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A NONSTANDARD PROOF OF THE
JORDAN CURVE THEOREM

Abstract

We give a nonstandard variant of Jordan’s proof of the Jordan curve
theorem which is free of the defects his contemporaries criticized and
avoids the epsilontic burden of the classical proof. The proof is self-
contained, except for the Jordan theorem for polygons taken for granted.

Introduction

The Jordan curve theorem [5] (often abbreviated as JCT in the literature) was
one of the starting points in the modern development of topology (originally
called Analysis Situs). This result is considered difficult to prove, at least
compared to its intuitive evidence.

C. JORDAN [5] considered the assertion to be evident for simple polygons
and reduced the case of a simple closed continuous curve to that of a polygon
by approximating the curve by a sequence of suitable simple polygons.

Although the idea appears natural to an analyst it is not so easy to carry
through. JORDAN’s proof did not satisfy mathematicians of his time. On one
hand it was felt that the case of polygons also needed a proof based on clearly
stated geometrical principles, on the other hand his proof was considered in-
complete (see the criticisms formulated in [12] and in [9]).

If one is willing to assume slightly more than mere continuity of the curve
then much simpler proofs (including the case of polygons) are available (see
AMEs [1] and BLiss [3] under restrictive hypotheses).
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O. VEBLEN [12] is considered the first to have given a rigorous proof which,
in fact, makes no use of metrical properties, or, in the words of VEBLEN:
We accordingly assume nothing about analytic geometry, the parallel axiom,
congruence relations, nor the existence of points outside a plane.

His proof is based on the incidence and order axioms for the plane and the
natural topology defined by the basis consisting of nondegenerate triangles. He
also defines simple curves intrinsically as specific sets without parametrizations
by intervals of the real line. He finally discusses how the introduction of one
additional axiom, existence of a point outside the plane, allows him to reduce
his result to the context JORDAN was working in.

VEBLEN also gave a specific proof for polygons based on the incidence and
order axioms exclusively (see [11]) which was later criticized as inconclusive
by H. HAHN [4] who published his own version of a proof based on VEBLEN’s
incidence and order axioms of the plane (which, by the way, are equivalent to
the incidence and order axioms of HILBERT’S system).

JORDAN’s proof in his Cours d’ analyse of 1893 is elementary as to the tools
employed. Nevertheless the proof extends over nine pages and, as mentioned
above, cannot be considered complete. We are interested here in this proof.
It depends on some facts for polygons and an approximation argument. It
is, therefore, a natural idea to use nonstandard arguments to eliminate the
epsilontic burden of the approximation.

There is an article by L. NARENS [7] in which this point of view is adopted.
Unfortunately, some part of this proof has been criticized recently as incon-
clusive and, in any case, the reasoning is not essentially shorter than, or as
elementary as, JORDAN’s proof.

It is certainly true that not all classical arguments can be replaced in
some useful or reasonable way by simpler nonstandard arguments. But as we
shall show it is possible to simplify the approximation argument specific to
JORDAN’s proof. We shall follow the proof quite closely but take a somewhat
different approach when proving path-connectedness.

That nonstandard analysis can even give some additional insight into the
geometric problem is manifest from the proof by N. BERTOGLIO and R.
CHUAQUI [2] which avoids polygons and approximations entirely by looking
at a nonstandard discretization of the plane and reducing the problem to a
combinatorial version of the JCT proved by L. N. STouT [10]. This reduction
of the problem to a (formally) discrete one is interesting and leads to a proof
which establishes a link to a context totally different from JORDAN’s.

As a curiosity we note in passing that JORDAN speaks of infinitesimals in
his proof but it is only a figure of speech for a number which may be chosen
as small as one wishes or for a function which tends to zero.

For reference we state:
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The Jordan curve theorem

A simple closed continuous curve K in the plane separates its complement into
two open sets of which it is the common boundary; one of them is called the
outer (or exterior) region Kext which is an open, unbounded, path-connected
set and another set called the inner (or interior) region Kiny which is an open,
simply path-connected, bounded set.

