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1.1. Results. I t  is the object of this paper to prove a theorem in homo- 
topy-theory, which follows as Theorem 1.1.1. In stating i t ,  we use one 
definition. A continuous product with uni t  on a space X is a continuous 
map p : X X X - X with a point e of X such that  p(x, e) = p(e, X) = X. 

An H-space is a space which admits a continuous product with unit. For 
the remaining notations, which are standard in homotopy-theory, we re- 
fer  the reader to [15], [16]. In particular, Hm(Y, G) is the m" singular 
cohomology group of the space Y with coefficients in the group G. 

THEOREM 1.1.1. Unless n = 1, 2, 4 or 8, we have the following conclu- 
sions: 

( a ) The sphere S"-' i s  not a n  H-space. 
( b )  I n  the homotopy group x,~-~(S"-'),  the Whitehead product 

[C,-~,C,-~] i s  non-zero. 
( c )  There i s  no element of Hopf invariant one [l71 i n  X,,-,(Sn). 
(d  ) Let K = S" U E"'" be a CW-complex formed by attaching a n  

(m + n)-cell E"'" to the m-sphere S". Then the Steenrod square [31] 

i s  zero. 

I t  is a classical result that  the four conclusions are equivalent [36], 
[31]. Various results in homotopy-theory have been shown to depend on 
the t ruth  or falsity of these conclusions. I t  is also classical that  the con- 
clusions are false for n = 2, 4 and 8. In fact, the systems of complex 
numbers, quaternions and Cayley numbers provide continuous products 
on the euclidean spaces R', R4  and Rs; from these one obtains products 
on the unit spheres in these spaces, that  is, on S', S3 and S'. (See [16].) 
The case n = 1 is both trivial and exceptional, and we agree to exclude 
i t  from this point on. 

The remarks above, and certain other known theorems, may be sum- 
marized by the following diagram of implications. 
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R" is a normed algebra over the reals n = 2,4,  or 8. 

R" is a division algebra over the reals + n = 2" 

S"-', with its usual differentiable 
structure, is parallelisable 13% = 2 ,4 ,  or 8 

1 I 

l l .U. 
S"-', with some (perhaps extraordinary) 
differentiable structure, is parallelisable 

l l 
4 

$( 5 

S"-' is an H-space 

Z 
There is an element of Hopf invariant one in X,,-,(Sn) 

The implications (l) ,  (2), (3) represent cases of Theorem 1.1.1 which 
are already known. In fact, (1) is due to G. W. Whitehead [36]; (2) is 
due to J. Adem [4]; and (3) is due to H. Toda [34], who used an elegant 
lemma in homotopy-theory and extensive calculations of the homotopy 
groups of spheres. 

The implication (4) is just Theorem 1.1.1. The implication (5) is due 
to A. Dold, in answer to a question of A. Borel. (We remark that  Theo- 
rem 1.1.1 implies strong results on the non-parallelizability of manifolds: 
see Kervaire [22].) The implication (6) was proved independently by M. 
Kervaire [21] and by R. Bott and J. Milnor [g]. In each case, i t  was de- 
duced from deep results of R. Bott [7] on the orthogonal groups. 

A summary of the present work appeared as [3]. The first draft of this 
paper was mimeographed by Princeton; I am most grateful to all those 
who offered criticisms and suggestions, and especially to J. Stasheff. 

1.2. Method. Theorem 1.1 .l will be proved by establishing conclusion 
(d). The method may be explained by analogy with Adem's proof [4] in 
the case n # 2'. In case n = 6, for example, Adem relies on the relation 

Sq" sq2sq4 + Sq6Sq1 

Now, in a complex K = S" U Em+6,  the composite operations Sq2Sq4 and 
Sq%ql: Hm(K; 2,) -+ Hmc6(K; 2,) will be zero, since Hm+"(K; 2,) and 
Hm+'(K, 2,) are zero. Therefore Sq6: Hm(K, 2,) -+ Hm+'(K; 2,) is zero. 
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The method fails in the case n = 2', because in this case Sq* is not 
decomposable in terms of operations of the first kind. 

We therefore proceed by showing that  Sqn i s  decomposable i n  terms of 
operations of the second kind (in case n = 2', r 2 4). (cf. [2, 3 l]). We 
next explain what sort of decomposition is meant. 

Suppose that  n = 2,+', k _2 3, and that  U e Hm(X; 2,) is a cohomology 
class such that  s~"(u)=o  for 0 (= i (= k. Then certain cohomology opera- 
tions of the second kind are defined on U; for example, 

and so on. In fact, in 3 4.2 of this paper we shall obtain a system of 
secondary operations Q,,,, indexed by pairs ( i ,  j )  of integers such that  
0 5 i S j ,  j # i + 1. These operations will be such that  (with the data 
above) @,,,(U) is defined if j 5 k. The value of @,,,(U) will be a coset in 
Hq(X, Z,), where q = m + (2" 2, - 1); let us write 

@,,,(U) e H*(X; 2,) / Q*(X; i ,  j )  . 
We do not need to give the definition of &*(X; i ,  j )  here; however, as in 
the examples above, i t  will be a certain sum of images of Steenrod opera- 
tions. (By a Steenrod operation, we mean a sum of composites of Steen- 
rod squares.) 

Suppose i t  granted, then, that  we shall define such operations ai,,. In 
3 4.6 we shall also establish a formula, which is the same for all spaces 
X:- 

Sqn(u) = Cl, j, a i , j .k@i. j (~)  ~ o d u l o  C ,,,: ,,, a,,j,,Q*(X; i ,  j )  . 
In  this formula, each a,,,,, is a certain Steenrod operation. We recall that  
n = 2"", k 1 3. 

Suppose i t  granted, then, tha t  we shall prove such a formula. Then 
we may apply i t  to a complex K = S" U Em+*. If U e Hm(K; Z,), then 
sq"(u) = 0 for 0 5 i 5 k. The cosets Qi,,(u) will thus be defined for j s k ;  
and they will be cosets in zero groups. The formula will be applicable, 
and will show that  Sqn(u)=O, modulo zero. Theorem 1.1.1 will thus fol- 
low immediately. 

1.3. Secondary operations. I t  is clear, then, that  all the serious work 
involved in the proof will be concerned with the construction and proper- 
ties of secondary cohomology operations. Two methods have so far  been 
used to define secondary operations which are stable. The first method 
is that  of Adem 141. This possesses the advantage that  the operations 
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defined are computable, a t  least in theory. Unfortunately, i t  does not 
give us much insight into the properties of such operations. Moreover, 
not all the operations we need can be defined by this method as i t  now 
stands. 

The second method, which we shall use, is that  of the universal ex- 
ample [6], [30]. This is a theoretical method; i t  gives us some insight, 
but i t  gives us no guarantee that  the operations so defined are comput- 
able. Similarly, i t  sometimes shows (for example) that  one operation is 
linearly dependent on certain others, without yielding the coefficients in- 
volved. 

Both methods show that  secondary operations are connected with rela- 
tions between primary operations. For example, the Bockstein cobound- 
ary ,B4 is connected with the relation SqlSql = 0; the Adem operation @ 
is connected with the relation Sq2Sq2 $ Sq3Sq1=0. 

I t  may appear to the reader that  what we say about " relations " in 
this section is vague and imprecise; however, i t  will be made precise later 
by the use of homological algebra [13]; this is the proper tool to use in 
handling relations, and in handling relations between relations. 

In any event, i t  will be our concern in Chapter 3 to set up a general 
theory of stable secondary cohomology operations, and to show that  t o  
every  " r e l a t i o n "  there  i s  associated a t  least one co r respond ing  sec- 
o n d a r y  ope ra t i on .  We study these operations, and the relations be- 
tween them. 

This theory, in fact, is not deep. However, i t  affords a convenient 
method for handling operations, by dealing with the associated relations 
instead. For example, we have said that  @ is "associated with" the re- 
lation Sq2Sq2 $ Sq3Sq1 = 0. We would expect the composite operation 
Sq3@ to be "associated with" the relation 

Similarly, we have said that  ,B4 is "associated with" the relation SqlSql=O. 
We would expect the composite operation Sq5,B, to be "associated with" 
the relation 

But since Sq3Sq2 = 0 and Sq3Sq3 = Sq5Sq1, the relations (l) ,  (2) coincide. 
We would therefore expect to find 

Sq3@ = Sq5,B4 (modulo something as yet unknown). 

And, in fact, the theory to be presented in Chapter 3 will justify such 
manipulations, and this is one of its objects. 
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If we can do enough algebra, then, of a sort which involves relations 
between the Steenrod squares, we expect to obtain relations of the form 

Cl,j a,,,@,,, = 0 (modulo something as yet unknown). 

(Here we use "a" as a generic symbol for a Steenrod operation, and "@" 

as a generic symbol for a secondary operation.) In particular, we shall 
in fact obtain (in 4.6) a formula 

c i , j ;  j s k a i , j , k @ i .  J(u) = Xsq2k+1(u) 

such as we seek, but containing an undetermined coefficient X. 
To determine the coefficient X, it is sufficient to apply the formula to a 

suitable class U in a suitable test-space X. We shall take for X the com- 
plex projective space P of infinitely-many dimensions. Our problem, then, 
reduces to calculating the operations Q,,, in this space P. This is per- 
formed in § 4.5. 

The plan of this paper is then as follows. In Chapter 2 we do the al- 
gebraic work; in Chapter 3 we set up a general theory of stable secondary 
operations; in Chapter 4 we make those applications of the theory which 
lead to Theorem 1.1.1. 

The reader may perhaps like to read 2.1 first, and then proceed 
straight to Chapters 3 and 4, referring to Chapter 2 when forced by 
the applications. 

2.1. Introduction. In this chapter, we make those applications of 
homological algebra [l31 which are needed for what follows. From the 
point of view of logic, therefore, this chapter is prior to Chapter 4; but 
from the point of view of motivation, Chapter 4 is prior to this one. 

For an understanding of Chapter 3, only the first article of this chap- 
ter  is requisite. 

The plan of this chapter is as follows. In $5  2.1, 2.2 we outline what 
we need from the general theory of homological algebra, proceeding from 
what is well known to what is less well known. In 2.4 we state, and 
begin to use, Milnor's theorem on the structure of the Steenrod algebra 
A. In 2.5 we perform the essential step of calculating Ext>"(ZZ, 2,) as 
far  as we need i t .  This work relies on 2.4, and also relies on a certain 
spectral sequence in homological algebra. This sequence is set up in 2.3. 
In the last section, 2.6, we calculate Ex~:~(M, Z,)(as far as we need it) 
for a certain module M that  arises in Chapter 4. 

We now continue by recalling some elementary algebraic notions. 
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The letter K will denote a field of coefficients, usually the field Z p  of 
residue classes modulo a fixed prime p. 

A graded algebra A over K is an algebra over K; qua vector space over 
K, i t  is the direct sum of components, A = CqLOAq; and these satisfy 
l e A,, A,.A, c A,,,. The elements lying in one component A, are called 
homogeneous (of degree q). We shall be particularly concerned with the 
Steenrod algebra [5], [12]. We shall give a formal, abstract definition of 
the Steenrod algebra in 5 3.5; for present purposes the following descrip- 
tion is sufficient. If p = 2, the generators are the symbols Sqkl and the 
relations are those which hold between the Steenrod squares in the (mod 
2) cohomology of every topological space. If p>2 ,  the generators are the 
symbols Pp and P:, and the relations are those which hold between the 
Bockstein coboundary and the Steenrod cyclic reduced powers, in the (mod 
p) cohomology of every topological space. (Here we suppose the Bockstein 
coboundary defined without signs, so that  i t  anticommutes with suspen- 
sion.) The Steenrod algebra is graded; the degrees of Sqk, Pp and PE are 
k, 1 and 2(p - 1)k. 

A graded left module M over the graded algebra A is a left module [g] 
over the algebra A; qua vector space over K, i t  is the direct sum of com- 
ponents, M = C,M,; and these satisfy A,.M, c M,,,. The elements ly- 
ing in one component M, are called homogeneous (of degree q). We shall 
write deg(m) for the degree of a homogeneous element m, and the use 
of this notation will imply that  m is homogeneous. When we speak of 
free graded modules over the graded algebra A, we understand that  they 
have bases consisting of homogeneous elements. 

We must also discuss maps between graded modules. A K-linear func- 
tion f :  M-  M' is said to be of degree r if we have f(M,) c M;,,. We 
say that  it is a left A-map if we propose to write i t  on the left of its argu- 
ment, and if it is A-linear in the sense that  

f (am) = ( - l)qra f (m) (where a e A,). 

Similarly, we call it  a right A-map if we propose to write i t  on the right 
of its argument, and if it is A-linear in the sense that  

(am) f = a(mf) . 
There is, of course, a (1-1) correspondence between left A-maps and 

right A-maps (of a fixed degree r);  it  is given by 

The two notions are thus equivalent. 
Sometimes we have to deal with bigraded.modules; in that  case the 
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degree r which should appear in these signs is the total degree. 
I t  is clear that  we can avoid some signs by using right A-maps; and in 

Chapter 3 we will do this. In the present chapter, however, i t  is con- 
venient to follow the received notation for the bar construction, so we 
will use left A-maps. The passage from one convention to the other will 
cause no trouble, as the applications are in characteristic 2. 

Let 
f M - N  

be a diagram of A-maps in which f and f '  have degree r ,  while g and g' 
have degree S. Then we say that  the diagram is anticornmutative if 

g'f = (-1)'"'g , 

We now begin to work through the elementary notions of homological 
algebra, in the case when our modules are graded. We shall suppose 
given a graded algebra A over K which is locally finite-dimensional; that  
is, Cq,,Aq is finite-dimensional for each r. We shall also assume that  A 
is connected, that  is, A, = K. Let M be a graded module over A which 
is locally finitely-generated; this is equivalent to saying that  &,Mq is 
finite-dimensional. A free resolution of M consists of the following. 

( i ) A bigraded module C = C,,, C,,, such that  A,- C,,, c C,,,,,. We 
set C, = x ,C , , , ,  and require that  each C, is a (locally finitely-generated) 
free module over A. 

(ii) An A-mapd :  C--Cof bidegree (-1, 0), so that  dC,,, c C,-,,,. 
(Thus the total degree of d is -1). We write d,: C, -- C,-, for the com- 
ponents of d. 

(iii) An A-map s : C, - M of degree zero. We require that  the sequence 

should be exact, and we regard C as an acyclic chain complex. 
Next, let L and N be left and right graded A-modules. We have a 

whose elements are the A-maps p : C, - L of total degree -(S + t), so 
that  p(C,,,) C L ,,-,. Since C, is graded, we define 

and 
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We also have a group [l31 

we bigrade i t  as follows; if n e Nu, c e C,,,, we set 

We may regard Hom, (C, L) as  a cochain complex and N @,C as a chain 
complex, using the boundaries 

(&I* Hom, (C,, L)- -HomA(C,-,, L) - Hom,(C,, L)- , 

(Note that  we have to define (d,),, that  is, 1 @ d,, by the rule 

where n e Nu). We may write 6 = z , (d , )* ,  0 = E, (d,), . 
These complexes are determined up to chain equivalence by L,  M, N. 

In fact, given resolutions C, C' of M, M', and given a map f : M-+ M' 
we may extend i t  to a chain map g : C--C'; moreover, such a map is 
unique up to chain homotopy. Such chain maps (and homotopies) yield 
cochain maps (and homotopies) of Hom,(C, L). We thus see that  the 
cohomology groups of Hom,(C, L) are independent of C (up to a natural 
isomorphism), and are natural in M. We write E x ~ ~ ~ ( M ,  L) for 
Ker (d,+,)*/Im (d,)" in the sequence 

(ds)* (ds + I)* .- HomL(C,-,, L) - Hom:(C,, L) ----- Hom",C,+,, L) -. . . 
We also define 

Ext",M, L) =C, Ext  (M, L) . 
Similarly for the homology groups of N@,C, which are written 
Tor$(N, M)  or Torg(N, M). 

We shall be particularly concerned with the cases L = K,  N = K. We 
grade L = K by setting L, = K,  L, = 0 for qf 0. The structure of L = K  
as an A-module is thus unique (and trivial) since a(L,)=O if deg(a) > 0, 
while the action of A, is determined by that  of the unit. Similarly for 
N =  K. 

In the case L = K, N = K we have a formal duality between Tor and 
Ext. In fact, if V is a finite-dimensional vector space over K, we write 
V* for its dual. If V is a locally finite-dimensional graded vector space 
over K, we set 



28 J. F. ADAMS 

v *  = Eq( Vd* 9 

and regard this as the dual in the graded case. Thus K B A C S  and 
Hom,(C,, K )  are dual (graded) vector spaces over K ;  the pairing is given 
by 

h(k @,C) = h(kc) 

for h E Hom,(C,, K) ,  etc. The maps (d,), and (d,)" are dual. Thus 

Tor$,(K, M)  and ExtY(M, K )  

are dual vector spaces over K.  
We now introduce some further notions which are applicable because 

A, = K. We set I(A) = Cq>,Aq; and if N is a (graded) A-module, we set 
J ( N )  = I(A) N. (Thus J ( N )  is the kernel of the usual map N-  K@,N.) 
We call a map f : N + N 1  minimal if Ker f c J(N) .  We call a resolution 
minimal if the maps d, and E are minimal. The word " minimal " ex- 
presses the intuitive notion that  in constructing such a resolution by the 
usual inductive process, we introduce (at each stage) as few A-free gene- 
rators as possible. 

I t  is easy to show that  each (locally finitely-generated) A-module M 
has a minimal resolution. Any two minimal resolutions of M are isomor- 
phic. 

We note that  if C is a minimal resolution of M, then 

Tort, (K, M)  g (K @,C),,, 
Exts;"M, K )  E Homa(C,, K )  . 

This is immediate, since the boundary 0 in K@,C is zero, and so is the 
coboundary 6 in Hom,(C, K) .  

This concludes our survey of the elementary notions which are needed 
in Chapter 3. 

2.2. General notions. In this section we continue to survey the gener- 
al notions of homological algebra that  we shall have occasion to use later. 

We begin by setting up a lemma which forms a sort of converse to the 
last remarks of 5 2.1. I t  arises in the following context. Let 

be a partial resolution of M; and set  Z(s) = Ker(d,) n J(C,). Then there 
is a homomorphism 

B : Z(s) - Tor;+,(K, M) 

defined as follows. Extend the partial resolution by adjoining some C,,,, 
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d,,,. Given x e Z(s), take W e C,,, such that  d,+,w = x, and define 

We easily verify that  6 is well-defined, epimorphic, and natural for maps 
of M. 

Next, let {g,) be a K-base for Tor;+,(K, M); choose x, e Z(s) so that  
6(xJ = g,. Let C,+, be an A-free module on generators c, in (1-1) corre- 
spondence with the xi, and of the same t-degrees; and define 

LEMMA 2.2.1. The map  d,+, i s  minimal,  and if d, i s  also minimal, 
then 

ds dscl c,-, - CS --- CS+, 

i s  exact. I n  this case {l@,c,) = g,. 

We shall use this lemma to construct minimal resolutions in a conveni- 
ent fashion. In this application, since d, will be minimal, 6 will be defined 
on Ker (d ,) . 

PROOF. By the construction, we have dSd,+, = 0. Moreover, if 
S d s + 1  - C, c------ C,,, is not exact, we may add further generators to 

C,,, (obtaining C:+,, d:+,, say) so tha t  the sequence becomes exact. By 
using the definition of 6, the condition B(x,) = g, now yields 

{'@Ac$} gi ' 

We will now prove that  d,+, is minimal. In fact, take an element 

2 = Cp, + a&, 

of Ker(d,+,), with X, e K, a, E I(A).  Then, on extending our resolution to 

we can find W such that  d:+,w = x. Hence 

W @*W> = C , ( l  @A X&> 

That is, CX,~, = 0. Thus X, = 0 for each i ,  and x lies in J(CS+,). We 
have shown that  dS+, is minimal. 

We now suppose that  d, is minimal, so that  Z(s) = Ker(d,). We wish 
to prove the exactness. Suppose, as an inductive hypothesis, that  
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is exact for t < n;  this hypothesis is vacuous for sufficiently small n.  One 
may verify that  the kernel of 

is J(ker(d,)). Hence any X in Z(s) 0 C,,, can be written in the form 

X = x,xixt + C j(- l)'(-"a,x, 

with X, E K, a, e I(A),  X, e Ker (d,), E( j) =deg (a,). By the inductive hy- 
pothesis, X, = d,+,w,, say; hence 

X = ds+,(C&ct + C,a,w,) . 
This completes the induction, and the proof of Lemma 2.2.1. 

