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1. RECENTLY, in preparing a set of lectures on characteristic classes, I had
occasion to consider the formulae of Thorn and Wu (10) which relate
Stiefel-Whitney classes to Steenrod squares. Briefly, they are as follows.
Let M be a compact differentiate w-manifold, not necsssarily orientable,
with fundamental class n e Hn(M; Z2). Then there is a unique class
VteH'iM; Z2) such that

(Sq'x, fx} = (vtx, fx}

for each x e H"-'(M; Z2); and the Stiefel-Whitney classes wk e Hk(M; Z2)
satisfy «•» = I

Although these formulae are simple and attractive, I did not feel that
they gave me that complete understanding which I sought. For example,
they raise a problem first recorded by Thorn (9); briefly, it is as follows.
One may use these formulae to define Stiefel-Whitney classes wk in the
cohomology of a manifold which is not necessarily differentiable, or in-
deed, to define Stiefel-Whitney classes in any algebra over Z2 which
admits operations 8ql and satisfies suitable axioms. Do these generalized
Stiefel-Whitney classes satisfy every formula which holds in the differen-
tiable case ? In particular, in the differentiable case we have

Sq+Wx = Q{w1,w2,..,,wi+k)

for a certain polynomial Q = Q{i,k)\ does this formula hold for the
generalized Stiefel-Whitney classes ?

We shall prove that the answer to this question of Thorn is in the
affirmative (see Corollary 3 below). The paper is arranged as follows. In
§§2, 3 we consider abstract algebras of the sort indicated above, and
attempt to obtain a better understanding of their theory. § 2 contains
sufficient to answer Thorn's question, and § 3 contains the remainder of
the work. In § 4 we make some supplementary remarks.

It is a pleasure to express my gratitude to R. Thorn for a helpful letter.
A similar acknowledgement to F. Hirzebruch appears in context in § 4.

2. We have said that generalized Stiefel-Whitney classes are defined
in any algebra over Z% which admits operations 8ql and satisfies suitable
axioms. In this section, therefore, the initial object of study will be a
Proc. London Math. Soc. (3) 11 (1961) 741-52
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graded, anticommutative algebra H = ^ H1 over the field Zp which ad-

mits operations Sqi (if p = 2) or Pk (if p > 2). More precisely, if p = 2
we define A to be the mod 2 Steenrod algebra (3, 6); if p > 2 we define A
to be that subalgebra of the modp Steenrod algebra which is generated
by the Pk; we now assume that H is a graded left module over the graded
algebra A. We impose the following axioms.

(a) (Cartan formula.) Let A: A -» A <g) A be the diagonal map (6); as
a standard convention, we will write

Then we have a(M) = J «h){Kk) {h, keH).
r

(We need no signs in this formula, because either p — 2 or the elements
of A are of even degree.)

(6) (Dimension axiom.) If p = 2, h e Hl and i < j , then Sqjh — 0. If
p >2,heH\ and i < 2k, then Pkh = 0.

(c) (Poincare" duality.) There is given an element /x in the vector-space
dual of Hn. We write (h, JU,) for /x(&), to preserve the analogy with the
topological case. The bilinear function (hk, /a) of the variables h e H*,
k e H71'1 gives a dual pairing from the finite-dimensional vector spaces
W and #»-< to Zp.

For example, let i f be a compact topological ?i-manifold, without
boundary; and if p > 2, let M be oriented. Then the cohomology ring
H = H*(M; Zp) satisfies all these axioms, provided that we take /u, to be
the fundamental class.

If H is ah algebra satisfying the axioms we have given, then we can make
H into a graded right module over A; in fact, if h e H1, a e Aj we define
ha by the equation

<ha .k,fx.) = (h. ak, /x> {k e H71-*-*).

However, we cannot assert that these operations of A on the right com-
mute with those on the left; nor can we assert that they satisfy the Cartan
formula or the dimension axiom.

In particular, we shall have much to do with the classes $K a, where <̂ r
is the unit in H. The characteristic property of <oH a is

(&Ha.k,fji> = (ak,fi).

If we take p — 2, then &a Sqi is the class vi which appears in the formulae
of Thorn and Wu.

In any algebra H, we can define various classes by starting from the



ON FORMULAE OF THOM AND WU 743

unit &H and iterating the operations we have mentioned above. (For
example, „

is a class of this sort, and so is Sqlwk.) We wish to study how many classes
we can obtain in this way, and what universal formulae they satisfy; that
is, what formulae hold in every H. We therefore proceed as follows.

We first define a class of 'words' W, by laying down the following four
inductive rules:

(i) The letter $ is a word.

