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A Lefschetz fixed point formula for
elliptic complexes: II. Applications’

By M. F. A1ivaH and R. BotrT

1. Introduction

Part I of this paper described an extension of the classical Lefschetz
theorem in the framework of elliptic complexes. This second part is devoted
to the applications and examples of this extension which for the most part
were announced in [1].

Essentially these applications arise by specializing our formula to those
elliptic complexes or operators which occur naturally in geometry as resolu-
tions of certain sheaves associated to a G-structure on a manifold. Thus one
has the de Rham complex giving a resolution of the locally constant sheaf;
the d”-complex giving a resolution of the sheaf of germs of holomorphic
functions on a complex manifold; the “signature operator” on a Riemann
manifold, and the Dirac operator on a Riemann Spin manifold giving resolu-
tions of the harmonic * invariant forms and spinors.

Our formula applied to the de Rham complex of course yields only the
classical theorems. However, in the other instances one obtains new invari-
ants for mappings, which preserve the sheaves in question, and from which
one may draw interesting conclusions.

To make this paper as self contained as possible we will start by review-
ing our general fixed point theorem and also by discussing the de Rham com-
plex once again because it plays such an essential role in all the cases. In
§ 4 we discuss the complex case and give some examples. One of these, deal-
ing with induced representations, is so extensive that we have dealt with it
in a section of its own, § 5. In § 6 we deal with the riemannian case deriving
a formula (6.26), for the signature of an isometry. Some geometric applica-
tions of this formula are then given in § 7. The Dirac operator on Spin
manifolds is dealt with in § 8, and applications to fixed-point-free involutions

on spheres are given in § 9. We draw particular attention to the results in
§ 9 because they were not mentioned in [1].

2. The fixed point theorem reviewed

Underlying our whole discussion will be a smooth (i.e., C*) compact

* This research was partially supported by a grant from NSF-GP-6585.



452 ATIYAH AND BOTT

manifold X. If E is a (smooth is always understood) vector bundle over X,
I'(F) denotes the smooth sections of E.

To define the notion of an elliptic complex we need first of all to recall
the definition of the leading symbol o(d) of a differential operator of order %,

d:T(E) —T'(F)

between two bundles E and F. This symbol is constructed from the highest
order terms of d and can be defined invariantly as follows.

Let s e I'(E) be a section of F, let g be a smooth real valued function,
and let ) be a real parameter. Then, e~*?de'*?s ¢ I'(F') will be a polynomial of
order k£ in A
(2.1) e~ de* s = Npy(g, 8) + ++ - + Pu(g, )

whose coefficients depend only on d, s, and g. In fact, the correspondence
s p,;(g,s) is a differential operator of degree k& — j, and py(g,s) = ds.
Furthermore, the value of the leading coefficient p,(g, s) at a point Pe M
depends only on s(P) and on the value of the differential of g at P. Finally,

the assignment

8 |p— 17*Di(g, 8)p
is linear in s and so defines, for each cotangent vector » € T X, a linear func-
tion
(2.2) oN): Ep—> Fp .
This is the leading symbol map of d at the cotangent vector 7, and as 7 ranges
over the cotangent bundle TX of X, these maps combine smoothly to yield a
bundle homomorphism

o(d): t*E — w*F
of the pullbacks of E and F' to TX under the natural projection 7: TX — X,

With this understood, the definition of an elliptic complex, I'(E), over X

runs as follows.

DEFINITION 2.3. We suppose given a sequence E = {E*} keZ of complex
vector bundles over X, with E* the zero bundle except for a finite number of
indices, together with differential operators d = {d,},

d,: T(E*) — T(E*)
of orders o,, subject to the conditions
2.4) dyod,_, =0, kecZ.
(2.5) The leading symbol sequence of the d,:
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L T*E* i(@) P OLER! _"i‘f’“f_l)_, TEEE
18 exact over the complement of the zero section in TX. These data we then
call an “elliptic complex” T'(K) over X.
We also define the homology H*{I'(E)} of such a complex in the customary
manner by

(2.6) HY1(E)} = Ker d,/Imaged,_, .

The condition (2.3), which is a straightforward extension of the classical
ellipticity concept to complexes, together with the compactness of X, then
has the important consequence that H*{['(E)} is finite-dimensional.

It follows that any endomorphism T of an elliptic complex I'(E) over a
compact manifold X has a well-defined Lefschetz number:

(2.7 L(T) = > (—1)* trace HX(T) .
Here of course H*(T) denotes the endomorphism induced by T on H*{I'(E)}.
The main result of Part I [2] is a simple formula for the Lefschetz number
of T when T is derived from a smooth map f: X — X by means of a “lifting
of f to E”. By definition such a lifting consists of a family ¢ = {¢*} of bundle
homomorphisms
g)k: f*Ek PN Ek
such that the induced maps T: I'(E*) — I'(E*) defined by the composition
&y L5 v ey 2 reEry
combine to yield an endomorphism T = {T,} of I'(E) as a complex, that is,
satisfy the condition
Tynd, = d, T, .
The resulting endomorphism T = T(f, ¢) of I'(E) is then called a geometric

endomorphism of I'(E) and is said to be derived from f by the lifting o.
Concerning these we now quote the following theorem from Part I.

THEOREM A. Let T'(E) be an elliptic complex over the compact manifold
X. Alsolet f: X — X be an endomorphism of X whose graph is transversal
to the diagonal A in X x X, and let T be a geometric endomorphism of T'(E)
derived from f by a lifting . Then the Lefschetz number L(T) of T is
given by the formula:
2.8) I(T) = ¥, u(P)
where P ranges over the fixed points of f and v(P) is defined by
3(— 1)k trace ok

[det (1 — dfp)|

(2.9) y(P) =
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Remarks. First of all recall that the transversality condition for f is
quite equivalent to the requirement that det (1 — df») = 0 at all fixed points
of f. Hence the absolute value in the denominator in (2.9) is never zero.
Secondly, observe that a lifting ¢ amounts to a family of linear maps

Pb: EBfpy— Ef
parametrized by P € M. Hence at fixed points f and only at these % has a
well defined trace, because it is an endomorphism of the fiber E.

3. The de Rham complex

The most natural elliptic complex in geometry is the de Rham complex of
a smooth manifold. Its bundles are the complexified' exterior powers A* =
CRr MTX of the cotangent bundle TX of X and its operator is the usual
exterior derivative d: I'(A¥) — I'(A**).

The resulting complex

d d
I'A*X):0 T'(A% N0 cee T'(A™) 0
is then seen to be elliptic. Indeed d* = 0 as is well known. Furthermore, the
symbol sequence is easily computed from the derivation property of d: given
a form w € I'(A*) one has

17e M de " = Ndg A @ + dw .
Hence 0,(7) = exterior multiplication by ». The resulting symbol sequence

0— MT,X 2D v, x — o 2D x 0

is then well known to be exact at every non-zero cotangent vector 7 € T,X.

This complex also behaves naturally with respect to smooth maps. The
differential df of f maps the tangent space T into T}, so that the exterior
powers of the transpose of df furnish bundle maps

Ne(df)*: FANTX — NFTX

which (on complexification) combine to furnish a natural lifting, traditionally
denoted by f*, of f to I'(A*X). The induced H*(f*) then coincides with the
endomorphism in the £™ cohomology of X with values in the constant sheaf
of complex numbers C, by virtue of de Rham’s theorem. Indeed this theorem
asserts that, on the sheaf level, the operator d defines a fine resolution of the
constant sheaf

0 — C—— S(A) —25 S(AY) « o —> + o+ S(A") — 0 |

1 The de Rham complex is of course real but to fit in with our general formulation
we consider the complexification.
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(8(A?) denoting the sheaf of germs of C= sections of A’) from which our
interpretation of H*(f*) follows readily. In short, L(f*) is just the classical
Lefschetz number of the map f.

Let us now compute the multiplicity v(P) of a fixed point for this com-
plex. According to (2.9) we have

Y(P) = 3 (—1)* trace (\*df#)/| det (1 — df;)| .
On the other hand if A is any endomorphism of a finite dimensional vector
space and M*A and A* denote its k'* exterior power and transpose respectively,
then it is well known that
> (—1)* trace (\*4) = det (1 — A)
and that
det (A4*) = det (A) .
It follows that our multiplicity reduces to
det (1 — df,)
|det (1 — dfp)|
so that Theorem A specializes to the classical formula for L(f*)

L(f*) = Ef(?):P *1
with +£1 = sign det (1 — df5,).

Note finally that the de Rham construction extends naturally to the tensor
product of A* with any locally constant vector bundle F'. The operator 1 X d
is then well defined on FF®Q A* and again yields an elliptic complex I'(F & A*).
Furthermore if f is a transversal map and

@: f*F— F
is a locally constant bundle map, then the tensor products ¢ ® M(df)* define
a lifting of f to I'(F® A*) and our previous computations show that the
Lefschetz number of the resulting endomorphism is given by
L(f*y 9’) = Ef(P)—.—P =+ trace Pp

where +1 = sign det (1 — df;) as before.
This formula is also generally known. We mention it here only to com-
plete the analogy with the complex analytic case, to be considered next.

v(P) =

4. The complex analytic case

Suppose now that X is a complex analytic manifold. The complex co-
tangent bundle then splits naturally into a direct sum of complex sub-bundles

(4.1) CRRrTX=T'XPT"'X
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where T'X is spanned by the dz, and T”X by the dz, of a local holomorphic
coordinate system. The bundle 7'X therefore has a natural holomorphic
structure and 7" X a natural antiholomorphic structure.

Corresponding to the decomposition (4.1) the bundles of the complexified
de Rham complex decompose canonically into the tensor product

A(C R TX) = VT’ X Qc M T"X
so that, in particular,

AF = Ep+q=k AP
with
(4.2) AP =2\ (T'X) QcM(T"X) .
The exterior derivative d decomposes correspondingly into a direct sum

d=d + d”
where d’: TA?? — TA?*? and d”': TA??— I'A??*, Furthermore these compo-
nents satisfy the integrability conditions
(dl’)2 — (d/)z e 0 .

