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Preface

The present volume is the second volume of the book “Singularities of
Differentiable Maps™ by V. I. Arnold, A. N. Varchenko and S. M. Gusein-Zade.
The first volume, subtitled “Classification of critical points, caustics and wave
fronts”, was published by Moscow, “Nauka”, in 1982. It will be referred to in
this text simply as “Volume 1”.

Whilst the first volume contained the zoology of differentiable maps, that is it
was devoted to a description of what, where and how singularities could be
encountered, this volume contains the elements of the anatomy and physiology
of singularities of differentiable functions. This means. that the questions
considered in it are about the structure of singularities and how they function.

Another distinctive feature of the present volume is that we take a hard look at
questions for which it is important to work in the complex domain, where the
first volume was devoted to themes for which, on the whole, it was not important
which field (real or complex) we were considering. Such topics as, for example,
decomposition of singularities, the connection between singularities and Lie
algebras and the asymptotic behaviour of different integrals depending on
parameters become clearer in the complex domain.

The book consists of three parts. In the first part we consider the topological
structure of isolated critical points of holomorphic functions. We describe the
fundamental topological characteristics of such critical points: vanishing cycles,
distinguished bases, intersection matrices, monodromy groups, the variation
operator and their interconnections and method of calculation.

The second part is devoted to the study of the asymptotic behaviour of
integrals of the method of stationary phase, which is widely met with in
applications. We give an account of the methods of calculating asymptotics, we
discuss the connection between asymptotics and various characteristics of
critical points of the phases of integrals (resolution of singularities, Newton
polyhedra), we give tables of the orders of asymptotics for critical points of the
phase which were classified in Volume 1 of this book (in particular for simple,
unimodal and bimodal singularities).

The third part is devoted to integrals evaluated over level manifolds in a
neighbourhood of the critical point of a holomorphic function. In it we shall
consider integrals of holomorphic forms, given in a neighbourhood of a critical
point, over cycles, lying on level hypersurfaces of the function. Integral of a
holomorphic form over a cycle changes holomorphically under continuous
deformation of the cycle from one level hypersurface to another. In this way
there arise many-valued holomorphic functions, given on the complex line in a
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neighbourhood of a critical value of the function. We show that the asymptotic
behaviour of these functions (that is the asymptotic behaviour of the integrals) as
the level tends to the critical one is connected with a variety of characteristics of
the initial critical point of the holomorphic function.

The theory of singularities is a vast and rapidly developing area of
mathematics, and we have not sought to touch on all aspects of it.

The bibliography contains works which are directly connected with the text
(although not always cited in it) and also works connected with volume 1 but for
some or other reason not contained in its bibliography.

References in the text to volume 1 refer to the above-mentioned book
“Singularities of Differentiable Maps.

The authors offer their thanks to the participants in the seminar on singularity
theory at Moscow State University, in particular A. M. Gabrielov, A. B.
Givental, A. G. Kushnirenko, D. B. Fuks, A. G. Khovanskiand S. V. Chmutov.
The authors also wish to thank V. S. Varchenko and T. V. Ogorodnikova for
rendering inestimable help in preparing the manuscript for publication.

The authors.
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Part 1

The topological structure of
isolated critical points of functions

Introduction

In the topological investigation of isolated critical points of complex-analytic
functions the problem arises of describing the topology of its level sets. The
topology of the level sets or infra-level sets of smooth real-valued functions on
manifolds may be investigated with the help of Morse theory (see [255]). The idea
there is to study the change of structure of infra-level sets and level sets of
functions upon passing critical values. In the complex case passing through a
critical value does not give rise to an interesting structure, since all the non-
singular level sets near one critical point are not only homeomorphic but even
diffeomorphic. The complex analogue of Morse theory, describing the topology
of level sets of complex analytic functions, is the theory of Picard-Lefschetz
(which historically precedes Morse theory). In Picard-Lefschetz theory the
fundamental principle is not passing through a critical point but going round it in
the complex plane.

Let us fix a circle, going round the critical value. Each point of the circle is a
value of the function. The level sets, corresponding to these values, give a fibration
over the circle. Going round the circle defines a mapping of the level set above the
initial point of the circle into itself. This mapping is called the (classical)
monodromy of the critical point.

The simplest interesting example in which one can observe all this clearly and
carry through the calculations to the end is the function of two variables given by

fiewy=2+w?, (z,w)eC:

It has a unique critical point z=w=0. The critical value is / =0. The critical level
set ¥o={(z,w):22+w?=0} consists of two complex lines intersecting in the
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point 0. All the other level sets
Vi={(z,w): 22 +w* =4} (4#0)

are topologically the same; they are diffeomorphic to a cylinder S xR?!

(figure 1).
0 =
X

Fig. 1. Fig. 2.

To show this, we consider the Riemann surface of the function w= |/ (T )
(figure 2). This surface is glued together from two copies of the complex z-plane,

joined along the cut ( —ﬂ l/I). Each copy of the cut plane is homeomorphic to
a half cylinder; the line of the cut correspondstoa circumference of the cylinder.
In this way, the whole (four-real-dimensional) space €? decomposes into the
singular fibre ¥, and the non-singular fibres ¥}, diffeomorphic to cylinders,
mapping to the critical value 0 and the non-critical values 4#0 by the mapping

(€, 0)(C,0).

Let us proceed to the construction of the monodromy. We consider on the
target plane a path going round the critical value 0 in the positive direction
(anticlockwise):

A()=expQui)a, 0<t<1, a>0 (figure 3)

N,

-
N>

Fig. 3.
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Let us observe how the fibre V), changes as ¢ varies from 0 to 1. For this we
consider the Riemann surfaces of the functions

w=1/(A() —2%).

As the parameter ¢ increases, both the branch points z= im=exp(nit)
x (il/&) move around -the point z=0 in the positive direction. As ¢ varies
from 0 to 1, each of these points performs a half turn and arrives at the other’s
place. In this way, as A(7) goes round the critical value 0, it corresponds to a

sequence of Riemann surfaces, depicted in figure 4, beginning and ending with
the same surface V.

oy ;//r&;/{ﬁm 7

t=1/3 t=2/7 t=s

Fig. 4.

Now it is easy to construct a family continuous in ¢, of diffeomorphisms from
the initial fibre ¥,,= ¥, to the fibre ¥}, over the point A(¢)

L Vi~ Vag

beginning with the identity map, I, and ending with the monodromy I't =h. For
example one may define I, in the following fashion. Choose a smooth “bump
function™, x(), such that

x(©)=1 for 0<t<21/_,
1(©)=0 for 1>3)/a.
We let

gi(z)=exp {nit - x(lz})} - z.

The family of diffeomorphisms g, from the complex z-plane into itself defines the
desired family of diffeomorphisms I;. The diffeomorphism h=1} : ¥,— ¥, of the
cylinder is the identity outside a sufficiently large compact set (for |z|>3 ]/E).




?‘
j
i
{
}
q

4 The topological structure of isolated critical points of functions

We consider now the action of the monodromy 4 on the homology of a non-
singular fibre ¥,. The first homology group H;(¥,;Z)~Z of the cylinder ¥,
is generated by the homology class of the “gutteral” circle 4 (figure 5). As a—0
the circle 4 tends to the point 0. Therefore it is called the vanishing cycle of
Picard-Lefschetz.

‘.

{ ;i
Fig. 5.

We consider further the first homology group Hf'(V, ; Z) of the fibre ¥, with
closed support. According to Poincaré duality, this group is also isomorphic to
the group Z of integers. It is generated by the homology class of the “covanishing
cycle” ¥ —aline on the cylinder going from infinity to infinity and intersecting the
vanishing cycle, 4, once transversely (sce figure 5). We shall suppose that the
cycle V is oriented in such a way that its intersection number (V o 4) with the
vanishing cycle 4, determined by the complex orientation of the fibre ¥, is equal
to +1.

Figure 4 allows us to observe the action of the diffeomorphisms I on the
vanishing and covanishing cycles (figure 6).

(B} D] (S]]

t=0 t=1/F t=2/7 ¢=1

Fig. 6.

We notice that the diffeomorphism k=T of the cylinder ¥,~S' x R! can be
described as follows: it is fixed outside a certain annulus, the circles forming the
annulus rotate through various angles varying from 0 at one edge to 2x at the
other. In this way, under the action of the monodromy mapping A. the vanishing
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cycle A is mapped into itself, the covanishing cycle winds once around the
cylinder (figure 7).

The diffeomorphism # is the identity outside some compact set. Outside this
compact set the cycles ¥ and hV coincide. Therefore the cycle h¥V —F is
concentrated in a compact part of the cylinder. From figure 7 (or from figure 6) it
is clear that

hV —V=—A.

In this way any cycle é with closed support gives rise to a cycle hé —4 with
compact support. This defines a mapping from the homology of the fibre ¥, with
closed support into its homology with compact support. It is called the variation
and is denoted by

Var: Hi'(Vo; )~ H, (Vo 2).
From figure 7 or figure 6 it can be seen that we have
Var 6=(40d)4
for every cycle
SeH{(V,; D).
Here (4 06) is the intersection number of the cylces 4 and 4, defined by the
complex orientation of the fibre V,. This relationship is called the formula of
Picard-Lefschetz.

We notice that, generally speaking, the diffeomorphisms I, are defined only up
to homotopy and that there is no a priori reason why the mapping I} should be
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fixed outside a compact set. For example, the family of diffcomorphisms
I} : (z, w)—(z exp(nit), w exp (nit))

defines the mapping
r{=h":(z,w)>(—2z, —w),

which is not fixed outside a compact set and is not, therefore, suitable for
defining the variation (though it is suitable for defining the action of the
monodromy on the compact homology). Thus we have considered the funda-
mental concepts of the theory of Picard-Lefschetz: vanishing cycles, monodromy
and variation for the simplest example of the function f(z,w)=z2+w>.

In the general case of an arbitrary function of any number of variables, the
topology of the fibre ¥; will not be as simple as in the example we analysed. The
investigation of the topology of the fibre ¥;, the monodromy and the variationin
the general case is a difficult problem, solved completely only for a few special
cases. In this part we shall recount several methods and results which have been
obtained along these lines.

The fundamental method ‘which we shall make use of is the method of
deformation (or perturbation). Under a small perturbation, a complicated
critical point of a function of n variables breaks up into simple ones. These simple
critical points look like the critical point 0 of the function

f(zl,...,z,,)=zf+... +Zﬁ

and can be investigated completely in the same way as we analysed the case
n=2 above. In place of the cylinders ¥;, which occured in the case n=2, the non-
singular fibre in the general case are smooth manifolds

Vl={(zl" . .,Z,.) Z%+ s +Zz=}-}, A#0,
which are diffeomorphic to the space TS"~*, the tangent bundle of the (n —1)-

dimensional sphere (giving a cylinder for n=2). The vanishing cycle in ¥} is the
real sphere

S 1={zeR"cC:zi+... +z=1}.

If complicated critical points break down under deformation into p simple
ones, then the perturbed function will have, in general, u critical values (figure 8).

Introduction 7

In this case it is possible in the target plane of the perturbed function to go round
each of the u critical values. In this way we get, not one monodromy
diffeomorphism h, but a whole monodromy group {h,}, where y runs through the
fundamental group of the set of non-critical values.

(=
L=

Fig. 8. Fig. 9.

The non-singular fibre ¥, of the perturbed function have the same structure
(inside some ball surrounding the critical point of the initial function) as the non-
singular fibre of the initial function. When the value of 4 tends to one of the
critical values of the perturbed function, a certain cycle on the non-singular fibre
vanishes. This cycle is a sphere whose dimension is a half of the (real) dimension
of the fibre ¥, (figure 9). Tending in this manner to all u critical values, we define
in the non-singular fibre u vanishing cycles, each a sphere of the middle
dimension. It happens that the non-singular fibre is homotopy equivalent to a
bouquet of these spheres.

In the case when the real dimension of the non-singular fibre is divisible by 4
(that is when the number n of variables is odd), the intersection number gives a
symmetric bilinear form in the homology group H,_, (¥, ; Z) of the non-singular
level manifold. The self-intersection number of each of the vanishing cycles is
equal to 2 or —2, depending on the number of variables n. The action of going
round the critical value corresponding to a vanishing cycle is equivalent to
reflection in a mirror which is orthogonal to this cycle, where orthogonality is
defined by the scalar product given by the intersection numbers.

For example, for the function of three variables

f1,22,23) =2 + 3+ 23
a suitable perturbation is

7(21122$23)=f(21922,23)’_821'
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k
This function has p=k critical points (]/s/(k+ 1)¢,,0,0), where ¢,
(m=1, ...,k) are the k-th roots of unity. The corresponding vanishing cycles
4y, . ., A can be chosen so that they have the following intersection numbers

(4iod)= -2,
(A1°A2)=(42043)= . =(dg-104)=1,

and all other intersection numbers are zero. The monodromy group is generated
by the resulting reflections in the orthogonal complements of the cycles 4y, and
coincides with the Weyl group 4, (see [53]), that is with the group S(k +1) of
permutations of (k +1) elements.

In this Part we shall generally (except in Chapter 5) be concerned with isolated
singularities of functions. Therefore by the term “singularity” we shall
understand the germ of a holomorphic function f : (€",0)—(C, 0), having at the
origin an isolated critical point (thatis, a point at which all the partial derivatives
of the function f are equal to zero).

Let G : (C", 0)—(C?, 0) be the germ at the origin of an analytic function, let U
be a neighbourhood of the origin in the space C", in which a representative of the
germ Gis defined, andlet G, bea family of functions from Uto €7, analyticin Ain
a neighbourhood of 0 in €, such that Gy =G. We shall refer to the function G;,
for sufficiently small 4, as a small perturbation G of the function G, without
spelling out each time the dependence on the parameter 4.

Throughout, the absolute homology groups will be considered reduced
modulo a point; the relative groups of a pair “manifold-boundary” will be
modulo a fundamental cycle. (For this reason the tilde over the letter H, which
usually indicates a reduced homology group, will be omitted.) All the homology
will be considered with coefficients in the group Z of integers, unless we
specifically indicate otherwise.

Let € be the n-dimensional complex vector space with coordinates

xj=uy+iv;, (j=1,...,n;u;and v, real).

The space €*=R?", considered as a real 2n-dimensional vector space, has a
preferred orientation, which we shall call the complex one. This orientation
is defined so that the system of coordinates in the space R?" given by
Uy, Dy, 42,02, - -» Un, Uy has positive orientation. Complex manifolds will be
considered to have this complex orientation unless we specifically indicate
otherwise. With this choice of orientation the intersection numbers of complex
submanifolds will always be non-negative.

Chapter 1

Elements of the theory of
Picard-Lefschetz

In this chapter we shall define concepts of Picard-Lefschetz theory such as
vanishing cycles, the monodromy and variation operators, the Picard-Lefschetz
operators, etc. As we have already said, they are used to investigate the topology
of critical points of holomorphic functions.

1.1 The monodromy and variation operators

Let f:M"»C be a holomorphic function on an n-dimensional complex
manifold M", with a smooth boundary dM™ (in the real sense). Let U be a
contractible compact region in the complex plane with smooth boundary dU. We
shall suppose that the following conditions are satisfied:

(i) For some neighbourhood U’ of the region U, the restriction of f to the
preimage of U’ is a proper mapping f ~1(U")—-U’, that is a mapping for which
the preimage of any compact set is compact.

(i) The restriction of f to dM™ f ~}(U’) is a regular mapping into U’, thatisa
mapping, the differential of which is an epimorphism.

(iii) The function f has in the preimage, f~'(U"), of the region U’ a finite
number of critical points p; (i=1, ..., ) with critical values z;= f(p) lying
inside the region U, that is in U\ dU.

From condition (ii) it follows that the restriction of the function f to
OM™ A f ~}(U) defines a locally trivial, and consequently (since the region U is
assumed contractible) also a trivial fibration dM"n f~*(U)—U. The direct
product structure in the space of this fibration is unique up to homotopy. In
addition, the restriction of the function f to the preimage f (U \ {z:}) of the
set of non-critical values is a locally trivial fibration.

We will denote by F, (z€ U) the level set of the function f (F,=f “12). If
ze Uis a non-critical value of the function f, then the corresponding level set F,
is a compact (7 —1)-dimensional complex manifold with smooth boundary
dF,=F,ndM". Let us fix a non-critical value z, lying on the boundary U
of the region U. Let y be a loop in the complement of the set of critical values




10 The topological structure of isolated critical points of functions

U\ {zdi=1,..., u} with initial and end points at zo (y:[0,1]-U \ {zi}, 7(0)
=y(1)=z,). (We can suppose, without loss of generality, that all the loops and
paths we encounter are piecewise smooth.) Going round the loop 7y generates a
continuous family of mappings I : F,,— M* (lifting homotopy), for which I, is
the identity map from the level manifold F,, into itself, f(I;(x))=7y(?), thatis I;
maps the level manifold F,, into the level manifold F,,. The homotopy I can
and will be chosen to be consistent with the direct product structure on
dM" f~Y(U). Indeed we can choose as {I;} a family of diffcomorphisms
F,,—F,, but we shall not need this in the sequel. Thus the map

h1=rl :F!o—'Flo

is the identity map on the boundary dF,, of the level manifold F,,. It is defined
uniquely up to homotopy (fixed on the boundary dF,,) by the class of the loop y
in the fundamental group m, (U \ {zi}, zo) of the complement of the set of critical
values. :

Definitions. The transformation k, of the non-singular level set F,, into itself
is called the monodromy of the loop y. The action h,, of the transformation &, on
the homology of the non-singular level set H,(F,,) is called the monodromy
operator of the loop y.

The monodromy operator is uniquely defined by the class of the loop y in the
fundamental group of the complement of the set of critical values.

We shall discuss also the automorphism A% induced by the transformation k,
in the relative homology group H, (F,,, F,,) of the non-singular level set modulo
its boundary. In the introduction to this Part we used, instead of the relative
homology group H, (F,,, OF,;), the homology group H{(V) with closed support
(using the isomorphism

H,(F,,, 0F.) 2 H(F.y \ OF,).

Let 6 be a relative cycle in the pair (F,,, 8F,,). Since the transformation h, is
the identity on the boundary 8F,, of the level manifold F,;, the boundary of the
cycle h, coincides with the boundary of the cycle . Therefore the difference A,
— &is an absolute cycle in the manifold F,, . It is not hard to see that the mapping
6+ h,5—0 gives the correct definition of the homomorphism

var, : Hy (Fug» 0F.)~ Hy(Fuy).

Elements of the theory of Picard-Lefschetz 11

Definition. The homomorphism
var,: H (F,,, 0F, ) H (F,)

is called the variation operator of the loop y.
Itis not difficult to see that the automorphisms 4, and A%, are connected with
the variation operator by the relations

h,, =id+var,-i,,
hS)=id+i, -var,,
where
iyt Hy(Fp) - Hy(Fyy, 0F,)
is the natural homomorphism induced by the inclusion
F, c(F,,,0F,,).

If the class of the loop y in the fundamental group 7, (U \ {zi},2,) of the
complement of the set of critical values is equal to the product y, - y, of the classes
y; and y,, then

var,=var,, +var,, +var,, *i, - var,,,
hyo=hyrebyyss

@ _ a0 0
h?t “hn# hnt'

Therefore the mapping y+— h,, is an (anti)homomorphism of the fundamental
group =, (U \ {z}, zo) of the complement of the set of critical values into the
group Aut H,(F,) of automorphisms of the homology group H,(F;)) of the
non-singular level set. We shall denote by (a0 b) the intersection number of the
cycles (or homology classes) a and b. This notation will be used both in the case
when both the cycles a and b are absolute and in the case when one of them is
relative. Remember that the level manifold F,  is a complex manifold and there-
fore possesses the preferred orientation which defines the intersection number of
the cycles on it.
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Lemmas 1.1. Let
a,be H (F,,, 0F,)

be relative homology classes,

dim a+dimb=2n-2,
yer (U \ {2}, 20)-
Then

(var,aovar,b)+(aovar,b)+(var,aob)=0.

Proof. Choose relative cycles which are representatives of the homology classes
aand b so that their boundaries (lying in the boundary 9F,, of the level manifold
F,,) do not intersect. This can be done using the dimensional relationships

dim da+dim 0b=2n—4
<2n-3
=dim 0F,,.

The chosen cycles we shall also denote by a and b. For such cycles the intersection
number makes sense, though, of course, it is not an invariant of the classes in the
homology group H,(F,,, 0F,;). We have

var,a=h,a—a, var,b=hb-b,
(var,aovar,b)+(var,aob)+(aovar,b)=
=(h,aoh,b)—(aoh,b) —(h,aob)+(ach)+
+(h,aob)—(aob)+(aoh,b)—(aob)=0,
since (hyaoh,b)=(aob).
Corollary. For a,be H,(F,,,0F;)
(k) aovar,b)+(var,aob)=0.
Proof.
(k) aovar,b)+(var,aob)

=(i, - var,aovar,b)+(a ovar,b)+(var,aob)
=0

Elements of the theory of Picard-Lefschetz 13
since

W), =id+i, - var,,
(i, - var,a ovar,b) =(var,a ovar,b).

1.2 Vanishing cycles and the monodromy group

Let us suppose now that all critical pbints p; of the function f are non-degenerate
(that is that det(*f/dx,;0x;) #0), and all critical values z,= f (p;) are different
(i=1,..., ). Remember that in this case the function f is said to be Morse.

Definition. The monodromy group of the (Morse) function f is the image of the
homomorphism of the fundamental group n, (U \ {z:}, zo) of the complement of
the set of critical values in the group Aut H,(F,,) of automorphisms of the
homology group H,(F,,) of the non-singular level set F,, which is obtained by
mapping the loop 7y into the monodromy operator

hn : Ht(ﬂo)_’Ht(F;o)

Let us be given in the region U a path u: [0, 1]— U, joining some critical value
z; with the non-critical value z, (1(0)=z;, u(1)=2z,) and not passing through
critical values of the function f for 1#0. By the Morse lemma, there exists a
local coordinate system x,, . . ., X, in a neighbourhood of the non-degenerate
critical point p; on the manifold M", in which the function f can be written in
the form f(x,,. .., x,) =2z;+X]=, x]. For values of the parameter ¢ near zero, we

fix in the level manifold F,, the sphere S(7) =)/ () —z) S"~1, where
S ={(xy, ..., %) Z;xf=1,Imx;=0}

is the standard unit (n —1)-dimensional sphere.

Lifting the homotopy ¢ from zero to one defines a family of (n —1)-dimen-
sional spheres S(f) c F,, in the level manifolds F,, for all 1€ (0, 1]. Note that for
t=0 the sphere S(7) reduces to the critical point p;.

Definition. The homology class 4e€ H,_,(F,), represented by the (n—1)-
dimensional sphere S(1) in the chosen non-singular level manifold F;, is called a
vanishing (along the path ) cycle of Picard-Lefschetz.
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Itis easy to see that the homotopy class of the path uin the set of all pathsin the
region U joining the critical value z; with the non-~critical value z, and not passing
through critical values of the function f for 10, defines the homology class of
the vanishing cycle 4 modulo orientation.

Definition. The set of cycles 4,, ..., 4, from the (n—1)st homology group
H,_,(F,) of the non-singular level set F,, is called distinguished if:

(i) the cycles 4,(i=1, . .., u) are vanishing along non-self-intersecting paths
u;, joining the critical value z; with the non-critical value z,;

(i) the paths u; and u; have, for i#j, a unique common point (1)
=u(1)=20; )

(iii) the paths uy , . . ., u, are numbered in the same order in which they enter
the point z, counting clockwise, beginning at the boundary 8U of the region U

(see figure 10).

Remark. The need to choose a non-critical value z, on the boundary éU of the
region U was dictated by the need to number the elements of the distinguished set
of vanishing cycles aocqrding to condition (iii).

% 2
b /.
Zy Z3 Z3
.;'

Fig. 10. Fig. 11.

Examples. 1. Let us consider the Morse function f(x)=x>—34x, where 1 is a
small positive number. This function is a perturbation of the function fo(x)= x3
(having the singularity type 4, in the sense of volume 1), but we do not need that
fact just now. The function f has two critical points (x =1/§. and x= —I/I) with
critical valuesz, = —24 1//_1 and z; =24 l/j. respectively. As the non-critical value
of the function f we take z,=0. Let us join the critical values z; (i=1, 2) with the
non-critical value z, by line segments w, and u;. The level manifold {f=0}
consists of three points x; = —}/34, x;=0and x, =‘/3—): (see figure 11). Itis easy
to see that the cycles, vanishing along the described paths u, and i, joining the
critical values z, and z, with the non-critical value 0, are the differences

.
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4, ={x3} —{x,} and 4,={x;} —{x,} of zeroth homology class represented by
the points x,, x, and x;. Note that the orientation of the cycles was chosen by us
arbitrarily: any of them can be multiplied by —1.

For greater clarity we chose the non-critical value z,=0. It presupposes,

certainly, a special choice for the region U. On this occasion it is not very
important, but later, for the definition of a distinguished basis of vanishing cycles
in the homology of a non-singular level manifold of a degenerate singularity, we
shall consider the region U to be a disk of sufficiently large radius, in comparison
with the critical values of the perturbed function. The need to choose a non-
critical value on the boundary of the sufficiently large disk is dictated as,
otherwise, firstly, the identification of the homology group of the non-singular
level manifold of a singularity and its perturbation would not be unique and,
secondly, the order in which the vanishing cycles must enter the distinguished
basis would not be unique. In order to “correct” the example we considered
above, we can choose a non-critical value z§ sufficiently large in absolute value
(1z81>24 ]/I), joining it with the non-critical value z, =0 by a path which does
not pass through the critical values of the function £, and observe the change of
the non-singular level manifolds f =z as z moves along this path from z,=0
to z}. We shall consider later an analogous construction in a more general case
(§2.9). Here for simplicity we modify our example somewhat.
1*. We consider the Morse function f(x)=x>+34x, where A is a positive
number. The critical points of the function f are x= —]/Ai and x=l//_1i, the
critical values are z; = —2).1/)_.i and z, =211/3.i. We choose as the region U a
disk of sufficiently large radius r with centre at zero (r> 21 l/j.). We consider two
non-critical values of the function f : zo =0 and z§ =r. The critical values 2, , are
joined to zy =0 by segments, going along the imaginary axis, z, =0 is joined to
z# =r by a segment of the positive real half-axis. In this way we get paths, 4, and
u,, joining the critical values z, , with the non-critical value z§. As before the zero
level manifold of the function f consists of three points

Xy = —]/ 311-, x2=0 and X3 = +I/ 3Ai.
The level manifold { f =23} is near to the level manifold { f, =28} of the function
Jo(x)=x> (since |z§|=r> 2/11/1). Therefore it consists of three points
xtexp(—2mi3) /2,
xt~)/28,

xtxexpnif3)]/=3.
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It is not difficult to see that, along the line segment joining the critical value
zy=—24 ]/Ii (respectively z, =24 ]/Ii) with the non-critical value z, =0, the
cycle {x,} —{x,} (respectively {x,} — {x,}) vanishes. Further, itis clear thatas the
non-critical value z moves along the segment of the positive half-axis from z, = 0
to z& =r the points of the manifold { f = z} change in such a manner that the point
x, remains on the real axis, the point x; is in the lower and the point x; is in the
upper half-plane. Therefore as z moves from z, to z§, the points x;, x; and x3 go
to the points x¥, x¥ and x$ respectively. Consequently, along the paths &, and u,
which we described joining the critical values z, and z, of the function f with the
non-critical value z3 the cycles

4, ={x} - {x}
and

4;={x3} —{xt}

respectively vanish. It is easy to see that the vanishing cycles 4, and 4, form a
distinguished set. )

2. As another example we consider the function of two variables f(x, y)=x°
—3Ax+)? (A is a small positive number). This function is a perturbation of the
function f(x, y)=x>+)?, which also has singularity type 4, in the sense of
volume 1. The function has the same critical values, z, = —24]/4 andz; =24 l/i,
as the function in the first example. These values are taken at the points (1/1, 0)
and (—l/jq 0) respectively. We join the critical values z, and z, with the non-
critical value z, =0 by segments u, and u, of the real axis. The zero level manifold
of the function f (the complex curve {f=0}) is the graph of the two-valued
function y= £)/( — x>+ 3Ax) and therefore is a double covering of the plane of
the complex variable x, branching at the points x; = — l/ﬁ, x,=0andx;= ‘/ﬁ
It can be obtained from two copies of the plane of the complex variable x with
cuts from the point x, to the point x, and from the point x, to infinity (see figure
12), glued together criss-cross along these cuts.

Zy Iy I3
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As z moves along the real axis from z, = —2/11/1 to z, =2).1/I the manifold
{f =z} is deformed. The movement of the branch points %, =%, (2), %, =%, (2),
and %, =2%,(z) as a double covering of the plane of the complex variable x is
illustrated in figure 13.

by Iy v
z z z

B £5 F |& & 5| 5
2=-2AVA 2=0 r=2LyX
Fig. 13.

From this it is clear that the vanishing cycles corresponding to the critical values
zy=-24 l/i and z; =2A41/4 and the paths «; and 4, which we described joining
them to the non-critical value 0 are the one-dimensional cycles 4, and 4,
portrayed in figure 14 (we have indicated by dashes the part of the cycle lying on
the second sheet of the surface; the orientation of the vanishing cycles again can
be chosen arbitrarily).

Fig. 14.

Once again let u be a path joining some critical value z; with a non-critical
value z,.

Definition. A simple loop corresponding to the path u is an element of the
fundamental group =, (U\{z,},2o) of the complement of the set of critical
val}nes represented by the loop going along the path u from the point 2, to the
point z, going round the point z; in the positive direction (anticlockwise) and
returning along the path u to the point z,.

The region U, with the y critical values {z;i=1,..., u} of the function f
removed from it is homotopically equivalent to a bouquet of u circles. Therefore
the fundamental group =, (U \ {z,}, zo) of the complement of the set of critical
values of the function f'is a free group on pu generators. If {u;li=1,...,p} isa
system of loops, defining a distinguished set of vanishing cycles {4}, then the
group n, (U \ {z;}, o) is generated by the simple loops 7, , . . ., 7, corresponding
to the paths 4, . . ., u,.
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Definition. The set of vanishing cycles 4;,. . ., 4, defined by the set of paths
{u;}, is called weakly distinguished if the fundamental group (U N\ {zi}, 20) of
the complement of the set of critical values is the free group on the generators
11, ..., Ty, corresponding to the paths uy,. . ., Uy.

We note that permutation of the elements preserves weak distinguishment of a
set, but does not preserve its distinguishment.

If the set of paths {uli=1,..., u} defines a weakly distinguished set of
vanishing cycles {4;} in the (n —1)st homology group of the non-singular level
manifold, then the monodromy group of the function f is generated by the
monodromy operators h,,, of the simple loops t; (i=1,..-, 1), corresponding to
the paths ;. Therefore the monodromy group of the (Morse) function fis always

a group generated by p generators.

Definition. The monodromy operator
h= hrit:H*(on)—’Hg(on)

of the simple loop ;s called the Picard-Lefschetz operator corresponding to the
path u; (or the vanishing cycle 4).

Examples. 1. We consider the Morse function f(x)=2x"+3Ax of example 1*
following the definition of distinguished sets of vanishing cycles. Let t; be the
simple loop (with initial and final points at the point z§) corresponding to the
pathy;. Asthe non-critical value z moves along the loop 7y, the level manifold { f
=z} changes in the following manner: The points x¥ and x} approach each
other, make a half-turn about a common centre, changing places, then move
apart to the other’s former place; the point x returns to its own place. Therefore
the monodromy A,, of the loop 7; exchanges the points x} and x¥ and fixes the
points x%. From this it follows that

hlAl =hn #Al =hn #({x;} _{xl‘})= {xl*} —{x;} =—4,
hy Ay =h oAz =h. ({x3} —{xth={x3}— {xt}=4,+4,.

Similarly
hydy=—4,
hzdl = Az + Al .
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The homology group H,—, (F,, 8F,) of the non-singular level manifold modulo
its boundary is the dual group to the group H,_ (F;) (reduced modulo a point for
n=1). In the given case its rdle is filled by the ordinary zeroth homology group of
the level manifold { f = z8§} (consisting of the three points x¥, x} and x¥), factored
by the subgroup generated by the “maximal cycle”

{xt}+{xt} + {x2}.
It is generated by two cycles ¥, and ¥, such that
(Vio4) =0y
We can take as these cycles
vy =—{xt}, V2={x3}.
From the description of the monodromy transformation h,, it follows that

var,lVl = —{x;‘} +{x’f} = —Al’

var,, Vz =0.
For the loop 7, we have

var,, Vl =0,
var,, Vz =—A 2-

We consider now the loop 7, defined by the formula t(¢) = z§ exp (2zit). The
l({Op T goes once round the critical values of the function f in the positive
direction (anticlockwise) along a circle of large radius. From the fact that for
large |z| the level set {f =2} is close to the level set {x*=z}, it follows that

the monodromy transformation A,, of the loop z cyclically permutes the points
x¥, x¥ and x§

(xt—>xt—>x3—x?).
From this it follows that

heu4, =h,.({x;} -—{Xf})= {x;} —{x;} =4,,
huAZ =h,.({x§'} "{x;})= {xl‘} "{xg} =—4,—4;.
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These relationships can be deduced also from the fact that the loop 7 is
homotopic to the product 7,7, of the simple loops , and 7, and consequently
h.y=h, - h,. For the variation operator we have:

var,V, = —{xf} + {xt} = — 41,
var,V,={xt} —{x3} = — 41— 4.

