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Introduction 

The periodicity theorem for the infinite unitary group [3] can be interpreted as a state

ment about complex vector bundles. As such it describes the relation between vector bundles 

over X and X x 3 2, where X is a compact (1) space and 3 2 is the 2-sphere. This relation is 

most succinctly expressed by the formula 

where K(X) is the Grothendieck group (2) of complex vector bundles over X. The general 

theory of these K-groups, as developed in [1], has found many applications in topology and 

related fields. Since the periodicity theorem is the foundation stone of all this theory it 

seems desirable to have an elementary proof of it, and it is the purpose of this paper to 

present such a proof. 

Our proof will be strictly elementary. To emphasize this fact we have made the paper 

entirely self-contained, assuming only basic facts from algebra and topology. In particular 

we do not assume any knowledge of vector bundles or K-theory. We hope that, by doing 

this, we have made the paper intelligible to analysts who may be unacquainted with the 

theory of vector bundles but may be interested in the applications of K-theory to the index 

problem for elliptic operators [2]. We should point out in fact that our new proof of the 

periodicity theorem arose out of an attempt to understand the topological significance of 

elliptic boundary conditions. This aspect of the matter will be taken up in a subsequent 

paper.(3) In fact for the application to boundary problems we need not only the periodicity 

theorem but also some more precise results that occur in the course of our present proof. 

(1) Compact spaces form the most natural category for our present purposes. 
(2) See § 1 for the definition. 
(3) See the Proceeding8 of the Oolloquium on Differential Analysis, Tata Institute, 1964. 
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For this reason we have been a little more particular in the statement of some of our results 

than is necessary for the periodicity theorem itself. 

The basic ideas of the proof may be summarized as follows. (1 ) The vector bundles over 

8 2 are well-known and are easily determined. If we can carry out this determination in a 

sufficiently intrinsic manner then it should enable us to determine the bundles on 8 2 xX. 

Now isomorphism classes of m-dimensional vector bundles over 8 2 correspond to homotopy 

classes of maps of the circle 8 1 into the general linear group GL(m, C). Moreover the homo

topy class of such a map I is determined by the winding number w(f) of det I. If we regard 

8 1 as the unit circle in C and let In = L~n ak ?!' be a finite Laurent series approximating I 
{the ak being m x m matrices), then putting p =znln we have 

w(f) =w(fn) =w(p) -nm. 

w(p) is just the number of zeros of the polynomial det (p) inside the unit circle. For our 

purposes however it is more significant to observe that 

w(p) = dim V;, 

where V; is a certain vector space intrinsically associated with p. It may be defined in two 

ways both of which are enlightening. In the first place we can regard p as a homomorphism 

between free C[z]-modules of rank m. Then the cokernel of p is a torsion C[z]-module, i.e. 

a finite-dimensional vector space endowed with an endomorphism Tp. The eigenvalues of 

Tp do not lie on 8 1 (since p is non-singular there) and so we get a decomposition 

Vp= V;EBV; 

where V; corresponds to the eigenvalues of Tp inside 8 1 and V; to those outside 8 1• Alter

natively we can consider the linear system of ordinary differential equations 

The space of solutions Vp consists of exponential polynominals and decomposes as 

Vp= V;EBV;, 

where V; involves exp(iAz) with IAI <1 while V; involves those with IA.I >1. The first 

definition brings one close to the work of Grothendieck in algebraic geometry while 

the second connects up with boundary-value problems as mentioned earlier. In any case 

V; is an invariant of p which is a refinement of the winding number w(p). If p depends 

continuously on a parameter space X then the spaces V; will form a vector bundle over 

(1) The terms used here are all defined in the body of the paper. 
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X. This vector bundle turns out to be a sufficiently good invariant of p so that the relation 

obtained in this way between vector bundles on X x 8 2 and vector bundles on X gives 

the periodicity theorem. 

It should be emphasized that the preceding remarks are made in order to give the 

reader some insight into the nature of the proof. In fact in our formal development we 

mention neither modules nor differential equations. 

The arrangement of the paper is as follows. In § 1 we define vector bundles, establish 

a few basic properties and then introduce the groups K(X). The reader who is familiar 

with vector bundles may skip this section. In § 2 we state the main theorem which in fact 

is a slight generalization of the periodicity theorem in that X x 8 2 is replaced by a suitable 

fibre bundle with fibre 8 2• In essence the additional generality gives what is called the 

"Thom isomorphism theorem" for line-bundles in K-theory. Since this comes out naturally 

by our method of proof it seemed reasonable to include it. Also in § 2 we introduce "clutch

ing functions" I and approximate them by linite Laurent series In. In § 3 we consider poly

nomial clutching functions p and we show how to replace them by essentially equivalent 

linear functions. Then in § 4 we show how to deform any linear clutching function into a 

standard form. The proof of the main theorem is then given in § 5. 

