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Introduction

Topology and groups are closely related via the fundamental
group construction

71 © {spaces} — {groups} ; X — m1(X) .

The Seifert - van Kampen Theorem expresses the fundamental
group of a union X = Xj Uy X5 of path-connected spaces in
terms of the fundamental groups of X1, X3, Y.

The Theorem is used to compute the fundamental group of a
space built up using spaces whose fundamental groups are
known already.

The Theorem is used to prove that every group G is the
fundamental group G = m1(X) of a space X.

Lecture follows Section 1.1.2 of Hatcher's Algebraic Topology,
but not slavishly so.


http://www.math.cornell.edu/~hatcher/AT/ATpage.html

Revision : the fundamental group

The fundamental group 71 (X, x) of a space X at x € X is the
group of based homotopy classes [w] of pointed loops

w : (§H1) = (X,x) .
The group law is by the concatenation of loops:
[wi][wa] = [w1ewy] .
The inverse is by the reversal of loops:
W™ = @]
with @(t) = w(1l —t).
A path « : I — X induces an isomorphism of groups
ay @ m1(X,a(0)) = m(X, (1)) ; w [dewea] .

Will mainly consider path-connected spaces X :
the fundamental group 71 (X, x) is independent of the base
point x € X, and may be denoted 71(X).



Three ways of computing the fundamental group

. By geometry

For an infinite space X there are far too many loops

w : St — X in order to compute 71(X) from the definition.

A space X is simply-connected, i.e. X is path connected and
the fundamental group is trivial

m(X) = {e}.
Sometimes it is possible to prove that X is simply-connected

by geometry.
Example: If X is contractible then X is simply-connected.

» Example: If X = 5" and n > 2 then X is simply-connected.

» Example: Suppose that (X, d) is a metric space such that for
any x, y € X there is unique geodesic (= shortest path)

Qyy o I — X from oy, (0) = x to (1) = y. If o, varies
continuously with x, y then X is contractible. Trees. Many
examples of such spaces in differentiable geometry.



Three ways of computing the fundamental group

Il. From above

X

)lf

is a covering projection and X is simply-connected then 1 (X)
is isomorphic to the group of covering translations

Homeop( ) = {homeomorphisms h : X — X such that ph = p}

(This will be proved in a later lecture).
Example If
p:X =R—=X =S xse?™
then
m1(S') = Homeoy(R) = Z .



Three ways of computing the fundamental group

I1l. From below

» Seifert-van Kampen Theorem (preliminary version)

X1 Y X

If a path-connected space X is a union X = X; Uy X5 with
X1, X5 and Y = X; N X5 path-connected then the fundamental
group of X is the free product with amalgamation

7T1(X) = 7T1(X1) *Tl'l(Y) 7T1(X2) .

> Gy xy Gy defined for group morphisms H — G1, H — Go.
» First proved by van Kampen (1933) in the special case when
Y is simply-connected, and then by Seifert (1934) in general.



Seifert and van Kampen

Herbert Seifert Egbert van Kampen
(1907-1996) (1908-1942)


http://www-history.mcs.st-andrews.ac.uk/Biographies/Seifert.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Van_Kampen.html
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The free product of groups

Let Gy, Gy be groups with units e; € Gy, e € Go.

A reduced word g1g» ... gm is a finite sequence of length
m > 1 with

» gi€ G\ {e}org e G\ {e}
> gi,8i+1 not in the same G;.

The free product of G; and Gy is the group
G1* G = {e} U{reduced words}

with multiplication by concatenation and reduction.

The unit e = empty word of length 0.

See p.42 of Hatcher for detailed proof that G; * Gy is a group.
Exercise Prove that

{e}xG =G, GG = Gx Gy, (G1xGo)xG3 = Gy +(GoxG3)
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The free group F,
For a set S let

(S) = free group generated by S = *SZ .
se

Let g > 1. The free group on g generators is the free
product of g copies of Z

Fg = (a1,as,...,8g) = Z*xZx---%7L.
Every element x € Fg has an expression as a word
m m m m:
x = (a1)™(a2)™2...(ag)™ea;™ ...

with (mj;) an N x g matrix (N large), mj; € Z.