The monodromy group of the Morse function f is generated by the mono-
dromy operators

hy=h.. and hy=h.,,

of the loops 7, and 7, (the operators of Picard-Lefschetz). All the elements of this
group preserve the intersection form in the homology group Ho(Fy) of the non-
singular level manifold (reduced modulo a point), generated by the vanishing
cycles 4, and 4,. In order to describe the monodromy group visually, we con-
sider on the Euclidean plane six vectors of length 1/5 making with each other the
angle /3 (figure 15). It is not difficult to see that the group Ho(F.3) (as a module
over the ring of integers with an integral bilinear form on it) is isomorphic to the
integer lattice on the plane, spanned by the vectors 4, and 4, (see figure 15; the
six vectors, portrayed on the figure, are the elements of the lattice, the square of
whose length equals 2). The operator A, is realised by reflection in the line L,,
orthogonal to the vector 4;, whilst the operator h, is realised by reflection in the
line L,, orthogonal to the vector 4,. From this it follows that the group of
transformations of the lattice, generated by the operators h, and h, (the

Elements of the theory of Picard-Lefschetz 21

monodro.my group of the Morse function f) is isomorphic to the group S(3) of
permutations of three elements (namely the three vectors

(2A1 +A2), (‘—Al +A2) and (—Al —2A2)).

2. In example 2 the description of the level manifold { f =z} as a double covering
of the plane of the complex variable x, branching in three points, allows us to
observe the operation of the monodromy transformations h,, and k,, and obtain
the relationships

h 4, =4,,

hi4;=4;+4,,

hyAy =4, —4,,

hy4;=4,,

var, N 71 =—A 1y

var,, Vz = 0,

Val'u Vl = 0,

var,, Vz = — Az .

Wc will not go over here the corresponding geometrical considerations,

leaving them to the reader.* We indicate only the relative cycles, which can be
taken as ¥, and V, (generating the relative homology group H, (Fy3, 0F;3) of the

non-singular level manifold of the function f modulo the boundary so that
(V!OAJ)=6u): see figure 16.

Fig. 16.

. The mfmodromy group of the Morse function f(x,y)=x>—3Ax+)* is
isomorphic to the subgroup of the group of non-singular (2 x2) matrices

* They are analogous to those which were discussed in the introduction for a simpler case.
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generated by the matrices

11 10
o i = [3)

corresponding to the Picard-Lefschetz operators h, and h,. This group coincides
with the group of all integer matrices with determinant +1. '

1.3 The Picard-Lefschetz Theorem

Let © be the simple loop corresponding to the path u, which joins the critical
value z, with the non-critical value z,, and let 4 € H,_, (F,,) be acycle, vanishing
along the path . We want to define the action of the operators var, and A, in the

respective homology groups.
Without loss of generality we can suppose that the critical value z;=u(0) is
equal to zero and that in a neighbourhood of the critical point p; the function f

has the form
F1se - > Xn)=Z5%}

(for sufficiently small |[(x;,. . .,%s)|, for example for
LIy <48

at the point p; all local coordinates x; equal zero), the non-critical value Z is
sufficiently close to the critical value 0 (for example |20} =¢?), and u(t)=1zo. In
addition, we shall suppose that all non-zero critical values of the function fare
greater than 4¢ in absolute value. A linear change of coordinates allows us to
suppose that e=1, and zo=1. The loop T can be changed by a homotopy into the
loop ©':7'(f) =exp(2mit), te [0, 1].

Let

r=r(Xy,...,Xa)= “x “ =(Z;lx; |z)1/z = (ijjfj)m

be the norm of the vector x=(xy,..- ,X,). We denote by F, the intersection
of the level set F, with the closed ball B, ={(x1,. - -, Xa):7 <2} of radius 2 in the

space C".

Lemma 1.2. For |z| <4 the level set F, is transverse to the (2n —1)-dimensional
sphere S, = 0B, (the level set F, is a manifold for z#0, the zero level set Fy is a
manifold everywhere except zero).
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Proof. Let xeF,nSZ and suppose that the level set F, is not transverse to the
sphe::e S, at the point x. Then dr?(x) is linearly dependent on df (x) and df (x),
that is dr®(x)=adf (x) + pdf(x), where a, fc €. We have

df (x)=2Zx;dx;,
d](x)=22.ijdij,
drz(x)=2ijdx, +Exjdfj,

from which it follows that
fj=2ax,-, (i=1,...,n).

But not all coordinates x; equal zero. Therefore [2a|=1, and so

r()=2af(x), |f()=r*(x)=4,

which is what we had to prove.

From this lemma it follows that, for 0<|z| <4, the sets F,=F,n B, are
manifolds with boundary, which are diffeomorphic to each other. It is clear that
the set F; is a cone with vertex at zero and is therefore contractible.

Lemma 1.3. For 0<|z| <4 the manifold F, is diffeomorphic to the disk sub-
bundle of the tangent bundle of the standard (n —1)-dimensional sphere S"~*.

Proof. Without loss of generality it is possible to suppose that z=1, that is to
consider .the manifold F, . Let x; =u; + iv;, where u;and v are real. Using u;and v;
as coordinates, the manifold F, is given by the equations

Zuj —Zvj =1,
Zu,v,=0,
Zuj + Zv} <4.

It.x the real vector space R?* with coordinates &;, #; (j=1, . . . , n) the space of the
disc bundle of the tangent bundle of the standard (n —1)-dimensional sphere,
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lying in the space R", can be given in the form

Tif =1,
Zi;5;,=0
I <

(o> Ois the radius of the discs in the bundle, on which the type of the space of the
bundle as a differentiable manifold does not, of course, depend). Itis not difficult

to check that the transformation &;=u ,/1/27, 5;=v; gives the required
diffeomorphism (for ¢*=3/2).

From this it follows that Hy(F;)=0 for k#n—1, H,_,(F)=Z. Moreover
the homology group H,_,(F,) is generated by the Picard-Lefschetz vanishing
cycle 4, represented by the standard (n —1)-dimensional sphere

S = {0 - - %w): T =1,5,=0}.

Let us temporarily consider the manifold F, with the orientation defined by
the structure of the tangent bundle of the sphere. This means that at the point
(1,0,...,0) of the manifold F, a positively oriented coordinate system is
Up, Uz, - st V250350« o3 One The orientation of F; as a complex manifold is
defined by the following ordering of the coordinates: uz, U3, U3, U3s - - - » Un, Up. It
is easy to see that these two orientations differ by the sign (—1)"" V"2

The self-intersection number of the zero section of the tangent bundle of a
manifold coincides with the Euler characteristic x of this manifold. This
statement can be proved in the following manner. According to one of the
definitions the Euler characteristic of a manifold N is the number of singular
points of a general vector field von the manifold N, counted with the multiplicity

+1 or —1 according to their index (v: N—TN, v(x)€ T,N). In order to count the
number of self-intersections (No N) of the manifold N considered as the zero
section of its tangent bundle TN, we can choose a perturbation N of the manifold
N in the space TN, which intersects N transversally in a finite number of points,
and define the intersection number (N o N) of the cycles N and N at these points.
As such a perturbation we can take N= {&, v(x))}, where xe N, v(x) e TN, v isa
vector field in general position on the manifold N. The points of intersection of
the cycles N and N coincide with the singular points of the vector field v.
Moreover, simple counting shows that the intersection number of the cycles N
and N at a point of intersection coincides with the index of this point as a singular
point of the vector field v.

The Euler characteristic x(S"~*) of the (n—1)-dimensional sphere S*1is
equal to 1+(—1)*"?, thatisitis equal to 0 for even nand 2 for odd n. From the
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fact that the manifold F, is diffeomorphic to the space of the disc subbundle of
the tangent bundle of the (n—1)-dimensional sphere, it follows that the self-
intersection number of the vanishing cycle 4 in the manifold F, oriented
according to the structure of the space of the tangent bundle of the sphere, is
equal to x(S" 1)=1+(—1)""1. From this follows the following result:

Lemma 1.4. The self-intersection number of the vanishing cycle 4 in the complex
manifold F, is equal to

(Ao d)y=(~1)*~ D223 +(~1)7")
0 for n=0mod2,
={+2 for n=1mod4,
-2 for n=3mod4.

By the theorem on Poincaré duality the relative homology group Hy(F;, 0F))
is zero for k #n —1, and the group H,_, (F,, 9F,) is isomorphic to the group Z of
integers. Moreover the group H, -, (F,,0F,) is generated by the relative cycle ¥,
dual to the vanishing cycle 4, that is such that the intersection number (V' o 4) is
equal to one. As a representative of the cycle ¥ we can choose the non-singular
submanifold

T={(x;,..., %) €F:u>0,u=...=u,=0}

of the manifold F,, oriented in a suitable manner. By the diffeomorphism of the
level manifold F, with the space of the tangent bundle of the sphere, constructed
in Lemma 1.3, the submanifold T corresponds to a fibre of this bundle, that is the
ball in the tangent space of the sphere $"~! at the point (1,0,...,0).

We consider the restriction of the function f to f ~*(D,)\ B, where B, is the
open ball of radius 2, D is the closed disk of radius 1 in the space C. It defines the
locally trivial and hence trivial fibration

£ (Dy)\B;~D,

over the unit disk D, . A lifting I} of the homotopy ¢+ 1'(f) =exp (2 mit) to a
homotopy of the fibre F, can be chosen consistent with the structure of a direct
product on the space f~1(D,)\B; of this fibration. A relative cycle 6 of
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dimension k from (F, &F,) can be represented in the form

8=0,+0,,
where 8, is a relative cycle in (F,,dF,) and 9§, is a chain in F;\B;. The

transformation h,. =TI} of going round is the identity on F,\ B,. Therefore it
preserves the chain J; and acts non-trivially only on the cycle ;. In this way

var, (8) =var.(,)
(here we use one and the same notation for the variation operators var,,
corresponding to the pairs (M",0M") and (B, 8B,)). If the dimension k of the

cycle  is different from (n—1), then 8, =0 in the relative homology group
H,(F,, oF,) (this group is itself zero). From this follows the following assertion:

Lemma 1.5. In all dimensions except the (n —1)st the variation operator var, is
zero, and the operators h,, and h¥, are identical.

If k=dim d=(n—1), then 8, =m ¥ in the homology group H,—, F,,oF).

Here m=(6 o 4). Therefore in order to determine the action of the variation
operator var, it is sufficient to calculate the homology class var..(V).

Theorem of Picard-Lefschetz.

var, (F)=(—1)""+"24.

Corollaries. For a€ H, -1 (F.,, 0F;,)

var,(a)=(—1)"**Y2(ao 4)4,

K@ =a+(— 1y P @0 M)y (4);
for ae H,-1(Fy,)

hda)=a+(—1)""*@o A)4.

The last formula is usually called the Picard-Lefschetz formula. When the
number of variables n is odd, it, together with Lemma 1.4 shows that the Picard-
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Lefschetz operator h,, is the reflection of the space H,, (F,,) in the hyperplane
orthogonal (with respect to the intersection form) to the corresponding
vanishing cycle 4.

A proof of the Picard-Lefschetz theorem can be obtained by elementary,
though fairly heavy, straight calculation (see, for example, [150]). We give below
a more invariant proof (see §2.4). Here we give a proof for the case when the
number of variables n is odd.

There exists the natural lifting Q, of the homotopy ¢+ 1'(f) =exp (2zir)
(0<t<1) to a homotopy of the fibre F; > F,,, which does not, however, agree
with the structure of a direct product on the boundary. This lifting is given by
the formula Q,(x)=exp (ni)x. The homotopy £, is not suitable for the
determination of the variation operator var,., butitis not hard to see that with its
help we can determine the action of the monodromy operator k., on the
homology group H, -, (F,) of the fibre. It is clear that the transformation £, is
multiplication by —1. In particular, on the vanishing sphere 4 it coincides with
reflection in the centre. From this it follows that

21 (A)=hyy(2)=(-1)4.

Let
iyt Hu-l(Fl)"’an(Fl, aFl)

be the natural homomorphism induced by the inclusion F, &(F;, 0F,). Since
(404)=(i,(4)04), (Vo 4)=1,
then from Lemma 1.4 it follows that

iy(H=(-DE DA (1YY

0 for n=0 mod 2,
2(-1)"=" Y2y for n=1 mod 2.

Since the homology group H,_; (F;) of the fibre is isomorphic to the group of
{ntegers and is generated by the vanishing cycle 4, then var,.(V)=mA4 for some
integer m. From the fact that

by =id+vary iy,
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when the number of variables # is odd, we get

—A=hy4(4)
=A+2(—1)"" D2 var (V)
=A+2(—-1)""D2mA.

From this it follows that m=(—1)"*"2, which, for odd n, coincides with the
statement of the theorem of Picard-Lefschetz.

Chapter 2

The topology of the non-singular level
set and the variation operator of a

singularity
2.1 The non-singular level set of a singularity

Letf: (C*, 0)—(C, 0) be a singularity, that is the germ of a holomorphic function,
with an isolated critical point at the origin. It follows from implicit function
theorem that in a neighbourhood of the origin in the space €" the level setf ' (¢)
for €50 is a non-singular analytic manifold and the level set f ~*(0) is a non-
singular manifold away from the origin. At the point 0 C" the level set has a
singular point.

Lemma 2.1. There exists a ¢ >0, such that the sphere S, c €" of radius < ¢ with
centre at the origin intersects the level set f~!(0) transversely.

Indeed, the function ||x||* on the set f ~*(0) (in a neighbourhood of the point
0 e @?) can take only a finite number of critical values (for the case where fis a
polynomial this assertion follows, for example, automatically from the ‘curve
selection lemma’ of [256]; in the general case it can be derived from analogous
reasoning). We choose as ¢ a number such that its square is less than all critical
values of the function || x||? on the manifold f ~* (0)\0. The fact that all critical
values of the function ||x |2 on f ~* (0)\\0 are greater than ¢? is equivalent to the
fact that for r < the sphere S, of radius r with centre at the origin (which is a
level manifold of the function ||x||?) intersects the manifold f~*(0)\0 trans-
versely.

From Lemma 2.1 it follows that for sufficiently small &, > 0 the level manifold
f~1(e) is also transverse to the sphere S, for |¢| < &. Thus the function f: B,»C
satisfies conditions (i)(iii) of § 1.1 (with the ball B, of radius ¢ with centre at the
origin as M, the disk D, of radius g, with centre at zero in the plane € as U and
the unique critical point 0) We shall be interested in the topology of the level set
fYe)ina nelghbourhood of the origin.




The topological structure of isolated critical points of functions

Definition. The non-singular level set of the singularity f near the critical point Ois
the set

V,=f"1(e)nB,={xeC": f(x)=¢, x|l <e}

for 0<|e| <&, which is a complex manifold with boundary:.

The manifold ¥, is defined uniquely up to diffeomorphism. It is known ([256])
that it has the homotopy type of a bouquet of spheres of dimension (1 — 1). The
number pu=pu(f)of these spheresis called the multiplicity ot Milnor number of the
singularity f. The homology group H, (V) of the non-singular level manifold is
zero for k#(n—1), Hy— (V)=Z"isafree abelian group with p generators. The
assertions about the homology groups H(V,) of the non-singular level set we
prove below (see Theorem 2.1). With a small addition (the proof of the simple
connectedness of the manifold ¥, which arises from the same considerations as
in Theorem 2.1), from this follows also the result on the homotopy type of the
non-singular level set (for n>2). The fundamental group 7, (D, \0) of the
complement of the set of critical values is isomorphic to the group of integers and
is generated by the class of the loop 7o, which goes once round the critical value 0
in the positive direction (anticlockwise). We can, for example, set

vo(t)=¢-expQRmit)  (lel<éeo,1€[0,1].

Definition. The classical monodromy h:V,—~V. of the singularity f is the
monodromy h,, of the loop 7o. The classical monodromy operator of the
singularity fis the automorphism h, = h,, of the homology group H,_,(V)of
the non-singular level set ¥,. The variation operator of the singularity fis the
variation operator

Var,=var,o: Hn—l(y;s th)"’Hn—l(Vc)

of the loop 7.

A basis of the homology group H, _1(F)=2*YP of the non-singular level
manifold ¥, of the singularity fcan be constructed in the following manner. Let
f = f1be a perturbation of the function £, definedina neighbourhood of the ball
B, (we can, for example, take asf the perturbationf; = f +4g, where g is a linear
function: €*—C). For sufficiently small 4 (<o) the level set f71(g) is
transverse to the sphere S, for |g| <& and the critical values of the function fon
the ball B, are less than & in modulus. It is easy to show that the non-singular
level set f~1(e) B, is diffeomorphic to the non-singular level set ¥, of the
function f for |¢|<&. From Sard’s theorem it follows that almost all pertur-
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bations f of the function f have in the ball B, only non-degenerate critical
points with distinct critical values (in the example this will take place for almost
all linear functions g).

Let us prove, for example, that the functionf= f +g is Morse for almost all
linear functions g : €"—C. For this we consider the mapping df : €*—~C", given
by the formula

df () =@ f 0%y (). . ., O [0x ()

(x=(x4,. . .,%)€C". Almost all the values (/;,. .., 1) eC" are non-critical for
this mapping (Sard’s theorem). If (4, ,. . ., 4,) € C" is a non-critical value of the
mapping df , then the function f— Z;I;x; has only non-degenerate critical points.
Indeed the critical points of the function f—X;I;x; are those points at which
ofox;—;=0(G=1,..., n), that is these are the preimages of the point(ly,...,1)
for the mapping df. Since the value (/, . . ., ,) is non-critical for the mapping df,
then at these points the matrix (&%f/dx;0x,) has non-zero determinant, which
means that the corresponding critical points of the function]: f—E;l;x;arenon-
degenerate. The set of non-critical values of the mapping df is open. Therefore
the addition to f of a suitably small linear function does not remove it from the
class of functions with non-degenerate critical points and allows us to obtain the
fact that the critical values become pairwise distinct.
We again get the situation described in Chapter 1. As before, let

E=f"(2)nB, (zl<&),

the function £ has in the ball B, several critical points p; with distinct critical
values z; (Jz;] <&, i=1,. .., ), and {u} is a system of paths joining the critical
values z; with the non-critical value zo (2| = &) and defining in the homology
group H,_;(E,,) of the non-singular level set of the functionfa distinguished set
of vanishing cycles {4;}. Remember that the last condition means that the paths
u are not self-intersecting and pairwise do not have common points except the
point z,.

Theorem 2.1. The distinguished set of vanishing cycles {4} forms a basis of the
(free abelian) homology group H, -, (E,))= H, - (V) of the non-singular level set
of the singularity /. In particular the number of non-degenerate critical points of
the function fin B,n f~*(D,,) (into which the critical point of the function f
decomposes) is equal to the multiplicity u(f) of the singularity f. The group
Hy(F,) is zero for k#(n—1).
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Proof. Let
X=B,nf (D)
%=B,nf (Do)

where ¢ >0 and g >0 as described above. We shall show that the space X is
contractible. From the fact that the zero level set f1(0) of the function f is
transverse to the spheres S, of radius r < ¢ with centre at the origin in the space
€, it immediately follows that the set f 1 (0)N B, is homeomorphic to the cone
over the manifold f "1 (0) N S, and consequently contractible..The contraction of
the set £~ (0) 0 B, to the point 0, belonging to it, can be realised with the help of
a vector field on it, orthogonal to the submanifolds f~*(0)nS,,r<e (remember
that the set f~1(0)n B, is a manifold everywhere except zero).

In its turn the space f *(0)nB, is a deformation retract of the space
X=f"1(D,) B,. We can construct the required deformation retraction of the
space X, for example, in the following manner. Choose a sequence e=ro>n

>ry>...>0, monotonically decreasing to zero. Let ¢; be numbers such that &
>g>6>...>0 and the level set f ~1(¢) is transverse to the sphere S,, of radius
r; with centre at zero for |e| <¢. The function f determines locally trivial, and

hence also trivial, fibrations

E;= f_ ! (ﬁu) N (B.ro\Bn)—’ijc; .

Moreover trivialisations of these fibrations can be chosen so that they will

coincide on the intersections

En Ei—y =f— ! (Eu) n (Bro\Bn - 1)°

We consider the deformation g, of the disk D,,, defined for0<t<éo and given by
the formula

o _{t-x/ Il for [l >,
' for x| <2-

The mapping g, maps the disk D, of radius & into the disk of radius 7, keeping

the latter fixed. The mapping g is 4 deformation retraction of the disk D, into

the point 0. Since the function f defines the locally trivial fibration

D\ N B,,—»D.,,\0;
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Fhere e:xi.sts a family G, (0 < 1 <&) of mappings of the set X = f~!(D,)) N B, into
itself lifting the homotopy g,. This family can be chosen in accordance with the
structure of the direct product on the sets

E=f"'(D,)n(B,,\B,)

for t<¢;. It is not difficult to see that the family G, (0< t<¢g,) determines in a
nanfral way the family G, with 0<?<¢, in which the mapping G, is a defor-
mation retraction of the set X into the zero level set f~1(0)nB,,.

. If f is a sufficiently small perturbation of the function f, then tohe space X is
dlﬁeqmomhic to the space X (as smooth manifolds with corners; indeed it is
sufficient tha}t X is homotopy equivalent to X) and therefore is also contractible.

"_['he function f maps the space X into the disk D,, and away from the critical
pOfnts 21, 22, - - »Z, is a locally trivial fibration with fibre F,,. We consider the
union yi,,u,-(t) =V of images of paths u;. It is a deformation retract of the disk
D,,. Itis not difficult to see that a deformation retraction of the disk D, onto the
space __V can be lifted to a deformation retraction of the space X ontoeothe space
Y=/ (.V) (analogous to the way that the deformation retraction of the disk D,
to the point 0_ is lifted to a deformation retraction of the space X to the zero lev:i
set ! (0? r'\B,). If the singular gbresf“ 1(z,) are cut out from the space Y, then
the remaining space Y\ Ut f~!(z;) will be a fibration over the contractible
space ¥\ {zli=1,...,u}. Consequently, it is homeomorphic to the direct
product of the fibre F,, and the space \{zili=1,...,u} and therefore
hom?topy equivalent to the fibre F,.

It is not difficult to show that up to homotopy type the space Y is obtained
from the fibre F,, by gluing n-dimensional balls B; to the vanishing spheres 4;
He11e we define the mapping in one direction, determining the homoto v
equivalence of the considered spaces. Let >

S‘(t): Si.—l —bSi(t) CF.‘(Q) (O £t 1)
bea tl;aemily of maps of the (.n —1)-dimensional sphere (the index i simply fixes the
number of the. copy), defining the vanishing cycle 4; =s;(1) (5:(0): S7~ ' 5p;). Let
B; be the n-dimensional ball, which is the cone over the sphere S ™!

(B;=[0,1] x SF™1/0x 7).

The space

Eo ‘9‘) {Bi}’
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obtained from the fibre F,, by gluing the n-dimensional balls B; to the vanishing
cycles 4; is the quotient space of the space

I
F,oU .Ul Bi
by the equivalence relation
s()(@~(1,a) (aeSI™', (1,@)eB, i=1,.... 1)

The map ¢ of it into the space ¥, which is a homotopy equivalence, can be given
in the following fashion:

¢(x)=x for xeF,c¥,

o, a)=s:(1)(@ for (ta)eB;, 0<i<li, aeS' .

B o~
There is the exact homology sequence of the pair (Y, Y—:Ux 1@)):

o Hye (D~ Hena (1Y~ () Frien-H -\ 7 e~
—H(Y)—...

Here H,(Y)=0 (since the space Yis homotopically equivalent to the contractible
space X; remember that the homology is considered to be reduced modulo a

point),
Hysr (Y, Y\Q F1(20)= @f=1 Hy+1(B1, 0B)

0 for k#n—1,
- z* for k=n-1,

B o~
Hk(Y\iUlf_l(zi))=Ht(ﬁa)-
From the exactness of the sequence it follows that

PRATT A NI

0 for k#n-—-1,
Z* for k=n-1,
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the generators of the group H,(B;, 0B;) mapping into the vanishing cycles 4;.
From this the result of the theorem follows.
It is not difficult to see that by considering the exact homotopy sequence of

B~
the pair (Y, YN\ U f ~1(z,)) we can deduce the simple-connectedness of the
. =1
space Y\ | f~!(z) or, which is the same thing, the simple-connectednes of
i=1

the non-singular level set F,, for n>2.

From theorem 2.1 it follows that the multiplicity of the critical point of a
singularity f is equal to the number of non-degenerate critical points into which
it decomposes under a perturbation of general form. This number is equal to the
number of preimages (near zero) of a general point under the map

df :C*-»C"

df (xy, ..., x)=(0f/0x,(x), . . ., 0f|0x,(x)). From this we can obtain the
following formula for the multiplicity of anisolated critical point of a function f':

#(.f) =dlm€ uo/(af/axl PR} af/ax,),

where ,0 is the ring of germs at zero of holomorphic functions in n variables,
(8f/dx,, . ..,0f]0x,) is the ideal in the ring ,O, generated by the partial
derivatives of the function f (the Jacobian ideal of the germ f). This result was
proved in Chapter 5 of Volume 1.

2.2 Vanishing Cydes and the Monodromy Group of a singularity

It was shown in §2.1 that almost all perturbations f of the singularity
f:(€*, 0)—(C, 0) are Morse, that is in a neighbourhood of zero in the space C*
they have only non-degenerate critical points, equal in number to the multiplicity
of the singularity f; all critical values zy, . . ., z, of the function 1 being different.
The non-singular level set ¥, of the singularity f'is diffeomorphic to the non-
singular level manifold F,, = _7‘ 1(z0) N B, of the function _7' The presence of such
a diffeomorphism allows us to introduce the following definition.

Definition. A vanishing cycle A in the homology group H,-,(V:) of the non-
singular level set of the singularity f is an element of this group corresponding to
a cycle in the homology group H,-,(F,) of the non-singular level set of the
function £, vanishing along a path joining some critical value z; of the function f
with the non-critical value z,.
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Definition. A basis of the homology group H, _1(Vo) of the non-singular level
manifold consisting of a distinguished set of vanishing cycles {4;} is called a
distinguished basis. A basis consisting of a weakly distinguished set of vanishing
cycles is called weakly distinguished.

Theorem 2.1 asserts that any distinguished set of vanishing cycles forms a
basis. It will be shown later that any weakly distinguished set also forms a basis
(see 2.6).

Remark. The terms “distinguished” and “weakly distinguished” were intro-
duced by A.M. Gabriclov. In the work [205] a distinguished basis was called
“geometrical”.

Definition. The monodromy group of the singularity f is the monodromy group
of the (Morse) function f.

It is not difficult to show that the set of vanishing cycles and the monodromy

group of a singularity f do not depend on the choice of the Morse perturbation
7= f1 of the function f. To see this we consider another such perturbation
7 = f,. The perturbations f,andf, canbe included in one two-parameter family
of functions f; , (fa,0=f1 o= ). We can, for example, takefi,=fatfs =
as this family. In the space 2 with coordinates (4, v) the values of the parameters
(A, v) which correspond to non-Morse functions f; ,form (ina peighbourhood of
the point (0,0)€ C?) a set which is the image of an analytic set of complex
dimension one. It does not, therefore, disconnect the space C{_of values of the
parameters (4, v). From this it follows that the perturbations f=/fiand 7= M
can be joined by a continuous one-parameter family of Morse functions fiq),ve
(te (0,1}, fimvor=1 far.vr= 7). It is easy to see that along such a family of
Morse functions the set of vanishing cycles and the monodromy group do not
change.

For the same reason the concepts of distinguished and weakly distinguished
bases are independent of the choice of perturbation.

From the results of chapter 1 it follows that the monodromy group of a
singularity f is generated by the Picard-Lefschetz operators k; corresponding
to the elements 4, of a weakly distinguished basis in the homology of a non-
singular level set of the function f near the critical point. If the number of
variables n is odd, this operator is the reflection in a hyperplane, orthogonal (in
the sense of intersection forms) to the vanishing cycle 4;. When, therefore, the
aumber of variables is odd, the monodromy group of a singularity is a group
generated by reflections.
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Examples. As examples we can consider the functions f (x)=x> and f(x,y)
=x>+)?, which have the singularity type A, in the sense of volume 1. Th’eir
Morse perturbations can be chosen in the form 7(x)=x3i31x and ]"(x y)
=?c3 —3Ax+)? respectively, where 1 is a small positive number. The dist,in-
guished bases in the homology of the non-singular level manifolds and the
qor}odromy groups of the Morse functions 7(x) and f(x, y) (coinciding with the
distinguished bases and monodromy groups of the singularities f(x) and
£ (x,)) were considered in the examples of §1.2.

23 The Variation Operator and Seifert Form of a Singularity

In §2.1 the concept of the variation operator of a singularity was introduced. In
?[a(:;r]fci zs;‘;(]i)y the properties of this operator we give another intrepretation of it

As above let f:(C",0)—(C,0) be a singularity, that is the germ of a
holomorphic function, with an isolated critical point at zero, let ¢ be a
sufficiently small positive number, and let S7”~! be a sphere of radius ¢ with
centre at the origin in the space €. Put K= f~*(0)nS7"~'. From the fact that
the level set f~*(0) intersects the sphere S2"~* transversely, it follows that K is
smooth submanifold of the sphere $2*~! of codimension two. We denote by T'a
Sl;ff:mently small open tubular neighbourhood of the manifold K in the sphere
$2=1 We define the mapping & : S2*~ '\ T—S"' =€ from the complement of
the tubular neighbourhood of the manifold K to the circle by the formula
<P(?c)= F®\f )| =exp (i arg f(x)). In [256] (§ 4) it is shown that the mapping
@ is a smooth fibration. Moreover the restriction of the mapping @ to the
boundary 8(S2**\T)=0T has a natural structure of a trivial fibration
KxSt-»St. '

The restriction of the function f to f~1(SL) N B, defines a fibration over the
c.u'cle 82 of radius &, lying in the complex line C, the fibre of which is the non-
singular level manifold ¥, = f ~* (&) n B, of the singularity f. As we explained
abow{e, the restriction of the function f to the boundary f~!(S;) NS, of the
manifold f ~! (S1) B, also has the structure of a trivial fibration. The glassical

monodromy and variation operators of the singularity are defined by way of the
fibration

S SNBSS,

::n:: 2.2 (see [2561 § 5). The two fibrations over the circles S* and S;, de-
above are equivalent (relative to the isomorphism of the circles given by
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multiplication by &). In particular, the fibre @ 1(z) of the fibration @ is
diffeomorphic to the non-singular level set of the singularity f near the critical

point.

In this way we can use the fibration ® to define the variation operator Var, of
the singularity f. As before, we shall denote by

I,:®71(1)~>® (exp (2=it))
the family of diffeomorphisms which lifts the homotopy
t—exp Quit) (Io=id,t€[0,1])

and agree with the structure of the direct product on the boundary.

We digress a little to recall some definitions.

Let M be a (real) oriented n-dimensional manifold with boundary M, let
ey, ...,ey-y be a frame in the tangent space to the boundary M at some point,
and let e, be the outward normal to the boundary dM in the manifold M at the
same point. We say that the frame e;, .. ., €x-1 defines the orientation of the
boundary oM, if the frame e, €1, . . ->€a—1 is a positively oriented frame in the
tangent space of the manifold M. There is an analogous convention for chains
and their boundaries.

Let a and b be non-intersecting (n —1)-dimensional cycles in the (2n —1)-
dimensional sphere $>*~1. When n=1 we shall suppose additionally that the
cycles a and b are homotopic to zero. When n>1 this condition is satisfied
automatically. We choose in the sphere S2*-1 ap n-dimensional chain 4, the
boundary of which coincides with thecycle a. Itis easy to see that the intersection
numbser (4 ob) of the chains 4 and b in the sphere $2"~* (which is well-defined,
since the boundary of the chain 4, which is equal to a, does not intersect the
cycle b) does not depend on the choice of the chain 4. Indeed if A’ is another such
chain then the difference (4 —A") will be an absolute n-dimensional cycle in the
sphere $3*~}, from which it follows that ((4—A4")ob)=0, that is that
(40b)=(A4'0b). The intersection number (4 o b) of the chains 4 and b is called
the linking number of the cycles a and b and denoted /(a, b).

Another method of calculating the linking number goes as follows: Let D**
be the ball, the boundary of which is the sphere S2"~!. We choose two
n-dimensional chains 4 and B in the ball D**, the boundaries of which coincide
with the cycles a and b respectively and which lie wholly inside the ball D", with

the exception of their boundaries. In this case we can make sense of the
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intersection number (4 o B) of the chains 4 and B in the ball D2" and

I(a,b)=(40b)s
=(-1y'(@oB)
=(Bod)p
=(-1l(,a).

