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THE THURSTON NORM, FIBERED MANIFOLDS AND TWISTED
ALEXANDER POLYNOMIALS

STEFAN FRIEDL AND TAEHEE KIM

Abstract. Every element in the first cohomology group of a 3–manifold is dual to
embedded surfaces. The Thurston norm measures the minimal ‘complexity’ of such
surfaces. For instance the Thurston norm of a knot complement determines the
genus of the knot in the 3–sphere. We show that the degrees of twisted Alexander
polynomials give lower bounds on the Thurston norm, generalizing work of Mc-
Mullen and Turaev. Our bounds attain their most elegant form when interpreted
as the degrees of the Reidemeister torsion of a certain twisted chain complex. Us-
ing these lower bounds we confirm the genus of all knots with 12 crossings or less,
including the Conway knot and the Kinoshita–Terasaka knot which have trivial
Alexander polynomial.

We also give obstructions to fibering 3–manifolds using twisted Alexander poly-
nomials and detect all knots with 12 crossings or less that are not fibered. For some
of these it was unknown whether or not they are fibered. Our work also extends
the fibering obstructions of Cha to the case of closed manifolds.
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1. Introduction

1.1. Definitions and history. Let M be a 3–manifold. Throughout the paper
we will assume that all 3–manifolds are compact, orientable and connected. Let
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2 STEFAN FRIEDL AND TAEHEE KIM

φ ∈ H1(M) (integral coefficients are understood). The Thurston norm of φ is defined
as

||φ||T := min{
∑k

i=1 max{−χ(Si), 0}| S1 ∪ · · · ∪ Sk ⊂ M properly embedded,
dual to φ, Si connected for i = 1, . . . , k}.

Thurston [Th86] showed that this defines a seminorm on H1(M) which can be ex-
tended to a seminorm on H1(M ; R). As an example consider X(K) := S3 \ νK,
where K ⊂ S3 is a knot and νK denotes an open tubular neighborhood of K in S3.
Let φ ∈ H1(X(K)) be a generator, then it is easy to see that ||φ||T = 2 genus(K)−1.

It is a classical result of Alexander that

2genus(K) ≥ deg(∆K(t)),

where ∆K(t) denotes the Alexander polynomial of a knot K. In recent years this
was greatly generalized. Let M be a 3–manifold whose boundary is empty or consists
of tori. Let φ ∈ H1(M) ∼= Hom(H1(M),Z) be primitive, i.e., the corresponding
homomorphism φ : H1(M) → Z is surjective. Then McMullen [Mc02] showed that if
the Alexander polynomial ∆1(t) ∈ Q[t±1] of (M,φ) is non–zero, then

||φ||T ≥ deg (∆1(t)) − (1 + b3(M)).

This result has been reproved for closed manifolds by Vidussi [Vi99, Vi03] using
results in Seiberg–Witten theory of Kronheimer–Mrowka [KM97] and Meng–Taubes
[MT96]. We refer to [Kr98, Kr99] for more on the connection between the Thurston
norm, Seiberg–Witten theory and 4–dimensional geometry.

Cochran [Co04] in the knot complement case and Harvey [Ha05] and Turaev [Tu02a,
Tu02b] in the general case generalized McMullen’s inequality. They studied maps
Z[π1(M)] → K[t±1] where K is a skew field and K[t±1] is a skew Laurent polyno-
mial ring. They showed that the degrees of corresponding higher-order Alexander
polynomials give lower bounds on the Thurston norm.

We will show how the degrees of twisted Alexander polynomials give lower bounds
on the Thurston norm. These bounds are easy to compute and remarkably strong.

1.2. Twisted Alexander polynomials and Reidemeister torsion. In the fol-
lowing let F be a commutative field. Let φ ∈ H1(M) ∼= Hom(π1(M),Z) and
α : π1(M) → GL(F, k) a representation. Then α ⊗ φ induces an action of π1(M)
on Fk⊗F F[t±1] =: Fk[t±1] and we can therefore consider the twisted homology F[t±1]–
module Hα

i (M ; Fk[t±1]). We define ∆α
i (t) ∈ F[t±1] to be its order; it is called the i-th

twisted Alexander polynomial of (M,φ, α) and well–defined up to multiplication by a
unit in F[t±1]. We refer to Section 2 for more details.

The twisted Alexander polynomial of a knot was introduced by Lin [Lin01] in 1990
who used it to distinguish knots with the same Alexander polynomial. In this paper
we use the above homological definition of Kirk and Livingston [KL99a].

If ∂M is empty or consists of tori and if ∆α
1 (t) 6= 0, then Hα

i (M ; Fk[t±1] ⊗F[t±1]

F(t)) = 0 for all i (see Corollary 4.3). Therefore the Reidemeister torsion τ(M,φ, α) ∈
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F(t) is defined (cf. [Tu01] for a definition) and (cf. [Tu01, p. 20])

τ(M,φ, α) =

2
∏

i=0

∆α
i (t)

(−1)i+1

∈ F(t).

The equality holds up to multiplication by a unit in F[t±1]. We will use this equal-
ity as a definition for τ(M,φ, α). For f(t)/g(t) ∈ F(t) we define deg(f(t)/g(t)) :=
deg(f(t))−deg(g(t)) for f(t), g(t) ∈ F[t±1]. This allows us to consider deg(τ(M,φ, α)).
In Section 3 we will point out that the Alexander polynomials and Reidemeister tor-
sion can be computed efficiently using Fox calculus.

1.3. Lower bounds on the Thurston norm. The following is one of our main
results.

Theorem 3.1 (Main Theorem 1). Let M be a 3–manifold whose boundary is
empty or consists of tori. Let φ ∈ H1(M) be non–trivial and α : π1(M) → GL(F, k)
a representation such that ∆α

1 (t) 6= 0. Then

||φ||T ≥
1

k
deg(τ(M,φ, α)).

Equivalently,

||φ||T ≥
1

k

(

deg (∆α
1 (t)) − deg (∆α

0 (t)) − deg (∆α
2 (t))

)

.

The proof of Theorem 3.1 is partly based on ideas of McMullen [Mc02] and Turaev
[Tu02b]. In Section 3 we will show that Theorem 3.1 generalizes McMullen’s theorem
[Mc02] and Turaev’s abelian invariants in [Tu02a].

In Theorem 5.1 we show that the condition ∆α
1 (t) 6= 0 can sometimes be dropped.

In [F05b] we will prove a version of Theorem 3.1 over skew fields, which combines
our lower bounds from Theorem 3.1 with the lower bounds of Cochran, Harvey and
Turaev [Co04, Ha05, Tu02b].

1.4. Fibered manifolds. Let φ ∈ H1(M) be non–trivial. We say (M,φ) fibers over
S1 if the homotopy class of maps M → S1 induced by φ : π1(M) → H1(M) → Z

contains a representative that is a fiber bundle over S1. If K is a fibered knot, i.e., if
X(K) fibers, then it is a classical result of Neuwirth that 2 genus(K) = deg(∆K(t))
and that ∆K(t) ∈ Z[t±1] is monic, i.e., its top coefficient is +1 or −1.

Theorem 6.1 (Main Theorem 2). Assume that (M,φ) fibers over S1 and that
M 6= S1 × D2,M 6= S1 × S2. Let α : π1(M) → GL(F, k) be a representation. Then
∆α

1 (t) 6= 0 and

||φ||T =
1

k
deg(τ(M,φ, α)).
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This result clearly generalizes the first classical condition on fibered knots. Mc-
Mullen, Cochran, Harvey and Turaev prove corresponding theorems in their respec-
tive papers [Mc02, Co04, Ha05, Tu02b].

Let R be a Noetherian unique factorization domain (henceforth UFD), for example
R = Z or a field. Given a representation π1(M) → GL(R, k) Cha [Ch03] defined
a twisted Alexander polynomial ∆α

1 (t) ∈ R[t±1], which is well–defined up to multi-
plication by a unit in R[t±1]. This is a generalization of the Alexander polynomial
∆K(t) ∈ Z[t±1] and coincides with the first twisted Alexander polynomial defined in
Section 2 in the case that R is a field. We say a polynomial ∆α

1 (t) ∈ R[t±1] is monic,
if its top coefficient is a unit in R. Cha showed that for a fibered knot the polynomials
∆α

1 (t) are monic [Ch03]. Using Theorem 6.1 we get the following theorem.

Theorem 6.4. Let M be a 3–manifold. Let φ ∈ H1(M) be non–trivial such that
(M,φ) fibers over S1 and such that M 6= S1×D2,M 6= S1×S2. Let R be a Noetherian
UFD and let α : π1(M) → GL(R, k) be a representation. Then ∆α

1 (t) ∈ R[t±1] is
monic and

||φ||T =
1

k
deg(τ(M,φ, α)).

In fact in Proposition 6.3 we show that if the fibering obstruction of Theorem 6.1
vanishes, then the conclusion of Theorem 6.4 holds. This shows the somewhat surpris-
ing fact that the obstructions of Theorem 6.1 contain Neuwirths’s and Cha’s [Ch03]
obstructions for fibered knots. Note that Theorem 6.4 generalizes Cha’s obstructions
to closed 3–manifolds.

Goda, Kitano and Morifuji [GKM05] use the Reidemeister torsion corresponding
to representations π1(X(K)) → SL(F, k), F a field, to give fibering obstructions for
a knot K. The precise relationship to our obstructions is not known. It would be
interesting to generalize their obstructions to closed manifolds as well.

1.5. Examples. We give two main examples and more: we confirm the genus of
knots with up to 12 crossings and detect all of non–fibered 12–crossing knots. To our
knowledge, some of the examples of non–fibered 12–crossing knots are new. These
examples and more are given in Section 7.

Consider the Conway knot K = 11401 (knotscape notation, cf. [HT]). Gabai [Ga84]
proved that the genus of K is 3 using geometric methods. We confirm this easily
using Theorem 3.1. Note that for this knot ∆K(t) = 1, therefore the genus bounds of
McMullen, Turaev, Cochran and Harvey vanish. The diagram is given in Figure 1. We
found a representation α : π1(X(K)) → GL(F13, 4) such that deg (τ(M,φ, α)) = 14.
These computations and all the following computations were done using the program
KnotTwister [F05]. It follows from Theorem 3.1 that

2 genus(K) − 1 = ||φ||T ≥
14

4
.
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Figure 1. The Conway knot 11401 and a Seifert surface of genus 3
(from [Ga84]).