Observe now that already the operator d”’ acting on all of I'(A*) is an
elliptic operator. Indeed o,.(7),n e T:X, is easily seen to be the exterior
multiplication by the T/ X component, 7", of 7 in the decomposition (4.1).
Because 7 is real, 1" == 0 whenever 7 = 0, whence 0,..(7) gives rise to an exact

sequence. Thus under d”, the complex I'(A*) breaks up into a direct sum of,
n = dim¢ X, elliptic complexes

DA% X): 0 — DA 200 D7) — oo 2 D(AP") — 0

whose cohomology spaces are traditionally denoted by H?(X).

More generally if F is any holomorphic vector bundle over X the operator
1®d" is well defined on T'(F' @ A”*) and so determines an elliptic complex on
X whose cohomology spaces are usually denoted by H?*X; F'). In parti-
cular the complex

1®dl!

T(FQRQcA”*): 0 T(F) TEFRAY)— eoe —T(FRQA™)—0
will be referred to as the d”’ complex of . On the sheaf level it furnishes us

with a fine resolution of the sheaf O(F') consisting of the germs of holomor-
phic sections of F'.

0 — O(F) — S(F Q@ A*") —S(F & A™)

(4.3) S F @A
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so that HY(X; O(F)) = H*(X; F'). Using (4.2) it is then also clear that
Hy(X; O(F R A*")) = H*(X; F'), so that the d” complex of a holomorphic
bundle is the basic concept.

Consider now a holomorphic map f: X — X. The natural lifting of f to
A* is then compatible with d”” and therefore induces endomorphisms f** in
each of the complexes I'(A?'*). The corresponding endomorphism in homology
will be denoted by H?%(f) so that the Lefschetz numbers of f** are given by

4.4) L(f™*) = 3 (—1)?trace H>'(f) .
We note that in view of (4.2) and (4.3), L(f**) may also be interpreted as
the Lefschetz number of the endomorphism induced by f in the sheaf co-
homology H *(X; O(A?)).

Let us now compute the multiplicity of a transversal fixed point P of f
relative to the complex A?:*,

Because f is holomorphic the complexification of df preserves the decom-
position (4.1) so that

1 ®dfp = d’fP @ d”fp
with d’f, and d”f» endomorphisms of T;X and T} X respectively. It follows
that
ML dfp} = 32,0 M2} Q NS} .
Hence the multiplicity v(P) in question is given by:
|det (1 — dfs)|-»(P) = 3 (—1)" trace A?(d'f7)-trace \(d"f2) .

This now yields?
detc (1 — d"f7)
|detr (1 — dfp) |

Finally observe that under the bar operation in C Qg 7-X, T+X is taken
into TYX. Furthermore 1 ) df, clearly commutes with this operation. It
follows that

(4.5) V(P) = Tracec (\?d'f7)-

detc (1 — d'fp) = detc (1 — d"f»)
whence in particular
(4.6) detp (1 —dfy) =detc (1 — 1R df») = detc (1 — d'fp)-detc (1 — d”’f5)
is positive. The absolute value sign in (4.5) is therefore redundant and one
obtains the formula:

1

(4.7) v(P) = tracec M(d'fr) = G—df) "
C - P

2 To avoid confusion we write detr for the determinant of an endomorphism of F-
vector spaces (F'= R or C), and similarly for tracer.
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In this case then only half of the determinantal factor in the denominator
of (2.9) is cancelled out by the numerator. Note also that v(P) can be ex-
pressed without introducing the complexification of TX. Indeed, over R,
T»M is isomorphic to T7M and so inherits a complex structure. Hence if A
is any complex linear endomorphism of T,M we can speak of its complex
tracec A, and determinant, detc A. At a fixed point P of the holomorphic
map f, df; is of course such an endomorphism and considered as a C-endomor-
phism agrees with d’f». Hence in terms of these notions one has

(4.8) V(P) = tracec N(df) /detc(l — dfy) .

To recapitulate: for a transversal endomorphism f of a complex analytic
mansifold X, our fixed point formula specializes to

(4.9) L(f**) = X2, p tracec (\?df,) [detc (1 — df,)
where
(4.10) L(f?*) = 3 (—1)" trace H»'(f) .

It is this formula which Shimura conjectured during a conference at
Woods Hole in 1965, and which furnished the impetus for this work. For
curves (4.9) had already been established by Eichler in [11]. Shimura and
Eichler were of course thinking in the framework of algebraic geometry.
There it turned out that the full duality theory of Serre and Grothendieck
yields this result even over arbitrary characteristic.

The formula (4.9) now has an easy extension to the d’’-complex of an
arbitrary holomorphic bundle F. To lift a map f to this complex, one only
needs a holomorphic bundle homomorphism

p: f*F— F .
In terms of it
P QN(@"f)*: fX(F Q@ A™*) — F Q@ A"
then serves to define the k™ lifting of f. We write T(f, ) for the induced

endomorphism of I'(F' @ A”*) and H(f, @) for the induced homomorphism in
HYX; F). We also set

(4.11) L(f, p) = 22 (=1)" trace H'(f, ¢)

for its Lefschetz number. It is then clear that the multiplicity of P relative
to this complex is given by

v(P) = tracec p,/detc (1 — dfy) .
Thus the holomorphic case of our general Lefschetz theorem takes the form

THEOREM 4.12. Let X be a compact complex manifold, F a holomorphic
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vector bundle over X, f: X — X a holomorphic map with simple fixed points
and @: f*F — F a holomorphic bundle homomorphism. Let L(f, ) denote

the Lefschetz number given by the action of (f, p) on H*(X; O(F)) as in
(4.11). Then

Trace
L(f, — cPr
@) = 2or g = ary
when P runs over the fixed points of f.

Taking F to be the trivial line bundle, ¢ the natural lift of f and
recalling that the spaces H%%X) are birational invariants of X (when X is
algebraic) we deduce

COROLLARY 4.13. Let X be a connected compact complex manifold with
H*«(X) =0 for ¢ > 0. Then any holomorphic map f: X — X has a fived
point. In particular this holds when X is a rational algebraic manifold.

This corollary does not of course use the explicit nature of the fixed point
contribution. We shall now illustrate Theorem 4.12 by more interesting
special cases.

Example 1. Let X be a curve, and let f be a transversal endomorphism
of X. Then (4.9) yields:

4.14 1 — trace H*'(f) = S S
(4.14) I (f)=Trerr 7 I3
Remarks. In this low dimensional case it is not difficult to extend (4.14)

as follows. If u is a holomorphic coordinate centered at the fixed point z,
then clearly

1 du
1 — f(P) u — f(u)
The right hand side of (4.15) makes sense also for non-transversal maps and

turns out to be the correct multiplicity of a general fixed point in the sense
that the formula

(4.15) = Res;

(4.16) 1 — trace H'(f) = 00 s Res,,%—‘—fl—@;%
is valid for all endomorphisms other than the constant one. On higher
dimensional varieties the corresponding generalization involves the Grothen-
dieck theory of residues [13]. One may further extend formula (4.16) to any
self-correspondence of a curve X in a plausible manner. Applied to the Hecke
transformations one then recaptures the formulas of Selberg and Eichler, see
[11] and [16].

Note also that, combined with the usual Lefschetz theorem, (4.14) yields
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a relation among the real parts of 1/(1 — f'(z)) and the degree of f. Indeed
let % be the degree of f, and let N denote the number of fixed points of f.
Then the classical Lefschetz theorem yields

1 — trace H"'(f) — trace H*(f) + n = N .

On the other hand trace H*'(f) = trace H"°(f). Hence one obtains the re-
lation

N—n+1 1
4.17 ———— . — Re _— .
( ) 2 Ef(P)=P 1 — f’(P)

Example 2. Let P be the projective n-space over C, with homogeneous
coordinates (w,, - -+, x,). Let f: P— P be the linear map which sends z; into
i, ¥; = 0, 7; # 7v;. There are then precisely # + 1 fixed points of £, namely
the points p; = (0,--,1,.--0) with 1 at the i place. Further det¢ (1 — df,)
at p, is easily seen to be

Hj#i (1 - ,Yj/fyi) .

We have H*/(P) = 0 for ¢ > 0, and H>(X) = C. Hence (4.9) yields the

well-known interpolation formula

(4.18) 1=y"

7
‘ Hﬁei('ﬁ' — ;) ’

Example 3. Consider n polynomials g.(2) of degree d in the n complex
variables z,, - - -,2,. We study the hypersurfaces g, = 0, and make the follow-
ing general position assumptions concerning them.

Let X denote the points common to all the hypersurfaces. We assume
first of all, that the jacobian det ||dg,/02;]| is non-zero at all points of . This
implies that, in particular, ¥ is a finite set. Secondly, we assume that the
number of points in X is equal to d*, in other words, that there are no com-
mon intersections of the g, at o,

Under these circumstances one has the proposition

ProposiTION 4.19. Ifd > 1, then
(4.20) 3 . {det||9g./0zs|l,} ' =0, Z={plgup)=0,=1,---,m}.

