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A Lefschetz fixed point formula for
elliptic complexes: I
By M. F. ATivaH and R. BoTT

Introduction

In this paper, we give the proof of the main theorem announced in [1].
Interesting examples and applications will be developed in a subsequent paper
[2].

Between the appearance of [1] and the writing of the present paper, we
have experimented with a number of different variants of the proof (see § 8),
all of which have some interest. The version presented here is technically
and conceptually the simplest. In particular it is more elementary in nature
than the proof outlined in [1].

As is well-known, the basic theorems on elliptic operators can be
established either by use of a parametrix or by Hilbert-space methods.
Although the second method is shorter, the first gives more information
about the nature of the inverse or Green’s operator; and for our purposes,
this extra information is essential. Fortunately the recent development of
pseudo-differential operator techniques [6] [7] [8] has led to a considerable
streamlining of the classical parametrix method. Using these techniques
therefore, we shall work in a C=-framework, avoiding Hilbert space entirely.

In § 1 we define elliptic complexes and formulate the Lefschetz theorem
(Theorem A). The general idea of the proof is described in §2. We show
how the theorem will follow from a number of auxiliary lemmas and proposi-
tions, and the rest of the paper is devoted to the proofs of these auxiliary
results. In § 3 we review the general facts about pseudo-differential operators,
following [6]. Then in § 4 we consider more detailed properties which we shall
need. These are put into suitable global form in §5. In §6 we apply pseudo-
differential operators to the study of elliptic complexes. Finally in § 7 we study
smooth endomorphisms. In § 8 we discuss briefly the alternative lines of proof
mentioned above.

Although the local theory of pseudo-differential operators is very fully
covered in [6], there is no adequate reference for a global theory. On the
other hand the globalization is fairly routine, and so it did not seem desirable
to obscure the main lines of proof by interspersing many minor technical
points. For this reason we have added an appendix dealing with these ques-
tions. Results in the appendix are labelled (Al) (A2), etc.
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It is possible to prove Theorem A, if one wants, without using pseudo-
differential operators globally. In particular, one can avoid the proof of
invariance under change of coordinates. However the details would be more
cumbersome, and the general lines of the proof would not be so clear.

We are greatly indebted to L.Hormander for instructing us in the
techniques of pseudo-differential operators, and for much concrete advice.

1. Formulation of the theorem

Let X be a smooth (i.e., C*) compact manifold, and let E, F' be smooth
complex vector bundles over X. We denote by I'(¥), I'(F') the spaces of
smooth sections of F, F. A differential operator

d: T(F) — I'(F)
is then a linear map given locally by a matrix of partial differential operators
with smooth coefficients. If d is of order k, then the terms of order & define

in an invariant manner the leading symbol o,(d) of d. This is a bundle
homomorphism

o,(d): m*E — n*F
over the cotangent space TX of X (7 denotes the projection TX — X).

The classical definition of ellipticity is that o,(d) should be an isomor-
phism outside the zero section of TX. We shall generalize this in the follow-
ing obvious way. Let E,, E,, ---, E, be a sequence of smooth vector bundles
over X, and let

d;:T(E) — T'(E;1,)
be a sequence of differential operators. Following the usual terminology in
homological algebra, the sequence is called a complex if d*=0, i.e.,if d;;,d;=0
for all 7 (we adopt the convention that £, = 0 if £ < 0 or £ > N, and hence
d,=0if k<0 or k= N). For brevity we shall denote the complex simply
by I'(E'), the grading of E and the operator d being understood. The complex
is elliptic if the sequence of leading symbols

aldi) .

oo R, S TR —— -
is exact outside the zero section. Note that we do not assume all d; of the
same order. Thus d; has order %, say, and
o(d;) = 0,,(dy)
is given by the terms of order k;. It is clear that, if N = 1, we just recover

the usual definition of ellipticity for the operator d,.
ExAMPLE. The simplest and most natural elliptic complex is the de Rham
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complex of X, where E; is the bundle of (complex-valued) exterior differential
forms of degree 7, and d is the usual exterior derivative. The symbol sequence
at xe X is just the exterior algebra on the cotangent space at x. More
interesting examples are mentioned in [1] and will be discussed in detail in
[2] (cf. also [3]).
The homology groups H(I'(E')) of the complex
— NE) — (i) —

are defined as usual by

In § 6 we shall show that, for an elliptic complex these homology groups are
all finite-dimensional. If N =1, so that we are dealing with a single
operator d,, we have

H’ = Kerd,
H' = Coker d, ,

and the finite-dimensionality of these is classical. For the de Rham complex,
the H' are, by the theorems of de Rham, naturally isomorphic to the usual
cohomology groups H!(X; C), and these are of course finite-dimensional.

By an endomorphism T of an elliptic complex I'(F), we mean a sequence
of linear maps

T::T(E;) — I'(E,)
such that d,T; = T,..,d;. Such an endomorphism induces endomorphisms H*T

of H{(I'(E)). Since HYI'(E)) is finite-dimensional, we can define Trace HT,
and hence the Lefschetz number,

L(T) = 37, (—1) Trace H'T .
For example if T = I is the identity, then
L(I) = X(F(E)) = E?’:o (—1)*dim Hi(I‘(E))

is just the Euler characteristic. In particular if N = 1, this is just the index
of the elliptic operator d,. The question of how to compute L(T') is therefore
a generalization of the index problem for elliptic operators (cf. [3]). In this
paper, however, we shall be concerned with a situation which is, in a sense,
at the opposite extreme from the case of the identity endomorphism. The
case which we shall study is in fact much more elementary than the index
problem, as will become evident later on.

Suppose then that f: X — X is a smooth map, and let ¢;: f*E; — E; be
smooth bundle homomorphisms. We can then define linear maps
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T:: D(E;) — I'(E))
as the composition

&) Lo ey " ) .

Thus, if s e I'(&),), the section Ts is defined by

Tis(x) = pis(f(2)) .
The point to note is that s(f(x)) € (E,);w.), but that ¢, takes us back to (E,),.
If further d;T; = T;..d;, then the T, defines an endomorphism of the elliptic
complex I'(E). An endomorphism of this type we call a geometric endomor-
phism.

ExamPLE. If I'(F) is the de Rham complex of X, then we have a natural
choice for ¢,, namely the i exterior power of df. In this case any f defines
a natural geometric endomorphism T and, in virtue of the de Rham theorems,
the H'T are just the endomorphisms Hf induced by f on H*(X;C). Thus
our Lefschetz number L(T') coincides in this case with the classical Lefschetz
number L(f). In the general case, when the bundles E; are not connected
with the geometry of X, there is no natural construction for the ¢;, and their
existence must be postulated. In many geometrically interesting examples,
however, there is a natural choice for the ¢,.

Returning now to the map f: X — X, we define a fixed point 4 of f to
be simple if det (1 — df,) # 0 where df, is the induced map on the tangent
space at A. This is equivalent to requiring that the graph of f and the
diagonal intersect transversally at (A4, 4) in X x X. Thus a simple fixed
point is an isolated fixed point. Hence if all fixed points of f are simple, it
follows, since X is compact, that they are finite in number. We shall be
concerned only with geometric endomorphisms arising from such maps.

The bundle homomorphism ¢,: f*E; — E; is just a family of linear maps

Pi,as (H3) gy — (E)a -

Hence at a fixed point A of f, we have

(Ei)A = (E'i)f(A) )

and so ¢;,, is an endomorphism of the vector space (E;),. Thus Trace ¢,,, is
defined. We are now in a position to state our Lefschetz fixed-point theorem.

THEOREM A. Let I'(E) be an elliptic complex on X, and let T be a
geometric endomorphism of T'(E) defined by a map f: X — X, with only
stmple fixed points, and bundle homomorphisms @;. Then the Lefschetz
number L(T) is given by the formula
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L(T) = 32, v(4)
where the summation is over the set of fixed points of f, and v(A) is given
by
W(A) = 3> (—1) Trace @,,, .
|det (1 — df.,)|

REMARKS. (1) Note that the formula v(A) does not explicitly involve
the differential operators d;. Thus the formula for L(T') is much simpler than
the index formula [3; Th. 1]. Of course the d; are implicitly involved by the
condition T,d; = T,..d,.

