THEORY ON PLANE CURVES IN NON-METRICAL ANALYSIS SITUS®
BY
OSWALD VEBLEN

§1. Introduction.

JORDAN’s 1 explicit formulation of the fundamental theorem that a simple
closed curve lying wholly in a plane decomposes the plane into an inside and an
outside region is justly regarded as a most important step in the direction of a
perfectly rigorous mathematics. This may be confidently asserted whether we
believe that perfect rigor is attainable or not. His proof, however, is unsatis-
factory to many mathematicians. It assumes the theorem without proof in the
important special case of a simple polygonf and of the argument from that
point on, one must admit at least that all details are not given.

The work of SCHOENFLIES,§ especially in formulating a converse theorem has
thrown much light on its relation to the theory of point sets and Analysis Situs
in general, and elegant proofs under restrictive hypotheses have been given by
AMEs | and Briss.** All these discussions make more or less use of the ideas of
analysis, thus implying either an axiom to the effect that a plane is a doubly
extended number-manifold or a set of congruence axioms. Either of these
hypotheses imposes a restriction upon the formal generality of Analysis Situs
as a science independent of the magnitude of the figures treated.

* Presented to the Society at the St. Louis meeting, September 17, 1904, under the title, The
fundamental theorem of Analysis Situs. Received for publication August 22, 1904.

T C. JORDAN, Cours 4’ Analyse, Paris, 1893, 2d ed., p. 92.

1 This case was under discussion at the University of Chicago in 1901-02 in connection with
Professor MOORE’s seminar on Foundations of Geometry. Mr. N. J. LENNES gave a proof in his '
master’s thesis (1903), Theorems on the simple polygon and polyhedron. Another proof appears as
theorem 28 in the writer’s dissertation (for reference, see footnote below). The present paper
owes much to the discussions of the subject that have taken place under the leadership of Pro-
fessor MOORE. )

§ A. SCHOENFLIES, Ueber einen grundlegenden Satz der Analysis Situs, Nachrichten der
Gottinger Gesellschaft der Wissenschaften, 1902, p. 185; Beitrdge zur Theorie der
Punktmengen, Mathematische Annalen, Vol. 58 (1903), p. 195.

|| L. D. AMES, On the theorem of Analysis Situs relating to the division of the plane or of space by
a closed curve or surface, Bulletin of the American Mathematical Society (2), vol. 10
(1904), p. 301.

**G. A. BLiss, The ewterior and interior of a plane curve, Bulletin of the American
Mathematical Society (2), vol. 10 (1904), p. 398.
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In the following pages an attempt is made to discuss the theorem of JORDAN
and a number of related questions under considerably more general hypotheses
than are employed in any of the works referred to above. This undertaking
practically results in a statement in logical terms of a body of information that
formerly was used without explicit formulation and recently has been cramped
by unnecessary restrictions. In other words we are inquiring how wide may
be the application of our intuitive notion of a plane curve.*

The arguments and definitions are based upon axioms I-VIII, XI of the
system adopted in the writer’s dissertation + to which refer all the citations not
otherwise indicated. These axioms are sufficient to determine the intersectional
properties of straight lines, the ordinal relations § of points on a straight line,
and continuity. We accordingly assume nothing about analytic geometry, the
paralle] axiom, congruence relations, nor the existence of points outside a plane.
For example, the theory is as valid in the non-desarguesian geometries of HILBERT
and MouLTON § as in the geometries of EucLID and LOBATCHEWSKY, and is of
course as applicable in pure analysis as in geometry. ||

The reader who prefers the JORDAN definition of a simple curve (which
according to § 4 is equivalent to ours for purposes of analysis) and does not care
about the question of non-metrical hypotheses, may conveniently begin with § 5.
A relatively simple proof of the theorem of JORDAN about the decomposition of
the plane which applies to any simple closed curve having a straight line inter-

*The general problem of the ‘‘mathematics of precision’’ may be stated in similar terms.

+O. VEBLEN, 4 System of Axioms for Geometry, Transactions of the American Mathe-
matical Society, vol. 5 (1904), pp. 343-384.

1 The line is open, i. e., between every two points there is a third, and the order 4 BC
excludes BAC and ACB. Single elliptic geometry and projective geometry are therefore
excluded unless a properly chosen cut is introduced.