> F1:Z.

» For g > 2 F, is nonabelian.
> Fg * Fh = Fg+h-



The infinite dihedral group

» Warning The free product need not be free.
» Example Let

G1:ZQZ{61,3}, G2:Z2:{e2’b}

be cyclic groups of order 2, with generators a, b such that
P’ =e , P =e.
» The infinite dihedral group is the free product
Dy = Zp*Zy = {e,a,b,ab,ba,aba, bab, abab,...} ,

with
P=br=c.

This is an infinite group with torsion, so not free.

11
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The subgroups generated by a subset

Needed for statement and proof the Seifert - van Kampen
Theorem.

Let G be a group. The subgroup generated by a subset
SCG

(S)c6
is the smallest subgroup of G containing S.

(G) consists of finite length words in elements of S and their
inverses.

Let SC be the subset of G consisting of the conjugates of S
S¢ = {gsg '[s€S, g€ G}

The normal subgroup generated by a subset S C G
(§¢) C G is the smallest normal subgroup of G containing S.
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Group presentations
Given a set S and a subset R C (S) define the group
(SIR) = (S)/(R®)
= (§)/normal subgroup generated by R .

with generating set S and relations R.
Example Let m > 1. The function

(a]a™) = {e,a,a°, ...,a" Y} =5 Zp; a"—n

is an isomorphism of groups, with Z,, the finite cyclic group
of order m.
R can be empty, with

(Sl) = (S) = 42
the free group generated by S.
The free product of G; = (51| R1) and Gy = (S| Rp) is
Gl*G2:<51U52|R1UR2> .
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Every group has a presentation

Every group G has a group presentation, i.e. is isomorphic to
(S|R) for some sets S, R.
Proof Let S = (G) = éZ and let R = ker(®) be the kernel of

the surjection of groups

®:S—G; (gt g )~ (g)™(@)™... .

Then

(SIR) — G ; [x] — ®(x)
is an isomorphism of groups.
It is a nontrivial theorem that R is a free subgroup of the free
group S. But we are only interested in S and R as sets here.
This presentation is too large to be of use in practice! But the
principle has been established.
While presentations are good for specifying groups, it is not

always easy to work out what the group actually is. Word
problem: when is (S|R) = (§'|R’)? Undecidable in general.
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How to make a group abelian

The commutator of g, h € G is

lg.h] = ghgth™teG.
Let F = {[g, h]} C G. G is abelian if and only if F = {e}.
The abelianization of a group G is the abelian group

G* = G/(FS),

with (F¢) C G the normal subgroup generated by F.
If G = (S|R) then G? = (S|RU F).
Universal property G2 is the largest abelian quotient group
of G, in the sense that for any group morphism f : G — A to

an abelian group A there is a unique group morphism
fab . G3b — A such that

f-G—sGb_ A,

71(X)?? = Hy(X) is the first homology group of a space X
— about which more in a later lecture.
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Free abelian at last

Example Isomorphism of groups
(F2)®® = (a,blaba b7y = ZDZ;
ampmam™pn o (my+my+ ..o+ nm+.)

with Z @ Z the free abelian group on 2 generators.
More generally, the abelianization of the free group on g
generators is the free abelian group on g generators

(Fg)?* = GBZ forany g >1.
g

It is clear from linear algebra (Gaussian elimination) that

@Z is isomorphic to EBZ if and only if g =h .
g h

It follows that

Fg is isomorphic to F, if and only if g = h .
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Amalgamated free products
» The amalgamated free product of group morphisms
h:H—=>G ,hbh: H—>G

is the group
G1 *H G2 = (G1 * Gg)//V

with N C Gy * G, the normal subgroup generated by the
elements
i(h)i(h)~t (h e H) .
> Forany he H
il(h) = iz(h) € G *xy Gy .
> In general, the natural morphisms of groups
A6 = GixpGy, o G = GixpGay i = jai2 - H = Gixp Go

are not injective.
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Some examples of amalgamated free products
Example G x¢ G = G.
Example {e} xy {e} = {e}.

