> n C4, = @, then Int{y) C 32; in particular, {f) C 4,, which is
impossible. Therefore, (Int{y)) N 4 » = @, and the proof is complete.

(2.10) Corollary. The Jordan curve theorem holds for any Jordan curve
containing at least one standard point.

The proof is exactly the same as the last paragraph of the proof of (2.6),
provided we replace there (2.5) by (2.9).

(2.11) Proof of JCT for an arbitrary Jordan curve ¢.

Part (a) of (1.3) follows by (1.4) from (2.9).
Part (b): First we shall prove that (@) disconnects R2.

Let F,G' €{p), F # G. If F'G' C {p), we are done by (2.6) (or by
(2.10)). Hence we may assume that there is a point 4 € ﬁ\((p). Let x be
an arc such that {(x) = F G is a maximal segment for which A € (x) C F'G’
and % N {(p) = @. Let ¢,, ¢, be subarcs of ¢ such that ¢, = ¢, = {F,G},
1> U@ =L@, ¢, NP, = O. Let &, (i = 0,1) be Jordan curves such
that (®,> = {@;> U (3. By (2.10), JCT holds for &, ®,. Choose a disk 4
centered at a point of ¢, with 4 n (®,) = @. By part (a) of the theorem
we can find points A’, B'e 4\ (®,) for which K(A';{®,)) # K(B';{P,D).
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We claim that K(4'; (¢)) + K(B’;{@)), which will show that {¢) dis-
connects R2.

Assume the contrary. Then there is an arc y = y{4’,B’} such that
y>n{p) =0. Let (a), {B)> be the maximal subarcs of y such that
dn{xd =0 = fn(x), A e {(a), B € {B). By the choice of A’, B’ we have
Y nlx)y =y)n{{P,> + O. Hence by definition of «,p, {(a) N x #
0 + (B> n x. Assuming without loss of generality that the system of
coordinates is chosen so that {(x) is an interval of the x-axis, we have
() Nn%=A=(a0) and (8> nx = B = (b,0). Interchanging A’, B, if
necessary, we may assume that a < b. Set ¢ = (1/2)dist(A—§,<<p)) and let
R be the open rectangle {(x,y):a — ¢ < x < b + &,|y| < ¢}. By (2.3) the set
R\{%x) has two components R,,R_. Since Rn<{p) =@, we obtain
R, n (@) = 0 (i = 1,2). Hence by part (a) of the theorem, applied to any
point of R N %, we see that

K(R,;{®)) # K(R_;{PD) (i=1,2). 3

Since A’, B’ lie in a connected subset 4 of C{®,) and (& U f) N (P,) = O,
we conclude that

K(3;¢9,)) = K(4';®,)) = K(B';{®,)) = K(B;<{P,). @

Since R is a neighborhood of both 4 and B, we have & N (R\{x)) + @ +
B (R\{3)), hence either (i) & " R, # @; or (ii) & n R_ # @. We claim
that (i) implies f N R, # @, which by (3)is clearly equivalentto f n R_ = @.
Suppose not, ie. fAR_ # @. Then by (4) and (i), K(R_;<{(®,)) =
K(B;(®,)) = K(@;{P,>) = K(R,;{P,>) which contradicts (3). Thus
&N R, #+ @ implies fA R, + @, hence theset E = {4 ,B} UdUR, Uf
is a connected subset of CPy,i.e. K(A"; (P, D) = K(E;{(P,)) = K(B';{P,)).
This, however, contradicts the choice of A’, B'. Similarly, one arrives at
a contradiction in the remaining case (ii).

To complete the proof, it suffices to show that, together with any pair
of distinct points Aq, 4, the set I(¢) (= union of all bounded components
of C{¢)) contains a connected subset G such that 4,,4, € G'3). Given
Ao, Ay, let [, 1; be any two parallel lines passing through A4,, 4,, respec-
tively. Let s%; (i = 0,1) be an arc such that {x;> = C,C’ is the maximal
segment on [ for which A;ex%; C C{p). Then 3x,Ux, C I(¢) and
C,,C'e ()i =0,). Let ¢,, "' be arcs such that ¢, = ¢{C,,C,,C°},
¢! = @{C,,C,C°). Assume first that the pairs {C,,C°},{C,,C'} are
interlaced on ¢. Then (cf. (°)), ¢, N ¢' = @. Hence we can find a Jordan
curve ¥ such that (y) = C,C° L @' {C° C*'} U C'C,; U ¢,{C,,Co}. Then