§ F. R. MOULTON, 4 Simple non-desarguesian Geometry, these Transactions, vol. 3 (1902),
p. 192.

|| As to the applicability of our results in analysis, it seems desirable to add a remark which,
though obvious from the point of view of ‘‘foundations of mathematics,’”’ may be of service to
some readers who are not directly interested in this point of view. Numerical analysis is ordi-
narily thought of as founded on the concept of the positive integers. In terms of these a proof of
existence can be given of a set of elements, or quantities, satisfying the postulates of the system
of ratienal numbers, positive and negative. In terms of the rational numbers, in turn, can be
given a proof of the existence of elements satisfying the postulates of the continuous real number
system. Finally, the processes of analysis have to do with pairs of real numbers (», y). The
set of all such number-pairs is a set of objects about which (with proper definition of the term
‘“order’’) our axioms I-VIII, XT are true theorems. From the axioms of analysis, the line of
deduction of our theorems is therefore clear and simple. Not only that, but we may add that
any theorem or any definition rigorously based on the assumptions of geometry is ipso facto a
theorem or definition of analysis. Such considerations as these justify the assertion that while
much may be lost in elegance and simplicity, nothing is gained in rigor by the banishment of
geometrical language and geometrical styles of exact reasoning from pure analysis. (Of course,

" under sufficiently strong geometrical axioms, these remarks may be reversed and applied to the
role of analysis in geometry.)
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val is to be obtained by considering theorem 8 applied to a triangular region,
theorem 9 applied to a simple polygon, corollary 2 of theorem 9, lemma 73, the-
orem 10 and lemma €. This «“reduced proof” could in turn be slightly mod-
ified so as to apply to any curve having at least one non-cuspidal tangent.

§ 2. Non-metrical definition of limit point.

For the definition of the terms, triangle, polygon, broken line, triangular
.region, separate, decompose, the reader is referred to § 4, chapter II. Of the
theorems there proved we assume for the present purpose only that a triangle
decomposes a plane in which it lies into two regions, an interior and an exterior.

DeriniTION 1. A triangular region is the interior of a triangle. A geo-
metrical limit point of a set of points, [ X ],* in a plane is a point /> such that
every triangular region including P includes a point X, distinct from . A
triangular region including a point is called a neighborhood of the point.

The continuity axiom was assumed for only one segment of a straight line
and proved by projection for all lines. In like manner by projection it can be
proved that for every point, 7, of any line there exists a numerably infinite
set of segments [o,] (v=1, 2, -..) such that o, contains &,,, and such that
P is the only point that lies on every o,. It is an easy consequence of this
that for every point in a plane there exists a set of triangular regions [¢,] with
a similar property. We also prove without difficulty the theorem that a limit
point of a set of limit points of a set of points, [ X ], is itself a limit point of

DErFINITION 2. A region is a set of points, any two of which are points of
at least one broken line composed entirely of points of the set. An interior
point of a region, /2, is one that can be surrounded by a triangle containing
only points of 2. Consequently, an interior point of 2 is a geometrical limit
point of no set of points that does not contain points of &. A frontier point
of a region 2 is a point or geometrical limit point of £ not an interior point,
i. e., it is a limit point both of 2 points and of not &2 points. An ewterior
point of R or a point exterior to [ is any point neither an interior nor a
frontier point of 2. The frontier or boundary of a region is a set of all fron-
tier points. An open region contains no frontier points. A closed region con-
tains all its frontier points. '

One of the most familiar examples of an open region is obtained by letting
[C] stand for a closed set of points and [ P ] for the set of all points that can
be joined with a point 2, not of [ C'] by broken lines not meeting [ C']; [ P]
is an open region.—It is to be noted that the points exterior to a region [ ],
if such exist, need not constitute only a single region.

* The notation [ X ] denotes a set of elements any one of which is denoted by X alone or with
suffixes. If we wish to indicate that the set is ordered we use { X } instead of [ X ].
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§ 8. Definition of simple curve.

Simple curves, closed and unclosed, are composed of sets of points subject to
certain conditions which we arrange in the following groups:

4. LINEAR ORDER. Among the points of a set of points { P} there exists a
relation, ©, which we may read precedes, such that :

1. { P} contains at least two points.

2. If P, and P, are any two distinct points of { P}, then either P, o P, or
P,oP,.

3.* If P oP,, then not P,0P,.

4. If P oP, and P,oP,, then P oP,.

B. ORDINAL CONTINUITY.

1. If P, and P, are any two points of { P}, such that P o P,, then there is
a point P, of { P} such that P o P, and P,0P,.

2. If every point of { P} belongs to [P,] or [P,], two infinite subsets of
{ P} such that for every P, and P,, P oP,, then there is a point P’ such that
Sor every P, and P, distinct from P’, P o P’ and P'oP,.

C. GEOMETRICAL CONTINUITY.

1. Let P be any point of {P} for which there is an infinity of points P’
such that P" © P|. Denote the set of all such points by [P']; then for every
triangular region, t, including P, there is a point of [P'], P, such that t
includes all points of [P’] for which P, o P'.

2. Let Py be any point of {P} for which there is an infinity of points
P” such that P, © P".  Denote the set of all such points by [P"] ; then
Jor every triangular region, t, including P there is a point of [P"], P/ such
that t includes all points of [P"] for which P" o P’.

Derintrion 3. By the term arc or arc of curve is meant a set of points
{P} satisfying conditions 4, B, C and including two points P, P, such that
every point P, distinet from P, and P,, satisfies the further conditions that
P o Pand P o P,. The arc is said to join P, and P, which are called its
end-points.