Example For H = {e} the amalgamated free product is just
the free product

Gl *{e} G2 == Gl *x G2 .
Example For any group morphism i : H — G
Gx*xy{e} = G/N

with N = (i((H)®) C G the normal subgroup generated by the
subgroup i(H) C G.
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Injective amalgamated free products

If i : H— Gy, ih : H— Gy are injective then Gy, Gp, H are
subgroups of Gy xy Gy with (G1 U Gp) = G, G1 N G, = H.

Conversely, suppose that G is a group and that G;, G, C G
are subgroups such that

<G1 U G2> = G.
This condition is equivalent to the group morphism
®: GxG— G; gk gk (gk € Gk)

being surjective.
Then G = Gy xy Gy with

H=G6GNnG6GCG

and i1 : H— Gy, b : H— Gy the inclusions.
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The Seifert - van Kampen Theorem

Let X = X7 Uy X5 with X3, X5 and Y = X1 N X5 open in X
and path-connected. Let

inm(Y) = (X)), b:m(Y) — m(X2)
be the group morphisms induced by Y C X;, Y C X5, and let
(X)) = m(X), o m(Xe) = m(X)
be the group morphisms induced by X; C X, Xo C X. Then
O o om(Xy) xmi(X2) = (X)) 5 xk = Jik(xk)
(xk € m1(Xk), k =1 or 2) is a surjective group morphism with
ker® = N = the normal subgroup of 71 (X1) * m1(X2)
generated by ir(y)ia(y) "t (v € m(Y)) .
Theorem ® induces an isomorphism of groups

$ 71'1(X1) *ﬂ'l(Y) 7T1(X2) = 7r1(X) .
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® is surjective .

> Will only prove the easy part, that ® is surjective.

» For the hard part, that ® is injective, see pp.45-46 of Hatcher.

» Choose the base point x € Y C X. Regard a loop
w: (S, 1) = (X, x) as a closed path

f: I:[O,l]—>X:X1UXX2
such that £(0) = f(1) = x € X, with w(e*™*) = f(s) € X.
By the compactness of [ there exist
O=sg<s1<m<---<sp=1

such that f[s;, si+1] € X1 or Xp, written f[s;, si+1] C Xi.
Then
f=fefhe --of,:| > X

is the concatenation of paths f; : I — X; with

fi(1) = fii1(0) = f(s)eY (1<i<m).



22

® is surjective Il.

Since Y is path-connected there exists paths g; : | — Y from
gi(0) = x to gi(1) = f(s;) € X. The loop

(freg1)e(g1ef20g5)e: - -0(gm_20fn_108_1)8(gm-10fn) : | = X
is homotopic to f rel {0,1}, with

[gi o fi 0 8j11] € im(m1(Xi)) C mi(X) |

so that

[fl= [Aegillsier208)]. . [gm—29fm108n, 1]lgm—1 @ fm]

€ im(P) C m(X) .

Hatcher diagram: A, = X1, Ag = X5




23

The universal property |.

An amalgamated free product Gy xy G, defines a a
commutative square of groups and morphisms

H—" . g

I

G2£>Gl *H Go

with the universal property that for any commutative square

H-". G

there is a unique group morphism ® : G; x4 G — G such
that ki = Pj1 : Gt = G and ko = bjp : Gp — G.
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The universal property Il.