This is then a residue type theorem. It may be derived from (4.9) by
the following stratagem. Let g, = > g% be the decomposition of the g, into
homogeneous constituents, and define

925 20) = 32952877 .
These are then homogeneous polynomials of degree d in the variables
(%) **+, 2,). Now define f: C**' — C"** by
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F(2), = 2,28 — Gu(2; 2 a>0
e @), = 2™ = i 2)

f(2)y = 2§
and let f be the transformation induced by F on the projective space P with
homogeneous coordinates (z,, -+, 2,). By our second assumption and the

condition d > 1, fis well-defined. The set 2, 0, may then be identified with
C"—the coordinates being z,/2,—and P — C" is a projective space P’ of dimen-
sion n — 1, Now f clearly maps C* and P’ into themselves. Further it is clear
that the fixed points of f on C* coincide with the set  of our proposition, and
that, for pe X

(4.22) detc (1 — df,) = det H aga

Assume now that the fixed points of f are all non-degenerate, i.e., that f
is transversal. On C* this is already the case by our first assumption and on
P’ it can always be arranged by an arbitrarily small deformation of the terms
of degree d in the g,, so that this case easily implies the general one. With
this understood, let X’ be the fixed points of f on P’. Applying (4.9) with
» =0 and using the fact that H>%(P) = 0 for ¢ > 0, H>(P) = C, we have the
formula:

(4.23) 1=3 .. 1/detc (1 — df,) + X, .0 1/detc (1 — dfy) .

Next let f’ be the restriction of f to P’. Applying (4.9) to this endomor-
phism yields

(4.24) 1= 1/detc (1 — dfy) .

pezl
Finally, it is easily checked that if d > 1, then det¢ (1 — df,) = detc (1 — df})
and so (4.20) follows from (4.23) and (4.24).

5. Induced representations. The Hermann Weyl formula

The multiplicity formulas (2.9) and (4.12) fit well into various branches of
representation theory, and as our fourth example we will describe the con-
nection of (4.12) with the Hermann Weyl formula, as well as comment on the
general relation between the distributional trace of an induced representation
and our Lefschetz formula.

We consider a Lie group G and let ¢: H — G be the inclusion of a closed
Lie subgroup into G. The coset decomposition then gives G the structure of
an H-bundle 7 over the quotient space G/H and we denote by 7 the natural
projection G — G/H. We assume further that there is given a finite dimen-
sional (complex) left H-module F' and denote the representation determined
by the left action of H on F, by p,:
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(5.1) 0p: H— Aut (F) .

The bundle associated to 1 by o, is then a vector bundle over G/H which we
denote by ¢, F. The left action of G on G/H now lifts naturally into an action
of G on I'(¢, F') by geometric endomorphisms, which we denote by ¢, (05):

t(0r): G— Aut D(¢, . F) ,

and refer to as the induced representation of 0.
The precise definition of these objects is as follows. The total space of
¢, F is the quotient space of G x F' under the identification

(g-h,f) ~ (g’ Pr(h)f) .
The natural projection G x F — G then induces the vector bundle projection

t.F'— G/H. Thus we have the commutative diagram
G «—GxF

o
G/H — ¢ F
Furthermore, each x € G determines a linear isomorphism
Joi F— (6 F) )

by setting Jx(f) - O'(x, f)-
We come now to the induced action of G on I'(¢, F'). Let L, and [, denote
left translation in G and G/H respectively. Clearly

L, x1:GXF—GXxF
preserves the fibers of ¢ and hence induces a map
L, xyl:¢,F—> ¢ F

which maps the fiber over [,—. - x linearly into the fiber over x. Hence ¢, =
L, x4 1 may be interpreted as a lifting of the map l,~.. The resulting
endomorphism I'(p,)-1¥-: of I'(¢, F') is denoted by T,, and g+ T, is the desired
induced representation:

t(o)g) = T, .

Note. One has to use a lifting of [,~, rather than of I, to define T, if
one wishes ¢,(0) to be again a left-representation.

Our first aim now is to give a formula for the pertinent invariants of T,
at a fixed point, in terms of the adjoint actions of G and H. We write g and
§ for the Lie algebras in question, denote by Ad¢ and Ad¥ the adjoint action
of G on g and of H on Y respectively, and finally write
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Ad%: H—— Aut (g/D)

for the isotropy action of H on g/b.
Consider now a fixed point x € G/H of [,—.. For any « in the coset x we
must then have the relation

(5.2) gtz = x-h(g, x) h(g,x)e H
and conversely if g~'a = x-h holds for some & € H, then 7z is a fixed point of
l,-1.. Hence I, has a fized point if and only if g is contained in the orbit
of H under the adjoint action of G on G;i.e., if g € U,ecxHa™".

Observe also that as x varies over the coset of x, h(x) varies over a con-
jugacy class h(g, x) € H. Thus to every fixed point x of I,—: corresponds a
definite conjugacy class h(g, x)c H. With this understood we have the follow-
ing proposition.

PROPOSITION 5.3. Let « be a fixed point of l,—:, and let h € h(g, x) then
(5.4) det (1 — dl,-1), = det (1 — Ad%(R)) .

Further 1f @ denotes the lifting of 1,—1 to ¢, F, then
(5.5) trace ¢ () = trace pp(k)™" .
Proor. Choose z in the coset x in such a manner that
g~ = xh .

The map L,_,o R, (where R, denotes right translation by g) then still in-
duces [,-1, but also keeps « fixed. Consider the identification

(5.6) AL, dx : g/) — (G/H)x

(where (G/H), denotes the tangent space to G/H at x). The relation
L,.oR,~oL,=L,o L, R, then implies that under (5.6) dl,—. goes over into
Ad¢(h), and so establishes (5.4). To see (5.5) consider j,: F'— (¢, F'),. We have
j.(f)=o0(x,f). Hence p,°j.(f) = 0(gz,f)=o(@z gz, f) = 0x(h™)7.(f). q.e.d.

The expressions (5.4) and (5.5) occur in many branches of representation
theory. As an example let us show how the “Hermann Weyl formula” fits
into the framework of Theorem A and Proposition (5.3).

We assume then, that G is compact, and that H = T is a maximal torus
of G. In this case g/f) breaks into a direct sum of 2-planes, e,, k=1, ---, m,
on each of which Ad% acts by rotations

(5.7) g/h = Ekm=1 e .

Let £ be a function which assigns to each 2-plane e, an isomorphism with
C compatible with the action of Ad%. Such a function then determines m
characters {«}} on the torus H, as well as an almost complex structure on G/H.
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(The complex structure determined by & on g/f is compatible with the left
action of G on G/H because it is invariant under Ad%).

Now let v be a character on H which is positive relative to & in the sense
that v™ = JJ(af)"i for some n, > 0 and n; > 0; and consider the induced line
bundle F, over G/H. The following facts concerning this situation (due to
Borel and Weil) are then well known; see [7].

(5.8) The function & may be chosen so as to induce an integrable struc-
ture on G/H. Further, the bundle F, can then be given a corresponding
holomorphic structure.

(5.9) The cohomology groups of the resulting complex I'(F, ®A **) are
zero in dimensions > 0:

H*(G/H; F,) =0 forqg >0,

and the representation of G induced by g — T, on H®® is irreducible.

The irreducible representation p,: G — Aut (V,) obtained in this way is
said to have maximal weight v, relative to & and a fundamental theorem
asserts that all irreducible representations of G may be constructed in this
manner.

The Hermann Weyl formula evaluates the trace of the representation p,
- on the maximal torus of G. Because traces depend only on conjugacy classes
and T intersects each conjugacy class, this formula determines the trace on
all of G.

Let us now apply our Lefschetz formula to the complex I'(F, ® A%*) and
the geometric endomorphism T,. Clearly, in view of (5.9) the Lefschetz
number of T, reduces to the trace of g acting on V,:

trace o,(9) = LI(T,) .

For transversal [,—; we may therefore use Theorem A and Proposition 5.1 to
compute trace p,(g). The resulting formula is precisely the Hermann Weyl
formula, as we will now show.

Consider first the case when g is a generic element in T, that is one whose
powers generate T'. It follows that if x is fixed under g, and « is in the coset
x, then for all integers =,

xlgT"e = h”
where % € (g9, x). Thus Ad x~* keeps all of T invariant, so that the fixed points
of g correspond precisely to the cosets of the normalizer of T, modulo 7.
The fixed points are therefore independent of the generic element in T, and

naturally form a group W(G, T') = N(T)/T called the Weyl group of G rel T.
This group is well known to be finite, and its natural action on T permutes
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the roots {«,}. From the formula (5.4) we have
detc (1 — dl,—) |x = detc (1 — AdG(z~'g~'x))
whence by (5.7) we obtain
deto(l — dly) x = TI2, (1 — @) |ty @, = o
which shows in particular, that a generic g gives rise to a transversal map [,-..
Consider the action of W(G, T') on the characters \ of T, defined by

A(g) = Mx~t-g-x), with x in the coset of w. Alsolet B, = a;'. Then the right
hand side above takes the form

II:-. @ - B)*(9) ,
so that by (5.5) the Lefschetz formula takes the form

(5.11) L(T) = Zuewan [Iﬁ]’”(g) :

Apart from some minor rewriting (5.11) is precisely the Hermann Weyl
formula. Indeed to bring (5.11) into a more familiar form, assume that G is
simply connected. Then the product of the positive roots turns out to have
a square root a, whence the function A: T'— C given by

A=aJIQ - B

is seen to be alternating under W(G) that is, w(A) = +A for all we W(G).
Using this fact, and putting Sign (w) = w(A)/A, (5.11) goes over into
(5.12) trace T, = 2 SignA(w)(v )
and this is the usual form. Note finally that because ¢ is an arbitrary generic
element in H = T, (5.12) implies a cancellation in the group ring of the
character group of H and so determines the trace in question on all of H.

Some general remarks. One obtains a more thorough understanding of
the relation between the Lefschetz and the Weyl formulas if one recalls some
of the concepts needed in the proof of the Lefschetz formula, and applies
these to the infinite dimensional induced representations. First of all recall
that an operator Q: I'(E) — I’(F') is called a smooth operator if @ is given by

Qs(@) = | Kule, 1)sw)dy

where K,(x, y) is a smooth kernel over the product of the respective base
spaces of E and F. When F' = E such a @ has a natural trace because it can
be approximated by endomorphisms of finite rank so that the natural notion
of trace extends from these to @ by continuity. One then also finds that this
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trace is given by the formula
Trace @ = STrace Ky(x, x)dx .