In order to prove this result we must remark that the intersection number
“ °§)2 is well-defined, that is it does not depend on the concrete choice of the
chains 4 and B for which 84 =a and B =b. We can consider the ball D*" as a
cone over the sphere $2"71, that is as the quotient space obtained from the
product [0, 1] x $2"~! of the interval [0, 1] and the sphere $"~! by factoring out
the subspace {0} x $?"~* (the slices {t} x $2*~! (0<#<1) corresponding in the
ball to concentric spheres of radius £). Then as the chain B we can take the cone
over the cycle b with vertex at the centre of the ball D" (B=[0, 1] x b/{0} x b)
and as the chain 4 we can take the union of the cylinder [1/2, 1] x a over the cycle:.
a and the chain {1/2} x 4, lying in the sphere {1/2} x $>"~! of radius 1/2
'(A < 8§2""! pA=a; for n=1 see figure 17). In this case the chains 4 and B will
mte_rsect at points of the form (1/2, x), where x is an intersection point of the
chain 4 with the cycle b. The sign, which differs the corresponding intersection '
numbers can be calculated without difficulty.

.We r.eturn to our consideration of the singularity f. Let a and b be (n—1)-
dimensional cycles in the fibre @ ~*(1) of the fibration

@: S INT-S

The cycle I3, b lies in the fibre @ ~1(—1) and therefore does not intersect the
cycle a. Consequently, it makes sense to talk about the linking number of the
cycles a and I, b as cycles lying in the (2n —1)-dimensional sphere.
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Definition. The Seifert Form of the singularity f is the bilinear form L on the
homology group H,_,(® (1)) (= H,-,(V,)), defined by the formula

L(a’ b)’—"l(a’ rl/th)’
where a,be H,_ (D (1))

The theorem of Alexander duality asserts that the linking number de-
fines a duality between the homology groups H,_,(#7'(1)) and
H,_1(S>™'\27'(1).

It is not difficult to see that the fibre @ ~1(—1) is a deformation retract
of the space S$%"" '\ @ '(1). Consequently, the homology group
H,_,(S** 1\ @ (1)) is isomorphic to the group H,_,(® ' (-1)).

Since the transformation I, is an isomorphism between the groups
H,_,(®7'(1)) and H,_,(® 1(—1)), then the Seifert form defines a duality
between the homology group H,—;(® (1)) and itself, that is it is a non-
degenerate integral bilinear form with determinant equal to (+1). We remark
that the Seifert form L, generally speaking, does not possess the property of
symmetry. )

Let be H,_,(®~'(1)) be an absolute homology class and ae H,—(® ~'(1),
24 ~1(1)) be a relative homology class modulo the boundary.

Lemma 2.3. L(Var,a,b)=(aob).

Proof. Let us choose a relative (n —1)-cycle in the pair (¢ ~* (1), 6@ ~*(1)) which
is a representative of the homology class a (we shall denote it also by a). Let us
consider the mapping [0, 1] x a—S2"~! from the cylinder over the cycle ainto the
sphere, mapping (¢, ¢) € [0, 1] x a to I,(c)e S?"~'. Under this mapping the lower
end {0} x a of the cylinder [0, 1] x a maps to the chain a, the upper end {1} xato
the chain I', 4, [0, 1] x a maps to the boundary 3T of the tubular neighbourhood
of the manifold K. Therefore this mapping defines an n-chain in the sphere $2*~!
(its image), the boundary of which consists of two parts: the variation Var,a
=T,a—a of the cycle a (lying in the fibre @ ~!(1)) and a cycle lying on 3T.
Contracting the second part of its boundary inside the tubular neighbourhood T
along radii, we obtain a chain 4 in the sphere $2"~1, the boundary of which liesin
the fibre ® ~*(1) = §2" ! and is equal to Var (a). The intersection of the chain 4
with the cycle I} 2, b is the same as the intersection of the cycles Iy ;.a and I 5.b
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in the fibre @ ~1(—1). Therefore

L(Var_f a, b)=l(Var,a, I‘I,z,b)=
=(A40o@p,b)s=(Ipea0 i yb)e-1(_1y=(a0b)g-11),

which is what we were trying to prove.

Since the Seifert form L defines a duality between the homology group
H,_,(®*(1)) and itself, and the intersection number defines a duality between
the groups H,_,(® ~'(1)) and H,_,(®~'(1), 8% ~*(1)), then we have

Theorem 2.2. The variation operator Var, of the singularity f is an isomorphism
of the homology groups

H,_((®7'(1), 807 '(1)) 3 H,—1 (271 (1))
or, which is the same thing, of the groups

Hn—l(K’aVc) il Hu—l(Vc)-

Remark. If we already had a proof of the Picard-Lefschetz theorem in the general
case, then this result could be obtained by assigning the matrix of the operator
Var jin a distinguished basis of the homology group H, -, (¥,) and the basis of the
group H,_,(V,,dV,) dual to it (see §2.5).

From this theorem and Lemma 2.3 follows

Theorem 2.3. If a,be H,_,(V,), then

L(a,b)=(Vars*aob).

Remark. The definition of the linking number and the Seifert form sometimes
differs from that given here either in sign or by a permutation of the arguments
(for example in [101]).

The Seifert form is very useful for studying the topological structure of
singularities. In particular, it can be shown that the Seifert form (or the variation
operator (H,-,(V.))*—+H,_,(V)) determines the intersection form on the
homology group H,-,(V,) of the non-singular level manifold.

Theorem 2.4. For a,beH,_,(V,)

(aob)= —L(a,b)+(—1Y"L(b,a).
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Proof. Since the variation operator of a singularity is an isomorphism, there exist
relative cycles a’,b’e H,_;(V,,dV,) such that a=Varya’ and b=Var;d" It
remains to apply the result of lemma 1.1 to the cycles @’ and b'.

In addition to the intersection form the variation operator also determines the
action of the classical monodromy operator of a singularity. The inverse of the
variation operator, acts from the homology group H,_, (¥,) of the non-singular
level manifold to the group H,_,(¥.,d¥,) dual to it. To it corresponds the
operator

(Var; )Y : H,_,(V})-H,-,(V,,0V,)
defined so that
((Var; ) aob)=L(b,a)=(Vary'boa)

for a,be H,_, (V). In matrix form it means that the matrix of the operator
(Var;!)T is obtained from the matrix of the operator Var;* by transposition.

Theorem 2.5 ([199]). The ciassical monodromy operator h, of a singularity
can be expressed in terms of its variation operator Var, by the formula
hy=(—1)* Var, (Var; *)T.

Proof. We have the equality (xoy)=(i,x0y), where x,yeH,_(V), i,
is the homomorphism H,_,(V,)-»H,_.,(V,,dV,), induced by the inclusion
V.= (V,, dV,). Together with Theorem 2.4 it gives

iy=—Var;! +(—1)"(Var; ).
For the classical monodromy operator of the singularity we have
h,=id+Vargi, 7
=id—Var; Var;! +(—1)"Var,(Var;")T
=(—1)"Var,(Var; ')’

which is what we had to prove. :
There is an analogous result for the action of the classical monodromy in the
relative homology group.

The topology of the non-singular level set and the variation operator of a singularity 43

Theorem 2.6.

k9 =(—1)"(Var )T Var.

2.4 Proof of the Picard-Lefschetz theorem

We shall use here the notation of §1.3.
From the fact that the variation operator

var : Hn-l(Flr aﬁl)—’Hn~l(F~l)’

being the variation operator of the singularity
f(xla . -’xu)=x%+ ceo +xﬁ,

is an isomorphism (Theorem 2.2), it follows that var,.(F) = + 4. To determine
the sign in this formula we use Theorem 2.3. In the definition of the fibration @
(for the critical point 0 of the function x} + . . . +x2) we can suppose that g=1.
The fibration @ :S2" "'\ T—-S! is given by the formula

D(xy, .. ox)=03+... +xD)Ix3+... +x3

(1P + . . . +Ix,2=1). The fibre & ~! (1) of this fibration is diffcomorphic to the
level manifold F;. The vanishing cycle 4 in the manifold F; corresponds in the
fibre @ ~1(1) to the cycle defined by the equations

B4 +x2=1, Imx=0.

We shall denote this cycle by 4 also.
We have
(Var '404)=L(4,4)
=I(A9 Flﬂ‘A)
=(—1)"(4d0B)p,

where 4 and B are n-dimensional chains in the ball D= D?*, the boundaries of
which lie on the sphere $2*~* and are equal to 4 and I, , , 4 respectively. It is not
difficult to see that in order to calculate the linking number /(4, I12,4) it is
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possible to use the family of diffeomorphisms
I: 97 1(1)~»® (exp2mnit)),

which do not necessarily agree with the structure of the direct product on the
boundary. We can take for this the family defined by the formula

L%y, - - -» Xg)=(exp(mil)xy, - . ., exp(mit)x,).
Then the cycle I3z, 4 will be determined by the equations
2+...+x2=-1 and Rex;=0.

We can take as the chains 4 and B the chains in the ball D?*, given by the
equations {Im x,=0} and {Re x;=0} respectively. The orientations of the cl.1air§s
4 and B are in agreement with the help of a mapping from Ato B, w?nch is
multiplication by i. If a positively oriented system of coordinates on the dlS.C Ais
thesetu,, ...,un (X;=u;+iv;) thena positively oriented system of coordlpates
on the disc B will be vy, - . .,0,. The chains 4 and B are smooth manifolds
(n-dimensional discs) and intersect transverselly at the point 0. From this it
follows that

(Ao B)p=(~1ye ",

Therefore

(Var~i4 oZ)=(—1)""‘“”ﬂ

that is

Var 'A=(—1)*+D2P,
Vary =(—1*12 4,

which is what we had to prove.

25 The intersection matrix of a singularity

As we have already said, the monodromy group of a singularity is generated by
the Picard-Lefschetz operators h;, corresponding to the elements 4; Pf a weakly
distinguished basis in the homology of the non-singular level manifold of the
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singularity f near a critical point. By the Picard-Lefschetz theorem we have
hi@=a+(—1)""*12(g0 4) 4;.

Thus the matrix of pairwise intersections of elements of a weakly distinguished
basis determines the monodromy group of the singularity.

Definition. The matrix S=(4;04,) is called the intersection matrix of the
singularity f (with respect to the basis {4,}).

Remark. Here we use i for the number of the column, and j for the number of the
row. This way of writing down the matrix of the bilinear form coincides with the
way of writing it down as the matrix of an operator (in this case i,) from the
homology space H,_, (V) to its dual space H,_, (V,, dV,) with bases {4,} and its
dual ((Al o Aj) = (i‘ 4;0 A]))-

Definition. The bilinear form associated with the singularity f is an integral
bilinear form defined on the homology group H,—, (V) of the non-singular level
manifold of the singularity f by the intersection number.

The bilinear form associated with the singularity is symmetric for an odd
number of variables n and antisymmetric for an even number of variables. The
intersection matrix of the singularity is the matrix of the form with respect to the
basis {4;}. The diagonal elements of the intersection matrix are determined in
Lemma 2.4 of §2.3 and are equal to 0 for even n and +2 for odd n.

If 7 is a perturbation of the function £, and {4} is a distinguished basis of
vanishing cycles, defined by a system of paths u, , . . ., u,, then the loop 7/, which
goes in a positive direction round all the critical values into which the zero critical
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value of the function f decomposes, is homotopic to the product t,...7, of
simple loops, corresponding to the paths u,, .. .,u; (figure 18).
From this follows

Lemma 2.4. The classical monodromy operator h, of the singularity f is equal to
the product h, ...h, of Picard-Lefschetz operators, corresponding to the
elements {4;} of a distinguished basis in the homology of the non-singular level
manifold.

The action of the variation operator of the singularity f can be defined by the

formulae

e B i e %

Var, =var,,.. . . .q

st o A st 8=

[
= Z 2 var,‘_'i,, -varﬂ,'it R 'it Tvare,, (*)
r=1 {1 <i2<...<ip

var, @ =(—1)"F" @044 (@€ H,-1(Vi, 0V)).

Choose in the group H,_,(V;, 3V,), which is the dual of the group H,_:(V),
the basis {7}, dual to the basis {4}, that is such that

(Vi o Aj)=6,'j.
From the formula (%) it follows that

Var,(V,)=(-—1)"("“)IZA¢+ z C:Aja

i<i
where ¢/ are certain integers. So we have proved

Lemma 2.5. With respect to a distinguished basis the matrix of the variation
operator Var, of a singularity f is an upper triangular matrix with diagonal
entries equal to (—1)*®*2,

The same properties are possessed by the matrix of the operator Vary ', which
by theorem 2.3 coincides with the matrix of the Seifert form L of the singularity f
(see the remark at the beginning of the section, defining the matrix entries of a
bilinear form).

Let S be the intersection matrix of the singularity f with respect toany basis, L
be the matrix of the Seifert form (or of the operator Var; ') of this singularity
with respect to the same basis, H be the matrix of the classical monodromy
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operator h, , H® be the matrix of the operator A%’ with respect to the dual basis.
Theorems 2.4, 2.5 and 2.6 show that

S=—L+(—1)y"L",
H=(—1)'L™LT,
H(r)=(_1)nLTLf1

(the symbol T means the transpose of the matrix). If { 4;} is a distinguished basis
of vanishing cycles, then the matrix L with respect toitis upper triangular and the
matrix LT is lower triangular. Thus the intersection matrix with respect to a
distinguished basis has an invariant decomposition into the sum of an upper
triangular and a lower triangular matrix.

It was stated above that the intersection matrix of a singularity with respect to
a distinguished basis determines its classical monodromy operator (with respect
to the same basis). The converse is also true. Before proving this we formulate
one useful general result.

Lemma 2.6. Let A and B be upper triangular matrices with ones on the diagonal,
and let C=ABT. Then the matrices 4 and B can be reconstructed from the
matrix C.

The following formulation of this result is equivalent to the previous one.

Lemma 2.7. Let A and B be upper triangular matrices with ones on the diagonal.
If ABT is the identity matrix then 4 and B are also identity matrices.
The proof of this lemma does not present any difficulty.

Theorem 2.7 ([205]). The matrix of the classical monodromy operator of a
singularity with respect to a distinguished basis determines its variation operator
and its intersection matrix.

The proof applies Lemma 2.6 to the identity

H=(-1yL LT,
where
L=(-1y**oeL,

in which I, and L ! are upper triangular matrices with ones on the diagonal.
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2.6 Change of basis

The system of paths {1}, defining a distinguished or weakly distinguished basis,
can be chosen in more than one way. If we change the initial system of paths, we
can get different bases of vanishing cyclesin the homology group H,- , (¥,) of the
non-singular level set of the singularity near the critical point. We describe
several elementary operations of change of basis, preserving its distinguished or
weakly distinguished character. Let {#;} be a system of paths, defining the
distinguished basis {4;} in the homology group

Hy 1 (F) 2 Hy-1 (VD)

of the non-singular level manifold. This means that the u; are non-self-
intersecting paths, joining the critical values z; of the perturbation f of the
function f with the non-critical value zo and intersecting each other only at the
point z,. Let 7; be a simple loop corresponding to the path u;.

Definition of the operation a,, (1 <m < p). We define a new system of paths {#;} in
the following manner:

~

t;=u; for i#m,m+1;

Uy 41 = Um;
Uy = Um +1Tm.
Here by u,,+1%, we understand the path obtained by traversing the path u,,,,
followed by the loop t,.. It is clear (see below) that the system of paths {&;} defines
a weakly distinguished set of vanishing cycles {4;}. It is not difficult to see that
the system of paths {ij;} can be deformed a little so that it satisfies the conditions
of the definition of a distinguished basis (figure 19). Therefore the basis {4} is
distinguished. The basis {4;} is related to the basis {4,} by the following
formulae:
d;=4;, for i#m, m+1;
| mt1=4m;

Z,,, =hn(An|+x)=Am+l +( - 1).,('+1)/2 * (Am+1 o A.)A,.

(the Picard-Lefschetz transformation). The operation of transferring from the
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distinguished basis {4;} to the distinguished basis {4;}, described by these
formulae, is denoted by a,,.

Fig. 19. Fig. 20.

Definition of the operation B+, (1 <m<p). Let the system of paths {#} be
defined in the following manner:

{4

j=u; for i#m,m+1;
U =Um+1 5

~y —_ —1

Upsy =UmTm+1

(figure 20). This system of paths defines a distinguished basis {4}, related to the
basis {4;} by the fomulae:

Adi=4, for i#mm+1;
Zvln=Am+1;

Z:,u+1 =h;.},1(A,,,)=A,,,+( _1)'(.+l),2 : (Ali+l OAm)Am+1

(the inverse Picard-Lefschetz transformation). The operation of transferring
from the distinguished basis {4;} to the distinguished basis {4}}, described by
these formulae, is denoted by B+ 1.

1t is not difficult to see that the operation f,,+ is the inverse of the operation
a,, in the sense that the successive application of these in either order brings one
back to the initial basis. We consider the free group generated by the elements a,,
(m=1,...,u—1). To each element of this group (a word in the symbols &, and
a2 1) there corresponds an operation of change of distinguished basis (taking into
consideration the fact that the action of a, ! on the basis coincides with the action
of the operation f,,4). It is clear that the actions of the operations a,a. and
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OO are the same when |m —m’}>2. In addition, the actions of the operations

OOy + 1 Oy AN 0y 4 1 0y 1 are the same for any m from 1 to (u —2). The “proof™
of this fact is given in figure 21.

Fig. 21.

In this way we get an action, on the set of distinguished bases of the homology
group of the non-singular level set near a critical point, of the quotient group of
the free group on the (u —1) generators a,, (m=1,..., u—1) by the relations

O + 10Ol +1 = O 410 fOT 1 <m<p—1,
OOty = OOy fOT [ —m’|Z2.

This group is the braid group with p strands (see, for example [57]; see also
Section 3.3). ‘

We consider an operation which preserves the property of being weakly
distinguished for a set of vanishing cycles. As a preliminary we show that any
such set forms a basis in the homology of the non-singular level manifold.

Theorem 2.8. Any weakly distinguished set of vanishing cycles forms a basis of
the homology group H,_,(¥,) of the non-singular level manifold.
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Let {4} be a weakly distinguished set of vanishing cycles defined by the system
of paths {1}, and let 7; be the corresponding simple loops. The set of loops {r}is
a system of free generators of the fundamental group =, (U \{zi}; 20) of the
complement of the set of critical values. In order to prove that the set of vanishing
cycles {4;} forms a basis of the group H,_,(V)), it is sufficient to prove that any
vanishing cycle 4 (defined with the help of the path v, joining a critical value z;
with the non-critical value z) is linearly dependent on the cycles 4,,. . ., 4, with
integer coefficients. We can suppose that the paths u; and v coincide near the
critical value z;. In this case the loop y=u;0™ 1 can be considered as an element of
the fundamental group m, (U\{z;}; zo) of the complement of the set of critical
values. We have 4= +h,.4; (the sign depending on the orientation of the
vanishing cycles 4 and 4;). In the group m, (UN\{zi}; 2o) the loop y can be
expressed in terms of the generators 7y ,. . ., 7,. Consequently the vanishing cycle
A can be obtained from the cycle 4, by the successive application of some Picard-
Lefschetz operators h; and their inverses, and is therefore linearly dependent on
the cycles 4,,. .., 4, with integer coefficients.

Definition of the operations a,,(m’) and B,,(m’) of change of weakly distinguished
basis. Let {u;} be a system of paths, defining the weakly distinguished basis {4;}
of the homology group H, -, (¥.) of the non-singular level manifold. For m#m’
we define the operation of change of basis o, (') [Bx(m")], corresponding to the
change of the path u,, to the path u,,,, (= '], that is transforming the weakly
distinguished basis {4;} into the basis {4} defined by the formulae

di=4;, for i#m/,
A =ho(Ap) = A +(— 1"+ 2 (4,, 0 4,) A

(A =z (Aw) = Aw +(— 1)+ 02(4,,0 4,) Au).

The action of the operations a,,(m’) and B,,(m’) on the system of simple loops
{t:} consists of changing the loop 7, into a conjugate of it in the fundamental
group n,(U\{z‘};zo) of the complement of the set of critical values (that is
12117, fOT au(m’) and T,T,1," for By(m’). For this reason, if the initial
system of simple loops is a system of free generators of the group =, (U\\{zi};20)
then the same property will be possessed also by the system of simple loops,
obtained after application of the operation o,,(m’) or Bu(m’). Therefore the

operations a,,(m’) and f,(m’) preserve the property of a basis being weakly
distinguished.
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It is easy to see that the operations a,(m") and B, (') are inverses of each
other. When the number of variables n is odd, these operations coincide. If a
distinguished basis is considered as weakly distinguished, and in particular we
forget the order of the vanishing cycles, then the action of the operation a,,
coincides with the action of the operation a,,(m+1), and B, with B,.,(m).

It can be shown (see [150]) that any two distinguished bases can be obtained one
from the other by iterations of operations a,, and 8,, and a change of orientations
of some elements. It was proved that any two weakly distinguished bases can be
obtained one from the other in an analogous way with the help of operations
om(m’) and B,,(m’) (Humpbhries, S. P. [170] and, apparently, already Whitehead
J. H. C, 1936).

2.7  The Variation Operator and the Intersection Matrix
of a “*Direct Sum™ of Singularities -

Definition. The direct sum of the singularities f: (C",0)—(C, 0) and g: (€™, 0)
—(C, 0) of functions of n and m variables respectively is the singularity of the
function f @g: (C**™, 0)—(C, 0) of (n+m) variables defined by the formula

f®gx, »)=r(x)+g(»)

(xeC, yeC™, (x,p)eC "~ C"HC™).

Lemma 2.8. The multiplicity u(f @ g) of the direct sum of the singularities fand g
is equal to the product u(f) u(g) of their multiplicities.

Indeed if (x) is a perturbation of the singularity f, with u(f) non-degenerate
critical points p;, and §(y) is a perturbation of the singularity g, with u(g) non-
degenerate critical points g;, then f(x) + §(») is a perturbation of the singularity
S ®g with u(f) u(g) non-degenerate critical points (p;,q;) (i=1,...,u(f);
J=1,...,m(@)).

M. Sebastiani and R. Thom ([322]) proved that the classical monodromy
operator of the singularity f @ g is equal to the tensor product of the classical
monodromy operators of the singularities f and g. A. M. Gabrielov ([116])
obtained a description of the intersection matrix of the singularity f @ g under
the condition that the intersection matrices of the singularities f and g, with
respect to distinguished bases, are known. We give an account of these resultsina
form somewhat different from that found in [322] and [116].

We need one topological concept.
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Definition. The join X x Y of the topological spaces X and Y is the quotient space
of the direct product X x Ix ¥ (I=[0, 1]) by the equivalence relation:

(x,0,y,)~(x,0,y;) forany y;,y:€Y, xeX;
(xx,l:}’)"‘(xzaL}’) forany xl,xzeX,er.

We can consider that the spaces X and Y lie in their join X * Y as the lower and

upper bases respectively ({(x, 0, »)} and {(x, 1, )}). Therefore the join X x Y can
be represented as the space swept out by non-intersecting segments joining every
point of the space X to every point of the space Y. If we consider the projection
(x, t, y)+—> t of the join X * Y to the line segment /= [0, 1], then the preimage of the
point 0 coincides with the space X, the preimage of the point 1 coincides with the
space Y and that of a point t€(0, 1) with the product X' x Y.
" If Yis the space consisting of one point, then the join X x Y coincides with the
cone over the space X. If Y is the space consisting of two points, then the join
X x Y is homeomorphic to the suspension of the space X (the quotient space of
the cylinder [ —1, 1] x X over the space X by the equivalence relations

(—11x1)~(_1’x2)s (1,x1)~(1,x2)

for all x;, x, € X). If the space X is homeomorphic to the k-dimensional sphere
S* and Y to the I-dimensional sphere S', then the join X  Y'is homeomorphic to
the (k +I+ 1)-dimensional sphere S**'**.

Lemma 2.9. Let the homology groups of the spaces X and Y either not have
torsion or be considered with coefficients in a field. Then the homology group
H,(Xx Y) of the join of the spaces X and Y is isomorphic to

@o cr<n—1 Hi(X) @ Hy i1 (Y).

In other words H,(X* Y)=H,(X) @ H,(Y) if we consider that dim(a ®b)
=dima+dimb +1 forae H,(X),be H,(Y). Ifais acyclein the space Xand fis
a cycle in the space Y, then the cycle corresponding to « @ f in the space XxYis
the join of the cycles a and B. Here it is essential that the homology groups are
supposed reduced modulo a point.

The embedding

Hy(X) @ Hy—x-1 (V)= H\(XxY),
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generally speaking, is defined only up to multiplication by (21). It’s choice is
determined by a method of orientating the join of cycles. We can, for example,
suppose that the orientation of the join axb is induced from the usual
orientation of the direct product a x Ix b. We note, however, that the results
formulated below do not depend on this choice.

Let fbe a singularity (€", 0)—(C, 0), let ¥, be a non-singular level manifold of
the singularity f near the critical point (V,=f"!(¢)nB,), and let u be a path
Joining the non-critical value ¢ with the critical value 0.

Lemma 2.10. There exists a continuous family of mappings
H: Vo V= @) B,(t€[0, 1)),

such that

1) Ho=id: V> V,;

2) H, is the inclusion ¥,» ¥, for 0<t<1;
3) H, maps ¥, into the point 0 C".

The proof of this result can be constructed in an analogous way to the way
that, in Theorem 2.1, it was shown that the space f~*(0)n B, is a deformation
retract of the space f~!(D, )N B,.

The family of mappings H, is determined uniquely up to isotopy. It gives an
embedding of the cone over the non-singular level manifold ¥, into the space C"
((x, )= H,(x) for 0<1<1).

Now let f and g be two singularities in n» and m variables respectively, let

VN=r"'@nE,

V(@) =9"'(enB,,

be the non-singular level manifolds of the singularities f and g respectively and
let u be a non-self-intersecting path in the target plane of the functionf, joining &
with zero (without loss of generality, we can suppose that u(f)=(1 —#)¢). We
define a path o, joining & with zero in the target plane of the function g, by the
formula o(f) =& —u(1 —1). Let H,(f): ¥,()= Vsis([) and Hy(): ¥,(6) = Voio@)
be the families of functions described in Lemma 2.10. We define the inclusion j of

the join V,(f) * V.(g) of the non-singular level manifolds ¥,(f) and ¥,(g) into the
level set

(D9 @=C"

The topology of the non-singular level set and the variation operator of a singularity
by the formula

j(x’ t, }’)=(H:(f)x, Hl —t(g) y)

for x € V,(f), y € ¥.(g), t € [0, 1]. If we impose natural limits on the radii ¢,, ¢, and
¢ (for example,

e <el)2 ex<el)/?)
then j is an embedding of the join ¥,(f)* ¥,(g) into the level manifold
V(/@g9=(@®9) (B,

of the singularity of f @g near the critical point.
The mapping

VERZAGEIAC) R AT,
together with the isomorphism

Hosm-1 (V. (N V(@)= Ho 1 (Vo)) ® Hu -1 (Ve(9)
defines the homomorphism

Jat Hes(Ve(f) @ Hu s (Vo(9) = Hy s -1 (Vo (f D 7))

In the work {322] was proved

Theorem 2.9. The homomorphism j, is an isomorphism and the inclusion

J: V(N V(@)= V.(fD9g)

is a homotopy equivalence.

The fact that the non-singular level manifold V,(f @ g) of the singularity f ® g
is homotopically equivalent to the join V,(f)* V.(g) can be explained in the
following manner. We consider the function f on the manifold V,(f & g) (more
precisely we consider the function f o=,, where

T K(ng)cC"*"zC" ec~C"
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is the projection on the first factor). The preimage (fo=,) ! (z) of the point ze €
consists of points (x, y) e C* @ €™, for which f(x)=z, g(y) =& —z. Therefore (if
we ignore the details connected with the radii of the balls in which we consider the
non-singular level manifolds of the functions)

(Fom) ' @)=f"(2)xg ™ (e—2).
The mapping
(fom): V.(fdg)-»C

is non-degenerate outside the preimages of the points 0 and ¢&. We consider in the
plane € the segment J=u([0, 1]) which is the image of the path u. It joins the
points 0 and ¢ (u(0)=¢, u(1)=0). Over the complement of the segment J the
mapping f o n; defines a locally trivial fibration. The segment Jis a deformation
retract of the plane €. From this it follows that the space (fon,) '(J) is a
deformation retract of the space V,(f @ g) and is therefore homotopy equivalent
to it. The space (f on;) ™ *(u(2)), for te(0, 1), is diffeomorphic to the product
V.,(f) x ¥,,(g) of the non-singular level manifolds of the singularities f and g.
The space (f o ;) ! (u(0)) is diffeomorphic to f ~* () x g ~* (0). The space g~ (0)
is contractible to a point. Therefore (f o ;) ~! (u(0)) is contractible to a space
diffeomorphic to the non-singular level manifold V,(f). Similarly the space

(fom) ' @)=,"1(0)xg7"(e)

is contractible to a space diffeomorphic to the non-singular level manifold ¥V,(g).
This description of the fibres of the mapping

(fom): (fom) 1 ()—»J

over the points of the segment J coincides with the description of the preimage of
the points t e I=[0, 1] under the projection ¥,(f) * V.(g)—1 (see the definition of
the join). Therefore the space (f o n;) ! (J) is homotopy equivalent to the join

V.(f) * V.(g). A little more accurate reasoning allows one to turn this explana-
tion into a proof.

From now on we shall identify the homology group H,, 4 n—;: (V.(f ® 9)) of the
non-singular level manifold of the singularity f @g with the tensor product of
the groups H,_, (V,(f)) and H,, -, (V.(g)). This identification also determines an
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identification of the relative homology group

Hu+m—l(Va(f$g): aV;(f@g))

(which is the dual of the group Hy + m- 1 (Ve(f © 9))) with the tensor product of the
groups H,_(V.(f), 3V.(/)) and H,_1(V.(9), 3V.(9))-

Theorem 2.10 (P. Deligne, see [94]).
Var,g,=(—1)" Var, ® Var,.
For the proof it is sufficient to show that for any homoiogy classes
ay, a2 € Hy— (Vo()), by, b2 € Hp -1 (Ve(9))

we have the equality

([Varj-'én(al ®b)lola: ® bz])=(—1)m(vaffla1 oay): (Var,"bl ob,).

We shall not carry out this proof in detail, but only outline its main steps (though
it would not be difficult to reconstruct the whole proof).
Let

H(N): V(N=Va-ne(N=1(A -8B,

be the family of mappings described in Lemma 2.10 (for the sake of definiteness
we suppose that u(f) =(1 —#)¢). As we have already said, the family H, (f) defines
an embedding of the cone over the level manifold ¥;(f) into the space C". Let 4,
be the cone over the cycle a, , determined by the family H,(f). Then 4, is an n-
dimensional chain, the boundary of which lies in the non-singular level manifold
V.(f) and coincides with the cycle g, . Let

L, (f): V(N Vewparinef)

be the family of mappings obtained by lifting the homotopy

e—rexp(2mit)e  (0<t<1),
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and let

a; =r1/z (Na)
be the (n —1)-dimensional cycle in the level manifold V_,(f). Let 4, be the cone

over thecycle 4, , by an analogous construction. From the considerations of §2.3
it follows that

(Vary'ay0a;) =(—1)*(4, 0 4,),

the chains 4, and 4, intersecting only at zero. The chains B, and B, are defined in
the same way, with

(Var, 'by 0b,)=(—1)"(B, 0 B,).
In order to define

([Varsg ,(a, ®by)]lo[a, ® b))

by the same method it is necessary to construct cones C, and C, over the cycles

2k® byand a, @b, =Ty, (f D g)(a; ®b,). It is not difficult to see that we can
e

(A, xB)n{(x, »): (f (%) +g(y))/§< 1}

as C;. We have an analogous result for C, : we can take
C=4;x B0 {(x, »): () +g(DI(—a)<1}.

(Here we use the fact that I,(f @g)(a; @ b))=T.(f)(a;) ®T,(g)(b;).) It
follows that

([Vars g ,(a; ®by)] o [a; @ b, ) =(—1)**"(C,0C,)
=(=1)"*"([4; x By]o[4; x B,])
=(—1)"*"*"(4,04,)(B,0 B;)
=(—1)™(Var,'a, 0a,)(Var, ' b, 0b,),

which is what we were trying' to prove.
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Let {4;} (i=1,...,u(f)) be a distinguished basis in the homology group
H,_1(V.(f)) of the non-singular level manifold of the singularity £, let {4}}
(j=1,...,u(g)) be a distinguished basis in the homology group H,,_;(V.(9)).
From Theorem 2.9 it follows that the elements

3y=js(4®4)
form a basis of the homblogy group

Hyym-1 (Ve(f ©9)
of the non-singular level manifold of the singularity f @g. The intersection
matrix S of the singularity f @ g with respect to this basis can be obtained with

the help of Theorem 2.10 from the formula $= —L+(— 1)**™LT where Lis the
matrix of the operator Vary§, (or the Seifert form). From this follows

Theorem 2.11. The intersection numbers of the cycles 4;; are given by the
following formulae:

(B0 A =sgn Gy = (~ D" T (@j,043)  for i,
(Gi,0 31, ) =sgn (i —i)"(~ )™ " F (4,,04) for i,
(8i,;,03i,,)=0 for (iz—i)(2—/1)<0,
(A1, 0 Biyy) =580 (i —ir)(— 1)™(4s, 0 4,,) (4], 0 4)
for (i —i))(.—j1)>0.
This result was obtained by A. M. Gabrielov in [116]. In addition the

following result was proved.