We next introduce products into the cohomology groups Ext. One 
method of doing this is due to Yoneda [37]. Let M, M', M" be three 
A-modules, with resolutions C, C', C". Let 

f : C, - M', g : C',, - M" 

be A-maps of total degrees -(S + t), -(S' + t'), such that  fd,,, = 0 and 
similarly for g, so that  f ,  g represent elements of 

ExtsqYM, M') , Ext;,"(M', M") . 
Then we may form an anticommutative diagram, as follows. 

The composite map (-l)(S+t)("'+')gf,, represents an element of 

E x t y " ~ ~ + ~ ' ( M ,  M") . 
(The sign is introduced for convenience later.) By performing the ob- 
vious verifications, we see that  this "composition" product gives us an 
invariantly-defined pairing from EX~; .~ ' (M' ,  M") and Ext;"M, M') to 
EX~"=" '~~+~ ' (M,  M"). This product is bilinear and associative. 

Our next lemma states an elementary relation between this product 
and the homomorphism 
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introduced above. We first set up some data. 
Suppose given a K-linear function a : A+K, of degree -tr(t' > O), and 

such that  a(ab)=O if a E I(A), b E I(A). That is, a is a primitive element 
of A*. I t  follows that  a I I(A) is A-linear. Let us take a resolution C' of 
K,  such that  C; = A and E' : C: --t K is the projection of A on A,. Then 
the composite 

is A-linear, and defines an element 

h, E ExtiP(K, K )  

depending only on a. 
Suppose given an element h of Exts;"M, K); let C be a partial resolu- 

tion of M over A, and define Z(s) = Ker(d,) n J(C,), as above. Let X be 
an element of Z(s) 0 C,,,,,,, and suppose tha t  X can be written in the 
form X = x,a ,c , ,  where a, e I(A) and d,c, e J(C,-,). For example, if d,-I 
is minimal, then we can always write X in this form, by taking the ele- 
ments c, from an A-base of C,. In any case, we have 

Here, of course, the product (h,h)(dx) can be formed because 
E~ts i+ ' .~+~' (M, K )  and Tor:+,,,+,, (K, M)  are dual vector spaces; similarly for 
the product h {l @,c,}. 

PROOF. In order to obtain the product h,h, i t  is proper to extend the 
the following diagram, in which f is a partial resolution C and set up 

representative cocycle for h. 

M& cCO C--. . 

We see that  



32 J. F. ADAMS 

( -1)  ( S + , )  ( - ' + C 1 )  (h&) (8%) 
= ad: f,(d,;',x) = (- l)"Cafox = (- l )" tafox,a ,c ,  = aC,(- l)'(i)a,(focl) 

= C,(- l ) " t ' ( W ) ( f c d  where ~ ( i )  = ( S  + t )  (l + deg (a,)) . 
But h{l@,C,) = ( fc , ) ,  and the only terms which contribute to the sum 
have deg(a,) = t'. This proves the lemma. 

We next introduce the bar construction, which gives us a standard 
resolution of K over A.  Let us write M@ M' for M@,M1. Then we set  

A = AIA, , (A)' = K , (A)" A @  (A)"-' (8 > O), 

m) = xS,,(A)\ B(A)  = A @ B(A) . 
Thus, B(A)  is a free A-module, and &A) r K@,B(A). We write the 
elements of (A)%nd A@(A)%I  the forms 

[a, I a,  I Ia,l, a b ,  I a, I I as] . 
We also write a for a[ 1. We define an  augmentation E : B(A)  - K by 
&(l) = 1, &(I(A))  = 0, &(A@@)" = 0 if s > 0. We define a contracting 
homotopy S in B(A)  by Sa,[a, / a, I . / as]  = l [a, I a,  I a, 1 .  . I a,]. We de- 
fine a boundary d in B(A)  by the inductive formulae d(1) = 0, dS+Sd = 
1 - E ,  d (am) = ( - l )%(dm)  (a  E A,). B (A)  thus becomes a free, acyclic 
resolution of K over A.  We take the induced boundary d in B(A); its 
homology is therefore TorA ( K ,  K ) .  

Explicit forms for these boundaries are as follows (where a, E I (A )  for 
i 2 l.) 

da, [a,  I a,  I . . I a,] = ( - l)"o)aoal [a, I l a,] 
+ CISTSS (- l)""ao[a1 I . . I a&&+, I .  . . I as1 9 

d[a1 I a, I . lasl = Clsrss (-1)"") [a1 l , l arar+l l ' ' l as1 , 
where 

&(r) = r +CoS t s rdeg (a t )  , ~jl(r) = r+ClSiST deg(a,) . 
I t  would therefore be equivalent to set 

I (A )  = C,,,A,, I(A)' = K , I(A)" I (A )  @ I(A)"-' , B(A) = C,,,I(A)" 

and define the boundary d, : I(A)" -(A)"-' in B(A) by the formula given 
above for d. 

I t  is now easy to obtain the vector-space dual (B(A))* of B(A). Let 
A* be the dual of A.  We define A* = A*/A;; A" is dual to I (A);  (*)"S 
dual to  (I(A))\ We may define 

F@*) = Es20(*)s; 
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F(A*) is dual to B(A). We write elements of F(A*) in the form 

[a1 I a, I I %I 
where a, E A*. 

From the product map 9 : A @ A -A we obtain a diagonal map +=F*: 
A* -- A* @A*. (Here we define the pairing of A* @ A* and A @ A by 
(a@B) (a @ b) = (aa)  (pb); we thus omit the sign introduced by Milnor 
[25]. Since the applications are in characteristic 2, this is immaterial). 
Let us write +(a) = Cua;@a;;  we may now define the coboundary 

d" - (p)" 
by 

&[a1 I a2 I . . . I  %-l1 = C1s7sS;u(-l)e(r,u)[al I . - . I  a:,, l a:;), I '  ' ' I  %-,I l 

where 
4 r ,  U )  = r + deg(a:,,) + ~ , , , , , d e g ( a , >  . 

The coboundary G? is dual to d,; the cohomology of F(A*) is therefore 
ExtA(K, K) .  Of course, F(A*) is nothing but the cobar construction [ l ]  
on the coalgebra A*. 

There is a second method of introducing products, which uses the 
bar construction. In fact, we may define a cup-product of cochains 
in F(A*) by 

[a1 I a, 1 .  . . I a s ]  [a,+, I a s + ,  I .  . . I as+,,] = [a1 I a 2  I .  . . I a s  I %+l I . I %+S,] 
I t  is clear that  it is associative, bilinear and satisfies 

(where X = [a,  I a, 1 .  . I a,], t =Cl,,,, deg(a,).) Therefore it induces an 
associative, bilinear product in the cohomology of F(A*), that  is, in 
ExtA(K, K) .  Indeed, this cup-product of cochains even allows us to define 
Massey products [23] [24] [35], etc. 

We should show that  this product coincides with the previous one (in 
case M = M' = M" = K.) Let 

f : A@(A)" K 
be an A-linear map of degree -(S + t) such that  fd,+, = 0. The previous 
method requires us to construct certain functions 

f8, : A@(A)"~' -- A@(A)" . 
We may do this by setting 

f,,(ao[a1 I a2 I - 1  a,+,,]) = (-l)Fao[al 1 a2 I l a s t l f  [a,rt, I . I a s t s ~ l  1 

where e = (S + t)(sr + t') and tr  = C,,,,,, deg(a,). From this i t  is im- 
mediate that  the two products coincide. 
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A third method of defining products is useful under a different set  of 
conditions. Before proceeding to state them, we give A @ A  the struc- 
ture of a graded algebra by setting 

and 

E = deg (a,) deg (a3) . 
Similarly, if M,, M, are (graded) A-modules, we give M, @ M, the struc- 
ture of a graded A@A-module by setting 

and 

where 

E = deg(a,) deg(m,) . 
We now suppose that  A is a Hopf algebra [25] [26]. That is, there is 

given a "diagonal" or "CO-product" map 

which is a homomorphism of algebras. I t  is required that  + should be 
"CO-associative", in the sense that  the following diagram is commutative. 

(This diagram is obtained from that  which expresses the associativity of 
a product map, by reversing the arrows.) Lastly, it is required that  + 
should have a " CO-unit", in a similar sense. 

Let C be a resolution of K over A. We may form C@C, and give i t  a 
first grading by setting 

(C@C)St, = ~ s + s f ~ s ~ ~ ~ s @ ~ s ~  

Here, each summand is a (graded) module over A @  A. We give C@ C a 
boundary by the rule 
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the complex C @ C  is acyclic. We may thus construct a map 

A : C - C @ C  

compatible with the map + of operations, and with the canonical isomor- 
phism K - K @  K. The map A induces a product 

By performing the obvious verifications, one sees that  this product 
yields an invariantly-defined pairing from Ext i t (K,  K )  and Ext"dC'(K, K )  
to E x ~ Y " ~ ~ + " ( K ,  K) .  This product is bilinear and associative. Moreover, 
if the diagonal map + of A is anticommutative, then one easily sees (as in 
[13, Chapter XI]) that  this product is anticommutative, the sign being 
(_~)(S+C)(S'+C') 

We should next show that  this product coincides with the previous one, 
defined using the bar construction. In fact, if we take C =B(A), we may 
construct a map A by using the contracting homotopy 

T = S 8 1  + & @ S  

in B(A) @ B(A); we use the inductive formulae 

( 1  = l @ l , A S  = TA , 
A(am) = (+a) (Am) . 

Let us write +(a,) =Ca:@a:', leaving the parameter in this summation 
to be understood; and suppose deg (a,) > 0 for l g r 5 g. Then we find 

A[al 1 az 1 .  . . I a,] = J'&,,, (- l)'[a: I a; I . I a:] @ a:'air .a:'[a,+, 1 .  la,l 

where = C l S t < j S r  deg(air) ( l  + deg(a;)). The resulting product p in 
Hom,(B(A), K )  coincides with the cup-product in F(AX) given by 

These two products in ExtA(K, K )  thus coincide. From this we can 
make two deductions. First, the product defined using the diagonal map 
+ in A is independent of +. Secondly, if the algebra A should happen to 
admit an anticommutative diagonal +, then the cup-products defined us- 
ing the bar construction are anticommutative. This would not be true 
for a general algebra A. 

Let us now assume that  the diagonal + in A is anticommutative; let 
us set C = B(A), and let p : C @ C  - C @ C  be the map which permutes 
the two factors and introduces the appropriate sign. We will define an 
explicit chain homotopy X between the maps 
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We do this by the following inductive formulae: 

X(1) = 0 
XS = T(pA - A)S - TX 

 am) = ( - l )  " g  a+(a)>Xm) . 
We will now assume K = Z,, since this is satisfied in the applications; 
we may thus omit the signs. We have the following explicit formula for 

(Here, of course, we have again used the convention that  +(a,)=Ca:@ap). 
Passing to the complex B(A), and then to its dual F(A*), we obtain a 

product --, in F(A*), satisfying the usual formula 

6(x --,y) = 6x --,y + X --,ay + X -- y + y -- X . 
To give an explicit form for this product, we recall that  if A is a Hopf 
algebra, then its dual A* is also a Hopf algebra, with +* for product and 
9" for diagonal. This gives sense to the following explicit formula. 

Here we have written the iterated diagonal 'ly : A* -- (A")q in the form 

the parameter in the summation being left to be understood. 
In particular, we have 

This concludes the present survey of general notions. 

2.3. A spectral sequence. In this section we establish a spectral se- 
quence which is needed in our calculations. I t  arises in the following 
situation. 

Let l? be a (connected) Hopf algebra [26] over a field K,  and let A be a 
Hopf subalgebra of l?. We will suppose that  A is central in F, in the 
sense that  

ab = (- l)lUba if a E A,, b E l?, . 
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This already implies that  A is n o r m a l  in r ,  in the sense that  

I(A).F = l?-I(h) , 
where I(A) = C,,,A, (cf. [13, Chapter XVI, $61). We define the quotient 
a = r / /A  by 

F//A = F/(I(A) -F) (cf. [13], loc. cit.) 
To simplify the notation, we define Hkt(A) = ExtY(K, K) ,  HYA) = 

Ext;(K, K),  where A is a connected, graded algebra over K. 
We now take the (bigraded) cochain complex F(FX),  with the cup-pro- 

duct defined above. We filter it by setting 

[CY, 1 CY, 1 .  . . l  C Y J  E q r * y p )  
if a, annihilates I(A) for p values of i. 

THEOREM 2.3.1. T h i s  f i l t rat ion of F ( r * )  defines a spectral sequence 
w i t h  cup-products,  such tha t :  

( i ) E, gives a composition-series f o r  H*(I'). 
(ii) E, E H*(A)@ H*(a) .  

Here the r ing-s t ruc ture  of the  r ight-hand side i s  defined by 

where y E HPmt(fL), x E Hqsu(A). 
(iii) T h e  i somorphism 

E:," Hq(A) @ K E Hq(A) 

i s  induced by the  n a t u r a l  m a p  F(I'*) - F(A*). T h e  i s o m o r p h i s m  

i s  induced by the n a t u r a l  m a p  F(fL*) - F ( r X ) .  

This spectral sequence was used in [Z]; the author supposes that  it 
coincides with that  given in [13, Chapter XVI], but this is not relevant to 
the applications. 

In [l31 i t  is assumed that  r is free (or a t  least projective) as a (left or 
right) module over A. In our case, this follows from the assumption that  
r is a Hopf algebra and A a Hopf subalgebra. Thus, if { W , }  is a K-base 
for a ,  with o, = 1, and if y, is a representative for o, in l?, with y, = 1, 
then {y ,}  is a (left or right) A-base for I' (see [26]). This is the only 
use we make of the diagonal structure of l? and A. 

We begin the proof of the theorem in homology, by considering the 
(bigraded) chain complex B(r) .  We filter it by setting 

[ a ,  I a ,  I la,] E B ( ~ ) ( P )  

if a ,  e I(A) for ( s  - p)  values of i .  Each B(T')(P) is closed for d; we thus 
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obtain a spectral sequence, whose term E m  gives a composition series for 
H,(l?) = Torr(K, K). We have to calculate EZ. To this end, we begin 
by calculating the homology of certain subcomplexes of B(??). 

Let us consider 

Both are closed for d, and the first is also closed for S, hence acyclic. 
Consider 

T h e  i somorphism f o r  s = p i s  obtained by projecting A to  K a n d  (F)" t o  
( n y .  

(Here, of course, the suffix s refers to the first grading.) 

PROOF. This is certainly true for p = 0, since A @  B ( ~ ) ( o )  = B(A). As 
an inductive hypothesis, suppose it true for p. Consider the following 
chain complexes. 

We have an exact sequence 

and hence an exact homology sequence. We know that  H,(CU) = 0; we 
may find H,(Ct) by expressing C' as a direct sum. Let {yi} be a right 
A-base for l?, with yl = 1, as above; we may define an antichain map 
f, : C(p) -+ C' by 

fi(x) = Yix; 

f i  is monomorphic (if i > 1) and 

C' = f i (C (~ ) )  . 
We deduce that  
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The isomorphism for S = p is obtained by projecting I? to 6 and (F), to 
(a),. Now, in the exact homology sequence, we have 

from this we see that  the lemma is true for ( p f l ) .  This proves the lem- 
ma, by induction over p. 

We now note that  C(") is a free (left) A-module, and 

this isomorphism is a chain map. Therefore the term El of the spectral 
sequence is given by 

The last step uses the fact that  qua H,(C(,)), has trivial operations 
from A (see Lemma 2.3.2.) 

In order to calculate E;,,, we need explicit chain equivalences between 

In one direction the map is easy. Let n : l? 4 Cl be the projection. De- 
fine a map 

Then v is a A-map, a chain map (if the boundary in B(A) @ ( 6 ) ~  is d @ 1) 
and induces the isomorphism of homology established above. By the 
uniqueness theorem in homological algebra, the induced map 

is a chain equivalence. 
We have not yet made any essential use of the fact that  A is central 

in l?. However, this fact is required; it ensures that  H,(A) (which is anal- 
ogous to the homology of the fibre) has simple operations from a. We 
use it in constructing the equivalence in the other direction. 

We define a product 

p: m )  0 --* 

as follows, using shuffles [14]. Take elements 
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Let c,, c,, S . ,  c,,, consist of the ai and b, in some order; we require that  
the ai occur in their correct relative order and that  the b, occur in their 
correct relative order. We call such a set c = {c,} a shufle. Let us 
write x n  P instead of C , n  if the proposition P has a complicated form. 
Then we define the signature (- 1)"'") of a shuffle by 

&(C) = C (1 + deg(ai)) ( l  + deg (b,)) I a, = c,, b, = c,, ,7c > 1 . 
We also set 

We now define 

p(a[a, I a, 1 .  . la,] @ b [b, b, I . . I b,]) = X, ( -  l)"'")+"ab [c, 1 c, / Ic,+,l . 

LEMMA 2.3.3. d p ( x @ y )  = p ( d x @ y )  + (- l )q+tp(x@dy)  (where 
X B(A),,d. 

This lemma, of course, is the usual one for shuffle-products (see [14]); 
it  depends on the fact that  A is central in F. 

If we restrict y to lie in (F),, and pass to the tensor-product with K, 
we obtain an induced map 

Its  explicit form is 

We define a K-map I : 6 - by I(w,) = yi, where {wi), {y,) are bases 
for SZ, r over K,  A, as above. We may now define 

Then p' is a A-map, a chain map, and induces the correct isomorphism of 
homology. On passing to tensor products with K, we obtain an induced 
map 
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which, as before, is a chain equivalence. We even have v,p; = 1. 
The equivalence p',, then, is just the composite 

LEMMA 2.3.4. The following diagram is commutative. 

(It  is, of course, implied that  this v,, is the one defined for dimension 
(P - l).) 

PROOF. Take X E ~ ( h ) , , ,  such that  dx = 0, and y E so that  x@y 
is a representative for an element of H , ( B ( A ) @ ( ~ ~ ) ~ ) .  Then the follow- 
ing elements represent v,,dlp',, {X @ y}  : 

Inverse isomorphisms are induced by p',, and v,,. We note that  the iso- 
morphisms 

are induced by the natural maps B(A) 4 ~ ( r ) ,  ~ ( r )  - ~ ( 8 ) .  
Let us now pass to the vector-space dual of this spectral sequence. I t  

is obtained by giving F(F*) a filtration in which F(r* )  ( p )  is the annihilator 
of B( I? ) (~ -" .  This is the filtration originally described. The cup-products 
satisfy 

We thus have a spectral sequence with products. We have obtained 
the whole of Theorem 2.3.1, except that  part which relates to the ring- 
structure of E,. 
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To obtain this ring-structure, we consider the isomorphism 

dual to p;, and v,,. I t  may be described as follows. Let X be a cocycle 
of dimension q in F(A*), and let y be a cochain in ( 6 , ) ~ .  Let X' be a co- 
chain in F(I'*) such that  i*xl = x, where i : A --t F is the inclusion. Then 
{X'-ny} is an element of E independent of the choice of X'; and v"", 
the dual of v,,, maps {X} @ y to {X'-7r"y). 

Next, let X, x be cocycles in F(A*), representing elements of Hq',"'(A), 
Hq,"(A). Let y, W be cochains in F(fl"), of bidegrees (p, t), (p', t '). Let 
X', x' be cochains in F ( P )  such that  i*xl = X, i*xl = x .  Then 

Now let X be a cycle in B(A), of dimension q+ql, and let Y be a chain 
in ~ ( f l ) ,  of dimension p + p 1 .  Inspecting the definition of the shuffle- 
product, we see 

That is, 

We have shown that  the isomorphism 

preserves the ring-structure. Therefore the induced isomorphism of E 
does so. This completes the proof of Theorem 2.3.1. 

2.4. Milnor's description of A. In this section we recall J. Milnor's 
elegant description of the Steenrod algebra A [25], and begin to deduce 
from i t  the results we shall need later. 