Now the central point in Part I of this paper was the observation that
this trace function on smooth operators can be extended by continuity to a
larger class of operators. More precisely if T is a geometric endomorphism,
obtained from a transversal map f by a lifting ¢, : f*E — E, we defined

Trace; T = lim,_,, Trace (T~ Q)
when @ is a pseudo-differential operator tending to 1 in a suitable sense. In
general we distinguished between the pair (f, ¢) and the induced endomor-
phism T, and Trace, T was really a function of the pair (£, ). However when
S is an invertible map X — X this distinction need no longer be made (because
T determines ¢ uniquely) and Trace, T is really a function of 7" and f. The

dependence on f will be suppressed however and we shall write Trace® T instead
of Trace, T and call it the flat trace.

In Part I we also obtained the explicit formula

_ Trace ¢(p)
T b T =
race T = 2 et (1 = dfy)]

- summed over the fixed points of f.

In terms of this notion the Lefschetz formula is therefore equivalent to
the compatibility statement

(5.18) > (—1)*Trace* T, = Y_(—1)* Trace HXT) ,
and it is in this framework that the proof was carried out in [2].

Let us return now to the homogeneous case where X = G/H, and E = ¢, F
is the bundle induced by p,: H— Aut F'.

The induced representation ¢,(0) then acts through geometric endomor-
phisms T, of I'(¢, F'). Hence whenever

(1) G/H is compact and

(2) ly-1: G/H — G/H 1is transversal,
then the map T, will have a well defined flat trace Trace’ (T,).

On the other hand let /¢ be a smooth measure with compact support on G
and define T, as the integral

T, = Je T,(9) -

This endomorphism of I'(¢, F') then turns out to be a smooth operator, and
hence has a well defined trace, at least when G/H is compact. Further it is
seen that the function p+ Trace T, defines a distribution on G. We refer to
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this distribution as the trace of ¢,(0), and this is the distributional trace of
representation theory.

One now has the plausible relation between trace ¢,(0) and our flat trace.

ProposiTION 5.19. Let ¢,0: G— AutI'(¢, F') be the induced representation
Sfrom p: H— Aut F' and assume that G/H is compact. Also let O(H) < G be
the open subset of G consisting of those ge G for which l,..: G/H— G/H is
transversal.

The function Trace’: g — Trace’ Tg is then well defined on O(H) and
there represents the distributional trace of ¢.(0).

The proof of this proposition hinges on two facts. First we observe that
the convergence of the limit

(5.20) Trace’ T = lim,_, Trace (T- Q)

is uniform with respect to the map f underlying T provided f varies in a
bounded set and that det (1 — df,) is bounded away from zero at the fixed
points of f. This assertion follows directly from (4.4) and (4.9) of [2].

Secondly we observe (cf.[2;§5]) that the convergence @ — 1 implies
T.oQ — T, in the C* topology of smooth operators and so

(5.21) Trace® T, = lim,_, Trace T,.-Q .

Now T,-Q = S M9)T,-Q is the average over G of smooth operators.
G

Since taking traces of smooth operators clearly commutes with averaging, we
have

(5.22) Trace (T, Q) = Say(g) Trace (T,-Q) .

If Supp /¢ < O(H) the uniformity required in (5.20) is satisfied and so, as
@ — 1 in (5.22), we may pass to the limit under the integral. From this and
(5.21) we obtain

Trace T, = SG (g)(limg_., Trace (T, - Q))

= S 1(g) Trace’ T,
G

which establishes the proposition.

Perhaps we should make a few remarks on the reasons why 7T, is a
smooth operator and ¢ +— Trace T, is a distribution. These facts follow from
quite general “integration over the fiber” arguments as we shall show.

Let m: X— Y be a smooth map of smooth manifolds and let E be a smooth
bundle over Y. Then 7 induces a continuous map x,, from the (compactly
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supported) distributional sections of 7*FE over X into the (compactly support-
ed) distributional sections of E over Y, by simply setting

T0(8) = a-(T*s)
se(F), xeT'(x*E). Now if in addition the differential of © is surjective
at all points of X, then a local integration over the fiber argument shows

directly that 7, preserves smoothness.
Thus under this assumption

Ty DT E* @ UX)} —> T A{E* @ Q(Y)}

where Q(X) and Q(Y') denote the volume bundles of X and Y respectively
and E* denotes the dual bundle.

We apply this proposition to our situation, (with o =1 for simplicity) by
setting M = G/H and defining

T.GXM— Mx M
by
(g, m) = (gm, m) .

Clearly our hypotheses are satisfied so that if we take for E the bundle
1 x QM)on M x M, w, defines a map

I{Q(G) x 1} =5 QM) x 1)
and one checks directly that for e I'.{Q(G)}
T, (¢t X 1) = Kernel of T, .

Here of course G/H has to be compact in order for (2 x 1) to have compact
support.
Finally if A eI"{1 x Q(M)} is the kernel of the identity map then

(5.23) Trace T, = m, (¢ x 1)-A

from which our assertions concerning T, are evident.

In view of Proposition (5.19) we may say that our way of getting the
Hermann Weyl formula is to express the character of a finite-dimensional
representation of G as an alternating sum of characters of infinite-dimensional
induced representations. The point of this is that the character of an induced
representation is easily computed. In fact, as we have seen, on the open dense
set O(H) c G such a character is given by a sum over fixed points. Actually
it is not difficult to show that the character y¢,(o) is (as a distribution on G)
equal to what one may call the induced character® i,(x,). This is the direct

3 Our understanding of these questions was greatly helped by some discussions with
G. W. Mackey.
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image under the projection G X M — G of a distribution F, sitting on the
submanifold Y C G x M consisting of pairs (g, m) with g(m) = m. For example,
ifp =1, and F, = n*(A) (5.23) asserts that

!*(Xl) = X(!*l) .
The detailed formulation in the more general case is left to the reader.

6. The elliptic operators* associated to a riemannian structure

Every oriented riemannian manifold of even dimension has defined on it
an elliptic operator

(6.1) D : (M TX) — I'(MTX)

to which all isometries may be lifted, and which is closely related to the Dirac

operator, the Hodge theory, and the Hirzebruch signature of the manifold.
This operator is treated in [6] but for the sake of completeness we will

review the construction of (6.1) in some detail. Recall that the orientation

and riemannian structure in 7X single out a basic m-form v e I'(A"TX),

m = dim X, which is characterized by the requirement that at every point P,

(6.2) Vp=0"A o0 A O

whenever (', - - -, ™) is any orthonormal frame for 7, X in the orientation of
X. Recall further that this m-form then serves to define an isomorphism
(6.3) * I MTX — A1 TX

which is characterized by the identity
(6.4) u A xu' = u, u v, u, uw eNTpX

where (u, "> denotes the inner product induced on A* T'X by the inner product
in TX. In particular then

(6.5) lu,uy=0.
Using the * operator, one then defines the global inner product (u, v) for
u, ve ’'(AW*TX) by the formula
(6.6) (%W=S wA %,
[x]

In view of (6.5) this is a positive definite inner product, so that the operator
d on '(A*TX) has a well defined adjoint relative to it which we denote by 4.
Thus

(6.7) (du, w') = (u, ou’) w, w eNA*TX) .

On an oriented riemannian manifold one is thus naturally led to the self-

4+ A single elliptic operator is of course a special case of an elliptic complex.
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adjoint operator D = d + §. Note that d*> = 6> = 0 so that D* = dd + dod is
the usual laplacian A of the Hodge theory. This operator is well-known to be
elliptic. On the other hand the highest order symbol of a composition is
easily seen to be the composition of the highest order symbols. Hence D must
also be elliptic. Taken by itself this operator is not of great interest for our
purposes precisely because it is self adjoint, whence its Lefschetz numbers
will turn out to be zero for quite trivial reasons.

However if X has an even dimension then one may fashion an interesting
operator out of D in the following manner. First one observes that under
this assumption

(6.8) 0 = —xdx* .

Next one checks that if a: \*TX — \*TX is defined by the formula

(6.9) au = (—1)10 Dy, | ueNTX
then « satisfies the identities

(6.10) = (-1 dim X = 2n
(6.11) Da = —aD ,

and has the multiplicative property that under the natural isomorphism
MTXQMNTY =2 MVT(X X Y)

(6-12) Ayxy = Ay ® Ay .

Finally consider the action of a & 1" on the complexification of A *TX,
Under this action the total space breaks up into a direct sum

(6.13) MVTXRQXC=MTXHNTX

where M*TX are the eigenspaces of a X " corresponding to the eigenvalues
+1.

In view of (6.11) the operator D ® 1 then interchanges the I'(A*TX) and
so induces operators D*:I'(A*TX) — I’(AFTX) which are adjoints of each
other.

The operator D+ is of interest first of all because its index, that is, the
Lefschetz number of the identity map, turns out to be a topological invariant
of X. Precisely one has the

ProposiTION 6.13. If X is a compact oriented even dimensional rie-
mannian manifold then

index D = Hirzebruch signature of X, if dim X = 0 mod 4

(6.14) _0 if dim X = 2 mod 4 .
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This fact is an easy consequence of the Hodge theory. The first step is
to identify the cohomology space of (6.1) with certain subspaces of the space
of complex-valued harmonic forms JC on X.

Since the adjoint of D* is D¥ we have the identifications

H° of the complex (6.1) = Ker D~

H* of the complex (6.1) = Ker D— .
Secondly recall that the harmonic forms 7 precisely constitute the kernel of
D ®1. This follows from {Du, Du} = {dw, du} + {6u, 6u}, whence Du = 0= du

and ou = 0. Hence (6.15) implies that if F* denotes the +1 eigenspaces of
a ® i" acting on O, then H® = J(+ and H' = J(~. In particular

(6.15)

(6.16) index D* = dim J(* — dim -~ .
To proceed further, let
(6.17) = ={l+a®i}2.