DeriNtrioN 4. A simple closed curve, j, is a set of points, {/ }, consisting
of two arcs joining two points o/, and </, but having in common no points other
than o/, oJ,.

THEOREM 1. Any two points of j may be taken as the points, J,, J, in the
above definition.

The proof of this theorem is here omitted as it involves no difficulty. The
existence of sets of points satisfying the conditions of our definitionis proved by
the examples of an interval of a straight line, which is an arc, and the boundary
of a simple polygon, which is a simple closed curve. We shall use the letter j,

*From this it follows that if P; @ P,, then P; &= P,.
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to denote a simple closed curve, in honor of CamMILLE JOrDAN. The term arc
of course does not cover the most general case of an unclosed curve. On the
other hand the conditions 4, B, C are too general to define an unclosed curve
since they are satisfied, for example, by the boundary of a triangle exclusive of
one vertex. We therefore set down the following condition which is evidently
satisfied by an arc.

DeFINITION 5. A simple unclosed curve is a set of points { ('} =c that
satisfies conditions 4, B, C and also the following :

D. If C is any point of the curve, no point except C is a limit point (in the
geometrical sense of definition 1) both of the set of all points C" such thut
C’ o C and of the set of all points C” such that C © C".

Any simple closed or simple unclosed curve is called a simple curve. For a
set of points satisfying conditions 4, B and C, it is evident that there hold all
the propositions usually proved in the theory of linear point-sets with the excep-
tion of those that involve the length of intervals. We may mention particularly
the propositions of section 5, chapter 11, including the HEINE-BOREL theorem
and the definition of ordinal limit point, the properties of point-free intervals
in connection with closed sets, and the proposition that a line.cannot be sepa-
rated into two subsets each of which includes all its limit points. We do not
stop here to prove these propositions though we make use of the last one in the
following theorem.

DEeFINITION 6. A relation satisfying conditions 4, B, C is called a sense.
A sense in which P, © P, is said to be firom P, to P,.

THEOREM 2. From one point to another upon a simple unclosed curve there
is one and but one sense, while upon a simple closed curve there are two and
but two senses.

Proof. We have to show that if p is any relation satisfying the conditions
A, B, C and D imposed on ©, then if P, pP, implies for one pair P\ P, of { P}
that P, © P,, P pP, implies that P, o P, for every pair P, pP, of {P}.

If P, is any point of { P}, let [P"] be the set of all points such that simul-
taneously P pP’ and P, © P'. Every limit point P (P 4 P) of [P'] with
respect to the sense p must by conditions A, B and C' be such that P P’
Moreover P, by condition C, is a geometrical limit point of [ P’]. But in view
of condition 1), P being a point of { P} and a geometrical limit point of points
P’ such that P, © P’ must be such that P, © P; otherwise P (P 4 P,) would
be a geometrical limit point both of points P such that P © P, and of points P’
such that P, © P".

Therefore the set [ P'], if existent, contains all its limit points with respect to
the sense p, except the point P,. Similarly the set of all points P”, such
that simultaneously P, pP” and P”e© P, must, if existent, contain all its limit
points with respect to the sense p. Therefore, since the set of points {P,}



88 VEBLEN : THEORY OF PLANE CURVES [January

such that P, << P, cannot cousist of two subsets, each closed with the exception
of P, every point P, must either be such that P, © P, or every point P, must
be such that P, © P,. From this result the conclusion of our theorem follows
at once.

DeriNiTion 7. If with respect to any sense on a curve, P, © P,and P, 0 P,,
P, is between P, and P, in that sense. The set of all points between P, and P,
in the given sense is called a segment P P,P, whose end-points are P, P,.
The segment and its end-points together constitute an arc or interval of the
curve. On a simple unclosed curve, if P, o P, 0 P,, P, is said to separate P,
and P,. On any simple curve if P, © P, 0 P, @ P, P, and P, are said to sep-
arate and be separated by P, and P,. Ifaset [P, ] (»=1,2,38,.-.)issuch
that P, o P, the points P, are said to be in the order along the curve,
PP,P,..-P P, ---. Apoint P, is the first of a set [P] if P o P for
every P &= P ; P, is the last of the set [P ] if P © P, for every P & P,.

Either of the relations of ¢“betweenness’ > which are here
defined in terms of « precedence’ could have been used as fundamental * and a
definition of a simple curve equivalent to the above would have resulted. The
deduction of the properties of these relations will be omitted.

2

or « separation ’

§ 4. Remarks on the definition of a simple closed curve.

‘While the definitions of the preceding section are stated so as to apply only
to plane curves, it is obvious that if one replaces triangles by tetrahedrons or
the corresponding figures in space of more dimensions, the conditions 4, B, C,
etc., give a definition of a simple curve in space of any number of dimensions.