Theorem 2.12. The cycles 4;; are vanishing cycles and form a distinguished basis
of the homology group H, 4 m—1 (V.(f ®g)) of the non-singular level manifold of
the singularity f @ g¢. Itisimplied that they are ordered lexicographically, that is
that the cycle J;,;, precedes the cycle 4y, if

i1<i2, or il‘_‘il, jl<j2'
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The(.)rel.n 2.10 is a generalisation of the above-mentioned results of M.
Sebastiani and R. Thom ([322]), describing the classical monodromy operator
h,s @4 of the singularity f @ g.

Theorem 2.13.

htU$|)=htI ®hu-

This theorem is an immediate corollary of Theorem 2.10 and the relation
hy=(—1)"Var(Var )T (Theorem 2.5). Conversely, Theorem 2.10 follows from
Theorems 2.13, 2.12, the relation h,=(—1)"Var(Var )T and Theorem 2.7,
cqnﬁrming that the matrix of the classical monodromy operator of a singularity
with respect to a distinguished basis determines the matrix of its variation
operator.

Theorems 2.11 and 2.12 give the following description of the Dynkin diagram
of the singularity f @ g (for the definition see the following section). Its vertex set
coincides with the direct product of the vertex sets of the diagrams corresponding
to the singularities fand g. Two vertices (i; , j;) and (3, j,) are joined to each other

(1) by an edge of the same multiplicity as that joining the vertices j; and j, in the
second diagram, if i, =i, ;

(ii) by an edge of the same multiplicity as that joining the vertices i, and i, in the
first diagram, if j, =j, ;

(iii) by an edge of multiplicity equal to minus the product of the multiplicities
of the edges, joining the vertices i, and i, in the first diagram and j, and j, in the
second diagram, if (i, —iy)(j, —j;) > 0.

ﬂllf (i —i1)(J2 —j1) <0, then the vertices (i, , j,) and (i, j,) are not joined to each
other.

28  The stabilisation of a singularity

Let f: (€7, 0)—(C, 0) be the germ of a holomorphic function with an isolated
critical point at the origin.

Definition. The germ of the function

SX)+Z5, y3:(C" ™, 0)-(C,0)

is called a stabilisation of thé germ f.
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The multiplicity of the singularity is equal to the multiplicity of its
stabilisation. Indeed, if is a perturbation of the singularity f, decomposing the
critical point at zero into p non-degenerate ones, then 7(:&:)+2‘.}'=l y3 is the
perturbation of its stabilisation, possessing the same property. Moreover, the
functions f(x) and F)+z »_ 1)} have the same set of critical values. The
connection between the intersection matrix of a singularity and the intersection
matrix of its stabilisation is given by the following theorem, which is a special
case of Theorem 2.11.

Theorem 2.14. Let {4} be a distinguished basis of vanishing cycles in the
homology of the non-singular level manifolds of the singularity f (x). Then there
exists a distinguished basis {Z i} of the singularity f(x) +Xj-y ¥, such that the
intersection matrix of its elements is defined by the relation

(3103, =[sgn(—)I"(—1™*™="D2(4,04) for i#).

Moreover the distinguished bases {4;} and {4} correspond to identical sets of
paths joining the critical values of the perturbations f(x) and f(x)+E7=, y3 with
the non-critical value.

From Theorem 2.14 it follows that the intersection matrices of the stabilisa-
tions of the singularities determine each other. In addition for m=0 mod 4 the
intersection numbers (di04) and (4;04)) are equal for-all i and j, for
m=2 mod 4 they differ by a sign. In this way we associate with each singularity
two symmetric and two antisymmetric bilinear forms (the intersection forms of
its stabilisation). Moreover the symmetric (and antisymmetric) forms differ only
by a sign. With each singularity we associate also two groups of transformations
of the integral lattice Z* (the monodromy groups of its stabilisations). The
classical monodromy operator of the singularity f(x) coincides with the classical
monodromy operator of its stabilisation f(x)+Z}., y} for even m and differs
from it by a sign for odd m. - - - :

Theorem 2.14 allows us to formulate results on intersection matrices of -
singularities restricted to cases the dimensions of which have fixed residue
modulo four. In the majority of cases it will be convenient to suppose that the
number of variables is conjugate to three modulo four.

Definition. The quadratic form of a singularity is the quadratic form, defined by
the intersection numbers in the homology of the non-singular level manifolds of
its stabilisation with number of variables N=3 mod 4.
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For this stabilisation the self-intersection number of the vanishing cycles
(4;04;) is equal to —2, the Picard-Lefschetz operator acts on the homology
group of the non-singular level manifold according to the formula k(a)=a
+(ao A;) 4. From thisit is clear that h;(4,)= — 4, and that the transformation A,
is reflection in the hyperplane orthogonal to the vector 4;. The orthogonality is
in terms of the scalar product, defined by the quadratic form of the singularity.
Thus we can see that the corresponding monodromy groups are groups
generated by reflections. Such groups (or the corresponding quadratic forms
which determine them) are most conveniently described with the help of certain
graphs.

Definition. The Dynkin diagram (or D-diagram) of a singularity is a graph
defined as follows:

(i) its vertices are in one-to-one correspondence with the elements 4; of a
weakly distinguished basis of the homology of the non-singular level manifold of
the stabilisation of the singularity with number of variables N=3 mod4;

(ii) the ith and the jth vertices of the graph are joined by an edge of multiplicity
(4;0 4;) (The edges of negative multiplicity are depicted by dashed lines).

The D-diagram of a singularity determines its monodromy group (although
an effective description of the latter is obviously quite a hard problem). If the D-
diagram of a singularity (with a known number of variables) is given relative to a
distinguished basis and with its vertices numbered in the same order, then from it
we can determine the bilinear form of the singularity, and also its variation
operator, its classical monodromy operator, etc.

29 Example

We consider the singularity f(x)=x**! (a singularity of type A, in the
terminology of part II of volume 1). The level manifold ¥, consists of k + 1 points,
the (k + 1)th roots of &. The multiplicity of this singularity is equal to k, and the
homology group Hy(V,) (reduced modulo a point) is isomorphic to Z*.

The function f(x)=x**!—1x (1#0) is a Morse perturbation of the singu-
larity f. We shall suppose that 4 is real and greater than zero. The zero level
manifold 7~1(0) of the function f also consists of k+1 points: xo=0,
x,.=i‘/3.§,. (m=1,...,k). Here £, are the kth roots of unity, enumerated
clockwise: §,=exp(—2nim/k). The critical points of the function 7 are
determined by the equation f”(x)=(k + 1)x* —A=0. Therefore f has k critical
points ’

Pu=}/ I+ 1)) &0
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with critical values

Ak V =1,...,k).
Z..F“(m) WE+1)em (m=1, )

We choose as the non-critical value z, a negative number of large modulus

Ak \«x
(Izol > ((k—+1_)) [/ A/ +1)))

Let u,, be the path joining the critical value z,, of the function f with zero along the
radius (ue(f)=(1 — 1)z, t€[0,1]), and let v be the path going from zero to zo
along the negative real axis and going round the critical value

= )V Dt

in the positive direction (anticlockwise). See figure 22.

Fig. 22.

It is easy to see that the system of paths {umv} de~ﬁne a distinguished basis of
vanishing cycles {4,,} in the homology group Ho(f -1 (zo)? (because by a small
perturbation it can be reduced to a system of paths, satisfying the definition of a
distinguished basis). In order to calculate the intersg_ction numl?ers (4.0 4_,) of
the vanishing cycles in the homology group Ho (f (o)) it is convenient to
homotop the point z, along the path » to zero. In this way we reduce the problefn
to the calculation of the intersection numbers of the vanishing cycles, defined in
the group Ho(f~1(0)) by the system of paths {un} (we shall denote these cycles
by 4,, too). .

It is easy to show that the cycles 4,, =Xy —Xo vanish along the paths u,, (thatis
as we move in the target plane of the function falong the path u,, from zero to the
critical value z,, the points x,, and xo, mezge). Consequently we have (4,,04,) = 2,
(8,,0 Ay)=1foranym#m'’. For the stabilisation f (x) +y? + y3 the appropriate
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formula is (4,04)= -2, (4,04,,)=—1 for any m'#m. We obtain the
D-diagram of the singularity f in the following form: there are k vertices, every
pair of which are joined by a dashed line (that is by an edge of multiplicity —1).

We simplify this diagram with the help of operations which change the
distinguished basis. The operation oy (4i—; =4, —dy—1, 4i=4;_,) reduces
the diagram to the following form: all the vertices except the (k —1)th are
joined pairwise by dashed lines (edges of multiplicity —1), the (k —1)th vertex is
joined only to the kth by a line of multiplicity +1. The operations
o2 (Mi-2=44-1, 45—y =4x_3), ox_3,...,0 do not change the form of the
diagram, but lead only to the renumbering of the vertices. The application of the
following sequence of operators

Op—15 Og—25e 0502y Mk—g,000503500 0,041, Og_2, Ox—1

Fig. 23.

reduces the diagram to the classical Dynkin diagram A, (figure 23). The basis of
vanishing cycles we get can be described by the formulae

A?=(xk—xx-—1), Ag=(xt-x ~Xg—2)5- -+,

Ag—l =(x—x1), Ar? =(x; —Xo).

As we move in the target plane of the function f along the path v from zero to
the non-critical value z,, the points x,, (m=0,1,...,k) move in the complex
plane C tending to the rays

argx=n(2s+1)/(k+1)
(as zo— — o0). The points x, and x, approach eaéh other along the real axis, do a
quarter rotation, anticlockwise, round the critical point p,, and go apart again. It

is easy to show that on the ray

argx=n(2s+1)/(k+1)

(thatis x=rtexp (mi(2s+ 1)/(k +1)), ¢ >0) the function f(x)=x**1—ix does not
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take negative real values except in the case when k is even and s=k/2. Indeed,
Fo)= —*1 —Arexp (ri@s+1)/(k+1)),

where the second term is real only when k is even and s=k/2. In this case the
point x;, moves along the negativg real axis. From this it follows that as we move
in the target plane of the function f along the path v from zero to z, the points x,,
approach the points

Fu=""1/(—20) exp (—mi(2m+ 1)/ +1))

(m=0,1,...,k). If in addition we travel in the target plane of the function in the
negative direction (clockwise) from the point z, to the point zp= —2zo, then the
points %,, will cross over to the points

2u="")/(=20) exp (~2mi(m+ D)/(k+1))

m=0,1,...,k).
We arrive at the following result:

Theorem 2.15. On the level manifold V) ={x:x**!=1} of the singularity
f(x)=x**! the distinguished basis is formed by the vanishing cycles

A1=C1 —C2, Az=42 -Ca,- .- ’Ak=Ck"Ck+h
where
§,=exp(21ri(i—1)/(k+1))

are the (k +1)th roots of unity (j=1,. .., (k+1)). The intersection numbers of
these cycles are given by the formulae
(4;04)=2,
(4;04;41)=—1,
(4;04;)=0 for [j—j|>2.
The first calculation of the intersection forms and the classical monodromy

operator for functions of several variables was given by F. Phax.n.([284]) fqr
singularities of the form f(x)=Xf..x§ (a>2). The multiplicity of this
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singularity is equal to IT}-,(a; —1). F. Pham proved that in the homology
group H,_;(V,)) of the non-singular level set of the function f there exists a
basis e;,.. ;. (0<iy<a,—2) (in the notation of F. Pham ¢, ; =(II}-, w{e),
such that

@..1.06,...)=(—) T+ (~1y);

at—1) Y Ge—i)
(eil...i.oejg...j,‘)=(—1) (_1) * ’
if i <jy<i,+1 for all k. In the remaining cases (except those arising from the
previous ones by a permutation of cycles)

ei,...in7€5,...5)=0.

The result of F. Pham can be obtained from Theorem 2.11 (§2.7). Applying it
to the singularity f(x)=Xf.x§* gives the same intersection matrix as that of F.
Pham, if as a distinguished basis of the singularity f;(x;)=x§* we use the basis
described in theorem 2.15. For the singularity f;(x;)=x3* we put

e=1, u(@®)=(1 —1), HOx=)/A -1 5.

The application in sequence of the constructions described in §2.7 to the
distinguished basis of the singularity f;(x;) given by Theorem 2.15 reduces it, as
it is not difficult to convinee oneself, to the basis constructed by F. Pham in [284].
We obtain the following result.

Assertion. The basis of F. Pham is distinguished relative to the lexicographic
ordering of its elements.

This means that the D-diagram of the singularity of F. Pham has the form
depicted in figure 24 (n=2, a, =6, a,=5).

Chapter 3

The bifurcation sets and the
monodromy group of a singularity

The characteristics of a singularity which were discussed in the second chapter
(the multiplicity of a singularity, its intersection matrix, its monodromy
group. . .) are closely linked to such objects as the level and function bifurcation
sets of the singularity, its resolution and its polar curve. Several of these links will
be discussed in this chapter.

3.1 The bifarcation sets of a singularity

In order to define the bifurcation sets of a sihgularity, we recall the definition of
its versal deformation (for a more detailed exposition see Volume 1 Chapter 8).

Definition. A deformation of the singularity f:(C", 0)—(C,0) is the germ ofa
holomorphic function F(x,v)(ve "),

F:(C" ® T, 0)-(C,0),

such that F(x, 0)=f(x). .
The space €' is called the parameter space or base space of the deformation F.

Definition. The deformation F(x,v) of the singularity f is versal, if any

deformation G(x, ) (ne €™) of the singularity f (G(x,0)=/(x)) is “‘equivalent

to the deformation induced by F”, that is there exists an analytic map

¥ : (€™, 0)~(C',0) of the parameter spaces and an analytic family g(x, v)
g:(C"dC",0)~(C"0),

g(-,0)=id: C*—C" of local changes of coordinates such that

G(x,v)=F(g(x,v), ¥ ().
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The dimension / of the base space €' of the versal deformation F(x, v) is not
less than the multiplicity p of the singularity f. There exists a (unique in a natural
sense) versal deformation of the singularity f with a base, the dimension of which
is exactly equal to u. This deformation is said to be miniversal.

A miniversal deformation F(x, v) of the singularity fcan be constructed in the
following fashion. In §2.1 it was indicated that the quotient ring of the ring ,O of
germs of holomorphic functions on (€*, 0) by the ideal generated by the partial
derivatives of the function f (the Jacobian ideal) has dimension, as a complex
vector space, equal to the multiplicity u of the singularity f. Let the germs of the
functions ¢;: (€",0)—€ (i=0,1,. . ., u—1) give a basis of this space. Then the
deformation

B—1
F(x,v)=f(x)+ _;) vig;(x)

is miniversal (v=(vg, ¥1,. . ., ¥,—;)). We can take as ¢, the germ of the function
identically equal to unity.
Let F(x,v) be a miniversal deformation of the singularity f (ve C*), let

W,={xe€":F(x,») =0, |x|<¢}

be the zero level set of the function F(-,v). Since F(x,0)=f(x), and the set
{xe@": f(x)=0} is transverse to the sphere S, of sufficiently small radius o,
there exists an ¢ > 0 such that for || v|| < ¢ the set {x e C": F(x, v) =0} is transverse
to the sphere S,. From this it follows that if the set W, is non-singular, then it is
diffeomorphic to the non-singular level set of the function f near the critical
point. The set of those values of the parameter v for which W, is singular forms a
set of (complex) codimension one.

Definition. The level bifurcation set (or set bifurcation diagram) of the singularity
fisthe space Z,= {ve C*:||v|| <g, Ois acritical value of the function F(-, v) in the
ball | x| <e}- ~

Examples. (i) A miniversal deformation of the singularity 4, (f(x)=x>) can be
chosen in the form
F(x;24,A)=x*+ 2, x+ .

The local zero level set of the function F(*; 4, , 4,) does not have a singularity if
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the polynomial

X+ x+4,
does not have multiple roots. Therefore the level bifurcation set T consists of
those values (4,, 4,) € €? for which the polynomial x*+ 4, x + 4, has the form
(x —a)*(x —b), where 2a+b=0. We have

A =2ab+ad*= -3a, Iy= —a*b=2a

Consequently, the bifurcation set X is described by the equation
27
AB3+— 13=0.
4
It (more precisely, of course, its real part) is depicted in figure 25.

A,

Fig. 25.

(ii) A miniversal deformation of the singularity A3 (f(x)= x*)can be chosen in
the form

F(x;ll,lz, 13)=x‘+11x2+12x+13.

The local zero level set of the function F(- ; 4, , 4, 43) does not have a singularity
if the polynomial

P+ 2+ x+1,

does not have multiple roots. Therefore the level bifurcation set Z consists of
those values (4, A,, 4;) € € for which the polynomial x* + 4, x* + 4, x+ 43 has
the form (x —a)? (x —b) (x —c), where 2a+ b+ c¢=0. The bifurcation set L has the
name “swallow tail”. It is depicted in figure 26.

The topological type of the pair (D, Z,) (D,={ve €":|v| <e} is a ball of
radius ¢ in the base of the miniversal deformation F) does not depend on & for
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A
S 42,

Fig. 26.

sufficiently small ¢ and does not depend on the choice of miniversal deformation
of the singularity f. The space (D,\X,) (an open subspace of the ball D,) is the
base of a locally trivial fibration

{(x,NeC" DC*:|x| <o, |v]| <&, v¢Z., F(x,v)=0}->D,\X,

with projection (x, v)—»v. The fibre
W,={xeC":F(x,v)=0, ||x|<e}
of this fibration is diffeomorphic to the non-singular level set of the singularity 1.
As in any fibration, the fundamental group of its base acts on the homology of

the fibre. In this way we get a natural representation

Ay (D\X,) =7 (D \X,, v)
—sAutH,_(W,)=AutH,_,(V)).
Theorem 3.1. The image of the representation
L3 (Dz\zz)_’AUt H,. 1 (VZ)
of the fundamental group of the complement of the level bifurcation set of the
singularity fin the homology of the non-singular level manifold coincides with

the monodromy group of the singularity f.

For the proof we must choose a miniversal deformation F(x,v) of the
singularity f in the form

Fo(x,v)—vo,
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where v e C* 1, vo € €, v=(vo, v'). As the perturbation f;(x) of the singularity f
we can take a perturbation of the form Fy(x,v'(4)). Let p be the natural
projection of the base €* of the miniversal deformation onto the space ¢,
mapping v= (v, v') into v". If £,(x) is a Morse function (4 is sufficiently small),
then the line L=p~'(¥'(4)) is in general position with the manifold Z,.
The line L intersects the bifurcation set X, in those points (v, v'(1)) e €* for
which v, is a critical value of the function f;(x). The number of such points is
equal to the multiplicity u(f) of the singularity f. The space L\\Z, coincides with
the complement of the set of critical values of the function f;. The restriction of
the fibration

{(x,v):v¢Z,, F(x,v)=0}->D,\Z,
described above, to L\ Z, coincides with the fibration of the non-singular level
manifolds of the function f; over the complement of the set of its critical values.
From this it follows that the natural representation

n (LN\Z,)—Aut H,_1(V)),

the image of which is the monodromy group of the singularity f, factors through
the fundamental group of the complement of the bifurcation set:

T (INE) 3 1(D\Z)—Aut Hy-1 (V)
where i, is the homomorphism of fundamental groups induced by the inclusion
INZI S DNE,.

From the fact that the line L is in general position with the manifold Z, it turns
out that the homomorphism

iy:My (L\zn)"’nl (Dz\zc)
is an epimorphism. From this it follows that the image of the representation
1 (D\Z)—~Aut H,_((V2)

coincides with the monodromy of the singularity f.
The fact that the homomorphism

iy:m (L\za) -m (D, !\zl)
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is an epimorphism is a variant of a theorem of Zariski ([413]), which goes as
follows. Let M be a non-singular affine algebraic hypersurface in the space €*, let
L be a (complex) line in general position in the space €". Such a line intersects
transversely the hypersurface M inm points p; ,. . . ,p,. The theorem of Zariski
asserts, in particular, that for the line L in general position the homomorphism of
fundamental groups

iy T (LNM) -7, (CN\M),

induced by the inclusion i: LN\ M—+C"\ M, is an epimorphism. The funda-
mental group n, (L\ M) = n, (L\ {p;}) of the line with m points removed is a free
group on m generators. We can take as these generators simple loops,
corresponding to a system of non-intersecting paths in the complex line L,
joining the points p; with the base point p, € L\ M. Thus the fundamental group
of the complement of the hypersurface M is a group generated by the m
generators described above.
The theorem of Zariski also describes all the relations between the generators.
In order to give this description, we consider the projection n: C*—€C"* ! of the
space €" along the line L and its restriction n|y : M—@"~! to the hypersurface
M. The fact that the line L is in general position allows us, in particular, to
suppose that the discriminant set of the map x|y (the image of the set of its
critical points) is a reduced hypersurface in the space €. In more detail this
means the following. The closure of the set of critical values of the map x|y is a
complex hypersurface N in the space €~ '. If ge C* '\ W, then the preimage
7t|5" (q) consists of m points, at each of which the differential of the map =], is
non-degenerate. Over each regular point of the hypersurface N apart from a set of
codimension 1, a pair of points will merge. Near such points the hypersurface M
can be given locally by the equation x, + x3 =0, where the projection = maps the
point (Xg, Xy, - - ; X,—1) €C"to (xy,. . ., x,—;) € C* 1, and Nis given locally in the
space €"~! by the equation x, =0. Let go € €~ '\ N be the image of the line L
under the projection x, let L, be a line in general position in the space €1
passing through the point g,. We can suppose that the line L, intersects the
hypersurface N only in regular points, to which are mapped merged pairs of
points from the preimage 7),!(g), all these intersections being transversal. In this
case n~!(L,) M is a non-singular curve in the two-dimensional complex space

7N (Ly),

1t|,,- L)nM :n_l(Ll)hM—»L, ‘

is an m-fold branched cover over the line L,. Let gq,...,q be the points of
intersection of the line L, with the discriminant set N, and let T be an arbitrary
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loop in the space L;\{¢,- - - , 1} With beginning and end at the point go. Going
round the loop 7 corresponds to a homeomorphism T, of the pair of spaces
(" 2(g0), =~ (go) " M)=(L, Ln M) into itself, defined, of course, only up to
isotopy. This homeomorphism induces a transformation

T,y : 1 (INM)- 1 (LN\M)

of the fundamental groﬁp of the line with m deleted points, L\ M, into itself.
It is clear that if ae n,(L\ M), then i,a=i,T,,a where

iy 1 (L\M) -7, (C\M).

The theorem of Zariski asserts that the homomorphism

iy (7 L)\ M) -7 (CN\M)

induced by inclusion is an isomorphism, and the relations of the form we
described generate all the relations between generators of the fundamental group
7, (C*\ M). Naturally we can take, as generators of the system of relations, the
relations i,a =i, T,,4a, where {1;} is a system of simple loops, corresponding to a
system of non-intersecting paths joining the points gy, . . ., g with the point g,.
From this it follows that the group =; (€*\ M) is a group with m generators and
mk relations. ‘

A local variant of this theorem, part of which we use here, is f ormulated in an
analogous manner. The proof of this is given in [1 571

If y is a loop in the complement D,\Z, of the level bifurcation set of the
singularity f, then by analogy with § 2.1 we shall denote by h,, the corresponding
automorphism of the homology group of the non-singular level manifold of the
singularity f (h,, belongs to the monodromy group of the singularity f).
" There is, corresponding to the singularity, one more bifurcation set — the
function bifurcation set. For its definition we consider a miniversal deformation
Fy(x, v) of the singularity fin the class of functions equal to zero at the point 0.
Such a deformation has u —1 parameters. We shall call it a restricted miniversal
deformation. We can, for example, take for it the deformation

Fo(x, v)=f(x) + E1 vii(x),

where v=(v,,. .., V1), and @o, @y,. .., P, are germs generating a basis of
the quotient ring of the ring of germs at zero of holomorphic functions by the
Jacobian ideal (9f/0x,, . . , 3fJ0x,) of the singularity f, do=1, ¢;(0)=0for i=1
(the deformation Fy(x, v) differs from the miniversal deformation F(x, v) by the
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absence of the term v, - 1, which does not influence the type of the function).

In a small ball-like neighbourhood D, of the origin in the base €*~* of the
restricted miniversal deformation we consisder the set of those values of the
parameter v for which the function F,(:, v)in a neighbourhood B, of the origin in
the space C" is Morse, that is has only non-degenerate critical points (u in
number) with distinct critical values. Its complement £, is called the function
bifurcation set of the singularity f. The topological type of the pair (D,, £.) does
not, of course, depend on ¢ for sufficiently small &. The set £, is a hypersurface in
the space €*~ 1. It is, clearly, reducible, as it is the union of two hypersurfaces.
One of these is the set of values of the parameter v for which the function Fy(:, v)
has degenerate critical points, and the other is the set of those values v for which it
has critical points with coincident critical values.

Examples.

(i) The function bifurcation set of the singularity A4, consists, clearly, of one
point A=0 in the base €' of the restricted miniversal deformation.

(ii) The function bifurcation set of the singularity 4; consists of those values
(44, 4;) € €?* for which the polynomial x*+ A, x> +4,x either has a degenerate
critical point or has two non-degenerate critical points with the same critical

value. The second of these sets is {4, =0} < €. The first set is described by the
condition that the polynomial 4x> +2 4, x + 4, (the derivative of the polynomial
X*+ Ay x* + 1, x) has multiple roots. This will be true for 4} +%-13=0. The
function bifurcation set of the singularity is depicted in figure 27.

2,y

Fig. 27. .

There is a natural map (projection) p from the base, €*, of the miniversal
deformation to the base, €* !, of the restricted miniversal deformation. It can be
shown that the germ of the space &, coincides with the set of non-regular values
of the map T,—»C*"!, obtained by composing the inclusion Z,~C* and the
projection p. Over the complement of the function bifurcation set £, of the
singularity f this map defines an g-fold cover.
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32 Theeomectedmofd;eb-dhgnmandthe‘inedncibiﬁty’ofdledassiul
monodromy operator of a singularity

In §3.1 we indicated that the function bifurcation set of a singularity is always
reducible (with the exception of trivial cases of singularities of multiplicity one or
two). In contrast to this the level bifurcation set of a singularity is irreducible.

Theorem 3.2 (see, for example, [117]). The level bifurcation set Z, of a
singularity fis an irreducible analytic set. Furthermore, there exists a germ of a
proper map (€*~1,0)—(C*, 0), the image of which coincides with the space zZ,
and which is an isomorphism outside the set of singular points of Z,.

The map of the space €*~! into the base of the miniversal deformation C* of
the singularity f, mentioned in the theorem, can be constructed in the following
manner. We consider the set of germs of functions g: (C", 0)—(C, 0), satisfying
the conditions g(0)=0, dg(0)=0. On it acts the group of germs of analytic
diffeomorphisms of the space €", fixing the point 0. The orbit of the singularity f
under the action of this group is a non-singular complex manifold of codimen-
sion p —1 (a rigorous approach would consider everything in the space of jets of
sufficiently high order). A transversal to the orbits at the point fhas dimension
(n—1) and defines a (4 — 1)-parameter deformation of the singularity f. Like any
deformation of the singularity f, it is equivalent to the deformation induced from
a miniversal one by a map of its base €*~! into the base C* of a miniversal
deformation. Since all the functions of the deformation we are considering have
0 as a critical value, the whole space €~ ! is carried by this map into the level
bifurcation set I,. This is the map described in Theorem 3.2.

From this assertion A. M. Gabrielov ([117]) and F. Lazzeri ([205]) derive the
following result.

Theorem 3.3. The D-diagram of any singularity relative to a distinguished basis
is connected.

This assertion also follows from Theorem 3.4 (see below). The same result is
true also for a weakly distinguished basis.

Corollary. Let f,(x) (1 € [0, £,]) be a deformation of the singularity f and suppose
that for small ¢ the function f;(x) has, in a neighbourhood of zero in the space €*,
k distinct critical points p;(2), . . ., px(?). We suppose that all the critical values
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fkpi@) (i=1,. .., k) of the function f; coincide. Thenk =1, thatis the function f;
has only one critical point (of multiplicity u(f))-

Indeed, it is easy to see that if k > 1 then the vanishing cycles, corresponding to
distinct critical points of the deformation f,(x) of the singularity f, will have
intersection number zero. Therefore the D-diagram of the singularity f
decomposes into k disconnected components, which contradicts theorem 3.3.
We shall prove here several results which are stronger than theorem 3.3.

Theorem 3.4. The monodromy group of a singularity acts transitively on the set
of vanishing cycles in the homology of the non-singular level set near the critical
point, that is for any vanishing cycles 4, and 4, there exists an element of the
monodromy group of the singularity mapping 4, to 1+ 4,.

Proof. As for the proof of Theorem 3.1, we consider a miniversal deformation of
the singularity f of the form

F(x7 V)=Fo(x, V’) —Vo,

where

Vel !, e, v=(v, V).

Asa perturbationfof the singularity f we take the function f=Fy(x, v) with fixed
value of the parameter v'. We choose v’ so that the function Fo(x, V') will be
Morse. This will be satisfied for almost all values of the parameter v’ (except
those that lic in the function bifurcation set of the singularity). If L is the
(complex) line p~1(v") (p:€*—C*! is the projection of the base of the
miniversal deformation), then the intersection LN Z, consists of the points (z;, V')
(i=1,..., ), where z; are the critical values of the function f.

The vanishing cycles 4, (k=1,2) in the homology of the non-singular level set
{F=2o} are defined by paths u,, joining the critical values z,, with the non-critical
value z, and not passing through the critical values of the function 7. We suppose,
for simplicity, that for very small ¢ we have u(#) =z, +¢. The paths u, and u, can
be considered as paths in the complex line L=C*. From the irreducible of the
bifurcation set £, it follows that the set of non-singular points of the space Z, is
connected. Those (non-singular) points of the space X,, at which the projection
p:T,»C* ! is degenerate, form a subset of (complex) codimension one.
Therefore their removal from the set of non-singular points of the space does not
destroy its connectedness. From this it follows that the points (z;,, v)and (z;,,v")
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can be joined by a path v (v(0)=(z;,, v), v(1)=(z,, V), which will lie in its
entirety in the set of non-singular points of the space Z,, at which
its projection into the space €*~! is non-degenerate. We consider a loop w in
the complement of the level bifurcation set X, in the space €* (beginning and
ending at the point (zo, v)), which is defined in the following manner. It goes
from the point (zo, v") to the point (z;, + 1o, v')= (1 (fo), ¥) with sufficiently small
t, along the path u,, then it goes from the point (z;, +1o, v') to the point
(21, + 10, V') = (uz(t), v") along the path v + (o, 0), going parallel to the path v, and
finally returns to the point (zo, v) along the path u,. It is not hard to see that the
monodromy operator k,,., corresponding to the loop w, maps the vanishing cycle
4, into the vanishing cycle 4, (maybe with changed orientation), which is what
we were trying to prove.

Theorem 3.3 is an immediate corollary of Theorem 3.4. Indeed, let the D-dia-
gram of the singularity f with respect to the (weakly distinguished) basis {4;} be
disconnected. From the theorem of Picard-Lefschetz it follows that the Picard-
Lefschetz operators (and composites of them), acting on a basic vanishing cycle,
map it into a cycle which is a linear combination of basic vanishing cycles from
the same connected component of the diagram. Therefore in this case there will
not exist an operator from the monodromy group of the singularity f which maps
a basic vanishing cycle into a basic vanishing cycle from another connected
component of the diagram, which contradicts Theorem 3.4. From this reasoning
it follows that the D-diagram of the singularity is connected also in the case when
the multiplicity of its edges are considered modulo m>1.

From Theorem 3.3 we can deduce several properties of the classical mono-
dromy operator of the singularity. We formulate one proposition about diagonal
matrices which we need for this.

Lemma 3.1. Let 4 and B be upper triangular u x u matrices with ones on the
diagonal. We suppose that A - BT is a matrix such that the intersection of its first
k columns with its last 4 —k rows contains only zeros. Then the same property is
true also for the matrix BT, that is the matrix B is the direct sum of upper
triangular matrices of dimension k x k and (u—k) x (u—K).

The proof does not present any difficulty.

Theorem 3.5. Let 4,,...,4, be a distinguished basis of the homology group
H,_, (V) of the non-singular level set of a singularity, and let / be a subset of the
set of indices {1, .. ., u} such that linear span of the basis elements 4, withielis
invariant relative to the classical monodromy operator h,. Then cither /=6 or

I={1,. o4}k
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We prove what appears at first sight to be a slightly stronger assertion, but
which in fact is exactly equivalent to Theorem 3.5.

Let {4,,...,4,} be a set of vanishing cycles in the homology of the non-
singular level manifold of the singularity f, defined by a system of pa‘Ehs {us}
@i=1,...,k), joining some of the critical values of the perturbation f of the
singularity f with its non-critical value zy and not passing (for 15 0) through the
critical values of the function /. We suppose that the paths y; have no self-
intersections and do not intersect each other at points distinct from their ends
which coincide with z,.

