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Introduction

I Topology and groups are closely related via the fundamental
group construction

π1 : {spaces} → {groups} ; X 7→ π1(X ) .

I The Seifert - van Kampen Theorem expresses the fundamental
group of a union X = X1 ∪Y X2 of path-connected spaces in
terms of the fundamental groups of X1,X2,Y .

I The Theorem is used to compute the fundamental group of a
space built up using spaces whose fundamental groups are
known already.

I The Theorem is used to prove that every group G is the
fundamental group G = π1(X ) of a space X .

I Lecture follows Section I.1.2 of Hatcher’s Algebraic Topology,
but not slavishly so.

http://www.math.cornell.edu/~hatcher/AT/ATpage.html
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Revision : the fundamental group

I The fundamental group π1(X , x) of a space X at x ∈ X is the
group of based homotopy classes [ω] of pointed loops

ω : (S1, 1) → (X , x) .

I The group law is by the concatenation of loops:

[ω1][ω2] = [ω1 • ω2] .

I The inverse is by the reversal of loops:

[ω]−1 = [ω]

with ω(t) = ω(1− t).
I A path α : I → X induces an isomorphism of groups

α# : π1(X , α(0)) → π1(X , α(1)) ; ω 7→ [α • ω • α] .
I Will mainly consider path-connected spaces X :

the fundamental group π1(X , x) is independent of the base
point x ∈ X , and may be denoted π1(X ).
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Three ways of computing the fundamental group

I. By geometry

I For an infinite space X there are far too many loops
ω : S1 → X in order to compute π1(X ) from the definition.

I A space X is simply-connected, i.e. X is path connected and
the fundamental group is trivial

π1(X ) = {e} .

I Sometimes it is possible to prove that X is simply-connected
by geometry.

I Example: If X is contractible then X is simply-connected.
I Example: If X = Sn and n > 2 then X is simply-connected.
I Example: Suppose that (X , d) is a metric space such that for

any x , y ∈ X there is unique geodesic (= shortest path)
αx ,y : I → X from αx ,y (0) = x to αx ,y (1) = y . If αx ,y varies
continuously with x , y then X is contractible. Trees. Many
examples of such spaces in differentiable geometry.
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Three ways of computing the fundamental group

II. From above

I If

X̃

p
��
X

is a covering projection and X̃ is simply-connected then π1(X )
is isomorphic to the group of covering translations

Homeop(X̃ ) = {homeomorphisms h : X̃ → X̃ such that ph = p}
(This will be proved in a later lecture).

I Example If

p : X̃ = R → X = S1 ; x 7→ e2πix

then
π1(S

1) = Homeop(R) = Z .
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Three ways of computing the fundamental group

III. From below

I Seifert-van Kampen Theorem (preliminary version)

.. X2

.X1

.Y

If a path-connected space X is a union X = X1 ∪Y X2 with
X1,X2 and Y = X1 ∩X2 path-connected then the fundamental
group of X is the free product with amalgamation

π1(X ) = π1(X1) ∗π1(Y ) π1(X2) .

I G1 ∗H G2 defined for group morphisms H → G1, H → G2.
I First proved by van Kampen (1933) in the special case when

Y is simply-connected, and then by Seifert (1934) in general.
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Seifert and van Kampen

Herbert Seifert Egbert van Kampen
(1907-1996) (1908-1942)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Seifert.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Van_Kampen.html
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The free product of groups

I Let G1,G2 be groups with units e1 ∈ G1, e2 ∈ G2.
I A reduced word g1g2 . . . gm is a finite sequence of length

m > 1 with
I gi ∈ G1 \ {e1} or gi ∈ G2 \ {e2},
I gi , gi+1 not in the same Gj .

I The free product of G1 and G2 is the group

G1 ∗ G2 = {e} ∪ {reduced words}

with multiplication by concatenation and reduction.

I The unit e = empty word of length 0.

I See p.42 of Hatcher for detailed proof that G1 ∗ G2 is a group.

I Exercise Prove that

{e}∗G ∼= G , G1∗G2
∼= G2∗G1 , (G1∗G2)∗G3

∼= G1∗(G2∗G3)



9



10

The free group Fg

I For a set S let

⟨S⟩ = free group generated by S = ⋆
s∈S

Z .

