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Manifolds

I An n-dimensional manifold M is a topological space such
that each x ∈ M has an open neighbourhood U ⊂ M
homeomorphic to n-dimensional Euclidean space Rn

U ∼= Rn .

I Strictly speaking, need to include the condition that M be
Hausdorff and paracompact = every open cover has a locally
finite refinement.

I Called n-manifold for short.
I Manifolds are the topological spaces of greatest interest, e.g.

M = Rn.
I Study of manifolds initiated by Riemann (1854).
I A surface is a 2-dimensional manifold.
I Will be mainly concerned with manifolds which are compact

= every open cover has a finite refinement.
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Why are manifolds interesting?

I Topology.

I Differential equations.

I Differential geometry.

I Hyperbolic geometry.

I Algebraic geometry. Uniformization theorem.

I Complex analysis. Riemann surfaces.

I Dynamical systems,

I Mathematical physics.

I Combinatorics.

I Topological quantum field theory.

I Computational topology.

I Pattern recognition: body and brain scans.

I . . .
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Examples of n-manifolds

I The n-dimensional Euclidean space Rn

I The n-sphere Sn.
I The n-dimensional projective space

RPn = Sn/{z ∼ −z} .

I Rank theorem in linear algebra. If J : Rn+k → Rk is a
linear map of rank k (i.e. onto) then J−1(0) = ker(J) ⊆ Rn+k

is an n-dimensional vector subspace.
I Implicit function theorem. The solutions of differential

equations are generically manifolds. If f : Rn+k → Rk is a
differentiable function such that for every x ∈ f −1(0) the
Jacobian k × (n + k) matrix J = (∂fi/∂xj) has rank k, then

M = f −1(0) ⊆ Rn+k

is an n-manifold.
I In fact, every n-manifold M admits an embedding M ⊆ Rn+k

for some large k .
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Manifolds with boundary

I An n-dimensional manifold with boundary (M, ∂M ⊂ M)
is a pair of topological spaces such that
(1) M\∂M is an n-manifold called the interior,
(2) ∂M is an (n − 1)-manifold called the boundary,
(3) Each x ∈ ∂M has an open neighbourhood U ⊂ M such that

(U, ∂M ∩ U) ∼= Rn−1 × ([0,∞), {0}) .

I A manifold M is closed if ∂M = ∅.
I The boundary ∂M of a manifold with boundary (M, ∂M) is

closed, ∂∂M = ∅.
I Example (Dn, Sn−1) is an n-manifold with boundary.
I Example The product of an m-manifold with boundary

(M, ∂M) and an n-manifold with boundary (N, ∂N) is an
(m + n)-manifold with boundary

(M × N,M × ∂N ∪∂M×∂N ∂M × N) .
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The classification of n-manifolds I.

I Will only consider compact manifolds from now on.
I A function

i : a class of manifolds → a set ; M 7→ i(M)

is a topological invariant if i(M) = i(M ′) for homeomorphic
M,M ′. Want the set to be finite, or at least countable.

I Example 1 The dimension n > 0 of an n-manifold M is a
topological invariant (Brouwer, 1910).

I Example 2 The number of components π0(M) of a manifold
M is a topological invariant.

I Example 3 The orientability w(M) ∈ {−1,+1} of a
connected manifold M is a topological invariant.

I Example 4 The Euler characteristic χ(M) ∈ Z of a manifold
M is a topological invariant.

I A classification of n-manifolds is a topological invariant i
such that i(M) = i(M ′) if and only if M,M ′ are
homeomorphic.
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The classification of n-manifolds II. n = 0, 1, 2, . . .

I Classification of 0-manifolds A 0-manifold M is a finite set
of points. Classified by π0(M) = no. of points > 1.

I Classification of 1-manifolds A 1-manifold M is a finite set
of circles S1. Classified by π0(M) = no. of circles > 1.