(2) If we take I'(E') to be the de Rham complex of X, with the natural
choice for ¢;, we find

37 (—1)! Trace ;,, = ) (—1)" Trace Ai(df,)
=det (1 — df,) ,
so that v(4)=sgndet (1—df,)=+1. Thus we recover the classical Lefschetz
theorem (for simple fixed points).

(3) Note that in general y(A) is a complex number, and not an integer.
The classical Lefschetz formula, where v(4) = &1, is highly special in this
direction,

(4) Theorem A can be generalized by taking the ¢; to be differential
operators. See Theorem B of § 2. The formula for v(A4) is then more compli-
cated. See (5.4).

(5) If there are no fixed points, the proof of Theorem A is essentially a
consequence of the fact that the Green’s kernel G(x, y) of an elliptic operator
is smooth for x = y. If there are fixed points, we need more information
about G(x,y) near x = y. Roughly speaking, we need to know that the
derivatives parallel to the diagonal:

(a‘i + a—any(w, )

have singularities at £ = y which are no worse than those of G(x, y). This
is trivially true for constant coefficient operators, and it is therefore plausible
for operators with smooth coefficients. In the framework of pseudo-differen-
tial operators, these questions can be made quite precise and are easily
answered.

2. Outline of proof

We shall now describe in outline the proof of Theorem A. Let us begin
by recalling the algebraic alternating sum formula.
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PROPOSITION (2.1). Let T be an endomorphism of finite rank of a com-
plex of vector spaces

0 Ve vt vy 0.

Then
> (—1)'Trace T = Y (—1) Trace H'T .

The proof is quite elementary and will be given in §7. The important
thing of course is that each T'* is assumed to be of finite rank. If the V® are
the chain groups of a finite simplicial complex, Proposition 2.1 is the essential
point in the proof of the classical Lefschetz fixed-point formula.

In our case, when V¢ = I'(E),), a geometric endomorphism T is, of course,
not of finite rank. However we shall show that it can be approximated by
endomorphisms of finite rank, so that Theorem A will follow by passing to
the limit in Proposition (2.1). To put it another way, the definition of Trace
will be extended by continuity (in a suitable sense) from operators of finite
rank to a larger class which will include our geometric endomorphisms. The
alternating sum formula of Proposition (2.1) will remain valid for operators
of this extended class and for geometric T we shall find the explicit formula

; Trace @,
T T’b — _ 1A
race I = Duro-4 Tqet (@ — df)

The extension of the notion of trace falls naturally into two steps, the
first of which is quite classical. This is the extension from operators of finite
rank to operators with smooth kernel. Let us briefly review what is involved.

Let E, F be smooth vector bundles over X. A linear operator T: I'(E) —
I'(F') will be called smooth if it is given by a smooth kernel K, on X x X.
At a point (x,y) of X x X, Ky(x,y) is then a linear transformation
E,— F,. R Q, where Q is the volume bundle on X (see § 5). Hence if E=F,
Trace K (x, x) is a smooth volume on X and so can be integrated (X being
compact). We define

(2.2) Trace T = STrace K,

as the value of this integral. If T is of finite rank (and smooth), it is easy to
see (cf. § 7) that this definition agrees with the purely algebraic definition of
Trace. If we give smooth operators their usual topology (the C= topology of
their kernels) we see that operators of finite rank are dense, and that our
definition of trace is continuous. Thus (2.2) is the unique continuous exten-
ston of the trace to smooth operators.

For endomorphisms of an elliptic complex, we shall then need the following
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approximation lemma,

LEMMA (2.3). The smooth endomorphisms of finite rank of an elliptic
complex T'(E) are dense in the space of all smooth endomorphisms of I'(E).

Lemma (2.3) is a fairly simple consequence of the basic facts about elliptic
complexes, and will be proved in § 7. If now T — T is a family of endomor-
phisms of finite rank converging to a smooth endomorphisms 7, we have also
H:T® — HT. Thus Trace T" —TraceT; and Trace H'T'® — Trace H'T.
Hence (2.1) and (2.3) imply the alternating sum formula for smooth endo-
morphisms.

PROPOSITION (2.4) Let T be a smooth endomorphism of an elliptic com-
plex. Then
3> (—1) Trace T; = ) (—1) Trace H'T .
This completes the first stage of the extension of traces:
finite rank —— smooth .

We come now to the second and more difficult stage of the extension. For
this we fix, once and for all, a smooth map f: X — X with simple fixed points,
If E is a smooth vector bundle over X, we have the natural homomorphism

fTE)—IT(f*E) .
Suppose that G is another smooth bundle over X, and that
P:T(G) — I'(E) Q:T(f*E) — I(G)
are continuous! linear operators. Then we can form the compositions

Qf*P: T(G) — T(G)
f*PQ:T(f*E) — I(f*E) .

If P is smooth, it extends to the distributional sections (cf. § 5) of G, and so
therefore does Qf*P. Thus Qf*P is also smooth, and so Trace Qf* P is defined.
Since f here is fixed, we shall regard this as a function of P, @ and write it
as® Trace;(Q, P). The extension we require is to take P, Q both pseudo-
differential operators (§3). For such operators one has a definition of bounded
set. Moreover the operators are continuous, and so we can take them with
the strong operator topology. Then we have the following result about

1 The topology of I'(E) may be defined by using coordinate patches. Equivalently
it may be defined by the semi-norms sup |Ds| for all smooth differential operators
D:T(E)—>T(Q).
2 We prefer this notation because otherwise, when we extend the definition of traces,
we would have to show that this depends only on Qf*P and not just on (Q, P): note
that (Q, P) - Qf*P is not necessarily injective.
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existence of traces.

PROPOSITION (2.5). For Q pseudo-differential there is a unique extension
of Trace; (Q, P) from smooth P to pseudo-differential P, which is continuous
in P (for the strong operator topology) on bounded sets (of pseudo-differential
operators). If I denotes the identity endomorphism of f*K, then

Trace, (Q, P) = Trace, (I, PQ) .
If P is differential, then
Trace; (I, P) = 3. ,,_, Yr(A)
where vp(A) can be computed locally near A in terms of P and f. In partic-
ular if P is of order zero, i.e. if it is induced by a bundle homomorphism
@, we have

. Trace ¢,
) = g T —dry)]

This proposition is crucial for Theorem A. A local version of (2.5) is
essentially given in [5; Th. (2.5)] but since the proof is quite simple, it will
be given in detail in § 4. The globalisation which is straightforward is then
given in § 5.

Passing now to elliptic complexes, we may consider endomorphisms T
where T, =Q,f*P; with P;, Q; pseudo-differential. We shall call these pseudo-
differential endomorphisms., They include, as a special case, our geometric
endomorphisms. We shall regard P, @ as part of the definition of T so that
different sets of P, will define different endomorphisms even though
the maps Qf*P may be the same. Then we have the following approximation
lemma.,

LEMMA (2.6). Let T be a pseudo-differential endomorphism of an elliptic
complex T(E). Then T can be approximated, in the sense of Proposition
(2.5), by smooth endomorphisms. More precisely, if T; = Q,f*P;, then there
exists a family of smooth operators

Si: T(f*E;) — I'(E)) t>0
such that

(1) (Sif*)ds = din(SEF),

(ii) S — P; in the strong operator topology.

(iii) S? is a bounded set of pseudo-differential operators.

Note that, if 7*— T in the strong operator topology, then H(T*) —
H{(T). Hence applying (2.4) to the approximating family T'* of (2.6), letting
t— 0, and using (2.5), we get the alternating sum formula for pseudo-
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differential endomorphisms.

THEOREM B. Let f: X — X have simple fized points, and let T = Qf*P
be a pseudo-differential endomorphism of an elliptic complex. Then we have

L(T) = > (—1)' Trace H'T = Y (—1) Trace, (Q;, P).
In particular if P, Q are differential, we get the Lefschetz formula:
L(T) = 22 5-4 ¥(A)
where
V(A) = 3 (—1)vp0(4) .
In view of the explicit formula at the end of (2.5), we see that Theorem
A is just a special case of Theorem B. Explicit local formulas for v,(4), for
differential operators P of order > 0, will be given in (5.4). Putting these
into Theorem B, we then obtain the generalisation of Theorem A referred to
in Remark 4 of the introduction.
The proof of (2.6) will be given in § 6. It is an easy consequence of the

existence of a pseudo-differential parametrix (§5) and the following simple
approximation lemma which is already implicit in (2.5) and will be proved in §4.