(We emphasize that here $ is merely a formal symbol; in particular,
it should not be confused with the unit of any particular algebra H.)

(ii) If W is a word and a e A, then aW and Wa are words,
(iii) If W and W are words, then the 'cup-product' WW is a word.
(iv) If W and W are words and A, /x e Zp, then \W-\~ixW' is a word.
For example, if p = 2, the following formula is a word:

And, in general, a formula W is a word if and only if it is shown to be
such by a finite number of applications of the four given rules.

If H is an algebra, satisfying the axioms we have given above, then we
can regard each word W as a formula defining a specific element of H.
More formally, we can define a function 6H which assigns to each word
W an element of H, by giving the following four inductive rules*

(i) eH{*) = *H.
(ii) 6H(aW) = a(dH(W)), dH(Wa) = (9H(W))a.
(iii) eH(WW) = (eH(W))(eH(W%

We may refer to 6H{W) as 'the value of W in H\
We now divide the words W into equivalence classes, putting W and

W into the same class if we have 8H(W) = 6H(W) for every H. We take
these equivalence classes as the elements of a 'universal domain' U. The
problem mentioned above is therefore equivalent to determining the
structure of U.

It is trivial to check that U admits well-defined cup-products, linear
combinations, and operations from A (both on the left and right). The
operations from A are linear; the operations on the left satisfy the Cartan
formula and the dimension axiom.

The ring-structure of U is given by Theorem 1 below; the remaining
structure of U will be given in section 3.
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THEOREM 1. U is a polynomial algebra on the generators uv u2i..., u^...
defined below.

In order to define uit we write x f°r *n e canonipal anti-automorphism
of A (6); this is defined, inductively, by the equations

l, I x ( « X ' = 0 (dima>0)

(where Aa = £ ar ® ar> a s always). We now define ut = S'ixSq1) ^P = 2»

^& = <f(xP*) if p > 2,
The degree of i^ is thus i if p — 2, and 2i(p—l) Up > 2.
Our next theorem will show that U is faithfully represented in the

cohomology of differentiable manifolds.

THEOREM 2. Suppose given an integer N;letM run over those monomials
in the ut (i > 0) whose degree is N or less. Then there is a differentiable
manifold D (orientable if p > 2) such that the values in H*(D; Zp) of the
monomials M are linearly independent.

Theorems 1 and 2 lead immediately to the following corollary.

COROLLARY 3. Let W be a word of the sort considered above. Suppose
that the value of W in H*(D; Zp) is zero for every differentiable manifold D\
then the value of W in H is zero for any H.

It is clear that this corollary answers Thorn's question in the affirmative.
In fact, let us take p — 2; then

«>*= I Sq^Sqi)
i+j=k

is a word of the sort considered; hence so is

W = 84iwk—Q{w1,wt,...,wi+k)

for any polynomial Q. If we choose Q so that W = 0 in every differen-
tiable manifold, then the corollary shows that W = 0 in every H.

The remainder of this section will be devoted to proving Theorems 1
and 2. The manifolds D which we exhibit to prove Theorem 2 are car-
tesian products of projective spaces. We begin work as follows.

LEMMA 4. Take p = 2; let x be the cohomology generator in H1(EPCC; Z2).
IfaeA1 and i+j+k = 2«— 1, then

x}.axk = x

Take p > 2; let y be the cohomology generator in H2(CPK; Zp). Ifae A2*
and i-\-j-\-k = p8—l, then

y>.ayk = yk.(xa)yj-
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In proving this lemma, and later, it will be convenient to make a con-
vention concerning the expansion

Aa = ^ a'r ® ar-
r

If dim a > 0, we may assume that this expansion contains the term a <g> 1
(for r — a., say) and the term 1 0 a (for r = w, say), while the remaining
terms have dima'; > 0, dim a? > 0.

We give the proof of Lemma 4 for the case p > 2; the case p = 2 is
closely similar. We proceed by induction over dim a. The result is trivial
if dima = 0; as an inductive hypothesis, we suppose it true if dima < I
{I > 0); we must deduce it when dima = I.

It is easy to see that if N — ps— 1 and m > 0, then the operation

pm. #2.V-2m(p-l)(Cpco. Zp) ^ H™(CP°>\ Zp)

is zero. Hence any operation a taking values in J^^CP 3 0 ; Zp) is zero, at
least if dima > 0. In particular, if a e A2i and i-\-j+Tc = N, we have
a{yk.yi) = 0. That is,

ayk.yi-\- 2 a!ry
k.ary> = 0.