Theorem 3.6. If the linear span of the vanishing cycles 4;,. . ., 4y in the homology
group H,_,(F,,)isinvariant relative to the classical monodromy operator of the
singularity, then either k=0 or k= pu(f).

Proof. We shall suppose that the cycles 4;,. . ., 4x (and the paths (4. .., )
are numbered in the order which is fixed by condition (iii) of the definition of
a distinguished basis (see §1.2). It is easy to see that the system of paths
{ui,i=1,...,k} can be increased to the system of paths {u;;i=1,...,k,..., u},
defining the distinguished basis 4,,...,4,...,4, in the homology group
H,_,(F,,). The condition of invariance of the linear span of the elements
4y,.. ., 4, relative to the classical monodromy operator k, means that in the
matrix H of the operator h, relative to the basis 4y,...,4s,. .- ,4, there are
zeros in the intersection of the first k columns with the last 4 —k rows. Applying
Lemma 3.1 to the equality H=(—1)"L ™' LT (where L is the matrix of the Seifert
form of the singularity), we obtain the result that the matrix L is the direct sum of
matrices of dimensions k xk and (u—k)x(u—k). Consequently the same
property is possessed also by the intersection matrix of the singularity f with
respect to the distinguished basis 4, ,. . ., 4,, which is equal to —L+(—D"L".
For k #0, p this means that the D-diagram of the singularity f decomposes intoa
disjoint union of two diagrams (with k and p —k vertices respectively), which
contradicts Theorem 3.3.

Corollary. If the classical monodromy operator of a singularity is multiplication
by one or minus one, then the singularity is non-degenerate, that is its
multiplicity u is equal to one:.

This result (as the Sebastiani conjecture) was proved by N. A’Campo in [4].
There it was deduced from the following result.
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Theorem 3.7. The trace tr A, of the classical monodromy operator of the
singularity f:(C", 0)-(C, 0) of a function of n variables is equal to (-t

3.3 The bifurcation sets of simple singularities

It is well known (see § 3.6) that for the simple singularities Ay, Dy, Eq, E7, Eg
with an odd number of variables, the monodromy group is the same as the
corresponding classical Weyl group (of the same name) (sce [53D).

This group is the image of the fundamental group of the complement of the
level bifurcation set X, of the singularity. For simple singularities the space Z, can
be obtained as follows.

Let R* be a vector space on which the Weyl group W (4, Dy or E;
respectively) acts canonically and let €*=R* @gC be its complexification. The
action of the group W on the space R* extends in a natural way to an actionof W
on the complexification C*. Let S be the union of the non-regular orbits of the
action of the group W, that is the set of points on which the action of the group W
is not free (has a non-trivial stabiliser subgroup). It is the same as the union of
(complex) mirrors, reflection in which belongs to the group W. We consider the
quotient space €*/W. It is known ([53]) that it is isomorphic as an analytic space
to k-dimensional complex linear space.

Theorem 3.8 ([21]). For the simple singularities 4, Dy, E, the pair (C*/W, S/W)
is isomorphic (in a neighbourhood of zero) to the pair (D,, Z,), where Z, is the
level bifurcation set of the singularity.

Example. Let f(x)=x**! (the singularity 4,). In this case the Weyl group Wis
the group of permutations of k + 1 elements. Its action on the space C* is defined
in the following mapner. The space C* is embedded in the space C**1 of one
larger dimension in the form of the hyperplane Z}:{ x;=0, and the action of the
group W onit is obtained by restricting its action on the space C**! asthe group
of permutations of coordinates. The quotient space C**1/W is mapped
isomorphically onto the space C**! by mapping the class of the point
(X15. . - » Xx+1) to the point (0y,. . ., 0+1), Where 6;=0;(xy,. . . ,Xx+1) is the ith

elementary symmetric function of the variables x;,. .., Xx+3

@y=X;4 . FXpt15- 0+, Oke1 =X1 oo Xas1)
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The fact that this map is an isomorphism of complex manifolds follows from the
fundamental theorem on symmetric functions (any analytic symmetric function
of the variables x,, . . ., X; + 1 can be uniquely represented as an analytic function
of the symmetric polynomials o, . . ., 63+, .) Under the isomorphism the space
C*/W maps isomorphically onto the coordinate hyperplane ¢, =0. The mirrors
(non-regular orbits) are defined by the condition x;=x;. A miniversal deforma-
tion of the singularity f(x) has the form

F(x, 8, .y to) =23 14 Xr 714+ x4,

== "oy i(X15e - o Xara)s
where (x;,. .., Xz+1) are the roots of the equation
F(x, los. s tk_1)=0, L=x+... +Xp41 =0.

The level bifurcation set consists of those values of the parameters t=(%,
ty,. .., t—y) for which the function F(-, ¢) has a critical point with critical value
equal to zero, that is has a multiple root x;=x;. Hence in this case it is clear how
to define the isomorphism mentioned in Theorem 3.8.

Approximately the same arguments are used to prove Theorem 3.8 for the
other simple singularities.

Remember that a space of type K(n, 1) is a space with fundamental group =
and all of whose subsequent homotopy groups (., zs, . . .) are trivial. A space
of type K(m, 1) is the base of a principal fibre bundle with group = and with
homotopically trivial total space.

In [57] it was proved that the space €*/W\S/W of regular orbits of the
action of the group W is a space of type K(x, 1), where x is the generalised
Brieskorn braid group of the Weyl group W. If W is a group of Weyl type 4,,
then x is the ordinary Artin braid group with k+1 strands.

Short digression. Braid groups.

To make our account more independent, we quote several definitions and
results from the theory of braids. A more detailed exposition can be found in
[57]).

The graphico-geometric definition of a braid is that a braid is an object as
depicted in figure 28. The braid consists of # non-intersecting strands in the space
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R3, joining 7 fixed points on the lower base (line segment) with the same set of
points on the upper base and going monotonically upwards from the lower base
to the upper one. Two braids are considered equivalent if one can be deformed
into the other without losing monotonicity and without allowing the strands to
intersect each other. The braids can be multiplied, by placing one of them on top
of the other (figure 29). With this multiplication, the braids of n strands (more
precisely, their equivalence classes) form a group B(n). The identity of this group
is the “untangled” braid, consisting of vertical line segments joining pointsin the
upper and lower bases. The braid inverse to a given one is obtained from it by
reflection in a horizontal plane.

V%X

S A

i it

Fig. 28. Fig. 29. Fig. 30.

It is not hard to see that.the braid group B(n) of n strands is generated by n —1
generatorsg, ,. . ., ga—1, Where g;is the braid which ‘crosses over” the ith and the
(i + 1)th strands (figure 30). These generators are connected by the relations

gig;=g9;9: for li—j|>1, and
gigir1Gi=Gi+16ifi+1 (i=1,...,(n—=2)).

It can be shown that the indicated generators and relations define the group B(n).
To each braid there corresponds in an obvious way a permutation of n elements.
Therefore there is a natural epimorphism of the braid group B(n) onto the group
S(n) of permutations of n elements. The kernel B(n) of this homomorphism is
called the coloured braid group on 7 strands. A coloured braid is a braid such
that each of its strands returns to the same point as it started from.

A more formal definition of the braid group, which makes clear why it is
valuable for problems in analysis, can be obtained in the following way. That
part of the space R enclosed between the horizontal planes containing the lower
and upper bases can be identified with the product I x € of the segment /= [0, 1]
and the plane of complex numbers €. Under this identification, for each number
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te [0, 1], the braid gives rise in a continuous way to an unordered set of n distinct
complex numbers. To t=0 and #=1 there correspond the same fixed set of
numbers. In this way the braid group B(n) is identified with the fundamental
group of the space of all unordered sets of n distinct complex numbers. In exactly
the same way, the coloured braid group B(n) is identified with the fundamental
group of the space of all ordered sets of n distinct complex numbers.

Let € ={(x;,...,xn):x;€C} be the space of ordered sets of n complex
numbers, let S be the union of all hyperplanes, defined by the equations x; =x;,
and let €,\ S be the space of ordered sets of n distinct complex numbers. We
have B(n)=n, (C*"\\S).

On the space €", the group S(n) of permutations of n elements acts by
permuting the coordinates. The space €"/S(n) is the space of unordered sets of n
complex numbers. It is isomorphic to an n-dimensional complex vector space.
The isomorphism is established by associating with an unordered set of complex
numbers (x;,...,x,)eC"/S(n) the polynomial p(x)=1II]-,(x —x;) with roots
X;,. .., X, (or its coefficients, which up to sign are the elementary symmetric
functions ay,...,0, of the variables x;,...,X,: o1=x1+...+X,...,
G,=X;"...'X,). The space £=S/S(n) corresponds to the set of polynomials
with multiple roots. In this way (C"™\S)/S(m)=C"/S(n)\Z is the space of
unordered sets of n distinct complex numbers; the braid group B(n) coincides
with its fundamental group =, (C*/S(m)\X).

There is a stronger result which asserts that the space (C*/S(n)\X) is a space
of type K(n, 1) for the braid group B(n) on n strands. This means that

1 (C/SMW\Z)=B() and m(C"/SE\Z)=0

for k> 1. Since the space €\ S is an (n!-fold) covering space of (C"/S(n)\X),
the assertion about the space €"/S(n)\ X is equivalent to the assertion that the
space €™\ S is a space of type K(=n, 1) (for the coloured braid group B(n)onn
strands).

For the proof of the last assertion, we consider the map of the space €™\ §
={(x1,. .., x)€C":x;#x;} into the space {(x1,...,%-1)€C" x5 X},
mapping the point (x;,. . . , Xy~ 1, X,) into (X;,. . ., X,—1 ). Itis easy to see that this
map is a fibration with fibre €\ {x,,. . ., x,-}. Since the fibre of this fibration
has trivial homotopy groups from the second one upwards, the required
assertion is proved by induction on the dimension n.

The group S(n) of permutations of n elements is one of the finite groups
generated by reflections. The action of the group S(n) on the space € by
permuting the coordinates is reducible. It decomposes into the direct sum of two
actions: the action on the subspace €~ !, given by the equationx; + . . . +x,=0,
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and the trivial action on the one-dimensional space x;=...=Xx,. On the
subspace €"~ its action is just the usual action of the Weyl group of type 4,1,
which is isomorphic to the group S(#) of permutations of n elements. The union
of all the mirrors, corresponding to the reflections in the group S(n), in the space
! (which are hyperplanes given by the equations x;=x;) and its quotient
space under the action of this group we shall denote, as before, by S and X (this
need not cause confusion). We have

C\S=(C"\S)x ",
C/SEHNZ=(C"/SM\Z) x C.

Therefore

B(n)=m (C"\S)=m (C*""\\5),

B(m)=m,(C"/SM\Z)=m, (T /SB\Z)-

The description of the coloured Braid group B(n) and the braid group B(n) as
fundamental groups of the the spaces €*~*\(§ and €"~*/S(n)\ I respectively
prompts a generalisation of this definition.

Let W be a finite irreducible group, generated by reflections, acting on the real
vector space R” of dimension 7. The group W acts also on its complexification
C". We can show that the quotient space €"/W is isomorphic to a complex
vector space of dimension 7 (see [53]). Let {V:} be the set of all hyperplanes in the
space R”, the reflections in which belong to the group W, and let ¥;¢c = €" be their
complexifications. Outside the subspace S=u; Vi¢ the group W acts freely. Let
Z=S/W. The fundamental group

By =m,(CY/W\Z)

of the space €*/W\X is called the (generalised) Brieskorn braid group of the
group W; the fundamental group By =n,(C"\\S) is called the (generalised)
coloured Brieskorn braid group of the group W. There exists an exact sequence

18y By W-1.

Lemma 3.2. The spaces €*/W\ I and €*\ S are spaces of type K(=, 1) (for the
groups By, and By respectively).
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When the group W is of type 4,1 (the group of permutations of n elements)
this lemma is already proved. We show how itcan be proved when Wis of type B,
(isomorphic to the groups of type C,) and D,. Naturally it is sufficient to prove
the assertion of the lemma only for the space C\S.

When the group W is of type B,, the mirrors of the reflections which belong to
the group W are the hyperplanes {x;£x;= 0} and {x;=0} in the space €*. Using
induction, we can suppose that the space

{(x1,- - - X )EC" L ix; 1 x;#0, x;#0}
is a space of type K(x,1). The natural projection

CN\S={(x1,- - -, Xxn) €C": x; 1 %;#0, x;#0}
—>{(x1,. e ,x,,_l)EC'—l Zx,-j:xj#o, x;#O}

is a locally trivial fibration with fibre

{0, £x;, £xz,---» +Xp-1}-

Since the fibre of this fibration has trivial homotopy groups from the second

upwards, we can deduce the required asssertion about the space C\S.
When the group W is of type D, the mirrors of the reflections belonging to the

group W are the hyperplanes {x;+x;=0} in the space €". We consider the map

C\S={(x1,. .-, X)€" 1 x; £ x;7#0}
={(1,--- ,In-1)€C"? 3)’!*}{0}’1#0},

given by the formula y;=x; —x; . Thismapisa locally trivial fibration. Its fibreis
an affine complex curve and therefore has trivial homotopy groups from the
second up. Just as for the space €"\S, corresponding to the group of type B,,
(by considering the projection C"-C"1) it can be proved that the base

{(}’1,- .. ’yn—l)eq:"_1 :yi¢yj’yi¢0}

of this fibration is a space of type K(m, 1). Therefore it follows that the space
C*\S of this fibration is also a space of type K(x,1).

In the general case the lemma follows from the following general results of
Deligne ([91]). Let us be given in the space R" a finite number of hyperplanes ¥;.
Let V;¢> C" be their complexifications. Let us suppose that all the components
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of the complement of the union uU; ¥; in the space R” are open simplicial cones
(that is they have exactly n faces). Then the space €™\ (V; V;¢) is a space of type
K(n,1). From Theorem 3.8 and Lemma 3.2 follows.

Theorem 3.9. For simple singularities the complement D,\Z, of the level
bifurcation set is a space of type K(x, 1).

O. Lyashko and E. Looijenga (see [234], [231}) proved that for simple
singularities the complement of the function bifurcation set is also a space of type
K(x, 1), where 7 is a subgroup of index u!N*|W| =1 in the Artin braid group on u
strands (here |W)| is the order of the corresponding Weyl group and N is the
Coxeter number, that is, in the language of singularity theory, the order of the
classical monodromy operator).

The inclusion of the fundamental group =, (€*~"\Z,) of the complement of
the function bifurcation set of a simple singularity into the braid group on u
strands is constructed in the following manner. The braid group on u strands can
be considered as the fundamental group of the space of polynomials of the form

X*+a,_x* 2+ .. +ayx+ao,

which do not have multiple roots. In the complex vector space Cl)?, with
coordinates (dg,4;,. - - »x-2), the points corresponding to polynomials with
multiple roots form an algebraic variety Z. Its complement is a space of type
K(n, 1), where nis the braid group on u strands. To each point v of the base €*~*
of the restricted miniversal deformation of the singularity f corresponds a
function F(-,v), a perturbation of the singularity f. If each critical value is
counted as many times as its multiplicity, then in a neighbourhood of zero inthe
'space C" this function has exactly u critical values. The function bifurcation set
¥, of the singularity fis distinguished in the base €*~ 1 of the restricted miniversal
deformation by the condition that its points correspond to the functions F(,v)
which have less than p distinct critical values. In this way when veE, some
critical values of the function F(-, v) coincide.

Let v be a point of the base €*~! of the restricted miniversal deformation, let
F(, v) be the function corresponding toit, let z,, . . ., z, be its critical values in a
neighbourhood of zero in the space €* (the values z; are not necessarily all
distinct), let

z= i zi/p

i=1
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be their arithmetic mean and let Z;=2z;—Z (i=1,..., n). Let
py() =Ml (x—-2)

be the polynomial of degree u with roots

DyyennZy.

Since

»
Z Z,'=0,
i=1

the coefficient of the monomial x*™* in the polynomial p,(x) equals zero.
Therefore the polynomial p, (x) belongs to the space €4, ! of polynomials of type

X +a, x* 24+ ... +ayx+ap.

Setting in correspondence with the point ve €*~! the polynomial p,(x) e Ck;!
we obtain a map

VR K

from the base of the restricted miniversal deformation to the space €y *. The
map y maps the function bifurcation set £, into the space E of polynomials with
multiple roots, and the complement €*~*\ £, of the bifurcation set into the
space €l \Z of polynomials which do not have multiple roots. Direct
calculation shows that in the complement of the bifurcation set £, the mapping y
is non-degenerate, that is it has rank equal to u —1. The preimage of zero under
the map i is the set of values of the parameter ve €*~* for which the function
F(-, v) has a unique critical value. It follows from the corollary to Theorem 3.3
that it has a unique critical point. In this way the preimage of zero under the map
y coincides with the stratum u=const in the base of the restricted miniversal
deformation. For simple singularities (and only for them!) this stratum consists
of one point v=0. Therefore it follows that the map

v:C* 1 oCly)?
is proper in a neighbourhood of zero and its restriction to the complement

€* '\ £, of the function bifurcation set defines a cover of the space Cf; '\&
of polynomials without multiple roots. So the complement of the function
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bifurcation set £, of a simple singularity is a cover of a space of type K(x, 1), from
which it follows that it itself is a space of the same type. Moreover the map ¥
induces an inclusion of the fundamental group of the complement of the
bifurcation set £, into the fundamental group of the space Ciy'\Z of
polynomials without multiple roots, which is the braid group on x strands.

If p: E— Bis a cover then its group of covering transformations is the group
Aut(p)={h: E~Elhis a homeomorphism, ph(x)=p(x) for xe E}. It is not
difficult to see that the group of covering transformations Aut(p) of the cover p
is isomorphic to the quotient group

N(my(E))/m, (E),

where N(n,(E)) is the normaliser of the subgroup =,(E) in the group n,(B),
that is ‘

{957‘1(8) 397‘1(E)9-1 =n(E)}.

For simple singularities the group of covering transformations Aut () of the
cover

/S c‘_l\zz ind Ci‘a; I\E

of the complement of the function bifurcation set over the space of polynomials
without multiple roots, which we constructed above, is described in {220]. It is
cyclic for all simple singularities except 4, and D;. Its order is equal to the
Coxeter number of the corresponding Weyl group (or, which amounts to the
same thing, the order of the classical monodromy operator) for singularities of
type A, (u#1), D, (p#4) and Eg, whilst for singularities of type E, and Eg it is
half the Coxeter number. For singularities of type D, the group Aut(y) is
isomorphic to Z; @ S(3), where S(3) is the group of permutations of three
elements, for singularities of type 4, the group Aut(y) is trivial.

In the real case, that is when we are considering a real miniversal deformation
of areal singularity, E. Looijenga ([232]) proved that the complement of the level
bifurcation set of a simple singularity has contractible components. These
components are in one to one correspondence with classes of W-conjugate
elements of the second order in the adjacent class Wn, where ne N/W is some
element of the second order, W is the corresponding Weyl group and N is its
normaliser in the group of all linear transformations. The group N/ W is the same
as the group of automorphisms of the corresponding Dynkin diagram.

O. V. Lyashko ([234]) described all decompositions of simple singularities,
found in the base of its restricted miniversal deformation. Let f3(x) (A€ (C, 0)) be
a deformation of a singularity f:(C" 0)—(C,0). We say that under the
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deformation f; the singularity f decomposes into types

X=(Xl’- . "Xk)a

where X;=(Xj,,. .., Xy;), if for values of the parameter 1 sufficiently close to
zero (but different from zero) the function f; has (in a small neighbourhood of
zero in the space €) k distinct critical values z, . . ., z, the critical value z; being
attained at j; critical points, at which the function f, has singularities of types
b S

We shall say that the D-diagram E (with respect to a distinguished basis
4;,...,4,) decomposes into the types

(Ey,.... E)

where E;=(Ey,,.. ., Ey;), if:

(i) {E;} isa decomposition of the set of vertices of the diagram F into disjoint
subsets, the vertices of each of the diagrams E; (basic vanishing cycles) being
numbered in the diagram E by successive integers;

(ii) the vertices of the diagram E; are joined to each other by edges of the same
multiplicity as they are joined in the diagram E;

(iii) E;; are the connected components of the diagrams E; G=1,...,J)

The decomposition of the singularity f into the types X=(X,...,X})
X;=(Xy,. .., X)) is said to be compatible with the decomposition of its
diagram E into the types (E,,. . ., Ey) (E;=(Ey,- . -, Ey)), if for each i the set
Ey,. .., Ey, is the set of D-diagrams of the critical points X,,. .. , Xy, corre-
sponding to the ith critical value. It is easy to show that if the singularity f
decomposes into the types X=(Xj,. .., X;), then there exists a distinguished
basis {4,} such that the D-diagram E of the singularity f decomposes into the
types (Ei,...,E;) compatible with the decomposition of the singularity.
O. V. Lyashko proved that for simple singularities we have also a converse
assertion: if the diagram E of a simple singularity f with respect to any
distinguished basis decomposes into the types (Ey,. . ., E) (E;=(Ey,- - -, Ey)),
then there exists a deformation of the singularity ffor which the decomposition is
compatible with the decomposition of the diagram E.

For a more detailed description of. all the decompositions of simple
singularities see [234].

3.4 The p=coustant stratum and the topological type of singularity

Deformations which preserve the multiplicity of a singularity must not change its
topology in an essential way.
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Indeed, when the number of variables n#3, L& and Ramanujam ([209])
proved that under a deformation which preserves the multiplicity, the topologi-
cal type of the singular level set (more precisely, of the pair

(Bo. /71 (0)N By),

where B, is a ball of sufficiently small radius ¢ with centre at the critical point)
will not change and the differential type of the Milnor fibration will not change.
The restriction n#3 arises from the fact that the proof makes use of the
h-cobordism theorem. At present it is not known whether this result holds for
n=3. There were proofs offered in the case n=3, but later gaps were found
in them.

Timourian ([353]) proved that under a deformation with constant multiplicity
the topological type of the function also does not change. This means the
following. Let F(x, r) be a smooth - in te R? — deformation of the singuiarity

[:(€,0)~(C,0) (F(x,0)=f(x))

such that for any ¢ the germ F(-, ) has at zero a critical point of one and the same
multiplicity u=pu(f) with critical value equal to zero. Then there exist
neighbourhoods U of zero in € xR?, U, of zero in €" and D of zero in R?
and a homeomorphism a: U— Uy x D (2(0, £)=(0, 1)), giving the commutative
diagram '

US UyxD
IF 1rxud
C <CxD

(here = is projection onto the first factor).
" Ttis easy to show that along the stratum p=constant the intersection maxtrix
and the monodromy group of the singularity do not change.

Other characteristics of the singularity, however, which have a “more
analytic” character, can change. F. Pham showed ([285]) that under a
deformation with constant multiplicity the topology of the level bifurcation set
of the singularity, more precisely its decomposition into pieces in correspon-
dence with the singularities of the zero level set, can change.

In order to construct such an example, we consider the singularity
f(x,y)=y*+x°, the multiplicity of which is equal to 16. Its miniversal
deformation has a base of dimension 16 and is given by the formula

F(x,y,u,v)=y* +u(x)y +v(x),
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where

u(x)=uo+ x+ ...+ X",
v(x)=vo+le+ e +v7x7 +x99

u=(u09u17' .- ’u7)’ U=(U°, Uy, '3'77)~

Let X = F~(0) = C'® be the zero level set of the deformation Fand letG:X-CL,
beits projection onto the base of the deformation. Denoting by X ** the (analytic)
set of points ze X at which the curve G~ 1(G(2)) has degree 3 (that is locally given
by an equation belonging to the cube of the maximal ideal) and the order of
contact >eo. It is not difficult to see that the set X* consists of quadruples
(x, y, 4, v) for which y =0, x is a root of the equation u(x) =0 of multiplicity >2a
and a root of the equation v(x)=0 of multiplicity >3a. In particular

X¢-=X‘3={(x,y,u,v):x=y=0,v=0, =0 for i<6}.

The projectidn T** of the set X** into the base €L, of the miniversal
deformation has dimension equal to 2 and is the stratum p=constant in it.

We consider the set T*53 = G(X**/). It consists of pairs (¥, v) € ¢, such that
the polynomials u(x) and v(x) have a common root of multiplicity 4 for u(x) and
multiplicity 5 for v(x). The set

G- 1 (T*5/3) ey Xﬂ/:«)

can be represented as the union of two sets: X *5/3 and X’. Here X' is the set of
quadruples (x, y,u,v) € C'8, such that y =0, x is a root of the equation u(x) =0of
multiplicity 3 and of the equation v(x)=0 of multiplicity 4 and in addition the
polynimials u(x) and »(x) have another common root of multiplicity 4 for u(x)
and 5 for v(x). The intersection X" of these two sets X *5/3 and X’ (more precisely
of their closures) consists of quadruples (x, y,u,v) € '8 such that y=0, xisa
root of multiplicity 7 for the equation u(x) =0 and a root of multiplicity 9 for the
equation v(x)=0. From this it follows that v=(vo,...,v7)=0, x=0 and
o= . .. =ug=0. Thus the set X" lies in the set X** but does not coincide with it.
It means that the sets X** approach different points of the set X** in different
fashions and it also means that the level bifurcation set changes along the
stratum T** (u=constant).

It is not difficult to see that X**? is the set of points z€ X in which the curve
G~ 1(G(2)) has a singularity of type Es, X*>? is the set of pointsze X in which the
curve G~1(G(2)) has singularity type Es. Therefore G(X’) is the set (more
precisely its closure) of those values (u,v) € €16, for which the curve G “u,v)
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has two singularities of types E¢ and Eg. The constructed reasoning shows that
the stratum of the level bifurcation set, consisting of points in which the
corresponding function has singularities of types E¢ and Eg on the zero level set,
changes (simply disappears) along the family u=constant (T**) of the
singularity x>+ x°.

S. M. Gusein-Zade and N. N. Nekhoroshev ([153]) gave an example of a
deformation of constant multiplicity of a homogeneous polynomial of degree 22
in two variables, along which the largest & such that an A, singularity adjoins the
given one changes.

There was a conjecture, that in the base of the restricted miniversal
deformation of a singularity the u=constant stratum, that is the set of values of
parameters for which the corresponding function has a critical point of the same
multiplicity as the initial singularity, is a non-singular manifold. A. M. Gabrielov
proved ([117]) that the dimension of this set is equal to the modality of the
singularity.

The conjecture about the smoothness of the u=constant stratum is proved for
the case where the number of variables n=2. This was first proved, apparently,
by J. Wahl, 1971. As regards this see [56], see also the article by Teissier [349].
I. Luengo has shown that this conjecture doesn’t take place for n=3.

3.5 The resolution of a singularity and some properties
of the classical monodromy operator

A useful instrument for studying the topology of a singularity is its resolution.
Let f:(€"* 0)—(C,0) be a singularity, that is the germ of a holomorphic
function with an isolated critical point at the origin.

Definition. The resolution of a singularity f is a proper analytic map
n: (Y, Yo)—(T",0)

on a non-singular complex manifold Y such that:

(i) the map =|y y, is an analytic isomorphism: Y\ ¥o—»€"\0 (or from a
neighbourhood of the space Y, in Y to a neighbourhood of zero in €”);

(ii) the subspace Yo =n""(0) of the space Y is the union of non-singular (n —1)-
dimensional manifolds (divisors) in ¥ which are in general position;

(iii) in a neighbourhood of any point of ¥,=="?(0) there exists a local system
of coordinates y,,. .., ¥, such that

Jor(yy,.. ., y)=t. .0
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and the Jacobian of the map = is equal to

gOrts- - > YT Yam

where ¢(0,...,0)#0.

The existence of a resolution of any singularity is a consequence of a theorem
of Hironaka ([158]). In the case when f is a function of two variables, its
resolution can be constructed with the help of some successive g-processes (see
[328], and also §4.3) at singular points.

Many topological characteristics of a singularity (for example its multiplicity,
the characteristic polynomial of its classical monodromy operator and others)
can be expressed in terms of the topological characteristics of the divisors which
are glued in during the resolution of the singularity. Before formulating the
corresponding results we introduce several concepts.

The characteristic polynomial P;(z) (of the classical monodromy operator) of a

singularity f is
det(z-id—hylm,_,v)

(where V,is the non-singular level manifold of the singularity f). The roots of the
characteristic polynomial P(z) are the eigenvalues of the classical monodromy
operator h, of the singularity.

We can also express, in terms of the characteristic polynomial P,(z) of the
singularity f, the determinant det S of the intersection form in the homology
H,-1(V;Z) of the non-singular level manifold of the singularity f. It is an
invariant, since the determinant of a change of basis of the integer lattice
H,_,(V.; D)isequalto +1.The determinant of the intersection form is the same
as the determinant of the matrix of the operator

iy: Hy-s(Ve; D)= Hyo s (Ve 0V ).

If det S#0 then it is equal, modulo the sign, to the order of the group
Hy—y(V,, 0V,; D)[Imi,.

We have

det S=det (—Var™ +( —1)*(Var~H)7)
=(—1yre* D2 det (—id+(— 1)*Var(Var™*)T)
= (— 1)y 2 det (—id+h,)=(— 10" D" P (1).
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Sometimes instead of the characteristic polynomial of the singularity it is more
convenient to use what is called the {-function of the classical monodromy
transformation h of the singularity. Firstly, it usually gives more beautiful
solutions and, secondly, the {-function of the monodromy is defined also for
non-isolated singularities, whilst the characteristic polynomial becomes practi-
cally meaningless. Many of the following results hold also for non-isolated
critical points, but we shall not specially specify these.

Definition. The {-function of the transformation g : X — X of the topological space
X (for definiteness a finite CW complex) is the rational function

(@) =M 30{det [id —2g4|n cx; .~} nt

In this definition the zeroth homology of the space X is taken into account,
that is we do not suppose that the homology is reduced modulo a point. The
definition also makes sense for a pair of spaces (X, Y) and a transformation
g:X—X carrying the subspace Y into itself. In this case the action of the
transformation g on the relative homology H(X, Y; R) figures in the formula
for the {-function.

Definition. The {-function of the monodromy of the singularity fis the {-function
of the classical monodromy transformation h of the non-singular level manifold
V, of the singularity f into itself.

For isolated singularities we have H (V,)=0 for #0, n—1. Consequently

{/{@)=(1-2) (z"P,(z‘l))(—u""

from which

Ps(2) =z“((é/(z - 1))(,(2-1))(_1,.-1’

where y is the multiplicity of the singularity. Thus the characteristic polynomial
P,(2) and the {-function {,(z) of a singularity can be derived from each other.

It is easy to see that the degree of the rational function { 7(2) (equal to the
degree of the numerator minus the degree of the denominator) is equal to the
Euler characteristic y(V,) of the non-singular level manifold V.
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The following result allows usto derive the {-function of a sixfgularity ffoxp ize
topological invariants of the divisors which are glued in duringits resolution. Let

n: (Y, Yo)—'(c“, 0)

be the resolution of the singularity £, et S,, be the set of points of the space Y?, ina
neighbourhood of which the function fo# in some l.oca} s'ystem of coordmjates
has the form x7 (clearly the intersections of the glued in divisors do not enter into

the set Sy)-
Theorem 3.10 (N. A’Campo (5]

p(v)= 3 mx(Sa)

m21

;@)= T1 @ -2y ¢
m=>1

For the proof we use the property that if the transformation b : X’ —» X preserves
the subspace Y, then

U@ =L@ L)

where hx, hy, hx,v) ar¢ the transformation h considered on the corresponding
spaces (or pair of spaces). There exists a2 map

¢: V.~ (fom) 1 (0)

(the contraction of the non-singular fibre onto the singu}ar one) for which pom(tis
from S,, have m preimages, the preimage of the inte}'secuc?n of any'k of the gluF -
in divisors is a fibration whose fibres are (k —1)-dimensional fon. 'Irhe clz.lss1cal
monodromy transformation h can be considered to be companl?le with this map
in the sense that it preserves preimages under the map ¢.of points of the spa;:e
(fom)~*(0), its action on it being trivial. Over the pqmts of the set S, t e
transformation h carries out a cyclic permutation of preimages. The C-funcg:)n
of a cyclic permutation of m points is equal to (1 -2z"). Ffom this it i:ollodwts ; ::
the {-function of the classical monodromy transforma‘tslf)n h, resttgcte i :ts e
preimage ¢~ (S,) of the set S,, is equal to (1 —z")"' . O\'rer e po o
intersection of the glued-in divisors the transformation k is represen :s
diffeomorphisms of tori which are shears and therefore do not contribute to the
-function. :
‘ T:e idea of this construction is due to Clemens ([77)).
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From the formula for the {-function of a singularity, introduced in Theorem
3.10, it follows that all the eigenvalues of the classical monodromy operator of
an isolated singularity are roots of unity of various degrees. Therefore some
power N of the classical monodromy operator has all its eigenvalues equal to
one. We can take for N a number which is divisible by the multiplicity m of all the
divisors which are glued in during the resolution. In this way we obtain

Theorem 3.11. The operator (Y —id)is nilpotent, that is () —id)* =0 for some k.

This theorem is due to Brieskorn ([55]), Katz ([181]) and a number of other
authors. Its generalisation to the case of the germ of an analytic function on an
analytic space, all level sets of which can have singularities, was obtained in [207].