I Classification of 2-manifolds Classified by π0(M), and for
connected M by the fundamental group π1(M). Details to
follow!

I For n 6 2 homeomorphism ⇐⇒ homotopy equivalence.

I It is theoretically possible to classify 3-manifolds, especially
after the Perelman solution of the Poincaré conjecture.

I It is not possible to classify n-manifolds for n > 4. Every
finitely presented group is realized as π1(M) = ⟨S |R⟩ for a
4-manifold M. The word problem is undecidable, so cannot
classify π1(M), let alone M.
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How does one classify surfaces?

I (1) Every surface M can be triangulated, i.e. is
homeomorphic to a finite 2-dimensional cell complex

M ∼=
∪
c0

D0 ∪
∪
c1

D1 ∪
∪
c2

D2 .

I (2) Every connected triangulated M is homeomorphic to a
normal form

M(g) orientable, genus g > 0 ,

N(g) nonorientable, genus g > 1

I (3) No two normal forms are homeomorphic.
I Similarly for surfaces with boundary, with normal forms

M(g , h), N(g , h) with genus g , and h boundary circles.
I History: (2)+(3) already in 1860-1920 (Möbius, Clifford, van

Dyck, Dehn and Heegaard, Brahana). (1) only in the 1920’s
(Rado, Kerékjártó). Today will only do (3), by computing π1
of normal forms.
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A page from Dehn and Heegaard’s Analysis Situs (1907)

http://www.maths.ed.ac.uk/~aar/papers/dehnheegaard.pdf
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The connected sum I.

I Given an n-manifold with boundary (M, ∂M) with M
connected use any embedding Dn ⊂ M\∂M to define the
punctured n-manifold with boundary

(M0, ∂M0) = (cl.(M\Dn), ∂M ∪ Sn−1) .

I The connected sum of connected n-manifolds with boundary
(M, ∂M), (M ′, ∂M ′) is the connected n-manifold with
boundary

(M#M ′, ∂(M#M ′)) = (M0 ∪Sn−1 M ′
0, ∂M ∪ ∂M ′) .

Independent of choices of Dn ⊂ M\∂M, Dn ⊂ M ′\∂M ′.

I If M and M ′ are closed then so is M#M ′.
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The connected sum II.

I

M M’

M # M’

I The connected sum # has a neutral element, is commutative
and associative:

(i) M#Sn ∼= M ′ ,

(ii) M#M ′ ∼= M ′#M ,

(iii) (M#M ′)#M ′′ ∼= M#(M ′#M ′′) .
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The fundamental group of a connected sum

I If (M, ∂M) is an n-manifold with boundary and M is
connected then M0 is also connected. Can apply the
Seifert-van Kampen Theorem to

M = M0 ∪Sn−1 Dn

to obtain

π1(M) = π1(M0) ∗π1(Sn−1) {1} =

π1(M0) for n > 3

π1(M0)/⟨∂⟩ for n = 2

with ⟨∂⟩ ▹ π1(M0) the normal subgroup generated by the
boundary circle ∂ : S1 ⊂ M0.

I Another application of the Seifert-van Kampen Theorem gives

π1(M#M ′) = π1(M0) ∗π1(Sn−1) π1(M
′
0)

=

π1(M) ∗ π1(M ′) for n > 3

π1(M0) ∗Z π1(M
′
0) for n = 2 .
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Orientability for surfaces

I Let M be a connected surface, and let α : S1 → M be an
injective loop.

I α is orientable if the complement is not connected, in which
case it has 2 components.

I α is nonorientable if the complement M\α(S1) is connected.

I Definition M is orientable if every α : S1 → M is orientable.

I Jordan Curve Theorem R2 is orientable.

I Example The 2-sphere S2 and the torus S1 × S1 are
orientable.

I Definition M is nonorientable if there exists a nonorientable
α : S1 → M, or equivalently if Möbius band ⊂ M.

I Example The Möbius band, the projective plane RP2 and the
Klein bottle K are nonorientable.

