SMSTC Geometry and Topology 2011–2012 Lecture 6 Covering spaces and the Galois equivalence

Vanya Cheltsov (Ваня Чельцов), Edinburgh

17th November, 2011

How to compute the fundamental group?

For a topological space X with a base point P, we saw two methods of computing the group $\pi_1(X, P)$.

- ► The straightforward method using definition of π₁(X, P) (contractible spaces, S¹, Möbius band, etc),
- Using the Seifert-van Kampen theorem (S¹ ∨ S¹, complement to a finite subset in ℝ², etc),
- Lefschetz hyperplane theorem.

Today we consider another method.

This method generalizes our way of computing $\pi_1(S^1) \cong \mathbb{Z}$.

The main objects of this method are the so-called covering spaces. Covering spaces are important on their own.

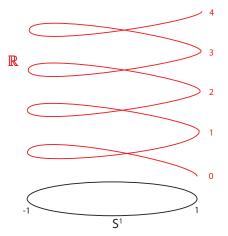
Let us start with examples and try to generalize them.

Circle: infinite cover

The continuous map

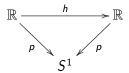
$$p\colon \mathbb{R} o S^1$$
 ; $x\mapsto e^{2\pi i x}$

is a surjection with many wonderful properties!



Circle: fundamental group

Homeo_p(\mathbb{R}) is the group of the homeomorphisms such that



is a commutative diagram. We have $\mathsf{Homeo}_{p}(\mathbb{R})\cong\mathbb{Z}$ given by

$$\mathbb{Z} o \mathsf{Homeo}_p(\mathbb{R})$$
; $n \mapsto (h_n : x \mapsto x + n).$

Every loop $\omega \colon S^1 \to S^1$ "lifts" to a path $\alpha \colon I \to \mathbb{R}$ with

$$\omega(e^{2\pi it}) = e^{2\pi i\alpha(t)} \in S^1 \ (t \in I).$$

There is a unique $h \in \text{Homeo}_p(\mathbb{R})$ with $h(\alpha(0)) = \alpha(1) \in \mathbb{R}$. We have isomorphisms of groups given by the functions

degree:
$$\pi_1(S^1) \to \operatorname{Homeo}_p(\mathbb{R}) \cong \mathbb{Z}$$
; $\omega \mapsto \alpha(1) - \alpha(0)$,
 $\mathbb{Z} \to \pi_1(S^1)$; $n \mapsto (\omega_n : S^1 \to S^1; z \mapsto z^n)$,

where the degree of ω is the number of times ω winds around 0.

Circle: other covers

Example For every non-zero integer *n*, define a covering

$$p_n: S^1 \to S^1; z \mapsto z^n,$$

and put $\omega = e^{2\pi i/n}$. There is a group isomorphism given by

$$\mathbb{Z}_n \to \operatorname{Homeo}_{p_n}(S^1)$$
; $r \mapsto (z \mapsto \omega^r z)$.

Circle has many non-connected covering spaces:

▶
$$p: S^1 \times \mathbb{Z} \to S^1; (z, t) \mapsto z,$$

▶ $p: S^1 \times \mathbb{Z}_n \to S^1; (z, t) \mapsto z.$

Recall that every subgroup in $\pi_1(S^1) \cong \mathbb{Z}$ is cyclic. For every subgroup $G \subset \pi_1(S^1)$, we have path-connected cover

$$p \colon \tilde{X} \to S^1$$

with a fibre F such that

$$\mathsf{Homeo}_p(ilde{X}) = G$$

and $|F| = |\mathbb{Z}/G|$ (and $p_*(\pi_1(ilde{X})) = G$). This is not a coincidence.

Covering spaces: definition

Let X be a (path-connected) topological space.

Definition A covering space of X with fibre the discrete space F is

- a space $ilde{X}$ equipped with
- ▶ a covering projection continuous map $p: X \to X$ such that
- for each $x \in X$ there is an open subset $U \subseteq X$ containing x
- ▶ with a homeomorphism $\phi \colon F \times U \to p^{-1}(U)$ such that

$$p \circ \phi(a, u) = u \in U \subseteq X \ (a \in F, u \in U).$$

Note that for each $x \in X$, the fibre $p^{-1}(x)$ is homeomorphic to F. The conversion prediction $x \in \tilde{X}$ by X is a "level boundary production".