By considering the resolution of an isolated singularity we can obtain an
estimate of the size of the index k, which, as it is not difficult to see, is equal to the
maximal dimension of the Jordan blocks of the classical monodromy operator.
For this we take the map €,—C,, mapping « to z=u" and consider over C, the
family of manifolds, induced from the family {(fon)(x)=z} over €, via this
map. Resolving the fibre over zero, we obtain a gluing in which all the divisors
come with multiplicity 1 (that is S,,=# for m > 1). The monodromy operator k,
of this family is equal to Y. Let Z; be that part of the fibre over zero, which is the
union of all i-fold intersections of glued-in non-singular divisors. We have

Z,=(fom) Y (0)>Z,5Z3>...2Z,2Z,+1=8.

As before we have a map from the non-singular fibre into the singular fibre at
zero, which is compatible with the monodromy transformation. It can be proved
that if ais a cycle in the non-singular fibre which lies in the preimage of the set Z;,
then the cycle k,a —a is homologous to a cycle lying in the preimage of the set
Z,;,,.Fromthisit follows that (h',, —id)"=0, thatis that (hY —id)"=0. In this way
we can take as the index k in Theorem 3.11 the number of variables » and
consequently the Jordan blocks of the classical monodromy operator A, have
dimension no larger than n x n. Thus we have proved.

Theorem 3.12. The dimensions of the Jordan blocks of the normal form of the
classical monodromy operator h, of the singularity
[:(€,0)~(C,0)

of a function of n variables does not exceed n x n.
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For example if f is a singularity of a function of two vafiables, then the
maximal possible dimension of the Jordan blocks of its classical monodromy

operator is two. For the singularity
f )= +P) 0+

it is indeed equal to two. We can show that the classical monodromy o?erator of
the singularity is not diagonalisable in the following way. The qufldrz.mc form of
the singularity f can be found by the method of Chaptef 4.In §4:4 it w1ll be shown
that it has the following indices of inertia: the positive index of inertia u+ =1, the
zero index of inertia yo = 1, the negative index of inertia u_ =p—2=9. From .the
formula of Picard-Lefschetz it follows that the eigenvectors o.f the classical
monodromy operator h, of the singularity corresponding to tht-a elgenva:lue 1are
elements of the space H,-1(V), orthogonal in the sense of the intersection form
to all the vanishing cycles of the distinguished basis {4:}, and, 'conscql‘lently, to
all the elements of the space Hy—1 (V- In this way for the singularity of the

function
Fey =X+

the subspace of vectors a€ H, 1V satisfyi'ng the condition h,a=a is one-
dimensional. For the characteristic polynomial Py(z) we have

Pj(z)=det(z-id —h,)=det (z-id—L"'LT)
=det(zL+LT)=det(zL"+ L)
=z*(det(LT +2 *L)=2"Pxz"").

Consequently P7(z)is a reflexive polynomial of degree. 4 (the coefTicients of t'he
monomials z*and z* ¥ coincide). The multiplicity of unity, asaroot of areflexive
polynomial is always even. Therefore the space of elemen{s of thc:. homology
group H,(V,) of the non-singular level manifold of the singularity fx, 3.0
associated with the eigenvalue 1 of the classical monodromy operator A, has
even dimension and consequently does not coincide with the space of
eigenvectors with eigenvalue 1. In its turn the classical monodromy operator of
the singularity f(x, y) is obtained from the classical mfmodromy o'perator.of the
singularity f(x, y, ) multiplied by —1 and therefore is also not dlagonahsfible,
namely it has a Jordan block of dimension 2 x 2 corresponding to the eigen-
value —1.
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Steenbrink ([343]) proved that the dimension of the Jordan block of the
normal form of the classical monodromy operator of the singularity
(€, 0)—~(C, 0), corresponding to the eigenvalue 1, does not exceed (n—1)
X (n—1). See also § 13.2.5.

For a quasihomogeneous singularity f:(C", 0)—(C, 0) the germ of f belongs
to its Jacobian ideal

sz(aﬂax‘,- .. ,6f/ax,.),

the classical monodromy operator A, has finite order, that is it is diagonalisable.
Briancon and Skoda ([54]) proved that for an arbitrary singularity f:(C", 0)
—(C, 0) in n variables the nth power of the germ f belongs to the Jacobian ideal
J;. As we made clear above, the dimension of the Jordan blocks of the classical
monodromy operator A, does not exceed n x n. Arising from these considera-
tions, Scherk ([316]) conjectured that if the kth power of the germ fbelongs to the
Jacobian ideal J;, then the dimension of the Jordan blocks of the classical
monodromy operator of the singularity f does not exceed k x k. In [317] he
proved this conjecture. In this regard see also Theorem 14.19 in §14.3.5.

There is a way of constructing the resolution of a singularity using its Newton
diagram (the so-called toral resolution). For almost all functions with a given
Newton diagram it indeed leads to a resolution of the singularity. The
construction of this resolution can be found in [358]. See also Chapter 8.

Arising from this and Theorem 3.10, a description is obtained in [359] of the
{-function (or the characteristic polynomial) of the classical monodromy
operator of a singularity from its Newton diagram.

Let '<N" be a Newton diagram (N is the set of non-negative integers).
The {-function of the diagram T is the function

L@ =T1 C@) ™,

I=1

where the polynomials ('(z) are defined below (they are defined by the
intersections of the diagram I" with all possible /-dimensional coordinate planes
in the space R").

If L is an -dimensional affine subspace in the space R* such that LAN"is an
I-dimensional integer lattice, then we shall adopt the convention that the
I-dimensional volume of the parallelepiped spanned by any basis in LNnIN" is
equal to one. For a set I<{1,. . ., n} with the number of elements # =1/ we put

Li={keR":k;=0 for i¢I}.
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LetI;(NG=1,..., jH)ybeall(I— 1)-dimensional faces of the polyhedron L;nI"
and let L;(J) be the (/— 1)-dimensional affine subspaces in which they lie. The
quotient group of the lattice N*n L; by the subgroup generated by the vectors of
N"n L) is cyclic. Let us denote its order by m;(I). Let V(D) be the (—1)-
dimensional volume of the face Iy(I) in the space LyI). We remark that
my(D (D! ¥;(I)is equal to the product by /! of the I dimensional volume of the
cone over I';(I) with vertex at the origin.
Let us put

i

= 1 TI{—z®)i-nwb,

I:#I=1 j=1

Theorem 3.13. For almost all functions f: (C*, 0)—(C, 0) with Newton diagram r
the {-function of the classical monodromy operator of the singularity f coincides
with the {-function of the diagram I'.

The condition identifying the set of functions for which the assertion of
Theorem 3.13 holds can be expressed by means of the coefficients which enter in
the expansion of the germ of fin monomials lying in the Newton diagram I (see
Chapter 8). Generally speaking, it can happen that all functions with Newton
diagram I" have non-isolated singularities. Nevertheless Theorem 3.13 remains
correct.

Since the degree of the {-function of the monodromy operator of a singularity
coincides with the Fuler characterstic of its non-singular level manifold there
follows from Theorem 3.13 aresult of A. G. Kushnirenko ([195]), expressing the
multiplicity of a singularity in terms of its Newton diagram.

36 'l‘llemonodromygroupnddistingnhhedhses
of simple singularities

A most effective description of the monodromy group exists for simple
singularities, that is for singularities which do not have a continuous modulus
(see Volume 1, Chapter 15). Justas for any singularity, we have here two distinct
cases: singularities with an odd number of variables and singularities with an
even number of variables. In the first case the Picard-Lefschetz operator is
reflection in a hyperplane, orthogonal in the sense of the intersection form to the
corresponding vanishing cycle; the monodromy group is a group generated by
reflections. In the second case the description of the Picard-Lefschetz operator is
more unusual.
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. As is ?vell knO\.»vn, t'he monodromy group of a singularity is defined by its
u.ltersect'l?n matrix with respect to a weakly distinguished basis. For simple
singularities we get the following result.

Theorem 3.14. For the simple singularities 4, (x**'+X?), D, (3y+y*~?
+ 212), Es(C+)y*+11]), E;(C+xP+2t}), Eg(x*+y*+Zt}), there exist
distinguished bases of vanishing cycles, in which the D-diagrams coincide with
the classical diagrams of the corresponding Lie algebras of the same names
(figure 31). The monodromy groups of these singularities with an odd number of

variables are finite and isomorphic to the Weyl groups of the corresponding
algebras. .

Y VP S — D, o < E¢

y g?,

Fig.31.

For a description of the classical Weyl! groups see [53].

For a singularity of type 4, Theorem 3.14 was proved in § 2.9. For the rest of
the simple singularities the proof, based on the fact that all these singularities
are stably equivalent to singularities of functions of two variables, will be
constructed in §4.1. :

A method of constructing D-diagrams of simple singuiarities with an odd
at;t;;t;;r of variables directly from the monodromy group was found by McKay

We denote by M{” and M{® the monodromy groups of singularities, stably
equivalent to f, with an odd and an even number of variables respectively. The
generators of the groups M{® and M|? are transformations of the integer
lat'tia.:, defined by the formula of Picard-Lefschetz. These transformations
c.omcndc modulo two. Consequently, the corresponding groups of transforma-
tions o.f the homology H,-(V,;Z,) of the non-singular level manifold with
coefficients in Z, (H,—,(V.; Z,;)~(Z,)") are identical. Therefore there is one
monodromy group M7* of the singularity modulo two, acting on the binary
lattice (Z,)*. There are defined natural epimorphisms

MP-MP and MP-MP,

L ———— WA oy A .
s ——— o~
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induced by the homomorphism Z—~Z,. Consequently, the monodromy group
M?%:in the homology with coefficients in Z, is a quotient group of the group M i
and also of the group M.

For simple singularities a description of the group M2 follows from the fact
that the kernel of the homomorphism

M}o) - M}’

is either trivial (in which case MP*=M|”) or contains +id, where id is the
identity transformation (in this case M }’zM}"’/lz). The kernel of the map

M}o) — M}z

coincides with the group Z, if and only if the monodromy group M{” of the
singularity f with an odd number of variables contains the transformation which
is multiplication by —1.

For simple singularities with an even aumber of variables the monodromy
group M is described by the following result.

Theorem 3.15 (A. N. Varchenko, S. V. Chmutov [72]; see also [6], [397). For
simple singularities with an even number of variables the monodromy group
coincides with the group of all linear operators g on the integral lattice

z“:Hu—l(Vz > Z),

satisfying the following three conditions:

(i) the operator g preserves the (skew-symmetric) intersection form of the
singularity;

(ii) the restriction of the operator g to the kernel of the intersection form (that
is to the set of vectors orthogonal to all the elements of the lattice Z*) is the
identity transformation;

(iii) the operator g, reduced modulo 2, belongs to the monodromy group MP
in the homology with coefficients in the group Z,.

The necessity of satisfying conditions (i)—(iii) for any (not necessarily simple)
singularity is obvious. For a singularity f of a function of two variables the
dimension of the kernel K of the intersection form is equal to r —1 wherer is the
number of irreducible components of the germ of the curve {f=0}. Therefore
for simple singularities we have: dim K=0 for the singularities 4,,, Eg, Eg,
dim K=1 for the singularities A,+1, D2s+15 E, and dim K=2 for the singu-
larities D,,.
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In [74] a generalisation was obtained of Theorem 3.15 to the case of an

fu'bitrary singularity. By Frobenius’ theorem (see [243]) we can choose in the
integral lattice

2'=H, ,(V.;Z)
with antisymmetric intersection form an (integral) basis

€. ",ell’.fl’- . "f;u g15---591

(2n+1=u(f)) such that

(eiof)=4, (e0f)=0 for i#j,
(eiOej)=(fi0f})=(giOgj)=(ei09j)=(ﬂ°gj)=0:

the integer A; dividing the number 4;,_; (i=2,.. ., n). The sequence of numbers
A1s- .-, Ay is defined uniquely.

Ana!ogou's to the monodromy group M 72 in the homology H,_ (¥, ; Z,) with
coefficients in Z,, we can define the monodromy group M7 in the homology
H,_,(V,;Z,) with coefficients in the cyclic group Z,. In the following result a

special rt?le will be played by the case k =2 4, , where the integer A; was defined in
the previous paragraph.

Mm 3..16. The monodromy group M{? of an isolated singularity of a
function with an even number of variables coincides with the group of all linear
operators g on the integral lattice

'=H,(V.;2),

satisfying conditions (i) and (ii) of Theorem 3.15 and also the following
condition:

(m)" the operator g, reduced modulo 24, belongs to the monodromy group
M?#» in the homology with coefficients in Z, .

For all singularities of functions of two variables 4, =1 ([74]).
. W. Janssen obtained a generalization of this result of Chmutov for complete
mte.rsections ([172], [173]) and gave a classification of skew-symmetric vanishing
lattices. G. Ilyuta has transferred the results of Chmutov to the case of boundary
singularities ({171]).
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In §3.3 it was indicated that the problem of describing ail doicompos.iti.ons of
simple singularities, encountered in the base of the restnctefi m1mver§al
deformation, reduces to the problem of describing all of its D-dlagran?s with
respect to distinguished bases. From this the problem naturally arises of
describing all distinguished bases of a singularity. ' ' .

Let f:(C",0)—(C,0) be an arbitrary germ of a func'tlon, w1.th -an nsolatc?d
critical point atzero, let 4,,. . ., 4, bea distinguished basis of vanishing cyclesin
the homology group

Hy (V; DT

of the non-singular level manifold. With respect to such a bas.is the variatiqn
operator Var, of the singularity fis represented by an upper tnaflgular matrix
(§2.5). The classical monodromy operator h, of the singularity f is the product
hy0...0h, of the Picard-Lefschetz operators h;

(h(@)=a+(—1)""*2(a0 4)4),

corresponding to the vanishing cycles 4y,...,4, (ibi(‘l.).
It can be shown that for simple singularities there is also a converse result.

Theorem 3.17 ([151]). Let 4;,...,4, be a basis of the homology group

H,(V; =T

of the non-singular level manifold of a simple singularity f. We suppose tha.t wit.h
respect to the basis 4;,. . ., 4, the variation operator Var, of the sn?gt'nlant.y fis
represented by an upper triangular matrix. Then 4,,...,4,152 distinguished
basis of vanishing cycles.

Theorem 3.18. Let 4,,. . ., 4, be a basis of vanishing cycles in the homology of
the non-singular level manifold of a simple singularity f. Let us suppose that the
classical monodromy operator h, of the singularity f is the product iy o0 . .. oh,
of Picard-Lefschetz operators corresponding to the vanishing cycles 4;,. . ., 4,.
Then 4,,...,4, is a distinguished basis of vanishing cycles.

The proof of Theorem 3.18s contained in letters of P. Deligne toE. Looijetfga
(1980, not published). For the proof of this, and other assertions, the following
result is used which is of interest in its own right.
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I:et f:(C",0)~(C, 0) be a simple singularity in an odd number of variables n,
let f : U—C be a small Morse perturbation of it, defined in a neighbourhood U of

zeroin the space €", let 2y, . . ., z, be the critical values of the function}", letzobea
non-critical value, such that

|2i| <lzol (=1,-..,1)

and let 4 be an arbitrary vanishing cycle in the homology of the non-singular
level set F,, of the function f.

Lemma 3.3 ([151]). The cycle 4 is a vanishing cycle along some non-self-
intersecting path u, joining some critical value z; of the functionfwith the non-
critical value z, and lying wholly inside the circle [z| <|zo| (with the exception of
the end coinciding with the non-critical value z,).

In the formulation of this result an essential condition is that fis a function of
an odd number of variables and also that the path u lies inside the circle |z| < |z|.
In the case when f is a singularity of a function of an even number of variables,
the assertion of Lemma 3.3 is not true. If we relax the requirement that the path u
lies inside the circle |z| <|zo| then the lemma becomes trivial (true for any
singularity in any number of variables) and without content. Lemma 3.3 is
equivalent to the following assertion.

Lemma 3.4. There exists a distinguished basis of vanishing cycles 4,,...,4, in

the homology of the non-singular level manifold of a singularity f with the first
element 4, coinciding with the vanishing cycle 4.

" Itis not known whether there are analogous theorems to Theorems 3.17 and
3.18 and to Lemma 3.3 for singularities which are not simple.

3.7 The polar curve and the intersection matrix of a singularity

Results were obtained in the work [119] relating the intersection matrix of an
isolated singularity f : (", 0)—((, 0) with the intersection matrix of one of the
singularities f+22 or f|,.o and the invariants of the polar curve of the
singularity f relative to the linear function z. They allow us to determine the
intersection matrices for a large number of singularities and are also useful for
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proofs of assertions about intersection matrices of singularities, using induction
on the dimension n (such an inductive argument was used, for example, in [74]
for the proof of Theorem 3.16 of § 3.6). The present section contains a brief
exposition of the results of the work [1 19]. The polar curve of a singularity arises
also in other problems. A more detailed exposition of the theory of polar curves
can be found in [350].

Let f:(€", 0)—(C, 0) be the germ of a holomorphic function with an isolated
singularity at zero, let z: C"—C be a linear function. We consider the germ of the
map

(f,2):(C" 0)~(T,0).

The set of critical points of this map is the germ of an analytic space. We denote
this by I,(f). It is not difficult to see that () is the germ of a curve, that is
dim I,(f)=1. This follows, for example, from the fact that the critical points of
the map (f, z) are critical points of all functions of the form f—éz (e € C), and each
of the functions f—&z has (in a neighbourhood of zero in the space €") a finite
numbser of critical points.

Definition. The curve I',(f) is called the polar curve of the singularity f relative to
the linear function z. , :

Another (equivalent) way of describing the polar curve I',(f) s the following:
the curve I',(f) consists of all points x € C" in which the tangent space of the level
set of the function f (passing through this point) is parallel to the fixed
hyperplane {z=0}, that is all points xe C" in which the differential df is
proportional to the differential dz.

Let I,(f)=wuil; be the decomposition of the germ of the curve I,(f) into
irreducible components. As we have seen, the critical points of the function
(f—e2)liconthecurve I,(f)foralle. Let y; be the aumber of critical points of the
function f—ez (¢#0) lying in the component I (counted with their multipli-
cities). It is clear that pu(f)=Z;u.

The critical points of the function f|, -, (on the hyperplane {z=¢} cC")also lie
on the polar curve I (f). Let I} ¢ {z=0}, let ; be the number of critical points of
the function fl,-, (¢#0) lying in the component I; (counted with their
multiplicities). If the function f1,-o hasan isolated critical point at zero, then no
one of the components I} lies in the hyperplane {z=0} and p(fl:=0)=Z:.

If I; ¢ {z=0}, then f|r,#0. Indeed, if f|r, =0, then

df\r,=0, dzir,=0, zlr,=0.
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On the curve I tl'le function f can be expanded in a series of (fractional) powers
of z (this expansion coincides with the Puiseux expansion of the image of the
curve I; under the map

(£, 2): (€, 0)~(C,0),

see §4.3). Let a;2* be the first term of this expansion (a;#0). We have &; > 1. This
follows from the fact that as e—0 the roots of the equation f, =¢ (defining the
critical points of the function (f—ez)) must tend to zero. If I;= {z=0} (in this
case the function f|, - has a non-isolated critical point), then |, =0. In this case
we shall suppose that a;=1.

Lemma 3.5. If «;> 1 then

pi=vi(; —1).

Proof. If ;> 1, then I;¢ {z=0} and
f=aiz“+... (aﬁﬁ()).

We suppose that the components I enter into the polar curve I (f) with
m.ultiplicity one. This means that the critical points of the function f—ez (€#0),
lying in the component I;, are non-degenerate. In the opposite case the proof
must be altered somewhat. We write down the Puiseux expansion of the image of
the I'; under the map (f, z): (C", 0)—(C?,0) in the form

z=z()=t*, f=f(O=at™+...

(a series of integer powers of the variable #), where ¢ is a uniformizing parameter.

We have o; =m/k. The number g is equal to the number of (non-zero) roots of

the equation f;’ —ez;, tending to zero as ¢—0. The number v, is equal to the

;umber of roots of the equation z(f)=e¢. It is clear that y;=m—k, v;=k, and
ence

wilvi=(m—k)k=a,—1,

which is what we were trying to prove.
Km.)wledge of the polar curve of a singularity allows us to observe the
behaviour of the critical points and critical values for perturbations of a special
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form. For example we consider a small perturbation
F=f+G—ef

of the function f +z2. The critical points of the function F,}ic on tl‘le po_lar curl:e
I,(f) of the singularity f. We consider those critical points wlrfxch h: on th :
c(z)mponent I; and tend to zero as g—0. They can be determined from

equation (F).lr,=0. We have
a2 +2(z —&)+o(z#"H=0.
For &;>2 it follows from this that
z=e+0@"Y), F,=ag"+o(").

The number of such critical points is equal to v;.
For o;=2, a;# —1 we have

z=¢/(@+1)+o(), F =&a;/(a;+1) +o(&?).

iti ints i ual to v;.
The number of such critical points is also eq : o

For a;<2 we have to a first approximation f, =2¢, which is the same ?s th;
equation defining the critical points of the function (f—2¢z). The number of suc

critical points is equal to p;. We have
2=2¢/(@ao))!® '+ ... =0(e).

Therefore F,=¢&+o0(&).
From this follows

Lemma 3.6. If a;# —1 for a;=2, then the Milnor number p(f+2*) of the

singularity f+2* is equal to

Z it 2 V.

itay<2 ita; 22

Corollary.

p(f+2)<p(fli=0)s

p(f+22)=p(flz=o) if and only if a;>2 for all i.
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Itisnot hard to show that if f € m*, that is if the Taylor expansion of the germ f
does not have terms of degree <k, and if the linear function zis chosen in general
position then o; 2>k for all i.

In order to determine the intersection matrix of the singularity f, we need to
know the intersection matrix of the singularity (f+2z?) with respect to a
distinguished basis of a special form. We describe this basis. Let A be the set of all
distinct values of the index «;. From the asymptotics of the critical values of the
perturbation

F=f+(z—¢f

of the function f+ z* described before Lemma 3.6, it follows that for sufficiently
small ¢ 0 we can choose positive numbers 7, and 7% for x=2 and for xe 4, a > 2
with r; <rg for a > B, such that the critical values of the function F, at the critical
points belonging to the component I'; with a; =a > 2 are contained in the annulus

{wre<|ul<rg},

and the critical values of the function F, at the critical points belonging to the
component I; with a;=a <2, are contained in the annulus

{urs <|uj<ry).

Let o(r) be a continuous monotonic decreasing function such that o(r)=a—1
for ru<r<rj;. We let

Va={u:argu+2no(ju) 2n(2m-1)},

where m=1,2,..., —z<argu<n. We suppose that (—a)*¢R., where
% =p;i/q:, (Pi, g) =1 (R is the positive half-axis). In this case the critical values
of the function F, do not belong to the half-axis R _, nor to the boundaries of
the regions ¥,,. We consider a system of paths joining the critical values of the
function F, with the non-critical value 0, which defines the distinguished basis of
vanishing cycles in the homology of the non-singular level manifold of the
singularity f+ z>. We require of this system of paths that all paths intersect the
half-axis R _ only at zero and that all paths leading from those critical values of
the function F, which belong to the region ¥,, are themselves contained in ¥,. In
particular, we can choose, as such a system of paths, a system of line segments
joining the critical values of the function F, with zero. One of the principal results
of the work {119] is the following.

gt A e A 0 e L




The topological structure of isolated critical points of functions

Theorem 3.19. Let {4;} be the distinguished basis of \tanishing cyc':;’t:. f(fr the
singularity f+ 22, defined by the system of p.aths descnbid above. . en: yf
1. There exists a distinguished basis of vanishing cycles {47} for the singularity
with the following intersection numbers:

(A7 0 A7) =(4;04y),

(AT o 47)=(m —m)*" 1 for |m' —-m|=1,

(ATo 47)=(—~1)"(4;04y) for |m' —mi=1, (m' —m)(j’ =) <0,

(A;‘oA}")=0 for |m'-mj>1 or (m'—m)(i’—j)>0;

Here the pair (m, j) is admissible (that is there corresponds to it a vanishing

. . . . . V .
2 = j l s

singularity /- bility of the pair (m, ) can be reformulated in the

3. The condition of admissi o . where the
: . i t irs from (m, j) are admissible, where
following way: for each i the first y; pair omponent I of the polar

cycle 4; vanishes at a critical point belonging to the ¢
curve I.(f)-

There are analogous links between the inte-rsectionvr_natnoe.s of T;l:e ?nigl:;
rities f and f'], = o in the case when f|; =0 ha_s an 1so}ated s gulanty-. ‘ ca:v::‘ tos
G,=f);=.is a small perturbation of the sm.gulanty fli=0- The cr;f: atues of
the function G, at the critical points belonging to the component I, are &q

a;e"+o(e™)

as ¢—0. Consequently, for sufficiently small ¢ we can choose positive numbers r;

and 7~ for all ae A4 in such a way that

r.<r, forall ae4,

ri<ry for a>p

and the critical values of the function G, at the critical points belonging to the

curve I; with «,=a-are contained in the annulus

{u:ri<lul<ra}-
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We define the function o(r), the regions ¥, and the system of paths joining the
critical values of the function G, with the non-critical value 0 in exactly the same
way as for the function F,, the only difference being that we include all a € 4, and
not only a=>2. Let {Z ;} be a distinguished basis of vanishing cycles for the
singularity f|, -, defined by such a system of paths, let {Z ;1 be the corresponding
distinguished basis of vanishing cycles (defined by the same system of paths) for
the singularity f|,.o+2%, which is stably equivalent to the singularity f|,-o.
The connection between the intersection matrices of the singularities f|, - and
flz=0+2* with respect to the distinguished bases {4]} and {4,} respectively is
given by Theorem 2.14 of §2.8.

Theorem 3.20. Suppose that the germ f|, _, has an isolated singularity at zero. In
this case in theorem 3.19 the singularity f+2z* and the distinguished basis of
vanishing cycles {4;} can be changed into f1,_o+2> and {4} respectively.

Theorem 3.20 reduces the problem of calculating the intersection matrix of the
singularity f of a function of n variables to the problem of calculating the
intersection matrix of the singularity f|,_, of a function of n —1 variables with
respect to a distinguished basis of a special type and indices «; for the
components I; of the polar curve I,(f). The results of the caiculation for the
majority of the singularities classified in Chapter 15 of Volume 1 are summarised
in tables displayed below. Here the intersection matrix of the singularity f|,-,
with respect to the distinguished basis {Z i} and consequently also of the
singularity f, - + z* with respect to the distinguished basis {Z ;} is defined by one
of the following D-diagrams:

——

1 2

for a singularity f from the series J and E;

1 3 2

for a singularity f from the series X, Y, Z and W;

for a singularity f from the series Q, S, T and U.
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In the right-hand column of the tables are displayed numbers
M,,.... M, (¢ =p(fl.=0)), where the natural number M; is defined so that
in the dlsungmshed basis {A"‘} of the singularity f there are cycles A7 with
1<sm< M,

Singularity My,....M,

3k+i—1, 3k—1
3k, 3k

3k+1, 3k
3k+1, 3k+1

ak -1, 4k —1, 4k+p—1

4k+r—1,4k+s—1,4k -1
4k—1, 4k +3i—p—1, 4k+3i—1
4k+3i, 4k -1, 4k +3i
4k+3i+1,4k—1, 4k+3i

Zhrsitr 4k+3i+1, 4k—1, 4k+3i+1

Wia 4k 4k, 4k

Wi+ 4k+1, 4k, 4k

Wai 4k +1, 4k+1, dk+i+1

Wire-1 4k+q+1, 4k+gq, 4k+1

Wizg 4k+q+1, dk+q+1, 4k +1

Wizk+s 4k +2, 4k +1, 4k +2

Wiak+s 4k+2, 4k+2, 4k+2

O 2,2,3
QOor+a 2,2,3
Osi+s 2,2,3
Qe +6 2,2, 3k+1, 3k+1

Si2x-1 2,4k -1, dk—1, 4k -1

Siae 2, 4k, 4k —1, 4k —1

Sai 2, 4k, Ak, 4k +i

Si2q-1 2, 4k +gq, 4k +q—1, 4k
Siaq 2, 4k +q, 4k +q, 4k

Siz+a 2,4k +1, 4k, 4k +1

Siak+s 2,4k +1, 4k+1, 4k +1
Toar © op-1,q-1,r-1,2

Ui 3k, 3k, 3k, 3k

Ui2g-1 3k+gq, 3k+4q, 3k, 3k+1
Us24(g>0) 3k+q+1, 3k+q, 3k, 3k+1
Usak+a 3k+1, 3k+1, 3k+1, 3k+1

k-1, 3k+i-1

For singularities of corank 2 (that is for singularities from the series J, E, X, Y,
Z and W) analogous diagrams can be easily obtained by the methods of
Chapter 4.
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3.8 Intersection forms of unimodal and bimodal singularities

In Chapter 15 of Volume 1 we derived the classification of unimodal and
bimodal singularities of functions. Here we shall derive results on their quadratic
forms.

The D-diagrams of unimodal singularities and their monodromy groups were
calculated by A. M. Gabrielov [118]. They can be obtained using the results
givenin §3.7. We denote by p, , uy and u_ the positive, zero and negative indices
of inertia of the quadratic form of the singularity, that is the number of positive,
zero and negative diagonal elements in a diagonalisation of the intersection form
of a singularity stably equivalent to the glven one and depending onn=3 mod 4
variables (u, +po +p- =p).

Theorem 3.21. The D-diagrams of the parabolic singularities Pg, X, and J,, with
respect to some weakly distinguished bases have the form

For these singularities u, =0, po=2.
The D-diagrams of the hyperbolic singularities T, , , have the form

For these singularities u, =po=1.
The D-diagrams of the 14 exceptional unimodal singularities have the form
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Here (k, I, m) are the so-called Gabrielov numbers of the singularity (see the
introduction to Part I of Volume 1), p=k +/+m. For these singularities 4 =2,

Ho=0:

Between the Gabrielov numbers (GN) and the Dolgachev numbers (DN; see
the introduction to Part II of Volume 1) of the exceptional unimodal
singularities there is a “‘strange duality”, expressed by the fact that the GN of
each singularity is the same as the DN of some (generally speaking different)
singularity, and the GN of the latter is the same as the DN of the former. An
explanation of this duality was given by Dolgachev and Pinkham ([97], [290)).
They showed that the DN of a quasihomogeneous unimodal singularity in some
sense are its GN at infinity and vice-versa.

The quadratic forms and D-diagrams of bimodal singularities in two variables
and their indices of inertia can be easily obtained by the methods of Chapter 4.
For bimodal singularities of three variables the D-diagrams were obtained by A.
M. Gabrielov (see §3.7) but they are not convenient for the computation, for
example, of the indices of inertia of their quadratic forms. The indices of inertia
of quadratic forms can be obtained by using two general results which are due to
Steenbrink. One of these gives a way of calculating the inertia indices of the
quadratic forms for quasihomogeneous singularities.

Let f:(C",0)~(C,0) (=3 mod4) be a quasihomogeneous singularity with
weights w, ,. .., w, and degree 1 (this means that

fGse o x)=2ap, g X0

where X w;B;=1), having an isolated critical point at the origin. We set

R CRCRE

Let the monomials x* (j=1,2,...,y) generate a basis of the local ring
J=,0/(8f]dx,) of the singularity f. We denote by [c] the integral part of c.

Theorem 3.22 ([341]).

p =the number of a?: (V)¢ Z, [{(@?)] is even;
p— =the number of a: I(@")¢Z, [[(aP)] is odd;

jlo =the number of a¥: I(@P)e Z.
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This assertion in the form of a conjecture was previously formulated by V. L.
Arnold (see [150]).

Among the bimodal singularities some (but not all) have a quasihomoge-
neous representation. For these singularities Theorem 3.22 gives u, =2, o =0.
To calculate the indices of inertia of the quadratic forms of the other bimodal
singularities we use the following facts.

Theorem 3.23 ([356]). Let f;(x) be a continuous deformation of the singularity
Jo:(T,0)—»(C,0) (€0, 1]),

with u(fo)=pn, u(f)=p' for 0<t<1. Then u>py' and the homology group
H,_,(V; 1;Z) of the non-singular level set ¥, of the germ of the function f,
near z.zro has a natural inclusion in the homology group H,_,(¥,,.; Z) of the
non-singular level set F; ; of the germ f;,. Moreover a distinguished basis of the
group H,_,(V,.;Z) can be expanded to a distinguished basis of the group
Hy_y (Vo3 2).

Theorem 3.24 ({342]). For any singularity u . + u, is even.

From these results we infer

Theorem 3.25. The quadratic forms of all bimodal singularities have the
following indices of inertia: u, =2, yp=0.

| 0 .
- ———— . " o . ar————




Chapter 4

The intersection matrices
of singularities of functions
of two variables |

The method of calculating the intersection matrix of a singularity of a function of
two variables described in this chapter is due to S. M. Gusein-Zade ({1471, [148])
and N. A’Campo (7], [8]). It applies to all singularities of two variables. Usingit
allows us substantially to simplify many calculations connected with the
quadratic form of a singularity (for example, the calculation of its signature).

4.1 Intersection matrices of real singularities

The intersection matrix of a real singularity of a function fof two variablescan be
determined by the (real) zero level curve of a perturbationf of the function of a
special type.