We recall that  the mod p Steenrod algebra A is a Hopf algebra; that  
is, besides having a product map 9 : A @  A -+ A, it has a diagonal map 
+: A -+ A @A, and these satisfy certain axioms. The diagonal 9 may 
be described as follows. We have an isomorphism 

given by the external cup-product. The left-hand side admits opera- 
tions from A; the right-hand side admits operations from A@A, defined 
as in 9 2.3. There is one and only one function 

such that  
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p(ah) = +(a)W) 
for all X, Y, a and h. (This may be shown, for example, by the method 
of g 3.9.) 

We make the identification (A@ A)* = A* @A*; A* thus becomes a 
Hopf algebra, whose product and diagonal maps are the duals of + and 
9. We now quote Milnor's theorem [25] on the structure of A*, in the 
case p = 2. 

THEOREM 2.4.1. 

( i )  A* i s  a polynomial algebra on generators E,, i=l, 2, S ,  of grad- 
ing 2" l. 

( ii ) 9*fk = C,+,=, E;" E, (where E, = 1). 
(iii) f:(Sqk) = l and m(Sqk) = 0 for any other monomial m i n  the E,. 
I t  is possible to describe the elements f i  very simply. In fact, consid- 

er  H*(x, 1; 2,) for T = 2,; this is a polynomial algebra on one generator 
X of dimension 1. If a e A, then ax is primitive, so that  

ax = C,,,X,X~' with X, e Z2 . 
We define E, by E,(a) = X i .  The elements f ,  are thus closely connected 
with the Thom-Serre-Cartan representation [30], [l21 of A. In fact, con- 
sider H*(n, 1; Z,), where X is a finite vector space over 2,; this is a poly- 
nomial algebra on generators X,, X,, , X, of dimension 1. If a E A, we 
have 

a(x,x,- -X,) = C ,,,, ,, , ((fiE, . fi)a)xl(xlJ . . .xiz . 
We now pass on to the study of certain quotient algebras of A. I t  

is immediate that  the generators f ,  of A* which satisfy 1 5 i 5 n gen- 
erate a Hopf subalgebra of A*; call it  A,*. The dual of A: is a Hopf al- 
gebra Q,, which is a quotient of A. We have 

HSst(Q,) S HS.t(A) if t 5 2"+l - 2 .  

For each n ,  Q, is a quotient of Q,,, .  
Now, suppose we are given an epimorphism TC : r - Cl of connected 

Hopf algebras, and suppose that  the dual monomorphism X*: Cl* -+F* 
embeds Cl* as a normal subalgebra of r *  (see 5 2.3). Then we may form 
the quotient F*//8*, which is again a Hopf algebra; let us call its dual 
A, so that  A* = F*//Cl*; then A is embedded monomorphically in r. 

LEMMA 2.4.2. If A, l?, Cl a re  as  above, then A i s  normal i n  F, and 
r / / ~  G 8. 

This lemma is an exercise in handling Hopf algebras [26]; we only sketch 
the proof. I t  is trivial that  
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we have to prove the opposite inclusions. We see that  A is the kernel of 
the composite map 

Ic. F - r @ r - + r @ i i ;  

call this composite X. We see that  if 

%(X) e E,,,rr @ 6 , 

Now suppose ?rx = 0. By an inductive process, using %(X), we may sub- 
tract from X products yx with y e A,, m>O; we finally obtain a new X' 

with %(X') = 0. This shows that  Ker n c I(A)-F; similarly for F-I(A). 
We may apply this lemma to the epimorphism Q, --t Q,-, introduced 

above. We see that  in this application, F* and fl* become A,* and A:-,. 
Thus A* = F"//fl* becomes Ac//A:-,, that  is, a polynomial algebra on one 
generator E,, whose diagonal is given by 

We write K, for the corresponding algebra A; it is a divided polynomial 
algebra. 

Since we propose to apply the spectral sequence of 5 2.3 to the case 
A = K,, r = Q,, we should show that  K, is central in Q,. We may pro- 
ceed in the duals, by showing that  the following diagram is commutative. 

(Here, of course, p is the map which permutes the two factors.) Since 
each map is multiplicative, we need only check the commutativity on the 
generators, for which i t  is immediate. 

The reader may care to compare the work of this section with that  of 
[2, § 51. 

2.5. Calculations. In this section we prove what we need about the 
cohomology of the (mod 2) Steenrod algebra A. The result is:- 

THEOREM 2.5.1. 
( 0 ) HO(A) has as a base the uni t  element 1. 
( 1 ) H1(A) has as a base the elements h ,  = {[E1']} for i = 0, 1, 2, . . . 
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( 2 ) In H2(A)  we have h,+,h, = 0. H2(A)  admits as a base the products 
h5hi for which j 2 i >= 0 and j f i + 1. 

( 3 ) In H 3 ( A )  we have the relations 

If we take the products h,h5h, for which k >= j >= i >= 0 and remove the 
products 

then the remaining products are linearly independent in H3(A).  

We propose to prove this theorem by considering a family of spectral 
sequences. The nth spectral sequence, say will be obtained by ap- 
plying 5 2.3 to the algebras 

In these spectral sequences, we know H*(Kn); we have Q, = K,, so that  
H*(&,) is known; we propose to obtain information about H*(&,) by in- 
duction over n. 

We will now give names to the cohomology classes which will appear 
in our calculations. Let h,,, be the generator {[fi"} in H1(Kn); HX(K,) is 
thus a polynomial algebra on the generators h,,,, where i = 0, 1 ,2 ,  . . . 
We shall write h,(instead of h,,,) for the generator { [ f f l }  in H1(Q,), or for 
its image in H1(Q,). 

We define the class g,-,,, in H2(Qn-,) by 

gn-1,i = n~hn,i 9 

where ,r : H1(K,) - H2(Qn-,) is the transgression. The class g,-,,, can be 
represented by the explicit cocycle 

where the sum extends over j + k = n, j > 0, k > 0. 

Similarly, we can define a class f,-,,, in H3(Q,-,) by 

fn-1.i = nTh2n.i , 
since hi , ,  is clearly transgressive. The class f,-,,, can be represented by 
the explicit cocycle 

where X = [ f ; ] ,  so that  6x is the cocycle obtained above. The --,product 
6x --, 6x can be expanded by the formula given a t  the end of 5 2.2. 
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(i i)  If n > 1, then g,,, i s  of jiltration 1 i n  H*(&,), h,,i+lhi + h,,,h,+, 
i s  a cycle i n  ,E:,', and i n  ,Ebb1 we have 

{gn.i} = {hn.i+lhi + hn,ihn+iI . 
(iii) If n>1 ,  then f,,, i s  of jiltration 1 i n  H*(&,), h ~ , , + l h , + l + h ~ , i h n + i + l  

i s  a cycle i n  and  i n  ,E:,', and  i n  ,EYwe have 

{fn.i} = {hi,t+lhi+l + h:.ihn+i+J 
These conclusions follow from the explicit cocycles given above. For 

example, the explicit cocycle for g,,, is 

[E? l E!] ; 
the explicit cocycle for f,,, is 

[E;''" E;? E;? + [[E;"" 1 E;"" l E?"] ; 

the explicit cocycle for g,,, differs from 

[E"" l E?"] + [E?"'" [Ek'l 
by a cochain of filtration 2; and so on. 

We will now begin the calculations. 

LEMMA 2.5.3. 
( i ) The elements h, i n  H1(Q,) a re  linearly independent. 
( i i )  If n > 1, the elements {g,,,} i n  ,EL1 are  linearly independent. 
(iii) I n  HYQ,), the elements g,,, and  h,h, (where j I i I 0, j f i + 1) 

a re  linearly independent. 
(iv) H1(Q,) i s  spanned by the elements hi. 
PROOF. Part  ( i )  is immediate, since no differential maps into ,E$'. 
Par t  (ii) follows from Lemma 2.5.2 (ii), since no differential maps into 

,Ey. 
Par t  (iii) is true for n = 1, since g,,, = h,+,h,. We proceed by induc- 

tion over n;  let us assume tha t  part (iii) holds for Q,-,. We must examine 
the differential 

,d2: ,E;,' --., . 
I t  is described by 

ndz(hn,t) = gm-1.i 
We conclude that:- 

( a )  .EL1 = 0. 
( b )  The classes (h,h,} (for j 2 i 2 0, j + i + 1) are linearly indepen- 

dent in ,ELo. 
Using part (ii), we see that  part (iii) holds for Q,. 
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Part  (iv) follows immediately from the fact that  ,E:' = 0. This com- 
pletes the proof. 

LEMMA 2 . 5 . 4 .  In H2(Q,) for n 2 2 we have 

( i )  h,+,h, = 0 
( ii> <h,,h,+,, h,> = hi+, 
(iii) <h,+,, hi, hi+J = h,+,hi. 
In H"(&,) we have 
( W  <ht+2, h + l ,  h'> = g2.i 
( v )  %+,h, = gz,,h,+1. 
PROOF. The following formulae show that  h,+,h, = 0, hihi+, = 0 in 

H"(&,) for n 2 2: 

W:] = [&?+l l E?"] 
+ E:'"] = [E? 1 E?""] . 

These formulae will also help us to write down explicit cocycles repre- 
senting the Massey products mentioned in the lemma. For example, 
<h,+,, h,,,, h,> is represented by the explicit cocycle 

which coincides with that  given above for g,,,. This proves (iv). 
To prove (ii) and (iii), we may quote the formula 

or by substituting appropriate values in the proof of this formula, we 
obtain the following:- 

These formulae prove (ii) and (iii). 
Since we now know H1(Q,), i t  i t  easy to check that  the Massey products 

considered above are defined modulo zero. 
To prove (v), it  is sufficient to make the following manipulation: 

Alternatively, by substituting appropriate values in the proof of the re- 
lation 

a<b, c, d> = <a, b, c>d ,  

we obtain the following:- 
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This formula proves (v). This completes the proof. 

LEMMA 2.5.5. 
( i ) If n > 1, the elements hi,, form a base for .E:,'". 
( i i )  If n > 1, the elements {f,,,} i n  .EL2 are linearly independent. 
(iii) If n > 2, the elements {gn,,hi} for which j f i + 1 are linearly 

independent in  ,EL1. The same is true for n = 2, provided we exclude 
also the elements {g,,,hi+,} . 

PROOF. TO prove part  ( i ) ,  it  is sufficient to note that  the differential 

ndz : "&E:"" 4 ,E$' 

is described by 

Part  (ii) follows from Lemma 2.5.2 (iii), since no differential maps into 
,Eye 

To prove part (iii), we note that  the following formula holds in .E?': 

Moreover, the only differential mapping into .E>' is 

ndz : nE:J 4 ,E;J , 

which has just been described. I t  is now easy to obtain part (iii). This 
completes the proof. 

LEMMA 2.5.1. 
( i ) If n > l, the following elements are linearly independent in  

H3(Qn): the elements f,,,; the elements gn,,h, for which j f  i f 1  ; the prod- 
ucts h,h,h, for which k 2 j 2 i >= 0, with the following exceptions: 

The same conclusion remains true for n=l i f  we include the products 
h2+zhi. 

(i i)  H"(&,) is spanned by the elements g,,, and h,h, (where j 2 i 2 0, 
j # i + l), 

PROOF. I t  is elementary to check part ( i )  for n = 1. We proceed by 
induction over n; let us assume that  part ( i )  holds for Q,-,. We must 
examine the differentials 
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These are described by 

We obtain the following conclusions. 
(a) .Eisl has as a base the elements 

{g,,,} = {h,.,+lh, + hn,,h,+,l . 
(b) .E:," 0. 
(c) In the products h,h,h, named above are linearly independent. 

In the case n = 2, this conclusion remains true when we include also the 
products hi+ ,h,. 

Using Lemma 2.5.5 parts (ii) and (iii), we see that  part ( i ) holds for 
Q,. (If n = 2, we need to know that  g,,,h,+, = h;+,h,; this was proved in 
Lemma 2.5.4.) This completes the proof of part ( i ) .  

Part  (ii) follows immediately from the facts (a) and (b) established dur- 
ing the proof of part ( i ) .  

Since H"$(&,) - HL$(A) as n -+ co (for fixed s and t), the work which 
we have done completes the proof of Theorem 2.5.1. 

2.6. More calculations. In this section we shall calculate ExtY(M, 2,) 
for a certain module M which arises in the applications (and for a limited 
range of s and t). The results are stated in Theorem 2.6.2. 

We first obtain a lemma which is true for a general algebra A over 2,. 
Suppose given a primitive element a in A,* (n  > 0), that  is, an element a 
such that  

~ " a = a @ l + l @ a .  

According to 2.2, i t  defines an element h, in ExtY(Z2, Z,), which for ex- 
ample may be written {[a]}, using the cobar construction. 

In terms of a ,  we define a module M = M(a) as follows. Qua vector 
space over Z,, i t  has a base containing two elements m,, m, of degrees 0, 
n. The operations A are defined by 

These operations do give M the structure of an  A-module, since a anni- 
hilates all decomposable elements of A. 

The element m, generates a submodule M, of M isomorphic with 2,; 
we define M, = MIM,, so that  M, z 2,. We agree to write ~ ' ~ ' ( i  = 1 , 2 )  
for the element of Ext;(M,, 2,) corresponding to the element X of 
Exti(Z27 Z2). 

From the exact sequence 



50 J .  F. ADAMS 

we obtain an exact sequence 

which one might use to calculate Ext2"M, 2,). 

LEMMA 2.6.1. The coboundary 6 i s  given by 

6(x@)) = (xh,)(') 

(where X e Ext",(Z,, 2,)). 
PROOF. Let us take two resolutions C, C' of 2, over A, as follows: 

To calculate the cup-product with h,, we must construct a diagram, as  
considered in 8 2.2. 

Let us now define a boundary d on C + C' and an augmentation E: 

C + C' - M by setting 

C + C' is a chain complex in which C' is embedded, with quotient C; the 
exact cohomology sequence shows that  C + C' is acyclic. C + C' is thus 
a resolution of M; it  contains C', which is a resolution of M,, and the 
quotient is C, which is a resolution of M,. We obtain an exact sequence 
of cochain complexes 

0 - Hom,(C', 2,) c HomA(C + C', 2,) - HomA(C, 2,) 0 . 
The corresponding exact cohomology sequence is the one required. The 
coboundary in 

HomA(C + C', 2,) E HomA(C, 2,) + Hom,(C', 2,) 

is given by 
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(if y ~Hom,(Ci-, ,  2,)). I t  follows immediately that  in the exact coho- 
mology sequence we have 

6 ( { ~ ) ' ~ ' )  = {yf,-11'" = ({~1ha)"' 

This proves Lemma 2.6.1. 
We now suppose that  A is the (mod 2) Steenrod algebra. Take an in- 

teger k 2 2; we define a module M = M(k) as follows. Qua vector space 
over Z,, i t  has a base containing three elements m,, m,, m, of degrees 0, 
2'", 2"". The operations from A are defined by 

= 
(if deg (a) = 2k) 

am, = 0 

am, = (~:""a)m, (if deg (a) = 2'"") . 
The elements m,, m, generate submodules M,, M, isomorphic with 2,; 

we write i,, i3 for their injections. We define M, = M/(M, + M,), so that  
M, r 2,; we have an exact sequence 

We continue the previous convention about X'". 

THEOREM 2.6.2. I n  dimensions t < 3.2" Exti(M, 2,) has a s  a base the 
elements 

j * W  ( o s i s k - I )  
( i y h p ? ,  

and Ext;(M, 2,) has a s  a base the elements 

j*(h*hZ)(l1 ( O = ( i 6 1 ~ k - 1 , 1 #  i + 1 )  
(i2*)-1(hdhk-1)(2) ( O s i s k - l , i # k - 2 )  
(i:)-1(hk-2hk)(2) . 

PROOF. We have a diagram 

Now, Lemma 2.6.1 applies to M/M3, with a = l?; thus 6 ( ~ ( ~ ' )  = (xh,)"). 
By naturality, the same formula holds in the exact sequence 

6 j* 6 - Ext;'(M, + M,, 2,) - Ext:'(M, 2,) - EX~;~(M,, 2,) -* . 
Similarly, 
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I t  follows (using Theorem 2.5.1) that  in this exact sequence, Coker 6 
and Ker 6 have the following bases, a t  least in degrees t < 3.2k. 

s = 1, Coker S: hp) ( O S i S k - l ) .  
S = 1, Ker 6: . 
s = 2, Coker 6: (hihZ)(l1 ( O s i S l s k - l ,  l # i + l ) .  

S = 2, Ker 6: (hLhk-l)(21 ( O s i s k - l , i # k - 2 1 ,  

(hk-2hk)(21 . 
This proves Theorem 2.6.2. 

We have now completed all the homological algebra which is necessary 
for our applications. 

3.1. Introduction. In this chapter we shall develop the general theory 
of stable secondary operations. The results a t  issue are not deep; the 
author hopes that  this fact will not be obscured by the language neces- 
sary to express them in the required generality. 

The plan of this chapter is as follows. In 8 3.6 we give axioms for the 
sort of operations we shall consider; in Theorems 3.6.1, 3.6.2 we prove 
the existence and uniqueness of operations satisfying these axioms. In 

3.7 (and in Theorems 3.7.1, 3.7.2. in particular) we consider relations 
between composite operations. In 3.9 (and in Theorem 3.9.4 in particu- 
lar) we consider Cartan formulae for such operations. All the theorems 
mentioned above are essential for the applications. 

In an attempt to arrange the proofs of these theorems lucidly, we 
begin by giving a formal status to some of the ideas involved. These 
ideas concern cohomology operations (of kinds higher than the first), 
universal examples for such operations, the suspension of such opera- 
tions, and so on. Of course, these notions are common property; but by 
giving a connected account, we can build up the lemmas which we need 
later. This preliminary work occupies $3 3.2 to 3.5. 

In 3.8 we give a short account of the application of homological al- 
gebra to the study of stable secondary operations. 

In this chapter, the following conventions will be understood. We shall 
assume that  all cohomology groups have coefficients in a fixed finitely- 
generated group G; in § 3.8 we assume that  G is a field, and in § 3.9 that  
G is the field 2,. We shall omit the symbol for the fixed coefficient group 
G, except where special emphasis is needed. 
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We shall assume that  all the spaces considered are arcwise-connected. 
There is nothing essential in this assumption, but it serves to simplify 
some statements. Symbols such as  X,, y, will denote base-points in the 
corresponding spaces X, Y. I t  is understood that  the base-points in CW- 
complexes are chosen to be vertices. 

The study of stable operations forces us to work with suspension. We 
therefore agree that  in $9 3.2 to 3.8 the symbols H*(X),  Hn(X)  denote 
augmented cohomology (with coefficients in G). 

In $ 3.9, however, we have to work with products. In this section, 
therefore, the symbol Hn(X)  denotes ordinary cohomology. We write 
H + ( X )  for Cn, ,Hn(X);  since our spaces are arcwise-connected, we may 
use H + instead of augmented cohomology . 

We have to take a little care with signs. I t  is usual to write cohomol- 
ogy operations on the left of their arguments; we shall follow Milnor [25] 
in taking the signs which arise naturally from this convention. We shall 
also try to keep our theoretical work as free from signs as possible. For 
this purpose it seems best to write our homomorphisms on the right of 
their arguments, accepting the signs which arise naturally from this con- 
vention. 

In particular, we introduce a "right" coboundary 

whose definition in terms of the usual coboundary 6 is 

(h)6* = (-1)"6(h) (where h e Hn(Y)). 

We shall use this signed coboundary in discussing suspension. For ex- 
ample, let Y be a space with base-point y,; let S2 Y - L Y& Y be the 
path-space fibering introduced by Serre [29]. Then we define the "sus- 
pension" homomorphism 

to be the composite map 

Similarly for the transgression T .  

3.2. Theory of universal examples. I t  is the object of this section to 
set up a general theory of universal examples for cohomology operations 
of higher kinds. This is done by making the obvious changes in the cor- 
responding theory for primary operations, which is due to Serre [30]. 
The considerations which guide our definitions are the following. We ex- 
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pect our operations to be defined on a subset of all cohomology classes; 
we expect their values to lie in a quotient set of cohomology classes; we 
expect them to be natural. 