A few words on the general philosophy of this paper may be in order here. In algebraic 

topology the orthodox method is to replace continuous maps by simplicial approximations, 

and then use combinatorial methods. When the spaces involved are differentiable manifolds 

a powerful alternative is to approximate by differentiable maps and use differential

geometric techniques. The original proof of the periodicity theorem, using Morse Theory, 

was of this nature. What we have done here is to use polynomial approximation and then 

apply algebraic techniques. In principle this method is applicable whenever the spaces 

involved are algebraic varieties. It would be interesting to see this philosophy exploited 

on other problems. (1 ) 

1. Preliminaries on vector bundles 

Let X be a topological space. Then a complex (2) vector bundle over X is a topological 

space E endowed with 

(i) a continuous map p: E--7X (called the projection), 

(ii) a (finite-dimensional) complex vector space structure in each Ex=p-l(X), xEX, 

(1) The periodicity theorem for real vector bundles (which is considerably more intricate than the 
complex case) has recently been dealt with by R. Wood following the general lines of this paper. 

(2) The word complex will be omitted from now on, since we shall not be concerned with real vector 
bundles. 
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such that E is locally isomorphic to the product of X with a complex vector space. Explicitly 

this means that, for each xEX, there exists an open set U containing x, an integer nand 

a homeomorphism cP: p~l( U)~U X cn such that 

(a) cp commutes with the projections onto U, 

(b) for each x E U, cp induces a vector space isomorphism CPr: E r ~cn. E r is called the 

fibre at x. If X is connected then dim Er is independent of x and is called the dimension 

of E. 

If Y is a subspace of X and E is a vector bundle over X then 

EIY= U Ey 
YEY 

has a natural vector bundle structure over Y. We call EI Y the restriction of E to Y. 

A section of a vector bundle E is a continuous map s:X~E with ps=identity. 

Thus, locally, a section is just the graph of a continuous map of X into a vector space. The 

space of all sections of E is denoted by r(E). If E, F are two vector bundles over X then 

a homomorphism of E into F is a continuous map cP: E~ F commuting with the projections 

and inducing vector space homomorphisms CPz:Er~Fr for each xEX. The union of all 

the vector spaces Hom(Er , Fr) for xEX has a natural topology making it into a vector 

bundle Hom(E, F), and a section of Hom(E, F) is then just a homomorphism of E into 

F. If cpEr Hom(E, F) is such that CPr is an isomorphism for all x, then cp-l exists. In fact 

cp-l is continuous. To see this we work locally so that cp is the graph of a continuous map 

and observe that the inverse is a continuous map in the topological group GL{n, C). Thus 

cp-lEr Hom(F, E) and so cp is an isomorphism of vector bundles. The set of all isomor

phisms of E onto F will be denoted by ISO(E, F). A vector bundle is trivial if it is iso

morphic to X x Cn for some n. 

Natural operations on vector spaces carry over at once to vector bundles. We have 

already considered Hom(E, F). In addition we can define the direct sum E(f)F, the tensor 

product E@F and the dual E*. For example 

(E(f)F)r = Ex(f)Fr 

and if E, F are isomorphic over U c: X to U X cn, U X Cm then (E(f)F) 1 U is topologized as 

U x (cn(f)cm
). Canonical isomorphisms also go over to bundles, thus for instance 

Hom(E, F)Q!!E*@F. 

The iterated tensor product E@E@ ... @E (k times) will be denoted by Ek. If L is a line

bundle, i.e. a vector bundle of dimension one, we shall write L-l for L* and L--k for (L*)k. 
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This notation is justified by the fact that the (isomorphism classes of) line-bundles over 

X then form a multiplicative group with L-l as the inverse of L. The unit of this group is 

the trivial line-bundle X x 0 (denoted by 1). 

Let I: Y-+X be a continuous map and let E be a vector bundle over X. The induced 

bundle f*(E) is a vector bundle over Y defined as follows. It is the subspace of Ex Y 

consisting of pairs (e, y) with p(e) = I(y), the projection and vector space structures of the 

fibres being the obvious ones. Thus 

f*(E)y=Ej(y) x {y}. 

If E is trivial over U c X then f*(E) is trivial over I-l( U) c Y. If IX: E-+ F is a homomorphism 

of vector bundles over X then this induces in an obvious way a homomorphism 

f*(IX) :f*(E)-+f*(F) 

of vector bundles over Y. Note that, if I: Y-+X is the inclusion of a subspace YcX, 

then f*(E)~EI Y. 

Having given the basic definitions concerning vector bundles we pass now to their 

homotopy properties. 