Hence genus(K) ≥ 18
8

= 2.25. Since genus(K) is an integer we get genus(K) ≥ 3.
Since there exists a Seifert surface of genus 3 for K (cf. Figure 1) it follows that the
genus of the Conway knot is 3.

We went over all knots with up to 12 crossings such that 2 genus(K) 6= deg(∆K(t)).
In all cases we found representations α : π1(X(K)) → GL(F13, k) which give the right
genus bounds. Using KnotTwister this process just takes a few seconds. We also
investigated the closed manifolds which are the result of 0–framed surgery along
these knots. Again in all cases we found representations such that twisted Alexander
polynomials give the right bound on the Thurston norm. In fact experience suggests
that if b1(M) = 1 then in most cases taking only a few non–trivial representations
will give the correct bound on the Thurston norm, regardless of whether M is closed
or not.

The situation for links is more complex. On the one hand in many interesting
cases twisted Alexander polynomials give the correct bound. For example in Section
7.5 we reprove results of Harvey on the ropelength of a certain link [Ha05]. We also
successfully apply our theory in Section 7.4. On the other hand boundary links have
mostly vanishing twisted Alexander polynomials and therefore our lower bounds do
not apply in general. But in Section 5 we show that in some cases we can still extract
lower bounds from the degrees of twisted Alexander polynomials corresponding to the
F[t±1]–torsion submodule of Hα

1 (X(L); Fk[t±1]) where X(L) is the link complement
in the 3–sphere (cf. Theorem 5.1).

It is known that a knot K with 11 or fewer crossings is fibered if and only if K
satisfies

(1) ∆K(t) is monic and deg(∆K(t)) = 2 genus(K).

Hirasawa and Stoimenow had started a program to find all non–fibered 12–crossing
knots. Using methods of Gabai they showed that except for thirteen knots a 12–
crossing knot is fibered if and only if it satisfies condition (1). Furthermore they
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showed that among these 13 knots the knots 121498, 121502, 121546 and 121752 are not
fibered even though they satisfy condition (1).

Using Theorem 6.1 we confirmed the non–fiberedness of these 4 knots and we
showed that the remaining 9 knots are not fibered either. These 9 knots are:

121345, 121567, 121670, 121682, 121771, 121823, 121938, 122089, 122103.

This result completes the classification of all fibered 12–crossing knots. Jacob Ras-
mussen confirmed our results using knot Floer homology which gives a fibering ob-
struction as well (cf. [OS02, Section 3]).

As we pointed out our fibering obstructions work for closed manifolds as well. If
K is one of the 13 12–crossing knots in the previous paragraph, then we can easily
show using Theorem 6.1 and KnotTwister that the zero surgery on K in S3 is not
fibered. (See Section 7.2.)

1.6. The twisted Alexander norm. McMullen [Mc02] also defined a (semi) norm
|| − ||A on H1(M ; R) called the Alexander norm, and showed that if b1(M) > 1 then

||φ||T ≥ ||φ||A

for all φ ∈ H1(M ; R). This norm is closely related to the degrees of the untwisted
Alexander polynomials: McMullen shows that ||φ||A ≥ deg(∆1(t)) − 1 − b3(M) for
all primitive φ ∈ H1(M), and equality holds for almost all primitive φ ∈ H1(M). In
[FK05] the authors will introduce twisted Alexander norms which give lower bounds
on the Thurston norm, extending the work of McMullen and work of Turaev [Tu02a].
The (twisted) Alexander norm can often be used to completely determine the Thurston
norm ball of a link complement.

1.7. Conjectures and symplectic manifolds. It follows from Stallings’ theorem
[St62] together with the Poincaré conjecture that π1(M) contains enough information
to decide whether M is fibered or not. We therefore conjecture that a converse to
Theorem 6.4 holds. In fact we believe that representations corresponding to finite
groups and their group rings suffice.

Conjecture 1.1. Let M be a closed 3–manifold and φ ∈ H1(M) non–trivial. Then
(M,φ) fibers over S1 if and only if for all representations of the form α : π1(M) →
G → Z[G], G a finite group, the twisted Alexander polynomial ∆α

1 (t) ∈ Z[t±1] is
monic and

||φ||T =
1

|G|
deg(τ(M,φ, α)).

In a forthcoming paper of the first author and Stefano Vidussi [FV05] we will
give further evidence for this conjecture. Furthermore based on work of Taubes
[Ta94, Ta95] we will show in [FV05] that Conjecture 1.1 implies Taubes conjecture
which states that if M is a closed 3–manifold and if S1×M is symplectic then (M,φ)
fibers over S1 for some φ ∈ H1(M).
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1.8. Outline of the paper. In Section 2 we give a definition of twisted Alexander
polynomials. In Section 3 we state Theorem 3.1 (Main Theorem 1) and discuss re-
lated theorems. We give a proof of Theorem 3.1 in Section 4. In Section 5 we show
how in many important cases we can drop the assumption that ∆α

1 (t) 6= 0 in Theorem
3.1 and still get lower bounds on the Thurston norm. In Section 6 we consider fibered
manifolds and give a proof of Theorems 6.1 (Main Theorem 2) and 6.4. We discuss a
wealth of examples in Section 7.

Notations and conventions: We assume that all 3–manifolds are compact, ori-
ented and connected. All homology groups and all cohomology groups are with re-
spect to Z–coefficients, unless it specifically says otherwise. For a knot K in S3, we
denote the result of zero framed surgery along K by MK . For a link L in S3, X(L)
denotes the exterior of L in S3. (That is, X(L) = S3 \ νL where νL is an open
tubular neighborhood of L in S3). An arbitrary (commutative) field is denoted by
F. We identify the group ring F[Z] with F[t±1]. We denote the permutation group
of order k by Sk. For a 3–manifold M we use the canonical isomorphisms to iden-
tify H1(M) = Hom(H1(M),Z) = Hom(π1(M),Z). Hence sometimes φ ∈ H1(M) is
regarded as a homomorphism φ : π1(M) → Z (or φ : H1(M) → Z) depending on the
context.

Acknowledgments: The authors would like to thank Alexander Stoimenow for
providing braid descriptions for the examples and Stefano Vidussi for pointing out the
advantages of using Reidemeister torsion. The first author would also like to thank
Jerry Levine for helpful discussions and he is indebted to Alexander Stoimenow for
important feedback on the program KnotTwister.

2. The twisted Alexander polynomials

Let M be a 3–manifold and φ ∈ H1(M). Let α : π1(M) → GL(F, k) be a represen-
tation. We can now define a left Z[π1(M)]–module structure on Fk⊗FF[t±1] =: Fk[t±1]
via α⊗ φ as follows:

g · (v ⊗ p) := (α(g) · v) ⊗ (φ(g) · p) = (α(g) · v) ⊗ (tφ(g)p)

where g ∈ π1(M), v ⊗ p ∈ Fk ⊗F F[t±1] = Fk[t±1].
Denote by M̃ the universal cover of M . Then the chain groups C∗(M̃) are in

a natural way right Z[π1(M)]–modules. Therefore we can form the tensor product

C∗(M̃)⊗Z[π1(M)] F
k[t±1]. Now we define the i–th twisted Alexander module of (M,φ, α)

to be

Hα⊗φ
∗ (M ; Fk[t±1]) := H∗(C∗(M̃) ⊗Z[π1(M)] Fk[t±1]).
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Usually we drop the notation φ and write Hα
∗ (M ; Fk[t±1]). Note that Hα

i (M ; Fk[t±1])
is a finitely generated module over the PID F[t±1]. Therefore there exists an isomor-
phism

Hα
i (M ; Fk[t±1]) ∼= F[t±1]f ⊕

k
⊕

i=1

F[t±1]/(pi(t))

for p1(t), . . . , pk(t) ∈ F[t±1]. We define

∆α
M,φ,i :=

{

∏k

i=1 pi(t), if f = 0
0, if f > 0.

This is called the i–th twisted Alexander polynomial of (M,φ, α). We furthermore de-

fine ∆̃α
M,φ,i :=

∏k

i=1 pi(t) regardless of f . In most cases we drop the notations M and

φ and write ∆α
i (t) and ∆̃α

i (t). It follows from the structure theorem of finitely gener-
ated modules over a PID that these polynomials are well–defined up to multiplication
by a unit in F[t±1].

Remark. The twisted Alexander polynomial of a knot was introduced by Lin [Lin01]
in 1990. Various versions of twisted Alexander polynomials have been successfully
used in many situations to provide more information than can be extracted from the
untwisted Alexander polynomial [JW93, Wa94, Kit96, KL99a, KL99b, Ch03, HLN04].
In particular we note that Kirk and Livingston [KL99a] first introduced the above
homological definition of twisted Alexander polynomials for a finite complex. We
refer to [KL99a, Section 4] for the relationship between our definition and the other
definitions of twisted Alexander polynomials.

For an oriented knotK we always assume that φ denotes the generator ofH1(X(K))
given by the orientation. If α : π1(X(K)) → GL(Q, 1) is the trivial representa-
tion then the Alexander polynomial ∆α

1 (t) equals the classical Alexander polynomial
∆K(t) ∈ Q[t±] of the knot K.

If f = 0 then we write deg(f) = ∞, otherwise, for f =
∑n

i=m ait
i ∈ F[t±1] with

am 6= 0, an 6= 0 we define deg(f) = n−m. Note that deg (∆α
i (t)) is well–defined. The

following observation follows immediately from the classification theorem of finitely
generated modules over a PID.

Lemma 2.1. Hα
i (M ; Fk[t±1]) is a finite–dimensional F–vector space if and only if

∆α
i (t) 6= 0. If ∆α

i (t) 6= 0, then

deg (∆α
i (t)) = dimF

(

Hα
i (M ; Fk[t±1])

)

.

Furthermore deg(∆̃α
i (t)) = dimF

(

TorF[t±1](H
α
i (M ; Fk[t±1]))

)

.

If ∂M is empty or consists of tori and if ∆α
1 (t) 6= 0, then ∆α

i (t) 6= 0 for all i and hence
Hα
i (M ; Fk[t±1] ⊗F[t±1] F(t)) = 0 for all i (see Corollary 4.3). Furthermore, ∆α

3 (t) = 1
(see Lemma 4.1). Therefore the Reidemeister torsion τ(M,φ, α) ∈ F(t)∗/{rtl|r ∈
F∗, l ∈ Z} is defined. We refer to [Tu01] for an excellent introduction into the theory
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of Reidemeister torsion. We will mostly use τ(M,φ, α) as a convenient way to store
information.