I Remark Can similarly define orientability for connected
n-manifolds M, using α : Sn−1 → M, π0(M\α(Sn−1)).
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The orientable closed surfaces M(g) I.

I Definition Let g > 0. The orientable connected surface
with genus g is the connected sum of g copies of S1 × S1

M(g) = #
g
(S1 × S1)

I Example M(0) = S2, the 2-sphere.
I Example M(1) = S1 × S1, the torus.
I Example M(2) = the 2-holed torus, by Henry Moore.
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The orientable closed surfaces M(g) II.

M(1)M(0) M(2)

M(g)
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The nonorientable surfaces N(g) I.

I Let g > 1. The nonorientable connected surface with
genus g is the connected sum of g copies of RP2

N(g) = #
g
RP2

I Example N(1) = RP2, the projective plane.
I Boy’s immersion of RP2 in R3 (in Oberwolfach)

http://www.maths.ed.ac.uk/~aar/surgery/notes.htm
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The nonorientable closed surfaces N(g) II.

N(g)

Projective plane = N(1) Klein bottle = N(2)
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The Klein bottle

I Example N(2) = K is the Klein bottle.
I The Klein bottle company

http://www.kleinbottle.com
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The classification theorem for closed surfaces

I Theorem Every connected closed surface M is homeomorphic
to exactly one of

M(0) , M(1) , . . . , M(g) = #
g
S1 × S1 , . . . (orientable)

N(1) , N(2) , . . . , N(g) = #
g
RP2 , . . . (nonorientable)

I Connected surfaces are classified by the genus g and
orientability.

I Connected surfaces are classified by the fundamental group :

π1(M(g)) = ⟨a1, b1, a2, b2, . . . , ag , bg | [a1, b1] . . . [ag , bg ]⟩
π1(N(g)) = ⟨c1, c2, . . . , cg | (c1)2(c2)2 . . . (cg )2⟩

I Connected surfaces are classified by the Euler characteristic
and orientability

χ(M(g)) = 2− 2g , χ(N(g)) = 2− g .
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The punctured torus I.

I The computation of π1(M(g)) for g > 0 will be by induction,
using the connected sum

M(g + 1) = M(g)#M(1)

I So need to understand the fundamental group of the torus
M(1) = T = S1 × S1 and the puncture torus (T0, S

1).

I Clear from T = S1 × S1 that π1(T ) = Z⊕ Z.
I Can also get this by applying the Seifert-van Kampen theorem

to M(1) = M(1)#M(0), i.e. T = T0 ∪S1 D2.

I The punctured torus

(T0, ∂T0) = (cl.(S1 × S1\D2), S1)

is such that S1 ∨ S1 ⊂ T0 is a homotopy equivalence.
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The punctured torus II.

I The inclusion ∂T0 = S1 ⊂ T0 induces

π1(S
1) = Z → π1(T0) = π1(S

1 ∨ S1) = Z ∗ Z = ⟨a, b⟩ ;
1 7→ [a, b] = aba−1b−1 .

I

Torus b 

b 

a a

I The Seifert-van Kampen Theorem gives

π1(T ) = π1(T0) ∗Z {1} = ⟨a, b | [a, b]⟩ = Z⊕ Z .
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The calculation of π1(M(g)) I.

I The initial case g = 2, using M(2) = M(1)#M(1)

M(1)

a1

b1

b1 b2

b2

a1 a2 a2

M(1)

M(2)

a1

a1

a1

a1

a1

b1

b1

b1

b1

b1

b1

b2

b2

b2

b2

b2

b2

a1 a2

a2

a2

a2

a2

a2

M(1) # M(1)

M(1,1) M(1,1)
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The calculation of π1(M(g)) II. General case

I Assume inductively that
I π1(M(g)) = ⟨a1, b1, . . . , ag , bg | [a1, b1] . . . [ag , bg ]⟩,
I the punctured surface

(M(g)0, ∂M(g)0) = (cl.(M(g)\D2), S1)

is such that
∨
2g
S1 ⊂ M(g)0 is a homotopy equivalence,

I the inclusion ∂M(g)0 = S1 ⊂ M(g)0 induces

π1(S
1) = Z → π1(M(g)0) = ∗

2g
Z = ⟨a1, b1, . . . , ag , bg ⟩ ;

1 7→ [a1, b1][a2, b2] . . . [ag , bg ] .