LEMMA (1.1). Let Y be a closed subspace 01 a compact (Hausdorff) space X and let 

E be a vector bundle over X. Then any section 01 EI Y extends to a section 01 E. 

Prool. Let s be a section of ElY. Now, since a section of a vector bundle is locally the 

graph of a continuous vector-valued function, we can apply the Tietze extension theorem (1) 

[4: p. 242] locally and deduce that for each xEX there exists an open set U containing x 

and tEr(EI U) so that t and s coincide on Un Y. Since X is compact we can then choose 

a finite open covering {U,,} with t"Er(EI U,,) coinciding with s on Y n U". Now let {e,,} 

be a partition of unity with support (e,,) c U ". Then we get a section s" of E by defining 

s,,(x)=e,,{x)t,,(x) if xEU" 

=0 if x¢U"" 

and L" s'" is a section of E extending s as required. 

LEMMA (1.2). Let Y be a closed subspace 01 a compact space X, E and F two vector bundles 

over X. Then any isomorphism s: ElY -+ FlY extends to an isomorphism t: E I U -+ FlU lor 

some open set U containing Y. 

Prool. s is a section of Hom (E, F) I Y. Applying (1.1) we get an extension to a section 

t of Hom(E, F). Let U be the subset of X consisting of points x for which tx is an iso

morphism. Then, since GL(n, 0) is open in End(On), U is open and contains Y. 

(1) In fact for the main results of this paper we only need the Tietze extension theorem in quite 
simple cases where its proof is trivial. 
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PROPOSITION (1.3). Let Y be a compact 8pace, It: Y--*X a homotopy (O<t<l) and E 

a vector bundle over X. Then 

Prool. H I denotes the unit interval, let I: Y x 1--* X be the homotopy, so that I(y, t) = 

It(Y) and let n: Y x 1--* Y be the projection. Now apply (1.2) to the bundles f* E, n*ti E 

and the subspace Y x {t} of Y x I, on which there is an obvious isomorphism 8. By the 

compactness of Y we deduce that f* E, and n*ti E are isomorphic in some strip Y x tJt 

where tJt denotes a neighbourhood of {t} in 1. Hence the isomorphism class of It E is a 

locally constant function of t. Since I is connected this implies it is constant, whence 

A projection operator P for a vector bundle E is an endomorphism with p2 = P. Then 

P E and (1-P) E inherit from E a topology, a projection and vector space structures in 

the fibres. To see that they are locally trivial choose, for each xEX, local sections 81> ••• ,8n 

of E such that the 81 (i<r) form a base ofPxEx and the 8; (i>r) form a base for (l-P)xEx. 

Then for a sufficiently small neighbourhood U of x we have a vector bundle isomorphism 

r n 

given by (yx (av ••• ,an)) = "iaj P y 8j(Y) + L aj(l- P)y8j(Y). 
i=l i=T+l 

This establishes 

LEMMA (1.4). II P i8 a projection operator lor the vector bundle E, then P E and (1-P) E 

have an induced vector bundle 8tructure and 

E=PE(f;(l-P)E. 

We turn next to the question of metrics in vector bundles. If E is a complex vector 

bundle we can consider the vector bundle Herm (E) whose fibre at x consists of all hermitian 

forms in Ex. A metric on E is defined as a section of Herm(E) which is positive definite for 

each x EX. Since the space of positive definite Hermitian forms is a convex set, the existence 

of a metric in E over a compact space X follows from the existence of partitions of unity. 

Moreover, any two metrics in E are homotopic, in fact they can be joined by a linear 

homotopy. 

Vector bundles are frequently constructed by a glueing or clutching construction 

which we shall now describe. Let 

X=X1 U X 2, A=Xl n X 2, 

all the spaces being compact. Assume that E f is a vector bundle over Xl and that 
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!P:ElIA-E2IA is an isomorphism. Then we define the vector bundle El U<pE2 on X as 

follows. As a topological space El U 'I' E2 is the quotient of the disjoint sum El + E2 by 

the equivalence relation which identifies elEEllA with !p(el)EE2IA. Identifying X with 

the corresponding quotient of Xl + X 2 we obtain a natural projection p:El U<pE2-X, 

and p-l(X) has a natural vector space structure. It remains to show that El U <pE2 is locally 

trivial. Since ElU<pE2IX - A =(ElIXl -A) +(E2IX2- A) the local triviality at points x Et;A 

follows from that of El and E 2 • Let therefore aEA and let VI be a closed neighbourhood 

of a in Xl over which El is trivial, so that we have an isomorphism 

Restricting to A we get an isomorphism 

Of :Ell VI n A-(Vl n A) x on. 
Let 

be the isomorphism corresponding to of under !po By (1.2) this can be extended to an iso

morphism 

where V2 is a neighbourhood of a in X 2• The pair °1 , O2 then defines in an obvious wayan 

isomorphism 

0lU<p02:ElU<pE2Ivl U V2-(Vl U V2)xOn
, 

establishing the local triviality of El U 'I' E 2• 

Elementary properties of this construction are the following. 