Lemma 2.2. (cf. [Tu01, p. 20]) If ∆α
1 (t) 6= 0, then τ(M,φ, α) is defined and

τ(M,φ, α) =
2

∏

i=0

∆α
i (t)

(−1)i+1

∈ F(t).

3. Main Theorem 1: Lower bounds on the Thurston norm

Our first main theorem gives a lower bound for the Thurston norm of a non–trivial
element φ ∈ H1(M).

Theorem 3.1 (Main Theorem 1). Let M be a 3–manifold whose boundary is
empty or consists of tori. Let φ ∈ H1(M) be non–trivial and α : π1(M) → GL(F, k)
a representation such that ∆α

1 (t) 6= 0. Then

||φ||T ≥
1

k
deg(τ(M,φ, α)).

Equivalently,

||φ||T ≥
1

k

(

deg (∆α
1 (t)) − deg (∆α

0 (t)) − deg (∆α
2 (t))

)

.

The proof of the above theorem is given in Section 4.

Remark. Given a presentation for π1(M) the polynomials ∆α
1 (t) and ∆α

0 (t) can be
computed efficiently using Fox calculus (cf. e.g. [CF77, p. 98], [KL99a]). We point

out that because we view C∗(M̃) as a right module over Z[π1(M)] we need a slightly
different definition of Fox derivatives. We refer to [Ha05, Section 6] for details. Propo-
sition 4.13 allows us to compute ∆α

2 (t) using the algorithm for computing the 0-th
twisted Alexander polynomial. This shows that the lower bounds of Theorem 3.1 can
be computed efficiently.

Remark. Not only does Reidemeister torsion give the most elegant formulation of our
lower bounds on the Thurston norm. The functoriality of Reidemeister torsion also
allows us to prove results in [FK05], [F05b] and Theorem 6.4 which would be much
harder to prove if we only used Alexander polynomials.

Remark. Our restriction to closed manifolds or manifolds whose boundary consists of
tori is not a significant restriction. Indeed, if ∂M has a spherical boundary component,
then gluing in a 3–ball does not change the Thurston norm. Furthermore manifolds
with a boundary component of genus greater than 1 have in most cases vanishing
twisted Alexander polynomials.

Combining Theorem 3.1 with Proposition 4.13 we get the following important spe-
cial case of Theorem 3.1:
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Theorem 3.2. Let M be a 3–manifold whose boundary is empty or consists of tori.
Let φ ∈ H1(M) be non–trivial. Let α : π1(M) → GL(F, k) be a representation which
is unitary with respect to any hermitian form on Fk. If ∆α

1 (t) 6= 0, then

||φ||T ≥
1

k

(

deg (∆α
1 (t)) −

(

1 + b3(M)
)

deg (∆α
0 (t))

)

.

The following lemma shows that in most cases we can determine for a given φ ∈
H1(M) whether ||φ||T is even or odd. This means that we can ‘round up’ the lower
bounds from Theorem 3.1 to an even or odd number, depending on the parity of ||φ||T .
Recall that for a non–trivial φ ∈ H1(M) the divisibility of φ equals the maximum
natural number n such that 1

n
φ ∈ H1(M).

Lemma 3.3. Let φ ∈ H1(M) be primitive. If M is closed, then ||φ||T is even. Assume
that ∂M consists of a non–empty collection of tori N1 ∪ · · · ∪Ns. If φ|H1(Ni) = 0 then
let ni := 0, otherwise define ni to be the divisibility of φ|H1(Ni). Then

||φ||T ≡

( s
∑

i=1

ni

)

mod 2.

Proof. Let S be a Thurston norm minimizing surface dual to φ. If M is closed then
S is closed, hence χ(S) is even. Now assume that ∂M is a collection of tori. Then

χ−(S) ≡ b0(∂S) mod 2.

This follows from the observation that adding a 2–disk to each component of ∂S
gives a closed surface, which has even Euler characteristic. Now consider Ni. Clearly
S∩Ni is Poincaré dual to φ|H1(Ni). It follows from a standard argument that, modulo
2, ∂S ∩Ni has ni components. �

In Section 7.2 we will see that Theorem 3.1 can be very successfully used to deter-
mine the genus of knots and the Thurston norm of closed manifolds. In particular we
give many examples where the degrees of twisted Alexander polynomials give better
bounds on the Thurston norm than the degree of the untwisted Alexander polyno-
mial. But this is not always the case; there are situations when for a given manifold
the degree of the twisted Alexander polynomial for some representation gives a worse
bound than the degree of the untwisted Alexander polynomial. This should be com-
pared to the situation of [Co04, Ha06, F05b]: Cochran’s and Harvey’s sequence of
higher order Alexander polynomials gives a never decreasing sequence of lower bounds
on the Thurston norm.

Remark. Let K1 and K2 be knots and assume there exists an epimorphism ϕ :
π1(X(K1)) → π1(X(K2)). Simon asked (cf. question 1.12 (b) on Kirby’s problem
list [Kir97]) whether this implies that genus(K1) ≥ genus(K2). Let α : π1(X(K2)) →
GL(F, k) be a representation. By [KSW04] ∆α

K2,1
(t) divides ∆α◦ϕ

K1,1
(t). Together with

Lemma 4.8 this shows that the genus bounds from Theorem 3.1 for K1 are greater



THURSTON NORM, FIBERED MANIFOLDS AND TWISTED ALEXANDER POLYNOMIALS 11

than or equal to the bounds for K2. Thus our results suggest an affirmative answer
to Simon’s question. This should also be compared to the results in [Ha06].

For one–dimensional representations it is easy to determine ∆α
0 (t) and ∆α

2 (t) (cf.
Proposition 4.13). We immediately get the following theorem which contains Mc-
Mullen’s theorem [Mc02, Proposition 6.1] and results of Turaev [Tu02a].

Theorem 3.4. Let M be a 3–manifold whose boundary is empty or consists of tori,
φ ∈ H1(M) primitive, and α : π1(M) → H1(M) → GL(F, 1) a one–dimensional
representation such that ∆α

1 (t) 6= 0. If α is trivial on Ker(φ), then

||φ||T ≥ deg (∆α
1 (t)) −

(

1 + b3(M)
)

.

If α is non–trivial on Ker(φ), then

||φ||T ≥ deg (∆α
1 (t)) .

This simple abelian version of Theorem 3.1 can already be very useful. Using results
of [FK05] one can show that for primitive φ ∈ H1(M)

||φ||A = max{deg (∆α
1 (t)) |α : π1(M) → H1(M)/Tor(H1(M)) → GL(C, 1)

non–trivial on Ker(φ)},

where ||φ||A denotes McMullen’s Alexander norm. Harvey [Ha05, Proposition 3.12]
showed that the invariant δ̄0(φ) in [Ha05] equals ||φ||A. This shows that Alexan-
der polynomials corresponding to one–dimensional representations contain all known
lower bounds on the Thurston norm coming from abelian covers.

4. Proof of Main Theorem 1

4.1. Twisted Alexander polynomials of (M,φ).

Lemma 4.1. Let φ ∈ H1(M) be non–trivial and α : π1(M) → GL(F, k) a repre-
sentation. Then Hα

3 (M ; Fk[t±1]) = 0 and Hα
0 (M ; Fk[t±1]) is finite dimensional as a

F–vector space.

Proof. Both statements follow from an easy argument using a cell decomposition of
M as in the proof of Proposition 6.3. Note also that Kirk and Livingston showed the
second statement in [KL99a, Proposition 3.5]. �

Lemma 4.2. Assume that ∂M is empty or consists of tori and φ ∈ H1(M) is
non–trivial. Let α : π1(M) → GL(F, k) be a representation. If ∆α

1 (t) 6= 0, then
Hα

2 (M ; Fk[t±1]) is F[t±1]–torsion. In particular ∆α
2 (t) 6= 0.

Proof. We know that ∆α
i (t) 6= 0 for i = 0, 1, 3 by assumption and by Lemma 4.1. It

follows from the long exact homology sequence for (M, ∂M) and from duality that
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χ(M) = 1
2
χ(∂M). Hence χ(M) = 0 in our case. It follows from Lemma 4.4 below

(applied to the field F(t)) that

3
∑

i=0

(−1)idimF(t)

(

Hα
i (M ; Fk[t±1] ⊗F[t±1] F(t))

)

= k · χ(M) = 0.

Note that Hα
i (M ; Fk[t±1] ⊗F[t±1] F(t)) = Hα

i (M ; Fk[t±1]) ⊗F[t±1] F(t) since F(t) is
flat over F[t±1]. By assumption Hα

i (M ; Fk[t±1]) ⊗F[t±1] F(t) = 0 for i 6= 2, hence
Hα

2 (M ; Fk[t±1]) ⊗F[t±1] F(t) = 0 as well. �

We get the following corollary immediately from Lemmas 4.1 and 4.2.

Corollary 4.3. Let M be a 3–manifold whose boundary is empty or consists of tori.
Let φ ∈ H1(M) be non–trivial and α : π1(M) → GL(F, k) a representation. If
∆α

1 (t) 6= 0 then ∆α
i (t) 6= 0 for all i, and ∆α

3 (t) = 1.

A standard argument shows the following important lemma.

Lemma 4.4. Let X be an n–manifold, K a field, and α : π1(X) → GL(K, k) a
representation. Then

n
∑

i=0

(−1)ndimK(Hα
∗ (X; Kk)) = kχ(X).

4.2. Main argument. In this section we prove Theorem 3.1. Before beginning the
proof we give relevant propositions and lemmas. We also need a delicate duality
argument which we separately explain in detail in Section 4.3

Let M be a 3–manifold and α : π1(M) → GL(F, k) a representation. We will endow

any subset X ⊂ M with the representation given by π1(X) → π1(M)
α
−→ GL(F, k).

Note that because of base point issues this induced homomorphism is only defined up
to conjugacy. But the homology groups Hα

∗ (X; Fk) are isomorphic, and their dimen-
sions over F are well-defined. We will therefore suppress base points and the choice
of paths connecting base points in our notation. Let bαn(X) := dimF(H

α
n (X; Fk)) for

n ≥ 0.

Proposition 4.5. Let φ ∈ H1(M) and S a properly embedded surface dual to φ.
Then

bα1 (S) ≥ dimF

(

TorF[t±1]

(

Hα
1 (M ; Fk[t±1])

))

.

In particular if ∆α
1 (t) 6= 0, then bα1 (S) ≥ deg (∆α

1 (t)).