13) The rest of the proof follows an idea taken from [33] (cf. also [14]).
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Y)Y C I(p) L {@). However by (2.7) the latter set equals I(¢), because by
the beginning of this proof, ¢ satisfies part (a) of the theorem, hence
{p> C I—(a) Hence <y> C I(p). By (2.10) applied to y, we may use (2.8) (i),
hence Int{y)> C I(p). Set G = {A4y,A4,} U Int{y)>. Then clearly G C I(¢p)
and G is connected, because Int{y) C G C Int{y)(*). If the pairs
{Cy,C°},{C,,C"} are not interlaced on ¢, then {(p,> = (p'D, and inter-
changing C, with C', if necessary, we may assume that {¢,{C°C'}>
N {@,1{C;,Co}> = @ (cf. (°)). Then ¥ can be defined as above and the rest
of the proof is the same as in the previous case. This completes the proof
of JCT.

3. Remarks

(*) It is interesting to observe that there is a similar history for the postulate
of Pasch (cf. [19,21,23]): (P) Given three noncollinear points B, B,, B,,
consider the triangle f = ByB, U B, B, U B, B, and any straight line [ in
the plane of f, which intersects the segment B, B, , but does not pass through
either B, or B,. Then [ intersects either B,B, or B,B,. An equivalent
formulation of (P) could be called “the Jordan curve theorem for straight
lines”. Indeed, it reads as follows: (J) The complement (in the plane) of any
straight line consists of two disjoint convex sets. (For the proof of (P) < (J),
cf. [21], Thm. 1 on p. 62 and Exercise 15 on p. 63). The importance of this
postulate for foundations of Euclidean geometry was explicitly recognized
only in 1882 by the well-known German geometer Moritz Pasch [23].
However, the postulate itself can be traced back to the Arab mathematician
Nasir-Eddin at Tusi (1201 —1274), who used it in his “proof” of Euclid’s
fifth postulate on parallels. His work remained in manuscript until 1594,
when it was published in Rome [22]. Later this work was discussed by
J. Wallis, G. Saccheri and N.I. Lobacevskij, always in connection with
Euclid’s fifth postulate. It is not without interest to note that Lobacevskij
used form (J) of the postulate (cf. [19]). We use (P) and (J) to establish
Lemma (2.1).

(?) Jordan states only that part of the theorem which says that the graph
(@) of a simple closed planar curve ¢ decomposes the plane into two
regions, Ext{(¢) and Int{¢). (For the notation and terminology, see Sec. 1.)
Thus he omits the fact that (¢ ) is the common boundary of both Ext{¢)
and Int{¢). Moreover, Jordan assumes the theorem to be valid for polygons.
His proof is based on constructing two sequences of simple polygonal
curves ¢,, P,(n = 1,2,...), whose “distance” to ¢ is positive but converges
to zero for n — o0, and {¢) C (Ext{@,>) N (Int{P,)), {@,» C Intl{p,, >,
(®,> C Ext{(®,, . Jordan’s proof, as well as another early proof due to




The Jordan Curve Theorem Revisited 125

de la Vallée-Poussin [31], was critically analyzed and completed by Schoen-
flies [29]. How some geometers around the turn of the century felt about
Jordan’s theorem can be seen from the beginning of Veblen’s paper [32]:
“Jordan’s explicit formulation of the fundamental theorem that a simple
closed curve lying wholly in a plane decomposes the plane into an inside
and an outside region is justly regarded as a most important step in the
direction of a perfectly rigorous mathematics. This may be confidently
asserted whether we believe that perfect rigor is attainable or not. His proof
however, is unsatisfactory to many mathematicians...”

(®) Some authors assume — often without an explicit mention — the
validity of JCT and its corollaries for special classes of curves (e.g. for
polygonal curves). Others omit proofs of certain steps which are “geometri-
cally obvious”. (But what is more obvious than JCT itself?) Finally, certain
proofs can hardly be considered rigorous in the modern sense.