LEMMA (2.7). Let E be a vector bundle. Then the identity endomor-
phism of T'(E) can be approximated, in the sense of (ii) and (iii) in (2.6), by
smooth endomorphisms.

3. Review of pseudo-differential operators

In this section we shall review some of the basic facts concerning pseudo-
differential operators. Our standard reference for the local theory will be [6],
which contains complete proofs of all the results we need. As mentioned in
the introduction, technical points concerning the globalisation of the results
of [6] will be dealt with in the Appendix.

Consider first an open set U of R*, and let x=(x,, - - -, «,) be the standard
coordinates. For any real number m we denote by S™(U) the set of all smooth
functions p(x, &) on U x R” such that for every compact K < U and all multi-
indices «, 8 we have

(3.1) | DEDgp(, &) | = Cope(X + [N, veK,feR".

Here D¢ stands for the partial derivative

(mige) (i)™ (i)™

la| = X a; and C,,s¢ is a constant depending on «, 8, K and p. For any
such p, we define a linear operator
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P: (U) — &(U)
by the formula

Pu = <2n>-"§p<w, HAE)e s .

Here & denotes the smooth functions on U, 9 those with compact support,
and # is the Fourier transform of . If p is a polynomial in & of degree m
with smooth coefficients, then pe S™(U) and P is the differential operator
associated to it in the usual way. For this reason, when we want to show
the dependence of P on p, in the general case, we write

P = p(x, D)

where D stands formally for the vector with components —i(9/ox;).

A pseudo-differential operator is one which is locally of the above type.
Precisely, we denote by L™(U) the set of all mappings P: D(U)— &U)
such that, for all fe D(U), there exists some p,eS™(U) with P(fu) =
ps(x, D)u for all u e D(U). An equivalent definition [5, § 2] is that P is con-
tinuous, and that the commutator

(3.2) Py, §) = e =OP( fei o)

belongs to S™(U) for all fe D(U).

A set of functions p e S™(U) is said to be bounded if the constants C,,s,«
in (3.1) can be chosen independent of p. A set of operators Pe L™(U) is said
to be bounded if, for each fe P(U), the functions p, given by (3.2) form a
bounded set in S™(U). It is shown in® [5, § 2] that, if p(x, &) e S™(U), then
o(x, D)e L™(U). Moreover, if p(x, &) lies in a bounded set of S™(U), p(x, D)
lies in a bounded set of L™(U).

The first fundamental result proved in |[6] is:

(3.3) Invariance. The space L™(U), and the bounded sets in L™(U), are
invariant under change of coordinates.

ReMARK. The invariance of bounded sets is not explicitly stated in |6]
but is implicit in the proof for the invariance of L™(U). Alternatively, it can
be deduced from the invariance of L™(U) by an application of the closed-graph
theorem. Similar remarks apply later to the question of composition.

In view of this invariance property, it is clear how to globalise the defini-
tion to manifolds, and to sections of vector bundles. Thus let X be a manifold
(not necessarily compact), and let E, F' be two vector bundles over X. Let

PV (E)— INF)

3 Actually this is a special case of facts about composition (see (3.4)).
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be a continuous linear operator, where I', denotes the sections with compact
support. Observe first that, for any open set U of X, we have an operator
(the restriction of P to U):

P.T(E|U)—T(F|U),

given by the composition

I'(E | U) = T'(B) - I(F) = T(F | U)

where e denotes the natural extension by 0 and r is restriction. Then for any
coordinate patch U of X over which E, F, are trivial, the restriction of P will
be given (relative to bases in E and F') by a matrix P} 7 of operators (U) —
&U).

The space L™(X: E, F') is now defined as the set of all P as above so that,
for all choices of coordinate patches U and bases of E | U, F'| U, the operators
P e L™(U). A setof Pin L™X; E, F) is said to be bounded if all the cor-
responding sets of P’ are bounded in L™(U). It follows quite easily from the
invariance property (cf. proof of (Al)) that, for U — R", the new and old
definitions of pseudo-differential operator (and of bounded sets) coincide, i.e.,
if 1, denotes the trivial line-bundle over U, L7 = L™(U; 1y, 15).

The second important result is:

(3.4) Composition. If Pe L™ X;E,F),Qe L X; F,G) and fe9X),
then QfP e L"**(X; E, G). Moreover, if P or @ varies in a bounded set, so
does QfP. This is proved in [6, Th. (2.10)] for X = U c R". The general
case will be discussed in the Appendix.

Note. If X is non-compact, we have to insert f in order to make the
composition defined. If X is compact, we can take f = 1. If we put
L—=(E, F) = N.L"E, F), it follows from [6, Th. (2.2)] that L= consists
precisely of the smooth operators (i.e., with C= kernels). We then introduce
an equivalence relation for elements of L™(H, F'),

A ~ B == A — Bissmooth .

The importance of psudo-differential operators of elliptic problems lies in the
following result.

(3.5) Existence of parametrixz. Let d: T',(E)— I'F') be an elliptic differ-
ential operator of order m on a manifold X. Then there exists

Pe L ™F, E) withdP ~ I, , Pd ~ I,

¢+ When there is no possibility of confusion, we omit X and write L™(E, F') instead
of L~ X; E, F').
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where I, I, denote the identity operators of E, F'.

The construction of such a parametrix P is done locally and then patched
together by a partition of unity. The local construction is done for example
in [7] (in [6] the interest is in the more general hypo-elliptic case). If d; is
the restriction of d to U; and, if P; is a parametrix for d,, then the required
global parametrix P is given by

P = Eq’ipi“ﬁi

where @, is a partition of unity for the covering {U;}, and v, € D(U,) equals
1 on the support of p; (see (A4)).

4. The transversal trace

In this section we shall discuss in more detail some local properties of
pseudo-differential operators which play a key role in the proof of our theorem.
First however, we shall digress in order to recall some basic facts about
topological vector spaces. Our decision to avoid Hilbert spaces, and to work
in a C~ framework, means that we need to consider more general locally
convex spaces. In fact the spaces we mainly need are Montel spaces, and so
we shall summarize briefly a few relevant facts concerning these spaces.

If E, F are topological vector spaces, we denote by £(F, F') the vector
space of all continuous linear maps E — F. This space can be given three
important topologies:

(a) pointwise or simple convergence, also called the strong operator
topology;

(b) uniform convergence on compact sets (compact convergence);

(¢) uniform convergence on bounded sets (bounded convergence).

The first general result concerning these topologies is [4; III, § 3, Prop. 5]:

(4.1) If E, F are locally convex and Hausdorff and H C (K, F') is an
equi-continuous subset, then the topologies of stmple convergence and compact
convergence coincide on H.

An important and extensive class of locally convex spaces are the barrelled

space (espaces tonnelés) [4; III, § 1]. For these one has [4; III, § 3, Prop. 7,
and Th. 2}:

(4.2) If E is barrelled, F locally convex, the following conditions on a
subset H C L(E, F') are equivalent

(a) H 1is equicontinuous;
(b) H 1is bounded for stmple convergence;
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(¢) H s bounded for bounded convergence.
In view of (b) and (c), one may just refer to bounded sets in (E, F') without
ambiguity.

Finally let us recall that a Montel space is a barrelled space in which
bounded sets are relatively compact. For such spaces (4.1) and (4.2) combine
to yield

(4.3) If E is a Montel space, F locally convex and Hausdorff, then on
bounded sets of S(E, F) the topologies of simple convergence and bounded
convergence coincide.