I t  would be convenient, in some ways, if we set up our theory for the 
category of CW-complexes. However, it would be inconvenient in other 
ways, since we need to use fiberings (in the sense of Serre). The difficulty 
could be avoided by working in the category of CSS-complexes; but it 
seems preferable to work, a t  first, with concepts as geometrical as pos- 
sible. We therefore work in the category of all spaces. This forces us to 
use the device of replacing a space by a weakly equivalent CW-complex. 
We recall that  a map f : X- Y (between arcwise-connected spaces) is said 
to be a weak homotopy equivalence if it induces isomorphisms of all 
homotopy groups. Two spaces X, Y are said to be weakly equivalent if 
they can be connected by a finite chain of weak homotopy equivalences. 
These notions have the following properties. For each space Y, there is 
a CW-complex X and a map f : X-+ Y which is a weak homotopy equiv- 
alence; i t  is sufficient, for example, to take X to be a geometrical realisa- 
tion of the singular complex of Y, or of a minimal complex. Let Map (X, Y) 
denote the set of homotopy classes of maps from X to Y; if f : X -+ Y is 
a weak homotopy equivalence and W is a CW-complex, then the induced 
function f, : Map (W, X )  - Map (W, Y) is a (1-1) correspondence. 

Our first definition is phrased so as  to cover the case of cohomology 
operations in several variables; the reader may prefer to consider first the 
case of one variable. Let J be a set of indices j. We call S a natural  
subset of cohomology (in J variables, of degrees n,) if S associates with 
each space X a set S(X) of J-tuples {X,) (where X, e Hm~(x ) )  and satisfies 
the following axioms. 

Axiom 1. If f: X - Y is a map and {y,) e S(Y),  then {y, f *) e S(X). 
Axiom 2. If f : X- Y is a weak homotopy equivalence and {yf *) e S(x), 

then {y,} e S( Y). 

Although we shall not assume that  the indexing set J is finite, we shall 
assume that  for each integer N we have n, < N for only a finite number 
of j. 

For the next definition, we suppose given such a natural subset S. We 
call @ a cohomology operation (defined on S ,  and with values of degree 
m) if @ associates with each space X and each J-tuple {X,) in S(X) a non- 
empty subset @{X,) c Hm(X) which satisfies the following axioms. 

Axiom 3, If f : X -- Y is a map and {y,} E S(Y),  then 

(@{yJ)f *c @{y,f*) 
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Axiom 4. If f : X- Y is a weak homotopy equivalence and {y,} e S(Y),  
then 

There is nothing in our definition to limit the size of the subsets @{X,). 
We therefore make the definitions which follow. They refer to cohomol- 
ogy operations defined on a fixed natural subset S. We write @ c V if 
we have @ {X ,} c V {X ,) for each X and each {X,} in S(X). We call V mini- 
mal if there is no operation @ such that  @c V and il, # V. We are mainly 
interested in operations which are minimal. 

We now introduce the notion of a universal example. Let S be a natu- 
ral subset of cohomology (in Jvariables, of degrees n,). Let U be a space 
and {U,) a J-tuple in which U, e Hnj(U). We say that  (U, {U,}) is a uni- 
versal example for S if {U,} c S(U) and the following axiom is satisfied. 

Axiom 5. For each CW-complex Xand  each J-tuple {X,} in S(X) there 
is a map g : X - U such that  {ujgX} = {X,}. 

LEMMA 3.2.1. For  each space U and  each J-tuple {U,} there i s  one and 
only one natural  subset S admitting (U, {U,)) as  a universal example. 

PROOF. The uniqueness of S is immediate; for if X is a CW-complex, 
S(x) is the set of J-tuples {u,g*), where g runs over all maps from X to 
U; while if X is a general space, we may take a weak homotopy equiva- 
lence f : W - X such that  W is a CW-complex; then S(X) is the set of J -  
tuples {X,) such that  { X  f *} e S( W). 

This procedure also shows how to construct S from (U, {U,)); it  is not 
hard to verify that  the S so constructed is well-defined, is such that  
{U,) e S(U) and satisfies Axioms 1 and 2. 

For our next definition, let S be a natural subset admitting a universal 
example (U, {U,)). Let @ be a cohomology operation defined on S ,  and 
with values of degree m; let v be a class in Hm(U). We say that  (U, {U,}, v) 
is a universal example for if v e @ {U,} and the following axiom is satis- 
fied. 

Axiom 6. For each CW-complex X, each J-tuple {X,} in S(X) and each 
class y in {X,) there is a map g : X- U such that  {u,g*} = {X,}, vg* =y. 

LEMMA 3.2.2. For each space U, each J-tuple {U,} and each class v 
there i s  one and only one cohomology operation @ admitting (U, {U,}, v) 
a s  a universal example. 

The proof is closely similar to that  of Lemma 3.2.1. 

If the space U is understood, we may write "{U,} is a universal ex- 
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ample for S";  similarly, if U and {U,} are understood, we may write 
"v is a universal example for W'. 

For our last lemma, suppose that  S is a natural subset admitting a 
universal example {U,), and that  '1' is an operation defined on S. 

LEMMA 3.2.3. If v E W{u,} and i s  the operation given by the uni- 
versal example v, then c W. 

The proof is obvious. 

This lemma shows that ,  if we wish to study the operations defined on 
such a natural subset S ,  it is sufficient to consider the ones given by uni- 
versal examples. 

3.3. Construction of universal examples. I t  is the object of this sec- 
tion to construct the universal examples on which our theory of secondary 
operations will be based. In fact, our secondary operations will be de- 
fined on natural subsets which can be described using primary operations. 
We shall show that  these natural subsets admit universal examples, in 
the sense of 9 3.2. 

Our universal examples will be fiberings in which both base and fibre 
are weakly equivalent to Cartesian products of Eilenberg-MacLane spaces. 
I t  will be clear that  the method of this section is only the beginning of 
an obvious induction; we might equally well construct an example-space 
of the (n  + l)" kind as a fibering with the same sort of fibre, but with 
an example-space of the nth kind as a base. However, we shall not do 
this. 

We say that  is a pr imary operation (acting on J variables of degrees 
n,, and with values of degree m) if it has the following properties. 

( 1 ) @{X,} is defined for every J-tuple {X,} such that  X, E Hnj(X).  
( 2 ) The values @{X,} of @ are single elements of Hm(X).  
Let K be a set of indices k. When we speak of a K-tuple {a,} of pr i -  

mary operations, we shall understand that  each a, acts on J variables 
whose degrees n, do not depend on k. We shall also suppose that  for each 
integer M we have m, < M for only a finite number of k in K. 

We define the natural  subset T determined by {a,) as follows: T(X) is 
the set of J-tuples {X,} such that  X, e Hnj(X) and a,{x,) = 0 for each k 
in K. I t  is clear that  T is indeed a natural subset. 

We shall call a cohomology operation secondary if it is defined on a 
natural subset T of this kind. We shall prove that  every natural subset 
T of this kind admits a universal example; this is formally stated as  Theo- 
rem 3.3.7. 
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We must begin by considering universal examples for primary opera- 
tions. Suppose given integers n, > 0, for j E J. Then we can form a 
Cartesian product 

in which X, is an Eilenberg-MacLane space of type (G, n,). Let X, be the 
fundamental class in Hmj(X,; G); let rc,: X -- X, be the projection map 
onto the jth factor; then we have classes X,$ in H*(X). Suppose given 
a space Y and classes y, in Hnj(Y). We will say that Y is a generalised 
Eilenberg-MacLane space (with fundamental classes y,) if Y is weakly 
equivalent to a product such as X in such a way that the classes y, cor- 
respond to the classes x,rc:. 

LEMMA 3.3.1. If Y is  a generalised Eilenberg-MacLane space, W i s  
a CW-complex and W, e Hmj(W) for each j ,  then there i s  one and only one 
homotopy class of maps f : W - Y such that y,f * = W, for each j. 

This follows immediatly from the corresponding fact for Eilenberg-Mac- 
Lane spaces. 

Next, let Y and W be generalised Eilenberg-MacLane spaces, for the 
same integers n,, and with fundamental classes y,, W,. We call a map 
f :  Y -  W a canonical equivalence if w,f * = y, for each j .  Such a map 
is necessarily a weak homotopy equivalence. 

Let Y be a generalised Eilenberg-MacLane space, for integers n, > 1; 
Y is thus weakly equivalent to a product X = XjsJX, of Eilenberg-Mac- 
Lane spaces. Then, if the base points are chosen consistently, the loop- 
space CLY is weakly equivalent to OX, which is homeomorphic to X ,,,nX,; 
thus n Y is a generalised Eilenberg-MacLane space. In each loop-space 
nX,  we take the fundamental class X Y  given by 

where o denotes "suspension". In n X  we have fundamental classes 
x,RrcT, and in n Y  we have the corresponding fundamental classses y?. 

We have said that we propose to construct our universal examples as 
fiberings. All our fiberings will be fiberings in the sense of Serre [29]. 
We must recall that the notion of an induced fibering is valid in this con- 
text. 

Let X, B be spaces with base-points X,, b,. Let f : X, X, - B, b, be a 
map, and let X: E -- B be a fibering (in the sense of Serre). Let f -E be 
the subspace of X X E consisting of pairs (X, e) such that fx = ne. We 
define maps W: f -E - X and f-: f -E-  E by ~ ( x ,  e) = X, f-(X, e) = e; 
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we thus obtain the following commutative diagram. 

LEMMA 3.3.2. The map W i s  a jibering (in the sense of Serre). The 
map f -  maps the jibre W-'X,  of W homeomorphically onto the jibre r ' b ,  
of  Ir. 

The verification is trivial. The original reference for this lemma, so far  
as the author knows, is [10]. 

The next lemma states that  this construction is natural, in an obvious 
sense. Suppose given the following diagram. 

J 
B J. 

B, ba - B', b; 

( If' X, X0 - X', X ;  

LEMMA 3.3.3. We can define a map 

by the rule (E @ &)(X, e )  = (EX, ~ e ) .  This map makes the following dia- 
gram commutative. 

The verification is trivial. The diagram shows in particular, that  the 
effect of E @ E on the fibres is the same as that  of E ,  up to the homeomor- 
phisms of Lemma 3.3.2. 

We can now describe the fibre-spaces which we shall use as universal 
examples. Suppose given, as above, a fixed K-tuple {a,} of primary 
operations, such that  each a, acts on J variables of degrees n, and has 
values of degree m,. We suppose n, > 0, m, > 1. We call W :  E - B a 
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canonical fibering associated wi th  {a,} if it satisfies the following condi- 
tions. 

( 1 ) The fibering m : E - B is induced by a map p: B, b, - Y, y, from 
the fibering n : L Y - Y. 

( 2 ) The spaces B and Y are generalised Eilenberg-MacLane spaces 
with fundamental classes b, and y, of degrees n, and m,. 

( 3 ) We have y,p* = a ,  {b,} . 
We remark that if these conditions are fulfilled, then the fibre F=m-'b, 

of m is a generalised Eilenberg-MacLane space. In fact, the map p- 
maps F homeomorphically onto CLY, by Lemma 3.3.2; and by our remarks 
above, SLY is a generalised Eilenberg-MacLane space, with fundamental 
classes y," of degree m,- l. Therefore F is also a generalised Eilenberg- 
MacLane space, with fundamental classes f ,  corresponding to the y,R un- 
der the map p-. 

LEMMA 3.3.4. The class f,6* in H*(E, F )  i s  the image of a ,  {b,} under 
the composite homomorphism 

This is immediate, by naturality. 

LEMMA 3.3.5. For each {a,} and each corresponding space Y there 
exists a canonical fibering associated wi th  {a,} in which the space B i s  
a CW-complex. 

This is clear; for we can construct B to be a CW-complex, and there is 
then a map p : B - Y of the sort required. 

Our next theorem will assert that all the canonical fiberings associated 
with {a,} are "equivalent", in a suitable sense. In fact, let M :  E - B 
and m': E ' -  B' be two such fiberings; then we define an equivalence 
between them to be a diagram 

F(P F' 

in which e, : F - F' and P : B, b, - B', b: are canonical equivalences, in 
the sense explained above. Such a diagram, of course, induces an iso- 
morphism of the exact homotopy sequences, so that E will be a weak 
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homotopy equivalence. 

THEOREM 3.3.6. A n y  two canonical jiberings associated wi th  the same 
{a,} m a y  be connected by a jinite chain of equivalences. 

PROOF. Let E ' ,  E" be two such canonical fiberings. Let W :  E-  B be 
another canonical fibering, constructed using spaces B and Y which are 
CW-complexes. It is sufficient to show how to connect E to E '  by a chain 
of equivalences, since we may connect E to E" similarly. We may con- 
struct canonical equivalences 

P : B, b, -- B', bi. , 9 : Y, y, - Y', yh , 
so that  b;P* = b,, YET* = y,. I t  follows that  ptP-7p. Let h : I X B / I  X b,--Y' 
be a homotopy between them; we may write hit=p'P, hi=rjp, where 
i and i' are the embeddings of B in I X B l I x  b,. Using Lemma 3.3.3 we 
obtain the following chain of equivalences. 

Thus E, E' can be connected as required. This completes the proof of 
Theorem 3.3.6. 

For our next theorem, let W :  E- B be a canonical fibering associated 
with {a,}; we define a J-tuple {e,} of classes in H X ( E )  by e, = b,w*. 
Let T be the natural subset determined by {a,} ,  as defined a t  the begin- 
ning of this section. 

THEOREM 3.3.7. The natural subset T admits  the universal example 
{el l .  

PROOF. We must begin by proving that  {e,} E T ( E ) .  In fact, we have 

a ,  {e,} = a,  { b , ~ " }  = ( a , { b , } ) ~ *  = Y , P * ~ *  = Y,~*(P- )*  . 
But since LY is acyclic, we have y,n* = 0 and hence a,{e,} = 0. Thus 
{ell c T ( E )  . 

I t  remains to show that  if X is a CW-complex and { X , }  E T ( x ) ,  then 
there is a map g : X - E  such that  {e,g*} = { X , } .  For this purpose we 
introduce the following lemma. 

LEMMA 3.3.8. If X i s  a CW-complex and f : X-- B i s  a m a p  such that 
a ,  {b, f "} = 0, then there i s  a m a p  g : X -- E such that w g  = f. 

From this lemma, the theorem follows immediately. In fact, suppose 
we have a CW-complex X and a J-tuple { X , }  such that  a,(x,} = 0; then 
we can construct f :  X -  B such that  b f  * = X ,  and g : X - E such that  
w g  = f; i t  follows that  
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PROOF OF LEMMA 3.3.8. By Theorem 3.3.6, i t  is sufficient to consider 
the case in which Y is a Cartesian product of Eilenberg-MacLane spaces; 
say Y = XkEKYkl  where Y, is of type (G, m,). We can now consider the 
canonical fibering E in a different way. We have a map p: B-Y, its k"" 
component is x,p: B - Y,. We may define E, = (x,p)-LY,; the product 
E' = X k E R E k  is fibred over the base B' = X,,,B. Let A : B - B' be the 
diagonal map; then A - E '  coincides with E ,  up to a homeomorphism. I t  
is therefore sufficient to lift the map f i n  each factor E, separately. But 
to this there is only one obstruction; and up to a sign, the obstruction is 

~ k p * f  * = f b j }  )f * = f b j f  *I = O . 
The lifting is therefore possible. This completes the proof of Lemma 3.3.8. 
and of Theorem 3.3.7. 

3.4. Suspension. In this section we discuss the suspension of cohomol- 
ogy operations, and show that  if @ admits a universal example, so does 
its suspension. This is formally stated as Theorem 3.4.6. We also show 
tha t  the application of this principle does not enlarge the class of univer- 
sal examples considered in 8 3.3. 

In  this section the symbol s X  will denote the suspension of X,  so that  
s X  = I X X/(O X X, 1 X X ) .  We shall also use s to denote the canonical 
isomorphism 

which we define to be the following composite map. 

Here, t X  is the cone on X, so that  t X  = I X X/O X X; the embedding of 
X in tX, the base-point so in s X  and the  map from t X  to s X  are the ob- 
vious ones. 

Let S be a natural subset of cohomology (in Jvariables, of degrees n,). 
Then we can define a natural subset Ss (in J variables, of degrees n,- l )  
by taking SYX) to be the set of J-tuples {x,s}, where {X,} E S(sX). We 
call S-he suspension of S. 

Similarly, let @ be a cohomology operation defined on S, and with val- 
ues of degree m. Then we can construct an operation W, defined on S" 
and with values of degree (m - l ) ,  by setting 

We call as the suspension of Q. 
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For our first lemma, let {a,) be a K-tuple of primary operations, and 
let T be the natural subset determined by {a,}. 

LEMMA 3.4.1. The natural  subset determined by {a;} i s  Ts. 

The verification is trivial. 

LEMMA 3.4.2. If S i s  a natural  subset and  {X,) e SYX), then {-X,} e 
S y x ) .  

If i s  a cohomology operation dejined on S ,  while {X,} E SYX) and  
ye@"x,}, then -YEW{-X,}.  

To prove this lemma, one merely considers the map v :  s X  -+ s X  defined 
by 

For the sake of similar arguments later on, we set down the following 
lemma, which is well known. 

LEMMA 3.4.3. The set of homotopy classes 

Map [sX, sxo; Y, Y O I  

i s  a group. Let 9 be the function which assigns to each homotopy class 
of maps g : sX, sx, - Y, y, the induced map g*: H*(Y)--H*(sX); then 
e, i s  a homomorphism. 

Our next results relate the notions of "suspension" and "universal 
example". 

LEMMA 3.4.4. There i s  a (1-1) correspondence between maps f : X,x,- 
ClY, W, and maps g : sX, sx, -+ Y, y,. For corresponding maps we have 
g*s = af *: H*(Y) - HX(X).  

This lemma is well-known. The (1-1) correspondence is set up by 
the equation 

The equation g*s = af * is proved by passing to cohomology from the 
following diagram. 

ay- LY- Y 
Here, the map h is defined by 

(where U, v e I.) 
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For our next  lemma, we  suppose that the  space X is l-connected, so 
that ClX is 0-connected. Similarly, in Theorem 3.4.6 we shall assume 
that U is l-connected. 

LEMMA 3.4.5. I f  { X , }  e S(x ) ,  then {x,o} e S Y O X ) .  If ( fur ther )  CD i s  
defined on S ,  then 

This is immediate, by  considering the  map g : s n X  - X corresponding 
to  f = l  : n x - O X .  

THEOREM 3.4.6. I f  the natural subset S admits the universal example 
( U ,  {U , } ) ,  then S k d m i t s  the uwiversal example (nu, {u,a}). I n  this 
case S Y X )  i s  a subgroup of n, , ,Hnj- '(X).  

I f  the cohomology operation Q admits the universal example ( U ,  {U,} ,  

v ) ,  then (~"dmi t s  the ufiiversal example (nu, { u , ~ } ,  VG) .  I n  this case 
@"O} i s  a subgroup of H"-'(X),  @"X,} i s  a coset of W (0) and W i s  a 
homomorphism. 

This theorem follows easily from Lemmas 3.4.3 to  3.4.5. 

Our next  theorem will show that i f  U lies in the class o f  universal ex- 
amples considered in $ 3.3, then the universal example OU lies in the  
same class. For this purpose we need two  lemmas. 

LEMMA 3.4.7. I f  n : E, e, - B ,  b, i s  a Jibering (in the sense of Serre) 
then O n  : O E  - ClB i s  a jibering (in the sense of Serre) with fibre ClF. 

The verification is trivial. The next  lemma concerns induced fiberings, 
so we adopt the  notation o f  Lemma 3.3.2. 

LEMMA 3.4.8. There i s  a canonical homeomorphism h : n ( f  - E )  - 
(sL f ) - ( O E )  which makes the following diagram commutative. 

nx 
The verification is trivial. 

THEOREM 3.4.9. I f  m: E, e, - B ,  b, i s  a canonical jibering associated 
wi th  {a,}, and i f  we take in CLB, fLF the fundamental classes b,a, - f,a, 
then C2.a : f2E - n B  i s  ( u p  to a canonical homeomorphism) a canoni- 
cal jibering associated wi th  {a;}.  
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PROOF. Suppose that  E is induced by a map p : B, b, - Y, y,. There is 
nn 

an obvious homeomorphism between the fiberings sL(LY) - n Y  and 
X' 

L(s2Y) - n Y ;  both fiberings have fibre n T ,  but the homeomorphism 
induces a non-trivial automorphism a of sL2Y, defined by 

Under this automorphism, the class - y,o"n the fibre of sLz corresponds 
to the class y,02 in the fibre of d. 