Proof. Denote the components of S by S1, . . . , Sl. Denote by N the result of cutting
M along S. Denote by i+ and i− the two inclusions of S into ∂N induced by taking
the positive and the negative inclusions of S into N . We use the same notations i+
and i− for the induced homomorphisms on homology groups. Note that φ vanishes
on π1(N) and on every π1(Si). Indeed, every curve in Si can be pushed off into
N , where φ vanishes. It follows that Hα

i (N ; Fk[t±1]) ∼= Hα
i (N ; Fk) ⊗F F[t±1] and
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Hα
i (S; Fk[t±1]) ∼= Hα

i (S; Fk) ⊗F F[t±1]. Therefore we have a commutative diagram of
exact sequences
(2)

→ Hα
i (S; Fk[t±1])

ti−−i+
−−−−→ Hα

i (N ; Fk[t±1]) → Hα
i (M ; Fk[t±1]) →

↓∼= ↓∼= ↓=

→ Hα
i (S; Fk) ⊗F F[t±1]

ti−−i+
−−−−→ Hα

i (N ; Fk) ⊗F F[t±1] → Hα
i (M ; Fk[t±1]). →

Note that Ker{Hα
0 (S; Fk[t±1]) → Hα

0 (N ; Fk[t±1])} ⊂ Hα
0 (S; Fk)⊗FF[t±1] is a (possibly

trivial) free F[t±1]–module F . Therefore we get an exact sequence

Hα
1 (S; Fk) ⊗F F[t±1]

ti−−i+
−−−−→ Hα

1 (N ; Fk) ⊗F F[t±1] → Hα
1 (M ; Fk[t±1])

∂
−→ F → 0.

Since F[t±1] is a PID the map ∂ splits, i.e., Hα
1 (M ; Fk[t±1]) ∼= Ker(∂) ⊕ F . Using

appropriate bases the map ti−− i+, which represents the module Ker(∂), is presented
by a matrix of size dimF

(

Hα
1 (N ; Fk)

)

× dimF

(

Hα
1 (S; Fk)

)

of the form At + B, A,B
matrices over F. It follows from an easy argument (cf. e.g. [Ha05, Proposition 9.1]
in the harder non–commutative case) that

dimF

(

TorF[t±1](Ker(∂))
)

≤ min{dimF

(

Hα
1 (N ; Fk)

)

, dimF

(

Hα
1 (S; Fk)

)

}.

Combining with the above we get

dimF

(

TorF[t±1](H
α
1 (M ; Fk[t±1]))

)

= dimF

(

TorF[t±1](Ker(∂))
)

≤ dimF

(

Hα
1 (S; Fk)

)

= bα1 (S).

The last part of this proposition is obvious by Lemma 2.1. �

A weighted surface S̃ inM is a collection of pairs (Si, wi), i = 1, . . . , k where Si ⊂M
are properly embedded, oriented, disjoint surfaces in M and wi are positive integers.
We denote the union

⋃

i Si ⊂M by |S̃|.

Every weighted surface S̃ defines an element φS̃ :=
∑k

i=1wi · PD([Si]) ∈ H1(M)
where PD(f) ∈ H1(M) denotes the Poincaré dual of an element f ∈ H2(M, ∂M).
By taking wi parallel copies of Si we get an (unweighted) properly embedded oriented

surface S̃# such that φS̃ = PD(S̃#). An example of a the surface S̃# for a weighted

surface S̃ is given in Figure 2.
We need the following proposition proved by Turaev in [Tu02b].

Proposition 4.6. Let φ ∈ H1(M). Then there exists a weighted surface S̃ with

(1) φS̃ = φ,

(2) χ−(S̃#) = ||φ||T ,
(3) M \ |S̃| connected,

Proposition 4.7. Let φ ∈ H1(M) be primitive. Let S̃ denote the weighted surface
as in Proposition 4.6. Assume ∆α

1 (t) 6= 0. Then S := S̃# is either connected or
bα0 (Si) = 0 for any component Si of S.
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(S ,3)

(S ,1)

(S ,2)

3

1 2

Figure 2. Weighted surface in a handlebody.

Proof. Denote by N the result of cutting M along S. Consider the Mayer–Vietoris
sequence (2) in Proposition 4.5

→ Hα
1 (M ; Fk[t±1])

→ Hα
0 (S; Fk) ⊗F F[t±1]

ti−−i+
−−−−→ Hα

0 (N ; Fk) ⊗F F[t±1] → Hα
0 (M ; Fk[t±1]) → 0.

From ∆α
1 (t) 6= 0 it follows that Hα

1 (M ; Fk[t±1]) is F[t±1]–torsion. By Lemma 4.1
Hα

0 (M ; Fk[t±1]) is a finite–dimensional F–vector space, hence F[t±1]–torsion. If we
now consider the above exact sequence with F(t)–coefficients it follows that

(3) H0(S; Fk) ∼= H0(N ; Fk).

Since we can arrange wi parallel copies of Si inside ν(Si) in M , we see that N ∼=

(M \ ν|S̃|) ∪
l
⋃

i=1

wi−1
⋃

j=1

Si × [−1, 1]. Therefore we have the following isomorphisms

(4)
Hα

0 (S; Fk) ∼=
l

⊕

i=1

Hα
0 (Si; F

k) ⊕
l

⊕

i=1

Hα
0 (Si; F

k)wi−1

Hα
0 (N ; Fk) ∼= Hα

0 (M \ ν|S̃|; Fk) ⊕
l

⊕

i=1

Hα
0 (Si; F

k)wi−1

where Hα
0 (Si; F

k)wi−1 :=
wi−1
⊕

Hα
0 (Si; F

k). Note that the maps i+, i− : π1(Si) →

π1(M)
α
−→ GL(F, k) factor through π1(M \ ν|S̃|). Therefore

(5) bα0 (Si) ≥ bα0 (M \ ν|S̃|), i = 1, . . . , l

by Lemma 4.8 below.
First consider the case bα0 (M \ ν|S̃|) = 0. In that case it follows from the isomor-

phisms in (3) and (4) that
l

⊕

i=1

H0(Si; F
k) = 0, hence bα0 (Si) = 0 for all i = 1, . . . , l.

Now assume that bα0 (M \ ν|S̃|) > 0. It follows immediately from the isomorphisms
in (3) and (4) and from the inequality (5) that l = 1. But since φ is primitive it also
follows that w1 = 1, i.e., S is connected. �
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We will make use of the following lemma several times.

Lemma 4.8. Let V be an F–vector space. Let A be a group and α : A → GL(V ) a
representation. If ϕ : B → A is a homomorphism, then Hα◦ϕ

0 (B;V ) → Hα
0 (A;V ) is

surjective. Furthermore if ϕ is an epimorphism, then Hα◦ϕ
0 (B;V ) → Hα

0 (A;V ) is an
isomorphism.

Proof. The lemma follows immediately from the commutative diagram of exact se-
quences

0 → {α(ϕ(b))v − v|b ∈ B, v ∈ V } → V → H0(B;V ) → 0
↓ ↓ ↓

0 → {α(a)v − v|a ∈ A, v ∈ V } → V → H0(A;V ) → 0

and the observation that the vertical map on the left is injective (respectively an
isomorphism). �

Proposition 4.9. Let φ ∈ H1(M) be primitive and ∆α
1 (t) 6= 0. Let S := S̃# denote

the same surface as in Proposition 4.6. Then

bα0 (S) = deg (∆α
0 (t)) .

Proof. Let N be M cut along S. Since ∆α
1 (t) 6= 0, we have Hα

0 (S; Fk) ∼= Hα
0 (N ; Fk) as

F–vector spaces (see (2) in the proof of Proposition 4.7). First assume that bα0 (Si) = 0
for every component Si of S. Then Hα

0 (S; Fk) = Hα
0 (N ; Fk) = 0. This implies that

Hα
0 (M ; Fk[t±1]) = 0 from the exact sequence (2) in the proof of Proposition 4.5, hence

∆α
0 (t) = 1.
Now assume that bα0 (Si) 6= 0 for some i. By Proposition 4.7 S is connected. Hence

N is connected. It follows from Lemma 4.8 that the maps i+, i− : Hα
0 (S; Fk) →

Hα
0 (N ; Fk) are surjective. Since Hα

0 (S; Fk) ∼= Hα
0 (N ; Fk) it follows that i+ and i−

induce isomorphisms on Hα
0 (S; Fk). Note that this argument uses that S is connected.

Let b := bα0 (S) = bα0 (N). Picking appropriate bases for Hα
0 (S; Fk) and Hα

0 (N ; Fk)
the sequence (2) becomes

Fb ⊗F F[t±1]
t·Id−J
−−−−→ Fb ⊗F F[t±1] → Hα

0 (M ; Fk[t±1]) → 0,

where J : Fb → Fb is an isomorphism. It follows that Hα
0 (M ; Fk[t±1]) ∼= Fb ∼=

Hα
0 (S; Fk). The lemma now follows from Lemma 2.1. �

We note that from Propositions 4.7 and 4.9 we immediately get the following useful
corollary:

Corollary 4.10. If ∆α
0 (t) 6= 1 and ∆α

1 (t) 6= 0, then there exists a Thurston norm
minimizing surface which is connected.

Proposition 4.11. Assume that ∂M is empty or consists of tori. Let φ ∈ H1(M)
be primitive and ∆α

1 (t) 6= 0. Let S := S̃# denote the same surface as in Proposition
4.6. Then

bα2 (S) = deg (∆α
2 (t)) .
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Proof. Let S̃ = (Si, wi)i=1,...,l be the weighted surface with wi 6= 0 for all i from

Proposition 4.6. Let N be M cut along S = S̃#. Let I ′ := {i ∈ {1, . . . , l}|Si closed}
and I ′′ := {i ∈ {1, . . . , l}|Si has non–empty boundary}. Denote the union of wi
parallel copies of Si, i ∈ I ′, by S ′ ⊂ S. Clearly bα2 (S) = bα2 (S ′).

Note that we can write ∂N = S ′
+ ∪ S ′

− ∪ W for some surface W where S ′
− and

S ′
+ are the images of the two canonical inclusion maps of S ′ → N . It follows from

Lemmas 4.1 and 4.2 that the long exact sequence (2) becomes

0 → Hα
2 (S ′; Fk) ⊗F F[t±1]

ti−−i+
−−−−→ Hα

2 (N ; Fk) ⊗F F[t±1] → Hα
2 (M ; Fk[t±1]) → 0.