I Apply the Seifert-van Kampen Theorem to

M(g + 1) = M(g)#M(1)

to obtain

π1(M(g + 1)) = π1(M(g)0) ∗Z π1(M(1)0)

= ⟨a1, b1, . . . , ag+1, bg+1 | [a1, b1] . . . [ag+1, bg+1]⟩
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Cross-cap

I If M is a surface the connected sum

M ′ = M#RP2

is the surface obtained from M by forming a crosscap
(Kreuzhaube in German).

I M ′ is homeomorphic to the identification space obtained from
the punctured surface (M0, S

1) by identifying z ∼ −z for
z ∈ S1

M ′ = M0/{z ∼ −z} .

I Equivalently, M ′ is obtained from M by punching out D2 ⊂ M
and replacing it by a Möbius band.

I M ′ is nonorientable.

I Example If M = S2 then M ′ = RP2.
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The punctured projective plane I.

I The computation of π1(N(g)) for g > 1 will be by induction,
using the connected sum

N(g + 1) = N(g)#N(1)

with N(1) = RP2. Abbreviate RP2 = P .

I Need to understand the fundamental group of P and the
punctured projective plane (P0, S

1), i.e. the Möbius band.

I Clear from the universal double cover p : S2 → P that

π1(P) = Homeop(P) = Z2 .

I Can also get this by applying the Seifert-van Kampen
Theorem to N(1) = N(1)#M(0), i.e. P = P0 ∪S1 D2.
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The punctured projective plane II.

I The punctured projective plane

(P0, ∂P0) = (cl.(P\D2), S1)

is a Möbius band, such that S1 ⊂ P0\∂P0 is a homotopy
equivalence.

I The inclusion ∂P0 = S1 ⊂ P0 induces

π1(S
1) = Z → π1(P0) = π1(S

1) = Z ; 1 7→ 2 .

I The Seifert-van Kampen Theorem gives

π1(P) = π1(P0) ∗Z {1} = ⟨c | c2⟩ = Z2 .
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The calculation of π1(N(g)) I.

I The initial case g = 2, using N(2) = N(1)#N(1) and
(N(1)0, S

1) = (Möbius band,boundary circle).

c1

N(1) # N(1)

N(1,1)
c1

c1

c1

a

a

c1c1c1

c1

c1

c2

c2

c2

c2c2

c1

N(1,1)

Klein Bottle = N(2)

Projective plane = N(1)

N(1) # N(1) = N(2)

c1

I By the Seifert-van Kampen Theorem, with c2 = (c ′1)
−1,

π1(N(2)) = π1(N(1)#N(1))

= ⟨c1, c ′1 | (c1)2 = (c ′1)
2⟩ = ⟨c1, c2 | (c1)2(c2)2⟩ .
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The calculation of π1(N(g)) II.

I Assume inductively that
I π1(N(g)) = ⟨c1, c2, . . . , cg | (c1)2(c2)2 . . . (cg )2⟩,
I the punctured surface

(N(g)0, ∂N(g)0) = (cl.(N(g)\D2),S1)

is such that
∨
g
S1 ⊂ N(g)0 is a homotopy equivalence,

I the inclusion ∂N(g)0 = S1 ⊂ N(g)0 induces

π1(S
1) = Z → π1(N(g)0) = ∗

g
Z = ⟨c1, c2, . . . , cg ⟩ ;

1 7→ (c1)
2 . . . (cg )

2 .