Then the 7* project JC onto J(* so that

(6.18) dim ¥+ — dim J(~- = trace 7+t — trace 7~
) = trace (@ ® i") = i" tracea .

To prove Proposition 6.13 consider first the case » odd. Then @*= —1, whence
trace a = 0 and therefore also trace a Q i = 0.

Next consider the case n = 2. Then a* = 1 so that already the real
harmonic forms, which we denote by JC(R), decompose into a direct sum

JH(R) = H(R)* D H(R)~
where (—1)'a = +1 on J((R)*. It follows that
(6.19) index D* = dim J((R)* — dim J((R)~ = trace {(—1)'a} .
Observe now that (—1)'a maps \? into A**~? so that only the terms of dimen-
sion 2] enter into its trace. Thus we may also write
(6.20) index D+ = dim J((R);; — dim J((R); .

Finally, consider the quadratic form ¢(u) defined by
q(u)=g[]u/\u, %€ H(R)y .
X

The signature of this form, that is, the difference of dimensions of maximal
subspaces on which it is positive and negative, is now seen to be precisely
the right hand side of (6.20). Indeed when u € JC(R)3 one checks that q(u) =
+{u, u}. Thus index D* = signature of q. At this stage we appeal to the
de Rham and Hodge theorems, which allow us to identify JC(R), with
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H*(X; R) in such a manner that ¢ goes over into the topologically invariant
form given by the cup product and the orientation on X. As the signature of
X is by definition the signature of this form, Proposition 6.13 follows.

In view of (6.13) we shall refer to D+ as the signature operator of X.

We turn next to the Lefschetz number of an isometry f: X — X, relative
to the signature operator (6.1). We have already seen that df induces a
geometric endomorphism f* in the de Rham complex. If f is an isometry this
f* necessarily commutes with the * operator of X, and hence also with .

It follows that f* induces endomorphisms f* in I'(A*TX) which commute
with D* and so combine to define an automorphism of the complex (6.1).

We denote by J(*(f) the endomorphism in the cohomology of (6.1) so
that the Lefschetz number of f is in this case given by

(6.21) Sign (f, X) = trace J(+(f) — trace I~(f) ,

and we refer to Sign (f, X) as the signature of the isometry f. Note that
using the projections 7* we also have

(6.22) Sign (f, X) = trace (7*o f* — w0 f*) = ¢" trace (a-F((f))

and so by our previous argument, Sign(f, X) is completely determined by the
action of J((f)and @ on J(, alone. In fact one can define Sign(f, X) directly
from the action f* on H"(X;R) and the bilinear form given by the cup
product. When 7 is even this form is symmetric and one proceeds much as
in Proposition 6.13. For n odd the form is skew-symmetric and one proceeds
in a different manner. Both cases are discussed in detail in [6; § 6].

Our next aim is to compute the multiplicity of a fixed point relative to
this operator. Note first that, for an isometry, an isolated fixed point is
necessarily transversal: in fact if df, has a fixed tangent vector, the geodesic
in that direction would consist of fixed points and P would not be isolated.
Suppose therefore that P e X is an isolated fixed point of f and let f* denote
the automorphism of A* T, X induced by A*df,. Then according to our general
prescription the multiplicity of P relative to the operator (6.1) is given by

_ tracec (fF Q1| N T,X) — tracec (fF R 1| M TpX)
G2 A0 = [dete (1 — d7y)| '

Using projections n* just as we did above, only now acting on A*TX, the
numerator of this expression reduces to trace (f-a ® ¢*) so that

Y(P) = tracec ({fZ-a} @¢)/|det (1 — dfy)| .

A more explicit formula for v(P) can be obtained in the following manner.
Consider the differential
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dfp: TpX — TpX .

Because f is an isometry of X, df, will be an isometry of T,X. Hence one
may decompose T,X into a direct sum of orthogonal 2-planes
T"X=E®QESD---DE,

which are stable under df». Let (e, ¢}) be an orthogonal base of E,, so chosen
that

v NG Ne Ne e, Ney) =1,
Relative to such a base df» is then given by rotations through angles 6, in E,.
That is,
(6.24) iolfp-e,’c = cos t?,,e,, + sin 6,6}, ’

dfp-e, = — sin f,e, + cos f.¢}, .

and we call the resulting set of angles {6,} a coherent system for df,. This
understood the multiplicity formula we are seeking is given by
(6.25) V(P) = i I];cot (6,/2) ,
where {6,} is a system of coherent angles for df;.

To prove (6.25) consider first the two-dimensional case. Then xe, = ¢,
xe¢, = —e, whence AT, is spanned by 1 + e, A e] and e, + ve], while N~ T is
spanned by 1 — ie, A e and e, — ie]. Furthermore df.(e, + ie;) = e~*(e, + ie])
and df.(e, — te1) = €*’(e, — ie;) while the other elements remain fixed under
A\*dfe. It follows that trace (ff-a @ 1) = e — e, so that
(6.26) WP) = — " — ¢ _ ot (9/2)

. (1 _ e_io)(l — ew) :
The proof of (6.25) is now completed by applying the multiplicative property

(6.12) of « to the decomposition of TX into the 2-planes {E;}.
To recapitulate, our Lefschetz theorem specializes in the following man-

ner to the operator (6.1).

THEOREM 6.27. Let f: X — X be an isometry of the compact oriented
even dimensional Riemann manifold X. Assume further that f has only
isolated fixed points {P}, and let {0} be a system of coherent angles for df,.
Then the signature of f is given by

Sign (f, X) = >, 1" ]I, cot (6£/2) , dim X = 2n .

Remarks. Since we first noted this formula, the general problem of de-

seribing Sign (f, X) in terms of the fixed point sets of f has been completely

solved. This solution proceeds via the general index theorem of Atiyah-
Singer and the methods of K, -theory (in particular the localization theorem
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of Atiyah-Segal) and is described in [4], [5], and [6]. Thus this method of
attack is considerably less elementary than the one under discussion here.
Furthermore it is based essentially on the fact that the group of isometries
of a Riemann structure is compact, and hence does not extend to cover other
Lefschetz problems, even with only transversal fixed point sets.

7. Two applications

Theorem (6.27) imposes strong number-theoretic restrictions on the
angles of an isometry at its fixed points. We give two illustrations of this
fact in this section. As our first and simplest example we have

THEOREM 7.1. Let X be a compact connected and oriented manifold (of
positive dimension), and let f: X — X be an automorphism of X, of prime
power order m = p* with p odd. Then f cannot have just one fixed point.

ProoF. A compact group of diffeomorphisms can always be made into a
group of isometries simply by averaging a given Riemann structure over the
group. We may therefore assume that f acts as an isometry. Since p is odd
(and X is connected) f must preserve the orientation. Assume now that f
has just one fixed point P. Since det (1 — df») # 0 and df, is orthogonal it
follows that dim X is even. We may therefore apply our Theorem (6.27) to
obtain the expression

(7.2) Sign (f, X) = i~ [" cot (6,/2) om = dim X

for the signature of f, in terms of a system of coherent angles {#,} for df,.

Setting &, = e~"* we get
(7.3) Sign(f, X)[IQ-&) =111+ &) .

The &, are eigenvalues of df,. Hence as (df;)" = 1, they must all be
n™ roots of unity. Note further that Sign (f, X), which by definition is
trace J(*(f) — trace H(—(f), must be a linear combination of n™ roots with
integer coefficients. We may therefore interpret (7.3) as an equation in the
ring Z[£], generated by a primitive n™ root of 1.

Let us now reduce mod p in this ring and raise both sides of (7.3) to the
n" power. Becausen = p'and m > 0, this yields 0 = 2™ mod p, contradicting
the fact that p is odd.

This theorem was originally conjectured by Conner and Floyd, and was
also recently re-established by them using their own methods [10]. In their
framework of bordism theory the Lefschetz formula leads to the following
extension of Theorem 7.1.

Consider a representation p of the cyclic group Z, on a complex vector
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space V of dimension m > 0.

(7.4) 0: Z,— Aut (V).
The character of p, evaluated on the generator 1 of Z, then has the form
(7.5) X(1) = 2_aé,

where € Z,, a,€ Z, and & = e*¥/",

We call p primitive if a; = 0 unless \ € Z, the set of residues prime to
n. The restriction of such an action to the unit sphere S(V') of V (relative to
some invariant hermitian structure) then acts freely on S(V') and so deter-
mines an element [p] of the reduced bordism group Q.(Z,). Theorem 7.1
clearly implies that when % = p', p an odd prime, we have [o] = 0. It is there-
fore natural to seek a lower bound for the order of [o] by means of the
Lefschetz formula and this is easily done.

In fact our previous argument leads directly to the following

THEOREM 7.6. For any primitive representation p, let o(0) € C be deter-
mined in terms of %.(1) = Y_a;&* by the formula

i\e;
(1.7) o) =T (+5)" -
Then if 0, -+ P, are primitive m-dimensional representations of Z,, the
relation
(7.8) Yle] =0 in Q.(Z,)
holds only if
(7.9) Yoo e Zi¢] .

To derive this criterion suppose (7.8) holds. Then there exists a manifold
M, whose boundary M consists of k& (2m — 1)-spheres on which Z, acts freely,
the action reducing to the actions [p,] on 6M. If we fill in these spheres by
unit discs e, - -+, e, and extend the action linearly, there results a compact
manifold M on which Z, acts freely except at the centers P,, ---, P,, of the
attached discs. Theorem (6.27) applied to the generator of Z, now yields the
formula Y v(P,) = Sign (f, M), with Sign (f, M) e Z|¢]. Since v(P,) = o(0,)
the theorem follows.

As an example let us prove the following corollary to Theorem 7.6.