It may be of interest to note that when one passes from the realm of plane
geometry, the distinction between metric and non-metric theory loses much of
its importance. For if we add to our assumptions (axioms I-VIII, XI) the
assumption (axiom IX) that there exists a point outside a plane, then it is pos-
sible to define the ideal elements of projective geometry (cf. chapter I1I) and
by choosing among these ideal elements an “absolute” planet and polar sys-
tem to establish a projective theory of congruence. We are thus enabled to
operate in the most general case by ordinary analytic geometry as if dealing
with the whole or a limited region of euclidean space.

As to the relation of the above definition to the current definition 3 in terms
of a numerical parameter, it has not yet been determined whether, in the pres-
ence of axioms I-VIII, XTI alone, the two definitions are or are not equivalent.

*Cf. B. RUSSELL, The Principles of Mathematics, Cambridge, 1903, chapters 24, 25. On the
definition by postulate of ‘‘separation,’’ see G. VAILATI, Sulle relazioni di posizione tra punti
d’una linea chiusa, Rivista di Matematica, vol. 5 (1895), p. 75; and also ibid., p. 183.

T That there always is an ideal plane depends in particular on axioms IIT and XI which de-

termine that straight lines shall be open.
1 See JORDAN, loc. cit. p. 90.
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If however we introduce axiom IX as indicated above or bring in a set of con-
gruence axioms like HILBERT’s group IV, then the two definitions can be shown
to be equivalent by reference to a theorem of CaNTOR.*

Let @ be any arc of a simple closed curve j. The points of @, excluding the
end points, evidently constitute what CANTOR calls a perfect set, i. e., with
respect to the sense ©. Let {¢ } denote a set of equilateral triangles con-
centric and similarly placed such that the lengths of the side of £, is 1/n. For
every point f of @ there is such a set of triangles {¢, };, having o/ as a common
center. Each triangle ¢, determines an arc i, of j which lies wholly within ¢,
(cf. condition C') and includes the central point o/ of ¢,. Among the ares i,
there is by the HrINE-BOREL theorem applied to «, a finite subset such that
every point of « is interior to one of the arcs i,. The end points of these arcs
that lie on @, excluding the end points of @, we denote by

A’

n?

A’Z

n?

coy A

The set of points { A*} is evidently numerable, is ordered according to one
of the senses of @, and moreover is everywhere dense on . For if it were not
everywhere dense on a there would be some interval i of @ which for every n
lies wholly within some i, and therefore within some ¢, ; whereas two of its points
are a certain distance apart greater than 1/n for » sufficiently great.

Now by the theorem of CANTOR cited above, any perfect set which possesses a
numerable subset everywhere dense can be set in one-to-one reciprocal continu-
ous correspondence, with the real numbers between 0 and 1. Thus we have a
continuous one-to-one correspondence of the points of any are, and hence of any
simple closed curve, with a numerical parameter, ¢. If a system of coordinates
(2, y) has been introduced, the simple closed curve may be expressed in para-
meter form by defining x(¢) as the abscissa of the point of j that corresponds to
t and y(¢) as the ordinate of the same point. The continuity of «(¢) and y(t)
is evident.

Regarding the conditions of definition 4 as a set of postulates for the deter-
mination of the notion, simple curve, the proposition just proved is in effect that
in the presence of axioms I-VIII, XI, together with IX or a set of congruence
axioms, the system of postulates is  categorical.” { The conditions are also
independent ; i. e., each item of the definition is indispensable to the full defini-
tion. To prove this we give a list of point-sets each of which satisfies all the
conditions except one. Our independence proofs apply to conditions 4, B, C,
D since the closed simple curve is defined in terms of the unclosed are.

A,. {P} consists of one point.

*G. CANTOR Zur Begriindung der {ransfiniten Mengenlehre I, Mathematische Annalen,
vol. 46 (1895), p. 510.
T See vol. 5, p. 346, of these Transactions.
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A,. {P} consists of a straight segment P, P, and a point P, not on the
straight line P, P,, the relation © referring to a fixed sense on the straight
line P P,.

A,. {P} consists of two points P, P, with the conventions P, o P,, P, © P,
P,oP,.

A,. {P} consists of seven points P -..P,_, the relation © being defined by
the following table

©l1 . 2/3/ 4567
1 e e | e
9o | e e |e
3 e | lele
4 ele| | e
5 el e e | |
6l el e | e

7 ele ef

B,. {P} consists of two points P, and P, with the convention P, o P,.

B,. {P} consists of all the points of a straight line with one exception, ©
being one of the two senses along the line.

C,. {P} consists of all the points of a straight line P, P, with the exception
of the point P, and the segment P, P,, © being the sense from P, to P,.

C,. {P} consists of all the points of a straight line P, P, with the exception
of the point P, and the segment P, P,, © being the sense from P, to P,.

D. P consists of the points of a broken line P, P,P,P,, where P, is a point
of the segment P, P,, © being the sense P, P,, and P, being counted as a point
of P, P,. This case shows the necessity of condition D in theorem 2 since ©
may also be the sense along-the broken line P, P, P,P,.