(1.5). If E is a bundle over X and Ei=EIXi' then the identity defines an isomorphism 

lA:ElIA-E2IA, and 

ElUlAE2~E. 

(1.6) If fJi : E j _ E; are isomorphisms on X j and !p' fJl = fJ2!P, then 

ElU<pE2~E~U<p·E;. 

(1.7). If (Ej,!p) and (E;, !p') are two "clutching data" on the X;, then 

(ElU<pE2)E8(E~ U<p,E;)~E~E8E~ U E2E8E;, 
<p®<p' 

(ElU<pE2)®(E~ U<p,E;)~El®E~ U E2®E;, 
<p®<p' 

Moreover, we also have 
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LEMMA (1.8). The isomorphism class 01 E1UtpE2 depends only on the homotopy class 

01 the isomorphism If: E1IA~E2IA. 

Proof. A homotopy of isomorphisms Ell A ~ E21 A means an isomorphism 

<I>:n* EllA x I~n* E21A x I, 

where I is the unit interval and n: X x I ~ X is the projection. Let 

It:X~XxI 

be defined by It(x) =x x {t} and denote by 

Ift:EIIA~E2IA 

the isomorphism induced from <I> by It. Then 

EIUtpIE2~/t(n* E1U Cl>n* E 2)· 

Since 10 and 11 are homotopic it follows from (2.2) that 

EIUtp.E2~E1UtplE2 
as required. 

We come finally to the definition of the Grothendieck group K(X). Let us recall 

first the elementary procedure by which an abelian semi-group defines a group. If A is 

an abelian semi-group we form an abelian group B by taking a generator [a] for each 

aEA and relations [a] =[b] +[c] whenever a=b +c. The mapping ():A~B given by ()(a) = 

[a] is then a homomorphism and it has an obvious "universal property" (i.e. B is the "best 

possible" group which can be made out of A): if If:A~G is any homomorphism of A into 

an abelian group G then there exists a unique homomorphism ip: B~G so that If =ip(). If 

X is a compact space we take A to be the set of isomorphism classes of vector bundles over 

X with the operation EEl. The corresponding abelian group B is denoted by K(X). Thus for 

each vector bundle E over X we get an element [E] of K(X) and any element of K(X) is 

a linear combination of such elements. The zero dimensional vector bundle gives the zero 

of K(X). The universal property of K(X) shows in particular that K(X) is the appropriate 

object to study in problems involving additive integer-valued functions of vector bundles. 

This explains the relevance of K(X) for example in the index problem for elliptic operators. (1 ) 

The operation ® induces a multiplication in K(X) turning it into a commutative ring 

with [1] as identity. A continuous map I: Y~X induces a ring homomorphism 

where 

t*:K(X)~K(Y) 

t*[E] = [f* E]. 

If X is a point then K(X) is naturally isomorphic to the ring of integers. 

(1) It was similar considerations which led Grothendieck to define K(X) in the first place in algebraic 
geometry. 
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2. Statement of the periodicity theorem 

If E is any vector bundle then by deleting the O-section and dividing out by the action 

of non-zero scalars we obtain a space P(E) called the projective bundle of E. There is a 

natural map P(E)-'7-X and the inverse image of xEX is the complex projective space 

P(Ex). If we assign to each yEP(Ex) the one-dimensional subspace of Ex which corresponds 

to it we obtain a line-bundle over P(E). This line-bundle is denoted by H*, i.e. its dual is 

denoted by H. The projection P(E)-'7-X induces a ring homomorphism K(X)-'7-K(P(E)) so 

that K(P(E)) becomes a K(X)-algebra. Our main theorem determines the structure of this 

algebra in a particular case: 

THEOREM (2.1). Let L be a line-bundle over the compact space X, H the line-bundle 

over P(LEB1) defined above. Then, as a K(X)-algebra, K(P(LEB1)) is generated by [H] subject 

to the single relation 

([H] -[1]) ([L] [H] -[1]) =0. 

If X is a point, so that P(LEB1) is a projective line or 2-sphere 82, (2.1) implies that 

K(82) is a free abelian group generated by [1] and [H] and that ([H] - [1])2 =0. Hence 

(2.1), in the case when L is trivial, can be rephrased as follows: 

COR OLLAR Y (2.2). Let n1 :X x 8 2-'7-X, n2:X x 8 2-'7-82, denote the projections. Then the 

homomorphism 

defined by 

is a ring isomorphism. 

f:K(X)tg) z K(82)-'7-K(X x 8 2) 

f(atg)b) =nt(a)n;(b) 

This corollary is the periodicity theorem proper. 