We now remark that  the fiberings induced by !2p from C l i t  and from nt 
must still be homeomorphic. The first is homeomorphic to a m :  sLE--CLB, 
by Lemma 3.4.8. The second is a canonical fibering, induced by n p ,  and 
satisfying 

( y d  (W)*  = a: 

(as we see using Lemma 3.4.5.) I t  is thus a canonical fibering associated 
with {a;). I t  is now easy to check that  the kth fundamental class in its 
fibre corresponds to - f,o in M'. This completes the proof. 

3.5. Stable operations. In this section we shall study stable operations, 
and prove two lemmas needed in 5 3.6. 

In 5 3.4 we defined the suspension of natural subsets and of cohomology 
operations. We use this notion to make the following definitions. 

A stable natural  subset S associates to each (positive or negative) in- 
teger 1 a natural subset S1 in such a way that  S1= (S1+')\ We may take 
our notations for degrees so that  the variables in S1 are of degrees n,+l. 
We admit, of course, that  the natural subsets S1 may be trivial if l is 
large and negative. A similar remark applies to the next definition. 

A stable cohomology operation (defined on such an S )  associates to 
each integer l a cohomology operation W defined on S1 in such a way that  
CD1 = (Q1+')\ We may take our notations for degrees so that  Q1 has 
values of degree m + 1. 

We also allow ourselves to write S(X)  = ULS1(X),  and to regard @ as 
a function defined on S(X) by the rule @ 1 S1 = @l. This is done in order 
to preserve the analogy between CD and symbols such as SqL, which denote 
operations applicable in each dimension. We may call S1, W the com- 
ponents of S,  a. 

As a particular case of the above, we have the notion of a stable pri- 
mary operation a in one variable. Its lth component is a primary operation 

we assign to a the degree (m - n). By Theorem 3.4.6, aL is a homomor- 
phism. Since natural homomorphisms can be composed and added, we 
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easily see that  the set of stable primary operations in one variable is a 
graded ring. We write A for this ring, or A, if we wish to emphasise its 
dependence on the coefficient group; we call A the Steenrod ring.  If X 
is any space, then H V ( X )  is a graded module over the graded ring A. If 
f : X- Y is a map, then f*: H X ( Y )  - H V ( X )  is an A-map (of degree 
zero). 

Let X be an  Eilenberg-MacLane space of type (G, n), with fundamen- 
tal class X ;  and let C be a free A-module, on one generator c of degree n. 
We can define an A-map B : C - H X ( X )  by c0 = X. I t  is both clear and 
well-known that  B C,: C, - H m ( X )  is an isomorphism if m < 2n(and a 
monomorphism if m = 2%). 

Similarly, let Y be a generalised Eilenberg-MacLane space, with funda- 
mental classes y, of degrees n,. Set v = Min,,,n,. Let C be a free A- 
module on generators c, of dimension n,. We can define an  A-map O : C- 
H * ( Y )  by c , ~ B  = y,. Then, as before, B / C, : C, - H m ( Y )  is an isomor- 
phism if m < 2v (and a monomorphism if m = 2v). 

It follows, incidentally, that  every stable primary cohomology opera- 
tion in J variables is of the form a{x,} = ~ , , , a , x , ,  where the sum is 
finite and the coefficients a ,  lie in the  Steenrod ring. 

We next take a K-tuple {a,} of stable primary operations. Each stable 
operation a, has components a:; we shall suppose that  a: acts on J vari- 
ables of degrees n, + l and has values of degree m, + l. (We suppose, as 
always, that  for each integer N we have n, < N for only a finite number 
of j and m, < N for only a finite number of k.) 

Such a K-tuple evidently determines a stable natural subset T; we de- 
fine T 1  to be the natural subset determined by {a:}. We shall call a 
stable cohomology operation cD secondary if i t  is defined on a stable sub- 
set T of this kind. 

In considering such stable secondary operations, i t  is natural to intro- 
duce a sequence of canonical fiberings E, in which E, is associated (in the 
sense of 5 3.3) with the K-tuple {a:}. For such fiberings to exist we re- 
quire l + n, > 0, l + m, > 1; so we should assume that  l > - v ,  where 
v = MinJEJ,kER(nJ.  mh: - 1) . 

The next lemma will show that  if a relation (between stable secondary 
operations) holds in the canonical fibering E, (where 1 is sufficiently large), 
then i t  holds universally. 

We will assume that  T q s  the natural subset determined by {a:}, as 
above, and tha t  X is a stable operation such that  2"s defined on T 1  and 
has values of degree q + l. We will also assume that  X satisfies the fol- 
lowing axiom. 
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Axiom 1. If g : X- Y is a map such that  g*: Hr (Y)  - Hr(X)  is an 
isomorphism for r 5 q + l ,  and if {y,} e T1(Y),  then 

Of course, this axiom is slightly stronger than Axiom 4, 5 3.2; however, 
i t  is satisfied in the applications. 

Let E, be a canonical fibering associated with {a:}, and let ef be the 
fundamental classes in E,. 

LEMMA 3.5.1. If 0 e 2" {e:} for one value X of l such that X > 
Max(-v, q - 2v), then 0 E ~l{x,}  for al l  1, a l l  X and  all  {X,} i n  TYX). 

PROOF. We first note tha t  if 0 E XL {e:} , then 0 e XL {X,} for all X and all 
(X,} in TL(X); this is immediate, by naturality. We will show that  if this 
holds for some l (where l 2 X) then i t  holds also for 1 + 1. We may find 
a space X and a map g : s X  - E,,, such tha t  

g*: Hr(E,+,) - Hr(sX) 

is an isomorphism for r 5 q + l + 1; for i t  is sufficient to take X to be 
ClEl+,, and g to be the map which corresponds to f = 1 in Lemma 3.4.3. 
We now have 

0 e X"e:+lg*s} = (X1+' {el,'lg*})s 

= (X""{e:+l})g*s (by Axiom 1.) 

Hence 0 E XZ+'{ej+l} . 
This proves that  0 e XL {X,} if 1 2 X. The corresponding result for l < k 

follows immediately, by suspension. 

Our next lemma gives information about the group HL+q(E,) ,  a t  least 
if l is sufficiently large. We suppose given a K-tuple {a,} of stable pri- 
mary operations, as described above; we may express each a, in the form 

where the sum is finite and the coefficients P,,, lie in the Steenrod ring 
A. Let C,, C, be free A-modules on generators c,,,, c,,, of degrees n,, m,. 
We can define an A-map d : C, - C, by setting 

Let us take a value of l such that  l > - v, and let W: E - B be a 
canonical fibering associated with the K-tuple {a;}. We can define A-maps 

B,: C, - H*(B) , 8,: C, - H*(F)  
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by setting 

c0,80= b , ,  cl,&= (-1)'fk. 

We take the "total degree" of c,,, to be t - s ( s  = 0 ,  l ) ,  so that  both 8, 
and 0, have degree l .  The sign in the definition of 8, is essential in order 
that  8, should be compatible with a; see Theorem 3.4.9. 

Finally, we recall the following convention. Let 

f M - N  

be a diagram of A-maps in which f and f '  have total degree r ,  while g 
and g' have total degree s. Then we say that  the diagram is anticom- 
mutative if 

fg' = (- 1)'"f' . 
LEMMA 3.5.2. W i t h  the above data, we have the following anticom- 

mutative diagram. 

I f  q < l + 2v, we have also the following anticommutative diagram. 

The horizontal sequence in this  d iagram i s  exact; the maps 8, and 8, 
marked as isomorphisms are such; the remaining map  8, i s  a monomor- 
phism. 

PROOF. We take first the anticommutativity of the first diagram. By 
using Lemma 3.3.4 and the definitions of the various homomorphisms, i t  
is easy to check that  the two ways of chasing c,, round the diagram 
agree, up to the sign (-1)'. The corresponding result for a general ele- 
ment of C, now follows by linearity over A. 

In the second diagram, the squares are provided by the first diagram. 
We have already noted the behaviour of maps such as 8, and 8,. The 
exact sequence is due to Serre [29]; i t  is valid up to HX+'"'-'(F) because 
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B and F are (l + Y - l)-connected. We can add the last z, since i t  is de- 
fined on the whole of H21+2"1(F). This completes the proof. 

3.6. Axiom for stable secondary operations. In $3 3.2, 3.4 we were 
concerned with operations in general. I t  is the object of this section to 
give a system of axioms for stable secondary operations. This work is 
essential for the applications. After giving the axioms, we state 
Theorems 3.6.1 and 3.6.2, which assert the existence and (essential) 
uniqueness of operations satisfying the axioms. We then give some 
explanation of the axioms. Finally, we prove the two theorems. 

I t  is generally understood that  a secondary operation corresponds to a 
relation between primary operations. For example, the Massey product 
[23] [24] [35] corresponds to the relation (uv)w = u(vw); the Adem opera- 
tion [4] corresponds to the relation Sq2Sq" Sq3Sq1 = 0; and so on. We 
aim to get  a hold on stable secondary operations by dealing with their as- 
sociated relations. The essential feature of our axioms is that  they axio- 
matise the connection between the secondary operation and its associated 
relation. 

The notion of a "relation" between primary operations will be formal- 
ised in a suitable way. In fact, we shall replace the notion of a "relation" 
by the notion of a pair (d, z), of the following algebraic nature. The first 
entry d is to be a map d: C, -+ C,. Here, the objects C, and Cl are to be 
graded modules over the Steenrod ring A (see $$ 2.1, 3.5); they are to be 
locally finitely-generated and free, and d is to be a right A-map such 
that  (C,,,)d c C,,,. Following $ 3.5, we ascribe to c,,, the "total degree" 
t - S. The second entry z is to be a homogeneous element of Ker d. 

We must next explain the connection between pairs (d, z) and relations 
in the intuitive sense. The equations 

are relations in the intuitive sense. More generally, suppose given an 
integer q and a finite number of elements a,, P, in A such that  

Ck,,akPk = 0 , deg(a,) + deg(P,) = q + 1 . 
Then the equation C,,,a,P, = 0 is a (homogeneous) relation in the in- 
tuitive sense; we shall associate i t  with the pair (d, z) constructed in the 
following way. We take C, to be free on one generator c, in C,,,; we take 
C, to be free on generators c,,, in C,,,,,,, where t(k)=deg(P,). We define 
d: C, + C, by cl,,d = @,co; we define z by z = C,,g,c, , , .  We thus have 
zd = 0, z E Clfpfl. 
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Our axioms will ensure that  if an  operation @ is associated with such 
a pair (d, z), then i t  is defined on classes X in H1(X) such that  P,(x) = 0 
for each k, and has values in 

where r, = deg (a,). (Note that  a relation of degree (g + 1) corresponds 
to an operation of degree g.) 

The reader may like to keep in mind some explicit examples of pairs 
(d, z), to illustrate the considerations of this section. 

We next remark that ,  according to our axioms, stable secondary opera- 
tions are defined, not on J-tuples {X,} of cohomology classes, but on right 
A-maps E : C, + H*(X). There is no essential difference hence; if we 
take a base of elements c,,, in the free module C,, then an A-map 
E : C,- H*(X) is determined uniquely by giving the images (c,,,)~ of the 
base elements; and these classes (C,,& in H*(X) may be chosen a t  will, 
provided that  they have the correct degrees. We set up a (1-1) corre- 
spondence between J-tuples {X,) and maps E by writing 

I t  is always to be understood that  operations @{X,} are to be identified 
with operations @(E) in this way. 

We now give the axioms. We will say that  @ is a stable secondary 
operation associated with the pa i r  (d, x) if it  satisfies the following 
axioms. 

Axiom 1. @(E) is defined if and only if E : C,- H*(X) is a right A-map 
such that  de = 0. 

For the next axiom, suppose that  the total degrees of E, x are l,  q. Let 
f :  C, -- H*(X) run over the right A-maps of total degree l,  and let 
Q1+q(z, X )  be the set of elements zf in H1+q(X).  

Axiom 2. @(E) e H1+4(X)/Q1+4(z, X).  

For the next axiom, let g : X-- Y be a map, and let E : C,+ H*(Y) be 
a right A-map such that  d~ = 0. 

Axiom 3. (@(&))gW = @(&g*) . 
I t  is understood that  the g* on the left-hand side of this equation de- 

notes a homomorphism of quotient groups, induced by the homomorphism 
g* of cohomology groups. 

For the next axiom, let s X  be the suspension of X, and let S: H*(sX)--t 
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H*(X) be the suspension isomorphism, as in 3.4. Let E: C, -- HW(sX)  
be a right A-map such that  ds = 0. 

Axiom 4. (@(&))S = @(ss). 
The S on the left-hand side of this equation is to be interpreted like 

the g* in Axiom 3. 

For the next axiom, let (X, Y) be a pair of spaces, and let E : C,--tHW(X) 
be a right A-map of degree l such that  ds = 0 and si* = 0. We can now 
find right A-maps 7 : C, - H*(X, Y) and f- : C, - H*( Y)(of total degree 
l) to complete the following anticommutative diagram. 

Axiom 5. (@(s))iW = [zf-1 mod (Qz+q(x, X))i*. 
I t  is understood that  [xf-1 denotes the coset containing xf-. We easily 
check that  this coset is independent of the choice of 7 and f-. 

The following theorems may help to justify this set of axioms. 

THEOREM 3.6.1. F o r  each pa i r  (d, x ) ,  there i s  a t  least one associated 
operation Q. 

THEOREM 3.6.2. If Q, are  two operations associated with the same 
pa i r  (d, x), then they difer by a pr imary operation, i n  the sense that 
there i s  a n  element c i n  (Coker d), such that Q(&) - 'P(&) = [cE]. 

We note that  these theorems do not depend on any choice of bases in 
C, and C,; however, we may of course use bases in the proofs. 

We will now comment on the effect of these axioms. Let us take bases 
c,,,, c,,, in C,, C,; suppose that  the total degrees of c,,,,c,,, are n,, m,-l. 
We may write 

(c1,k)d = CjeJPk,jco.j 1 2 = C k E K a t ~ l , k  

where a,, P,,, lie in A. We may define a stable primary operation a, (in 
J variables) by 

a,{x,) = C,,,Pk>,x, . 
Then (as we easily check) Axiom 1 is equivalent to saying that  Q is de- 
fined on J-tuples {X,} such that  X E H1+"j(X) for each j E J a n d  a, { x , ~ }  = O  
for each k E K. 
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Axiom 2 states that  the " indeterminacy" of @ is Qhq(z, X) ;  with the 
above notation, we have 

&"'"(X, X )  = CkEKakHz+nk-l(X) . 
I t  is easy to see that  any operation whose indeterminacy is given in this 
way satisfies Axiom 1, 3 3.5. 

Axiom 3 states that  @ is natural. Axiom 4 states that  @ is stable, in 
the sense of 8 3.5. I t  is now clear that  every Q satisfying our axioms is 
a stable secondary operation in the sense of 8 3.5. 

Axiom 5 may be regarded in two ways. On the one hand, it is a ver- 
sion of one of the Peterson-Stein relations [28], and is of some use in 
applications. On the other hand, it serves to prescribe the universal ex- 
ample for @, without making explicit mention of any such thing. This is 
made precise by Lemma 3.6.3; we shall need the following notation. Let 
@ be an operation satisfying Axioms 1-4, and let a, be as above. Let @l, 
a: be the l" components of the stable operations Q, a, (as in 3 3.5); and 
let E be a canonical fibering associated with the K-tuple {at}, as in $8 3.3, 
3.5. (For this purpose we assume that  1 > - v, where v is given by 
v = R h j E J ,  ,eK(nj, m, - l).) We may refer to E as a "canonical fibering 
associated with d". Let the maps B,, B, be as in Lemma 3.5.2; and let 
E,: C, -- H*(E) be the A-map corresponding to the J-tuple {e,}, so that  
E, = Bow*. We may regard E, as analogous to the "fundamental class" 
in an Eilenberg-MacLane space. We have a,{e,} = 0, or equivalently 
de, = 0, so that  W(&,) is defined. 

LEMMA 3.6.3. @l  satisjies Axiom 5 if and only if 

29, E ((a2(&,))i* . 
PROOF. Suppse satisfies Axiom 5; then we may apply Axiom 5 to 

the following diagram (in which the square is provided by Lemma 3.5.2): 

The conclusion which we obtain is 
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Conversely, suppose that Wsatisfies this condition; we have to verify 
Axiom 5. I t  is sufficient to do so when the pair (X, Y) is a pair of CW- 
complexes. In this case, suppose given E and rj : C, - H *  (X, Y), as in 
Axiom 5. Since B is a generalised Eilenberg-MacLane space, we can con- 
struct a map f : X, Y - B, b, so that the composite map 

00 - f* C, - H*(B) C H*(B, b,) - H*(X, Y) 

coincides with 7 .  By Lemma 3.3.8, we can lift f to g : X, Y-E, F. We 
can now take to be the composite map 

But with this choice of c, we have 

by applying g* to the original condition. This completes the proof. 
PROOF OF THEOREM 3.6.1. Suppose given a pair (d, 2). Let us take 

bases c,,,, c,,, in C,, C,; and let us keep the other notations introduced in 
the comments on the axioms, so that the K-tuple {a:) is as above. Let 
E, be a canonical fibering associated with the K-tuple {a:}. Let us fix on 
a value X of 1 such that X > Max(-v, q - 2v). By Lemma 3.5.2, we may 
choose a class v in HA+q(EA) so that 

Since we shall later wish to quote the part of the argument which starts 
a t  this point, we give it the status of a lemma. 

LEMMA 3.6.4. With the data above, there i s  a t  least one operation 
associated with (d, x)(in the sense of Axioms 1-5) and such that 
(EA, {e:}, v) is  a universal example for W .  

I t  is clear that this lemma implies the theorem. 
PROOF OF LEMMA 3.6.4. We have canonical fiberings W,: E, - B, as- 

sociated with K-tuples {a;} (at least for l > - v). By Theorem 3.4.9, 
C ~ W ' , + ~  : 8E,+l-8B,+l is a canonical fibering associated with {a:} ; by 
Theorem 3.3.6, i t  is equivalent to W ,  : E, - B,. We choose a finite chain 
of equivalences connecting them. Our next step is to choose a sequence 
of classes v' E Hz+q(El)  so that v" = v and so that the class vz+'o in 
H2+q(8E,+1) corresponds to v, in H1+q(E,) under the finite chain of 
equivalences. This choice is clearly possible and unique, because the 
suspension 
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is an isomorphism for r < 2(1 + v). Let @'(for l > - v) be the operation 
given by the universal example (E,, {ef;}, v'). Then it is clear that  the 
operation given by vz(namely W) coincides with that  given by vz+'a (namely 
(W+')". To obtain a stable operation ct, (in the sense of 5 3.5) we need 
only define its components W for l 5 - v by the inductive formula 

+l (@'+l)~ (for each 1). 

We have now defined the operation @ required; it remains to verify that  
it has the desired properties. We have ensured that  v is a universal ex- 
ample for W. Further, we have satisfied Axioms 3 and 4 (since @ is 
natural and stable) and also Axiom 1 (since is defined on the natural 
subset determined by {a:}). 

We next consider the equation 

v'i* = z9, . 
I t  holds for 1 = X, by hypothesis; we may deduce that  it holds for all 1 
(such that  1 > - v), since the suspension 

is an isomorphism for r < 2(1 + v). 

We can now verify Axiom 2. By suspension, it is sufficient to do this 
for 1 > - v. In this case, Theorem 3.4.6 shows that  the values of W are 
cosets of W(0); we will show that  W(0) = Qhq(z, X).  I t  is sufficient 
to do this in the case when X is a CW-complex. In this case, any element 
of @"O) can be written in the form vzg*, where g : X-E,  is a map such 
that  {efg*} = 0. Since el, = bfu*,  we have {b:u*g*} = 0, and therefore 
a 'g : X- B, is homotopic to the constant map a t  b,. Covering this homo- 
topy, we find a map h : X - F, such that  g-ih: X - E,. We now have 

Since 9,h": C, - H*(X) is an A-map of degree l,  we have shown that  
G1(0) c Qz+q(z, X) .  Since any A-map f : C, - H*(X) of degree l may be 
written in the form B1h* by a suitable choice of h, we easily see that  
W(0) 1 Q '+q(z, X) .  This completes the proof of Axiom 2. 