§5. A simple curve as a planar point set.

DerINITION 8. A geometrically closed set of points is a set that includes all
its geometrical limit points. ’

TueoreM 8. If [P] is any geometrically closed set of points and a any
arc that does not have any point in common with [ P], then (1) there exists a
Jinite set of triangles {t,} such that every point of ais interior to at least one
¢, and every point of [P is exterior to every t,, and (2) the two end points
A, A, of a can be joined by a broken line not meeting [P ].

Proof. (1) If A is any point of @ there must be a triangle, ¢, including 4
and not including any point of [P7]; otherwise 4 would be a limit point of
[P]. By condition c, each of these triangles, ¢, determines an are, %, of a
which lies entirely within ¢ and includes the point 4 to which ¢ belongs. By
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the HEINE-BOREL theorem applied to the arc «, there is a finite subset [, ] of
the ares 7 such that every point of a belongs to one arc i . The finite set of
triangles, ¢ , that determined these arcs i is the set required by conclusion (1)
of the theorem.

(2) The end points of the arcs i, constitute a finite set of points which we
take as ordered by the sense of « from A, to A,. The broken line * joining
these points taken in order is such that each side lies within a triangle ¢ and
therefore cannot meet [ P].

CoroLLARY. If [P] is any geometrically closed set of points and @, a
point not of [P 7], then ), and the set of points, ), that can be joined to ),
by arcs not meeting [ P] constitute an open region.

The following theorem is a direct consequence of definitions 4 and 5 and its
proof as well as that of theorem 5 is omitted.

THEOREM 4.  About any point of a segment of a simple curve there is a
triangle which includes no points of the curve not on the segment.

In the sense of definition 8, a straight line is a geometrically closed set. A
straight line, however, lacks a property possessed by any one of its intervals,
namely that every infinite subset has a limit point. For this kind of set we
introduce the phrase « finitely closed ” because any such set can be enclosed by
a finite set of triangles. This property, however, is not used and not proved in
the present paper.

DermniTION 9. A finitely closed set of points is a geometrically closed set
of which every infinite subset possesses a geometrical limit point. A finitely
closed set, every point of which is a geometrical limit point, is a finitely perfect
set. A finitely perfect set of points which cannot consist entirely of two closed
subsets is called a coherent set of points.t

THEOREM 6. A4 closed curve or an arc of curve is a finitely perfect set of
points which cannot consist entirely of two subsets, each of which includes
all its limit points. In other words a closed curve or an arc of curve is a
coherent set of points.

THEOREM 6. If every point of a coherent set of points [ A] is on a simple
curve ¢, closed or unclosed, then [ A7 is an interval of c.

Proof. 1If [ A] were not an arc of ¢ there must in case c¢ is unclosed be
one, and in case ¢ is closed, two points, C,, C,, of (' not on ¢ which separate
the points of ¢ into two sets, ¢/, ¢” each containing points of [ 47]. Let
[A"] denote the points common to [ A] and ¢’ and [ A”] denote the points
common to [ 4] and ¢”. Every geometrical limit point of [ A"] would be a

*This broken line of course need not be simple. A broken line with multiple points has a
sense independent of the definition of sense on a simple curve. See chapter II, § 4.

TThis is the ‘‘ Begriff des Zusammenhangs’’ of JORDAN and SCHOENFLIES. Cf. SCHOEN-
FLIES, Mathematische Annalen, vol. 58 (1903), p. 208.
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geometrical limit point of [ A ], therefore a point of [ 4], and hence a point
of ¢. Being a point of ¢ and a geometrical limit point of ¢’, by theorem 4, it
would be a point of ¢’ and hence a point of [ A"]. [A"] would therefore be
a closed set and by parity of reasoning [ A”] also would be closed and thus
the definition of [ 4 ] would be contradicted.

Corollary. If every point of an are, a, is on a simple curve, ¢, then « is an
interval of ¢.

THEOREM 7. If ¢ is any simple curve, any triangle, t, of the plane includes
points not on c.

Proof. Let « be a straight line interval lying wholly within ¢. By theorem
6, a either contains points not on ¢, in which case our conclusion holds, or @ is
an arc of ¢. In the latter case, by theorem 4, a triangle, ¢', exists about any
interior point of ¢ including no points of ¢ not on @. Points of the boundary
of this triangle within ¢ and not on @ are not on c.

§ 6. The approach to and crossing of a boundary.

DeriniTion 10.  Let 2 be an interior point of a region, 22, and B a point
of the boundary b of /2. An arc of a curve, @, whose end points are P and
B approaches B from P through R if every interval of «, one of whose end
points is B3, contains interior points of . The approach is one-sided if,
besides the above condition, the are, ¢, contains no points exterior to /2. The
approach is simple if all the points of @, except B, are interior points of £2.