For any x there is a natural embedding Lx-'7-P(LEB1)x given by 

y-'7-(yEB1 ) 

which exhibits P(LEB1)x as the compactification of Lx obtained by adding the "point at 

infinity". In this way we get an embedding of Lin P = P(LEB1), so that P is the compacti

fication of L obtained by adding the "section at infinity". Now let us choose, once and for 

all, a definite metric in L and let 8 c.L be the unit circle bundle in this metric. We identify 

L with a subspace of P so that 

p=po U poc, 8=PO n p oo , 

where po is the closed disc bundle interior to 8 (i.e. containing the O-section) and poo is 

the closed disc bundle exterior to 8 (i.e. containing the 00 -section). The projections 8-'7-X, 

PO-'7-X, poo--,,;X will be denoted by n, no, noo respectively. 
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Suppose now that EO, EO<> are two vector bundles over X and that 1 EISO (n* EO, n* EOO). 

Then we can form the vector bundle 

over P. We shall denote this bundle for brevity by (EO, I, EO<» and we shall say that 1 

is a clutching function for (EO, EO<». That the most general bundle on P is of this form is 

shown by the following lemma: 

LEMMA (2.3). Let E be any vector bundle over P and let EO, Eco be the vector bundles 

over X induced by the O-section and 00 -section respectively. Then there exists 1 E ISO (n* EO, n* EO<» 

such that 

the isomorphism being the obvious one on the O-section and the 00 -section. Moreover F is uni

quely determined, up to homotopy, by these properties. 

Proof. Let so: X ---"'" po be the O-section. Then sono is homotopic to the identity map of 

PO, and so by (1.3) we have an isomorphism 

10:EIPO---"'"n6 EO. 

Two different choices of 10 differ by an automorphism IX of n6 EO, and any such IX is homo

topic to the automorphism n6 1X0 where 1X0 is the automorphism of EO obtained by restricting 

IX to the O-section. It follows that we can choose 10 to be the obvious one on the O-section 

and that this determines it uniquely up to homotopy. The same remarks apply to EIPoo 

and the lemma then follows, taking 

Remark. If F is a vector bundle over X then (1.5) shows that (F, 1, F) is the vector 

bundle over P induced from F by the projection P---"'"X. Written as an equation in K(P) 

this statement reads 
[(F, 1, F)]=[F][I], 

where [1] is the identity of the ring K(P) and [F][I] is module multiplication of K(X) on 

K(P). 

When L is the trivial line-bundle X x 0 1, 8 is the trivial circle bundle X x 8 1 so that 

points of 8 are represented by pairs (x, z) with xEX and zEO with Izl =1. Thus z is a 

function on 8, so also is Z-l and we can consider functions on 8 which are finite Laurent 

series in z: 

When L is not trivial we want to introduce a notation which will enable us to deal con-
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veniently with the corresponding expressions. To do this we observe that the inclusion 

S-+L defines, in a rather tautologous way, a section of n*(L). We s/udl denote this section 

by z. If L = 1 then a section of n*(L) is just a function on S and the section z is precisely 

the function described above. The reader who is primarily interested in Corollary (2.2) 

may throughout think of this special case and regard z as a function. To obtain the more 

general Theorem (2.1) however we have to consider z as a section. The only complications 

introduced by this are notational, since we have to identify all the various bundles which 

occur. 

Using the canonical isomorphisms 

n*(L) ~n*Hom(l, L) 

we may also regard z as a section of n*Hom (1, L) and, as such, it has an inverse Z-l which 

is a section of 
n*Hom(L, 1) ~n*(L-l). 

More generally, for any integer k, we may regard Zk as a section of n*Lk. If now akEr(L-k) 

then 

i.e. it is a function on S. For simplicity of notation we write akzk instead of n*(ak)®zk. 

Thus we have given a meaning to the finite Fourier series 

-n 

if akEr(L-k) then f is a function on S. Finally suppose that EO, EO<> are two vector bundles 

on X and that 

then 

where again we have replaced n*(ak)®zk by akzk. A finite sum 
n 

f= ,LakzkEr Hom (n*~,n*EOO) 
-n 

with the ak as above will be called a finite Laurent series for (EO, E OO ). If fEISO (n* EO,n* F OO ) 

then it defines a clutching function and we call this a Laurent clutching function for (EO, E OO
). 