I t  remains only to verify Axiom 5. But this follows immediately from 
Lemma 3.6.3, a t  least if l > - v; and the case 1 I - v may be deduced 
by suspension. This completes the proof of Lemma 3.6.4 and of Theorem 
3.6.1. 

PROOF OF THEOREM 3.6.2. Suppose that  @, 1V are two operations as- 
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sociated with the same pair (d, 2). Let us keep the general notation used 
above; let X be a value of 1 such that  X > Max(-v, q - 2v), and let E 
be a canonical fibering associated with {a:}. By Axiom 5 and Lemma 
3.6.3, we have 

Let v be a class in @(E,) such that  vi* = ze,. Similarly, let W be a class 
in ?(E,) such that  wi* = 20,; then (v- w)i* = 0. By Lemma 3.5.2, there 
is an element c in (C,), such that  v - W = c0,m*. This shows that  

Let us define a stable operation X by 

then X satisfies the conditions of Lemma 3.5.1; therefore X(&) = 0. This 
completes the proof of Theorem 3.6.2. 

I t  is clear that  operations satisfying Axioms 1-5 are linear, in the sense 
that  

@(E + E') = @ ( E )  + @(E') . 
In fact, Theorem 3.4.6 shows that  this is true for operations constructed 
by the method of Lemma 3.6.4; and Theorem 3.6.2 enables us to deduce 
the corresponding result for any operation @. 

3.7. Properties of the operations. In this section we shall prove cer- 
tain properties of the stable secondary operations described in the last 
section. In content these properties are relations which hold between 
certain sums of composite operations, such as  C,,,a,cD, and C,,,@,a,; 
here, the a, are primary operations, and the @, are secondary operations. 
We shall give these properties a form in keeping with our algebraic ma- 
chinery. They are stated as Theorems 3.7.1 and 3.7.2; these results are 
essential for the applications. 

We shall not discuss operations of the form @\V., since such operations 
are tertiary, not secondary; @T{xj) is only defined if a,?{xj) = 0 for 
various a,. 

We first suppose given an A-map d : Cl-+C,(of the usual kind) and 
finitely many elements z, in Ker d and of degrees q,. Suppose that  

where a, e A and deg(a,) + q, = g. Suppose that  operations @, corre- 
spond to the pairs (d, 2,); then we have the following result. 
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THEOREM 3.7.1. There i s  a n  operation @ associated with (d, x) and 
such that 

for each X and each A-map E : C,-+ H*(X) (of degree l) such that d&=O. 

We remark that  Q1+4(z, X )  C Cra,Q1+Qr(~,, X ) ;  this is easily verified. 
We may call the group C,a,Q1+~l-(z,, X )  the total indeterminacy of the 
operations a,@, and @; the expressions in square brackets denote cosets 
of this group. I t  is worth noting, for the applications, that  if the set R 
contains only one member r ,  then 

&"'"(X, X )  = arQz+Qr(~,, X) .  

PROOF OF THEOREM 3.7.1. Let E = EA be a canonical fibering associat- 
ed with d ,  for some X>Max(-v, g - 2 ~ ) .  Let v, be an element in @,(E,) 
such that  v,i* = x,B,. Define v by v = C,,,a,v,; then v e HA+'"(E) and 
vi*= 26,. By Lemma 3.6.4 there is an operation @ associated with (d, x) 
such that  v e @(E~) .  We thus have 

By Lemma 3.5.1 we have 

[@(&)l - C,ER[ar@r(E)l = 0 

This completes the proof. 

For the next theorem, we suppose given the following anticommutative 
diagram, in which d and d' are A-maps of the usual kind, while p, and p, 
are A-maps of degree r. 

Let x be an element of Ker d ,  of total degree q, and let be an operation 
associated with (d, 2). Then we have the following result. 

THEOREM 3.7.2. There i s  a n  operation a' associated with (d', xp,) such 
that 

@(p,&') = [@'(E')] mod Q2+Qtr(z, X) 

for each X and each A-map E': C;--+H*(X) (of degree l) such that d ' ~ ' =  0. 
We remark that  @(post) is defined and that  Q1+4+r(z', X )  c Q 2 + Q + r ( ~ ,  X) ;  

this is easily verified. 
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EXAMPLE. Consider the case in which C,, CA are free on single gener- 
ators c,, c; of degree zero, and p, is defined by cop, = a ~ ; ,  where a E A,. 
We may replace the map E' by a class X' in H*(X),  and our conclusion 
becomes 

@(axl) = [@'(X')] . 
For later use, we give the first step in the proof the status of a lemma. 

Let X be a value of 1 such that  X > Max(-v', q + r - 2v'); let E' = E; 
be a canonical fibering associated with d'. 

LEMMA 3.7.3. There i s  a class v' i n  HX+q+r(E')  such that 

v' e @(p,&,,) , v'i* = xp,e: . 
This is immediate, by applying Axiom 5 (for @) to the following anticom- 
mutative diagram. 

i* 6* i* 
H*(F1) - H*(E1) E H*(E1, F') - H*(F1) - H*(E1) 

PROOF OF THEOREM 3.7.2. Let v' be as in the lemma. By Lemma 3.6.4, 
there is an operation a' associated with (d', xp,) and such that  v' e @'(E,,). 
I t  is now easy to check that  the operation 

X(& ' )  = @(P,&') - [@'(E1)] 
satisfies the conditions of Lemma 3.5.1. Therefore 

@(po&') - [W(&')] = 0 . 
This completes the proof. 

Theorem 3.7.2 has a converse, which we state as Lemma 3.7.4. Sup- 
pose given the following diagram, in which d and d' are A-maps of the 
usual kind, while p, is an A-map of degree r .  

c, c : 

\ T m *  T 
H * (B') 

0; 
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Let z, z' be elements of Ker d, Ker d' of total degrees q, q + r ,  and let 
a, CD' be operations associated with the pairs (d, z), (d', 2'). Assume the 
following conditions:- 

( i ) Wherever @'(et) is defined, @(post) is defined. 
(ii) For one value h of 1 such that  h > Max (-vt, q +r  -2v') we have 

for each A-map E': CO - H*(X) of degree h such that  @'(E') is defined. 
Then we have the following conclusions. 

LEMMA 3.7.4. With the above data, there i s  a n  A-map p,: C, - C: (of 
degree r) such that p1dt = (-l)'dp0 and z' = xp,. Moreover, we have 

for A-maps E' of any degree. 
PROOF. Our first step is to deduce from (i) that  Im(dpo) c Im d'. Let 

E' = .E: be a canonical fibering associated with d'; then d's,, = 0, and 
hence dposEt = 0; using Lemma 3.5.2, we see that  

if t < l + 2v'. Since 1 is arbitrary, we have Im(dpo) c Im d'. 
We can now construct some map p: :  C, -- C: (of degree r )  such that  

pldr = (-l)'dpo. Let E' = EL be a canonical fibering associated with d'. 
By Lemma 3.7.3, there is a class v' in HA+4+r(Ef )  such that  

V E ( p o )  , v'i* = zp:e: . 
On the other hand, there is a class W' in HA+4+r(E')  such that  

By Axiom 2 for @, we have an A-map f : C,-+ H*(Et )  such that  W'-v'= 
zf; thus (2' - zp:)e: = zfi*. Using Lemma 3.5.2, we can define an A-map 
g : C, - Ker d' such that  

se: I C,., = fi* I C,,, for t i q + l .  

We now have z' - zp: = xg. We can take p, = p: + g. 
It is now clear that  Q1+4+r(zf, X) C Q1+4+r (~ ,  X) for each 1, so we may 

apply Lemma 3.5.1 to the operation 

X(&') = @(PO&') - [@'(&')l 

and show that  it is zero. This completes the proof. 
We now give a subsidiary result, which may however serve to justify 

some of our concepts. We shall suppose that  the coefficient group G is a 
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field, that  @ is an operation associated iwith a pair (d, z), and that  
1 > Max(--v, q - 2v) (with the notations used above); in other words, 
we shall only prove this result in a stable range of dimensions. 

LEMMA 3.7.5. I f  the  m a p  d : C, -C, i s  m i n i m a l  (in the sense of 8 2.1) 
t h e n  the l" component Q1 of Q i s  m i n i m a l  (in the sense of 3 3.2). 

PROOF. Let E = E, be a canonical fibering associated with d. If there 
is an operation T such that  W c W, choose a class v in ?(E,); let be 
the operation determined by the universal example v; then xL c T c W, 
by Lemma 3.2.3. By Lemma 3.6.4, XL is one component of a stable oper- 
ation X associated with some pair (d, 2'). By Lemma 3.7.4, there is an 
A-map p,: C, -- C, such that  p,d = d and z' = zp,. Since d is minimal, p, 
is an isomorphism. Therefore QL+4(z, X )  = QL+4(z', X ) ,  and X L  = Vr = W. 
This completes the proof. 

3.8. Out l ine  of appl icat ions .  Throughout this section we shall assume 
that  the coefficient group G is a field. Under this condition, we shall give 
a general scheme for applying the results of $8 3.6, 3.7. We wish to show, 
in particular, how homological algebra helps us to find secondary opera- 
tions to serve given purposes, and to find relations between such opera- 
tions. For example, if a class X in Hn(X)  generates a sub-A-module M 
of H*(X),  we shall be led to consider operations a, defined on X and in 
(1-1) correspondence with a base of Tor,A(G, M). The particular for- 
mulae used later were found by applying the principles outlined in this 
section. 

Suppose given a sub-A-module M of H*(X)  which is locally finite-di- 
mensional. Suppose that  we wish to study the stable secondary opera- 
tions @ which are defined on J-tuples {X,} of classes in M. I t  is equivalent 
to say that  such operations @ are defined on A-maps E : CO-- M. Each 
such Q will be associated with a pair (d, z) such that  de = 0. 

I t  is sufficient to consider one particular pair of A-maps d: C, - C, and 
E : CO -- M such that  

is exact. For suppose that  d': C: - CA and E': CA -- M are some other A- 
maps such that  d's' = 0, and let @' be an operation corresponding to a 
pair (d', 2'). Then we can form the following diagram. 
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By Theorem 3.7.2, we have 

for some @ associated with (d, x'p,). 
We may therefore suppose that  the A-maps d : C, - C, and E : C,--+ M 

considered are the beginning of a minimal resolution, in the sense of 5 2.1; 
let its first few terms be 

d3 da dl C,- C,- C,- C O L  M .  

We may now consider a subset of the operations @. Take an A-base 
of elements c,,, in C,; set x, = c,,,d,; let @, be an operation corresponding 
to (d,, X,). I t  is a property of the operations Q, that  the other operations 
@ are linearly dependent on them, in a suitable sense. To be precise, let 
@ be an operation associated with a pair (d,, x). Since xd, = 0 and Ker 
dl = Im d,, we have x = CTa,x, for some a, in A. 
By Theorems 3.7.1, 3.6.2 we have 

(modulo the total indeterminacy involved). I t  is therefore sufficient to 
consider the operations @,(E) ,  provided that  their indeterminacies are 
small enough for our purposes. 

By 2.1, the basic operations @, are in (1-1) correspondence with a 
G-base of Torf(G, M). I t  may happen that  we can calculate Torf(G, M )  
without using resolutions; if so, we can count how many basic operations 
@, are needed. 

We have now shown how we may consider a set of basic operations; 
we proceed to show how we may consider relations between them. 

First take an element c, of C,. We may write 

(where a, e A) . 
Applying d,, we have C,a,x, = 0. By Theorems 3.7.1, 3.6.2 we have 
C,[a,Q,(s)] = [cs] (modulo the total indeterminacy involved). Now let c, 
run over an A-base of C,; we obtain basic relations between the a,, in 
(1-1) correspondence with a base of Tor,"(G, M). As before, it may 
happen that  we can calculate Tor,A(G, M) without using resolutions. In 
this case we can count how many basic relations are available. 

We will now consider a slightly different application, which concerns 
composite operations of the form @a. Suppose that  M, M'  are (locally 
finite-dimensional) submodules of H * ( X )  such that  M ' c  M. We can take 
minimal resolutions of M, M' and form the following diagram. 
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Let W' be a basic operation corresponding to a pair (d:, c:di); we seek to 
evaluate W'(&') in terms of basic operations @,(E). For example, if M is 
generated (qua A-module) by one generator X, and if M' is generated by 
ax (where a E A), then the problem is equivalent to evaluating Wr(ax) in 
terms of operations @,(X). 

Let us write 
~ $ 4  = C,b,c,,, (where b, E A) . 

Then we have 

c:d;PI = E,b,z, 

By Theorems 3.6.2, 3.7.1, 3.7.2. we have 

(modulo the total indeterminacy involved). 
I t  may happen that  this formula is useful to us only if the coefficients 

b, are of positive degree. To locate the W which admit a formula of this 
sort, one should find the kernel of 

i,: Tor,"(G, M') -- Tor,"(G, M); 

for the coefficients b, of degree zero in tip, = Erb,c,,, are determined by 
i,. 

This concludes our outline of the use of homological algebra in search- 
ing for operations and relations to serve given purposes. 

3.9. The Car tan formula. Throughout this section, we shall assume 
that  the coefficient domain G is the field 2, of integers modulo p, where h 

p is a prime. Under this condition, we shall prove the existence of a Car- 
tan formula [l11 for expanding @(xy), where xy is a cup-product and @ 
is an operation of the sort considered in 9 3.6. The expansion which we 
obtain is of the form 

E,(- l)v(r'@;(x)@;(y) . 
where the signs are given by 

~ ( r )  = deg (X) deg (a:') . 
We can give one elementary example of the sort of Cartan formula a t  

issue; for the Bockstein coboundary P,I is a stable operation, and is a 
secondary operation if f = 2; it satisfies the formula 
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Pd  (XY) 3 (P,~x)Y + (- l)"x(P,ry) 
where rj = deg(x). 

The precise result we require is stated as Theorem 3.9.4; the remainder 
of this section is devoted to proving it. The proof uses the method of the 
universal example. The obvious universal example for this purpose is a 
Cartesian product, as considered by Serre [30]. However, we are partic- 
ularly concerned with stable operations; we must therefore show how 
our Cartan formulae behave under suspension. For this purpose we use 
a "product" more conveniently related to the suspension. Let Y', Y" be 
enumerable CW-complexes with base-points y;, y;'; we may form the "re- 
duced product" [l81 

Y' X Y" = Y' X Y"/(Yt X yh'u y; X Y") . 
This is again an enumerable CW-complex. The quotient map g: Y' X Y"- 
Y' X Y" induces a homomorphism 

g+: H + ( Y t  X Y") - H + ( Y t  X Y") , 
and g+ embeds H +(Yt  X Y ") as a direct summand of H +(Yt  X Y "), com- 
plementary to H + ( Y t )  and H+(Y").  If y ' e  H + ( Y t )  and y" E H+(YU) ,  we 
have the "external" cup-product y' X y" in H + ( Y t  X Y") and a "re- 
duced" cup-product y' X y" in H + ( Y t  X Y") defined by 

(y' X yt')q+ = y' X y" . 
We now set up some more notation. If K, L are subsets of HYX), 

Hr (X)  then we define K L  to be the set of cup-products kl, where k E K, 
l e L;  thus K L  c H4"(X). If K, L are subsets of H q ( X )  and X, p lie in 
Z,, then we define XX + p L  to be the set of linear combinations Xk+pl, 
where k E K, 1 E L.  These definitions give a precise sense to formulae such 
as 

E,.(- ~ ) " ~ r ' ~ x x ) @ : ' ( ~ ) ;  

an expression of this sort denotes some set of cohomology classes. 
If K, L are subsets of Hq(Y'), Hq(Y") then we define the subset K X L  

of Hq+"(Y' X Y") in a similar way. 
We will now use the reduced product to study Cartan formulae valid 

in a fixed pair of dimensions. We will suppose that  each of S ,  S',  S" is 
a natural subset of cohomology, in one variable, whose dimension is l,  l', 
l" in the three cases. Let R be a finite set of indices r ;  let a ,  a:, a:' be 
operations defined on S ,  S ' ,  S", and of degrees (say) g, g:, g:'. We will 
suppose that  

l ' + l " = l ,  q L + q y = q  (for each r )  

and that  our operations have arguments and values of positive degree. 
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We will say that  @ can be expanded on S' ,  S" i n  terms of @:, @:) if the 
following two conditions hold. First, for each space Xand  each X' e S1(X), 
X" e S t r ( X )  we have 

( i ) X'X" E S(X),  and @(xlx") has a non-empty intersection with 

C,( - l)'%D:(x')@:'(x") 

where ~ ( r )  = l'q:'. 
Secondly, whenever Y', Y" are enumerable CW-complexes and 

y 'e St(Y'), y" e SV(Y") we have 
(i i)  y' X y" E S(Y1 X Y"), and @(yl X y") has a non-empty intersection 

with C,(- l)?(')@:(y1) X @:'(y") . 
For our first lemma, we suppose that  we can choose enumerable CW- 

complexes Y', Y" and classes y ' e  H+(Y1),  y" e H+(Y") so that  (Y', g'), 
(Y", y") are universal examples for S' ,  S". (We can certainly do this if 
the subsets S' ,  S" are determined by K-tuples of primary operations, 
since we can replace the canonical fiberings of 3 3.3 by weakly equivalent 
enumerable CW-complexes.) 

LEMMA 3.9.1. If condition (ii) above holds for one such pa i r  of uni-  
versal examples (Y', y') and  (Y", y"), then conditions ( i )  and  (ii) hold 
i n  general, so that @ can be expanded on S' ,  S" i n  terms of a:, Q:'. 

This lemma is immediate, by naturality. 

For our next lemma, we suppose that  not only the subsets S' ,  S" but 
also the subsets (S'); (SU)%dmit universal examples which are enumer- 
able CW-complexes. 

LEMMA 3.9.2. If @ can be expanded on S ' ,  S" i n  terms of a:, @:I then 
@"an be expanded on (S')" SS" i n  terms of (@:)S, G:) and on S',  (SU)%n 
terms of G:, (a;')'. 

PROOF. I t  is sufficient to prove that  half of the lemma which relates to 
(S')" SS", since the other half may be proved similarly, 

If Y is a CW-complex, we may interpret the suspension s Y to be the 
reduced product S I X  Y, since this is homotopy-equivalent to the ordinary 
suspension in this case. Suppose that  y e H"(Y)(n > 0); let S' be the 
generator of H1(S1); and let S be the suspension isomorphism. Then we 
have the equation 

ys-l = (-l)%' X y . 
If Y', Y" are enumerable CW-complexes, we have the "associativity" 
formula 

(S1 X Y') X Y" = S' X (Y'  X Y") . 
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In H + ( S 1  X Y' X Y") we have 

(y' X yt')s-l = (- l)*"(yts-l) X y" 

(where n" = deg(yU)); this follows easily from the equation above and 
the associativity of the cup-product. 

Now let (Y', y'), ( Y  ", y") be universal examples for (S')" SS". Since 
(-1) '"~'  e (S')"(Yt), we have (-l)L"y's-l E S'(S1 X Y'); also y" E S"(Y"). 
If @ can be expanded on S' ,  S", we have 

(-l)""yts-l) X y" € S(S1 X Y' X Y") , 
whence (y 'X y")s- 'ES(S'X Y ' X  Y") and y ' X  y " e ~ " k ' X  Y"). 

Again, if can be expanded on S' ,  S", we have 

Q((- I)~"(Y's-~) X g") n ET(- ~ ) ~ ( ~ ) q ( ( -  I )~"Y~S-~)  X a:'(yU) + o , 
where ~ ( r )  = l'q:'. In this expression we have 

Q;((- l)L"y's-l) = ((a$)'((- l)z"y'))s-l = (- l)z"((~;)s(y'))s-l , 
by Lemma 3.4.2. A little manipulation now shows that  

w ( y t  X yu) n ET(- l)scr)(@:)s(yt) X @:'(U") # o , 
where f-(r) = (l' - 1)q:'. By Lemma 3.9.1, Q" can be expanded on (S')', 
S" in terms of (G:); Q:. This completes the proof. 

I t  will be convenient if we now set up the data for Theorem 3.9.4. Let 
C, be a free A-module on one generator c, of degree zero. We suppose 
given three A-maps d: C, - C,, d': C: - C; and d": C:' - C;', as in 5 3.6. 
We shall suppose that  C:,,,, = 0 for q < 0 and that  d' / C:,,: C:,, -- C;,, is 
monomorphic; this assumption is automatically satisfied if d' is minimal. 
The result of this assumption about d' is that  if E: is a canonical fibering 
associated with d', as in 5 3.6, then E: is (l - l)-connected and HL(E:) = 
Z,,, generated by the "fundamental class" eL. We make the correspond- 
ing assumption about d". 