Using the inductive hypothesis, we have

Using the characteristic property of \, we have

ayk.y> = yk.x{o)yj-
This completes the induction.

From this point onwards, we shall permit ourselves to write <f instead
of $H for the unit in any algebra H under consideration.

LEMMA 5. Take p = 2, n = 28—2 (s > 2), M = RP», and let x be the
cohomology generator in HX{M; Z2). Then in H*(M; Z2) we have ^(x^Q1)— x

and £(xS(f) = Ofori> 1.
Take p > 2, m = p8—2 (s > 2), M = CPm, and let y be the cohomology

generator in H2(M; Zp). Then in H*(M; Zp) we have S'ixP1) = Vv~x and
£{xP

k) = Ofork>l.
Proof. According to Lemma 4, the calculation of an operation xa which

maps into the top dimension of M reduces to the calculation of ax or ay,
as the case may be. The values of Sq{x and Pky are well known, and lead
to the result stated.

LEMMA 6. In a product manifold M — M'x M", the values of the classes

Sa are given by <?a = % *% <g> * " « £
r

where S'b and <o"c denote the corresponding classes in M' and M".
IAI
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The verification is obvious.
We will now prove Theorem 2. We take the manifold D to be a car-

tesian product of N factors, where each factor is a projective space RPn

(ifp — 2) or CP™ (Up > 2). We suppose, of course, that n = 2s—2 > N,
or that m = ps—2 > %N, according to the case considered. If p =-2,
we write x1,x2,...,xN for the cohomology generators in the separate factors;
if p > 2, we call them yx, y2,..., y#.

LEMMA 7. If p = 2, S'faSq4) is the i-th elementary symmetric function in

If p > 2, <o(xPk) is Me k-th elementary symmetric function in (yi)p~1,

to*-1,-, (ito)""1.
This lemma follows immediately from Lemmas 5 and 6; and it completes

the proof of Theorem 2.
In order to prove Theorem 1, it is now sufficient to show that U is

multiplicatively generated by the elements ui} i > 0. We begin work as
follows:

LEMMA 8 (i). If dim a > 0 and he H, then

(£'a).h = a

(ii) / / dim a > 0 and ue U, then

($a).u = au-\-
r

(iii) //dima > 0, then

Proof. We begin with (i). If k is also in H and of the appropriate
dimension, we have

Since this holds for each k, it establishes (i).
Now take an element ue U. The equation

holds in every H; therefore it holds in U. This proves part (ii). Part (iii)
follows by substituting u = &b.

LEMMA 9. U is multiplicatively generated by the elements <fa, a e A.

Proof. I t is sufficient to prove that if a e A, and W is a polynomial
in the elements &b, then aW, Wa may also be written as polynomials in
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the Sb. We will prove this proposition by induction over dim a. The
proposition is trivial if dim a = 0; as an inductive hypothesis, we suppose
it true when dim a < k (k > 0); we must deduce it when dim a = k.

We begin with the expression a(S'b). Consider the equation of Lemma
8 (iii). The terms {&a).(£b), and <^ba are already polynomials in the £c\
and each term {a'r{$b))ar can be written in that form, by the inductive
hypothesis. Hence a{$b) can be written as a polynomial in the <oc.

If W is a polynomial in the tfb, then aW can be expanded (by linearity
and the Cartan formula) in terms of expressions c(#6) with dime ^ k.
Each of the expressions c(<ob) can be written as a polynomial in the tfd,
as we have just shown; hence aW can be written as a polynomial in the $d.

This completes the inductive step, so far as aW is concerned; we turn
to Wa. By Lemma 8 (ii) we have

= {fa).W-aW- 2 (a'rW)ar;.

The term (<fa)JT is already a polynomial in the ib\ aW can be written in
that form, as we have just shown; and so can each term {a'r W)a"r, by the
inductive hypothesis. Hence Wa can be written as a polynomial in the S'b.
This completes the induction, and the proof of Lemma 9.

We have yet to show that U is multiplicatively generated by the û
(i > 0). Let us write I(U) = 2 Uj, and let D(U) be the set of decora-.

j>0

posable elements in U, that is, those which can be written in the form
u = ^ KK with u'r e I(U), ure I(U). Our task amounts to calculating

LEMMA 10. Ifue D(U), ae A, then ua e D(U).
The proof is by induction over dim a. The result is trivial when

dim a = 0; as an inductive hypothesis, we suppose it true when dim a < k
(k > 0); we must deduce it when dim a = k.