Notation

By simple (polygon, curve) we shall always mean: having no self-intersections.
A broken line will be a curve counsisting of finitely (or hyperfinitely — in a
nonstandard domain) many nonzero segments.

The reader is assumed to have a basic knowledge of nonstandard analysis. !
In what follows we shall always identify reals and points from the standard
domain with their “asterisk” images in the nonstandard domain (although
the standard curve K will be distinguished from *K). We shall understand
the words point, polygon, real, curve etc. as meaning internal objects in the
nonstandard domain unless otherwise specified, for instance by the adjective
“standard”. Hopefully this way of exposition will be equally understandable
by both IST followers and those who prefer the model-theoretic version of
nonstandard analysis (although the latter should understand as hyperreals,
hyperpoints etc. what we will call reals, points etc.).

Plan of the proof

Starting the proof of the Jordan theorem, we consider a standard simple closed
curve K = {K(t) : 0 <t < 1} where K : R — R? is a (standard)
continuous 1-periodic function which is injective modulo 1 (i.e. K(t) = K(¢')
implies ¢t — ¢ = Omod 1). From K(t) = K(t') it follows then that t =~
t" mod 1.

Section 1. Working in a fixed nonstandard domain, we infinitesimally
approximate IC by a simple (nonstandard) polygon II, using a construction,
essentially due to Jordan, of consecutively cutting off loops from an originally
self-intersecting approximation.

Section 2. We define the interior region Kj,; as the open set of all standard
points which belong to II;,; but do not belong to the monad of II. (The Jordan
theorem for polygons is taken for granted; this attaches definite meaning to
ITiyt and Iyt in the nonstandard domain.) Key is defined accordingly.

L 'We refer to LINDSTR@M [6] and NELSON [8].
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Section 3. We prove that any point of K is a limit point for both iy
and eyt ; this also implies the non-emptiness of the regions.

Section 4. To prove that Ki, is path-connected we define a simple non-
standard polygon II'’ which lies entirely within II;,, does not intersect K,
and contains all (standard) points of Ki,. This easily implies the path-
connectedness.

1 Approximation by a simple polygon

We say that a polygon II = Py P,...P,P; (n may be infinitely large) ap-
prozimates K if there is an internal sequence of (perhaps nonstandard) reals
0<t1 <ty <...<t, <1 such that

(f) Pi=K(t;) for 1 <i<n, and
(i) tn _tl Z

We say that II approzimates K infinitesimally if in addition A(II) = 0,
where A(II) = maxy<k<n |PrPrt1| (it is understood that P11 = P ).

%and ti+1—ti§% forall 1<i<n.

Lemma 1 Let Il = P, ... P, P, approximate K infinitesimally. Then
(i) n is infinitely large, t;g1 =t; forall 1 <i<mn, t; =0, and t, ~1;

(ii) there is an infinitesimal € > 0 such that *IC is in the e-neighbourhood
of II and II is in the e-neighbourhood of *IC;

(iii) if P~ Q are on II then precisely one of the two arcs 11 is decomposed
into by these points must be included in the monad of P .

Proof (i) The requirement () does not allow the hyperreals t; to collapse
into a sort of infinitesimal “cluster” or into a pair of them around 0 and 1,
which are compatible with A(II) ~ 0 alone. (Note that the injectivity modulo
1 of *K is used in the proof that ¢t; ~# 0 and ¢, ~1.)

(ii) 6; = maxy,<¢<y,,, |[K(t) — K(t;)| is infinitesimal for each 1 < i < n
and therefore ¢ = 2maxj<;<, 0; is infinitesimal and proves the assertion.

(iil) Since all edges of II are infinitesimal by (i), we may assume that P
and @ are vertices, say P = F; and @ = P;. Then either ¢; = ¢; or t; =0
while t; ~ 1. (Indeed otherwise *K would have a self-intersection.) Consider
the first case. The arc determined by t; <t <t; is clearly within the monad
of P. To see that the other arc is not included in the monad consider any
ti which is % any of t;, 0, 1. Then P, % P as otherwise K would have a
self-intersection. a
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Lemma 2 There is a simple polygon which infinitesimally approzimates IC .