I Let g > 1. The free group on g generators is the free
product of g copies of Z

Fg = ⟨a1, a2, . . . , ag ⟩ = Z ∗ Z ∗ · · · ∗ Z .

I Every element x ∈ Fg has an expression as a word

x = (a1)
m11(a2)

m12 . . . (ag )
m1g am21

1 . . .

with (mij) an N × g matrix (N large), mij ∈ Z.
I F1 = Z.
I For g > 2 Fg is nonabelian.
I Fg ∗ Fh = Fg+h.
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The infinite dihedral group

I Warning The free product need not be free.

I Example Let

G1 = Z2 = {e1, a} , G2 = Z2 = {e2, b}

be cyclic groups of order 2, with generators a, b such that

a2 = e1 , b2 = e2 .

I The infinite dihedral group is the free product

D∞ = Z2 ∗ Z2 = {e, a, b, ab, ba, aba, bab, abab, . . . } ,

with
a2 = b2 = e .

This is an infinite group with torsion, so not free.
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The subgroups generated by a subset

I Needed for statement and proof the Seifert - van Kampen
Theorem.

I Let G be a group. The subgroup generated by a subset
S ⊆ G

⟨S⟩ ⊆ G

is the smallest subgroup of G containing S .

I ⟨G ⟩ consists of finite length words in elements of S and their
inverses.

I Let SG be the subset of G consisting of the conjugates of S

SG = {gsg−1 | s ∈ S , g ∈ G}

I The normal subgroup generated by a subset S ⊆ G
⟨SG ⟩ ⊆ G is the smallest normal subgroup of G containing S .
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Group presentations

I Given a set S and a subset R ⊆ ⟨S⟩ define the group

⟨S |R⟩ = ⟨S⟩/⟨R⟨S⟩⟩
= ⟨S⟩/normal subgroup generated by R .

with generating set S and relations R.
I Example Let m > 1. The function

⟨a | am⟩ = {e, a, a2, . . . , am−1} → Zm ; an 7→ n

is an isomorphism of groups, with Zm the finite cyclic group
of order m.

I R can be empty, with

⟨S |∅⟩ = ⟨S⟩ = ⋆
S
Z

the free group generated by S .
I The free product of G1 = ⟨S1|R1⟩ and G2 = ⟨S2 |R2⟩ is

G1 ∗ G2 = ⟨S1 ∪ S2 |R1 ∪ R2⟩ .
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Every group has a presentation

I Every group G has a group presentation, i.e. is isomorphic to
⟨S |R⟩ for some sets S ,R.

I Proof Let S = ⟨G ⟩ = ⋆
G
Z and let R = ker(Φ) be the kernel of

the surjection of groups

Φ : S → G ; (gn1
1 , gn2

2 , . . . ) 7→ (g1)
n1(g2)

n2 . . . .

Then
⟨S |R⟩ → G ; [x ] 7→ Φ(x)

is an isomorphism of groups.
I It is a nontrivial theorem that R is a free subgroup of the free

group S . But we are only interested in S and R as sets here.
This presentation is too large to be of use in practice! But the
principle has been established.

I While presentations are good for specifying groups, it is not
always easy to work out what the group actually is. Word
problem: when is ⟨S |R⟩ ∼= ⟨S ′|R ′⟩? Undecidable in general.
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How to make a group abelian

I The commutator of g , h ∈ G is

[g , h] = ghg−1h−1 ∈ G .

Let F = {[g , h]} ⊆ G . G is abelian if and only if F = {e}.
I The abelianization of a group G is the abelian group

G ab = G/⟨FG ⟩ ,
with ⟨FG ⟩ ⊆ G the normal subgroup generated by F .

I If G = ⟨S |R⟩ then G ab = ⟨S |R ∪ F ⟩.
I Universal property G ab is the largest abelian quotient group

of G , in the sense that for any group morphism f : G → A to
an abelian group A there is a unique group morphism
f ab : G ab → A such that

f : G // G ab f ab // A .

