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1. Introduction

Let F be a Jordan curve in the plane, i.e. the image of the unit circle
C = {(x,y);x2 + y2 = 1} under an injective continuous mapping y into R2. The
Jordan curve theorem [1] says that / ? 2 \ F is disconnected and consists of two
components. (We shall use the original definition whereby two points are in the same
component if and only if they can be joined by a continuous path (image of [0,1]).)

Although the JCT is one of the best known topological theorems, there are many,
even among professional mathematicians, who have never read a proof of it. The
present paper is intended to provide a reasonably short and selfcontained proof or at
least, failing that, to point at the need for one.

2. Prerequisites and lemmata

Some elementary concepts and facts from analysis are needed, for instance uniform
continuity. One must know that F is compact, and so is any continuous path. Also, if A
and B are disjoint compact sets, inf {|a-b|; a e A, b e B], to be denoted by d{A, B), is
> 0. Sometimes it is useful to keep in mind that y~l is continuous. It would have been
possible to avoid the use of these results, at the cost of an extra page, by replacing their
applications by arguments ad hoc. The "deepest" result needed would then be
Weierstrass' theorem to the effect that any bounded sequence of real numbers has a
convergent subsequence.

The main idea of the proof is to approximate F by polygons, prove the theorem for
these and then pass to the limit. This is a classical approach, and Lemmata 1 and 2 are
of course well known. Lemmata 3 and 4 seem new, and of some independent interest.
Their function is to quantify certain aspects of the polygonal case, so as to make the
limit process work. The non-Jordan closed curves oo (upper half followed by lower half)
and — (run through once in each direction) are both limits of Jordan polygons. The
purpose of Lemmata 3 and 4 is to ensure that the bad things happening in these two
cases can not happen to a Jordan curve.

A Jordan curve is said to be a Jordan polygon if C can be covered by finitely many
arcs on each of which y has the form: y(cost, sint) = (Xt + fi, pt + a) with constants
/.,H, p,a. Thus F is a closed polygon without self intersections.

LEMMA 1. The Jordan curve theorem holds for every Jordan polygon f.

Proof. Let f have edges £ , , . . . ,£„ and vertices vx,..., vn with

£, n £ 1 + , = {vt},i = l , . . . ,n , (£„ + , = Euvn + l = vn).

We first prove that £ 2 \ F has at most two components. Consider the sets
N,- = {q\d{q,E-) < 8} where <5 = min {</(£;,£,); 1 <j — i < n — \). It is then clear
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that ^ n r c £ H u £ j U £ i + 1 {Eo = £„), and that N f \ F consists of two
components, N't and N", where we may assume

Then N\ u ... vN'n and N'{ u ... u NJ,' are both connected sets and for any p in £
there is a line segment in J R 2 \ F connecting p to one of them.

In order to see that there are at least two components, we partition / ? 2 \ F into odd
and even points and prove that no continuous path connects an odd point to an even
one.

The partition is done as follows. Assume the coordinate system chosen such that
when vt = (xh yt) the x,- are all different. For every p = (x{p), y(p)) in K 2 \ F , let m(p) be
the number of points in which the upward vertical ray from p meets F. We make the
provision however, that if one (and hence only one) of these points is a vertex, vh say,
then it is not counted if v{ _ x and vt + x lie to the same side of the vertical through p. If m(p)
is odd (even) we say that p is odd (even).

Note that for every p there is an e > 0 such that q has the same parity as p whenever
d{p, q) < E.

This is obvious if x(p) ^ xt for all i, and one even gets m(q) = ni(p).Ifx(p) = x1}say,
but yj lies below p, or (xn — x1){x2 — x1) < 0, one also gets m(q) = m(p). If, however, vi

lies above p, with v2 and vn both to the left, say, of vx one has m(q) = m(p) only in the
right half-disc where x(g) ^ xx while m{q) = m(p) + 2 in the remainder of the disc
d(p, q) < e.

Finally it must be verified that if n is a continuous path, given by
n : [0,1] -• K 2 \ F , with 7r(0) odd, say, then 7r(l) is odd too. Put t0 = lub {t; nit) is odd}.
As all points sufficiently near to an odd (even) point are odd (even), continuity shows
that t0 > 0, that 7r(t0) is odd, and that a contradiction would arise if t0 < 1.

LEMMA 2. Every Jordan curve F can be approximated arbitrarily well by a Jordan
polygon V.