Consider the equation of Lemma 8 (ii). The term {&a).u is certainly
decomposable. Since u is decomposable, au is decomposable, by the
Cartan formula; and similarly, each term a'ru is decomposable. By the
inductive hypothesis, each term {a'ru)d'r is decomposable. Hence ua is
decomposable. This completes the induction.

LEMMA 11. If dim b > 0, then

= <?bx(a) mod D(U).

The proof is again by induction over dim a. The result is trivial when
dim a = 0; as an inductive hypothesis, we suppose it true when dim a < k
(k > 0); we must deduce the result when dim a = k.
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By Lemma 8 (iii) we have

-gba- J {a'r{gb))a"r.

Since dim6 > 0, the term ($a).{&b) is decomposable. By the inductive
hypothesis, the term a'r{$b) yields $bx(a'r), modulo D(U). Using Lemma
10, the term (a'r(£b))a'; yields gbx{a'r)ar, modulo D(U). Hence

= -iba- J

modulo D(U). Using the characteristic property of x> w e

modulo D(U). This completes the induction.

LEMMA 12. I(U)/D(U) is spanned by the elements uit i > 0.

We will give the proof for the case p > 2. We easily see (using Lemma
9) that I(U)/D(U) is spanned by the elements $a, where dim a > 0. In
fact, it is spanned by the elements $a as a runs over a set of elements
which span I (A) = 2 Ai.

i>0

Consider the set S of elements

PklPk*...Pk*

such that kx ^ pk2, k2 ^ pk3,..., kt_x ^ pkt > 0. It is easy to show from
the Adem relations that these elements do span I {A). It is well known (3)
that they form a base for it; but we do not need this fact here.

The set S contains the elements Pk (k > 0). Every other element in S
can be written in the form P'c with 0 < dime < 21. As a runs over S,
xa runs over a set x$ which also spans I {A). The set x$ contains the
elements xP

k (& > 0); every other element in x$ can be written in the
form d>x{Pl) with 0 < dimd < 21. By Lemma 11, we have

gdx{Pl) = Pl{#d) modD{U).

But P\£d) is zero, because dim(^d) < 21. We have shown that £dx(P
l)

is decomposable. Hence I(U)/D(U) is spanned by the elements ^x{Pk)
(k > 0). This completes the proof in case p > 2.

The proof in case p = 2 is closely similar. We begin with the set S of
e l e m e n t s S^8^...8g^

such that ix ^ 2i2, i2 ^ 2i3,..., it_x ^ 2it > 0. The set x& contains the
elements x&Z* (* > 0); every other element in xS can be written in the
form dxiSqi) with 0 < dimd <j; Sq}(^d) is zero, and therefore tfdxiSq*)
is decomposable. This completes the proof of Lemma 12.

Lemma 12 shows that U is multiplicatively generated by the elements
ul (i > 0). This completes the proof of Theorem 1.
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3. In this section we shall complete the description of U, by describing
its operations from A (on the left and on the right). This description is
given in Theorem 13 below. After proving this theorem, the section con-
cludes by remarking that U can be given the structure of a Hopf algebra.

THEOREM 13. Let P(u1}u2,...)
 oe a polynomial in the ut. Then in U we

toe a(P(Ul,u2,...)) = Q(uvu2,...),

(P{ux,u2,...))a = R{uvu2>...),

where the polynomials Q and R are constructed according to the method given
below.

We now give the method for constructing Q and R. If p = 2, take
N ^ dima+dimP, and take a cartesian product of N copies of JBP00,
with fundamental classes xv x2,..., xN. Let ai be the ith elementary sym-
metric function in xv x2,..., xN; set X = xxx2...xN. Solve the equations

a(P(a1,a2,...)) = Q(ava2,...),

(Xa)(XP(ava2,...)) = XR(avo2,...)
for Q and R.

If p > 2, take 2N ^ dima+dimP, and take a cartesian product of
N copies of OP™, with fundamental classes yv y2,..., 2/iV. Let ai be
the ith elementary symmetric function in («/1)

p"1, (y2)p~1,---, (y^)11'1', set
Y = y1y2...yN. Solve the equations

,a2,...)) = Q{<TV(T2,...),

for Q and R.
Example. Take p = 2, P = <#", a = Sq3; we will calculate R. We have

(xa)X = (Sq*Sqi)(x1x2...xx)

= 2^ x1x2...Xft-{- ^ Xyx2x3

But ^ xl~\- ^x1x2x3 = a\-{-axa2; therefore <o8qz = u\-\-uxu2.
Caution. This representation of U (for p = 2) does not throw wk onto

the elementary symmetric function ak.
We give the proof of Theorem 13 for the case p > 2; the case p = 2 is

closely similar. Lemma 7 shows that U is faithfully represented (up to
any given dimension) in H*(D; Zp), where D is a certain cartesian product
of projective spaces CPm with m = p8—2. Moreover, in this representa-
tion, Ui becomes the ith. elementary symmetric function ai in (?/1)

p~1,
W " 1 . - . (2/,v)p~1- If we find formulae aP = Q, Pa = R which hold in
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H*(D;Zp), then these formulae must hold in U. This establishes the
construction for Q; it remains to establish the construction for Pa in
H*(D; Zp).