The covering projection $p \colon \tilde{X} \to X$ is a "local homeomorphism":

- ullet for each $ilde{x}\in ilde{X}$ there is an open subset $U\subseteq ilde{X}$ containing x
- ▶ such that $U \to p(U)$; $u \mapsto p(u)$ is a homeomorphism
- with $p(U) \subseteq X$ an open subset.

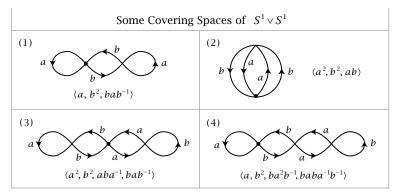
We will see that $p \colon \tilde{X} \to X$ gives a geometric method for computing $\pi_1(X)$ if \tilde{X} is simply-connected.

Covering spaces: examples

We already know many examples of covering spaces:

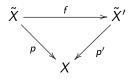
- any space X is a covering space of itself with identity map as covering projection,
- ► the maps $\mathbb{R} \times \mathbb{R} \to S^1 \times S^1$, $\mathbb{R} \times S^1 \to S^1 \times S^1$, and $S^1 \times \mathbb{R} \to S^1 \times S^1$,
- the standard map $S^2 \to \mathbb{RP}^2$.

How to construct coverings of $S^1 \vee S^1$?



lsomorphisms of covering spaces

Let $p: \tilde{X} \to X$ and $p': \tilde{X}' \to X$ be covering spaces. When $p: \tilde{X} \to X$ and $p': \tilde{X}' \to X$ are the "same"? An isomorphism between $p: \tilde{X} \to X$ and $p': \tilde{X}' \to X$ is a homeomorphism $f: \tilde{X} \to \tilde{X}'$ such that the diagram



commutes.

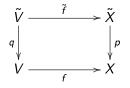
If $\tilde{X} = \tilde{X}'$ and p = p', then f is not necessary the identity map. The isomorphism of covering spaces is an equivalence relation. All automorphisms of a given covering space $p: \tilde{X} \to X$ form a group.

Pullback covers

Let $p: \tilde{X} \to X$ be a covering space with a fibre F. Let $f: V \to X$ be a continuous map. Put

$$ilde{V} = \Big\{ (ilde{x}, extsf{v}) \in ilde{X} imes V extsf{ such that } p(ilde{x}) = f(extsf{v}) \Big\},$$

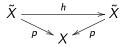
let $q: \tilde{V} \to V$ be the map induced by the projection $\tilde{X} \times V \to V$. The map $q: \tilde{V} \to V$ is a covering space with a fibre F. Moreover, there exists a commutative diagram



for the continuous map $\tilde{f}: \tilde{V} \to \tilde{X}; (\tilde{x}, v) \mapsto \tilde{x}$. The covering space $q: \tilde{V} \to V$ is sometimes denoted by $f^*(\tilde{X})$. It is known as the "pullback" of the covering space $p: \tilde{X} \to X$ via f. Examples, remarks, comments, and questions

Covering translations

For any space X let Homeo(X) be the group of all homeomorphisms $h: X \to X$, with composition as group law. Let $p: \tilde{X} \to X$ be a covering space. **Definition** Let Homeo_p(\tilde{X}) be the subgroup of Homeo(\tilde{X}) consisting of all homeomorphisms $h: \tilde{X} \to \tilde{X}$ such that the diagram



commutes, i.e. $p \circ h = p \colon \tilde{X} \to X$. The group Homeo_p (\tilde{X}) is called

- either the group of covering translations,
- or the group of deck transformations.

Example For every non-zero integer *n*, define a covering

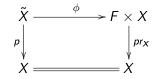
$$p_n: S^1 \to S^1; z \mapsto z^n,$$

and put $\omega = e^{2\pi i/n}$. There is a group isomorphism given by

$$\mathbb{Z}_n o \mathsf{Homeo}_{p_n}(S^1)$$
; $r \mapsto (z \mapsto \omega^r z)$.