I π1(X )ab = H1(X ) is the first homology group of a space X
– about which more in a later lecture.
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Free abelian at last

I Example Isomorphism of groups

(F2)
ab = ⟨a, b | aba−1b−1⟩ → Z⊕ Z ;

am1bn1am2bn2 . . . 7→ (m1 +m2 + . . . , n1 + n2 + . . . )

with Z⊕ Z the free abelian group on 2 generators.
I More generally, the abelianization of the free group on g

generators is the free abelian group on g generators

(Fg )
ab =

⊕
g

Z for any g > 1 .

I It is clear from linear algebra (Gaussian elimination) that⊕
g

Z is isomorphic to
⊕
h

Z if and only if g = h .

I It follows that

Fg is isomorphic to Fh if and only if g = h .
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Amalgamated free products

I The amalgamated free product of group morphisms

i1 : H → G1 , i2 : H → G2

is the group
G1 ∗H G2 = (G1 ∗ G2)/N

with N ⊆ G1 ∗ G2 the normal subgroup generated by the
elements

i1(h)i2(h)
−1 (h ∈ H) .

I For any h ∈ H

i1(h) = i2(h) ∈ G1 ∗H G2 .

I In general, the natural morphisms of groups

j1 : G1 → G1∗HG2 , j2 : G2 → G1∗HG2 , j1i1 = j2i2 : H → G1∗HG2

are not injective.
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Some examples of amalgamated free products

I Example G ∗G G = G .

I Example {e} ∗H {e} = {e}.
I Example For H = {e} the amalgamated free product is just

the free product

G1 ∗{e} G2 = G1 ∗ G2 .

I Example For any group morphism i : H → G

G ∗H {e} = G/N

with N = ⟨i(H)G ⟩ ⊆ G the normal subgroup generated by the
subgroup i(H) ⊆ G .
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Injective amalgamated free products

I If i1 : H → G1, i2 : H → G2 are injective then G1,G2,H are
subgroups of G1 ∗H G2 with ⟨G1 ∪ G2⟩ = G , G1 ∩ G2 = H.

I Conversely, suppose that G is a group and that G1,G2 ⊆ G
are subgroups such that

⟨G1 ∪ G2⟩ = G .

I This condition is equivalent to the group morphism

Φ : G1 ∗ G2 → G ; gk 7→ gk (gk ∈ Gk)

being surjective.

I Then G = G1 ∗H G2 with

H = G1 ∩ G2 ⊆ G

and i1 : H → G1, i2 : H → G2 the inclusions.
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The Seifert - van Kampen Theorem

I Let X = X1 ∪Y X2 with X1,X2 and Y = X1 ∩ X2 open in X
and path-connected. Let

i1 : π1(Y ) → π1(X1) , i2 : π1(Y ) → π1(X2)

be the group morphisms induced by Y ⊆ X1, Y ⊆ X2, and let

j1 : π1(X1) → π1(X ) , j2 : π1(X2) → π1(X )

be the group morphisms induced by X1 ⊆ X , X2 ⊆ X . Then

Φ : π1(X1) ∗ π1(X2) → π1(X ) ; xk 7→ jk(xk)

(xk ∈ π1(Xk), k = 1 or 2) is a surjective group morphism with

kerΦ = N = the normal subgroup of π1(X1) ∗ π1(X2)

generated by i1(y)i2(y)
−1 (y ∈ π1(Y )) .

I Theorem Φ induces an isomorphism of groups

Φ : π1(X1) ∗π1(Y ) π1(X2) ∼= π1(X ) .
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Φ is surjective I.

I Will only prove the easy part, that Φ is surjective.
I For the hard part, that Φ is injective, see pp.45-46 of Hatcher.
I Choose the base point x ∈ Y ⊆ X . Regard a loop

ω : (S1, 1) → (X , x) as a closed path

f : I = [0, 1] → X = X1 ∪X X2

such that f (0) = f (1) = x ∈ X , with ω(e2πis) = f (s) ∈ X .
I By the compactness of I there exist

0 = s0 < s1 < s2 < · · · < sm = 1

such that f [si , si+1] ⊆ X1 or X2, written f [si , si+1] ⊆ Xi .
I Then

f = f1 • f2 • · · · • fm : I → X

is the concatenation of paths fi : I → Xi with

fi (1) = fi+1(0) = f (si ) ∈ Y (1 6 i 6 m) .
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Φ is surjective II.