Let us write the iterated diagonal in A in the form

without indicating the parameter of summation. Then we have

= 2 <yil •••*/
= I <2/il.a(1

Using Lemma 4 and the fact that m = jps—2, this yields

Therefore (Pa).7 = (xaJC^P). This establishes the construction of R.
Instead of using this representation of U, it would be possible (and

almost equivalent) to use the theory of Hopf algebras (8). One would
first have to make U into a Hopf algebra; this is done below. In order
to give the structure maps

A&U-+U, U&A-+U,

one would then consider the dual maps

A*®U*<-U*, U+QAt^U*

defined on the dual Z7+ of U. One would remark that these maps are
multiplicative, and one would finish by giving their values on the genera-
tors of U*. We will now provide the foundations for this alternative
approach.

We first note that if H' and H." are algebras satisfying the axioms given
above, then H' ® H" is another such. This leads to the following lemma.

LEMMA 14. For each u in U there is one and only one element

s

in U <g> U such that
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for all H' and H". The map A: U -> U <S> U makes U into a Hopf algebra.

r,s

The proof is obvious.
It follows, in particular, that A is given on the generators of U by

&Uk = 2 Ui ® UJ>
i+j = k

where u0 = 1. From this it follows that the dual U+ of U is again a poly-
nomial algebra. We may describe generators <fy in U* as follows: we set
(\ui)j>Qj) — 1> <M>9V> = 0 f°r a n y other monomial M in the ui.

4. In the preceding sections, we have been primarily concerned with
'characteristic classes' in abstract cohomology rings. One may ask how
this theory applies to the cohomology of differentiable manifolds; the
answer is that in this case those classes, which were defined in the abstract
case in § 2, can be calculated in terms of the classical characteristic classes.

Let us write 0 for the 'infinite' orthogonal group, and BO for its classifying
space. If i f is a differentiable manifold, then its tangent bundle T induces
& m a p T*: H*(BO; Zp) -> H*(M; Zp).

Let the algebra U be as in §§ 2, 3. Then one can define a (unique) mono-

morphism v. U-+H*(BO; Zp)

of Hopf algebras, with the following property: if u e U, and M is any
differentiable manifold, then the value of u in H*{M\ Zp) is given by the
characteristic class T*VU. In other words, the (universal) characteristic
class vu gives a universal formula for calculating the value of u in differen-
tiable manifolds.

By using classical representations of H*(BO) Zp), it is possible to pre-
sent v in a form convenient for calculation. In this direction we present
the following formulae as a sample; the i^ which occur are the generators
of U considered in §§ 2, 3.

00

If p = 2, 2 "(^i) is given by the multiplicative sequence of polynomials
o

(4, 5) in the Stiefel-Whitney classes corresponding to the power-series
1/(1+*).

CO

If p > 2, 2 v{u?) is given by the multiplicative sequence of polynomials
o

in the mod p Pontryagin classes corresponding to the power-series

In order to state our next remark, we recall that in § 2 we made
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H*(M; Zp) into a right ,4-module (for each M). There is a unique way
of making H*(BO; Zp) into a right A -module so that

T*:H*{BO;-ZP)-+H*(M;ZP)

is always a map of right A -modules. In elementary terms, this means the
following. Let c e H*(M; Zv) be a (classical) characteristic class of M,
and take ae A. Then there is a universal formula for finding a second
characteristic class d in M such that

(c.ah,ii) = (d.h,ii)
for all h.

It is possible to present the right ^.-module structure of H*(BO; Zp)
in a form convenient for calculation.

In the first draft of this paper I developed these remarks at some length,
with proofs; I now forbear to do so, for three reasons. The first is space;
and the second is that they belong to a cadre of ideas which is much more
generally known and understood than that studied in §§ 2, 3 of this paper.
The third is that they overlap to some extent with work of F. Hirzebruch
(4); a paper on the subject is being prepared by Atiyah and Hirze-
bruch. I am very grateful to Hirzebruch for sending me a copy of an
unpublished manuscript of great elegance.
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