Trivial covering

Let $p: \tilde{X} \to X$ be a covering space with fibre F. **Definition** A covering projection $p: \tilde{X} \to X$ is trivial if there exists a homeomorphism $\phi: F \times X \to \tilde{X}$ such that the diagram



commutes, where $pr_X : F \times X$ is a projection to X.

A particular choice of ϕ is a trivialisation of p.

Example If $\tilde{X} = F \times X$ and p is a projection to X, then

- $p: \tilde{X} \to X$ is trivial covering (by definition),
- ▶ if we assume that the space X is path-connected, then Homeo_p(X̃) is the group of permutations of F.

Non-trivial coverings

Example The universal covering

$$p\colon \mathbb{R} o S^1$$
 ; $x\mapsto e^{2\pi i x}$

is a covering projection with fibre $\mathbb Z.$ Moreover, we saw that

 $\operatorname{Homeo}_{p}(\mathbb{R})\cong\mathbb{Z},$

and p is not trivial (\mathbb{R} is not homeomorphic to $\mathbb{Z} \times S^1$). Warning There is a bijection

$$\phi \colon \mathbb{Z} \times S^1 \to \mathbb{R}$$
; $(n, e^{2\pi i t}) \mapsto n + t \ (0 \leqslant t < 1)$

such that $p: \phi = \text{projection}: \mathbb{Z} \times S^1 \to \mathbb{R}$, but ϕ is not continuous. Example Let $p: S^2 \to \mathbb{RP}^2$ be a standard covering. Then

$$\operatorname{Homeo}_p(S^2) \cong \mathbb{Z}_2,$$

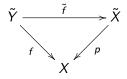
and p is not trivial (S^2 is not homeomorphic to $\mathbb{RP}^2 \times \mathbb{Z}_2$). Let $f: S^1 \to \mathbb{RP}^2$ be a loop. Then the pullback of p to S^1 via f is

- trivial if $[f(S^1)] = 0$ in $\pi_1(\mathbb{RP}^2)$,
- non-trivial if $[f(S^1)] \neq 0$ in $\pi_1(\mathbb{RP}^2) \cong \mathbb{Z}_2$.

Lifts

Let $p: \tilde{X} \to X$ be a covering projection with fibre F, and let $f: Y \to X$ be a continuous map.

Definition A lift of f is a continuous map $\tilde{f}: Y \to \tilde{X}$ such that



is a commutative diagram, i.e. $p(\tilde{f}(y)) = f(y) \in X$ for any $y \in Y$. **Example** If $\tilde{X} = F \times X$ and p is a projection to X, then we can easily define a lift of f by setting

$$ilde{f}_{a} \colon Y o ilde{X} = F imes X$$
 ; $y \mapsto (a, f(y)),$

where *a* is some fixed chosen point in *F*. If *Y* is path-connected *Y*, then $a \mapsto \tilde{f}_a$ gives a bijection between *F* and the lifts of *f*. Path lifting

Let $p: \tilde{X} \to X$ be a covering projection with fibre F. Take points $x_0 \in X$ and $\tilde{x}_0 \in \tilde{X}$ such that $p(\tilde{x}_0) = x_0$. Let $\alpha: I \to X$ be any path with $\alpha(0) = x_0 \in X$, where I = [0, 1]. **Path lifting property** There is a unique lift of α to a path

$$\tilde{\alpha} \colon I \to \tilde{X}$$

such that $ilde{lpha}(0) = ilde{x}_0 \in ilde{X}$.

Let $\beta: I \to X$ be another path with $\beta(0) = x_0 \in X$. Let $\tilde{\alpha}$ and $\tilde{\beta}$ be lifts of α and β , respectively, such that

$$\tilde{\alpha}(0) = \tilde{\beta}(0) = \tilde{x}_0 \in \tilde{X}.$$

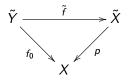
Homotopy lifting property Every rel $\{0, 1\}$ homotopy $h: \alpha \simeq \beta: I \to X$ has a unique lift to a rel $\{0, 1\}$ homotopy

$$\tilde{h}\colon \tilde{\alpha}\simeq \tilde{\beta}\colon I\to \tilde{X}$$

and in particular $ilde{lpha}(1) = ilde{h}(1,t) = ilde{eta}(1) \in ilde{X}$ for every $t \in I$.