I Since Y is path-connected there exists paths gi : I → Y from
gi (0) = x to gi (1) = f (si ) ∈ X . The loop

(f1•g1)•(g1•f2•g2)•· · ·•(gm−2•fm−1•gm−1)•(gm−1•fm) : I → X

is homotopic to f rel {0, 1}, with

[gi • fi • g i+1] ∈ im(π1(Xi )) ⊆ π1(X ) ,

so that

[f ] = [f1 • g1][g1 • f2 • g2] . . . [gm−2 • fm−1 • gm−1][gm−1 • fm]
∈ im(Φ) ⊆ π1(X ) .

g
1

g
2

2
f

1
f

3
f

Aα Aβ

x
0

Hatcher diagram: Aα = X1, Aβ = X2
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The universal property I.

I An amalgamated free product G1 ∗H G2 defines a a
commutative square of groups and morphisms

H
i1 //

i2
��

G1

j1
��

G2
j2 // G1 ∗H G2

with the universal property that for any commutative square

H
i1 //

i2
��

G1

k1
��

G2
k2 // G

there is a unique group morphism Φ : G1 ∗H G2 → G such
that k1 = Φj1 : G1 → G and k2 = Φj2 : G2 → G .
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The universal property II.

I By the Seifert - van Kampen Theorem for X = X1 ∪Y X2 the
commutative square

π1(Y )
i1 //

i2
��

π1(X1)

j1
��

π1(X2)
j2 // π1(X )

has the universal property of an amalgamated free product,
with an isomorphism

Φ : π1(X1) ∗π1(Y ) π1(X2) ∼= π1(X ) .
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The one-point union

I Let X1,X2 be spaces with base points x1 ∈ X1, x2 ∈ X2. The
one-point union is

X1 ∨ X2 = X1 × {x2} ∪ {x1} × X2 ⊆ X1 × X2

.

..X1

. X2

I The Seifert - van Kampen Theorem for X1 ∨ X2

If X1,X2 are path connected then so is X1 ∨ X2, with
fundamental group the free product

π1(X1 ∨ X2) = π1(X1) ∗ π1(X2) .
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The fundamental group of the figure eight

I The figure eight is the one-point union of two circles

X = S1 ∨ S1

I The fundamental group is the free nonabelian group on two
generators:

π1(X ) = π1(S
1) ∗ π1(S1) = ⟨a, b⟩ = Z ∗ Z .

I An element
am1bn1am2bn2 · · · ∈ π1(X )

can be regarded as the loop traced out by an iceskater who
traces out a figure 8, going round the first circle m1 times,
then round the second circles n1 times, then round the first
circle m2 times, then round the second circle n2 times, . . . .
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A famous Edinburgh iceskater
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The fundamental group of a graph

I Let X be the path-connected space defined by a connected
finite graph with V vertices and E edges, and let

g = 1− V + E .

I Exercise Prove that X is homotopy equivalent to the
one-point union S1 ∨ S1 ∨ · · · ∨ S1 of g circles, and hence
that π1(X ) = Fg , the free group on g generators. Prove that
X is a tree if and only if it is contractible, if and only if g = 0.

I Example I.1.22 of Hatcher is a special case with V = 8,
E = 12, g = 5.

.
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Knots

I A knot is an embedding

K : S1 ⊂ S3 .

I The complement of K is

XK = S3\K (S1) ⊂ S3 .

I Two knots K1,K2 : S
1 ⊂ S3 are equivalent if there exists a

homeomorphism of their complements

h : XK1
∼= XK2 .

I The fundamental group π1(XK ) of the complement of a knot
K is an invariant of the equivalence class of K . Fact:

π1(XK )
ab = H1(XK ) = Z .