All the usual spaces occurring in the theory of distributions, namely
D,9, &, &, S, S'-are Montel spaces [10]. We should perhaps warn the reader
that, following Schwartz, we always take duals (e.g. 9’) in the strong
topology (i.e., bounded convergence), whereas Hormander in [6] takes them
in the weak topology (i.e., simple convergence). For many purposes these are
equivalent, but we shall need (the elementary part of) the Schwartz kernel
theorem [12; Prop. 22] where the strong topology is necessary. This theorem
asserts that we have a topological isomorphism

6x,y — g(gz,/’ 6x)

where £ has the topology of bounded convergence, and the map is obtained
by assigning to k(x, y) € &,,, the linear mapping

Pp(y) — Sh(w, Y)p(y)dy .

We refer to this topology briefly as the C= topology of smooth operators.

Returning now to pseudo-differential operators, for U < R", we observe
first that bounded sets of L™(U), defined as in § 3, are certainly bounded in
L), 6(U)); we just put £ = 0 in (3.1). Thus by (4.3), the topologies of
simple convergence and bounded convergence coincide on such bounded sets.
Since we shall be mainly concerned with bounded sets, there is thus no need
to distinguish between the topologies. For definiteness, however, we agree
to take L(E, F') always with the topology of bounded convergence. For
pseudo-differential operators, the topology is made more explicit by the follow-
ing lemma,.

LEMMA (4.4). On bounded sets of L™(U), we have Pt — 0 in D),
&(U)), if and only if, for all fe DU),

pt——0 in U x R") .

ProoF. Suppose P*— 0, and let || < K, fe D(U). Then Dgf(w)e'= is
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a bounded family in 9(U), and so (since P* is continuous for each t)

ePY(f(x)e'®) = P*Dg(f(x)ei ™) — 0 in &U) .
This implies that
Py, §) = e Ot (f(x)ei?) — 0 in §(U x R") .

Conversely suppose p: — 0 in & U x R") for all fe D(U). Let we DU), and
take f = 1 on supp #. Then (cf. § 3)

P'(w) = P(fu) = p(a, Du = @)~ | Opifa, HEE

where 7 is the Fourier transform. Since p% is bounded in S™(U), the integrand
is bounded (uniformly in ¢ and for x in a compact set) by a constant times
(L + [&])™|4(&) ], and the integral of this converges since e D(U). Since
p% — 0 uniformly on compact sets, it then follows that P*u — 0 uniformly on
compact sets. The same applies to all derivatives D:P*u, and hence P*— 0
in £@D(U), &U)) as required.

Using (4.4) we can now proceed to

Proor oF (2.7). First we consider the local situation for U’ © R”. Choose
@ e DR") so that p(0) = 1. Then the p* defined (for ¢ > 0) by

p(w, §) = @(té)

are a family of smooth functions, bounded in S°(U) and p*— 1 in & U x R")
as t — 0. Hence P!z, D) is a family of smooth operators, bounded in L°(U)
and — 1 in LDU), &U)). For systems of functions over U, we take p' to
be a scalar matrix. Finally for sections of a vector bundle E over a compact

manifold X, we construct P! over open sets U, (of a finite coordinate covering
with E | U; trivial) and put
Pt = E P Piv;
where {p;} is a partition of unity and v, = 1 on supp ;. Then (see (A1))P*—
1 in &I(F), I'(E)), and is bounded in L(I'(E), I'(E)) as required.
If Pt—1 as above, and Q:I'(E)— I'(F) is pseudo-differential, then

QP'— @ in the same sense by (3.4). Thus we have the following corollary
of (2.7).

COROLLARY (4.5). Let Q:T(E)— I(F) be a pseudo-differential operator
on a compact manifold. Then there ts a family of smooth operators
Q! T(E) — I(F) which are bounded in L™(T(E), T\(F)) and converge to @ in
LI(E), T'(F)).

We consider now the extension of pseudo-differential operators of distri-
butions.
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LEMMA (4.6). If P: D(U)— &U) belongs to L™(U), then it extends to o
continuous linear operator & (U) — D (U). If P! is bounded in L™(U) and
— 0 tn LDU), &U)), then its extension is bounded and — 0 in L& (U),
DU)).

Proor. This is essentially given in [5; (2.2)], but we recall the argument
(particularly because we use the strong topology for distributions). Let K be
a compact set in U, and let fe Y(U) with f =1 on K. Then, as above, for
any u € 9(K), we have

Pu = (27r)—”86“"’“pf(90, &ya(e)de .

Hence if ve 9(U), we have

(Pu, vy = (27r>—“§v<x)dx§e“”yf>pf(x, Hae)de
4.7)

- <2n>—”§pf,v<s>a<s>ds ,

where we have interchanged the order of the absolutely convergent double
integral and put

(4.8) Pl = [0l (e, Hecoda

Differentiating with respect to &, and then integrating by parts, we obtain
§Deps8) = S(Df(De — @) (@), §))e~*d .

This leads to an estimate

(4.9) | Depso€) | < AL + &7,

where A is a constant depending on L = supp v, on sup | D'v | (for 7| < |B)),
and on the constants occurring in (3.1) (for p = p, and K = L). In particular
this shows that, for fixed p,, v+ p,,, defines a continuous map D(L)— &
(where S is the Schwartz space of C~ functions on R" decreasing rapidly at
infinity). Since Y(U)=injlim D(L) with the direct limit topology [10, III, Th. II]
it follows that v p,,, defines a continuous map Y(U)— §. Now for any
u € &(K) we have a Fourier transform # € &'. Since p;,, €8, (4.7) defines Pu
as a linear functional on 9(U). Since py,, is continuous in v, Pu is a distribu-
tion. This gives the required extension of P to distributions. Since, on each
compact K, it is defined as the composition of the two continuous maps,

&' (K) —— &' given by u —— (27) "
S — 9P(U) dual to the map given by v —— py,, ,

it is continuous from & (K)— 9'(U). Since &(U)= injlim & (K)[10, 111, p. 90},
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it follows that (the extension of) P is continuous from &(U) — D' (U).

If P?is bounded in L™(U), then (4.9) shows that, for fixed u, v, {P'u, v>
is bounded. This means that (the extension of) P! is bounded in £(&'(U),
DUY).

REMARKS. (1) It isshown in [6, (2.15)] that the dual of the distribu-
tional extension of P is in fact pseudo-differential, but we do not need this.

(2) Both (4.4) and (4.6) extend immediately to a global form, for vector
bundles on a manifold. This is because the topology (and bounded sets) of
LI (E), I'(F)) may be defined by using coordinate patches.

We shall now examine the Schwartz kernels of pseudo-differential opera-
tors. Here we follow [6, § 2]. In the first place if U c R" and p e S™(U), the
Schwartz kernel K, of p(x, D) is a distribution on U x U. Off the diagonal
A, it is a smooth function [6, (2.5)] given by

(2m)~
(* —y)*
where « is arbitrarily large, and (x — y)* # 0. This expression shows the
following

(4.10) If p lies in a bounded set of S™(U) and — 0 in &U x R"), then
K,—0in&U xU — A).

We turn now to the more interesting question of the behaviour of K,
near the diagonal. Let U be open in R*, V open in U, and let f/: V — U be a
smooth map with a simple fixed point at A. We assume V chosen so small
that  +— @ — f(x) gives a diffeomorphism of V onto its image. Let F: V —
U x U be defined by F(x) = (f(x), x), and consider the induced map

F*:&U x U)— &(V)

Ky (x, y) = Sei“—%w(—Dn)“p(x, ndy

of smooth functions. If p(x, &) € S;”, the operator p(x, D) has a smooth
Schwartz kernel K, given by

K, (v, 1) = @) e op(e, s
The induced function F*K, is therefore
FrEKy(@) = @m) |ere-=op( fla), £)ds .
The corresponding distribution in (V) may be written
(FK,, vy = @)~ |ero-0p( (@), o,

where the change in order of integration is permissible because p € S==(U).
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Making the change of variable y = x — f(x), we find
@1l)  (F*K,, o> = (27T)“"Sdég e P (@), Slzw))dy
|det (1 — f'(x(»)) |
But now applying (4.9) (with p instead of p,, and v/det (1 — f’) instead of v),
we see that (4.11) defines a distribution for any p € S*(U). Moreover if p, v

remain in bounded sets (of S™(U) and 9D(U) respectively), and p — 0 in
&U x R™), then (4.9) shows that

{(F*K,,v)— 0.