Homotopy lifting property

Let $p: \tilde{X} \to X$ be a covering projection with fibre F. Homotopy lifting property for paths can be generalized. Let $f_0: Y \to X$ be a continuous map, and let $\tilde{f}_0: Y \to \tilde{X}$ be its lift, i.e. the diagram



commutes. Here we assume that the lift \tilde{f}_0 exists.

Let $f_t: Y \to X$ be a homotopy of f_0 , where $t \in I = [0, 1]$. Homotopy lifting property There exists a unique homotopy

$$\tilde{f}_t: Y \to \tilde{X}$$

of the map f_0 that is a lift of the homotopy f_t .

Examples, remarks, comments, and questions

Fundamental group action: fibers

Let $p: \tilde{X} \to X$ be a covering projection with fibre F. Take a point $x_0 \in X$. Put $F_{x_0} = p^{-1}(x_0)$. For every path $\alpha: I \to X$ with $\alpha(0) = \alpha(1) = x_0 \in X$, and for every point $y \in F_{x_0}$, there is a lift $\tilde{\alpha}: I \to \tilde{X}$ such that $\tilde{\alpha}(0) = y$ by the path lifting property. We have $\tilde{\alpha}(1) \in F_{x_0}$, since $\tilde{\alpha}$ is a lift of α . Taking another path $\alpha' \in [\alpha] \in \pi_1(X, x_0)$ and its lift $\tilde{\alpha}'$, we have

$$\tilde{lpha}'(1) = \tilde{lpha}(1) \in F_{x_0}$$

by the homotopy lifting property. So $\pi_1(X, x_0)$ acts on F_{x_0} (what a surprise). For every $x \in X$, put $F_x = p^{-1}(x)$. Then $\pi_1(X, x)$ acts on F_x . We can write $\sigma(\tilde{x})$ for $\sigma \in \pi_1(X, x)$ and $\tilde{x} \in F_x$. Can we extend this actions to the action of $\pi_1(X, x_0)$ on \tilde{X} ? This would be a nice thing to do. Especially if X is path-connected and we can drop x_0 in $\pi_1(X, x_0)$.

Fundamental group action: space

Let $p: \tilde{X} \to X$ be a covering projection with fibre F. Suppose that \tilde{X} and X are path-connected. For every $x \in X$, put $F_x = p^{-1}(x)$. Then $\pi_1(X, x)$ acts on F_x . Take points $x_0 \in X$ and $\tilde{x}_0 \in F_{x_0}$. For every $\tilde{x} \in \tilde{X}$, let $\gamma_{\tilde{x}}: I \to \tilde{X}$ be a path from \tilde{x}_0 to \tilde{x} . For every $\sigma \in \pi_1(X, x_0)$, put

$$\sigma(\tilde{x}) = \left(p \circ \gamma_{\tilde{x}}\right) \cdot \sigma \cdot \left(p \circ \gamma_{\tilde{x}}^{-1}\right)(\tilde{x}).$$

Note that $\sigma(\tilde{x})$ is well-defined.

But $\sigma(\tilde{x})$ may depend on the choice of $\gamma_{\tilde{x}}$, which is no good. **Theorem** $\sigma(\tilde{x})$ does not dependent on the choice of $\gamma_{\tilde{x}}$ if

$$p_*(\pi_1(\tilde{X})) \triangleleft \pi_1(X),$$

i.e. if $p_*(\pi_1(\tilde{X}))$ is a normal subgroup in $\pi_1(X)$. Recall that a subgroup $H \subseteq G$ is normal if

$$gH = Hg$$

for all $g \in G$, in which case the quotient group G/H is defined.