Corresponding to d ,  d', d" we have stable natural subsets T, T', T"  in 
one variable. We now make an  essential assumption restricting d ,  d', d"; 
we suppose that  for each space X and for each X' E Tt(X) ,  X" e T"(X) the 
cup-product x'x" lies in T(X). 

LEMMA 3.9.3. 

( a ) If Y', Y" a re  enumerable CW-complexes and  y' E Tt(Y'), y" e 
T"(YU) then y' X y" E T(Yt  X Y"). 

( b )  If X i s  any space, then 

T t (X)  c T(X) , T"(X) c T(X) . 
PROOF OF PART (a). By our assumptions, the external cup-product 

y' X y" lies in T(Yt X Y"); and if a, is a primary operation such tha t  
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a,(yl X y") = 0 ,  then a,(yl X y") = 0 ,  since g +  is a monomorphism. 

PROOF OF PART (b). I t  is sufficient to prove one inclusion, say the sec- 
ond. If l > 0 ,  let ( Y " ,  y") be a universal example for (TV)'  such that  
Y" is an enumerable CW-complex; then g" e ( T " ) ' ( Y U ) .  The element 
(-1)'s' in H 1 ( S 1 )  certainly lies in ( T ' ) ' ( S 1 ) ,  since a(-l)'sl=O for each pri- 
mary operation a of positive degree. Therefore (- 1 ) V X  y" e T z + ' ( S I X  Y"); 
since y"s-l = (-1)'s' X yrr and T is stable, we have y" e Tz(Y") .  The in- 
clusion ( T  " ) ' ( X )  c T 1 ( X )  for a general space X now follows by naturality. 

We will now state Theorem 3.9.4. This theorem will allow us to ex- 
pand @(xlx") in the form 

whenever X' e T t ( X )  and X" e T " ( X ) .  I t  will also give us some informa- 
tion about the operations @L, @:' which occur in the end terms of this 
expansion; they are essentially the same as @. 

THEOREM 3.9.4. I f  d ,  d ' ,  d", T ,  T' and  T" are  a s  above, and  i f  @ i s  a n  
operat ion of degree q > 0 associated w i t h  a p a i r  ( d ,  z ) ,  t h e n  there are  
operations a:, a:' which  a r e  associated w i t h  pa i rs  (d ' ,  X:), (d",  2:') and  
s a t i s f y  the fol lowing conditions.  

( i ) F o r  each p a i r  of d imens ions  (1 ,  m), the component Q'+" c a n  be 
expanded o n  ( T ' ) ' ,  (T")" in t e r m s  of (G:)', 

( i i )  There  are  t w o  values a, w of r such tha t  @C, @L are  i d e n t i t y  oper- 
at ions .  F o r  r f a, w we  have 

(iii) There  i s  a n  A - m a p  p:: C ,  - C :  such tha t  p:d' = d a n d  zp: = z&. 
F o r  each space X and  each X' e T 1 ( X )  we  have 

(iv) There i s  a n  A - m a p  p:': C,-C:' such tha t  p:'d" = d and  zp:' = 2:'. 

For  each space X a n d  each X" e T " ( X )  we  have 

We require a further lemma, which is a converse of Lemma 3.9.2. We 
shall suppose that  @, @:, G:' are stable operations associated with pairs 
( d ,  X ) ,  (d ' ,  X:), (d",  X:'); we set q = deg(@). 

LEMMA 3.9.5. I f  a'+" c a n  be expanded o n  (T') ' ,  ( T " ) m  in t e r m s  of 
(a:)', (a:')" a n d  i f  l > q ,  m > q t h e n  @l+"+' c a n  be expanded o n  (T ' ) '" ,  
(T")" in t e r m s  of (@;)'+l, (a:')" a n d  o n  ( T ' ) ' ,  (T")m+' in t e r m s  o f  (a:)', 
(Q:')"+'. 
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Roughly speaking, the effect of Lemmas 3.9.2 and 3.9.5 is that  in order 
to prove Theorem 3.9.4, i t  is sufficient to consider a single pair of dimen- 
sions (l, m). 

PROOF OF LEMMA 3.9.5. As for Lemma 3.9.2, i t  is sufficient to prove 
that  half of the lemma which passes from dimensions (l, m) to dimensions 
(l + 1, m). Let ( Y', y'), ( Y", y") be universal examples for (T')L+l, (T")" 
such that  Y', Y" are enumerable CW-complexes. As in Lemma 3.5.1, 
we can take a space X and a map g : s X  - Y' such that  

g*: H'( Y') - Hr(sX)  

is an isomorphism for r 5 l + q t 1; we may suppose that  X is an enu- 
merable CW-complex, and that  s X  is the reduced product S' X X. We 
can now form the map 

g X 1 :  S ' X X X  Y " - Y ' X  Y " ;  

this induces isomorphisms of cohomology up to dimension I $ m + q + 1 
a t  least. I t  is now easy to check that  

by applying (g X l ) +  and using the data. The conclusion now follows by 
Lemma 3.9.1. This completes the proof. 

PROOF OF THEOREM 3.9.4. We begin by fixing attention on a pair of 
dimensions (l, m) such that  l > g, m > g. Let E:, E; be canonical fiber- 
ings associated with d', d", as in 3 3.6. We may take weakly equivalent 
enumerable CW-complexes Y', Y"; we write y', y" for the classes cor- 
responding to the fundamental classes e', e". Since H*(Y1), H*(Y") are 
locally finite-dimensional, the reduced cup-product 

p : H+(Y1)  @ H+(Y")  - H + ( Y 1  X Y") 

is an isomorphism. The coset @(yl X y") is defined; we may choose a 
class v in @(yl X y"), and expand v in the form 

v = Cr(-l)%: X v:' 

where v i e  H+(Y1) ,  v:'€ H + ( Y U )  and ~(r)=l(deg(v:')-m). By our origi- 
nal data, Y' is (l - l)-connected and HL(Y')  = Z,, generated by y'; 
similarly for Y ". We may therefore take our expansion so that  deg(v:) > l 
and deg(v:') > m, except that  v: = y' and v: = y". By Lemma 3.6.4, 
there are operations (for r f W ) ,  @:'(for r # a)  which are associated 
with pairs (d', x : ) ,  (d", 2:') and are such that  v:, v:' are universal examples 
for (@:)l, (G:')". We define G: and G: directly, defining them to be iden- 
tity operations. By Lemma 3.9.1, W+" can be expanded on (T')', (T"), 
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in terms of (Q:)', (Q:')". By Lemmas 3.9.2 and 3.9.5, a similar conclusion 
follows in every pair of dimensions. This establishes parts ( i ) and ( ii ) 
of the theorem. 

We will now examine the class v:' which occurs in the above expansion. 
Let us take W = S', so that  H z ( W )  = Z,, generated by W. We may take 
a map f: W - Y such that  y'f + = (- 1 ) ' " ~ ;  thus f +: Hr(Y') -+ H'( W) is 
zero for r > l. We have 

C,(-l)%: X v:' € @l+"(yf X y"); 

applying (f X l ) + ,  we find 

(-l)l(q+")w X v:) € QC+"((-1)'"w X y") 

in W X Y". But W X Y" is the l-fold suspension of Y", and we have 
the equation 

ys-L = (-l)ltw X y (for y e  Ht(Y")). 

Since Q is stable, we deduce v:'€ @"(yV). Lemma 3.2.3 now shows that  

(Q:l)"(xt') c @"(X") (for X" E (T ")"(X)). 

Lemma 3.7.4 now shows the existence of an A-map p:': C, --. C:' such that  
p:'d" = d and xp:' = 2:'; i t  also guarantees that  

for classes X" of any degree. This establishes part (iv) of the theorem; 
we may establish part (iii) similarly. The proof of Theorem 3.9.4 is com- 
plete. 

4.1. Introduction. In this chapter we shall use the theory of Chapter 
3 to define and study a particular set of secondary cohomology operations 
Q,,,. These operations act  on cohomology with mod 2 coefficients; they 
will be defined in 9 4.2. The object of our work is to prove the formula 

C,,,ai.,.k@t;.,(u) = [sqZk+l(u)1 

mentioned in Chapter 1;  this formula is proved in 5 4.6. The line of proof 
is as follows. We first apply the theory of Chapter 3 to prove a formula 

~ , , ,a t , j ,kQl , j (u)  = [X~q2kC1(u)~  

containing an undetermined coefficient X. We then determine the coeffi- 
cient X by applying the formula to a suitable class U in the cohomology 
of a suitable space. For this purpose we use complex projective space of 
infinitely-many dimensions, which we shall call P. We therefore need to 
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know the values of the operations Q,,, in P ;  these are found in 5 4.5. It 
turns out that  an inductive calculation is possible; there are many rela- 
tions between the different operations in P ,  and these enable us to de- 
duce, from the value of one selected operation, the values of all the others. 
In 5 4.4 we find the value of this one operation. In  4.3 we apply the 
theory of Chapter 3 to prove those relations between the operations which 
are needed for the calculation in 5 4.5. This work, therefore, will com- 
plete the proof of Theorem 1.1.1. 

In this chapter we have to use the Steenrod squares SqVor  values of 
k which may have a complicated form. We therefore make a convention, 
by which we write Sq(k) instead of Sqk in such cases. Similarly, we may 
write E,(k) instead of in dealing with A* (see 3 2.4). Again, we write 
H m ( X )  instead of Hm(X; Z,), and H*(X) instead of H*(X; Z,), since we 
shall not have to deal with any coefficients except 2,. 

4.2. The operations V(u) and  @,,,(U). In this section we apply the 
theory of Chapter 3 to define certain particular secondary operations, act- 
ing on cohomology with mod 2 coefficients. These will be operations on 
one variable. 

To define our first operation, we have to give a pair (d, x) (see 3 3.1). 
We take C, to be A-free on one generator c of degree zero; we take Cl to 
be A-free on three generators c,, c,, c, of degrees 1, 3, 4. We define d by 

We define x by 

This pair (d, x) corresponds, of course, to the relation 

We note that  (C,/dC,), = 0; so by Theorems 3.6.1, 3.6.2, there is a unique 
operation 1V (of degree 4) associated with this pair (d, x). This is the first 
operation we require. 

To define further operations, we introduce further pairs (d, 2 ) .  We be- 
gin by constructing the first terms 

d E c, - c, - 2, 

of a minimal resolution (see 2.1) of Z, over A. We may do this as fol- 
lows. We take C, to be A-free on one generator c of degree zero, and 
define cc = 1. We take C, to be A-free on generators c, of degrees 2" for 
i = 0, 1, 2,. . S .  We define d by setting 
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c,d = Sq (2°C . 
I t  is clear that  Im (d) = Ker ( E ) ,  since the elements Sq (2&) are multiplica- 
tive generators for A(see [4]). I t  is also easy to show that  d is minimal. 
In fact, to do this, we should take an element X = Xc, + C , < p , c ,  of 
degree 2l in C,, assume xd=O, and deduce that  X=O.  This is immediate 
from the equation 

E1(27((Xc, + E,,,a,c,)d) = . 
Next, we make use of the epimorphism B: Ker(d) - Tor,A(Z,, 2,) intro- 

duced in 3 2.2. I t  was shown in 3 2.5 that  the elements h,h, (with 0 5 i$ j ,  
j # i + 1) in Ext>(Z,, 2,) form a base for it. For 0 5 i $ j ,  j # i + 1, 
then, we may take cycles x,,,(of degree 2 9  2,) in Ker(d) such that  

(h&,) (B%. J = 1 
Let C,(j) be the submodule of C, generated by c,, c,, -, c,. Then the cy- 
cle x,,, lies in C,(j). This is clear from the degrees if i < j ;  if i = j ,  i t  
follows by using also the fact that  d is minimal. We set d ( j )  = d / Cl(j). 

By Theorem 3.6.1, once x,,, is chosen, there is an operation Q,,, (of 
degree 2 9  2' - 1) associated with the pair (d(j), x,,,)(where 0 $ i 5 j ,  
j f i + l ) .  Such an operation is unique, by Theorem 3.6.2, since 
(C,/dCl(j)), = 0 if n < 2j+'. These operations Q,,, are the ones which we 
require. They are defined on classes U such that  

Sq(Z.) (U) = 0 for O l r g j .  

The indeterminacy of Q,,, may depend on the choice of the cycle x,,,, and 
a fortiori the operation Q,,, may do so. However, all the propositions 
that  we shall state about the operations Q,,, remain equally true, what- 
ever choice of the xi,, is made. We shall therefore only need to suppose 
that  the x,,, are chosen in some fixed fashion. 

For completeness, we should perhaps consider the operation @I,, asso- 
ciated with the pair (d(k), x,,,) for some k > j. I t  has the same indeter- 
minacy as Q,,,, but is defined on fewer classes U. Moreover, by Theorem 
3.7.2, we have 

@:,,(U) = Q,,,(u) 
whenever @;,,(U) is defined. Thus, in what follows, we shall not need to 
distinguish @E,, from Q,,, by a separate symbol. 

I t  may be of interest to display a particular relation, holding in A, 
which corresponds to a cycle which one might choose for x,,,. We consid- 
er first the case i < j ,  so that  i 2 j - 2. Then the Adem relations [4] 
for Sq (2,) Sq(2') and Sq (2,+') Sq (2,-2,) both contain the term Sq (2'+ 2'). 
Their sum is therefore an equation of the form 
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with certain coefficients X,. We may use Adem's method [4] to express 
Sq(k) in the form 

= C,,z<,%zSq(2z) 

with certain coefficients a,,, in A. Substituting, we obtain an  equation 
of the form 

Sq C w W j )  = C,,,,, bzSq(2z) 

with certain coefficients b, in A. Hence the expression 

x , , j  = Sq(2%, + C,,,,, bccz 
is a cycle in Cl(j). The fact tha t  i t  satisfies the equation 

(hih,) (%,,) = l 

follows from Lemma 2.2.2. 
The case i = j may be treated similarly, but even more simply, using 

the Adem relation for Sq (2j)Sq (2j) (cf. [4]). 
It may be remarked tha t  the above process allows us to choose the cy- 

cles x,,, in a way which is quite definite, if this should be required. In 
fact, we have only to remark tha t  Adem's method for reducing Sq(k) to 
a sum of products of the generators Sq(2') leads to a well-determined 
answer. And this is clear, since i t  proceeds by a well-determined reduc- 
tive process, using a t  each step a well-determined substitution. 

We conclude by remarking that  the operations Q,,,, Q,,, and Q,,, do not 
depend on the choice of the cycles z,,,, x,,, and z,,,. In fact, i t  is easy to 
see that  there is only one choice for the cycle z,,,, namely Sqlco. There 
are only two choices for the  cycle z,,,, namely 

(Sq2c1 + Sq3co) f XSq2(Sq1c,) (X = 0 , l ) .  

These two cycles can be mapped into one another by an  automorphism 
pl: Cl(l) - Cl(l) defined as follows: 

By Theorem 3.7.2, the operations corresponding to the  two cycles coin- 
cide. 

Similarly, there are only four choices for the cycle x,,,, namely 

(Sq1c2 + Sq2Sq1c, + Sq4co) + XSq1(Sq2c1 + Sq3c,) + pSq3(Sq1c,) 
(X, p e 22). 

As above, the choice does not affect Q,,,. 
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4.3. Relations 
shall obtain those 
need in 4.5. 

between the operations .\V. and Q,,,. In this section we 
relations between the operations W and Q,,, which we 

For our first lemma, let U E Hm(X) (m>O) be a class such that  Sql(u)=O, 
Sq3(u) = 0, Sq4(u) = 0. 

LEMMA 4.3.1. There i s  a formula 

Qo.2Sq4Sq2(u) = [Sq6W(u) + XWO(u)I 

valid i n  

for a fixed X E 2,. 
We require this formula in order to apply i t  to the fundamental class 

in complex projective space. The actual value of X is not relevant, al- 
though a t  a later stage in our calculations i t  would be possible to show 
that  X = 0. 
PROOF. Informally, the proof consists in showing that  the relations. 

are the "same". Formally, we shall obtain this lemma as an application 
of Theorem 3.7.2, and we use the notation of that  Theorem. In particular, 
we take d: C,--C, to be the map d(2), as used to define Q,,, in 5 4.2; thus, 
we have 

Again, we take d': C: -- CL to be the d used in defining W. That is, we 
take 

C id' = Sqkr ( i  = 1, 3, 4) . 
We define an A-linear map p,: C,- Ch(of degree 6) by cp, = Sq4Sq2c'. TO 
apply Theorem 3.7.2, we have to construct a map p,: C, - C: such that  
pldl = dp,. I t  is sufficient to take 

Taking 

we find 
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Theorems 3.7.2, 3.6.2 now yield the conclusion, since (Coker d'),, = Z,, 
generated by the  image of Sq"ct. 

For our next lemma, let 
d c, - c, "- z2 

be the first part of a minimal resolution of z, over A, as constructed in 
4.2. Let z e C, be such that  zd = 0 and deg(z) 5 27 thus z e C,(k - 1). 

Let X be an  operation associated with the pair (d(k--l),z); thus 
d e g ( ~ )  <2" Let U be a class such tha t  Sq(B')u = 0 for 0 r < k. Then 
we have the following conclusion. 

LEMMA 4.3.2. If @,,,(U) has zero indeterminacy, and i s  zero, for each 
p a i r  (i,  j )  with 0 5 i 5 j < k, j f i + 1, then X(u) has zero indeterrni- 
nacy and  i s  zero. 
PROOF. We first define C, to be A-free on generators c,, , of degree 

2, + 2, with c,,,d = z,,,; then by Lemma 2.2.1, the terms 

form part of a minimal resolution of Z2 over A. Since z e C, and zd = 0, 
we have 

2 = (C,,,a,,,c,,,)d 

By considering degrees, all the terms in this sum have j < k. Thus we 
have 

z = C,,,; j<,a~.jzitj 

We may apply Theorems 3.7.1, 3.6.2; since (Coker d(k - l)),  = 0 if n< 2', 
we find 

[X(u)l = C,, ,; ,<, a,,,@,,,(u) 

= 0 (mod zero) . 
This proves the lemma. 
For the next lemma, we take an  integer k 2 2 and suppose that  U e 

H m ( X )  (m > 0) is a class such that  Sq (2')u = 0 for 0 5 r 5 k and 
Sq(2k)Sq(2"1) (U) = 0. 
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i n  which a,,,,, e A, a,,, e A and X, e 2,. I t  holds modulo the total indeter- 
minacy of both sides. The coeficient a,,,,, of a,,, satisfies 

(Ei(3.Zk) + Ed2'))ao,k,k = 1 

We require this formula in order to apply it to a power Y2k of the funda- 
mental class y in complex projective space. The actual value of X, is not 
relevant, although a t  a later stage in our calculations i t  would be possible 
to show that  X, = 0. 

This lemma should be considered as strictly analogous to Lemma 4.3.1; 
i t  is another application of the theorems of 5 3.7. The only difference is 
that  we do not propose to carry out the calculations explicitly. 

We begin by constructing a partial minimal resolution 

Here M is the module of Theorem 2.6.2, except that  the integer k of that  
theorem is replaced by (k + 1). Thus, M is a module whose &base con- 
sists of three elements m, Sq(2k+1)m, Sq(2,++")m. 

We take C;' to be free on one generator c", and define E" by c"~" =m. 
We know, by Theorem 2.6.2, that  C:' will require generators c ~ ' ( O S i ~ k ) ,  
c',' of degrees 25 3-2', plus other generators of degrees t23.2'+l. By 
Lemma 2.2.1, i t  is sufficient to specify ci'd:', c','d:', etc., in a suitable 
fashion. We may take 

cl'd;' = Sq(2"c", c','d:' = Sq(2")Sq(2'+')c" . 
The choice of d:' on the other generators does not concern us. 

We postpone the construction of d:', in order to indicate how we pro- 
pose to apply Theorem 3.7.2. Using the notations of that  theorem, we 
shall take d: C, - CO to be d(k + l ) ,  as used in 3 4.2 to define @,,,+,. We 
shall take C: to be the submodule of C:' generated by the c:'(O 5 i S k) 
and c l ;  we take C; = C;' and d' = d:' I C:. 