Let f(x,y) be the germ of a real (that is taking real values on R*cC?)
holomorphic function (€?, 0)—(C, 0) which has an isolated (in the space €?)
critical point at zero. We suppose that there exists a real perturbationf of the
function f such that all its critical points (into which the critical point 0 of the
function f bifurcates) are real and non-degenerate, and that the values of the
function f at all the saddle points are zero. It is not difficult to see that in this case
the values of the function f at all minima are negative, and at all maxima are
positive. If such a perturbation exists, then the intersection matrix of the
singularity fcan be determined from the real curve { f (x,y)=0} in the plane R2
In order to formulate the corresponding results, we introduce some definitions.

Let us be given in the (open) disk D in the plane R? a real curve {(closed in the
topological sense), which has as singularities only a finite number of simple
double self-intersections and which approaches transversely the boundary circle
of D. The curve / gives rise to symmetric and antisymmetric integral bilinear
forms on a lattice according to the rules described below.

Each connected component of the complement of the curve / is a curvilinear
polygon. In such a polygon some pairs of vertices can coincide (as in figure 32).
We divide the set of components of the complement of the curve linto two classes
(the first and the second) so that two components with a common side are in
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flifferent classes. Such a division into two classes is possible and unique modulo
interchange of the two classes. We assign to each point p; of self-intersection of
the curve / the formal generator 4}, to each relatively compact in D (that is having
no boundary points in common with the complement of D) component of the
complement of the curve / from the first class (U?) the formal generator 42, and
from the second class (U?) the formal generator 42. We denote by n:(; U, i)
(respectively n,, (k,j)) the number of vertices of the curvilinear polygon 2]"
(respectively U?) coinciding with the point p;. The numbers n,0(j, i) and n,, (k. ;)
can take the values 0, 1 or 2. We denote by m,, (k, i) the number of commonledg,es
of the curvilinear polygons U and U?. So, for example, in figure 32, n,0=1, 1y

=2, my =1 (i=j=k=1).

Fig. 32,

We c?nstruct on the generators {45} an integer lattice and will suppose that
the basis 4%, 4}, 47 is a distinguished basis of this lattice (the order of the
elements 47, with the same o is immaterial). The division of the components of
the complement of the curve /into two classes is used only for fixing the order of
the elements 4%, in the distinguished basis.

Deﬁmtion The quadratic form corresponding to the curve |l is defined by the
following table of scalar products of the generators:

(4n04%)= —20mw,
(40 4))=ny0(),d),
(4} 0 8)=ny (K, )),
(4 0 8= —myo(k, ).

Definition. T!xe antisymmetric bilinear form corresponding to the curve lis defined
by the following table of scalar products (the fact that the notation is the same as

o —— A~ —— -
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in the previous definition will not create confusion):

(4n045)=0,

(4} 0 A2y =ny(, 1),
(4 0 4 =ny, (k. ),
(40 0 Ay =myo(k, d).

(here if we interchange the arguments the scalar product changes sign.)

By the D-diagram of the curve / we shall mean the D-diagram of the
corresponding quadratic form. Its vertices correspond to the self-intersections of
the curve /and the relatively compact in D components of the complement of the
curve I. The rule for joining vertices follows from the table of intersection
numbers. For example, the D-diagram of the curve / in figure 32 is depicted in
figure 33. We remark that this diagram is not the D-diagram of any singularity.

40

al a
Fig. 33

Let f be the perturbation of the singularity f described above, that is such that
all the critical points of the functionf (into which the singularity f bifurcates) are
real, and the values of the function f at all saddle points equal zero. In this case
the real curve {7 =0} (in a small disc D with centre at zero) has only simple
double-intersections. We shall say that a component of the complement of this
curve is of the first class if the function f takes negative values on it, and of the
second class otherwise. The critical values of the function f(x, y)(or, whichis the
same thing, the function of three variables f(x, y)+ ¢*) by assumption lie on the
real axis in the plane € of values of the function_?. We choose a zp such that Im z,
>0, and fix a system of paths joining the non-critical value z, with the critical
values of the function f, subject to the condition that these paths lie in their
entirety in the upper half-plane Im z > 0 except for the ends which coincide with
the critical values. We remark that the critical points of the functionf are in one-
one correspondence with the self-intersections of the real curve {7 =0} and the
relatively compact components of its complement, because in each such
component there is exactly one critical point of the function f (maximum or
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minimum). Having fixed a system of paths in this way, we define distinguished
bases of vanishing cycles in the homology of the non-singular level manifold of
the singularities f(x, y) and f(x, y)+¢2. We shall denote these bases also by
{4%}. Here the cycles 4} vanish at the saddle points p; of the function f, the cycles
A} at the minima, lying in the components UP and the cycles A2 at the maxima,

lying in the components U2. ,

Theorem 4.1. The intersection form in the homology of the non-singular level
manifold of the singularity f(x,y) with respect to the above-described
distinguished basis {47} coincides with the antisymmetric bilinear form
corresponding to the real curve {_7:0}, and the intersection form of the

singularity of three variables f(x, y)+ ¢? with the quadratic form corresponding
to the same curve. '

Examples.

(i() Lelt) f I(:l, y)=x"+y" The multiplicity of this singularity is equal to (m —1)
-(n—1). Put

F 06, y)= A" (T (A~ x) +- 2" T (A~ ™20 MIny),

Hem T.(x)=2"""cos(n-arccos x) are the Chebyshev polynomials. It is not
diffcult to see that the perturbation f of the singularity f satisfies the conditions
of Theorem 4.1. The curve {(x,»)eR?: f(x,y)=0} and its D-diagram are
depicted in figure 34 in=6, n=5). For m=k+1, n=2 we get, as in §2.9, the
classical Dynkin diagram A,, but with the vertices in a different order.

. T
N ]
N
“Tn
2 4
’ ~
% 3

Fig. 34,

@) f '(x, »)=x(x*"?—?) is the singularity D, k >4. Its multiplicity is equal
t_° k. Itis n9t difficult to choose a perturbation f of the function f, the zero level
line of which (for k=9) is depicted in figure 35 (for this we can take the
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perturbation of the function x*~2—y?, similar to the one described in .the
previous example, and multiply it by (x —22%)). Its D-diagram is the classical
diagram Dy.

<
™~

Fig. 35.

(i) f(x,3)=x>+xy*=x(x*+y) is the singularity E,. A perturbation,
satisfying the conditions of Theorem 4.1 is

7 ) =(x+ 2232 +y* =y —24[3)/3).

The curve {7=0} and its D-diagram are shown in figure 36.

Fig. 36.

A shortcoming of Theorem 4.1 is that generally it is h?.rd to choose a
perturbation f satisfying its conditions. In addition the diagrams of such

singularities as, for example,
Es(+y*), E; and Eg(x*+5°)

for the most natural choices of perturbation turn out to be different ﬁ.'om their
classical forms and require a transformation. It turns out that it i.s simpler to
construct not a perturbation of the function but a perturbation .of its zero le'vel
line. A description of the corresponding procedure will be given in the following
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sections. The result formulated below allows us in some degree to remove the
second of the above shortcomings. '

Let the curve / be the same as before. If we divert our attention from the self-
intersections, then the curve / consists of several circles and intervals. This means
that there exists a proper non-degenerate map y:L—D of a one-dimensional
smooth manifold L to the disc D such that Im y =1/, and y maps L to ! bijectively
outside the singular points of the curve / (the self-intersections). Let y,: LD
(te[0,1]) be a homotopy of the map x (y=yo) in the class of proper non-
degenerate maps, constant on the preimage of the boundary circle of the disc D.
If x, is a homotopy of general form, then the type of the curve Im y, (as a one-
dimensional smooth submanifold of the disc D with simple self-intersections)
will change for a finite number of values of the parameter ¢. For these values of
the parameter ¢ we will get one of three types of bifurcation:

1) two points of self-intersection of the curve Im y, come together and vanish
(figure 37, at the exceptional value of the parameter the two branches of the curve
Im y, simply touch);

_',q»'?ﬁ»_/_\—

Fig.37.

2) there appear two new points of self-intersection (this type of bifurcation can
be transformed into the previous one by changing the direction of the param-
eter 7);

3) three points of self-intersection of the curve Im y, come together and then
separate again (figure 38, for the exceptional value of the parameter there
appears on the curve Im y, a point of threefold intersection).

[} (]
) )
" Fig. 38.

Other types of bifurcation of codimension one are absent, in view of the fact
that a non-degeneracy condition (its differential not mapping to zero) has been
imposed on the function y,. For the first two types of bifurcation the total

" e - —— A > -
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number of points of self-intersection of the curve Imy, is not preserved, and
therefore the dimension of the integer lattice corresponding to it changes. For a
bifurcation of the third type the dimension of the lattice is preserved. It can be
shown that if all bifurcations of the curve Im x, correspond to the third type, then
the bilinear form corresponding to the curve Im y, also does not change. We get
only a change of basis of the lattice on which it is defined.

Definition. The homotopy ; is said to be admissible, if for each value of the
parameter te[0, 1] there do not exist points h; #h, of L for which

xe(hy)= x:(h2),
Imdy(h)=1Im dy.(h2)

(dy, is the differential of the curve x,) and in addition the curve Imy, has
only simple double self-intersections.

It can be shown that an admissible homotopy is 2 homotopy for which all the
bifurcations of the curve Im , are of the third type (andt=1isnotan exceptional
value of the parameter, that is there is not a bifurcation of the curve there). If x, is
an admissible homotopy, then the curves Im o =/ and Imy, have the same
number of self-intersections (and also the same number of components of the
complement). Therefore the integral lattices corresponding to these curves have
the same dimension.

Theorem4.2. Let y,: L-»Dbe an admissible homotopy. Then the symmetric and
antisymmetric bilinear forms, corresponding to the curve Imy, can be obtained
from the forms, corresponding to the curve Im yo =1 with the help of the
operations of change of distinguished basis.

For the proof we can display explicitly the change of basis which corresponds
to one bifurcation of the curve Imy, of the third type. We transform only four
vanishing cycles, corresponding to the three points of self-intersection of the
curve which come together in this bifurcation, and the curvilinear triangle with
vertices at these points, which is a connected component of the complement
of the curve Imy,. An explicit form for such a change of basis can be ob-
tained for one example in which the corresponding homotopy 2, can be realised
as a deformation of the perturbation f of the singularity (for example, for
ﬁ(x, y)=xy(x+y+1); the exceptional value of the parameter being ¢ =0). The
set of paths defining the distinguished basis in this case were described in the
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formule‘mon of Theorem 4.1. The parameter ¢ going out into the complex region
and going half way round the exceptional value =0 allows us to observe the
transformation of the corresponding system of paths.

Let =1, be the value of the parameter for which there is a bifurcation of the
curve Im X of the third type. For definiteness we shall assume that for t < ¢, the
triangle with vertices at the three converging points belongs to the first cla(;s of
components of the complement of the curve Imy, (corresponding to the
components on which the perturbation f takes negative values). For ¢> ¢, the
ana?ogﬁous triangle will belong to the second class. Let A4, 441, 4 bz the
vanishing cycles corresponding to the three points of self-inte;sec;ior';,+12et Ap+3

be the cycle corresponding to the triangle with vertices at these points. Then the
sequence of operations

ﬂm+3’ ﬂm+2’ ﬂm+1’ Bll+l’ ﬁm+2, ﬂm+3a ﬁn+3, ﬂm+2, pnd-l

is equivalent to the above bifurcation of the curve Im y,.

As examples of the application of Theorem 4.2 i
° .2 we show in fi
rgducuon of the D-diagrams of the singularities tgure 3 the

E’G(.X3 +y‘), E7(X.3 +xy3) and Es(x3 +y’)

fls::l ;;(::;?les (i) and (iii)) to classical form with the help of an admissible

Thus we have completed the proof of Theorem 3.14 of § 3.6.
. A small modification allows us to adapt the above method of calculating the
intersection matrix of a singularity of two variables for a boundary singularity
(see Volume 1, § 17.4) and prove that the D-diagrams of the singularities B,, C,
and F, are the classical diagrams of the corresponding Lie algebras, and :inei:
monodromy groups (for the case of an odd number of variable’s) are the
corresponding classical Weyl groups (§ 5.2).
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42 Gerns of complex curves and singularities of functions
of two variables

Let f:(€2,0)—(C, 0) be the germ of a holomorphic function with an isolated
critical point at zero. The germ of the curve

M(f)={xe@:f(x)=0}
may be reducible. Let
M(f)=VYi M,

be its representation as a union of irreducible components. For each of the germs
of the irreducible complex curves M; there exists the germ of a mapping

¢::(C;, 0~(C*,0)

(the uniformization) such that Im ¢;= M; and ¢, is an isomorphism of the curv«?s
€, and M, away from zero. The germ ¢; is defined modulo germs of holomorphic

isomorphisms
(Ch 0)-"(«:;, 0)

(a change of uniformizing parameter). For small perturbations ¢; of the
maps ¢; in general position the complex curve

Ul=1 Im $i

(in a neighbourhood of zero) has as singularities only simple double point§. Their
number, which, of course, does not depend on the choice of perturbation, we

denote by s=s{¢;} =s(f)

Lemma 4.1. The multiplicity of the singlﬂarity fis equal to

r(N=2s(N)—(—1).

The problem of calculating the intersection matrix of an arbitrary singular?ty
of a function of two variables can be reduced to the case of a real singularity with
the help of the following result.
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Theorem 4.3. For any set of germs of maps {¢,} (¢ : (T;, 0)—(C?,0), ¢; maps T,
in a one-one fashion onto its image and Im ¢:#Im ¢; for i#j) there exists a
set of real germs of maps {y,}, lying in the same connected component as ¢;of the
set s=const in the space of all sets of r maps (T;, 0)—(C2,0).

The mappings (or curves) {¢;} and {y;} have the same Puiseux pairs and
the same pairwise orders of tangency, which gives us a way of constructing the
maps {;}.

Corollary. For any singularity of a function of two variables there exists a real
singularity, lying in the same connected component of the set u=const in the
space of all germs of functions (€2, 0)—(C, 0) and having therefore the same
intersection matrix. :

For singularities of a greater number of variables analogous results have not
been proved.

If all the maps ¢, are real and there exist real perturbations @; of them such that
the curve

Ul=1Im @,

has only simple double points and all these s points are real, then the D-diagram
of the real curve

(Vi Im )N R?

is the D-diagram of the singularity f, corresponding to the set of maps
{#:li=1,...,r}. It follows from this that the perturbation f of the singularity f,
corresponding to the perturbations {¢;} of the set of mappings {¢,}, satisfies the
conditions of Theorem 4.1.

Theorem 4.4, For any set of germs of real maps {¢;} (¢, : (T;, 0)—(C?, 0)) there
exist real perturbations {@,} for which the curve

U= Im 6(

has only simple double points and all these points are real.
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We remark that both existing proofs of this theorem have a constructive
character, that is they contain ways of constructing such a perturbation. One of
these ways (more convenient for exposition but not more effective) will be
described in § 4.3.

From Theorem 4.4 it follows that if £ (€2, 0)—(C, 0) is a real singularity such
that the curve { f=0} is real (that s all its irreducible components are real), then
there exists a real perturbationf of it, satisfying the conditions of Theorem 4.1,
that is having only non-degenerate real critical points with the same critical value

at all the saddle points.
Almost in the same way this result can be proved for any real singularity of two

variables.

43 The resolution of singularities of fanctions of two variables
and the construction of their real perturbations

A resolution of the singularity of a function f: (€2,0)—(C,0) (or of the
curve {(x,):f(x, ¥)=0}) can be constructed with the help of a sequence of
O-processes.

We consider the complex vector space €" and the point 0 in it. The g-process
with centre at the point 0 is the map

o:I"-C"

of an n-dimensional complex manifold IT", which is constructed in the following
manner: outside the preimage of the point 0€ C" the map ¢ is an analytic
isomorphism, the preimage ¢~*(0) of the point 0 is an (n—1)-dimensional
complex projective space CP" ™! (projectivisation of the space C®), which is glued
to the complement

M\ (0)~C"\0

so that the line in the space €, passing through zero is pasted to that point of the
projectivisation €P"~! of the space €* to which it corresponds. Thus, the
manifold IT*is obtained from the space €* except that in place of the point 0 there
is an (n —1)-dimensional projective space CP" .

The o-process with centre at zero in the space €* can be described in the
following manner. Let

(C\0)»cp*!
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t?e the projectivisation map, mapping each non-zero vector in the space €" to the
line generated by it. We consider the graph of this map as a subspace of the
product €"x CP"~*. It is not a closed submanifold of the space €*x CP" 1.
However it can be shown that its closure IT” is a non-singular n-dimensionai
closed submanifold of the product €*x CP"~!. The natural projection

nmo ¢ xCpP* ¢

is a one-one mapping away from zero of the space €*. The preimage of zero is the

projective space 0 x €P" . The map IT"—C" is a a-process with centre at zero in
the space C".

Another (coordinate) description of the manifold IT* is the following. Let
X1,...,X, be the coordinates in the space €", and let u,:...:u, be the
corresponding homogeneous coordinates in the complex projective space
CP""". Let IT" be the subspace of the product € x CP*~! given by the equations

xiuj=uixj (1 Sisjgn)a

(Jfl,. . ..,x,,)eC", (4 :...:4,)eCP" . We shall show below that IT" is an n-
dimensional manifold. We denote by

o:II"SC*xCP" 1-»C"

th-e projection onto the first factor. If x=(x,,...,x,)#0, then the preimage
6~ (x) of the point xe C" consists of the one point

(K15 ees X Xy teniXn)

- Therefore outside the preimage of the point 0 e C* the map ¢ is an isomorphism

™\ 1(0)»C"\0.

The preimage of the point 0e €* is the space 0 x CP*~*, which is isomorphic to
the space CP* 1.
Let L be the lir'le in the space €" passing through the points 0 and (x3,. . ., x9).
It consists of points of the type (1x3,. . ., tx3) (te €). The preimage o~ *(L\ 0)
of the line L without the point 0 consists of points of the product € x CP"~! of
the form

@x),...,.0x8;x0:. ... x0) (¢#0).




126 The topological structure of isolated critical points of functions

Therefore the closure of the space ¢~ (L\\0) is the line

{@},...,ex3; 0. .. 2} xCP L

This line passes through the point (0,. . .,0; x7 :. . . :x7) of the preimage ()]
=0xCP"*"!, corresponding to the line L.

In order to show that the space IT* is a non-singular complex manifold, we
consider it at a neighbourhood of the point

©,...,0;u:...:u)eC"xCP*" 1.
Let, for example, 4§ #0. Since # . . . :u, are homogeneous coordinates in the
space CP*~*, we can assume that 1} =1. Let €~} < CP"! be the affine part of
the projective space €P"™! given by the condition u;=1. In the Part
€ x €~ of the product €* x CP*~* the space 1" can be given by the equations

x=x14 (j=2,...,n).

From this it can be seen that the space
mnE@xc;)

is isomorphic to an n-dimensional complex vector space Yvith coorfiinatcs
Xy,4,. . -,u, and is therefore non-singular. From the equatl?fls defining the
space IT" it follows that in the part defined by the condition u1=1., the
coordinates #,, . . ., 4, are expressed in terms of the coordinates x,,. - ., X, in the

space €" by the formulae
u,=x,/x1 (j=2,. .o ,n);

Tt is not difficult to show that the above construction does not depend on the
choice of coordinates xy , . . . , X,in the space € and is therefore applicable to any
complex analytic space and a non-singular point of it. To prove this we need to
verify that any local complex analytic isomorphism (C",0)—(C",0) hfts toa
complex analytic isomorphism I1"—IT" in a neighbourhood of the preimage
¢ 1(0)=CP* . ' _ .

Now let n=2, let f: (€2, 0)—(C, 0) be the germ of a holomorphic function with
an isolated critical point at zero and let

M={(x,y):f(x,y)=0}
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be the germ of a complex analytic curve in the space €2. Under the o-process
o :I1*-C? with centre at zero, the projective line CP! cI1? with coordinates
(u:v) is glued in place of the point 0 2. In this case the composition fo ¢ is a
holomorphic function on a neighbourhood of the space ¢~1(0) in the manifold
IT>. The function f o o will, generally speaking, have non-isolated critical points.
It is zero on the glued-in projective line € P! = 112, moreover the line CP* lies in
the divisor {foo=0} with multiplicity equal to the degree m of the germ
f:(€?,0)~(C, 0). This means that in the neighbourhood of the point

(1:0)eCP'cI1?,
given by the condition u=1, the function fo¢ has the form
foa=x"' ‘g1,

where g, is not identically zero on the glued-in projective line CP!. The degree m
of the germ f is the least of the degrees of the monomials occurring in the
expansion of f with non-zero coefficients. We have an analogous relation
(foo=y"-g,) in the neighbourhood of the point (0:1) e CP* =IT?, given by the
condition v=1. Therefore we need to consider as singularities of the function
JSoa not all the points at which its differential equals zero. There are too many
such points and among them the majority are such that in a neighbourhood of
them the function fo ¢ is equivalent to the function x™. We need to consider only
the points at which the function g, (or g,) takes the value zero. However g, (or g,)
is a function on the part of the manifold /1 defined by the condition that one of
the coordinates is not equal to zero. To define it on the manifold I7? in an
invariant way is not possible (without considering it as a section of bundle).

~ In order to avoid difficulties of this sort, we shall consider not the singularity
of the function f: (€2, 0)—(C, 0), but the singularity of the germ of the curve
M ={f=0}. In accordance with §4.2, we can replace the problem of construct-
ing a real perturbation of the function f, necessary for the definition of its

intersection matrix, by the problem of constructing a real perturbation of the,
curve M. Let

M=yi-1 M,

be the decomposition of the germ M into irreducible components. Each of the
curves M; can be given by an equation f;=0 of degree m, (where

S=Mi.,f;, m=X[..m).
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We consider temporarily one of the irreducible curves M; (the index i will for
the present be omitted). As we said above, there exists a germ of a map

¢:(C,0)—~(C%,0),

the image of which is the germ M and which away from zero is an isomorphism
C\0—»M\0. The map ¢ is given by the formulae

x=x()=at™+..., y=y(O)=b"+...,
where the dots denote the sum of terms of higher degree (t is a coordinate on the
line €, x and y are coordinates in the plane @C2; either a#0 or b#0). It can be
shown that the natural number m is the same as the degree of t.he germ of thc;
function defining the curve M. A linear change of coordinates in the space €

allows us to take away the term of degree m from the series y(2), that is to suppose
that

x(y=at™+..., y@)=b"+...

where n>m, a#0. After this the (local) change of coordinates

7='1/§6=f/5-"1/(?"—+_.—.3='175(t+ )
on the line € allows us to suppose that
x@)=1",  y@O)=bt"+... (n>m).
If n is divisible by m (n=km), then the change
F=x, j=y-bx*

eliminates the term of degree n from the series y(#). Therefore after change c.of
coordinates in the source € and in the target € we can suppose that the map ¢ is
given by the formulae

x@)=1", y@O=Y at* (n>m,a,#0),
k2n

where n is not divisible by m. Moreover the highest common fact'or of m, n and
those k for which a, #0 is equal to 1. It is not difficult to see that in this case the
curve M touches the coordinate line y =0. The equation of the curve M can be
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written in the form

y= Z a.x"""'.

kZn

The series

z a,‘.x)‘ /m

k2n

of fractional powers of the variable x is called the Puiseux series of the
curve M. The pair of natural numbers (n, m) we call the principal Puiseux indices
of the curve M.

For a fuller description of the germ M the set of so-called characteristic
Puiseux pairs is used. We take the ratio n/m as a fraction in lowest terms n, /m, .
The pair (n,, m,) is called the first characteristic Puiseux pair of the germ of the
curve M. If the highest common factor of the numbers n and m (which is equal to
m/m;)is equal to 1 (in this case, of course, m; =m), then this exhausts the set of all
characteristic Puiseux pairs. If m/m, > 1, then let

k,=min {k:a,#0, k is not divisible by (m/m,)}.
We put the ratio k, /(m/m,) in the form of a fraction in lowest terms n,/m, . The
pair (1, m,) is called the second characteristic Puiseux pair of the germ of the
curve M. If m/m;m, =1, then this second pair exhausts the set of characteristic
Puiseux pairs. If m/m;m, > 1, then let
ks =min {k:a,50, k is not divisible by (m/m,m,)},
k3/(m/mym;)=n3/m;, . ..
In the end we obtain a sequence of coprime pairs of natural numbers
(nl ’ m1)9 ("z, mz), crey (”p m')a
called the characteristic Puiseux pairs of the curve M. There are the relations:
my:...-mg=m, ny_ym; <n;.
It can be shown that the characteristic Puiseux pairs give a sufficiently detailed

description of the topology of the germ of the curve M. In particular, the germs of
curves with the same characteristic Puiseux pairs are topologically equivalent to
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each other and are the zero level manifolds of singularities of germs of functions
which are in one family u=const.

Let us observe what happens to the curve M under the action of the g-process
o : I1*-»@2. In the affine part of the manifold 112, defined by the conditionu=1,
the coordinates are x and y/x ((u:v) are homogeneous coordinates in the
projective line CP! < IT1?). From the formulae

x@®=t", y@O)=t"+...
it follows that in terms of the coordinates (x,v) on the manifold IT 2 we have
x(@)=1" v(@)=t"""+...

From this it follows that the preimage ¢~ (M\0) of the curve M without zero
under the g-process extends to the curve ¢~ (M) in the manifold IT%. The curve
o~ (M) intersects the glued-in projective line CP" at the point (1:0). From the
parametric equations defining the curve ¢ ~ (M) it follows that they have in some
sense a smaller degree than the equations of the curve M. If m <n<2m, then the
degree of the curve 6~ (M) (equal to n —m) is strictly less than the degree of the
curve M. If n> 2m, then the degree of the curve o~ ! (M) (equal to m) is the same
as the degree of the curve M, but the first of the principal Puiseux indices (n
—m,m) of the curve ¢~ 1(M) is less than that for the curve M.
In this way the singularity of the curve

M=0"'(M)

is simpler in the above sense than the singularity of the curve M. Carrying out
a g-process on the surface IT? with centre at the singular point of the curve
M=0"1(M), we obtain a surface f1? (6:1*—11*) and a curve

M=6"1(8)

on it, the singularity of which will be even simpler. The complex projective line
on the surface f12, which is glued in during this o-process will intersect
transversely the projective line, glued in during the first o-process, at one point
only. Repeating this process the requisite number of times, we arrive in the end
with the preimage of the curve M being non-singular.

Suppose now that the curve M is not necessarily irreducible

(M =Vl M)).
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Cax:rying out the o-processes at zero and then at the singular points of the
preimages of the curves M;, we arrive at a position in which all r preimages of
the curves M; are non-singular. This means that we obtain an analytic map

n:(Z, Zo)—(C?,0)

(a composition of g-processes) from a non-singular analytic surface Z into the
space €2 such that:

(i) the restriction of the map = to Z\ Z, is an isomorphism
ZN\Z,-»C\0;

(ii) the subspace Z,==""(0) is the union of complex projective lines on the
surface Z which are in general position;

(iii) the preimages n ™! (M) of the curves M; = €2 (the closures of 7~ 1 (M;\\0))
are non-singular curves on the surface Z. The fact that the projective lines from
.which the subspace Z, is constructed are in general position means that they only
fntersect each other in pairs, two projective lines either not intersecting at all or
intersecting transversely at one point.

The curves n~'(M,) can touch each other and also the glued-in complex
projective lines. It is not difficult to see that a s-process at a point of tangency of
two non-singular curves reduces the degree of tangency, and a o-process at a
point of their transverse intersection separates them, that is gives no inter-
section. Therefore, by carrying out a sufficient number of s-processes, we can
suppose that the curves n~!(M;) do not intersect each other and intersect the
preimage Z, of zero transversely at its non-singular points (that is not at points of
intersection of the glued-in projective lines).

We shall call such a map

n:(Z, Zo)—~(C,0)
a resolution of the curve
M={(x,y):f(x,y)=0}.
It can be proved that this map is a resolution of the singularity of the function fin
the sense of §3.5.
Let, for example, the curve M be irreducible and given by the parametric

equations

x=0, y=15

- - o, . o o e At . -




\
|

The topological structure of isolated critical points of functions
The o-process with centre at zero reduces it to a curve of the form

x=1, y=t%

The g-process at the singular point of this curve reduces it to' a nc?n-singular
curve, touching the glued-in projective line, this tangency being s1m¥)le. The
o-process at the point of tangency reduces to the situation where the ?remage (?f
the curve M intersects two glued-in projective lines at the point of their
intersection. Finally, the -process at this point of intersectipn at l.ast fedu.ces the
preimage of the curve we started with and all the glu.ed-m Pro_]ectlve hn?s to
general position (figure 40; for clarity the curve M andits preimage are depicted
with heavier lines and the glued-in projective lines are numbered in the order of
their introduction).

e

3

Fig. 40.

Another example (for the singularity of the function f(x,»)=x(x*+)?),
M=M,uM,, My={x=0}, M, ={x>+y*=0}) leads to figure 41.

O A

Fig. 41.

It is not difficult to prove that the multiplicity and cfonsequently the
intersection matrix of a singularity of a function corresponding to the curve

M=Ui.1 M,

is determined by which of the glued-in projective lines and preimages ‘of the
curves M, intersect each other and does not depend on the specific points at
which they (transversely) intersect. From this it fol!ows that as far as th'e
multiplicity of the singularity and its intersection matrix are concerned therells
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no harm in supposing that all the glued-in projective lines and preimages of the
curves M; are real (that is that all o-processes are carried out only at real points of
the corresponding surfaces, and the curves M, themselves are real). In the case of
figures 40 and 41 we depicted the real parts of the glued-in projective lines and the
curves M;.

The construction described above is in essence the proof of Theorem 4.3.

The contraction of one of the glued-in projective lines (the last in the order of
introduction) reduces us to the situation when several non-singular curves (glued-
in projective lines and preimages of the curves M) intersect at one point, pairwise
transversely. By perturbation it is possible to arrange that these curves do not
have more than simple intersections, and that the simple pairwise intersections
are all real (figure 42).

By contracting in this way all the glued-in projective lines (in the oppsite order
to their introduction in the resolution of the singularity) and at each step getting
rid, by perturbation, of more than pairwise intersections, we arrive at a
perturbation of the initial curves M; which have only simple double intersections
(both with themselves and with each other), all these intersections being real. In
this way we construct the perturbation of the curves M;, required for the
definition of the intersection matrix of the singularity in accordance with §4.2.

%.. \/}l}(

Fig.42.
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Fig. 43.
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For the singularities, the resolutions of which were depicted in figures 40 and
41, the corresponding construction leads to figures 43 and 44.

The above-described way of constructing a real perturbation has the
shortcoming that to carry it out we need to construct the resolution of the
singularity with the help of a sequence of o-processes, which is rathef a long
procedure. For example, for the singularity x™+ y", discussed in §4.1
(Example 1), this method requires numerous (although simple) cons'tructlons.
A more effective way is that based on induction on Puiseux pairs of the
singularity, although it is more difficult to describe.

4.4 Partial diagonalisation of the quadratic form of a singularity

We have already said that the possibility of representing the D-diagram of a
singularity of a function of two variables in the form of the D-diagram ot: areal
curve allows us to simplify significantly some calculations connected with the
corresponding quadratic forms (for example, the calculation of the inertia
indices). The intersection numbers of the (formal) vanishing cycles, corr_espond-
ing to the real curve / (see § 4.1) are connected with each other by relations of a
special form.

Lemma 4.2. The following equality holds:

2ny0(k, i) =Zyma (k, j)P100js §)-

The proof can be obtained from simple geometrical considerations.
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We embed the integer lattice with basis
a4, 4}, 4

in the real linear space R* with the same basis and we extend the quadratic form
(x0y) to the whole space R*. We define in the space R* a new basis

a,4;, 4
by the formulae

4
1
Zj
42
k

=43 +3Z(4304)) 4} .
Using Lemma 4.2 it is not difficult to verify that
@ 0 3)=(F 0 3) = (3} 029 =0,

In addition (4} 0 4}:)= —24;;.. Thus we have obtained a partial diagonalisation
of the intersection matrix.
It is not difficult to see that

A od))=—-2+% Z oG, DF,
i

@Fodp)=—2+} ¥ nn (k)P
3

lFrom this it follows that if among the regions bounded by the curve I (or a curve

obtained from it with the help of an admissible homotopy), there is even one
quadrilateral, then its quadratic form is not negative definite, and that if among
them there is a polygon with more than four edges then it is not even negative
semi-definite.

We shall demonstrate one application of this construction. For quadratic
forms on the lattice Z* it makes sense to talk about the determinant, since
the determinant of a change of basis in the integer lattice is equal to +1. We
denote by D(f) the determinant of the quadratic form, corresponding to the
singularity /. The determinant D(f) is equal to zero if the map

i}t :Hn—l(Vc)"Hn—l(Vn aVz)

. = T o . . e S o— ot =
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of homology groups induced by the inclusion ¥V, (V,,8V,) (for the singularity

f(x,y)+1?) is not a monomorphism and otherwise is equal, up to sign, to the
order of the cokernel

H,_y(V.,8V)mi,

of the map i, (the matrix of the map i, is also the intersection matrix of the
singularity).