I Apply the Seifert-van Kampen Theorem to

N(g + 1) = N(g)#N(1)

to obtain

π1(N(g + 1)) = π1(N(g)0) ∗Z π1(N(1)0)

= ⟨c1, . . . , cg+1 | (c1)2 . . . (cg+1)
2⟩ .
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The calculation of π1(N(g)) III.

N(2)

N(g)

 N(1)

a

b

a a

b

c1

c1

c2

c2

c3

a
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The Euler characteristic

I Definition The Euler characteristic of a finite cell complex

X =
∪
c0

D0 ∪
∪
c1

D1 ∪
∪
c2

D2 ∪ · · · ∪
∪
cn

Dn

with ck k-cells is

χ(X ) =
n∑

k=0

(−1)kck ∈ Z .

I χ(Dn) = 1, χ(Sn) = 1 + (−1)n

I If X is homotopy equivalent to Y then χ(X ) = χ(Y )
I χ(X ∪ Y ) = χ(X ) + χ(Y )− χ(X ∩ Y ) ∈ Z.
I A punctured n-manifold has χ(M0) = χ(M) + (−1)n

I A connected sum of n-manifolds has

χ(M#M ′) = χ(M) + χ(M ′)− χ(Sn)

I If F → X̃ → X is a regular cover with finite fibre F then
χ(X̃ ) = χ(F )χ(X ), with χ(F ) = |F |.
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The Euler characteristic of M(g)

I The fundamental group of M(g) determines the genus g .
I The first homology group of M(g) is the free abelian group of

rank 2g

H1(M(g)) = π1(M(g))ab =
⊕
2g

Z

I M(g) is homotopy equivalent to the 2-dimensional cell
complex

(
∨
2g

S1) ∪[a1,b1]...[ag ,bg ] D
2 = D0 ∪

∪
2g

D1 ∪[a1,b1]...[ag ,bg ] D
2 .

I The Euler characteristic of M(g) is

χ(M(g)) = 2− 2g .

I A closed surface M is homeomorphic to S2 if and only if
χ(M) = 2.



33

The Euler characteristic of N(g)

I The fundamental group determines the genus g .

I The first homology group of N(g) is direct sum of the free
abelian group of rank g − 1 and the cyclic group of order 2

H1(N(g)) = π1(N(g))ab = (
⊕
g

Z)/(2, 2, . . . , 2) = (
⊕
g−1

Z)⊕Z2

I N(g) is homotopy equivalent to the 2-dimensional cell
complex

(
∨
g

S1) ∪(c1)2(c2)2...(cg )2 D
2 = D0 ∪

∪
g

D1 ∪(c1)2...(cg )2 D
2 .

I N(g) has Euler characteristic

χ(N(g)) = 2− g .
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The orientable surfaces with boundary M(g , h)

I Let g > 0, h > 1.

I Definition The orientable surface of genus g and h
boundary components is

(M(g , h), ∂) = (cl.(M(g)\
∪
h

D2),
∪
h

S1) .

I Cell structure M(g , h) ≃
∨

2g+h−1

S1 = D0 ∪
∪

2g+h−1

D1

I Fundamental group π1(M(g , h)) = ∗
2g+h−1

Z

I Euler characteristic χ(M(g , h)) = 2− 2g − h

I Classification Theorem Every connected orientable surface
with non-empty boundary is homeomorphic to exactly one of
(M(g , h), ∂M(g , h)).

I Set M(g , 0) = M(g).
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Examples of orientable surfaces with boundary

I (M(0, 1), ∂) = (D2, S1), 2-disk
I (M(0, 2), ∂) = (S1 × [0, 1],S1 × {0, 1}), cylinder
I (M(1, 1), ∂) = ((S1 × S1)0, S

1), punctured torus.
I (M(0, 3), ∂) = (pair of pants, S1 ∪ S1 ∪ S1).
I The pair of pants is an essential feature of topological

quantum field theory, and so appeared in Ida’s birthday cake
for the 80th birthday of Michael Atiyah (29 April, 2009)

http://www.maths.ed.ac.uk/~aar/atiyah80
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The nonorientable surfaces with boundary N(g , h) I.