Clearly we are done once we show that i−, i+ : Hα
2 (S ′; Fk) → Hα

2 (N ; Fk) are isomor-
phisms. Considering the sequence with F(t)–coefficients it follows thatHα

2 (S ′; Fk) and
Hα

2 (N ; Fk) have the same dimension as F-vector spaces. It is therefore enough to show
that i− and i+ are injections, or equivalently that the maps Hα

2 (S ′
±; Fk) → Hα

2 (N ; Fk)
are injections.

Consider the short exact sequence

Hα
3 (N, S+; Fk) → Hα

2 (S ′
+; Fk) → Hα

2 (N ; Fk).

By Poincaré duality and by Lemma 4.12 in Section 4.3 we have

Hα
3 (N, S ′

+; Fk) ∼= H0
α(N, S

′
− ∪W ; Fk) ∼= HomF(H

α
0 (N, S ′

− ∪W ; Fk),F).

Here α is the adjoint representation of α which is defined in the first paragraph of
Section 4.3.

Claim.

Hα
0 (N, S ′

− ∪W ; Fk) = 0.

Recall that

N ∼= M \ ν|S̃| ∪
⋃

i∈I′

wi−1
⋃

j=1

Si × [0, 1] ∪
⋃

i∈I′′

wi−1
⋃

j=1

Si × [0, 1]

which equals the decomposition of N into connected components. Clearly there exists
a surjective map

ϕ : {components of S ′
− ∪W} → {components of N},

such that S0 ⊂ ∂(ϕ(S0)) for every component S0 of S ′
−∪W . Therefore it follows from

Lemma 4.8 that Hα
0 (S ′

− ∪W ; Fk[t±1]) → Hα
0 (N ; Fk[t±1]) is surjective. The claim now

follows from the long exact homology sequence. �

Now we can conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality we can assume that φ is primi-
tive since the Thurston norm and the degrees of twisted Alexander polynomials are
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homogeneous. Let S̃ be the weighted surface from Proposition 4.6. Let S := S̃#. By
Lemma 4.4 we have

||φ||T = max{0, b1(S) − (b0(S) + b2(S))}

≥ b1(S) − (b0(S) + b2(S))

= 1
k

(bα1 (S) − (bα0 (S) + bα2 (S))) .

The theorem now follows immediately from Propositions 4.5, 4.1, 4.9, 4.11 and Lemma
2.2.

�

4.3. Duality arguments. In this section we clarify a delicate duality argument.
Since this is perhaps of independent interest, and since we need it in [F05b] we will
explain this in the non–commutative setting.

In this section let R be a (possibly non–commutative) ring with involution r 7→ r
such that ab = b · a. Let V be a right R–module together with a map β : π1(M) →
GL(V,R). This representation β can be used to define a left Z[π1(M)]–module struc-
ture on V which commutes with the R–module structure. Pick a non–singular R–
sesquilinear inner product 〈 , 〉 : V × V → R. This means that for all v, w ∈ V and
r ∈ R we have

〈vr, w〉 = 〈v, w〉r, 〈v, wr〉 = r〈v, w〉

and 〈 , 〉 induces via v 7→ (w 7→ 〈v, w〉) an R–module isomorphism V ∼= HomR(V,R).
Here we view HomR(V,R) as right R–module homomorphisms where R gets the right
R–module structure given by involuted left multiplication. Furthermore consider
HomR(V,R) as a right R–module via right multiplication in the target R.

There exists a unique representation β̄ : π1(M) → GL(V,R) such that

〈β(g−1)v, w〉 = 〈v, β̄(g)w〉

for all v, w ∈ V, g ∈ π1(M). Note that β̄ induces a left Z[π1(M)]–module structure on
V (which is possibly different from that induced from β) which commutes with the R–
module structure. To clarify which Z[π1(M)]–module structure we use, we sometimes
denote V with the Z[π1(M)]–module structure induced from β (respectively β̄) by
V (β) (respectively V (β̄)). Note that they are the same viewed as R–modules.

Lemma 4.12. [KL99a, p. 638] Let X be an n–manifold, V an R–module and β :
π1(X) → GL(V ) a representation. Let 〈 , 〉 : V ×V → R be a non–singular sesquilin-
ear inner product as above. If R is a PID then

Hβ
n−i(X;V (β)) ∼= HomR(Hβ

i (X, ∂X;V (β̄)), R) ⊕ ExtR(Hβ
i−1(X, ∂X;V (β̄)), R)

as R–modules.
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Here we equip H∗(−, V ), H∗(−, V ) with the right R–module structures given on V .
Also for a right R–module H we view HomR(H,R) as a right R–module homomor-
phisms where R gets the right R–module structure given by involuted left multipli-
cation. We consider HomR(H,R) as a right R–module via right multiplication in the
target R.

Proof. Let π := π1(X). Let V (β)′ = V (β) as R–modules equipped with the right
Z[π1(M)]–module structure given by v · g := β(g−1)v for v ∈ V (β) and g ∈ π. By
Poincaré duality

Hβ
n−i(X;V (β)) ∼= H i(X, ∂X;V (β)′) := Hi

(

HomZ[π](C∗(X̃, ∂X̃), V (β)′)
)

,

where X̃ denotes the universal cover of X. Using the inner product we get a map

HomZ[π](C∗(X̃, ∂X̃), V (β)′) → HomR

(

C∗(X̃, ∂X̃) ⊗Z[π] V (β̄), R
)

f 7→ ((c⊗ w) 7→ 〈f(c), w〉) .

Note that this map is well–defined since 〈β(g−1)v, w〉 = 〈v, β̄(g)w〉. It is now easy to
see that this defines in fact an isomorphism of right R–module chain complexes.

Now we can apply the universal coefficient theorem for chain complexes over the
PID R to C∗(X̃, ∂X̃) ⊗Z[π] V (β̄). The lemma is now immediate. �

Now assume that the field F has a (possibly trivial) involution. We equip Fk with
a hermitian inner product, denoted by 〈 , 〉.

Proposition 4.13. Let M be a 3–manifold whose boundary is empty or consists of
tori and let φ ∈ H1(M) be non–trivial. Let α : π1(M) → GL(F, k) be a representation
such that ∆α

1 (t) 6= 0.

(1) If M is closed, then
∆α

2 (t) = ∆α
0 (t−1).

(2) If M has non–empty boundary, then ∆α
2 (t) = 1.

In particular deg (∆α
2 (t)) = b3(M) deg

(

∆α
0 (t)

)

. Furthermore, if α is unitary, i.e.
α = α, then deg (∆α

2 (t)) = b3(M) deg (∆α
0 (t)).

Proof. We extend the involution on F to F[t±1] by taking t 7→ t−1. Now equip Fk[t±1]
with the hermitian inner product defined by 〈vti, wtj〉 := 〈v, w〉tit−j for all v, w ∈ Fk.
To simplify the notation we denote Fk[t±1](α⊗ φ) and Fk[t±1](α⊗ φ) just by Fk[t±1].
The Z[π1(M)]–module structure on Fk[t±1] will always be clear from the context.

Note that F[t±1] is a PID. We apply Lemma 4.12 with R = F[t±1], V = Fk[t±1] and
β = α⊗ φ, and get

Hα⊗φ
2 (M ; Fk[t±1]) ∼= HomF[t±1]

(

Hα⊗φ
1 (M, ∂M ; Fk[t±1]),F[t±1]

)

⊕ ExtF[t±1]

(

Hα⊗φ
0 (M, ∂M ; Fk[t±1]),F[t±1]

)

as F[t±1]–modules. Since ∆α
1 (t) 6= 0, Hα⊗φ

2 (M ; Fk[t±1]) is F[t±1]–torsion by Lemma
4.2. Hence the first summand on the right hand side is zero.
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By Lemma 4.1 Hα⊗φ
0 (M ; Fk[t±1]) is F[t±1]–torsion. From the long exact homology

sequence of the pair (M, ∂M) it follows that Hα⊗φ
0 (M, ∂M ; Fk[t±1]) is also F[t±1]–

torsion. Since Hα⊗φ
0 (M, ∂M ; Fk[t±1]) is a finitely generated F[t±1]–torsion module and

F[t±1] is a PID, ExtF[t±1](H
α⊗φ
0 (M, ∂M ; Fk[t±1]),F[t±1]) ∼= Hα⊗φ

0 (M, ∂M ; Fk[t±1]).

If M is closed then we get Hα
2 (M ; Fk[t±1]) ∼= Hα⊗φ

0 (M ; Fk[t±1]). Note that α⊗ φ =
α⊗ (−φ). Therefore we deduce that ∆α

2 (t) = ∆α
0 (t−1).

If ∂M 6= 0, then by Lemma 4.8 the map Hα⊗φ
0 (∂M ; Fk[t±1]) → Hα⊗φ

0 (M ; Fk[t±1])

is surjective, hence Hα⊗φ
0 (M, ∂M ; Fk[t±1]) = 0. This shows that Hα

2 (M ; Fk[t±1]) = 0
and hence ∆α

2 (t) = 1. �

5. The case of vanishing Alexander polynomials

Let L be a boundary link (for example a split link). It is well–known that the mul-
tivariable Alexander polynomial of L has to vanish (cf. [Hi02]). Most of the twisted
multivariable and twisted one–variable Alexander polynomials vanish as well. (See
[FK05] for the definition of twisted multivariable Alexander polynomials.) Therefore
Theorem 3.1 can in most cases not be applied to get lower bounds on the Thurston
norm.

It follows clearly from Propositions 4.5 and 4.11 that the condition ∆α
1 (t) 6= 0 is

only needed to ensure that there exists a surface S dual to φ with bα0 (S) = deg (∆α
0 (t))

and bα2 (S) = deg (∆α
2 (t)). The following theorem can often be applied in the case of

link complements.

Theorem 5.1. Let M be a 3–manifold such that H1(M)
i∗

−→ H1(∂M) is an injection
where i∗ is the inclusion–induced homomorphism. Let N be a torus component of
∂M and φ ∈ H1(N) ∩ Im(i∗) primitive, and α : π1(M) → GL(F, k) a representation.
Then

||(i∗)−1(φ)||T,M ≥
1

k
deg(∆̃α

1 (t)) − 1.

It is not hard to show that we can find a Thurston norm minimizing surface dual
to (i∗)−1(φ) which is connected and has boundary (cf. e.g. [Ha05, Corollary 10.4] or
Turaev [Tu02b, p. 14]). The theorem now follows from the proof of Theorem 3.1.