Hence we have
(4.12) p— F*K, is continuous from &U X R™) — D' (V) for p in a
bounded set of S™(U).

We propose next to calculate the distribution F*K, when p =3 a,(x)- &
is a polynomial in . We get®

FE = @0 T, (i)

- o 5 ot

- Z. 5% (qma )

using the Fourier inversion formula. In particular, if p = a(x) is a polynomial
of degree zero in &, then

y=0

F*K,, — a(4)v(4)

EE T a1
or

(4.14) F*K A

" ]det(1 — f1(A)] ]
where 0, is the Dirac measure at A.
In (4.10)—(4.14) we have all the local information we need about the
kernels of pseudo-differential operators. In the next section we put these on
a global footing to obtain a proof of (2.5), the key step towards Theorem A.

5. Global formulation

This section is largely devoted to the notational questions necessary to
formulate globally the results of the preceding section, and hence establish
Proposition (2.5). All the analytical questions being essentially local, nothing

5 Here ( )™ denotes the Fourier transform with respect to y.
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really new is involved. First we need to introduce the volume bundle Q(X)
of a manifold X. This is the line-bundle associated to the tangent bundle by
the representation A — |det A| of GL(n, R). The fibre Q, at x € X can be
identified with the one-dimensional space of all Haar measures on the tangent
space T, at x. The smooth sections of Q are the smooth measures on X, i.e.,
in a given coordinate patch they are of the form f(x) | dx |, where | dx | denotes
the Lebesgue measure of R". Given an element w ¢ I',(Q), we can therefore,
in an invariant manner, form the integral S .

For any bundle E, we have the dual butfdle E*, the fibre E} being dual
to E,. Wedefine £/ = E*Q Q. If seI(&) and t e I'(E’), we can then define
an element @ € I'(Q) by

o(x) = (s(x), t(x))
where ( , ) denotes the natural pairing

E, X E—Q, .
By integrating S w, we then obtain a (separately continuous) bilinear map

X
L(E) x (&) —C

and hence a linear map

F(E,) — I‘c(E), ’
where I',(E')’ denotes the dual topological vector space of I' .(E). Replacing
E by E’, and identifying E" with E we thus obtain a map

T'E)—TJ(E') .
It is easy to see that this is injective (with dense image), and we shall refer
to an element of ' ,(E’) as a distributional section of E.

In a similar way a distributional section of E with compact support is

an element of I'(E’)’. A more suggestive notation therefore is to follow

Schwartz and write 9'(E) for I' ,(E’) and &'(E) for I'(E')'.
Suppose now that

P.T(E)— I'(F)
is a continuous linear operator. Its Schwartz kernel K is then a distributional

section on X X X of the bundle® F [ E’. If p e (F’') and v e ' ,(E), then
the value of K, on ¢ K + is given by

Kr-p @y = p, Py .

6 We use EX F for the external temsor product. It is a bundle on X X Y when
E, F are bundles on X, Y respectively. If ¥ = X, the restriction of E X F to the diagonal
gives the internal tensor product E Q F. This is a bundle on X.
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If P is smooth, then K is a smooth function and, for (v, y)e X x X,
-KP(wy y)eFx®E; .

Such a smooth operator extends by continuity to a continuous map
&'(F) — I'(F'). Moreover the Schwartz kernel theorem (cf. § 4) in its global
form asserts that P +— K, defines a topological isomorphism

LEE), I(F)) — IN(F K E) .

Suppose now that f: X — X is a smooth map with simple fixed points and
that

P:U(f*E) — &)

is a pseudo-differential operator. Put F' = f*E for brevity. Then the kernel
K, of P is a distributional section of E [ F” on X x X. Then kernel K.,
of the composition

PP L (F) — I(F)
is a distributional section of F'[X] F’. Outside the graph y = f(x), it is a
smooth function given by
(5.1) Kp(@, y) = Kp(f(®), y) .

If P is smooth, then K., is a smooth section given by (5.1) for all (z, y). If
X is compact, the smooth trace of f*P is then by definition

(5.2) Trace f*P = Sx Trace K,(f(@), 7) .

Note that Kr(f(x), x) is a section of F' @ F’, and Trace K (f(x), x) is there-
fore a section of Q(X). Thus the integral in (5.2) is meaningful. As a main
step towards (2.5) we shall now prove

PROPOSITION (5.3). The map @: LE(F), I(E)) —»I(F Q F') given by
P A*Knp = Kp(f(x), ) has a unique extension '
0: L"(F,E) — 9"(F Q F") ,
which is continuous for the strong operator topology of P on bounded sets of
L™F, E). If Pis a differential operator, then ®(P) =3 ... _, O(P), where
B(P), 1s a distribution with support {A} which may be calculated as follows.

Let e,, -+, ¢, be a local basis for E near A, let (x,, - - -, «,) be local coordinates
near A, and suppose P is given there by

P(ufre;) = E;=1 (PHiu)e; ,
where u s a scalar function and

Pii = ¥ Pi(x)Ds .
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Then @(P), is the distributional section of F @ F’' which, relative to the
basis {f*e;} of F and |da| of Q, is given by the matrix Q' where Q¥ e D', is
defined by

i — a Poij,v
<@ vy = 2, i fdet (1 — df)|>y=o

and y = x — f(=).

Proor. The uniqueness of the extension of @ follows from (4.5). To
show that ® extends, it is enough to show that it extends locally near any
point x, € X, i.e., that

P— A*K(p |U

can be extended for some neighbourhood U of #,, We now choose U so that
U and f(U) are both contained in a coordinate patch W over which E and F
are trivial. If x, = f(x,), then we take W disconnected. If x, = A is a fixed
point, we assume moreover that U contains no other fixed point, and that
det (1 — df) = 0 on U. Now let o ¢ D(W) with ¢ =1 on U. Then relative
to the bases of E and F over W, the restriction P, of any Pe LX,E, F)
will be given by a matrix

P = pii(z, D) Piie SM(W) .
In the case x, # f(w,), it follows from (4.10) that K,(f(x), x) is smooth for
all v € U and that P — A*K,., defines a mapping

L™E,F)— T(FQ F'|U),

which is continuous in the sense of (5.3). It is continuous, « fortiori, when

regarded as having values in the space of distributional sections. For the

case x, = A of a fixed point, we apply (4.11)—(4.14), and the results all follow.
The bundle homomorphism

Trace: FQF' — Q

induces continuous linear maps (also called Trace) in the smooth and distribu-
tional sections of these bundles. Thus, by (5.3), for any Pe L™(E, F), we can
form Trace A*K,.,. This will be a distributional section of I'(Q), i.e., an
element of I'(Q')’ = I'(1)’. It can therefore, for compact X, be evaluated on
the constant function 1. For smooth P this value is, by 5.2, just Trace f*P.
Hence, as a corollary of (5.3), we deduce’

COROLLARY (5.4). Let X be compact. Then the map P — Trace f*P has
a unique extension (denoted by Trace, P) which is continuous in the sense

7 Strictly speaking (5.3) gives existence and (4.5) uniqueness.
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of (5.8), from smooth P to pseudo-differential P. If Pis differential Trace, P
is given by

Trace; P = 3 .,y Vr(4)

where

vild) = £, i det (f— df)] >u=°

in the notation of (5.3). In particular, if P is induced by a bundle homo-
morphism @, this can be written invariantly as

Trace ¢
vp(4A) = A .
A= Taee - ary]
Corollary (5.4) is the special case of (2.5) when @ is the identity (and
f*E = G). We pass now to prove (2.5) in general. Thus we have to consider
the composition Qf* P where

Q:I(f*E) — I(G) P:1(G) — I'(E)

are pseudo-differential. Now we recall that smooth operators are just con-
tinuous operators from distributions to smooth sections. Thus if P is smooth
so is Qf*P, and so Trace Qf*P is defined. We want to show that there is a
unique continuous extension of this to all P. First we note that, when Pand
Q@ are both smooth, we have the commutation formula

(5.5) Trace Qf*P = Trace f*PQ .
This follows at once from the integral expressions for these traces and the
formula

Trace AB = Trace BA

for finite-dimensional spaces. We will now show that (5.5) continues to hold
when P is smooth but @ is not. Note that, since @ extends to a continuous
operator on distributions ((4.6) and Remark 2), f*PQ is continuous from
distributions to smooth sections and so is still smooth. Now let Q* be a smooth
family converging to @ as in (4.5). Then by (4.6) (globalized) the extension
of @t to distributions converges in £(9'(f*E), 9'(G)) to the extension of Q.
Since composition of operators is separately continuous, it follows that

Qif*P — Qf*P in £(9(G), I'(G))
and

f*PQ'— f*PQ in D' (f*E), (f*E)) .
Since the topology in £(9’, I') is just the C= topology of smooth kernels, and
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since the smooth trace is continuous for this topology, it follows that

Trace Q'f*P — Trace Qf*P

Trace f*PQ! — Trace f*PQ .
Hence (5.5) follows by passing to the limit in

Trace Q'f*P = Trace f*PQ" .