I Let g > 1, h > 1.

I Definition The nonorientable surface with boundary with
genus g with h boundary components is

(N(g , h), ∂N(g , h)) = (cl.(N(g)\
∪
h

D2),
∪
h

S1) .

I Cell structure N(g , h) ≃
∨

g+h−1

S1 = D0 ∪
∪

g+h−1

D1.

I Fundamental group π1(N(g , h)) = ∗
g+h−1

Z

I Euler characteristic χ(N(g , h)) = 2− g − h

I Classification Theorem Every connected nonorientable
surface with non-empty boundary is homeomorphic to exactly
one of (N(g , h), ∂N(g , h)).

I Set N(g , 0) = N(g).
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The nonorientable surfaces with boundary N(g , h) II.

N(2,1)

=

N(g, h)

N(1,1) N(1, h)N(1,2)

N(2, h)N(2,1)

=
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The Möbius band

I The Möbius band (N(1, 1), ∂N(1, 1)) = ((RP2)0, S
1).

I The first drawing of a Möbius band, from Listing’ s 1862
Census der Räumlichen Complexe

http://www.maths.ed.ac.uk/~aar/papers/listing2.pdf
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The orientation double cover

I A double cover of a space N is a regular cover Ñ → N with
fibre F = {0, 1}. Connected double covers of connected N are
classified by index 2 subgroups π1(Ñ) ▹ π1(N).

I A surface N has an orientation double cover p : Ñ → N,
with Ñ an orientable surface. For connected N classified by
the kernel of the orientation character group morphism

w : π1(N) → Z2 = {+1,−1}
sending orientable (resp. nonorientable) α to +1 (resp. −1).

I If N is orientable Ñ = N ∪ N is the trivial double cover of N.
I If N is nonorientable w is onto, π1(Ñ) = kerw . Pullback

along nonorientable α : S1 → N is the nontrivial double cover

q = α∗p : S1 → S1 ; z 7→ z2

S1

q
��

α̃ // Ñ
p
��

S1 α // N
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The orientation double cover

of a Möbius band is a cylinder

1S  x  I = M(0,2)

M = N(1,1)
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M(g − 1, 2h) is the orientation double cover of N(g , h)

I Proposition The orientation double cover of N(g , h) is

Ñ(g , h) = M(g − 1, 2h) (g > 1, h > 0)

I Proof Let N be a connected nonorientable surface with
orientation double cover Ñ. The boundary circle of
N0 = cl.(N\D2) is orientable. The orientation double cover of
N0 is the twice-punctured Ñ, Ñ00 = cl.(Ñ\D2 ∪ D2). The
orientation double cover of N ′ = N#RP2 is

Ñ ′ = Ñ00 ∪S1∪S1 S1 × I .

with χ(Ñ ′) = χ(Ñ00) = χ(Ñ)− 2. This gives the inductive

step in checking that Ñ(g , h) = M(g − 1, 2h).

I Example For h = 0, g > 1 have Ñ(g) = M(g − 1).
Simply-connected for g = 1. For g > 2 universal cover R2.
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The genus measures connectivity
I. The orientable case

I The genus g of an orientable surface M is the maximum
number of disjoint loops α1, α2, . . . , αg : S1 → M such that

the complement M\
g∪

i=1
αi (S

1) is connected. The complement

is homeomorphic to M(0, 2g)\∂M(0, 2g).
I Example For M = M(2) let α1, α2 : S

1 → M be disjoint
loops which go round as in the diagram.
The complement

M\(α1(S
1) ∪ α2(S

1)) = M(0, 4)\∂M(0, 4)

is the sphere M(0) = S2 with 4 holes punched out.