We will apply this theorem later to the complement of a link L = L1 ∪ · · · ∪ Lm ⊂
S3. In this case we can take φ to be dual to the meridian of the ith component
Li. Then it follows from the proof of Theorem 5.1 and a standard argument that
||(i∗)−1(φ)||T = 2 genus(Li) − 1, where genus(Li) denotes the minimal genus of a
surface in X(L) bounding a parallel copy of Li. Similar results were obtained by
Turaev [Tu02b, p. 14] and Harvey [Ha05, Corollary 10.4].

The following observation will show that in more complicated cases there is no
immediate way to determine b0(S): if L = L1 ∪ L2 is a split oriented link, and
φ : H1(X(L)) → Z given by sending the meridians to 1, then a Thurston norm
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minimizing surface S dual to φ is easily seen to be the disjoint union of the Seifert
surfaces of L1 and L2. In particular b0(S) = 2. On the other hand if L1 and L2 are
parallel copies of a knot with opposite orientations and φ : H1(X(L)) → Z is again
given by sending the meridians to 1, then the annulus S between L1 and L2 is dual
to φ with Euler characteristic zero. In particular it is connected, hence b0(S) = 1.
Summarizing, we have two situations in which the first twisted Alexander polynomials
vanish, φ is of the same type, but b0(S) differs.

6. Main theorem 2: Obstructions to fiberedness

Theorem 6.1 (Main Theorem 2). Let M be a 3–manifold and φ ∈ H1(M) such
that (M,φ) fibers over S1 and such that M 6= S1 ×D2,M 6= S1 ×S2. If α : π1(M) →
GL(F, k) is a representation, then ∆α

1 (t) 6= 0 and

||φ||T = 1
k

deg(τ(M,φ, α))

= 1
k

(

deg (∆α
1 (t)) − deg (∆α

0 (t)) − deg (∆α
2 (t))

)

.

If α is unitary, then also

||φ||T =
1

k

(

deg (∆α
1 (t)) −

(

1 + b3(M)
)

deg (∆α
0 (t))

)

.

Proof. Let S be a fiber of the fiber bundle M → S1. Clearly S is dual to φ ∈
H1(M) and it is well–known that S is Thurston norm minimizing. Denote by M̂
the infinite cyclic cover of M corresponding to φ. Then an easy argument shows
that Hα

i (M ; Fk[t±1]) ∼= Hα
i (M̂ ; Fk) (cf. also [KL99a, Theorem 2.1]). In particular

Hα
i (M ; Fk[t±1]) ∼= Hα

i (S; Fk).
By assumption S 6= D2 and S 6= S2. Therefore by Lemmas 4.4 and 2.1 we get

||φ||T = χ−(S)

= b1(S) − b0(S) − b2(S)

= 1
k

(bα1 (S) − bα0 (S) − bα2 (S))

= 1
k

(

dimF

(

Hα
1 (M ; Fk[t±1])

)

− dimF

(

Hα
0 (M ; Fk[t±1])

)

− dimF

(

Hα
2 (M ; Fk[t±1])

))

= 1
k

(

deg (∆α
1 (t)) − deg (∆α

0 (t)) − deg (∆α
2 (t))

)

= deg(τ(M,φ, α)).

The unitary case follows now immediately from Proposition 4.13. �

Since ||φ||T might be unknown for a given example the following corollary gives a
more practical fibering obstruction.

Corollary 6.2. Let M be a 3–manifold and φ ∈ H1(M) such that (M,φ) fibers over
S1 and such that M 6= S1 ×D2,M 6= S1 × S2. Let F and F′ be fields. Consider the
untwisted Alexander polynomial ∆1(t) ∈ F[t±1]. For any representation α : π1(M) →
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GL(F′, k) we have

deg(∆1(t)) −
(

1 + b3(M)
)

=
1

k

(

deg (∆α
1 (t)) − deg (∆α

0 (t)) − deg (∆α
2 (t))

)

.

Proof. The corollary follows immediately from applying Theorem 6.1 to the trivial
representation π1(M) → GL(F, 1) and to the representation α. �

Let α : π1(M) → GL(R, k) be a representation where R is a Noetherian UFD,
for example R = Z or a field F. Recall that in this situation Cha [Ch03] defined
the twisted Alexander polynomial ∆α

1 (t) ∈ R[t±1] which is well–defined up to mul-
tiplication by a unit in R[t±1]. Given a prime ideal p ⊂ R we denote the quo-

tient field of R/p by Fp. Furthermore we denote by αp the representation π1(M)
α
−→

GL(R, k) → GL(Fp, k) where GL(R, k) → GL(Fp, k) is induced from the canonical
map πp : R → R/p → Fp.

Proposition 6.3. Let M be a 3–manifold whose boundary is empty or consists of
tori and let R be a Noetherian UFD. Let φ ∈ H1(M) be non–trivial and α : π1(M) →
GL(R, k) a representation. Then ∆

αp

1 (t) is non–trivial and

||φ||T =
1

k
deg(τ(M,φ, αp))

for all prime ideals p if and only if ∆α
1 (t) ∈ R[t±1] is monic and

||φ||T =
1

k
deg(τ(M,φ, α))

We will prove Proposition 6.3 at the end of this section. By combining Theorem 6.1
and Proposition 6.3 we immediately get the following theorem.

Theorem 6.4. Let M be a 3–manifold. Let φ ∈ H1(M) be non–trivial such that
(M,φ) fibers over S1 and such that M 6= S1 × D2,M 6= S1 × S2. Let R be a
Noetherian UFD and α : π1(M) → GL(R, k) a representation. Then ∆α

1 (t) ∈ R[t±1]
is monic and

||φ||T =
1

k
deg(τ(M,φ, α)).

Remark. (1) Theorem 6.4 shows that the fibering obstructions from Theorem 6.1
contain Neuwirth’s theorem that ∆K(t) ∈ Z[t±1] is monic for a fibered knot.

(2) Cha’s methods in [Ch03] can be used to show that if (M,φ) fibers over S1,
∂M 6= ∅ and if α : π1(M) → GL(R, k), R a Noetherian UFD, is a represen-
tation factoring through a finite group G, then the corresponding Alexander
polynomial ∆α

1 (t) ∈ R[t±1] is monic. Thus Theorems 6.1 and 6.4 generalize
Cha’s results.

(3) The main significance of our results lies in the fact that they also give fibering
obstructions for closed manifolds.
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(4) Our approach in Theorem 6.1 also have advantages from a computational
point of view since it is easier to compute Alexander polynomials over several
PID’s Fp[t

±1] than over the ring Z[t±1].

Proof of Proposition 6.3. We only prove this proposition in the case that M is closed.
The case that ∂M is a non–empty collection of tori is very similar. Note that in either
case χ(M) = 0.

We first make use of an argument in the proof of [Mc02, Theorem 5.1]. Choose
a triangulation τ of M . Let T be a maximal tree in the 1-skeleton of τ and let T ′

be a maximal tree in the dual 1-skeleton. We collapse T to form a single 0-cell and
join the 3-simplices of T ′ to form a single 3-cell. Denote the number of 1-cells by n.
It follows from M closed that χ(M) = 0, hence there are n 2-cells. From the CW
structure we obtain a chain complex C∗(M̃) of the following form

0 → C3(M̃)
∂3−→ C2(M̃)

∂2−→ C1(M̃)
∂1−→ C0(M̃) → 0

where Ci(M̃) ∼= Z[π1(M)] for i = 0, 3 and Ci(M̃) ∼= Z[π1(M)]n for i = 1, 2. Let
Ai, i = 0, . . . , 3 over Z[π1(M)] be the matrices corresponding to the boundary maps
∂i : Ci → Ci−1 with respect to the bases given by the lifts of the cells of M to M̃ . We
can arrange the lifts such that

A3 = (1 − g1, 1 − g2, . . . , 1 − gn)
t,

A1 = (1 − h1, 1 − h2, . . . , 1 − hn),

where {g1, . . . , gn} and {h1, . . . , hn} are generating sets for π1(M). Since φ is non–
trivial there exist r, s such that φ(gr) 6= 0 and φ(hs) 6= 0. Let B3 be the r-th row of
A3. Let B2 be the result of deleting the r-th column and the s–th row from A2. Let
B1 be the s–th column of A1. Note that

det((α⊗ φ)(B3)) = det(id − (α⊗ φ)(gr)) = det(id − φ(gr)α(gr)) 6= 0

since φ(gr) 6= 0. Similarly det((α ⊗ φ)(B1)) 6= 0 and det((αp ⊗ φ)(Bi)) 6= 0, i = 1, 3
for any prime ideal p. We need the following theorem which can be found in [Tu01].

Theorem 6.5. [Tu01, Theorem 2.2, Lemma 2.5, Theorem 4.7] Let S be a Noetherian
UFD. Let β : π1(M) → GL(S, k) be a representation and ϕ ∈ H1(M).

(1) If det((β ⊗ ϕ)(Bi)) 6= 0 for i = 1, 2, 3, then Hβ
i (M ;Sk[t±1])) is S[t±1]–torsion

for all i.
(2) If Hβ

i (M ;Sk[t±1])) is S[t±1]–torsion for all i, and if det((β ⊗ ϕ)(Bi)) 6= 0 for
i = 1, 3, then det((β ⊗ ϕ)(B2)) 6= 0 and

3
∏

i=1

det((β ⊗ ϕ)(Bi))
(−1)i+1

=
3

∏

i=0

(

∆β
i (t)

)(−1)i+1

= τ(M,ϕ, β).

First assume that ∆
αp

1 (t) 6= 0 and

||φ||T =
1

k

(

deg
(

∆
αp

1 (t)
)

− deg
(

∆
αp

0 (t)
)

− deg
(

∆
αp

2 (t)
))
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for all prime ideals p. By Corollary 4.3 we get ∆
αp

i (t) 6= 0 for all i, in particular
H
αp

i (M ; Fkp[t
±1]) is Fp[t

±1]–torsion for all i and all prime ideals p. It follows from
Theorem 6.5 that det((αp ⊗ φ)(B2)) 6= 0. Clearly this also implies that det((α ⊗
φ)(B2)) 6= 0. Since we already know that det((α⊗ φ)(Bi)) 6= 0 for i = 1, 3 it follows
from Theorem 6.5 that Hα

i (M ;Rk[t±1]) is R[t±1]–torsion for all i.
It follows from [Tu01, Lemma 4.11] that ∆α

0 (t) divides det((α⊗φ)(B1)) = det(id−
φ(hs)α(hs)) which is a monic polynomial inR[t±1] since φ(hs) 6= 0 and since det(α(hs))
is a unit. But then ∆α

0 (t) is monic as well. The same argument (again using
[Tu01, Lemma 4.11]) shows that ∆α

2 (t) is monic. It follows from Lemma 4.1 that
Hα

3 (M ;Rk[t±1]) = 0, hence ∆α
3 (t) = 1.