(4) On the other hand, we do not state in Section 1 several elementary
facts such as: (i) two disjoint compact sets (in R?) have a positive distance
and thus possess disjoint neighborhoods; (ii) the intermediate value property
of continuous functions of one variable; (iii) definition and basic properties
of a connected set; of components of a set (in R?), etc. They can all be found
in any introductory text on general topology.

(%) In particular, applying the homeomorphism ¢~ !: (@) —» S', we see
that all questions about interlaced pairs of points on ¢ can be reduced to
the corresponding questions about the canonical parametrization of the circle
S!. Thus, for instance, it is easy to establish the following statement: Let
Ay, A,, B, and B, be four distinct points on {¢). Let ¢, = @{A,,B;,4,}
¢, = @{A,,B;,A,}. Then either the pairs {A4,,A4,}, {B,,B,} are interlaced
on ¢, which is equivalent to ¢; N ¢, = @; or these pairs are not interlaced
on ¢; then {¢,> = {@,) and interchanging B, with B,, if necessary, we may
achieve that the points A4;, B; follow in this order on ¢, :A,,B;,B;,4,; in
particular, <¢,{4;,B,}> N <9{B,,4,}) = 0.

(°) By this we mean the following: Let A = A{P,Q} be a polygonal path,
P # Q. Then there exists a polygonal arc u = pu{P,Q},{(u) C {A). (Sketch
of the proof: We may assume that 4:[0,1] - R? is piecewise linear. The
set My = {A(t): A(t) = A(¢') for some t' +# t} is a finite collection of segments
and isolated points and the number m, of components of the closed set
N,,N, = A" (M,) C [0,1], is finite. Let t, = minN,, ¢, = max{t:A(t) =
A(to)}. By removing the “loop” A(ty,ty) from (A}, i.e. by pasting together the
restriction of 4 to [0,t,) (or to {0} if t, = 0) with the restriction of 4 to
[t,,1] we obtain a new mapping such that if m, is the number of components
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of the analogous set N, , then m; < m,. After finitely many steps we obtain
a A, for which m, = 0. The desired arc u is then 4, parametrized on [0,1].)

(") The proof of this lemma is taken from [13] where (2.2) was established
for {¢) being the boundary of a square, and X, Y, lying inside the opposite
sides of {¢). To find an elementary proof of this statement was posed as
a problem in the problem section of Cas. Pést. Mat. (vol. 81, 1956, p. 470)
by Jan Mafik. — For the case of an arbitrary polygonal Jordan curve the
lemma appears in Denjoy’s proof of the Jordan curve theorem (cf. [12]).
However, both the proof and application of this lemma in [12] are dif-
ferent from ours: Denjoy assumes the validity of the Jordan curve theorem
for polygonal Jordan curves, which yields an immediate proof of his version
of (2.2); he then uses the lemma to establish directly part (b) of (1.3), thus
omitting the fact that simple arcs do not disconnect the plane. — Lemma
(2.2) clearly does not hold on surfaces of positive genus (e.g. on the torus).

(®) Indeed, set K = Int{p), ST = K n(X,,Y,). By the convexity of
K, X,Y, C K. Since ST ¢ (@) (because in view of ¢, N (p) = @ we have
X,Y, = {a,) ¢ {@)), the special shape of K (or just the convexity of K)
implies th_a_t_ﬁ N {p> = ST NnoK = {S,T},but X,,Y,eST n {p), hence

XzYz = ST

(°) Indeed, let x be a Jordan curve such that (x> C (9> U 04,. Since
{@)> N 04, is a finite set, there are (straight line or circular) arcs y;, such that

%Ny, =0 fori+jand (p) 04, = .\:)l<yi). Hence if (> n<{y)> # 0

for some i, then {y;> C {x>. Therefore, () is a union of a subfamily of
{{y1D,..-s{ymy} so that after a change of parameter, if necessary, y is a
piecewise regular, hence also standard, curve. By (2.6) JCT holds for y.
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Added in print

i‘lActually, w(a; B) depends only on {a) and {f); thus if (&) is a segment AB we shall write
w(AB; ) instead of w(x; f).

6%) Before proceeding to Case Ib the reader should read Part II of this proof (cf. p. 118)
applied to arbitrary (i.e. non-polygonal) g,, 0, for which K(d;;<{¢)) = Inte.
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