Thus (5.5) holds for all smooth P. In view of (3.4) and (5.4), we can therefore
define
(5.6) Trace, (Q, P) = Trace, PQ ,

and this will provide a continuous extension of Trace Q f*P. The uniqueness
follows by (4.5) as before. The proof of (2.5) is therefore complete.

6. Elliptic complexes

In this section, we shall use the results of § 3 to establish the basic facts
about elliptic complexes. In particular, we shall give the proof of (2.3).

Let T'(E) be an elliptic complex over the compact® manifold X. By a
parametric P for I'(E), we shall mean a sequence of continuous linear
operators

P:T(E.,) — I(E)
so that
d; P, + Pd;, =18,
where S, is a smooth endomorphism of I'(E;). Note that S,,,d;=d;P.d,=d,S,;
so that this defines a smooth endomorphism of the complex I'(E).

PROPOSITION (6.1). For any elliptic complex I'(E), there is a pseudo-
differential parametrix, i.e., P;e L-™(E,.,, E;), where m, is the order of
d;: IE)) — I(E;+,).

ProoF. Fix a riemannian metric on X. Then the leading symbol of a
differential operator on X may be regarded as a function on the unit cotangent
sphere bundle of X. For each ¢, we now take an elliptic differential operator

Qi: T(E;) — I(E;)
of order 2(N — m,) whose leading symbol is the identity (e.g., take Q; to be

the (N — m;)™ power of a Laplace operator for E;). Here N is any integer
so that N — m,; = 0 for all 7. We then define

A I(E;) — I(E,)
by

8 X is compact throughout this section.
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Ai = Q@d;kd@ + di—-lQi—ld:Ik—l

where d*: I'(E,.,) — I'(E;) is the adjoint of d; relative to smooth hermitian
metrics in the E; and the riemannian measure on X. Clearly A, is a differential
operator of order 2N, and its leading symbol ¢(4A;) is given by

a(A;) = o(d)*o(d;) + o(d;_)o(d;_,)* .

Now the definition of an elliptic complex is that, for any « € X and any non-
zero ¢ in the cotangent space at x, the sequence

ai;—1 a;

Ei—l;x Ei,x

Ei+1yz

is exact, where «; is o(d;) at the point (x, £). Elementary algebra then implies
that

G(Ai)x,e: E’i»a: — Ei,x
is an isomorphism. In fact each E; , is decomposed as a direct sum
Ei;z = ai—l(Ei—l,x) @ a?(Ei+1»z) ’

and «,_,a*, is an isomorphism on the first factor, zero on the second, with
the reverse situation for a*«;. Hence A; is an elliptic differential operator
of order 2N. Moreover we have (since d;d;_, = 0)

(6.1) d:A; = dQdfd; = Ad;

so that the sequence of A; defines an endomorphism of the complex I'(E).
Now by (3.5), we can find a pseudo-differential parametrix E; for A; so that

Multiplying (6.1) on the left by R,.,, and on the right by R;, we then obtain
(6.3) R, d; ~d.R;.

We now claim that
P, = RQJd}
is the required parametrix for I'(E'). In fact we have
Pd, +d, ,P,_, = RQdid; + d;_,R;,_Q;_,d¥,

~ RQdrd; + Rdi Qi d¥, (by (6.3))
~ RA;
~ 1.

and so Pd; + d;, ,P,_, =1 — S, with S; smooth.

REMARK. If the m; are all equal, we can take N = m, and all Q; = 1.
Then
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Ai = d;kd@ + di_ld;k_.l

is an obvious generalisation of the Laplace operator of the Hodge theory.

Before proceeding further, let us review some facts about compact
operators. A linear map F: V — W of topological vector spaces is called a
Fredholm operator if

(i) dimKer F < oo}

(ii) F (V) is closed;

(iii) dim Coker F' < co.

The following result is usually proved for Banach spaces, but is actually
true [5; § 9.6] for all locally convex Hausdorff topological vector spaces.

PROPOSITION (6.4). If K: V—V is a compact linear operator, then
1 — K is a Fredholm operator.

REMARK. The proof of properties (i) and (ii) is practically the same for
general V as for Banach spaces. Property (iii) is proved by duality, using
the dual V'’ with the topology of compact convergence, and applying (4.1),
one verifies at once that K’ is compact. We shall apply (6.4) when K is a
smooth operator I'(E') — I'(E'). A smooth operator (on a compact manifold) is
compact because it factors through the compact inclusion

I(E)— 9'(E)

of the smooth sections in the distributional sections.

Using (6.4) and (6.1), we can now establish the following basic properties
of an elliptic complex

PROPOSITION (6.5). Let

ds
c—— D(E) — D(#Ei) — -+

be an elliptic complex. Then

(i) dim H(I(E)) < o for all 1;

(ii) d.I(E)) is closed in T(E,.,);

(ili) Kerd; is a topological direct factor of I'(E,).

Proor. Let Z; = Kerd;, B, = Imd, ,. Let P be a parametrix for I'(F)
so that

d; P, +Pd;=1-38,,
with S; smooth and so compact. For u ¢ Z;, we have
diPiu =1 — S)u.

Hence B; > (1 — S;)Z;. But the restriction of S; maps Z; to Z; and so, by
(6.4), (1 — S,)Z, is closed and of finite co-dimension in Z,. The same is then
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true of B; and, as Z; is closed in I'(E;), we deduce (i) and (ii). To prove (iii),
we consider the map
F:Z, 6 B;,, — (&)
given by
F(zpb) =2+ Pb.
Then Im F;, 5 Im (1 — S;) and so, by (6.4), it is closed and of finite co-dimen-
sion. Also we have
1 - 8S;:)b=(d;P; + P;,d; )b = d;Pb
= —d;Fi(zDb)

which shows that

dimKer F; < dimKer (1 — S;.,) < o by (6.4).
Thus F; is a Fredholm operator, and it induces an isomorphism (algebraic and
hence topological because all spaces are Frechet) of Z; P (B;..,/P;7(Z;) N B;+y)

onto a closed subspace of finite codimension W, of I(E;). If W; denotes a
complement of W, it follows that

PiBi+1/PiBi+1 N Zi + WiL

is a complement of Z; in I'(E;). This proves (iii).

Using (6.1) and the results of §4, it is now easy to give the proof of
Lemma, (2.6). Let P be a pseudo-differential parametrix for I'(%), and let R*
be a family of smooth operators converging to 1 as in (2.7). Put P’ =
(1—RY)P. Then, for t > 0, R'P is smooth, and so P! is still a parametrix.
Thus

Pid +dP'=1—- K*,

where K is (for ¢ > 0) a smooth endomorphism of I'(E). By (3.4) K*—1 in
the sense of (ii) and (iii) in (2.6) as t — 0. Suppose now that T, = Q,f*P; is
a pseudo-differential endomorphism of I'(£). Then putting S! = P, K}, we
obtain a family T = TK® of smooth endomorphisms of the complex I'(E)
which converge to T in the sense required for (2.6).

REMARK. Note that our method of constructing the family 7' does a
little more than required. In fact, the induced action on homology is inde-
pendent of t.

7. Trace of smooth endomorphisms

This section is devoted to the proof of (2.4), the alternating sum formula
for smooth endomorphisms. As pointed out in § 2, this follows from (2.1), a
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purely algebraic result, and (2.3), an approximation lemma.