Proof Taking t; = % for some infinitely large n results in a polygon which
infinitesimally approximates K. But it may have self-intersections.

Assume two non-adjacent sides intersect, i.e. P;Pi4q intersects P;Pjiq
for some 1 < i < j —1 < n. By the triangle inequality the shorter of the
segments F;P; and Pj;1P;11 is not longer than the longer of the segments
P,P;1 and P;P;;; which is bounded in length by A(II).

Let us assume that |P;P;| < |Pi11Pj41|. We now replace in P ... P, P
the arc P;...P; by a new side P,P; if t; —¢; < % which ensures that () is
satisfied for the new polygon. If t; —t; > % we replace the complementary arc
Pj...P,P,...P; by a new side P;P; such that again () is satisfied. The
case |P;Pj| > |Pi11Pj11| is treated in the same way. (The dots ... indicate
that all indices in between are involved.)

In all the cases the resulting polygon Il still infinitesimally approxi-
mates K because (1) and (1) are satisfied (for the accordingly reduced system
of parameter values t; ) and A(Il,ew) < A(II).

This (internal) procedure does not necessarily reduce the number of self-
intersections because for the one which is removed there may be others ap-
pearing on the newly introduced side of the reduced polygon Il,.y. But the
number of vertices of Il is strictly less than that of II. Therefore the in-
ternal sequence of polygons arising from II by iterated applications of this
reduction procedure eventually ends with a simple polygon II' which approx-
imates K infinitesimally. O

2 Definition of the interior and exterior region

Let us fix for the remainder a simple (nonstandard) polygon Il = PP, ... P, Py
which approximates K infinitesimally.

Let Kt be the open standard set of all standard points A € II;,¢ which
have a non-infinitesimal distance from II. We call this the interior region of
the curve K. In the same way we define the open standard set Koy of all
standard points from Il.y; which have non-infinitesimal distance from II and
call this the exterior region of the curve IC.

Omitting rather elementary proofs that i, is bounded, Keyxt is un-
bounded, and the complement of the union of both sets equals the curve IC,
let us prove that for A € Ky and B € Koy any standard continuous arc
a from A to B intersects K. Indeed *a must intersect II in some point P
because it starts in II;,; and ends in Ilex. (The JCT, transferred to the non-
standard domain, is applied.) By Lemma 1, and the fact that K is compact,
there is a (standard) point P’ € K infinitesimally close to P € II. As K and
the arc are standard and closed, P’ isin KNa.
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3 The curve is the common boundary

We prove that each (standard) point of K is a limit point for both the interior
region Kj,; and the exterior region Koy ; this clearly implies that the interior
region is not empty (that the exterior region is not empty is trivial).

By the choice of II and the definition of K,y and Kext, it suffices to prove
the following: given a vertex A on Il, then for any square S with center in
A and non-infinitesimal (possibly nonstandard) size the domain Siy contains
points in both Iy and ey which have non-infinitesimal distance from II.
We prove this assertion for Ilj,¢ only; the proof for the exterior region is
similar.

Let B be another vertex of II chosen such that the distance |AB| is non-
infinitesimal. We can assume that B lies in S¢y¢ and has non-infinitesimal
distance from S, and in addition S itself does not contain any vertex of II.
Let o and 8 be the simple broken lines — connecting A with B — into which
IT is partitioned by the vertices A and B.

The interior region Ilj,; is decomposed by S into a number of polygonal
domains. Let II’ be the polygon which bounds that domain among them the
boundary of which contains A. Then II' consists of parts of the broken lines
«a and S and connected parts of S. Since A is the only common point of «
and B except for B (which is far away from S'), going around II’ we find a
connected “interval” C1Cy of S (which may occasionally contain one or more
of the four vertices of S) such that the points C; and Cy belong to different
curves among «, 3. Since C1Cs is also a part of II', any inner point E of
C1C5 belongs to Iy .