I The Seifert - van Kampen Theorem can be applied to obtain
the Wirtinger presentation of π1(XK ) from a knot projection –
Exercise I.1.2.22 of Hatcher.
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The unknot

I The unknot
K0 : S

1 ⊂ S3; z 7→ (z , 0, 0)

has complement
XK0 = S1 × R2

with group
π1(XK0) = Z

S3\K
0
(S1)

K
0
(S1)
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Knotting and unknotting

I A knot K : S1 ⊂ S3 is unknotted if it is equivalent to K0.
I A knot K : S1 ⊂ S3 is knotted if it is not equivalent to K0.
I It is easy to prove that if the surjection

π1(XK ) → π1(XK )
ab = Z

is not an isomorphism then K is knotted, since

π1(XK ) ̸∼= π1(XK0) = Z .

I It is hard to prove (but true) that if the surjection

π1(XK ) → π1(XK )
ab = Z

is an isomorphism then K is unknotted. This is Dehn’s
Lemma, originally stated in 1911, and only finally proved by
Papakyriakopoulos in 1957.

I Musical interlude: Get knotted! (Fascinating Aida)

http://www.youtube.com/watch?v=CBcwyLp5Zks
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The trefoil knot

I The trefoil knot K1 : S
1 ⊂ S3 has group

π1(XK1) = {a, b | aba = bab} .

S3\K
1
(S1)

K
1
(S1)

a

b

I The groups of K0,K1 are not isomorphic (since one is abelian
and the other one is not abelian), so that K0,K1 are not
equivalent: the algebra shows that the trefoil knot is knotted.
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The torus knots I.

I For coprime m, n > 1 use the embedding

S1 ⊂ S1 × S1 ; z 7→ (zm, zn)

to define the torus knots

Tm,n : S1 ⊂ S1 × S1 ⊂ S3 .186 VII. T H E  FUNDAMENTAL GROUP 

FIG. 97 

into two subsets whose common boundary is the torus on which the knot lies. The tube will then 
be split along its length to form two half-tubes. The complex Q will be decomposed to form two 
solid tori, from Problem 4 of $14, such that a winding groove of semicircular profile has been 
milled out of each torus. We shall designate the “finite” solid torus as the subcomplex R’ and we 
shall designate the other solid torus, which contains the point at infinity, as the subcomplex 9”. 
The intersection SD of the two subcomplexes is a twisted annulus which covers the ungrooved 
portion of the torus on which the knot lies (Fig. 97). From 946, the fundamental group of Q’ is 
the free group on one generator A (renamed K; in the proof of Theorem I). The fundamental 
group of Q“ is the free group on one generator B. We represent A by the core of the solid torus 
R’ and we bend this curve so that it passes through a point 0 of the median line of the annulus 
59. We choose this point 0 as the initial point. We represent B by the core of the other solid torus 
W’; for example, it can be the axis of rotation of the torus on which the knot lies. We likewise 
deform B so that it passes through the point 0. We take the median line D of the annulus as the 
generator of the fundamental group of P), which is also the free group on one generator ($46). 
The group o 5’’ is the free group on two generators A and B. Considered as an element of 5’. 
D is equal to A m ,  but considered as an element of D”, D is equal to B“,  when the paths A and B 
are appropriately oriented. We then obtain the knot group of the t o m  knot m, n by introducing the 
relation 

A m =  B” 

between the two generators. 

a circle by means of an isotopic deformation of Euclidean 3-space, bec- 1.- 

infinite cyclic.” 

It follows from this that a torus knot m, n such that m > 1 and n > 1 cannot be fiansforrned to 
k v ’  proup ‘ Q  IC’ 

Problems 

I .  Assume that the space W4 has been completed by adding a point at infinity to form the 
4-sphere G4. A closed sequence of edges consisting of straight line segments, free of double 
points, has been bored from W4. Show that the fundamental group of the exterior space consists 
of the unit element. (Apply Theorem 1 to G4, which is decomposed into two subcomplexes, the 
exterior space I and the bore 8. The bore is the topological product of the circle and the 3-ball. 

I Every torus knot S1 ⊂ S1 × S1 ⊂ S3 is equivalent to one of
Tm,n (Brauner, 1928).
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The torus knots II.