We begin with the general algebraic situation. An endomorphism of
finite rank of a vector space V may be identified with an element of VRV *,
where V* is the algebraic dual. The trace is then just the natural linear
form on V @ V* given by the pairing. Note in particular when V = I'(F),
we have the subspace

(E) Q IE") of VRV*
consisting of smooth endomorphisms of finite rank. The trace of an element
s@Rtel(F)RQINE")

is therefore given by S Trace s @ t. On the other hand, the Schwartz kernel

of this endomorphism is just
K(z, y) = s() Q t(y) .
This therefore justifies the formula (2.2) for such endomorphisms.
To prove (2.1), we first establish the additivity of traces for short exact

sequences. Namely, if T is an endomorphism of finite rank of the exact
sequence

0 A B C 0,

then b = a + ¢, where we write a = Trace T | 4, ete. If dim C < «, we can
split the sequence so that B = A P C, and the result is then easy. For the
general case, we observe that, since T has finite rank, it factors through a
finite-dimensional space. Thus

c-L.c,cc

and the trace on C clearly coincides with the trace of the restriction to C,.
Replacing C by C, (and B by the inverse image) we are reduced to the previous
case, and the additivity is therefore proved.

For a general complex V, we then put Z; = Kerd,, B, = Imd,_,, so that
we have short exact sequences

(7.1) 0 Z; V. B;., 0 0 B; Z, H,; 0.

If we write z; = Trace T | Z,, etc., then the additivity of traces implies that
v, =2 + bia, h, =2, — b;.
From these, we deduce at once
(=D = X (=D — T (=1 = T (= Dhe
which proves (2.1).
Suppose now that V is a complex of topological vector spaces, with the
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d; continuous. We shall say that V is a split complex if both exact sequences
(7.1) have topological splittings. This means we have topological direct sum
decompositions

Vi:Zi@Biﬂ Z;~B,®H,;,

and hence V; = B, P H; P B;...

In particular, this implies that B is a closed subspace of V,. Note that
the dual of a split complex is split.

If the V, are Frechet spaces, then the following conditions together imply
that V is split.

(i) dim H; < oo,

(ii) B;is closed in V;,

(iii) Z, is a topological direct factor of V..
In fact, the decomposition

follows at once from (i) and (ii). Using (iii), we can decompose V;, = Z, p W,
and the projection V,—B,,, then induces an algebraic isomorphism W,—B,,,.
Since both of these are Frechet spaces (being closed subspaces of Frechet
spaces), it follows that W, = B,,, topologically.

Hence Proposition (6.5) implies that an elliptic complex T'(E'), and hence
also its dual I'(E'), is split.

If V, W are topological vector spaces, then as before we denote by
L(V, W) the space of continuous linear map V — W with the topology of
bounded convergence. The subspace of operators of finite rank, we denote
by £,(V, W). We employ a similar notation for homomorphisms of complexes.
Thus £(V, W) is the subspace of J][L(V;, W,) consisting of all T = ] T such
that d;T;=T;..d;, and £,(V, W) is the subspace for which each T; € £(V;, W,).

We then have the following easy lemma.

LEMMA (7.2). Let V, W be two split complexes of topological wvector
spaces. Assume that, for all i, LA(V;, W) is dense in L(V;, W,). Then
LAV, W) is dense in L(V, W).

Proor. The hypotheses imply that, for any topological direct factors
X, cV,Y,cW, (X, Y, is dense in £(X;, Y;). This can be applied to the
various spaces Z;, B;, H;, Now an endomorphism of a split exact sequence is
given by a triangular 2 x 2 matrix. Hence we can approximate endomor-
phisms of the exact sequences (7.1) by ones of finite rank. Moreover any
approximation of the first term can be extended to an approximation of the
whole sequence. To construct a finite rank approximation S to a given endo-
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morphism T of V, we now proceed inductively over 7. Assume S, constructed
for j< 4. Then the induced endomorphism of B; is given, and may be extended
to one of Z; and then to one of V,.

We can now proceed to the proof of (2.3). Let I'(E') be an elliptic complex.
We can then define a transpose complex I'(E’) where

di: T(E/,,) — IE))
is the transpose differential operator to d,, i.e.,
LA, vy = lu, djvy we(E,;), ve(E],) .
It is trivial to verify that I'(E’) is also elliptic. Now as remarked above,
I(E) and I'(E"’) are split complexes, and so is the dual I'(E’)’. Since £(I'(&)),

I(E;)) is just the space of smooth endomorphisms of I'(¥;), the subspace £,
is dense. Hence applying (7.2) with

V =IE"Y, W =1I(F),
we deduce (2.3) as required.
8. Alternative methods

We shall now discuss two variations of the proof of Theorem A.

Homological method. The first variation, although essentially equivalent
in analytical content, involves a different algebraic point of view. It is well
known in various homology theories in topology and algebraic geometry that
a Lefschetz fixed-point formula is a purely formal consequence of three things:

(i) Kinneth formula: giving the cohomology of a product,

(ii) Poincaré duality: the isomorphism between homology and cohomo-
logy,

(iii) compatibility between intersection of cycles and cup-product of

cohomology classes.
The precise nature of these statements depends of course on the context.
For those familiar with this homological point of view, it may therefore be
helpful to explain what form (i)—(iii) take in the context of elliptic complexes.
Once these have been established, our Lefschetz theorem will follow in the
routine manner.

Let I'(E) be an elliptic complex on X, I'(F') an elliptic complex on Y.
Then® we can define in a natural way an elliptic complex I'(E [X]F)on X x Y:
in fact I'(E [X F) will be a completion in the usual way of the complex
I(E) @ I'(F'). Then we have

9 At least when all differentials d; are of the same order. In the general case it

would be necessary to enlarge the definition of ellipticity. We could take (6.1) as the
definition.
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Kinneth formula. HO(E X F)) = HI(E)) ® H(I'(F)). This is in fact
a special theorem of a more general theorem of Grothendieck about topological
tensor products. It can also be proved by Hilbert space methods.

Next we have

Poincaré duality. The inclusion of complexes

NE) — TE"Y

induces an isomorphism of homology.

This is an immediate consequence of the existence (6.1) of a parametrix
P. In fact if

dP + Pd=1- 8,

then S is chain homotopic to 1, and (since it is smooth) retracts I'(E’) onto
T'(E).

Finally we come to the formulation of (iii). Let I'(E) be an elliptic
complex on X, and let Y be a closed submanifold of X. Suppose
aceT'(Hom (E' | Y, Q(Y)). Then a defines an element a € I'(E")’ as follows

als) = Sya(; 1Y) seD(E") .

If da = 0, we shall say that « is a geometric cycle of I'(E) carried by Y.
Suppose now that Z is another closed submanifold of X, withdim Z+dimY =
dim X, and that Y and Z intersect transversally in a finite set of points {A}.
Let B be a geometric cycle of I'(E’) carried by Z, and defined by an element
beT'(Hom (E | Z, @(Z)). Then at any point Ae Y N Z, we have
a, e B, QUX)E QQY),
bieEF QQZ),,
so that
o, Rb,cEfrRQFE,.
Thus we can form
Tracea, ® b, eC.

The sum ), Trace a, ® b, may be called the intersection number of the two
geometric cycles «, 5.
Now the pairing

NE)RI(E") — C
is compatible with the differentials, and so it induces a pairing in homology
H(I(E))® HI(E")—C.

In view of the Poincaré duality, we may therefore form the cup-product [a] [B]
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of the homology classes of «, 5.

With these explanations, we can now formulate property (iii): the inter-
section number of two geometric cycles a, B is equal to the cup product [a] [B]
of their cohomology classes.

The proof of this involves the same local analysis as the proof of (2.5).
If one wants to prove Theorem B, and not just Theorem A, then it is necessary
to generalize the notion of geometric cycle carried by Y. One has to allow «
to involve not only restrictions to Y, but also normal derivatives. In classical
terminology a would be a multiple layer, smooth along Y.

Zeta-function method. The second variation is based on the Zeta-func-
tions of [9] suitably generalized. As we shall explain, this method requires
more subtle analysis but, in principle, it leads to more general Lefschetz
formulas than the ones considered here. In particular, one can obtain an
index formula, although not the topological formula of [3].