An arc a’ departs from a point B’ of b ¢to a point () exterior to R if every
interval of o’ with B’ as an end point contains points exterior to /2. The
departure is one-sided if, besides the above condition, the arc @’ contains no
points interior to /2. The departure is simple if all the points of @’ except B’
are exterior to 2.

A curve ¢ crosses the boundary in a point B if, with respect to a fixed sense,
B is between two points C,, O, of ¢, C, interior and C, exterior to f2, in such
a way that the arc C, B approaches B through 2 and B, departs from B
to C,.

A curve ¢ crosses the boundary b in a puir of points BB’ if, with respect to
a certain sense, one arc BB’ of ¢ is composed entirely of boundary points and
if there are two points O, C, of ¢ such that O, is interior to /2 and an arc C, B
of ¢ approaches B from C, while C, is exterior to /2 and an arc B’ C, departs
from B’ to C,.

The crossing of a boundary is simple if both the approach and departure at
the point B or point pair BB’ are simple.

The crossing of a straight line by a curve is a special case of the definition
just given. A curve is said to cross a segment A3 if the curve crosses the line
AB in a point or a pair of points.
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THEOREM 8. Any simple curve joining an interior point of a region to an
exterior point crosses the boundary in a point or a pair of points.

Progf.  Let I be the interior point, O the exterior point, and ¢ any are of
the curve from 7to O. Let { A} be the set of all points, 4, of the arc @ such
that every point following 7 and preceding A is an interior or boundary point
of the region. There are such points because of condition €' of the definition
‘in §3. By the ordinal continuity of a, the set { 4} has a first forward bound
B, i. e., a first point in the sense from 7 to O that follows every point of { 4
except possibly B itself.

The are BO of a departs from B to O as otherwise every arc BB" of BO
would contain only interior or boundary points of the region and thus B would
not be a bound of { 4}. Two cases can now occur. Either B is approached
from 7 by the arc B of « in which case our conclusion follows, or there are
points A" of { A} such that the arcs A’B include only boundary points. In
the last case the set of all points, A’, must have a first forward bound B’ in
the sense from B to /. The point B’ is evidently a boundary point and is
approached from 7 by the arc of @, 7B'. Thus in the second case, the boundary
is crossed in the pair of points B’'B. :

TaeEOREM 9.  If a simple closed curve crosses a side of a polygon (simple
or mot) in one point or point-pair, it must pass through a vertex or cross the
same or another side in another point or point-pair.

Proof.  Let the polygon be P P,... P and let the curve, j, cross it in a
point of P, P,. If there is another crossing on the segment P, P, or if j passes
through a vertex, P ... P , the theorem is verified. These cases disposed of,
P, P,P, may either be collinear or non-collinear. In the first case the original
crossing may have been on P, P, in which case the theorem is verified or it may
have been on P P, in which case we pass to the paragraph below. In case
P, P, P, are non-collinear there must be a point /| of j and a point O, common
toj and P, P, such that in a certain sense on j the arc ./, O, of j approaches O,
through the region on one side of P P, ; likewise there must be a point /, of j
on the opposite side of P, P, from o/ and a point O, common to P, ./, and j such
that in the same sense the arc O,./, departs from O, to /,. Moreover the
points </, and </, may be so chosen that one and only one of them lies within the
triangle P, P, P,. Since j crosses P, P, only once, O, and O, are on the same
arc of j with end points «/oJ,. The other arc, @, of j with end points o/ ./, must,
by theorem 8, cross the boundary of the triangle P, P,P, and since it does not
pass through a vertex, must either cross P, P, verifying the theorem or cross
P, P,. In the latter case, let O] be the first point in the sense from /| to ./, in
which @ meets P, P, and O, the last such point. Upon the ares J, O and
O,J, there must be two points of a, JJ; and J; on opposite sides of P, P, such
that in opposite senses along j the ares J/; O] and J,0; approach O; and O,
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from opposite sides of P, P,. In case P, P,P, are non-collinear /| and /, may
be so chosen that one is interior and the other exterior to the triangle P, P, P,.

Thus whether P, P, P, are or are not collinear we proceed as with P, P,P,,
either verifying the theorem or arriving at the case P, P,P,. Continuing this
process, by a finite number of steps we come to PP _ P and verify the the-
orem if it is not fulfilled at one of the intermediate steps.

CoroLLarY 1. If j, is a simple closed curve having an arc which is a linear
interval /,</,, and if the segment ./, ./, is crossed by a simple closed curve j, in
one point or point pair, then either o/, </, is crossed in another point or point
pair or the non-linear arc o/, J, of j, has a point in common with j,.

Proof. In case J J, were not crossed more than once and the other arc
J,J, of j, did not meet j,, by theorem 8 ./, and /, could be joined by a broken
line not meeting j, and we should thus have a contradiction with theorem 9.

CorOLLARY 2. Any simple closed curve j, having a linear arc /| ¢/, decom-
poses its plane into at least two regions.