COROLLARY 7.10. If n = p' with p an odd prime, then for any primai-

tive m-dimensional representation o of Z, the order of [p] is divisible by
P+, where

(7.11) r= [EHTZ'—_J)]
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Proor. We recall a little elementary number theory. The minimal poly-
nomial of a primitive %™ root of 1 is
P(x) = (" — 1)/(@? — 1) = 1 + a™? 4 «oo 4 griv-Dip
Hence p(x) = ] (¢ — &%), A € Z}; and so in particular
(7.12) II,.,...A=-&)=mp.

Itis clear that 1 — & divides 1 — &% in Z[£]. But for any \ € Z}, &* is again
primitive so that (&%)" = & for some r, and so 1 — &* divides 1 — &. It follows
that

(7.13) 1—-&)=@1— ¢&-unit.
In particular, (7.12) implies that
(7.14) 1 — & —Um = p.unit, n=7p.
Let us now set » = 1 — &. Applying (7.13) in the formula for (o) we find
o(p) = —=
7]m

with v = 2™ mod 7 in Z[&]. Applying Theorem (7.6) we see that q-[p] = 0 =
q-0(p) € Z[&] = qu e pZ[¢]. Then (7.14) implies (by an argument used in (7.1))
that ¢ must be divisible by p™** where

r = [ﬁ] q.e.d.

So far in these applications we have only used the fact that Sign (f, X)
is an algebraic integer. Its cohomological interpretation was not used, and
so we did not exploit the full force of our Lefschetz formula. A more inter-
esting application which really uses the full Lefschetz formula is the follow-
ing theorem which confirms an old standing conjecture of P. A, Smith,

THEOREM 7.15. Let p be an odd prime and consider a smooth action of
Z, on a homology sphere which has precisely two fixed points. Then the
1nduced representations of Z, on the tangent spaces of the two fixed points
are 1somorphic.

ProoF. Let f generate the action and choose a riemannian structure for
S?* on which f acts as an isometry. Also let P and @ be the fixed points of
f. We have to show that df; and df, have the same set of eigenvalues. Be-
cause (df»)? = 1 these eigenvalues will all be »™ roots of unity. Hence if we
set & = ¢¥?, and let af denote the number of eigenvalues of df, which are
equal to &%, then we have to show that af = af.

Now according to our fixed point theorem:
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(7.16) Sign (f, 8*") = v(P) + v(@) .
On the other hand Sign (£, S**) = 0 because a homology sphere has no harmonic
forms in its middle dimension. Thus under our assumptions we must have
(7.17) y(P) = —v(@Q).

Now according to (7.2),

y(P)-D(P) = Hli‘.ﬁi ,
1—§&

where £, range over all the eigenvalues of df,. In terms of our multiplicity
function a” we therefore have
(7.18) |2(P) F = T + &)/ — &5
where \ ranges over the set Z of congruence classes mod p which are prime
to p.

Hence if we set a; = af — a$ then (7.17) implies that

v
(7.19) o, 5 =1
At this stage one is therefore reduced to showing that (7.19) = a; = 0.
Now a theorem of Kummer implies an assertion of this type, which for our

purposes may be stated as follows.

TuEoREM. (Kummer). If {a;}, M € Z}, is any set of integers subject to

(7.20) a; = a_;
(7.21) >a; =0
and,

(7.22) ITa-éu=1,
then a; = 0.

From this theorem one deduces ours in the following fashion. The condi-
tions (7.20) and (7.21) are trivially met by our a;. Using the relation

(7.23) A+9/A-8=01-/A—¢)
the condition (7.19) is transformed into
(7.24) a-eyJJa—-)*u=1.

Now M— 2\ defines a bijection on Z whose inverse we denote by Ai— /2.
Thus (7.24) is also given by

(7.25) I @ —é&Hend =1,

Applying the Kummer theorem now yields
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(7.26) Ay = 2a1 .

However on each orbit of the transformation \ — 2\, the function a; must
take a maximum. This is compatible with (7.26) only if a; = 0, as was to be
shown.

This argument was extended by Milnor to yield the following theorem.

THEOREM 7.27. Let G be a compact group of diffeomorphisms of a
homology sphere with fived points P, Q, the action being free except at P
and Q. Then the induced representations of G on the tangent spaces T, and
T, are isomorphic.

Milnor’s proof runs as follows. G is a closed subgroup of isometries (for
some riemannian metric) and so is a Lie group. The elements of finite order
are therefore dense in G. Hence it is sufficient to establish the theorem for
an arbitrary cyclic group Z,. The case n = 2 is trivially valid and so we may
assume 7 = 3. What is needed therefore first of all, is the following generali-
zation of the Kummer theorem due to Franz. [See [12].]

Let Z; denote the residue classes A mod n, with (\, n) =1, n = 3, and set
& = ¢™". Alsolet d range over the positive divisors of %, other than n itself.
With this understood one has the following.

THEOREM 7.28 (Franz). If {a;}, A€ Z} is a set of integers subject to

(7.29) a; =a_;
(7.30) >a; =0
and if for every divisor d of m, d # n,
(7.31) IHTa-éeyu=1,
then a;, = 0.

Consider now a generator f for our group Z, and apply Theorem 6.27 to
the powers f¢, where d ranges over the divisors of % not equal to =, or n/2.
By assumption all these f* act freely on X — {P U Q}, whence, as none of
them has order 2, the multiplicities v, and y, relative to f* will be non-zero.
Thus, if af and af are the multiplicity functions of df, and d fo respectively
and a, is their difference, our earlier argument leads to the condition

(1 + 5d1) a, . "

(7.32) II {m} -1, Ne Z;
Jfor all divisors d of n not equal to n or n/2.

Our aim is therefore to deduce that a, = 0 from (7.32). We consider
several cases.

Case 1. n odd. Here /2 is not a divisor. Further the map a — 2\ is a
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bijection on Z¥. Hence by our earlier argument (7.32) = JJ (1 — &#¥)ea2—22 =1,
from which we conclude by Franz’s theorem that a; = 0. q.e.d.

Case 2. n = 2m, m odd. In this case the projection Z,, — Z, induces a
bijection of Z} onto Z;. Thusin (7.32) A may be thought of as varying over Z*.
Taking d = 2d’ where d’ | m, d’ = m we are reduced to Case 1 and again a, = 0.

Case 3. m=2m, m even. This case is treated by induction. We assume that
(7.29), (7.30), and (7.32) = a, = 0 for the case n = m, then prove it for n = 2m.
Note that in this case Z,,, — Z,, induces a surjection Z;}, — Z} with kernel Z,.
Now for every d’'|m, d # m, we may apply (7.32) with d = 2d’, to obtain

TL AL + &)/t — g5 = 1 e Zs .

On the other hand here the terms A and A + m may be lumped together
whence one obtains

H {(1 + 521:1/)/(1 . Ezzdf)}aﬁaHm =1 , XGZ,:’: .
Hence, by the inductive hypothesis, a; + @;.m = 0 .

To complete the proof we will now show that (7.32) implies the relation
(7.31) i.e., that (7.32) =[] (1 — &%) =1 forall d|2m, d + 2m. If d = 2d’
with d’ | m, then we may again combine the » and (A + m)™ terms. Hence, by
the relation a; + a;., = 0, the product equals 1. Consider now a divisor
d # 2d’. Then &™ = —1, so that (7.32) may be written

1=TJI{Q = &xm9/1 — g} e Zy,
= H {1 — gld}a1+m—az
— H {1 — Eld}—-:za; .
Taking the reciprocal of the square root one gets

IIa-é¢92==«1.
Finally the +1 must hold since a; = a_,. q.e.d.
Remark. When G is a finite cyclic group Theorem 7.27 can be reformu-
lated as a result about lens spaces. It asserts that two lens spaces which are

h-cobordant are isometric. For further information about these questions we
refer the reader to [15].

8. The Dirac operator on Spin manifolds

Notice that if f: X— X is an isometry of order two, then at every isolated
fixed point P of f, df> = — identity. Hence the multiplicity v(P) of P, rela-
tive to the signature of f, is identically zero. Theorem 6.26 therefore yields
the proposition that an involution of an oriented 4k-dimensional compact
manifold of odd Euler number must have a fixed point set of dim > 0. In-
deed under the assumptions Sign (f, X) cannot possibly be zero as J((f) has
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eigenvalues +1, and dim J( is odd.

In this section we will describe a more interesting operator, closely
related to D+, which attaches multiplicities +(i/2)™ (where 2m = dim X) to
the isolated fixed points of orientation preserving involutions and which can
therefore be applied to involutions in the same manner that we applied the
operator D* to transformations of odd period. This operator which we call
the Dirac operator exists only under certain topological conditions on X, and
we will start by reviewing these.

First recall that if Y is a connected cw-complex then the set of iso-
morphism classes of double coverings of Y is in one to one correspondence
with the set H'(Y'; Z,), and so in particular, inherits a group structure. This
comes about because a double covering ¥— Y corresponds to a homomorphism
7 (Y)— Z,.

Suppose now that X is a connected and oriented riemannian manifold.
We then denote by F = FTX, the (oriented) orthogonal frame bundle of the
cotangent bundle to X. Thus the fiber F, of F is isomorphic to SO(n), n =
dim X.

By definition, a Spin structure on X, will be a double covering F of F
whose restriction to a fiber Fp induces the mon-trivial double coverimg
Spin (n) of SO(n).

Two such coverings will be called isomorphic if they are isomorphic qua
double coverings, so that the isomorphism classes of Spin structures on X
may be identified with the set of elements in H'(F;Z,) which have a non-
trivial restiction to H'(Fp; Z,) This set is therefore either vacuous, or a coset,
in H'(Fp; Z,) of the kernel of the restriction map H'(F; Z,) — H'(F; Z,).

From the exact sequence

8.1) — HYX; Z) —— H\F; Z) —— H'(Fy; Z) —— HY(X; Z)) —> ,

where 6 denotes the transgression in the fibering F LN , we conclude first
of all that X admits a Spin structure if and only if 6 = 0. The value of § on
the generator of H'(F;; Z,) is by definition the second Stiefel-Whitney class
w,(X) of X. Hence this condition is equivalent to w,(X) = 0.