The simplest Laurent clutching function is z itself-takinglfJO = 1, E oo =L. We shall 

now identify the bundle (1, z, L) on P defined by this clutching function. We recall first 

that the line-bundle H* over P is defined as a sub-bundle of n*(LEB1). For each yEP(LEB1)x 

H: is a subspace of (LEB1)x and 

H: = LxEBO =-y = 00, 

H: = OEB lx=-Y = O. 
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Thus the composition H* --+n*(LEbl)--+n*(l), 

induced by the projection LEbl--+ 1, defines an isomorphism 

lo:H*IJDO--+nri(l), 

and the composition H* --+n*(LEbl )--+n*(L) 

induced by the projection LEbl--+L, defines an isomorphism 

Hence 

I"", :H*IP""'--+nri(L). 

1=100 101
: n*(l)--+n*(L) 

is a clutching function for H*. Clearly, for yESr, I(y) is the isomorphism whose graph is 

H~. Since H~ is the subspace of (1) LrEblr spanned by yEbl (yESrcLr, lEC) we see that 

I is precisely our tautologous section z. Thus 

H* g,; (1, z, L). 

From (2.4) and (1.7) we deduce, for any integer k, 

Hkg,;(l, z--k,L--k). 

(2.4) 

(2.5) 

Suppose now that I ErHom(n* EO, n* E OO
) is any section, then we can define its Fourier 

coefficients 
akErHom(Lk®EO, E OO

) 

ak(X)=2
1 .f Irz-;k-1dzr. 
n~ Sx 

Here Ix and Zx denote the restrictions of I, z to Sr and dZr is therefore a differential on Sx 

with coefficients in L r • Let Sn be the partial sums 

and define the Cesaro means 

The proof of Fejer's theorem [5; § 13.32] on (C, 1) summability of Fourier series extends 

immediately to the present more general case and gives 

LEMMA (2.6). Let I be any cluiching lunct-ion lor (EO, E OO
), In the sequence 01 Cesaro 

(') The symbol 1 may cause the reader some confusion here since it denotes the trivialline·bundle 
and also the complex number 1. 

(2) Here again we omit the ® sign. 
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means of the Fourier series of f. Then fn converges uniformly to f arul hence is a Laurent 

clutching function for all sufficiently large n. 

Remark. The uniformity can be defined by using metrics in EO and E oo , but does not 

of course depend on the choice of metrics. 

3. Linearization 

By a polynomial clutching function we shall mean a Laurent clutching function without 

negative powers of z. In this section we shall describe a linearization procedure for such 

functions. 

Thus let 

be a polynomial clutching function of degree ~n for (EO, E""). Consider the homomorphism 

n n 

.cn(p) :n*(L: Lk®Eo)-;.n*(EooEB L: Lk®~) 
k~O k~1 

given by the matrix 

-z 1 

It is clear that C(p) is linear in z. Now define the sequence Pr(z) inductively by Po=p' 

ZPT+1(Z) =PT(Z) -Pr(O). Then we have the following matrix identity 

C(p) = 

. Pn P 
1 

1 

or more briefly 

with N l' N 2 nilpotent. 

1 

1 

1 
-z 1 

-z 

-z 1 

(3.1) 

Since 1 + tN with 0 ~ t ~ 1 gives a homotopy of isomorphisms, if N is nilpotent, it 

follows from (3.1) and (1.8) that we have 

16 - 642907 Acta mathematica 112. Imprime Ie 4 decembre 1964. 
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PROPOSITION (3.2). C(p) and pEE>l define isomorphic bundles on P, i.e., 

n n n n 
(FfJ,p,E'YJ)EE>( L Lk@FfJ, I, LL"@FfJ)~( LLk@FfJ,C(p),E'YJEE> LL"xEo). 

"~1 k~l ,,~O "~1 

Remark. The definition of Cn(p) is of course modelled on the way one passes from an 

ordinary differential equation of order n to a system of first order equations. 

For brevity we now write Cn(EO, p, E OO
) for the bundle 

n n 

( L L"@FfJ,C(p),EooEE> L L"@FfJ). 
,,~O k~l ' 

LEMMA (3.3). Let p be a polynomial clutching function of degree < n for (EO, EOQ). Then 

(3.4) 

(3.5) 

Proof. We have 

Multiplying z on the bottom line by a real parameter t with 0 < t < I then gives a homotopy 

from C+1(p) to C(p)EE>I and so (3.4) follows using (l.8). Similarly in 

0 ao a l an 
-z I 

-z 1 
cn+l(zp) = 

-z I 

we multiply 1 on the second row by t and get a homotopy from Cn+1(zp) to C(p)EE> -z. 

Using (l.8) and (l.6) (with EI = E~ =L-I@Eo, E2 = E; = EO, PI = 1, P2 = -1, q; =z, ql = -z) 

we deduce (3.5). 