Examples, remarks, comments, and questions

Regular covers

Let $p: \tilde{X} \to X$ be a covering projection such that \tilde{X} and X are path-connected. Take points $x_0 \in X$ and $\tilde{x}_0 \in \tilde{X}$ with $p(\tilde{x}_0) = x_0$. **Claim** The homomorphism $p_*: \pi_1(\tilde{X}) \to \pi_1(X)$ is injective. Indeed, if $\omega: S^1 \to \tilde{X}$ is a loop at \tilde{x}_0 with a homotopy

$$h \colon p \circ \omega \simeq e_{x_0} \colon S^1 \to X \text{ rel } 1,$$

then h can be lifted to a homotopy

$$ilde{h}\colon\omega\simeq {\it e}_{ ilde{x}_0}\colon S^1 o ilde{X}$$
 rel 1

by the homotopy lifting property.

The subgroup $p_*(\pi_1(\tilde{X}, x_0))$ consists of the homotopy classes of loops in X based at x_0 whose lifts to \tilde{X} starting at \tilde{x}_0 are still loops. **Definition** A covering p is regular or normal if

$$p_*(\pi_1(\tilde{X})) \triangleleft \pi_1(X).$$

Remark If \tilde{X} is simply-connected, then p is regular (why?). **Example** $p: \mathbb{R} \to S^1$ and $p_n: \mathbb{S}^1 \to S^1$ are regular. **Example** $p: \mathbb{S}^2 \to \mathbb{RP}^2$ is regular.

Constructing regular coverings

Let Y be a space, let G be a subgroup in Homeo(Y). Define an equivalence relation \sim on Y by

 $y_1 \sim y_2$ if there exists $g \in G$ such that $y_2 = g(y_1)$.

Put $X = Y / \sim$. Let $p: Y \to X$ be a quotient map. Is X a topological space? Yes (quotient topology). Is $p: Y \to X$ a covering projection? Usually No. Why? Suppose that for any $y \in Y$ there is an open subset $U \subseteq Y$ such that U contains y and (this is more important)

$$g(U)\cap U=\emptyset$$
 for every $g\in G$ such that $g
eq 1,$

where 1 denotes the identity element in G.

Such an action of G on Y is called free and properly discontinuous. **Theorem** $p: Y \to X$ is a regular covering projection with fibre G. If Y is path-connected then

- ► X is path-connected,
- Homeo_p(Y) \cong G.

Deck theorem

Let $p: \tilde{X} \to X$ be a covering projection with a fibre F. Suppose that \tilde{X} and X are path-connected. For every point $x \in X$, put $F_x = p^{-1}(x)$ for every point $x \in X$.

Theorem Put $H = p_*(\pi_1(\tilde{X}) \subset \pi_1(X))$. Then

- there is a bijection $F \leftrightarrows$ the set of left cosets of H in $\pi_1(X)$,
- if p is regular, then Homeo $_p(\tilde{X}) \cong \pi_1(X)/H$,
- if p is not necessarily regular, then

 $\operatorname{Homeo}_p(\tilde{X}) \cong N(H)/H,$

where N(H) is a normalizer of H in $\pi_1(X)$,

- ▶ p is regular iff Homeo_p (\tilde{X}) acts transitively on F_x for any $x \in X$,
- if \tilde{X} is simply connected, then $\operatorname{Homeo}_p(\tilde{X}) \cong \pi_1(X)$.

If $|F| < +\infty$, then |F| is the index of H in $\pi_1(X)$. Homeo_p(\tilde{X}) play the role of the Galois group in topology.

Deck theorem: sketch of the proof

Let us give a sketch of Homeo_p $(\tilde{X}) \cong \pi_1(X)/H$. If p is regular, then the action of $\pi_1(X)$ on \tilde{X} induces a surjection