Secondly one sees that Ker (i*) = 7*H'X; Z,). Thus the difference of
two Spin structures is measured by an element of H\(X; Z,).

Suppose now that F is a given Spin structure on X and let dim X = 2m.
The Dirac operator relative to F is then constructed as follows. Let

8.2) o Spin (2m) — SO(2m)

be the projection and let ¢ generate the kernel of o. Also denote by « a fixed
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element in o0'(—1).

The group Spin (2m) has a complex representation A of dimension 2"
called the Spin representation. This is the direct sum of two irreducible in-
equivalent representations A* and A~ of dimension 2"~ (the half-Spin-repre-
sentations). For these we have
(8.3) Afe) = -1
(8.4) A¥(a) = £17™ .

Now let A*F denote the vector bundles associated to F by these representa-

tions. Then the Dirac operator o+ relative to F will be a first order elliptic
differential operator

(8.5) 5*: DA F) — (A F) .

To define it one must recail that if

(8.6) e: SO(2m) — Aut (R*™)

is the standard, or identity, representation then there is a natural pairing
(8.7) (0°0) Q A* — AF .,

Now TX is clearly the bundle associated to F via the representation o*p =
poo. Hence (8.7) induces a pairing

(8.8) p=: TX @ A*F — ATF .
Composed with the covariant derivative
(8.9) vt D(AF) — D(TX @ ATF)

which these bundles inherit from the canonical connection on F, ¢ therefore
gives rise to operators
(8.10) 5*: T(A*F) — D(A*F)

and these are by definition the Dirac operators we were seeking. The opera-
tors are elliptic for the following reason. The pairing z¢* induces a map

t

(8.11) TX £, Hom (A'F, A-F) ,
which is non-singular in the sense that g (¢) is an isomorphism for & = 0.
Indeed one has
(8.12) H4(8)- p2(§) = — Identity (, &) .

On the other hand observe that the symbol of the covariant derivative
'V+ is induced by the identity map
(8.13) TXR At — TX R A,
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so that the symbol of 6+ is simply given by £, (§). Thus (8.12) implies that o+
is non-singular. Similary for 6-. The pertinent facts concerning spinors we
have used here can be found in [3], however, for completeness, we will now
very briefly review the construction of some of these objects.

If E is a real vector space with positive definite inner product, cE shall
denote the Clifford algebra of E. Thus c¢E is defined as the quotient of the
full tensor algebra over E modulo the ideal I generated by elements of the
form e ® e + (e, ¢)-1. Alternatively cE is the free algebra generated over R
by a unit 1, and an orthogonal base {e,, - - -, e,} for E, subject to the defining
relations

(8.14) et =—1, ee, + ee; =0 i+k.

As amodule over R, cE is then seen to be spanned by the products ¢; --- ¢;,,
G, < s+ <Ju 0=k < msothat, qua R module, ¢E is isomorphic to the exterior
algebra M*E. Multiplicatively this is not so, but cE does inherit the structure
of a Z,-graded module ¢(E) = ¢, E + ¢_E where ¢, E and ¢_E are additively
generated by the even and odd products respectively. Furthermore E is
naturally included in ¢_E.

The group Spin (n) exists naturally as a subgroup of the group of invert-
ible elements ¢*E of cE. Indeed let x — Z be the anti-automorphism which,
acting on our R-basis, sendse; - - -e;, into (—1)*e;, --- ;. Then Spin (n)is the
subgroup of ¢*E characterized by

(8.15) xec, K
(8.16) vexte K forallee F
(8.17) Tx=1.

If follows from (8.15) and (8.16) that for all x € Spin (n), the transforma-
tion o(x): E— E defined by e+ wex is an orientation preserving isometry
of E. Hence ¢ maps Spin(n) into SO(n) and it is not difficult to show that ¢

isonto. In factif® n =2m and (f,, f/, - -+, fm, fa) is an orthonormal frame for
E, then one checks directly that the element

(8.18) @@, «++, 0,) = II, (cos 0; — f;f] sinb;)

is contained in Spin (2m), and projects under ¢ onto the rotation of £ which
rotates the plane E; spanned by (f;, f;) through the angle 2¢;. Because every
rotation can be brought into this form the assertion follows. It is clear that
=+1 are in Spin(2m) and in the kernel of ¢, and then in view of (8.18) it is not
hard to see that this is the entire kernel . Thus the element ¢ of Spin (2m)

5 From now on we restrict to the even case because this is all we need.
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is simply —1 € ¢*(E). Note finally that if

(8.19) a=fifl - fufn

then

(8.20) at = (-1~ ,

(8.21) o) = —1eS0(2m) ,

and

(8.22) ar = —aa forall xec_E
while,

(8.23) ax = xa forzec, E.

This model of Spin (2m) C ¢, E furnishes us with a natural representation
(8.24) ¢,: Spin (2m) — Aut (c.E) ,
given by the left action of ¢,E on ¢ E. This representation is far from
irreducible. Rather its complexification breaks up into 2™ copies of A* and
A—
(8.25) e, Rcl =2 (A*PA).

To see this let Q; be given by right multiplication with the elements
[ifi @t of our basis (fi, f!, *+*, fm) fu). Then the Q; commute with each
other and also, of course, with the action of Spin (2m) because Spin (2m) acts
from the left. Further Q% = +1. The simultaneous eigenspaces of the Q;
therefore decompose ¢, E ® C into 2™ Spin (2m)-invariant subspaces. Further-
more the representations arising in this manner are of only two types,
depending on the value a takes on them. This follows from the following
construction. Let

(8.26) ' a = (f; + ffe + fi)I2
then one checks that a € Spin (2m) and that Q,a = aQ, for s # j, k while
(8.27) aQ; = Q.a .

Hence right multiplication with a permutes the +1 eigenspaces of Q; with
those of Q,, and it then follows easily that the isomorphism class of a
simultaneous eigenspace as a Spin (2m)-module depends precisely on the parity
of the number of Q,’s with value —1onit. As @, ---Q, = a @™, and as A*
are distinguished by (8.4), the assertion and (8.25) follow.

An immediate corollary of these remarks is the following

ProOPOSITION 8.28. For any x € Spin (2m)
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(8.29) trace At(x) — trace A—(x) = 27“m—m_1 trace c,(ax) .

In particular, if € = x(0) ts the element (8.18), then
(8.30) trace A*(x) — trace A~(x) = 2" []" sind; .

ProoF. The operators (1 + @ ® i™)/2 project ¢. E @ C onto the A* types
of that module and (8.29) then follows by an argument we have already
encountered in § 6. To see (8.30) observe first that left multiplication by an
element ¢ = ¢, -+« €,, s > 0, of ¢, E induces a transformation of ¢, E with
trace 0. This follows, for instance, from the fact that this transformation
maps the basis elements into multiples of each other, but clearly maps no
element into a multiple of itself. Hence the only term in ax(é,, - - -, 6,) which
contributes to the trace is

. sing;.
Thereafter (8.30) follows directly from (8.29) and the fact that dim ¢, E=2"""",

So much for a quick review of the Spin construction. We leave to the
reader the fact that the multiplication E ® ¢, (F)— ¢_(E) induces the desired
pairing (8.7), that this pairing satisfies the condition (8.12) etc. Note finally
that the element o = ¢,-¢, - - - ¢,,, is not canonically defined in ¢, E, but depends
on the orientation in which the frame ¢,,e,, -+, €,, is taken. The distinction
between A+ and A~ in the last analysis, therefore depends on the orientation
of K.

We turn now to the Lefschetz formula of the Dirac operator

(8.31) ot D(A+F) — T(AF) .

Assume then that X admits a Spin-structure F, and let /: X — X be an
isometry. The differential of f then induces a lifting

(8.32) dr*: f*F —F
and it is clear that df* lifts to a bundle isomorphism
(8.33) Fif*F—F,

(qua bundles over X) if and only if df* preserves the characteristic class of
F in HY(F;Z,). There are then two possible choices of 7 over each component
of X and they can be distinguished by their values at a given point. In
particular, if X is 2-connected, then X has a unique Spin-structure F, and
every isometry f has precisely two liftings Fif “F— .

A lifting 7 now induces liftings A=(F): FXA%F) — A*(F) and so induces
a geometric automorphism 7, of the Dirac complex
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ot : I(AF) — (A F) .
We write Spin(f, X) for the corresponding Lefschetz number
(8.34) Spin (7, X) = trace H'(f,) — trace H'(f,) .
Concerning this “Spin-number” of f we now have the following theorem.

THEOREM 8.35. Suppose that f: X — X is an isometry of the 2m-dimen-
sional compact oriented manifold X, with only isolated fixed points {P}.
Suppose further that X admits a Spin structure F, and that f has a lifting
F to this Spin structure. The Spin-number Spin (F, X) is then given by
the expression

(8.36) Spin (£, X) = Y_ v(P)

where P ranges over the fixed points of f and

(8.37) v(P) = &(P, f)i"2=" TI" cosec (4,/2)

where 0,, + -+, 0,, is a coherent system of angles for df,, and &P, f) = +1.

ProoF. Only the formula (8.37) has to be derived from the general
multiplicity expression

_ trace ¢} — trace ¢}
8.38) y(P) =
( "= Tlaet (= df)]

of § 2. Therefore let P be a fixed point of f. Then f,: IA?P—»IA?P is a well
defined map which commutes with the right action of Spin (2m) on this fiber.
For any y e l*A‘P, Fo(y) is therefore equal to some right multiple of y.

Fr) = y-a(P;y), w(P; y) € Spin (2m)
and the conjugacy class of (P, y) is independent of y € F,. Now just as in

the homogeneous case (see § 5) one concludes that trace ¢% and trace @y are
determined by the element x according to

(8.39) trace ¢} = trace ATz (P; y) yeF,
(8.40) trace ¢y = trace A—x(P; ) yeF,.