Denote the map R → R/p → Fp by πp. We also denote the induced map R[t±1] →
Fp[t

±1] by πp. It follows from Theorem 6.5 that

3
∏

i=0

πp

(

∆α
i (t)

(−1)i+1

)

=
3
∏

i=1

πp (det((α⊗ φ)(Bi)))
(−1)i+1

=
3
∏

i=1

det((αp ⊗ φ)(Bi))
(−1)i+1

=
3
∏

i=0

∆
αp

i (t)(−1)i+1

for all prime ideals p. By assumption we get

1

k

3
∑

i=0

(−1)i+1 deg
(

πp (∆α
i (t))

)

=
1

k

3
∑

i=0

(−1)i+1 deg
(

∆
αp

i (t)
)

= ||φ||T

for all p. Since ∆α
i (t) is monic for i = 0, 2, 3 it follows that

deg
(

πp (∆α
1 (t))

)

= deg
(

πq (∆α
1 (t))

)

for all prime ideals p and q. Since R is a UFD it follows that ∆α
1 (t) is monic. Hence

deg (πp (∆α
i (t))) = deg (∆α

i (t)) for all i and all prime ideals p and clearly

||φ||T =
1

k

(

deg (∆α
1 (t)) − deg (∆α

0 (t)) − deg (∆α
2 (t))

)

.

Now assume that ∆α
1 (t) ∈ R[t±1] is monic and

||φ||T =
1

k

(

deg (∆α
1 (t)) − deg (∆α

0 (t)) − deg (∆α
2 (t))

)

.

The same argument as above shows that ∆α
i (t), i = 0, 2, 3, are monic as well. Recall

that det(α ⊗ φ)(Bi), i = 1, 3, are monic polynomials. It follows from Theorem 6.5
that

det(α⊗ φ)(B2) = det(α⊗ φ)(B1) det(α⊗ φ)(B3)

3
∏

i=0

(∆α
i (t))

(−1)i+1

is a quotient of monic non–zero polynomials. In particular det(αp⊗φ)(B2) = πp(det(α⊗
φ)(B2)) 6= 0. It now follows immediately from Theorem 6.5 that H

αp

i (M ; Fkp[t
±1])) is
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Fp[t
±1]–torsion for all i. In particular ∆

αp

1 (t) 6= 0. Using arguments as above we now
see that

deg(τ(M,φ, αp)) = 1
k

(

deg
(

∆
αp

1 (t)
)

− deg
(

∆
αp

0 (t)
)

− deg
(

∆
αp

2 (t)
))

= 1
k

3
∑

i=0

(−1)i+1 deg
(

∆
αp

i (t)
)

= 1
k

3
∑

i=0

(−1)i+1 deg (πp (∆α
i (t)))

= 1
k

3
∑

i=0

(−1)i+1 deg (∆α
i (t))

= ||φ||T .

�

Remark. Let α : π1(M) → GL(Z, k) be a representation. Then it is in general not
true that ∆

αp

1 (t) = πp(∆
α
1 (t)) ∈ Fp[t

±1] (we use the notation of Proposition 6.3), not
even if (M,φ) fibers over S1. Indeed, let K be the trefoil knot and ϕ : π1(X(K)) → S3

the unique epimorphism. Consider the representation α(ϕ) : π1(X(K)) → GL(Z, 2)
as in Section 7.1. Then deg (π3(∆

α
1 (t))) = 2, but deg (∆α3

1 (t)) = 3.

7. Examples

We applied our results to many explicit situations. In all reasonable situations we
found the correct Thurston norm bounds and we found whether a manifold fibers or
not.

7.1. Representations of 3–manifold groups. In our applications we first find
homomorphisms π1(M) → Sk, and then find a representation of Sk. The first choice
of a representation for Sk that comes to mind is Sk → GL(F, k) where Sk acts by
permuting the coordinates. But Sk leaves the subspace {(v, v, . . . , v)|v ∈ F} ⊂ Fk

invariant, hence this representation is ‘not completely non–trivial’. To avoid this we
prefer to work with a slightly different representation of Sk. If ϕ : π1(M) → Sk is a
homomorphism then we consider

α(ϕ) : π1(M)
ϕ
−→ Sk → GL(Vk−1(F)),

where

Vl(F) := {(v1, . . . , vl+1) ∈ Fl+1|
l+1
∑

i=1

vi = 0}.

Clearly dimF(Vl(F)) = l and Sl+1 acts on it by permutation. Since α(ϕ) is a subrep-
resentation of a unitary representation, α(ϕ) is unitary itself. These representations
are easy to find and remarkably useful for our purposes.

We point out that the fundamental groups of 3–manifolds for which the geometriza-
tion conjecture holds are residually finite (cf. [Th82] and [He87]). In particular most
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(or perhaps all) 3–manifolds have many homomorphisms to finite groups, and in
particular they have many interesting finite representations.

7.2. Knots with up to 12 crossings: genus bounds and fiberedness. In this
section we confirm bounds on the genus of all knots with 12 crossings or less. Also
we detect all non–fibered knots with 12 crossings or less, some of which are new dis-
coveries to our knowledge.

I. Knot genus:
There are 36 knots with 12 crossings or less for which genus(K) > 1

2
deg ∆K(t).

The most famous and interesting examples are K = 11401 (the Conway knot) and
11409 (the Kinoshita–Terasaka knot). Here we use the knotscape notation. We will
show that in all cases the correct genus is detected by twisted Alexander polynomials.

Using geometric methods Gabai [Ga84] showed that the genus of the Conway knot
is 3 and that the genus of the Kinoshita–Terasaka knot is two. The computation of
the genus for all 11–crossing knots was done by Jacob Rasmussen, using a computer
assisted computation of the Oszváth–Szabó knot Floer homology (cf. also [OS04a]
and [OS04b]).

We first consider the Conway knot K = 11401 whose diagram is given in Figure
3. This knot has Alexander polynomial one, i.e., the degree of ∆K(t) equals zero.
Furthermore this implies that π1(X(K))(1) is perfect, i.e., π1(X(K))(n) = π1(X(K))(1)

for any n > 1. (For a group G, G(n) is defined inductively as follows; G(0) := G and
G(n+1) := [G(n), G(n)].) Therefore the genus bounds of Cochran [Co04] and Harvey
[Ha05] vanish as well. The fundamental group π1(X(K)) is generated by the meridians

a

b
c

d

e

f

g

h

j

k
i a

e

f

h

j
k

g

i

b

c
d

Figure 3. The Conway knot 11401 and the Kinoshita–Terasaka knot 11409.

a, b, . . . , k of the segments in the knot diagram of Figure 3. The relations are

a = jbj−1, b = fcf−1, c = g−1dg, d = k−1ek,
e = h−1fh, f = igi−1, g = e−1he, h = c−1ic,
i = aja−1, j = iki−1, k = e−1ae.
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Using the program KnotTwister [F05] we found the homomorphism ϕ : π1(X(K)) →
S5 given by

A = (142), B = (451), C = (451), D = (453),
E = (453), F = (351), G = (351), H = (431),
I = (351), J = (352), K = (321),

where we use cycle notation. The generators of π1(X(K)) are sent to the element
in S5 given by the cycle with the corresponding capital letter. We then consider

α := α(ϕ) : π1(X(K))
ϕ
−→ S5 → GL(V4(F13)). Using KnotTwister we compute

deg (∆α
0 (t)) = 0 and we compute the twisted Alexander polynomial to be

∆α
1 (t) = 1+6t+9t2 +12t3 + t5 +3t6 + t7 +3t8 + t9 +12t11 +9t12 +6t13 + t14 ∈ F13[t

±1].

Note that α is unitary and we can therefore apply Theorem 3.2 which says that if
∆α

1 (t) 6= 0, then

genus(K) ≥
1

2k

(

deg (∆α
1 (t)) − deg (∆α

0 (t))
)

+
1

2
.

Therefore in our case we get

genus(K) ≥
1

8
· 14 +

1

2
=

18

8
= 2.25.

Since genus(K) is an integer we get genus(K) ≥ 3. Since there exists a Seifert surface
of genus 3 for K (cf. [Ga84] and Figure 1) it follows that the genus of the Conway
knot is 3.

For the Kinoshita–Terasaka knot K we found a map ϕ : π1(X(K)) → S5 such that

∆
α(ϕ)
1 (t) ∈ F13[t

±1] has degree 12 and deg
(

∆
α(ϕ)
0 (t)

)

= 0. It follows from Theorem

3.2 that genus(K) ≥ 1
8
· 12 + 1

2
= 2. A Seifert surface of genus two is given in [Ga84].

Note that in this case our inequality becomes equality, hence ‘rounding up’ is not
necessary. Our table below shows that this is surprisingly often the case.

Table 1 gives all knots with 12 crossings or less for which deg(∆K(t)) < 2 genus(K).
We obtained the list of these knots from Alexander Stoimenow’s knot page [Sto]. One
can also find the genus of all these knots on his knot page. We compute twisted
Alexander polynomials using KnotTwister and 4–dimensional representations of the

form α(ϕ) : π1(X(K))
ϕ
−→ S5 → GL(V4(F13)). Our genus bounds from Theorem 3.2

give (by rounding up if necessary) the correct genus in each case.
Using KnotTwister it takes only a few seconds to find such representations and to

compute the twisted Alexander polynomial.