Proof. Let P() be a linear segment crossing /,</, in a point O. The
region composed of all points that can be joined to P by broken lines not meet-
ing j, is by theorem 9 separated from the region similarly connected with ).

LemMA A, Any simple closed curve j decomposes the plane in which it
lies into at least two regions.

Proof. Let J, and J, be two points of j such that the linear segment o/, J,
has no point in common with j. Such points J ./, exist, for if a is any line
joining two points of j, it either has an interval free of j points and whose end-
points are the required points /, </, or its points in common with j constitute a
single arc of j (theorem 6, corollary). In the latter case any line o’ joining a
point of j on @ to a point of j not on @ evidently has the required points o/, .J,.

Let ¢ be a triangle about /; such that one of its sides meets the linear seg-
ment o/ ¢/, in a point O. Let " and " be two points of this side separated
by O and such that the linear interval )’ ¢)” contains no point of j. The exis-
tence of these points depends on the theorem that j is a geometrically perfect set.

J, and J, decompose j into two segments which with the linear interval ./, /,
constitute two closed curves j and j”. Assign the notation so that the first
point, /7, after " in the sense ' OQ)" in which the boundary of ¢ meets j
shall be a point of j'. It follows that the first point /; after )" in the sense
"OQ’ in which the boundary of ¢ meets j is a point of j”. For if it were a
point of j’, the closed curve composed of the boundary of ¢ from J7 to /| in
the sense @' O@) and the arc common to j and j' between /| and /7 would
cross the linear segment o/ o, of j” simply in O and would meet j” in no other
point. This would contradict corollary 1, theorem 9.

Thus J7 is a point of j7. Let J be the first point after /| in the sense
" OQ" in which the boundary of ¢ meets j°. By the continuity of j, there
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exists a segment of the boundary of ¢ just preceding /| in the sense @ 0@
and containing no point of j° or j”. Let X be any point of this segment.
The broken line 5" composed of the boundary of ¢ in the sense ' O Q" from "
to X does not meet j”. Likewise X is joined to @)’ by a simple curve ¢’ com-
posed of the linear segment X.J; , the common part of ;" and j from J to J *
and the part of the boundary of ¢ from /7 to @)’ in the sense 'O)". Thus
¢’ cannot meet j' and, applying theorem 3, ¢’ can be replaced by a broken line
b joining X to )" without meeting j°. We are now ready to complete the
proof of our lemma by showing that X cannot be joined to O by a broken line
not meeting j.

In the sense from X to O any such broken line would meet the linear seg-
ments o/, o/, and @' Q" in some first point O,. If O, were on oJ|J,, some point
S preceding O, in the sense from X to O could be joined to a point B of
Q' Q" by a segment not meeting j' or j”. Call b the resulting broken line from
X to B. Incase O, were not on o/, J, it would be on ¢’ " and different from
0, and b would be the broken line from X to O, = B.

If B were on the same side of the line /| </, with )" then the polygon com-
posed of b and " and B )’ would be crossed by j' in O .and would meet j' in
no other point, contradicting theorem 9. If B were on the opposite side of the
line o/, o/, from )" the polygon composed of b and " and B )" would be crossed
by ;7 in O and would meet j” in no other point. X and O are therefore two
points that cannot be joined by a broken line not meeting ;.

§ 7. Finite accessibility.

DeriniTioNn 11, A point € of a curve ¢ is finitely accessible from a point
P not on c if there is a broken line from € to P not meeting ¢ except in C'.

Lemya B. If P is a point not on a simple closed curve j, and J, and J,
are any two points of j finitely accessible from P or limit pointst of the
points finitely accessible from P, then there exists a pair of points J, and J,
Jinitely accessible from P that separate J, and J,.

Proof. Let ¢ be a triangle about o/, not including ./;, and ¢, a triangle
about o/, not including any point of ¢,. By condition C of the definition of j,
there is a segment of j including o/, and lying wholly within ¢ ; by theorem 4
there is a triangle ¢, about </, within ¢, and including no point of j not on this
segment. Thus every segment of j with end points on ¢ which meet ¢, must
include ;. Similarly there is within ¢, a triangle ¢; such that every segment of
J with end points on ¢, which meets ¢; must include /.

*Of course it may happen that J, g: J /1/. In this case ¢’ is a broken line.