 $\pi_1(X) \to \operatorname{Homeo}_p(\tilde{X})$

whose kernel is H. This is basically the idea. Take points $x_0 \in X$ and $\tilde{x}_0 \in \tilde{X}$ such that $p(\tilde{x}_0) = x_0$. Every closed path $\alpha \colon I \to X$ with $\alpha(0) = \alpha(1) = x_0$ has a unique lift to a path $\tilde{\alpha} \colon I \to \tilde{X}$ such that $\tilde{\alpha}(0) = \tilde{x}_0$. The function

$$\pi_1(X, x_0)/p_*\pi_1(\tilde{X}, \tilde{x}_0) o p^{-1}(x_0)$$
; $lpha \mapsto ilde{lpha}(1)$

is a bijection. For each $\tilde{x} \in F_{x_0}$ there is a unique covering translation $h_{\tilde{y}} \in \text{Homeo}_{p}(\tilde{X})$ such that $h_{\tilde{x}}(\tilde{x}_0) = \tilde{x}$. The function

$$p^{-1}(x_0)
ightarrow \operatorname{\mathsf{Homeo}}_p(ilde{X}); ilde{x} \mapsto h_{ ilde{x}}$$

is a bijection, with inverse $h \mapsto h(\tilde{x}_0)$. The composite bijection

$$\pi_1(X, x_0)/H o p^{-1}(x_0) o \mathsf{Homeo}_p(ilde{X})$$

is an isomorphism of groups.

Examples, remarks, comments, and questions

Universal covers

Let $p: \tilde{X} \to X$ be a covering projection with a fibre F. Suppose that \tilde{X} and X are path-connected. If $\pi_1(\tilde{X}) = 1$, then $\pi_1(X) \cong \text{Homeo}_p(\tilde{X})$ and $\pi_1(X) \rightleftharpoons F$. Definition A covering $p: \tilde{X} \to X$ is universal if $\pi_1(\tilde{X}) = 1$. Example $p: \mathbb{R} \to S^1$ is universal. Example $p \times p: \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$ is universal. So

$$\pi_1(S^1 \times S^1) \cong \mathsf{Homeo}_{p \times p}(\mathbb{R} \times \mathbb{R}) \cong \mathbb{Z} \oplus \mathbb{Z}.$$

Remark Universal covering $p: \tilde{X} \to X$ exists if

- (A) X is path-connected,
- (B) and X is locally path-connected
 (each point has arbitrarily small open neighborhood like this),

(C) and X is semi-locally simply-connected (each point $P \in X$ has a neighborhood U such that the inclusion-induced map $\pi_1(U, P) \rightarrow \pi_1(X, P)$ is trivial).

Every reasonable X (e.g. connected manifold) fits (A), (B), (C). Universal cover is unique (this justifies the word "universal").

Existence of covers

Let $p: \tilde{X} \to X$ be a covering space. Suppose that X satisfies (A), (B), (C), and \tilde{X} is path-connected. Take points $x_0 \in X$ and $\tilde{x}_0 \in \tilde{X}$ with $p(\tilde{x}_0) = x_0$. We have a function (or a correspondence)

covering space $p \colon \tilde{X} \to X \Longrightarrow$ subgroup $p_*(\pi_1(\tilde{X}, \tilde{x}_0)) \subset \pi_1(X, x_0).$

Is this function surjective? For a trivial subgroup in $\pi_1(X)$, the answer is Yes. For any subgroup $G \subset \pi_1(X)$, we can put

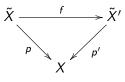
$$\tilde{X} = \mathcal{X}/G,$$

where \mathcal{X} is the universal cover of X. So the answer to the above question is Yes in general. Is this function "injective"?

Galois correspondence

Let $p: \tilde{X} \to X$ and $p': \tilde{X}' \to X$ be covering spaces. Suppose that X satisfies (A), (B), (C). Suppose that \tilde{X} and \tilde{X}' are path-connected. Take points $x_0 \in X$, $\tilde{x}_0 \in \tilde{X}$, $\tilde{x}'_0 \in \tilde{X}'$, with $p(\tilde{x}_0) = p(\tilde{x}'_0) = x_0$. **Claim** The following two conditions are equivalent:

ullet there is a homeomorphism $f:\, ilde{X} o ilde{X}'$ such that



is commutative diagram and $f(ilde{x}_0) = ilde{x}_0'$,

•
$$p_*(\pi_1(\tilde{X}, \tilde{x}_0)) = p'_*(\pi_1(\tilde{X}', \tilde{x}'_0)).$$

Theorem There exists a natural bijection between

- isomorphism classes of path-connected covering spaces p: X̃ → X,
- subgroups in $\pi_1(X)$ up to conjugation.