I See Example I.1.24 of Hatcher for the application of the
Seifert - van Kampen Theorem to compute

π1(XTm,n) = ⟨x , y | xm = yn⟩ .

I The centre (= the elements which commute with all others)

C = ⟨xm⟩ = ⟨yn⟩ ⊆ π1(Tm,n)

is an infinite cyclic normal subgroup such that

π1(XTm,n)/C = Zm ∗ Zn .

I Two torus knots Tm,n, Tm′,n′ are equivalent if and only if
(m, n) = (m′, n′) or (n′,m′).

I The trefoil knot is K1 = T2,3.
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Links

I Let µ > 1. A µ-component link is an embedding

L :
∪
µ

S1 = S1 ∪ S1 ∪ · · · ∪ S1 ⊂ S3 .

I A knot is a 1-component link.

I The complement of L is

XL = S3\L(
∪
µ

S1) ⊂ S3 .

I The fundamental group π1(XL) detects the linking of the
circles among each other. (And much else besides).
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The unlink and the Hopf link

I The unlink L0 : S
1 ∪ S1 ⊂ S3

has XL0 ≃ S1 ∨ S1 ∨ S2, π1(XL0) = F2 = Z ∗ Z.
I The Hopf link L1 : S

1 ∪ S1 ⊂ S3

has XL1 ≃ S1 × S1, π1(XL1) = Z⊕ Z.
I Hatcher Example I.1.2, noting difference between S3 and R3.
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Cell attachment

I Let n > 0. Given a space W and a map f : Sn−1 → W let

X = W ∪f D
n

be the space obtained from W by attaching an n-cell.
I X is the quotient of the disjoint union W ∪ Dn by the

equivalence relation generated by

(x ∈ Sn−1) ∼ (f (x) ∈ W ) .

I An n-dimensional cell complex is a space obtained from ∅
by successively attaching k-cells, with k = 0, 1, 2, . . . , n

I Example A graph is a 1-dimensional cell complex.
I Example Sn is the n-dimensional cell complex obtained from

∅ by attaching a 0-cell and an n-cell

Sn = D0 ∪f D
n

with f : Sn−1 → D0 the unique map.
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The effect on π1 of a cell attachment I.

I Let n > 1. If W is path-connected then so is X = W ∪f D
n.

I What is π1(X )?

I If n = 1 then X is homotopy equivalent to W ∨ S1, so that

π1(X ) = π1(W ∨ S1) = π1(W ) ∗ Z .

I For n > 2 apply the Seifert - van Kampen Theorem to the
decomposition

X = X1 ∪Y X2

with

X1 = W ∪f {x ∈ Dn | ∥x∥ > 1/2} ,

X2 = {x ∈ Dn | ∥x∥ 6 1/2} ,

Y = X1 ∩ X2 = {x ∈ Dn | ∥x∥ = 1/2} = Sn−1
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The effect on π1 of a cell attachment II.

I The inclusion W ⊂ X1 is a homotopy equivalence, and
X2

∼= Dn is simply-connected, so that

π1(X ) = π1(X1) ∗π1(Y ) π1(X2)

= π1(W ) ∗π1(Sn−1) π1(D
n) = π1(W ) ∗π1(Sn−1) {e} .

I If n > 3 then π1(S
n−1) = {e}, so that

π1(X ) = π1(W ) ∗{e} {e} = π1(W ) .

I If n = 2 then

π1(X ) = π1(W ) ∗Z {e} = π1(W )/N

the quotient of π1(W ) by the normal subgroup N ⊆ π1(W )
generated by the homotopy class [f ] ∈ π1(W ) of f : S1 → W .

I See Hatcher’s Proposition I.1.26 for detailed exposition.
I If X =

∨
S

S1 ∪
∪
R

D2 ∪
∪
n>3

∪
Dn is a cell complex with a single

0-cell, S 1-cells and R 2-cells then π1(X ) = ⟨S |R⟩.
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Every group is a fundamental group

I Let G = ⟨S |R⟩ be a group with a presentation.
I Realize the generators S by the 1-dimensional cell complex

W =
∨
S

S1

with π1(W ) = ⟨S⟩ the free group generated by S .