We shall now establish a simple algebraic formula in K(P). For convenience we write 

[EO, p, E OO
] for the element [(EO, p, EOQ)] in K(P). 

PROPOSITION (3.6). For any polynomial clutching function p for (EO, E'YJ) we have 

the identity 
([EO, p, EOQ] - [EO, 1, EO])([LJ[H] - [I]) =0 

Proof. From (3.5) and (3.2) we deduce 
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n n 
(L-1®EO, Zp, EOO)EB( 2: L1c®Eo, 1,2: L 1c®Eo) 

1c~O 1c~O 

n n 
Q; (~,p, EOO )E8( 2: L1c®~, 1, 2: Lk®~}EB(L-l®Eo,z, ~). 

k~l 1c~1 

Using (1.7) and (2.5) and passing to K(P} this gives: 

[L-l] [H-l] [EO, p, E OO
] + [EO, 1, EO] = [EO, p, E OO

] + [L-l] [H- 1
] [EO, 1, EO] 

from which the required result follows. 

Putting EO = I, P = z, E oo 
= L in (3.6) and using (2.4) we obtain the formula: 

([H] -[I]}([LJ[H] - [I]) =0 (3.7) 

which is part of the assertion of our main theorem (2.1). 

4. Linear clutching functions 

We begin by reviewing some elementary facts about linear transformations. Suppose 

T is an endomorphism of a finite-dimensional vector space E, and let S be a circle in the 

complex plane which does not pass through any eigenvalue of T. Then 

is a projection operator in E which commutes with T. The decomposition 

is therefore invariant under T, so that we can write 

Then T + has all eigenvalues inside S while T _ has all eigenvalues outside S. This is just 

the spectral decomposition of T corresponding to the two components of the comple

ment of S. 

We shall now extend these results to vector bundles, but first we make a remark on 

notation. So far z and hence p(z} have been sections over S. However, they extend in a 

natural way to sections over the whole of L. It will also be convenient to include the 

00 -section of P in certain statements. Thus, if we assert that p(z} = az + b is an isomorphism 

outside S, we shall take this to include the statement that a is an isomorphism. 

PROPOSITION (4.1). Let p be a linear clutching function for EO, E oo and define endo~ 

morphisms QO, QOO of EO, Eoo by putting 
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Then QO and Qoo are projection operators and 

Write E~ =QIEI, E~ = (l-Qi) EI (i =0, CXJ) so that EI = E~(£;E~. Then p is compatible with 

these decompositions so that 

Moreover, p+ is an isomorphism outside S, and p_ is an isomorphism inside S. 

Proof. In view of (1.4) it will be sufficient to verify all statements point-wise for each 

xEX. In other words, we may suppose X is a point, L=C and z is just a complex number. 

Now since p(z) is an isomorphism for I z I = I we can find a real number oc: with oc: > 1 so 

that p(oc:): EO---'?Eoo is an isomorphism. For simplicity of calculation we shall identify EO 

and E OO by this isomorphism. Next we consider the conformal transformation 

1-oc:z 
w=~

z-oc: 

which preserves the unit circle and its inside. Substituting for z we find (since we have 

taken p(oc:) = 1) 

where TEEnd~. Hence 

w-T 
p(z)=w+oc:' 

rIJ 1 1 -ld 'll' =-. P P 
2n~ Izl-l 

= Qoo similarly. 

All the statements in the proposition now follow from what we have asserted above in 

connection with a linear transformation T. 

COROLLARY (4.2). Let p be as in (4.1) and W'l'1:te 

p+=a+z+b+, p_=a_z+b_. 

Then putting pt=p~ +p: where 

p~ =a+z+tb+, p~ =ta_z+b_ 0 ~t~l 
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we obtain a homotopy of linear clutching functions connecting p with a+z EEl b_. Thus 

(EO, p, EOO) ~ (E~, z, L®E~)EB(E~, 1, E~). 

Proof. The last part of (4.1) implies that p~ and p~ are isomorphisms over S for all 

t with 0 < t < 1. Thus pt is a linear clutching function as stated. Hence by (1.8) 

(EO, p, E OO ) ~ (EO, pI, E~) ~ (E~, a+z, E':)EB(E~, b_, E':'). 

Since a+:L®E~-7-E':, b_:E~-7-EO:: are necessarily isomorphisms we can use (1.6) and 

deduce that 
(E~,a+z, E':) ~ (E~, z,L®E~) 

(E~,b_,EO::)~(E~, 1,~) 

from which the conclusion follows. 

If p is a polynomial clutching function of degree < n for (EO, E~) then Cn(p) is a. 

linear clutching function for (VO, VOO) where 
n n 

Vo= 2., Lk®Eo, V~ =EooEB 2.,Lk®~. 
k~O k~l 

Hence it defines a decomposi tion 
VO= V~EBV~ 

as in (4.1). To express the dependence of V~ on p, n we write 

V~ = V n(EO, p, EOO). 