1 On a simple closed curve the notions of ordinal and geometrical limit points are interchang-
able : therefore we drop the distinetion.
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Let o/, be a point finitely accessible from P within ¢, and ./, a point finitely
accessible from P within ¢;. The points /] and /; are thus joined by a broken
line b, meeting j only in /| and JJ;, which without loss of generality may
be supposed simple. On this broken line let P, be the first point in the sense
from J; to o/ in which it meets the boundary of ¢,. P, lies on an interval i,
of the boundary of ¢, containing no points of j but such that its end points are
points of j. Let P, be the last point in the sense from ./ to /| in which b
meets the interval 7 . In case P, is distinet from P, replace the portion of the
broken line from P, to P, by the portion of ¢, from P, to P,, calling the new
broken line b,. If b, crosses the interval i, o/, and v, are the end points of the
interval. If b, does not cross ¢, there must be some point P, beyond P, in the
sense from o/, to /| in which b meets the boundary of ¢. The point P, must
lie on an interval i, of the boundary of ¢ analogous to ¢;. Proceed with i, as
with ¢,. Since o/, is inside ¢, and /; outside ¢, and since b has but a finite
number of sides, we must by repeating the process above come to a first interval
i\, in which the boundary of ¢ is crossed by a reduced broken line 4, from ./
to /, in a point P, or a point pair P, P, . The end points of the j-point
free interval i, of the boundary of ¢ are now to be shown to be the required
J,and J,.

We prove first that o/, and ./, separate JJ; and ;. If this were not so, let
the simple closed curve formed by b, and the arc /| o/, of j not including ./, and
oJ, be denoted by j,. Also let j, denote the simple closed curve formed by 4,
and the arc J,J, of j not including o/, and JJ;. The simple closed curve j,
would cross the arc ¢, of j, in the point P, or point pair P, P, ., and would meet
j; in no other point, contrary to corollary 1, theorem 9.

Hence /| and J; are on different arcs of j with end points ./, and /,. But
by the construction of the triangle ¢;, </, must be on the same arc with /; and
by the construction of ¢;, J/, must be on the same arc with /;. Hence o/, /,
separate o/, /.

THEOREM 10.  The set of points of a simple curve j finitely accessible from
a point P not on j is everywhere dense on j.

Proof. Denote by [/ ] the set of points of j which are either finitely acces-
sible from P or are limit points of the set of finitely accessible points. The
theorem amounts to showing that [/ ] is identical with j. But if any point
J, of j should not belong to [/'] it would lie on an arc of j free of points JJ”

and having two points of [/'] as end points. This would contradict lemma 5.
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§ 8. Decomposition of a plane by a simple closed curve.

Lemma C.  Any simple closed curve of which one arc is a linear interval
decomposes its plane into two open regions.

Proof. It has been shown (corollary 2, theorem 9) that j decomposes the
plane into at least two regions. The regions are open because a supposed fron-
tier point of the set of points [ P] that can be joined to a point P, not on j
could, if not itself a point of j, be surrounded by a triangle not meeting j and
containing points of [ P ]; it would therefore be an interior point of [P, con-
trary to hypothesis.

By theorem 10 every point O of the straight arc of j is finitely accessible
from any point of the plane. Thus if there were three distinct regions there
would be three segments meeting in O and one lying in each of the three
regions. But as two of these must lie on the same side of the straight segment
of j they could be joined by a straight segment not meeting j, contrary to the
hypothesis that the three regions are separated from one another by j. Hence j
decomposes the plane into two and only two open regions.

Tueorem 11.  Every simple closed curve, j, decomposes its plane into two
open regions.

Proof. By lemma A the curve decomposes the plane into at least two
regions which by the reasoning of the first paragraph of the proof of lemma C
are open regions. Let P be any point not on j and let PJ, and P.J, be two
linear intervals meeting j only in o/, and J,. o, and J, exist because j is a
perfect set of points. Let ¢ be any point not on j and not in the same region
with P and let JJ, be a point on j such that the linear segment .7, does not
meet j and such that o/, is distinct from o/, and o/,. Then ./, does not meet
PJ, or PJ, and ) can by theorem 10 be joined by a broken line not meeting
PJy, Pd,, QJ,, or j except in o/, to a point o, of j in the order J,J,/,/,. The
broken line o/, P.J,, the points between /, and ., in the sense J,.J,J,, the
broken line /; ¢.J; and the points between o/, and J, in the sense oJ,/, ./, consti-
tute a simple closed curve j' of the type which we have proved to decompose the
plane into two and only two regions. The points of the segments o/, /, and /,/,
in the sense o/ J,J,, are not points of j* and must lie both in the same region
or in opposite regions with respect to j'. If they were in the same region a
point in the region not containing the segments ./, o/, and /;/, could by theorem
10 be joined by broken lines not meeting j to P and ), thus contradicting the
hypothesis that P and () are in different regions.

Having shown that the arcs o/, /, and /;oJ, (in the fixed sense .J,.J,J,) are in
opposite regions with respect to j° we are ready to complete the proof that j
does not decompose the plane into more than two regions. A point 2 in a sup-

Trans. Am. Math. Soc. 7
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posed third region could be joined because of theorem 10 by a broken line not
meeting j except in its end-point to a point o, of J,/, and by a similar broken
line to a point «/, of JJ,J,. Since R would not be in the same region with P or
() these broken lines would not meet the broken line part of j.. Thus we
should have two points /; and oJ, in opposite regions with respect to j* joined
by a broken line not meeting j' contrary to lemma C. Hence j decomposes
the plane into not more than two, and therefore into exactly two, open regions.