II. Fiberedness:
Consider the knot K = 121345. Its Alexander polynomial equals ∆K(t) = 1 − 2t+

3t2 − 2t3 + t4 and its genus equals two, therefore K satisfies condition (1). It follows
from Corollary 6.2 that if K were fibered, then for any field F and any representation
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Knotscape name 11401 11409 11412 11434 11440 11464

genus bound from ∆K(t) 0 0 2 1 2 1
genus bound from ∆α

1 (t) 2.25 2.00 3.00 2.00 3.00 2.00
Knotscape name 11519 121311 121316 121319 121339 121344

genus bound from ∆K(t) 2 1 2 1 1 2

genus bound from ∆
α(ϕ)
1 (t) 3.00 2.00 2.50 3.00 2.00 3.00

Knotscape name 121351 121375 121412 121417 121420 121509

genus bound from ∆K(t) 2 2 1 1 2 2

genus bound from ∆
α(ϕ)
1 (t) 3.00 3.00 2.00 3.00 3.00 3.00

Knotscape name 121519 121544 121545 121552 121555 121556

genus bound from ∆K(t) 2 2 2 2 2 1

genus bound from ∆
α(ϕ)
1 (t) 3.00 3.00 3.00 3.00 3.00 2.00

Knotscape name 121581 121601 121609 121699 121718 121745

genus bound from ∆K(t) 1 0 1 1 0 1

genus bound from ∆
α(ϕ)
1 (t) 2.00 1.25 2.00 2.00 2.00 2.00

Knotscape name 121807 121953 122038 122096 122100 122118

genus bound from ∆K(t) 1 2 2 2 2 2

genus bound from ∆
α(ϕ)
1 (t) 2.00 3.00 3.00 3.00 3.00 3.00

Table 1. Computation of degrees of twisted Alexander polynomials.

α : π1(M) → GL(F, k) the following would hold:

deg(∆K(t)) =
1

k

(

deg (∆α
1 (t)) − deg (∆α

0 (t))
)

+ 1.

We found a representation α : π1(X(K)) → S4 such that for the canonical represen-
tation α : π1(X(K)) → S4 → GL(F3, 4) given by permuting the coordinates, we get
deg(∆α

1 (t)) = 7 and deg (∆α
0 (t)) = 1. We compute

1

4
deg (∆α

1 (t)) −
1

4
deg (∆α

0 (t)) + 1 =
10

4
6= 4 = deg(∆K(t)).

Hence K is not fibered.
Now consider α : π1(X(K)) → S4 → GL(Z, 4), the second map being the canonical

representation induced from permutation on the basis elements. Then according to
Proposition 6.3 our computation can also be interpreted as saying that ∆α

1 (t) ∈ Z[t±1]
is not monic.

Similarly we found altogether 13 12–crossings knots which satisfy condition (1) but
which are not fibered; we list them in Table 2. As we mentioned in the introduction,
Stoimenow and Hirasawa showed that the remaining 12–crossing knots are fibered if
and only if they satisfy condition (1). Corollary 6.2 completes the classification of all
fibered 12–crossing knots.
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Knotscape name 121345 121498 121502 121546 121567 121670 121682

Order of permutation group k 4 5 5 3 5 5 4
Order p of finite field 3 2 11 2 3 2 3

Knotscape name 121752 121771 121823 121938 122089 122103

Order of permutation group k 3 3 5 5 5 4
Order p of finite field 2 7 7 11 2 3

Table 2. Alexander polynomials of non–fibered knots

7.3. Closed manifolds. In this short section we intend to show that twisted Alexan-
der polynomials are also very useful for studying closed manifolds.

LetK ⊂ S3 be a non–trivial knot and φ a generator ofH1(X(K)). SinceH1(X(K)) ∼=
H1(MK) we will denote the corresponding generator of H1(MK) by φ as well. Let S
be a minimal Seifert surface for K. Adding a disk to S along the boundary clearly
gives a closed surface Ŝ dual to φ ∈ H1(MK), hence ||φ||T,MK

≤ ||φ||T,X(K)−1. Gabai

[Ga87, Theorem 8.8] showed that Ŝ is in fact norm minimizing. In particular for a
non–trivial knot K

||φ||T,MK
= ||φ||T,X(K) − 1 = 2 genus(K) − 2.

If K fibers, then clearly (MK , φ) fibers over S1 as well. Gabai [Ga87] showed the
converse; a knot K is fibered if and only if MK is fibered.

We confirm Gabai’s results for some cases. We applied our theory together with
KnotTwister to MK where K is one of the 36 knots with 12 crossings or less with
genus(K) > 1

2
deg(∆K(t)). In each case we found the correct Thurston norm bound

for MK . Furthermore, if K is one of the 13 non–fibered knots with 12 crossings with
monic Alexander polynomial and deg(∆K(t)) = 2 genus(K), then using Corollary
6.2 and KnotTwister we could show that twisted Alexander polynomials detect that
these manifolds are not fibered.

7.4. Satellite knots. We will show how to find lower bounds for the genus of satellite
knots. We will see that even though we are interested in the genus of a knot we
sometimes have to study the Thurston norm of a link complement.

Let K and C be knots in S3. Let A ⊂ S3 \K be a simple closed curve, unknotted
in S3. Then X(A) is a solid torus. Let ψ : ∂X(A) → ∂X(C) be a diffeomorphism
which sends a meridian of A to a longitude of C, and a longitude of A to a meridian
of C. The space

X(A) ∪ψ X(C)

is a 3-sphere and the image of K is denoted by S := S(K,C,A). We say S is the
satellite knot with companion C, orbit K and axis A. Note that we replaced a tubular
neighborhood of C by a knot in a solid torus, namely K ⊂ X(A).
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In [FT05] the first author and Peter Teichner study examples where K is the knot
61, C is an arbitrary knot, and A is a knot as in Figure 4. In [FT05] they show that

A

Figure 4. Knot 61 with choice of A and considered as a knot in the
solid torus X(A).

all these knots are topologically slice, but it is not known whether they are smoothly
slice or not. Chuck Livingston asked what the genus of these satellite knots equals.

Proposition 7.1. Let K ⊂ S3 be a non–trivial knot, and A ⊂ X(K) a simple closed
curve such that [A] = 0 ∈ H1(X(K)), which is unknotted if considered as a knot in
S3. Let C be another knot. Now let S := S(K,C,A) be the satellite knot. Then

genus(S) =
1

2
(||φ||T,X + 1),

where X := S3 \ (νK ∪ νA) and φ : H1(X) → Z is given by sending the meridian of
K to one, and the meridian of A to zero.

Proof. For convenience let us identify ∂X with K × S1 ∪A× S1. We also identify K
with K × {∗} ⊂ ∂X. It follows from [Sc53], [BZ03, p. 21] that (F denotes a surface)

genus(S) = min{genus(F )|F ⊂ X properly embedded and ∂F = K}

since the linking number of A and K equals zero. This also implies that φ : H1(A×

S1) → H1(X)
φ
−→ Z is the zero map. Similar to the proof that for a knot K we have

||φ||X(K) = 2 genus(K) − 1 we can now show that

||φ||T = min{2 genus(F ) − 1|F ⊂ X properly embedded and K ⊂ ∂F, F dual to φ}

= min{2 genus(F ) − 1|F ⊂ X properly embedded and ∂F = K}

= 2 genus(S) − 1.

�

Hence in order to determine the genus of S(K,C,A) for any knot C we have to
determine the Thurston norm of ||φ||T,X. For X, we compute that the untwisted
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Alexander polynomial ∆1(t) = 0. Hence we need twisted coefficients to get non–
trivial bounds.

Now consider the representation α : π1(X) → GL(F13, 1) given by α(µK) = 6 and
α(µA) = 2, where µK (respectively µA) denotes the meridian of K (respectively A).
For X we compute ∆α

1 (t) = 1 + 2t+ 2t2 +4t3 ∈ F13[t
±1]. It follows from Theorem 3.4

that ||φ||T,X ≥ 3.
Consider Figure 5. It shows the link K∪A and a Seifert surface of genus one for K.

The knot A intersects this Seifert surface twice. Therefore adding a hollow 1–handle
gives a Seifert surface of genus two for K which does not intersect A. Therefore
||φ||T,X ≤ 3. Hence ||φ||T,X = 3 and by Proposition 7.1 we get genus(S) = 2.

A
K

Figure 5. Seifert surface for K ⊂ S3 \K ∪ A.

7.5. Ropelength. Using work of Freedman and He [FH91] Cantarella, Kusner and
Sullivan [CKS02, Corollary 22] showed that the Thurston norm can be used to give
lower bounds on the ropelength of a link component. They formulated a conjecture for
a certain link. This conjecture was proved by Harvey [Ha05, Section 8] using higher–
order Alexander polynomials. Using one–dimensional representations together with
Theorem 5.1 and Lemma 3.3 we can reprove this conjecture.

7.6. Dunfield’s link. We will show that our invariants also detect subtle examples
of pairs (X(L), φ) where L is a link in S3 and φ ∈ H1(X(L)), which do not fiber over
S1. Consider the link L in Figure 6 from [Du01]. Denote the knotted component
by L1 and the unknotted component by L2. Let x, y ∈ H1(X(L)) be the elements
represented by a meridian of L1 respectively L2. Then the multivariable Alexander
polynomial equals

∆X(L) = xy − x− y + 1 ∈ Z[H1(X(L))] = Z[x±1, y±1].

The Alexander norm ball (cf. [Mc02] for a definition) and the Thurston norm ball
(which is determined in [FK05]) are given in Figure 7. Dunfield [Du01] showed that
(X(L), φ) fibers over S1 for all φ ∈ H1(M) in the cone on the two open faces with
vertices (−1

2
, 1

2
), (0, 1) respectively (0,−1), (1

2
,−1

2
). He also showed that (X(L), φ)
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Figure 6. Dunfield’s link.

(−1,0)

(0,1)

(0,−1)

(1,0)

(0,−1)

(0,1)

1
2( )1

2
,

1
2
, 1

2( )

Figure 7. Alexander norm ball and Thurston norm ball for Dunfield’s link.

does not fiber over S1 for any φ ∈ H1(X(L)) lying outside the cone. Later in [FK05]
the authors completely determined the Thurston norm of X(L).

Now let φ be the homomorphism given by φ(x) = 1, φ(y) = −1. In that case φ is
inside the cone on an open face of the Alexander norm ball and ∆1(t) = 1−3t+3t2 −
t3 ∈ Z[t±1] is monic. Hence the abelian invariants are inconclusive whether (X(L), φ)
is fibered or not. On the other hand we found a representation π1(X(L)) → S3 →
GL(F2, 3) such that ∆α

1 (t) = 0 ∈ F2[t
±1]. Therefore (X(L), φ) does not fiber over S1

by Theorem 6.1.
Note that the fact that (X(L), φ) does not fiber over S1 also follows from the fact

that φ is not in the cone on a top–dimensional open face of the Thurston norm ball
(cf. [Th86] and [Oe86]). But in this case, we do need to know the Thurston norm ball
for Dunfield’s link found in [FK05]. In general completely determining the Thurston
norm ball is much harder than computing twisted Alexander polynomials.
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[OS02] P. Ozsváth and Z. Szabó, Heegaard Floer homologies and contact structures, preprint (2002)
arXiv:math. SG/0210127.
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