Consider a point F in C;Cy which has equal distance d = d(E,«a) —
d(E,B) from both « and (. Note that d is not infinitesimal. Indeed other-
wise there are points A’ € a and B’ € 8 such that A’ = F ~ B’, which is
impossible by Lemma 1(iii) as S has non-infinitesimal distance from both A
and B.

Thus F € Il;,; has a non-infinitesimal distance from II, as required.

4 Path-connectedness

Let A and B be two (standard) points in Ki,, . We have to prove that there
is a (standard) broken line joining A with B and not intersecting K. This is
based on the following lemma.

Lemma 3 There exists a simple polygon 11 lying entirely within Iy, con-
taining no point of *KC in I ., and containing every standard point of King
in 1L, .
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The lemma clearly implies the result: indeed, by the JCT for polygons, A
can be connected to B by a broken line which lies within II{ , therefore does
not intersect *KC. By Transfer we get a standard broken line which connects
A and B and does not intersect K, as required.

Moreover, the lemma implies the simple path-connectedness of Kiy;. In-
deed we have to prove that every standard simple closed kurve KC; lying
entirely within it can be appropriately contracted into a point. To see this
note that *KC; is evidently situated within II ,, which is the interior of a
simple polygon, so that *C; has the required property in the nonstandard
domain by the JCT for polygons. It remains to apply Transfer.

As for the path-connectedness of the exterior region Koy, we choose a
point in iy and apply an inversion with center in this point. The interior
region becomes a neighbourhood of oo and the exterior region becomes the
interior region of the image of the curve. To this we apply the result above.

Proof of the lemma. Let an infinitesimal € > 0 be defined as in Lemma 1(ii),
so that K and *K are included in the e-neighbourhood of II.

Note that each side of II is infinitesimal by definition. For any side PQ
of II we draw a rectangle of the size (JPQ|+ 4¢) x (4¢) so that the side PQ
lies within the rectangle at equal distance 2e from each of the four sides of
the rectangle.

Let us say that a point E is the inner intersection of two straight segments
o and o' iff E is an inner point of both ¢ and ¢/, and o No’ = {E}. For
any point C € Il;,; which is either a vertex of some of the rectangles above,
or an inner intersection of sides of two different rectangles in this family let
CC’ be a shortest straight segment which connects C' with a point C’ on
IT; obviously each C'C' is infinitesimal.

Let us fix a standard point A in Ky .

The parts of the rectangles lying within IT and the segments C'C’ decom-
pose the interior region I, into a (possibly hyperfinite) number of polygonal
domains. Let the polygon II' be the boundary of the domain containing A.
(Note that all the lines involved lie in the monad of II, hence none of them
contains A.) It remains to prove that II';,; also contains any other standard
point B of iyt .

Note that each side of II’ is a part of either a side of one of the rectangles
covering II or of a segment of the form C'C’ — therefore it is infinitesimal.

Let II' = C1C5...C,. We observe that by construction, for any k =
1,...,n, there is a shortest segment oy, = C;,C},, connecting Cj with a point
C). in II which does not intersect II';,; . Moreover, by the triangle equality,
the segments o; have no inner intersections. Therefore any two of them
intersect each other only in such a manner that either the only intersection
point is the common endpoint C}, = C] or one of them is an end-part the
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other one. Then the segments o} decompose the ring-like polygonal region
R between II and II' into n open domains Dy (k = 1,...,n) defined as
follows.

If o and o1 are disjoint (0,41 equals o7) then the border of Dy
consists of oy, ori1, the side CpCiry1 of II', and that arc C’,’:@I’H_l of 1I
which does not contain any of the points C] as an inner point.

If o, and opy1 have the common endpoint Cj = Cyy1 and no more
common points then the border shrinks to oy, oxy1, and CiCiy1. If, finally,
one of the segments is included in the other then Dy is empty.

If now B € Il'cy¢ then B belongs to one of the domains Dy. If this is
a domain of the first type then the infinitesimal simple arc C}CyCr1Cj
separates A from B within II, which easily implies, by Lemma 1(iii), that
either A or B belongs to the monad of II, which contradicts the choice of
the points. If Dy is a domain of second type then the barrier accordingly
shrinks, leading to the same contradiction. a
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