Note that this is a vector bundle on X. If Pt is a homotopy of polynomial clutching func

tions of degree <n it follows by constructing Vn over X x I and using (1.3) that 

Vn(EO, PO' E~) ~ Vn(EO, PI' E OO ). 

Hence from the homotopies used in proving (3.4) and (3.5) we obtain 

Vn+1(EO, p, E~) ~ Vn(EO, p, EOO), 

Vn+1(L-I®EO, zp, EOO)~ Vn(EO, p, E OO ) EB(L-I®EO), 

or equivalently (using (1.7» 

Vn+1(EO, zp, L®EOO)~L®Vn(EO, p, EOO)EBEo. 

(4.3) 

(4.4) 

(4.5) 

Finally from (3.2), (4.2) and the remark following Lemma (2.3) we obtain the follow-

ing equation in K(P) 
n n 

[~,p, E OO ] + { 2., [Lk®~]}[1] = [Vn(~'P' Eoo)l [H- 1
] + { 2., [Lk®~] - [Vn(Eo,p, E OO )]} [1] 

k~l. k~O 

and hence the vital formula 

(4.6) 
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Remark. Vn(EO, p, EOO) is the vector space denoted by V; in the introduction and 

(4.6) shows that [V;]EK(X) completely determines [EO,p, EooJEK(P). Bearing in mind 

the relation with ordinary differential equations mentioned in the introduction analysts 

may care to ponder over the significance of (4.6). 

5. Proof of Theorem (2.1) 

Let t be an indeterminate. Then because of (3.7) the mapping t-7[H] induces a K(X)

algebra homomorphism 

/1- :K(X)[t]/(t -1) ([L]t -1) - K(P). 

To prove theorem (2.1) we have to show that /1- is an isomorphism, and we shall do this by 

explicitly constructing an inverse. 

First let I be any clutching function for (EO, E OO). Let In be the sequence of Cesaro means 

of its Fourier series and put Pn =znln. Then, if n is sufficiently large, (2.6) asserts that Pn 

is a polynomial clutching function (of degree <:;;; 2n) for (EO, Ln@E oo). Motivated by (4.6) 

we define 
vn(f) EK(X)[t)/(t -1)([L]t -1) 

by the formula: 
(5.1) 

Now, for sufficiently large n, the linear segment joining Pn+1 and ZPn provides a homo

topy of polynomial clutching functions of degree <:;;;2(n + 1). Hence by (4.3) 

Hence 

since 

V2n+2(EO, Pn+1' Ln+l@E"") ~ V2n+2(EO, ZPn' Ln+l@Eoo) 

by (4.4) 

by (4.5). 

Vn+1(f) = ([L] [V2n(EO, Pn' Ln@E"")]+[EO]}(tn-tn+1) + [EOW+1 =vn(f) 

(t -1)([L]t -1) =0. 

Thus vn (/), for large n, is independent of n and so depends only on I. We write it as '1'(/). 

If now (I is sufficiently close to I and n is sufficiently large then the linear segment joining 

In and (In provides a homotopy of polynomial clutching functions of degree ';;:2n and hence 

by (4.3) 

Thus '1'(/) is a locally constant function of I and hence depends only on the homotopy class 

of I. Hence if E is any vector bundle over P and I a clutching function defining E, as in 

(2.3), we can define 
veE) ='1'(/), 
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and veE) will depend only on the isomorphism class of E. Since veE) is clearly additive for 

EB it induces a group homomorphism 

v:K(P)-+K(X)[t]j(t -1) ([L]t -1). 

In fact it is clear from its definition that this is a K(X)-module homomorphism. 

We shall now check that ltv is the identity of K(P). In fact with the above notation 

we have 
weE] =ltUV2n(EO, Pn' P®E OO

)] (tn-1_tn) + [EOW} 

= [V2n(EO, Pn' Ln®Eoo)]([Hr-1_[Hn]) + [EO] [Hr 

= [EO, Pn, Ln®Eoo] [Hr 

=[EO, tn, EOO] 

= [Eo, t, E OO
] 

=[E] 

by (4.6) 

by (1.7) and (2.5) 

by (1.8) 

by definition of t. 
Since K(P) is additively generated by elements of the form [E] this proves that ltv is the 

identity. 

Finally we have to show that vlt is the identity of K(X)[t]j(t -1)([L]t -1) Since vlt 

is a homomorphism of K(X)-modules it will be sufficient to check that vltW) =tn for all 

n:?O. But 

This completes the proof of Theorem (2.1). 
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