Proof. We want \y — y'\ < £, say. Choose £t > 0 such that

and then e2 > 0 such that

\y(p)-y(.q)\ < e2 => \P~q\

Put c) = min(e/2,e2).
Now F meets only finitely many of the squares

{ix,y); \x-kd/y/2\ ^ 6/2y/2, \y-lS/^2\ ^ 6/2^2], (It,/integers).

Let these be S j , . . . , Sn. Because <5 ^ e2, each set y " 1 ^ ) has diameter less than y/3 and
it is thus contained in a unique minimal circle arc Ah shorter than 2n/3.

We first change Fo = F into another Jordan curve Fj by putting y, = yo(= y)
outside Ax, y^cost^xnt) = iXt + fi,pt + a) when (cost,sint) is a point on Ax. Here
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A, n, p , a are chosen so that yx becomes continuous. Note that when i ^ 2, vi"1^,) is
contained in VQ 1(SI-), and thus has diameter less than N / 3 ; it can even be empty..

The next step is to straighten yi{A2), where A2 is the minimal arc containing y^ l(S2),
in the same way to obtain F2. If yil{S2) = 0 ,pu tF 2 = Tt. Continuing, we arrive at the
Jordan polygon Fn.

Consider now any a for which yn{a) ^ y{a). There is an i so that
l,ka) — yka) # y,--1(«). By construction a belongs to the arc Ah with endpoints b, c,
say. Note that the construction of the 1} gives y&b) = y{b), yfc) = y(c). Then

\y(a)-yn(a)\ = \y(a)-y(b)+yi(b)-yi(a)\

As \a-b\ < \c-b\ < elt because \y(b)-y(c)\ < 8 ^ £2, we have \y{a)-y{b)\ < e/2,
showing that \y{a)-yn{a)\ < e.

LEMMA 3. Let V be a Jordan polygon. Then the bounded component of R2\T
contains a disc, on the boundary circle of which are two points y{a) and y(b), with
\a-b\

Proof There clearly exists a disc D as described with \a — b\ maximal. Assume
\a — b\ < yjl>. Then a and b are the endpoints of an arc A, of length > (4/3)7T. The
boundary circle ofD can not meet y(y4)\{y(a),y(fo)} as max {|a — c|, \b — c\} > |ct — 6| for
every c in 4 \ { a , b}. Let 7(1^),..., y(vn) be the vertices of T in y{A), as met when passing
from y{a) to y{b). lfvl # a and vn ^ b, then a circle touching the segments y(a)y{v1) and
y{b)y{vn) very near y{a) and y(b), in points y(a') and y(b'), will meet T in these points only.
As \a'— b'\ > \a.— b\ a contradiction is obtained. If, say, vl j= a, vn = b a circle
touching y(a)y(v1) very near y{a) and passing through b will do. If t^ = a, vn = b we
consider a variable circle through y(a) and y(b) as its centre moves from the centre of/)
into the domain bounded by the radii to y(a) and y(b) together with y(A), (use Lemma 1).
Eventually the circle either meets y{A) in points other than y(a), y(b) or becomes tangent
to one of the segments y(a)y(v2), y(b)y{vn. x). Contradiction arises again and the proof is
finished.

Consider now a Jordan polygon T and two points a, b, belonging to the same
component, X, of K 2 \ F . For every chord 5, contained in X except for its endpoints,
X \ S consists of two components, as is immediate from Lemma 1. Let the distance
between F and {a, b} be at least 1 and assume that for every S of length less than 2,
a and b are in the same component of A"\S. Then we have

LEMMA 4. Under the assumptions stated there is a continuous path Ufrom a to b
such that d(n,V) ^ 1.

Proof. We first note that if a' is any point in R2, connected to a by a continuous
path FT, where d(W, F) ^ 1, then a' and b satisfy the conditions put on a and b. For let
S be a chord to F, of length less than 2. Then a and a' are in the same component of

, as S does not meet IT, and so are a and b, by assumption.
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By the preceding paragraph we may now assume that d(a, F) = d{b,T) = 1.
Choose ua and ub on C such that \y{ua)—a\ = \y(ub) — b\ = 1. Let D be a mobile unit
circle, initially placed with c, its centre, in a. The desired path n will be obtained as the
curve followed by c as D (confined to X u F) rolls along F in the obvious way, starting
at y(ua), until c falls in b.

As D, in most cases, skips certain parts of F we first check that D at least arrives at
y(ub). If it doesn't then, for some position of D, F and D have a common chord
S = y(M1)y(«2) of length less than 2, so that X \ S consists of two components Yand Z.
Furthermore c is in Y, say, while y(ub) is on the boundary of Z, somewhere on F, strictly
between 7(1^) and y(u2).