» By the Seifert - van Kampen Theorem for X = X1 Uy X5 the
commutative square

m(v)’%lm(xl)

|

m1(Xa) —2> 1 (X)

has the universal property of an amalgamated free product,
with an isomorphism

d 71'1(X1) *ﬂ'l(Y) 7T1(X2) = 7['1(X) .
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The one-point union

» Let X7, X> be spaces with base points x; € X1, xo € X5. The
one-point union is

X1V Xy = X1X{X2}U{X1}XX2§X1><X2

» The Seifert - van Kampen Theorem for X; V X5
If X1, X5 are path connected then so is X3 V X3, with
fundamental group the free product

71’1(X1 \/XQ) = 7T1(X1)*7T1(X2) .
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The fundamental group of the figure eight

» The figure eight is the one-point union of two circles

X = Stvyst
Figure 8
¥ * \

» The fundamental group is the free nonabelian group on two
generators:

7T1(X) = 7T1(51)*7T1(51) = (a,b> = Zx7.
» An element
am™mpmampm ... € mwp(X)

can be regarded as the loop traced out by an iceskater who
traces out a figure 8, going round the first circle m; times,
then round the second circles ny times, then round the first
circle my times, then round the second circle ny times, ....



A famous Edinburgh iceskater

27
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The fundamental group of a graph

» Let X be the path-connected space defined by a connected
finite graph with V vertices and E edges, and let

g =1-V+E.

» Exercise Prove that X is homotopy equivalent to the
one-point union STV SV ...V St of g circles, and hence
that m1(X) = Fg, the free group on g generators. Prove that
X is a tree if and only if it is contractible, if and only if g = 0.

> Example 1.1.22 of Hatcher is a special case with V =8,
E=12 g=5.




v

29
Knots
A knot is an embedding
K :Stcs3.
The complement of K is
Xk = SB\K(S')c Ss3.

Two knots K, K> : St C S3 are equivalent if there exists a
homeomorphism of their complements

h: Xk, = Xk, .
The fundamental group 71(Xk) of the complement of a knot
K is an invariant of the equivalence class of K. Fact:
m(Xk)?® = Hi(Xk) = Z .
The Seifert - van Kampen Theorem can be applied to obtain

the Wirtinger presentation of m1(Xk) from a knot projection —
Exercise 1.1.2.22 of Hatcher.



The unknot

» The unknot
Ko:S'c S3 2z (2,0,0)

has complement

Xk, = ST xR?

0

with group

m(Xk,) = Z

SAK,(S)

30
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Knotting and unknotting

A knot K : S' C S3 is unknotted if it is equivalent to Kp.
A knot K : St c S3 is knotted if it is not equivalent to Kj.

» It is easy to prove that if the surjection

v

m(Xk) = m(Xk)?®* = Z
is not an isomorphism then K is knotted, since
m(Xk) Zm(Xk,) =Z .
It is hard to prove (but true) that if the surjection
m(Xk) = m(Xk)* = Z

is an isomorphism then K is unknotted. This is Dehn’s
Lemma, originally stated in 1911, and only finally proved by
Papakyriakopoulos in 1957.

Musical interlude: Get knotted! (Fascinating Aida)


http://www.youtube.com/watch?v=CBcwyLp5Zks

32

The trefoil knot

» The trefoil knot K; : S € S3 has group

m(Xk,) = {a, b|aba = bab} .

SAK,(S)

» The groups of Ko, K1 are not isomorphic (since one is abelian
and the other one is not abelian), so that Kp, K1 are not
equivalent: the algebra shows that the trefoil knot is knotted.
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The torus knots .
» For coprime m, n > 1 use the embedding
StcStxSt; z (2™, 2")
to define the torus knots

Tmn:StCStxStcs®.

» Every torus knot S € S! x S! c S3 is equivalent to one of
Tm,n (Brauner, 1928).
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The torus knots Il.

See Example 1.1.24 of Hatcher for the application of the
Seifert - van Kampen Theorem to compute

m(X7,,) = Gy [xXT=y") .

The centre (= the elements which commute with all others)
C = ") = ") CSm(Tmn)

is an infinite cyclic normal subgroup such that

Wl(XTm,n)/C = Zm*Zn .

Two torus knots Tp, n, Thy o are equivalent if and only if
(m,n) = (m',n") or (n',m).
The trefoil knot is K1 = T»3.
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Links

Let 4 > 1. A u-component link is an embedding

L:|Js' =s'ustu--ustcs®.

m

A knot is a 1-component link.

The complement of L is

X, = S\ Jshcs?.

The fundamental group 71(X;) detects the linking of the
circles among each other. (And much else besides).