Suppose first that A is an elliptic differential operator on a compact mani-
fold X which is (strictly) positive and self-adjoint, relative to suitable metrics.
Then one can show (cf. [10]):

(1) A=*is an operator of trace class (in the Hilbert space sense) for Re(s)
large,

(ii) &(s) = Trace A—* is an analytic function of s having a meromorphic
continuation to the whole s-plane,

(iii) the value of ¢(s) for £ = 0,1, 2, --. can be computed as the integral
over X of an expression explicitly constructed from A.

Suppose now that I'(E') is an elliptic complex, and let

A; = 1+ dikdi + di-—ld;k—l ’

where d* is the adjoint of d. Assuming for simplicity that all d; have the
same order, it follows that A; is elliptie, self-adjoint, and strictly positive.
Thus {;(s) = Trace A;® is defined. Now it is not difficult to see that

(8.1) 20 (=1)¢(s) = 20 (—1)* dim H(I(E))

for Re(s) large. Hence by analytic continuation this holds for all s. In
particular taking s = 0, we obtain by (iii) an explicit integral formula for the
Euler characteristic (or index) of I (). Unfortunately this explicit expression
is, in general, very complicated. For example it involves the n™ derivatives
of the coefficients of d where n = dim X. Except in low dimensions, it seems
very hard to reduce this formula to that given in [3]. Note that the formula
of [3] can also be written in integral form using the representation of char-
acteristic classes by curvature forms. This involves, however, only one or
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two derivatives whatever the dimension of X,

For maps f: X — X with simple fixed points, however, the situation is
much simpler. In this case, if T is a geometric endomorphism of I'(E), defined
by f and bundle maps ¢;, we define new zeta-functions (depending on T) by

Ci(s) = Trace (AT*T)) .

Because f has simple fixed points, it turns out that this zeta-function is holo-
morphic for all s and that

| _ Trace ¢, ,
Cz(o) Ef(A)ZA {det (1 — de) l

This follows by applying (2.5). We need to know of course that A;® is a
pseudo-differential operator depending analytically on s. This is one of the
main results of [10]. Now just as in (8.1) one can prove

(8.2) 2 (=1)¢u(s) = I(T)
for Re (s) large. Putting s = 0, one then obtains our Lefschetz formula.

As a proof of Theorem A, this method is unnecessarily sophisticated.
We need (2.5), which is the main step in the proof given in detail in this paper;
but, in addition, we need the results of [10] concerning the fractional powers
A=, It is only for the index formula, or more generally for intermediate
maps f with higher-dimensional fixed-point sets, that this more delicate
approach is needed.

It has been pointed out to us by Hormander that the heat operator et
can be used instead of the fractional powers A—*, and gives essentially identi-
cal results. This has technical advantages because all that one needs for this
treatment is the pseudo-differential operator calculus for parabolic operators,
and this is included in [6].

Appendix

We shall now discuss in a little more detail some of the points involved
in passing from pseudo-differential operators on an open set U C R" to
operators on a manifold. For simplicity, we shall consider only functions and
not sections of vector bundles. The extension to vector bundles is quite
straightforward, using matrices instead of scalars. The effect of a change
of basis in the fibres is covered by the local form of (3.4).

LEMMA (A.1). Let U be a coordinate patch on X, Pe L™(U) and o,
v eDU). Then Py is a pseudo-differential operator on X of order m and
lies in a bounded set 1f P does.

Proor. Let V be another coordinate patch on X, and let L — V be com-
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pact. Then we have to show that the estimate (3.1) holds for fe (L), K
compact in V and
p= e—i(z,5>¢(x)P{,1/,(x)f(x)ei(z,E)}

where (x) are the coordinates of V. Moreover we want (3.1) to hold uniformly
for a bounded set of P. But since Pe L™(U), its restriction to U N V belongs
to L™(U NV), and here we can use either coordinate system by the basic
invariance established in [6; (2.16)]. Since vwfe DU NV), the required
estimates then follow.

Before proceeding to examine composition globally, we need a simple
lemma about compact spaces.

LEMMA (A.2). Let K; (i =1, -+, n) be compact spaces. Then any open
covering of TI: | K; can be refined by a product of finite open coverings of
the factors, i.e., by a covering of the form {U;}, where I = (i, « -+, 1,),

U[:Uill X U,,ZZX eee X U:;

and {U7} is a finite covering of K.

Proor. By induction on n we see that we need only treat the case n=2.
Let {U;} be a given covering of K, x K,. Since x x K, is compact, for each
x € K, we can find an open set U;C K, and a finite open covering {V2,;} of
K, so that

U x V.. cU, for some 7 = i(x, k) .

Since K, is compact, we can then choose a finite set x,, -+, @, so that the
sets U} = U;j. cover K,. Now let {U}} be a common refinement of the finite
set of coverings {V:,.}. Then the product covering {U} x U of K, x K,
refines {U;} as required.

Next let us observe again that a coordinate patch on a manifold X need
not be connected. Thus if x, y € X with x = y, we can always find a discon-
nected coordinate patch containing both x and y. We can therefore find a
family {U;} of coordinate patches so that the family {U; x U,} cover X x X.
Similarly we could choose one so that {U; x U; x U;} covers X x X x X.

We can now establish

PROPOSITION (A.3). Let P, Q be pseudo-differential operators on X of
orders m, » respectively and let g € D(X). Then PgQ is pseudo-differential
of order m + n and varies in a bounded set if P or Q does (the other being
JSized).

Proor. Let {U,} be a coordinate covering so that {U; x U; x U} covers
X X X x X. Let V be any other coordinate patch of X, K,, K, V compact
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sets and put K, = suppg. By (A2) we can find finite collections of open sets
{U}, (1=1,2,3;7=1, ---,n) of X so that

(1) Ujin K, cover K,

(2) for each triple j, k, I, there exists an 4 so that U} = U,, Ut U,,
UicU.
Now let @i be a partition of unity on K; (¢ =1, 2, 3). Thus ¢/ e NU}), i =0
and

2pi=1 on K; .
We want now to establish the estimates (3.1) for « € K, f ¢ D(K,) and

p = e IO PgQfeid
Using the partitions of unity, we can write this as a sum p = }_ p;,, where

P = € "Op] PpigQfpje = .
By our choice of the U} we have supp ¢}, supp ¢}g, supp f¢}, all contained
in one coordinate patch U,;. By the basic formula [6; (2.10)'] for composition
of operators defined in U;, we then obtain estimates for P;,, with « replaced
by the coordinates y of U;. However, since the composite operator is from
PNU; N V)— &U;NV) the estimates with y imply those with x, by the in-
variance under change of coordinates.
Finally we come to the question of a global parametrix. If P, e L™(U;)

and @;, ¥, € D(U;), then by (A.1), 3 @, Py, is a pseudo-differential operator
of order m on X,

PROPOSITION (A.4). Let d be an elliptic differential operator on X. Let
{U.} be a coordinate covering, P; a parametrix for d; = dy,, p; a partition
of unity with @, DU;), and ;€ DU;) with +; =1 on supp p;,. Then
P =37 p;Pi; is a parametriz for d.

Proor. By hypothesis, we have

(1) P,,d:].'}“s,,, dP,:].-I“T,L

where S;, T, are smooth operators on U,. We have to prove that Pd — 1 and
dP — 1 are both smooth. Since P is a pseudo-differential (A.1), so are Pd
and dP (A.3), and all operators are smooth outside the diagonal of X x X.
Thus it is sufficient to prove that the restrictions to each U, are smooth.
Since d is differential, and so local, we can compute the restriction of Pd and
dP by restricting each factor.

Now in U, N U,, we have P, — P, = Q,; where Q,; is smooth. The symbol
of a parametrix is unique (see for example [6]). Hence in U, we have
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P =3 9;Piv; =3, pi(Pi + Qij)v;

(2) =2, 9P + 20, @ Piy; — 1) + 30, Qi

:P¢+A¢+Bi.

Now B; is smooth because @;; is, and A; is smooth because ¢, and (y; — 1)
have disjoint support. Composing with d these remain smooth, and the
required results then follow from (1) and (2).
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