I Realize each relation r ∈ R ⊆ π1(W ) by a map r : S1 → W .
I Attach a 2-cell to W for each relation, to obtain a

2-dimensional cell complex X = W ∪
∪
R

D2 such that

π1(X ) = ⟨S |R⟩ = G .
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Realizing the cyclic groups topologically

I Example Let m > 1. The cyclic group Zm = ⟨a | am⟩ of order
m is the fundamental group

π1(Xm) = Zm

of the 2-dimensional cell complex

Xm = S1 ∪m D2 ,

with the 2-cell attached to S1 = {z ∈ C | |z | = 1} by

m : S1 → S1 ; z 7→ zm .

I X1 = D2 is contractible, with π1(X1) = {e}
I X2 is homeomorphic to the real projective plane

RP2 = S2/{v ∼ −v | v ∈ S2}
= D2/{w ∼ −w |w ∈ S1}

with π1(X2) = π1(RP2) = Z2.
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If the Universe were a projective space
(from ‘Relativity for the Layman’ by J. Coleman, Pelican (1959))R E L A T I V I T Y  F O R  T H E  L A Y M A N  

4 - (a) He looks . . . 

(b) and sees . . . 

Figure 23. If the Universe is Finite and Unbounded . . . 

R E L A T i V l T Y  A N D  T H E  Y A T U R E  O F  T H E  1 I E ; I V E R S E  

pate, tllc light irom which has gone completc.ly srounii the 
universe and returned ! (See Figure 23.) 

Although the Einstdn modci of the cn ikz r~r  was at1 itl- 

triguing one and was bnscd on a rather firm mathtruatic~l 
foundation, an important dcvclnpmunt occurred in 1923 
which completely invalidated i t .  For it was during tha t  year 
that the American astronomer, Edwin P. Hubble, an- 
nounced that on the basis of experimental cvidcncc (thc so- 
called 'red shifts') it appeared as if all the other galaxies were 
rapidly running awa? from us. The interpretation of this is 
that our universe is in a sta!e of very rapid expansion. 

This development nullifies the originaI Einstein model of 
the universe as elucidated in lllc prcccding section becausc it 
was based on our universe being static, i.e., not expanding. 
There have been 3. number of dynamical nlodels of t l ~ e  uni- 
verse put forth in recent years which incorporate t l ~ c  

expandinguniverse feature, several of which are as tantalk 
ing as t l ~ c  original Einstein model. The interested reader can 
read about thtse in the many excellent books currently 
available on astronomy and cosmology, since further pur- 
sual of this topic is beyond the scope of this book. 
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triguing one and was bnscd on a rather firm mathtruatic~l 
foundation, an important dcvclnpmunt occurred in 1923 
which completely invalidated i t .  For it was during tha t  year 
that the American astronomer, Edwin P. Hubble, an- 
nounced that on the basis of experimental cvidcncc (thc so- 
called 'red shifts') it appeared as if all the other galaxies were 
rapidly running awa? from us. The interpretation of this is 
that our universe is in a sta!e of very rapid expansion. 

This development nullifies the originaI Einstein model of 
the universe as elucidated in lllc prcccding section becausc it 
was based on our universe being static, i.e., not expanding. 
There have been 3. number of dynamical nlodels of t l ~ e  uni- 
verse put forth in recent years which incorporate t l ~ c  

expandinguniverse feature, several of which are as tantalk 
ing as t l ~ c  original Einstein model. The interested reader can 
read about thtse in the many excellent books currently 
available on astronomy and cosmology, since further pur- 
sual of this topic is beyond the scope of this book. 

We can conclude that according to the General Theory of relativity, the

universe was considered to be finite and unbounded. Whether it is or not

may never actually be determined experimentally. However, it is amusing

to predict what may take place many years from now. An astronomer

might some day build a super-duper telescope, and we can imagine what

will happen when he looks through it. He may see a shiny luminous

object which looks like the moon, but with a very peculiar-looking curved

tree growing out of it. Only after many hours of quiet and careful scrutiny

will it dawn on him that he is looking at his own gleaming bald pate, the

light from which has gone completely around the universe and returned!