35
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The unlink and the Hopf link

» The unlink Lp: STUSt c S3

has XLO ~ Sty Sty 52, 7T1(XL0) =F =7ZxZ.
» The Hopf link L; : STU St ¢ S3

has XL1 ~ St x 51, 7T1(XL1) =7 & 7.
» Hatcher Example 1.1.2, noting difference between S3 and R3.
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Cell attachment
Let n > 0. Given a space W and a map f : S"1 — W let
X = WU D"

be the space obtained from W by attaching an n-cell.
X is the quotient of the disjoint union W U D" by the
equivalence relation generated by

(xe S~ (f(x) e W) .

An n-dimensional cell complex is a space obtained from ()
by successively attaching k-cells, with k =0,1,2,....n

» Example A graph is a 1-dimensional cell complex.
» Example S" is the n-dimensional cell complex obtained from

() by attaching a O-cell and an n-cell
s"=p° Ur D"

with £ : $"~1 — DO the unique map.
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The effect on 7 of a cell attachment |I.

Let n > 1. If W is path-connected then so is X = W U D".
What is m1(X)?
If n =1 then X is homotopy equivalent to W Vv S, so that

m(X) = m(WVS) = m(W)*Z.

For n > 2 apply the Seifert - van Kampen Theorem to the
decomposition
X = X1Uy X5

with
X, = WUr{x e D|||x| > 1/2} .
Xe = {xeD"||x| <1/2}
Y = X1nXo = {xeD"|||x||=1/2} = s
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The effect on 7; of a cell attachment II.

The inclusion W C X;j is a homotopy equivalence, and
X> 22 D" is simply-connected, so that

m(X) = m(X1) #xy(v) T1(X2)
= m(W) 5 51y (D7) = m1(W) 5 (sn1y {€} .
If n> 3 then 71(S™1) = {e}, so that
m(X) = m(W) *{e} {e} = m(W).
If n =2 then
m(X) = m(W)xz{e} = m(W)/N
the quotient of 71 (W) by the normal subgroup N C 71 (W)

generated by the homotopy class [f] € w1 (W) of f : ST — W.

See Hatcher's Proposition 1.1.26 for detailed exposition.
» If X = \/51 U U D?uU | UD" is a cell complex with a single
n>=3

O-cell, 5 1-cells and R 2-cells then w1 (X) = (S|R).
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Every group is a fundamental group

> Let G = (S|R) be a group with a presentation.
> Realize the generators S by the 1-dimensional cell complex

w = \/s
S

with 71 (W) = (S) the free group generated by S.

> Realize each relation r € R C 71(W) by amap r: St — W.
» Attach a 2-cell to W for each relation, to obtain a

2-dimensional cell complex X = W U J D? such that
R

m(X) = (SIR) = G.
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Realizing the cyclic groups topologically

» Example Let m > 1. The cyclic group Z,, = (a|a™) of order
m is the fundamental group

m1(Xm) = Zm
of the 2-dimensional cell complex
= Stu, D?,
with the 2-cell attached to S = {z € C||z| = 1} by
m: St St zs ™

» X1 = D? is contractible, with 71(X1) = {e}
> X5 is homeomorphic to the real projective plane

RP? = S2/{v~—v|veS?}
= D?/{w ~ —w|w € S}
with 7T1(X2) = 7T1(R[ED2) =7Zo.
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If the Universe were a projective space
(from ‘Relativity for the Layman’ by J. Coleman, Pelican (1959))

(b) and sees ..

We can conclude that according to the General Theory of relativity, the
universe was considered to be finite and unbounded. Whether it is or not
may never actually be determined experimentally. However, it is amusing
to predict what may take place many years from now. An astronomer
might some day build a super-duper telescope, and we can imagine what
will happen when he looks through it. He may see a shiny luminous
object which looks like the moon, but with a very peculiar-looking curved
tree growing out of it. Only after many hours of quiet and careful scrutiny
will it dawn on him that he is looking at his own gleaming bald pate, the
light from which has gone completely around the universe and returned!