On the other hand ox(P, y) € SO(2m) clearly represents the matrix of df,
relative to the frame determined by y at P. It follows that in this frame
@(P, y) has the form +x(0,/2, ---,6,/2) as given by (8.18) for some system
(6, +++,0,) of coherent angles for df,. Applying (8.30) to (8.39) and (8.40),
the expression (8.38) goes over into

(8.41) v(P) = xi"2" T} sin (6,/2)/| det (1 — dfy)]| .

However the denominator is given by

mL (L= e (1 — e)
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and hence equals 2 J]{ sin (6,/2)}*. The result follows.
The sign =+ in the formula for v(P) depends on P and f, as is made clear
in the notation of (8.37) where it appears as (P, ). Clearly

&P, —f) = —&(P, f)
where — f is the opposite lifting. Thus we cannot specify the sign in terms

of f alone. What we can do however is to compare two different fixed points
P, Q: the product

(P, Q; f) = (P, f)-¢(@, f)
will depend only on f and not on the choice of lifting f. We shall show how
to compute ¢(P, Q; f) in the special case when f is an involution and X is
2-connected.
Notice first that if P is a fixed point of the involution f and 7 is a lifting
to the Spin-structure f‘, then for any y ¢ FP,

(8.42) F) = ya(f, P)
with 2(f, P) = +a ¢ Spin (2m). Hence

(8.43) y(P) = +im2—™
correspondingly.

We will call two fixed points P and Q, f-equivalent if they have equal
multiplicity, that is if (P, Q; f) = 1. Then we have the following criterion
cencerning equivalence of fixed points.

PROPOSITION 8.44. Let t — s(t) be a curve in FX starting at y e F, and
ending in Fo. Let df*: FX —FX denote the map induced by the differential
and consider the curve r = —df*s. This curve then has the same endpoints
as s so that the composition r~'xs is @ well defined loop c: S* — F, with ¢(1) =
Pand ¢(—1) = Q. Then

P and Q are f-equivalent if and only if ¢ = 0 in 7 (F; ).

ProoF. By assumption 7,(X) = 7,(X) = 0. Hence 7 ,(F, y) = Z,. Hence
the pullback ¢*F of F to S! is the non-trivial or trivial double covering of the
circle, depending on whether ¢ is non-trivial or trivial in 7(F, y). Further-
more note that, by construction, the composition foa of f with right multi-
plication by « induces an automorphism of ¢*F over the reflection map z+— 2
of S' ={2eC]||z| = 1}. The result now follows by inspection: if ¢*F is the
trivial covering and f-« is the identity over z = 1, it will also have to be the
identity over z = —1; on the other hand, if ¢*F is the non-trivial covering
¢ 1—¢*’ and f-« is the identity over 1 then F-ais given by 81— —6 and so is
minus the identity at § = 7/2, that isat z = —1. q.e.d.



FIXED POINT FORMULA: II 487

In general, i.e., when X can have several Spin structures, this argument
generalizes in a straightforward manner to yield the following criterion.

PROPOSITION 8.45. Suppose f is a lifting of an involution to the Spin-
structure F and that P and Q are fizxed points of f in the same component
of X. Also suppose that ¢ is constructed as above. Then P and Q are f-
equivalent if and only if the characteristic class a)l(ﬁ) e H\(F; Z,) vanishes
on c.

We conclude this section with a few further remarks concerning involu-
tions of Spin-manifolds. These remarks are independent of our Lefschetz
theorem but they throw some light on the formula (8.37) for involutions.

Thus let X be a Spin-manifold and let f: X — X be an involution preserv-
ing the orientation and the Spin-structure, so that we get two liftings + 7 to
FX. As we have pointed out 7 is at most of order 4. Let us call an involu-
tion of even type if f2=1 and of odd type if f has order 4 (note that this does
not depend on which lifting we choose). If f has no fixed points, so that the
orbit space Y is a manifold, then one sees at once that

fis of even type = Y 1s a Spin-manifold.

Thus the antipodal map on the sphere S*"~! is of even type if and only if the
real projective space P?*~! has second Stiefel-Whitney class zero, and this is
known to be true precisely for n even. Hence S* x S° provides an example
of a manifold having involutions of both types, the anti-podal maps on the
factors.

Suppose now that f has fixed points. Since f? = 1 each connected com-
ponent of the fixed point set is a submanifold and df acts as —1 in the normal
planes. Restricting f to the normal sphere at a fixed point we therefore get
the antipodal map, and the type of this restriction is the same as the type of

f. From the results about projective spaces mentioned above we therefore
deduce®

ProrosiTION 8.46. Let X be a Spin-mantifold, f: X — X an involution
preserving the orientation and Spin-structure, and let Y; be the commected
components of the fixed point set of f. Then

codimY; =0 mod4 if f is of even type
=2 mod4 if fis of odd type .
In particular we always have

dim Y; = dim Y, mod 4

6 One can of course verify (8.45) by working directly with Clifford algebras and spinors.
In fact this is one way to determine which projective spaces are Spin-manifolds.



488 ATIYAH AND BOTT

for any two components Y;, Y,.

The final part of (8.46) is not true if X is not a Spin-manifold as is shown
by the example of the complex projective plane with the involution
(%,, @, ) — (—a,, &, ,): this has a fixed point and a fixed 2-sphere.

From (8.45) we see that the existence of an isolated fixed point implies

dim X = 0 mod 4 for f of even type
= 2 mod 4 for f of odd type .

Hence the number y(P) in (8.37), for involutions, is real when f has even type
and imaginary when f has odd type. This fits in with the formula (8.36)
because Spin (f, X) is clearly real when f has even type. One can also show
directly from the analysis that, if m = 2 mod 4 and f has even type, then
Spin (f, X) = 0. This again fits with (8.36) because, as we have just seen,
there cannot be any isolated fixed points in this case.

9, Exotic involutions

Consider the hypersurface V(a) in C* given by the equation
9.1 R4 eee +2iv=0.

When all the a; are greater than 1, V(a) has an isolated singularity at z = 0
whose topological and differentiable nature is by now well understood from
several points of view thanks to the work of Brieskorn, Pham, Milnor,
Hirzebruch, and others. We will need a few special instances of these results,
all of which can be found in [9].

Let Z(a) denote the intersection of V(a) with the unit sphere, S**~'in C",
and let D*" be the unit disk |2] < 1in C". Now for teC let

(9.2) V@) = {e| 22+« + 220 = t}
(9.3) . Z(a) = Vi(a) N S*
(9.4) M/a) = Vi(a) N D™ .

It is then easy to see that, for small ¢, Z,(a) is the smooth boundary of M,(a)
and that Z,(a) is diffeomorphic to Z(a).

Furthermore it can be shown that, for n = 4, 3(a,, -+, a,) is (n — 3)-
connected while M,(a,, -+, a,) is (n — 2)-connected.

In [9] one finds a numerical algorithm on the a; which decides whether
3(a) is a topological sphere.

In particular this criterion implies that X(a,, - -+, a,) is a topological S**~*
for the a; we are interested in. These are of the form
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(9'5) ak=(au"'yazm)=(272y"'721k)’ k odd .

Furthermore these Z(a*) are also classified there according to diffeo-
morphism type

(9.6) Z(a*) is the standard (4m — 3) sphere unless m is =3 and k =
43 mod 8.

Our concern will be with the following involution on = = Z(a*), a* as in
(9.5).

Let T: C" — C" be defined by
9.7) Tz,.={“z" lsisn—-1

z; 1T=Mn

Clearly T preserves X and has no fixed points there. The resulting invo-
lutions occur in the work of Bredon [8] and Hirsch-Milnor [14]. In fact for
m = 2, k = 3 one obtains precisely the exotic involution of [8].

Our aim is the following generalization of this example.

THEOREM 9.8. If the actions of T on the topological spheres T = Z(aF)
and T = X(a') are isomorphic, then

(9.9) k =+l mod2™.

In particular the involution T acting on X(a®) = S*™* is not isomorphic to
the standard antipodal map whenever m = 2.

Proor. Clearly T preserves the set M,(a*) and its boundary ZX,.(a*).
Furthermore for small ¢ the action of T on Z(a*) will be isomorphic to its
action on X(a*). Hence, if the conditions of the theorem are met, there exists
a diffeomorphism

(9.10) 1 Zy(a*) — Z,(a))

which commutes with the action of 7. Consider now the compact manifold X
obtained from M = M,(a*) and M’ = M,(a’) by gluing their boundaries to-
gether with

(9.11) X=Mu,M.

The involution T acts naturally on X, and its fixed points will coincide
with the union of those of T|M and T'| M’. For m = 2, X will furthermore
be 2-connected and so has a natural Spin structure. Let 7 be a lifting of T
to FX and consider the Spin number Spin (7, X). Clearly 7' has period at
most 4. Hence Spin (T, X) € Z[7]. On the other hand by Theorem 8.35 we
have the relation

(9.12) 2.e(P, T)(i/2) = Spin (T, X)
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where P runs over the fixed points of T.

Now consider T'| M first. Clearly the fixed points of T in M have the
form:

(0,"',0,%) Withuk“—:t.

Hence there are k of them. Note further that the transformation S: C* — C*
given by

S(z) 2; 1<i1n -1
Z;) = oL e
éz, f=e"*i=mn

maps M into itself, commutes with 7', and cyclically permutes the fixed points
of T on M. Since S has odd order k its action on M can be lifted to a trans-
formation S of order k& on F'M which commutes with 7. This implies that, if
P is any one of the fixed points of T in M,

&P, Ty =¢SSP, T) .

Since S permutes these fixed points cyclically it follows that the signs ¢ (P, T)
for Pe M are all the same. A similar result holds for the fixed points of
T | M’ and so (9.12) takes the form

<%’>Z"’“{i k + I} = Spin (T, X) .

Since Spin (T, X) € Z[4), this implies that k£ = ! mod 2", q.e.d.
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