By the first paragraph above b is in Y. Consider E, the unit circle centred at b, and its
radius towards y(ub). This radius starts in Yand later runs in Z until it meets F in y{ub).
Hence it crosses S, and we find also that b and c lie to the same side of the line through S.

Now, as E encompasses neither 7(1^) nor y(u2), E must intersect S in two points.
With b and c being to the same side of S, the radius to y(ub) must stop inside or on D and
so does not end in y(ub) as it should.

Having seen that D reaches y{ub), we must verify that c reaches b, too. If y(ub) is not a
vertex of F, there is no problem. A problem arises only as follows: D and F have a
common chord S of length less than 2, with y(ub) as one endpoint, and pointing into the
angle cy(ub)b. But then the segment be meets S in one point and avoids F, so that b and c
are in different components ofX\S. Now use the first paragraph of our proof again, to
end the last one.

3. Proof of the theorem

R2\T has at least two components:
There is one unbounded'component. The existence of a bounded one is proved as

follows. Draw a large circle Co around F, and let Flt F2, . . . , be a sequence of Jordan
polygons converging to F. For each Vn there is a circle Cn as given by Lemma 3,
containing points yn(an) and yn(bn), with \an — bn\ ^ N / 3 , and having centre zn. Passing to
a subsequence of the original one we may assume that all the Fn are inside Co and that
zn -> z, say, as n -*• 00.

Now choose e > 0 such that \a — b\ ^ y/l => \y(a) — y(b)\ ^ e. Then
\y(an)-y(bn)\ ^ e so that \yn{an)-yn(bn)\ > e/2 for large n. Thus diameter(Cn) > e/2, so
that d{zn, FJ > e/4. This shows that for large n, z and zn are in the same component of
R2\Tn (and of R2\T).

If now z is in the unbounded component of R2\T there is a continuous path n , in
K 2 \ F , connecting z to a point outside Co. Put d(Tl, F) = <5.For large n, |yn —y| < d/2
and then d{U,rn) > 3/2 so that, for very large n,z and zn are in the unbounded
component of R2\Tn. This contradicts the definition of zn.

R2\T has at most two components:
Assume p, q and r to be points from three distinct components of / ? 2 \ F , with

^(r, {p, q, r}) = e. Let Flt F2, . . . converge to F, as before. Then d{Tn, {p, q, r}) ^ e/2
for large n and two of the thr6e points have to be in the same component Xn of K 2 \ F n .
Passing to a subsequence, we may assume that p and q are in Xn for all n.

Assume first that there is a S e (0, e) and infinitely.many n such that p is connected to
q by a continuous path !!„, with d(Tn, Un) ^ <5. For such large n, d{T, Yln) > 3/2, so that
p and q would be in the same component of K 2 \ F . Hence there is no such 3.
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We now apply Lemma 4. The non-existence of 5 yields a sequence of chords
Sj , S2,.. . , and an increasing sequence «(1), n(2),... so that one has

(i) p and q are in different components of Xn(i)\Si.

(ii) As i -• co, ym(ai)-ynlii(bd -* 0, where yn(l)(a.) and yB(0(bj) are the endpoints
of S^

Now, as i -> oo, y(<3;) — y(bj) -• 0, so that at — fcf -> 0. For infinitely many i, p, say,
belongs to the component of X B ( 0 \ S , bounded by S< and yn(i)(i4j) where At is the small
arc on C with endpoints af and br As a, —ft£ -»• 0, diameter yB(O(i4,) -> 0, so that the
diameter of the component just defined is smaller than e for large i. In particular we
have \p — y(a,)| < e, the contradiction needed to finish the proof.

As more or less free byproducts of the above proof we obtain two theorems. The
first is well known, but the second one is possibly new.

THEOREM 1. Let V be a Jordan arc, i.e. the image of [0,1] under an injective
continuous mapping into R2. Then R2\T is connected.

Proof. Modify Lemmata 1, 2 and 4 and the second part of the above proof. The
first part gives

THEOREM 2. Let T be a Jordan curve. Put 5 = min{\y(p)-y(q)\; \p-q\ ^ ^ 3 } .
Then the bounded component of R2\T contains an open disc of diameter 5.

The reader might like to formulate his own version of a generalized Lemma 4. There
are also higher-dimensional analogues to speculate about.
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