The map p,: C, -+ C; will be defined by 

cp, = Sq(2"l)c" . 
Since this induces a map from C,/dC, to M, i t  is possible to construct a 
map p,: C, - C:' so that  p,d:' = dp,. By considering dimensions we see 
that  p, will map into C:. 

The map p, may be taken in any way; we only require the following 
property. 
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then  

E1(2k+1)a0 = 1 . 
PROOF. Set h = 2'"+'. If a ,  b e I(A), we have 

We define a function E: C :  --, Z, by setting 

E(acV) = E;+ ' a  . 
Thus 

This proves the lemma. 

We now revert to the construction of C;.  We know by Theorem 2.6.2, 
that  C;' will require generators 

(0  5 i S j 5 k ,  j f i + 1 )  of degrees 2' + 2j 
c::* (0 5 i 5 k ,  i f k - 1)  of degrees 2' + 3.2'" 
c:,* of degree 2'"-' + 2'+' 

plus other generators of degrees t 2 3 2'"+'. Using Lemma 2.2.1, we may 
construct di' as follows. Define an embedding e: Cl (k)  - C:' by c,e = c:'. 
Then we may take 

The choice of di' on the other generators does not concern us. 
We now observe that  xo,,+lpl is a cycle in C:'. Thus it lies in Im di', and 

must have the following form: 

Since k >= 2,  there is no term in 2,-,,,+,p,, by considering degrees. Apply- 
ing Theorems 3.7.2, 3.7.1, 3.6.2, we obtain the formula which was to be 
proved. 

I t  remains only to obtain the required information about the coefficient 
a 0  To this end, we define a function E: C :  --, Z, by setting 
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E ( d G  + C0,,,,alclt) = (E1(2'")Ez(2'))4 

We shall apply E to both sides of the equation (4.3.5). We first note that  

In particular, El(2,)E2(2'") (ab) = 0 unless deg(a) and deg(b) are both divi- 
sible by 2,. 

Let us expand x,,,+, in the form 

~ o . , + ,  = C,5is,+ ,btct (bi € A) . 
Then we have 

E(zo.,+ipi) = E (C,b,(cipJ) 

But deg(b,) = 2' + 2,+' - 2,, which is odd unless i = 0. Let us write 
copl = C,aQcat. Then 

E(zo,,+ipi) = E(bo(cop1)) 

= (51(2'"+l)bO) 01(2'"+l)ao) 
= l ,  

using Lemma 2.2.2. (for b,) and Lemma 4.3.4 (for a,). 
Let us apply E to the right-hand side of the equation (4.3.5). We have 

and these are odd, except in the cases with i = 0. Moreover, 

and this is not divisible by 2'", except in the case j = k. Thus it remains 
only to evaluate 

( ~ 0  k e ) )  9 E(aO,k(zO,k~l)) 

We deal with the latter first. In C,, let us write x, , = Z,,,,,b,c,, with 
a new set of coefficients b, in A. Let us write 

~ 6 ~ 1  = bt,*c; + C o s j s l c b t . j ~ ; t  

Then 

Here we have 



HOPF INVARIANT ONE 

Thus 

(Ei(3~2~)  + &~(2~))ao,k,k = 1 

This completes the proof of Lemma 4.3.3. 

4.4. The o p e r a t i o n  T i n  P6. In this section we find the value of that  
operation which is needed to s tar t  the induction in 3 4.5. 

Let P be complex projective space of infinitely-many dimensions; let y 
be a generator of H Y P ) ,  so that  H*(P) is a polynomial algebra (over 2,) 
generated by y. Let \I' be the operation defined in 3 4.2. 

The operation \I' is defined on y because the elements Sqly, Sq3y and 
Sq4y are zero. I t  is defined modulo zero because the elements Sq2y2 and 
Sq4y are zero. 

Before proving Theorem 4.4.1, we insert some remarks on its proof. 
I t  is easy to show (by considering the universal example) that  if u e HYX) 
is any class such that  Sql(u) = 0, we have 

for some fixed coefficient X. Theorem 4.4.1 is therefore equivalent to the 
proposition that  if u is any class such that  Sqlu = 0, we have 

I t  would be desirable, in some ways, to prove this latter proposition by 
arguments lying wholly inside homology-theory. This is indeed possible, 
by using the methods of Steenrod and Adem (see [32], [5]) to give a con- 
struction for V! and to discuss its properties. However, to employ such 
methods here would lengthen the present paper by a chapter; for brevity, 
therefore, we make an ad  hoe application of the methods of homotopy 
theory. 

In fact, the space P may be decomposed as a CW-complex S" E4 U E" 
U E" U S ,  where the subcomplex S" E4 U E6 U . . U E2* is just 

P", the complex projective space of n complex dimensions. The stable 
cohomology operations in H*(P)  depend on the attaching maps of these 
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cells, or rather, on their stable or S-homotopy classes. 
The attaching map for E4 is just the Hopf map 7 : S3 - S2. Similarly, 

the attaching map m:  S5- P4 for E' is just the usual fibering, with fibre 
S'. Let SW: S" - SP4 be the suspension of m,  and let Si: S3 -- SP4 be 
the suspension of the embedding i: S2 - P4. 

LEMMA 4.4.2. In z0(SP4) we have 

{SW} = (Si)*w , 

where w i s  a generator of  xP"(S3). 
This lemma is essentially due to H. Toda [33, Chapter 71; but unfortu- 

nately, he does not state it explicitly. A variety of proofs are available; 
the neatest I have seen is the following, for which I am indebted to Dr. 
I. M. James. I t  depends on the following lemma. 

LEMMA 4.4.3. Let  B = S q  U E" U be a g-sphere bundle over S", 
decomposed i n t o  cells in the obvious w a y .  L e t  a E zn-,(R,+,) be the 
characteristic element for  B, a n d  let ,6 E zn+,-,(Sq U E") be the attaching 
element f o r  Enfq. T h e n  

where 

i s  the in jec t ion  a n d  w i s  obtained f r o m  a by the Hopf  construction. 

This lemma is cognate with the work done in [20] (see 9 7 in particular). 
For the application, we take g = 2, n = 4, and take B to be the stand- 

ard fibering 

The element a is a generator of z3(R3), and hence w is a generator of 
zdS3). 

We now proceed to deduce Theorem 4.4.1 from Lemma 4.4.2. We need 
one more lemma. Let K = S "  U Ent4 be a complex (with n 2 5) in which 
the class of the attaching map is Zru, where U is a generator of xn+,(Sn) 
and r is an integer. 

LEMMA 4.4.4. T: Hn(K) -+ Hn+'(K) i s  zero i f  r i s  even, non-zero i f  r 
i s  odd. 

PROOF. We first observe that  T is defined, and is defined modulo zero, 
because 
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is zero. We now construct a space X, equivalent to K, as follows; take 
the mapping-cylinder of a map f : Snf3-S" representing v ;  then attach 
a cell Ent4 to SnL3 by a map of degree 2r.  Let Y be the subspace 
Ent4 U We shall apply Axiom 5, 3 3.6, to the pair X, Y. Inspecting 
the exact cohomology sequence of this pair, we see that  we may take 
generators as follows. 

We have Sq'u = 0, Sq3u = 0, Sq4u = Sv, and Sqlv = r(i*w). By Axiom 
5, i*T( j*u) = r(i*w) and hence 'P( j*u) = rw. This proves Lemma 4.4.4. 

We now prove Theorem 4.4.1. Consider S3Pa,  the threefold suspension 
of P! By Lemma 4.4.2, the attaching map of S3E6 lies in the class 
(S3i),(S"), where w is some generator of xa(S3). But S3w = 2rv with r 
odd. Let K be a complex, as considered in Lemma 4.4.4, for n = 5 and 
this value of r; then there is a map f : K"S3Pa inducing isomorphisms 
of H5, H'. Since 1V. is non-zero in K by Lemma 4.4.4, it is non-zero in 
S3Pa. Since T commutes with suspension, i t  is non-zero in P', and hence 
in P. This completes the proof of Theorem 4.4.1. 

We remark that  the operation 1V. is by no means the only secondary 
operation in P which we can evaluate directly. In particular, one can 
evaluate @,,2(y4t) using James's results on the attaching maps in quater- 
nionic projective spaces-see (2.10a) of [19]. 

4.5. The operations Qi,,  i n  P. In this section we shall obtain the 
values of the operations ai ,  when they act in complex projective space 
of infinitely-many dimensions. We write P for this projective space, and 
write y for the generator of HYP), so that  H*(P)  is a polynomial algebra 
(over 2,) generated by y. The Steenrod squares in H*(P)  are easily cal- 
culated; we have 

Sq"+'(yt) = 0 
s q y y y  = (t - k, k)yt+" . 

(Here (h, k) stands for the (mod 2) binomial coefficient (h + k)!/h! k!). 
Let X be an operation associated with a pair (d(j), x)(using the notation 

of 3 4.2). Then X is defined on yt if and only if Sq(2') (yt)=O for Ogrg j. 
For this, it  is necessary and sufficient that  t-0 mod 2j. Now set deg(X)= 
n;  and suppose that  n < 2jf1. If n is odd, then X(yt) is a coset in a zero 
group. If n is even, we should examine the Steenrod operations a, which 
enter into the indeterminacy of X (and are defined by x=Cra,c,). We see 
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If r>O, this degree is odd, so that  a, contributes nothing to the indeter- 
minacy. On the other hand, if r = 0, then this degree is n; and if t = 0 
mod 2j, then 

for any a, in A such that  deg(a,) = n < 2j+'. We conclude that  X(yC), if 
defined a t  all, has zero indeterminacy. 

In particular, we conclude that  @,,,(yt) is defined if and only if t = 0 
mod 2j; that  its indeterminacy is then zero; and that  i t  is zero (since of 
odd degree) unless i = 0, j 2 2. 

For our next result, which gives the values of the @,,,, we set h = 2j. 

PROOF. We first obtain the case j = 2, t = 1. In fact, by applying 
Lemma 4.3.1 to the case u = y and using Theorem 4.4.1, we see 

This case serves to s tar t  an induction. Suppose, as an inductive hy- 
pothesis, that  we have established the result for all j < k (where k 2 2 )  and 
for the case j = k, t = 1. We now note that  if X is any secondary opera- 
tion associated with d(k) such that  deg(X) < h = 2% then X(yht) = 0 
(modulo zero). This is immediate by Lemma 4.3.2, using the inductive 
hypothesis. We also note that  i t  is possible to apply the Cartan formula 
(Theorem 3.9.4) in case d = d' = d" = d(k)(with the notations of $5 3.9, 
4.2). We will verify the main condition on d ,  d' and d" imposed in 5 3.9. 
In fact, if U, v are such that  Sq(BT)u = 0, Sq(BT)v = 0 for 0 $ r S k, 
then SqZ(u) = 0, Sqt(v) = 0 for 1 S i $ 2" by the ordinary Cartan for- 
mula [Il l ,  we deduce Sqyuv) = 0 for 1 5 i s 29 a fortiori Sq(2')(uv)=O 
for 0 S r S k. 

We can thus obtain the result for j = k and any t, by induction over 
t ,  using Theorem 3.9.4. In fact, suppose 

@0,k(Yht) = tty h ( t + l / 2 )  (where h = 2'"). 

Then 

(by Theorem 3.9.4, since the intermediate terms yield zero). That is 
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This completes the induction over t; we have obtained the result for j s k  
and all t. 

We now apply Lemma 4.3.3 to the class U = yh, where h = The 
left-hand side of the formula yields CDo,k+,(y2h), modulo zero. On the right, 
the term X,Sq (2k+7u yields zero. The term ai,,Qi,,Sq ( 2 k + 1 ) ~  yields zero, 
modulo zero, by what we have already proved. The term a,,,,,@,,,u yields 
zero, modulo zero, except in the case i = 0, j = k. In this case, @,,,(U) 
becomes y3hi2, modulo zero. Now, we easily see that  if a e A,,, then 

Using the last part of Lemma 4.3.3, we conclude that  the term 
a,,, ,@,,,(U) yields y3h, modulo zero, and 

We have proved the result for the case j = k + 1, t = 1. This completes 
the induction over k; Theorem 4.5.1 is proved. 

4.6. The final relation. In this section we obtain the relation required 
to carry out the argument indicated in Chapter 1. 

Take an integer k >= 3. Let U e Hm(X)(m > 0) be a class such that  
Sq(Br)u = 0 for 0 5 r 5 k. 

THEOREM 4.6.1. There i s  a relation 

(independent of X )  which holds modulo the total indeterminacy of the 
left-hand side. 

PROOF. Let us consider the first few terms 
da d~ c2 - Cl - CO -2 z2 

of a minimal resolution of Z,, as constructed in $ 5  4.2, 4.3. Let us choose 
a cycle x in C, such that  (hohi)(8x) = 1; this is possible by Theorem 2.5.1, 
since k 2 3. Let us write x = C, ,a,, ,ci ,. By considering degrees and 
using the fact that  d, is minimal, we see that  this sum consists of terms 
with j k. By Lemma 2.2.2, we have 

Since x is a cycle, we have 

0 = xd (C,, Jai. J , k c i .  Jd) = Et, j a i . J . kz I ,  J 

Now, this relation holds in the submodule C,(k) of C,. Appealing to the 
theorems of $9 3.6, 3.7, we find the required relation 
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C o ~ t ~ J ~ k a t , J . k ~ ~ , j ( u )  = [ X S ~ ( ~ ~ + ' ) U I  - 
J f i f l  

determine the coefficient X. 
apply both sides to a power yh (where h = 2 9  of the 

fundamental class y in HYP). The total indeterminacy of the left-hand 
side is then zero. The right-hand side yields Ayzh. By 3 4.5 (and Theorem 
4.5.1 in particular), each term on the left-hand side yields zero, modulo 
zero, except the term 

all,k.kQo.k(~h) = a 0 , k . k ~ 3 h i 2  (mod zero) . 
But we see that  for any a e A,, we have 

a y 3 h / 2  = ('3a)yZh 

Since ~ ~ a 0 , , , ,  = 1, we have X = 1, and the proof is complete. 
This establishes the decomposability of SqVor  i = 2', r 2 4, which 

implies that  the corresponding groups T,,_,(S" contain no elements of 
Hopf invariant one. 

ADDENDUM 

1. The paper to which this is an addendum makes use of the following 
as a key lemma: 

LEMMA 1. Let P denote complex projective space of infinitely-many 
dimensions; let u be the generator of H2(P ;  2,); let Y be the secondary 
operation associated with the relation 

Sq4Sq' + Sq"q3 + Sq1Sq4 = 0 0. 

Then we have 
Y(u) = u 3 .  

(See Theorem 4.4.1). 
I t  is the object of this addendum to give a simple proof of this lemma. 

We will actually prove: 

LEMMA 2. Let u e H2(X; 2,) be a cohomology class such that Sq'u = 0. 
Then the coset Y u  contains the element u3. 

The proof to be given employs a method which I owe to A. Liulevicius; 
he uses i t  in his treatment of the problem of "elements of Hopf invariant 
one mod p." I am most grateful to him for interesting letters on this 
subject. Liulevicius, in turn, ascribes the basic idea of his method to 
W. Browder. 

2. The basic idea of the method is as follows. One considers a universal 
example consisting of a space E and a class v e H*(E; Z,), as in 33.3. 
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Then the loop-space CLE and the suspension ov e HX(CLE; 2,) constitute 
another universal example, in which the dimensions have been decreased 
by one. I t  is possible that  the space CLE may be equivalent to a Cartesian 
product X X Y, although the space E does not split in the same way. 
If this happens, then the Pontrjagin product in H,(SZE; 2,) gives us 
a ring-structure on 

in general, this ring-structure does not split as the tensor-product of ring- 
structures on H,(X; 2,) and H,(Y; 2,). Since the element ov e HX(CLE; 2,) 
is primitive, i t  is possible to make deductions about its value. 

3. We will now apply this method to our case. In what follows, all 
cohomology groups have coefficients in the group 2,. In order to prove 
Lemma 2, i t  is sufficient to prove i t  when u is the fundamental class in 
a suitable universal example. The universal examples we must consider 
are those used to define V!; they can be constructed as follows. 

For any positive integer n ,  let K(Z2, n), K(Z,, n + l ) ,  K(Z,, n + 3) and 
K(&, n + 4) be Eilenberg-MacLane spaces of the types indicated; we 
suppose that  the first is a CW-complex, and write bn for its fundamen- 
tal class. Then there is a map 

m : K(Z2, n) - K(Z2, n + 1) X K(&, n + 3) X K(Z2, n + 4) 

which maps the fundamental classes on the right-hand side into Sq'bn, 
SqW, Sq4bn. The map m induces fibre-space over K(&, n) with fibre 
K(Z,, n) X K(Z,, n + 2) X K(Z,, n + 3); this fibre-space we call E,. 
If we write fn,O, fn,,,  f n , 3  for the fundamental classes in the fibre of E,, 
then we have 

~f = Sqlbn 
~ f , , ~  = Sq3bn 

~f = Sq4bn . 
The class vnf4 e Hnt4(En) which serves as a universal example for V! 
satisfies 

p v n + 4  = Sq4fn.o + Sq2 f n . 2  + Sql fnJ  

This condition defines uniquely, so long as n is sufficiently large. 
I t  would be equivalent, however, to induce our fibering in two stages; 

first induce a fibering E; with fibre K(Z,, n) over K(Z2, n); then induce a 
fibering E: with fibre K(&, n + 2) X K(&, n + 3) over EL, If we adopt 
this procedure, the first stage evidently gives EL = K(Z4, n); therefore 
we may regard E, as a fibering with base K(Z4, n) and fibre 
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Let us re-appropriate the symbols bn, f "8" f for the fundamental classes 
in these spaces; we have 

We will now examine what happens to E, when n is small. Let us 
take n = 3; we find that  E, is equivalent to a product X X K(Z2, 6), 
owing to the fact that  Sq4 vanishes on classes of dimension 3. We 
can therefore choose a class g 6 e  H6(E3) whose image in the fibre 
K(Z2, 5) X K(Z2, 6) is the fundamental class in the second factor. Similar- 
ly, let us take n=2;  we find that  E, is equivalent to a product 
K(Z4, 2) X K(Z2, 4) X K(Z2, 5), owing to the fact that  Sq3 and Sq4 vanish 
on classes of dimension 2. We can therefore choose classes 
g4 e H4(E2), g5 e H6(E2) whose images in the fibre K(Z,, 4) X K(&, 5) 
are the fundamental classes. Let g2 e H2(E2) be the fundamental class. 
We can now write down the following base for H6(E,): 

We wish to know how the element v" can be expressed in terms of this 
base. 

Since E, is equivalent to nE3 ,  we are precisely in the situation envisaged 
in 5 2. In fact, v6 is primitive, since by construction i t  corresponds to ov7 
in the equivalence E, .v nE3. Let p denote the product: then the homo- 
morphism p* of H"E2) is determined by the following equations. 

( l ) p*g" g2 8 1 + 1 8 g2 
( 2 )  p * g 4 = g 4 8 1  + g 2 8 g 2 +  1 8 g 4  
( 3 ) p*g5 = g5 8 1 + 1 8 g5. 

Here the equation (1) holds for dimensional reasons; while (3) holds pro- 
vided we choose g5 to correspond to og6, as we evidently may. As for (2), 
the only alternative is to suppose that  g4 is primitive; and if i t  were 
primitive, then (for dimensional reasons) i t  would be the suspension 
of some element y5 e H5(E3); this would satisfy i*y5 = f 3,2, contradicting 
the fact that  ~f = Sq3b3 f 0. 

I t  is now easy to calculate such values as 

We find the following base of primitive elements in H6(E2): 
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(P4g")" , (g2Y + sq2g4 , Sq'g5 . 
Since 

j*ve = Sq2 f 2.2 + Sql f 2 , 3  , 
we have 

ve = X(p,g2)2 + + Sq2g4 + Sq'g5 

for some X e 2,. 
Now, the indeterminacy of T(g7 is a subgroup Q of H6(E2) which has 

the following base: 

SsV4 , (P4g")" , Ss's" 

Moreover, T(gZ) is by definition that  coset of Q which contains v'. There- 
fore T(g7 contains (g2)3. This completes the proof. 
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