M(2) 

α1 α2

M(2)  \ α1(S  )  U α2 (S  )1 1
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The genus measures connectivity
II. The nonorientable case

I The genus g of a nonorientable surface N is the maximum
number of disjoint nonorientable loops
β1, β2, . . . , βg : S1 → N such that the complement

N\
g∪

i=1
βi (S

1) is connected.

The complement is homeomorphic to M(0, g)\∂M(0, g).
I Example Let N = RP2 = D2/{z ∼ −z | z ∈ S1} and

β : S1 = RP1 → RP2 ; z 7→ [
√
z ] .

The complement is

RP2\β(S1) = M(0, 1)\∂M(0, 1) = D2\S1 = R2 .

D 2

-z

z



44

Morse theory

I For an orientable surface M ⊂ R3 in general position the
height function

f : M → R ; (x , y , z) 7→ z

has the property that the inverse image f −1(c) ⊂ M is a
1-dimensional submanifold for all except a finite number
c ∈ R called the critical values of f .

I Can recover the genus g of M by looking at the jumps in the
number of circles in f −1(a) and f −1(b) for a < b < c .

I Morse theory developed (since 1926) is the key tool for
studying n-manifolds for all n > 0.
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An early exponent of Morse theory on a surface

I August Ferdinand Möbius
Theorie der elementaren Verwandschaften (1863)

I Fill a surface shaped bathtub with water, and recover the
genus of the surface from a film of the cross-sections.

Ich hube dieseBeispielehinzugesetzt,um destodeutlichcr
fincm solchen Schemastets obwaltcnden Gesetzeerkennen

tusson. ï)i<'seGesetze sindfolgende:

http://www.maths.ed.ac.uk/~aar/papers/mobiussurf.pdf
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Another early exponent of Morse theory on a surface

I James Clerk Maxwell (1870) On hills and dales
I Reconstruct surface of the earth (= S2) from contour lines.

I Mountaineer’s equation for surface of Earth

no. of peaks− no. of pits + no. of passes = χ(S2) = 2 .

Modern account in Chapter 8 of Surfaces (CUP, 1976) by
H.B.Griffiths

http://www.maths.ed.ac.uk/~aar/papers/hilldale.pdf
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Complex algebraic curves

I The complex projective space CP2 is the space of
1-dimensional complex linear subspaces L ⊂ C2. A closed
4-manifold. Homogeneous coordinates [x , y , z ] ∈ CP2.

I For a degree d homogeneous complex polynomial P(x , y , z)
let

M(P) = {[x , y , z ] ∈ CP2 |P(x , y , z) = 0}
I Theorem (Special case of the Riemann-Hurwitz formula)

If (∂P/∂x , ∂P/∂y , ∂P/∂z) ̸= (0, 0, 0) for all (x , y , z) ∈ M(P)
then M(P) is a closed orientable surface with genus

g = (d − 1)(d − 2)/2

0 or one of the triangular numbers

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . .

I Complex algebraic curves by Frances Kirwan (CUP, 1992)
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Further reading

I Google for ”Classification of Surfaces” (147,000 hits)

I An Introduction to Topology. The classification theorem for
surfaces by E.C. Zeeman (1966)

I A Guide to the Classification Theorem for Compact Surfaces
by Jean Gallier and Dianna Xu (2011)

I Home Page for the Classification of Surfaces and the Jordan
Curve Theorem Online resources, including many of the
original papers.

http://www.google.co.uk/search?q="Classification+of+surfaces"
http://www.maths.ed.ac.uk/~aar/surgery/zeeman.pdf
http://www.maths.ed.ac.uk/~aar/surgery/zeeman.pdf
http://www.cis.upenn.edu/~jean/surfclass-n.pdf
http://www.maths.ed.ac.uk/~aar/jordan/
http://www.maths.ed.ac.uk/~aar/jordan/