Theorem 4.5. Let f: (€2, 0)—(C, 0) be a singularity of a function of two variables
and let r be the numbser of irreducible factors into which the germ of the function f
can be decomposed (that is the number of irreducible components of the curve
{f=0}). Then D(Y) is divisible by -t

In particular, if the function f is reducible, that is if r> 1, then the map i, (for
the singularity f(x, y)+¢*) cannot be an isomorphism.

Proof. In accordance with Theorems 4.3 and 4.4 (§ 4.2) we construct a set of real
maps §; : €;—C? (defined ina neighbourhood of zero) such that the D-diagram
of the curve :

(Vi-1 Im )N R?

is the same as the D-diagram of the singularity f. Let {4.} be the basis of the
lattice on which the quadratic form (xoy) is defined, corresponding to this
curve. The number of self-intersections s of the curve

(Uf=1Im 5:) NR?

is equal to the number of basic elements 4} . The number of remaining elements
of the basis (4 and 42) is equal to s — (r —1) (compare with Lemma 4.10f§4.2).
The transition matrix from the basis {42} of the integer lattice to the basis {47}
of the space R, described above, has determinant equal to + 1. Therefore D(f)
is equal to the determinant of the matrix of the quadratic form of the singular-
ity f with respect to the basis {43}. This determinant factors into the product of
three determinants:

(A%02), |(@io2}), and |(4jod})\
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Tl:e las: of these is equal to (—2)". It is easy to see that the intersection numbers
(4? 0 42) and (4% 0 4%) belong to the set of half-integers 4Z. Therefore

(42 0 A0\ - (A3 0 A}) €272+ ¢~V -7,
from which it follows that
D(f)=12*|(87 0 AD)| - (B} 0 A}

belongs to 2"~ 'Z, which is what we were required to prove.

. For example, for the singularity 4, (f(x, y) =x**! +)?) the determinant D(f)
is equal to (—1)*(k+1).

We give one more example of the application of the partial diagonalisation of

the q}xadratic form of a singularity of a function of two variables. We consider
the singularity of the function

Jxy)=x"+xy +y".
It is equivalent to the singularity of the function
P+ 02 + 7).

A re:al perturbation of the curve { f(x, ) =0}, which has only real simple double
self-intersections, is depicted in figure 45.

¥

[\
’bo

Fig. 45.
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The multiplicity of the singularity fis equal to 11. With respect to the basis
42, defined above, the quadratic form of the singularity f decomposes into the
direct sum of three quadratic forms. One of these, on a six-dimensional subspace,
generated by the elements 4}, is negative definite. The second, on the one-
dimensional subspace generated by the element A%, which in figure 45
corresponds to the quadrilateral U?, is zero. Finally the third, on the four-
dimensional subspace generated by the elements 49,. . ., 43, which in figure 45
correspond to the “monangles” and triangles UY,. .., Ug.

We have

(@ 0A)=(43042)=-3/2,
(2302 =(43023) = —-1/2,
(A 0A)=(430 49 =(43042)=1/2

(see figure 46, where we have shown the self-intersection numbers and inter-
section numbers of the basic elements A?, multiplied, for convenience, by two).

1 1 1
-3 -1 -4 3

Fig. 46.

Such a form is easily diagonalised and has its positive inertia index equal to 1 and
its negative one equal to 3. From this it follows that the quadratic form of the
singularity f has its positive inertia index p, =1, its zero one yo=1 and its
negative one pu_ = u —2=9. Therefore this singularity is hyperbolic in the sense
of Volume 1.

Chapter 5.

The intersection forms of boundary
singularities and the topology
of complete intersections

In this chapter we shall give a short exposition of some generalizations
concerned, principally, with the concepts of the intersection form and vanishing
cycles for singularities of functions on manifolds with boundary, for complete

intersections, ...
5.1 Singularities with the action of finite groups

Some of the concepts and results which we discussed in the previous chapters can
be generalised to the case when we consider the germ of a function

f:(€,0)~(C,0)
which is invariant relative to the linear action of a finite group G on the space C".
In addition, there. will arise on the way, in a natural manner, singularities

corresponding to the Lie algebras

Bk, Cg, F4 and Gz,

the root systems of which contain vectors of differént lengths.

Let us suppose that we are given a linear representation of a finite group G on
the complex vector space C*. The transformation of the space €*, corresponding
to an element g of the group G, we shall denote by 7. Let us suppose that

f:(€"0)—»(C,0) is the germ of a function, invariant under the action of the
group G, that is, such that

S(Tx)=f(x)
for all geG. In this case the group G acts on the non-singular level manifold

Vz"—‘f_ ! @n Bg
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of the function f near the critical point, and thus on its homology group H,_(V,)
with coefficients in the groups Z, R or C.

In the case when f is an ordinary singularity of a function (that is when the
group G is trivial), the multiplicity of the singularity f is defined to be the
dimension of the space H,_;(¥,; R) (or H,_;(V,; C)). The natural analogue of
dimension for the case when the group G is not trivial is the G-module

[Hy-1(V.; R)] (or [H,—(V,; O)])

as an element of the ring Rg(G) (respectively Re(G)) of real (respectively
complex) representations of the group G (see [327]). We shall denote by [H] the
element [H,_;(V,; ©)] of the ring R(G) = R¢(G) of complex representations of
the group G.

Let ,@ be the ring of germs at zero of holomorphic functions of n variables and
let (9fox,,. . .,df/0x,) be the Jacobian ideal of the germ f, that is the ideal
generated by the partial derivatives of the function f. The dimension of the
quotient ring Q, of the ring ,@ by the Jacobian ideal (&f/ox,,. . ., 0f|0x,) (as
a complex vector space) is the same as the multiplicity of the singularity f. The
action of the group G on the space C" defines its representation in the ring ,0. In
the case when the germ f is invariant relative to the action of the group G, this
representation in a natural way defines a representation of the group G on the
vector space Q;. As we said above, the dimensions of the vector spaces
H=H,_,(V,; C) and Q, are the same. The relationship between [H] and [Q/] as
elements of the group R(G) was revealed in [399].

The group G acts linearly on the space €*, on which the germ of the function f
is defined. Therefore it acts on its nth exterior power A*C*, which is a one-
dimensional vector space. The action of the element g € G on the space A"C"is the
same as multiplication by the determinant det 7, of the operator 7.

The representation of the group G on the vector space V defines a
corresponding representation on the dual vector space ¥V'*. For example, the
representation of the group G on the space H=H, (¥, ; €) of the homology of
the non-singular level manifold has the corresponding dual representation on the
space H*=H""'(V,; €) of cohomology of the non-singular level manifold.

Theorem 5.1 ([399]). The G-modules (that is vector spaces with representations of
the group G)
H and Qf @ci*C"

are isomorphic.

The intersection forms of boundary singularities and the topology of complete intersections 141

The isomorphism whose existence is stated in Theorem 5.1 is not defined
canonically.

In §3.5 we mentioned that instead of calculating the multiplicity of a
singularity, that is the dimension of the homology group of the non-singular
level manifold ¥,, it is frequently more convenient to calculate its Euler
characteristic x(V,). If X is a topological space (for definiteness a finite CW
complex) on which a group G acts, then the equivariant Euler characteristic
26(X) of the space X is the element

L (-1 [H(X; O]

of the ring R(G) of complex representations of the group G, where [Hy(X; ©)]is
the element of the ring R(G) defined by the gth homology group of the space X
with the corresponding representation of G. The equivariant Euler characteristic
%6(V.) of the non-singular level manifold ¥, is equal to

[C1+(-1)"'[H],

where [C] is the element of the ring R(G) defined by the one-dimensional space
€ with the trivial representation of the group G (the zeroth homology group
Hy(V,,C) of the non-singular level manifold is one-dimensional and the
representation of the group G on it is trivial).

If the action of the group G preserves the CW-complex structure of the space X
then there is defined on the vector space C,(X; €) of g-dimensional CW chains
on the space X with coefficients in the field € a natural representation of the
group G. We can show that by analogy with the relation

1) =E(~1)dim C,(X; ©)

for the ordinary Euler characteristic, we get the formula

16(X)=Z,(—1)[Co(X; T)]

for the equivariant Euler characteristic.
It is well-known (see, for example [327]) that an element [V] of the ring R(G)
of complex representations of the group G is defined by its character

[V1(g)=tr T}y

asa function on the group G (tr T,|y is the trace of the operator T,}y). If Xisa CW
complex with the group action of G preserving the CW-complex structure, then

A - oty S A i e A, — " s oo =
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the value yq(X)(g) of the character of ys(X)e R(G) ongeG is the same as the
(usual) Euler characteristic y(X)) of the set X, of fixed points of the action of the
element g on the space X.. If follows from this that outside the set X, the element g
moves cells and therefore these cells give zero contribution in

tr(g4lC(Ve; ©))-
The cells lying in X, stay in place and give in tr (g,|C (¥, ; ©)) a contribution of

one.
From this follows

Theorem 5.2. The character of the equivariant Euler characteristic of the non-
singular level manifold of the singularity f is defined by the formula

WV (@=1+(=1)%""py,,
where d, is the dimension of the subspace of the space €”* on which the element
g € G acts trivially, and p, is the multiplicity of the restriction of the function fto
this subspace.
The multiplicity u, is defined, since if the function f has an isolated critical

point at zero in the space C", then in the subspace fixed by the element g € G it also
has an isolated critical point. '

Corollary. The character of the natural representation of the group G in the space
of the homology H=H,_,(V, ; C) of the non-singular level manifold is defined
by the formula
(HI(g)=(-1)*"%p,.
If G is a finite subgroup of the unitary group U(n), generated by reflections,

then €'/G=C". The germ f:(C",0)—(C, 0), invariant under the action of the
group G, defines the germ f, on (C*/G, 0)=(C",0).

Theorem 5.3 ([399]). The multiplicity u(f,) is equal to

A/IG) ¥, (—1)""%y,,
9€G .

where |G| is the number of elements in the group G.
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Example. Let G =Z, be the group with two elements acting on the space C" with
coordinates x,,. . ., x, according to the formula

O'(XI,XZ,. - -sxu)'_'(—xler,- . .,X,,)

(6 € Z, is the non-identity element of the group). An isomorphism of the space
C"/Z, with the space €" with coordinates y,,.. ., y, is defined by the formulae

n=xi, yi=x; for 2<i<n.

In this case |G|=2, the subspace of the space €", fixed by the action of the
transformation ¢ is the (n —1)-dimensional space {x, =0}. Theorem 5.3 gives

()=t @(N—n(fI{x,=0})),

where pu(f1{x, =0}) is the multiplicity of the restriction of the germ f to the
subspace {x; =0}. It is not difficult to see that

SHx=0}=fl{» =0}.
Therefore
p(N=2p(f)+u(fl{y1 =0}).

We consider the action of the group Z, on the homology group H, -, (V. ; R) of
the non-singular level manifold of the function f. The group Z, has two

~ irreducible real representations: the trivial one and multiplication by —1.

Therefore the homology group H,_; (¥,; R) decomposes into the direct sum
H*®H,

where H* is the space of cycles which are invariant under the involution o, and
H~ is the anti-invariant one:

dim H* +dim H™ =u(f).
The corollary of Theorem 5.2 gives

[H)(0)=dim H* —dim H™ = —u(f|{x,=0}) = —u(/yl{ = 0}).
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dim H* +dim H™ =2u(f)+p(fol{ 3, =0}),

dmH* =u(f,), dimH™ =p(f)+u(fl{»=0}.

These formulae can also be proved directly (without the use of Theorems 5.2
and 5.3). We leave this as an exercise for the reader.

The classification of singularities of functions invariant under such an action
of the group Z, is the same as the classification of singularities of functions on
manifolds with boundary (see Volume 1, Chapter 17). The classification of
singularities of functions of small codimension, invariant relative to the action of
the group (Z,)*, (interpreted as the classification of singularities of functions on
manifolds with “corners’) was considered, in particular, in [336].

5.2 Singularities of functions on manifolds with boundary

We shall give here a brief exposition of the analogues of some of the above
concepts for singularities of functions on manifolds with boundary. A more
detailed exposition and a motivation of the corresponding concepts can be found
in [18].

Let fbe a singularity of a function on a manifold with boundary (see Volume 1,
Chapter 17). This means that f is the germ of a holomorphic function
(€", 0)—(C, 0) on the complex vector space €” in which the hyperplane €* ! is
fixed, the function fhaving an isolated critical point at zero both in the space C”
and on the subspace €* ™! (or more generally not having a critical point at zero in
the space C*). We can suppose that the hyperplane €C*~! is given by the equation
xy =0, where x,,...,x, are the coordinates in the space C*.

Let " be the double covering of the space €”, branching along the hyperplane
C ' If %,...,%, are the coordinates in the space €”, then the branched
covering €*— " is defined by the formulae

xl=ﬁ’ x2=xA29' cos Xpg =Xy
On the space € there is the natural involution

(xAl’-*\Z:- . ‘1£1)H(_£19£21- . "~£A)9
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i.e. an action of the cyclic group Z, of order two. The germ f induces the germ
i(’fl’xAZV . -:fn)éf(ﬁaxAZs- .. "fn)

of a function on the space €" which is invariant under the action of the group Z,.
A locally analytic automorphism of the space €", preserving the subspace €" !
induces a locally analytic automorphism, commuting with the action of the
group Z,, of the space €*. In this way, a singularity of a function on a manifold
with boundary can be considered in a natural way as the germ of a function
F(%,%,,...,%,), invariant under the involution

('il"fZ" . "in)H(—flriZ" . -;xAn)'

Conversely each such germ induces a singularity of a function on the manifold C”
with boundary €.

A singularity f of a function on a manifold with boundary can define a non-
singular level manifold in two ways. To the function itself corresponds its non-
singular level manifold

V.={xeC": f(x)=¢, ||x| <e},

which is an (n —1)-dimensional complex manifold with boundary (understood in
the usual real sense). To the boundary €*~! corresponds an (n —2)-dimensional
complex submanifold

Vi={xe@':f(0)=e, |x] <o},

which is the non-singular level manifold of the restriction of the function fto the

hyperplane €*~*.
From the exact homology sequence for the pair (¥, ¥,)

- Hy (V)= H, - (V)-H, - (V,, V,)
—=H, ,(V,)=»H,_,(¥V)—...
in which
H,(V)=0 for k#n-—1
H,WV)=0 for k#n-2,

e AR A i Yot S U i i+ ———— .. SV D o =
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it follows that
H.(V,,V))=0 for k#n-1,

and H,_,(V,, ¥V.)is a free abelian group, the rank of which equals the sum of the
multiplicities of the critical point of the function fon the space €" and the critical
point of its restriction to the space €*~*. From general theorems of homotopy
topology it follows (at least, when the number of variables n>> 2, when the space
V,/V, is simply connected ; for n=2 the proof is still simpler) that the quotient
space V,/V, has the homotopy type of a bouquet of spheres. The number
1= u(fIx,) of these spheres is called the multiplicity of the boundary singularity f
(the notation identifying the function itself and the coordinate mapping to zero
on the boundary €"!). As we have shown, the multiplicity u(fjx,) of a
boundary singularity is equal to the sum

#(N+u(fl{x1=0})

of the multiplicities of singular points of the function fon the spaces €*and €.

A basis in the homology group H,_,(V,, ¥,) can be constructed in the
following way. Letfbe a perturbation of the singularity f of general form. This
last expression means that the functionfon the space C" and its restriction
f|€" ! to the boundary €~ ! ={x, =0} are Morse and in addition the crmcal
values of the functions f and f |{x, =0} are different. In particular the function f
does not have critical points lying on the hyperplane {x,=0}. Let

w(N=po, w(fl{x1=0)=p,,

letz,,...,z,, bethecritical values of the function f in a neighbourhood of zero in
thespace €", letzy,. . ., z,, be thecritical values of the restriction of the function f
to the subspace €~ = {x; =0}, and let z, be a non-critical value of the functions
fand fi{x,=0}. Let

1«;°={xeC”:f(x)=Zo» """ <e}

and let
E,=E,n{x=0}.
As for ordinary singularities of functions under natural restrictions there is a

diffeomorphism between the pair of manifolds (F,,, F;,) and the pair (¥, ¥,). If u
is a path joining some critical value z; of the function f with the non-critical value
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zo (and not passing through the critical values of the functionsfandf!{xl =0}),
then, as before, there corresponds toit a vanishing cycle 4 in the homology group
H,_,(F,) of the non-singular level manifold of the function f, which is
isomorphic to the homology group H, _, (V) of the non-singular level manifold
of the function f. Moreover, since the path u does not pass through the critical
values of the function fl{xl =0}, a lifting of the homotopy t—u(t) to the
homotopy of the fibre can be chosen so that it preserves the submanifold

E,(‘) a) {Xl =0}.
In this case the cycle 4 lies entirely outside the submanifold F,,n {x, =0}.

From the exact sequence for the pair (V,, ¥;) it follows that the natural
homomorphism

Hn—l(Vz)—'Hu—l(K’ K,)’

induced by the inclusion V= (¥, V.'), is a momomorphism. Therefore the path u
gives rise to a vanishing cycle in the relative homology

H,-(V., V2)

of the non-singular level manifold modulo the submanifold {x, =0}.

If uis a path joining the critical value z; of the function Y2 [{x; =0} (which is not
critical for the function /) with the non-critical value z, u(0)=z; i u(1)=z¢)and
not passing through the critical values of the functions f and f [{x1 =0}, then
there corresponds to it a vanishing “hemicycle”

AIEHR—I(K’ V; >

defined in the following fashion. Let pje €~ be a critical point of the function
f |{x; =0},andlet f (pj)=z2j. Itcan be shown thatin a neighbourhood of the point
pj» by a local change of coordinates preserving the hyperplane {x; =0}, the
function f can be reduced to the form

f— —x1+ Z +Zj
k=2

Without loss of generality we can suppose that z;=0 and that for ¢ small u(t) =,
In this case for small ¢ > 0 there is on the non-singular level manifold F, ¢, = { =1
an (n —1)-dimensional real submanifold D"~ (f) with boundary defined by the
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relations

Imx,=0 (k=1,2,...,n)

n
Y, <t
k=2

(see figure 47 for n=2). The manifold D"~'(¢) is diffeomorphic to an (n —1)-
dimensional ball. Its boundary (an (n—2)-dimensional sphere) lies on the
submanifold

E‘(,)n {xl =0}.

Changing ¢ from 0 to 1 defines a continuous family of (n —1)-dimensional discs
D"~ (t)c F,y, for which

S"_z(t)=aD'_1(t)CE(‘)h{x‘ =0}
for all values of 1[0, 1]. Here
D* Y (#)n{x, =0} =aD""1(¢).

‘The disk D*~*(1)cFE,,, with boundary 8D"~*(1)=S8""2(1), lying in the sub-
manifold F,,n{x, =0}, defines a relative cycle 4’ in the homology group

HR*I(EO’ I;;on{xl =0})’

isomorphic to the group H,_(V,, V}).
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Let uy,...,u,, (respectively u;,...,u, ) be a system of paths joining the
critical values z, ,. . ., z,,, (respectively zj,. . ., z,,) of the functionf(respectively
fl{x, =0}) with the non-critical value z, and defining in the homology of the non-
singular level manifold of the function f (respectively f|{x,=0}) a distin-
guished basis of vanishing cycles. Moreover we shall suppose that the paths
Upse ooy UygyUyse .. Uy, dO not pass through the critical values z,,.. N
Z3,. . -, Z,, of the functions f and f|{x,; =0} (for 10). As we explained above,
such a system of paths determines a set of vanishing cycles

4,...,4,,

and a set of vanishing hemicycles
4i,...,4,,

in the relative homology group H,_;(V., ¥.'). The boundary homomorphism
H, (V.. V) H,-2 (V)

of the pair (¥;, ¥,') maps the vanishing hemicycle 4;into the vanishing cycle in the
homology of the non-singular level manifold of the function fl{xl =0}
corresponding to the path 4. From this and from the exact sequence of the pair
(V., V.)) it follows that the set of elements

’ ’
Aoy By By .. A,

is a basis in the relative homology group H,_,(V,, V.).

It can be shown that the rank of the homology group H,_, (V., ¥,) is the same
as the dimension of the base of the miniversal deformation of the boundary
singularity f|x,, which is equal to

dimc na/(xlaﬂaxl ’ af/axz 3o s aﬂaxn)’

where @ is the ring of germs of holomorphic functions at zero in the space C".

Everything that we have stated above suggests that the relative homology
group H,_;(V., ¥.)) must play the same role for boundary singularities as the
absolute homology group H,_, (V,) does for ordinary singularities. It turns out,
however, that it is impossible to define an intersection form on the group
H,_,(V,, V)) in an invariant manner and to obtain an analogue of the Picard-
Lefschetz formula. This forces us to consider, in place of it, another group, also

. s S e e ke o oo
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isomorphic to the integer lattice

ZE=Frotm
of dimension u=u(f|x;), but not having a canonically defined isomorphism

with the group H,_,(¥,, ¥.'). This group is defined in the following manner.
To the boundary singularity f we can associate one more non-singular level

manifold — the level manifold ¥, of the corresponding function f, which is

invariant under the group Z, on the space €. On this level manifold is defined
the action of the involution, induced from its action on the space @". The
quotient space of the space ¥, by the action of this involution is the same as the
level manifold ¥, of the function f. The manifold ¥, is a ramified cover of the
manifold ¥, with branching along the submanifold ¥,'. We have

dim H,_ (V) =2dim H,_,(V}) +dim H, _,(V;)
=dim H,-,(V)+dim H,_,(V,, V)

(see the example in §5.1). In the homology group H, ~1(P.,Z) there are
distinguished two subspaces H* and H™, corresponding to the two possible
irreducible real representations of the group Z,. The subspace H* consists of
homology classes which are invariant relative to the action of the involution ¢
(that is such that o,a=a), and the subspace H~ consists of the antiinvariant
ones (6,a= —a). In the example in §5.1 it was shown that

dim H* =dim H, -, (V),
dim H~ =dim H,_,(V})+ dim H,_, (V) =dim H,_,(¥,, ;).

The group H ™, isomorphic to the integer lattice of dimension u(f|{x, =0}) plays
the role for the boundary singularities that the group H, _, (V.) plays for ordinary
singularities. In particular the intersection form is defined on it (as on a subgroup
of the homology group H,_,(¥,) of the non-singular manifold).

A basis of the group H™ can be constructed in the following manner. Let

Ay By B, s Bl

be a basis of vanishing cycles and hemicycles of the group H,_,(V,, ¥}),
constructed above by a system of paths u,,...,u%,,,4],...,4,,, joining the
critical values z,,. . ., 2,,,21,.. ., 2,,, of the funetionsfandfl{xl =0} with the
non-critical value z,. The preimage of the cycle 4, (i=1,.. ., o) under the
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map ¥, ¥, (which is a double ramified cover, branching along the submanifold
V) consists of two cycles 4"’ and A%, each of which projects isomorphicaily
onto the cycle 4;. Their difference

A= AP — 4P

is an antiinvariant cycle in the homology of the manifold F,. The preimage of the
hemicycle 4j also consists of two hemicycles 4;* and 4, projecting
isomorphically onto 4j, but the hemicycles 4; and 4;® have a common
boundary (lying on the branch manifold). Therefore thelr difference

Aj A'(l) A'_(Z)

is also an absolute antiinvariant cycle in the homology of the manifold 7,. The
cycles

- PN

Ay, A4, A1,

form a basis in the group H™~ of the antiinvariant homology classes.
They can also be described in the following manner. We consider the function

f(xAla' . -’xAu)‘—‘i(ﬁ!-st' . w-iu)'

It has o+ py critical values
Zyse o3 ZpgsZlse v s Zpge

The critical values z,,...,z, are doubly degenerate and are taken at two
separate critical points. To each of these critical values (z,) there correspond two
vanishing cycles A} and 42. Moreover we can suppose that o, A;=42. To the
critical value z; there corresponds one vanishing cycle 4; ;- Itis not hard to see that
0, 4] = -4 j- The cycles 4;= 4} — A% and also the cycles 4/ ;are antiinvariant ; the
cycles 4} + A? are invariant relative to the action of the involution a. The set of
cycles

is the same as that described above.
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In this way we define an integer lattice H ~ for the boundary singularities with
an intersection form defined on it. A basis of the lattice H ™, constructed ferm a
system of paths {u;, u;} joining the critical values z; and zjof thekfunction fwith
the non-critical value z,, contains y, “long” vanishing cycles 4; (=4{" — %)
and y, “short” vanishing cycles a ;- If the number of variablesn=3 mod 4, then

The monodromy group acts on the lattice H~ as the image of the natural
representation

g (C\{Zi, Z‘;})"’Aut H™

of the fundamental group of the complement of the set of critical values of the
function /. The monodromy group is generated by the monodromy operators
arising from the simple loops t; and t}, corresponding to the paths »; and ;. To
the simple loop 1; there corresponds the usual Picard-Lefschetz operator

hi(@=a+(—1)y""*V2(@o4)4;,
to the loop t; there corresponds the Picard-Lefschetz operator
h(@)=a+(—1)""* V2 (@0 4)4,/2.

We remark that the intersection number (a o 4,) of an antiinvariant cycleae H™
with a long vanishing cycle 4, is always even. When the number of variables
n=1 mod 2 the operators A and k; are reflections in hyperplanes orthogonal (in
the sense of the intersection form) to the vanishing cycles 4, and 4] respectively.

For boundary singularities, as for ordinary ones, we define miniversal
deformations and level and function bifurcation sets. The miniversal deforma-
tion of a boundary singularity f|x, can be given in the form

Fx, l)=f(x)+i€£,l A

(xe€", i=(,...,4,)eC*), where the germs ¢,,...,d, form a basis of the
vector space

20/(x,8f10x,,8f]0x3,. . .,0f]0x,).
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The set (more precisely its germ at zero) of values of the parameters
A=(4y,...,4,) in the base of the miniversal deformation, for which either the
corresponding function F(:, 1) or its restriction to the boundary €*~! = {x; =0}
has zero as a critical value, is called the level bifurcation set of the boundary
singularity f|x; (and denoted by X). The condition specifying the values of the
parameters A€ 2 can be changed to an equivalent condition, that zero is a critical
value of the function

F(xAlafZ" . "£H9A)=F(ﬁ7'£2,' . -,-fml)'

The level bifurcation set of a boundary singularity is reducible. It is the union
of two components. The first consists of those values of the parameter A for
which the function F(-, 1) has zero as a critical value, and the second consists of
those values A for which its restriction to the boundary €*~! has zero as a critical
value. Sometimes it is more convenient to say that the second component
consists of those values A for which the hypersurface

{x:F(x,A)=0}cC"

is not transverse to the boundary €"~*. This formulation does not need a special
definition for the case n=1.

From the fact that the level bifurcation set of an ordinary singularity is
irreducible (Theorem 3.2 of § 3.2), it follows that each of the above components
of the level bifurcation set of a boundary singularity is irreducible. Just as in
Theorem 3.4 of §3.2, it follows from this that the monodromy group of a
boundary singularity acts transitively on the sets of short and long vanishing
cycles (not mixing them, of course, with each other).

For the simple boundary singularities By, C;, F, (Volume 1, Chapter 17) the

‘level bifurcation sets can be obtained in the way described in § 3.3 for ordinary

singularities of functions. This means that it is biholomorphically equivalent to
the variety of nonregular orbits of the corresponding group, generated by
reflections, acting on the complexification of Euclidean space. Two types of
mirrors (orthogonal to the long and the short roots respectively) generate the two
components of the level bifurcation set of a simple boundary singularity.

Let us show how to check this for simple singularities of types B, (f(x,)
=xf,n=1) and C, (f(x;, X3) =X, X, + x5, n=2). Their miniversal deformation
can be given in the form

F=x'1‘+111’,‘"+'...+).,‘ for Bk,

F=xx;+xX5+Axt " 4 ...+4 for G

. - A o . ot < e . St
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In both the first and the second case zero is not a critical value of the function
F(-, 2) if the polynomial

Pl A P S B

does not have multiple roots, and the local level manifold of the function F(-, 1) is
transverse to the boundary {x, =0} if zero is not a root of this polynomial. In this
way the level bifurcation sets of the singularities B, and C, are identified with the
space of polynomials of the form

XA L+,

which have multiple or zero roots.

The Weyl groups B, and C; are the same. They consist of the transfor-
mations of the space R* (or its complexification €*) which are permutations
of the coordinates with arbitrary changes of sign. The mirrors are the hyper-
planes

Z.'=0 and zi= iZj.

In one case the first of these corresponds to the short cycles and the second to the
long ones; in the other conversely. The space of orbits of the action of the Weyl
group on the complexification €* is identified with the space of polynomials of
degree k of type

L2 P S

(with complex coefficients), the identification taking the point (z;,. . . , z;) € C* to
the polynomial with roots z3,. . ., z2. The space of polynomials of degree k is
isomorphic to a k-dimensional complex vector space. The space of non-regular
orbits (that is the image of the union of the mirrors under the factorisation map)
consists of polynomials with multiple or zero roots, that is it is the same as the
level bifurcation sets of the singularities B, and C,.

The level bifurcation sets of the singularities B, and C, consist of two curves

A,=0 and 44,=43

(figure 48).

A description of bases of vanishing cycles and intersection forms for simple
boundary singularities (and for other boundary singularities of two variables)
can be obtained by the method of Chapter 4. It can be shown that for boundary
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A,

Fig. 48.

singularities there are Theorems analogous to 4.1, 4.2 and 4.3, but we shall not
dwell on this. For the simple singularities B, (+ x* + %), C, (xy £ y*) and F, (+x*
+3°) the corresponding equivariant germs of functions on the cover €2 of the
space €2 are given by the formulae

](f,f)=xA2k+yA2 for Bk’
JED=FE-5*"1) for G

FE pH=%*+5® for F,

(the choice of sign is made deliberately to ensure that the curve {f=0} will be
real). As ordinary germs of functions they have singularities of types 42—,
Dy, and E4 respectively. It is easy to construct perturbations f of the germs of
functions f (or the germs of curves { 7= 0}) which would satisfy the conditions of
Theorem 4.1 of § 4.1 and would be invariant under the involution acting on the
space €2. In fact the perturbations of the singularities A _, , Dy +; and E"? used in

Chapter 4 will possess these properties. The corresponding real curves { f=0} are

" depicted in figure 49. The line x=0 is drawn with dashes. The basis of the
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homology group of the local level manifold of the singularity

FEH+E,

described in Theorem 4.1 of §4.1 is invariant relative to the involution

a:(xA’ﬁa i)'—’(—x"ﬁa i)’

acting on the space € in the sense that 6,4 = — 4 if the basic vanishing cycle 4
corresponds to a critical point of the function f'(%, $) lying on the line £=0 and
sS4, =4, if 4, and 4, are basic vanishing cycles corresponding to critical points
arranged symmetrically relative to the line X =0. From this it followes at once
that the D-diagrams of the singularities By, C; and F, are as shown in figure 50.
The rules for reading these diagrams are somewhat different from the rules in
§2.8. The arrows on the edges point from the vertices corresponding to long
vanishing cycles (with self-intersection number —4) to vertices corresponding to
short vanishing cycles (with self-intersection number —2). The intersection
number of vanishing cycles corresponding to vertices joined by edges of
multiplicity k is equal to 2 k if both cycles are long and otherwise to k (if both are
short or one of them is long and the other one is short). For the diagrams of the
singularities By, C, and F;, shown in figure 50, this means that the angle between
vanishing cycles corresponding to vertices joined by edges of multiplicity 1 is
equal to 2n/3, and the angle between vanishing cycles, corresponding to vertices
joined by arcs of multiplicity 2 is equal to 3n/4.

B, (-5) =%

Cx (K=7) a3

fy, o—axD——0

Fig. 50.

I. G. Shcherbak proved that the transition from the function f(x, y) with
boundary {x =0} to the function f(x, y) +zx with boundary {z=0} defines on
the set of classes of stably equivalent boundary singularities an involution
transposing the singularity in the non-boundary sense and its restriction to the
boundary.
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5.3 The topology of complete intersections
Let
S=(fis- -5 f): (€, 0)(C7,0)

be the germ of an analytic map defining a complete intersection with isolated
singularity at zero (n 2 p, f;: (C", 0)—(C, 0)). This means that at all points of the
germ of the analytic space {f=0} (that is {xeC": fi(x)=...=f,(x)=0}),
except zero, the map fhas rank equal to p, that is its differential is surjective, or,
which is the same thing, rk(d f;/0x;) =p. From this it follows that away from zero
the space {f=0} is a non-singular (n —p)-dimensional complex manifold.

By analogy with Lemma 2.1 of §2.1 it is not hard to show that there exists a
©> 0 such that for all 0 <7< g the sphere S,c €" of radius r with centre at zero
intersects the manifold {f=0} transversely. In this case for sufficiently small
z=(z;,...,2,)€C? (|z]<&) the space {f=z} will intersect the sphere S,
transversely. The space { f=z}, generally speaking, will not be non-singular for
z#0. The set (more precisely, the germ) X of those z € €” (||z|| < &), for which the
space { f=z} has a singular point inside the ball B, of radius g with centre at zero
is called the discriminant set of the map f. It is not hard to see that for ze X the
analytic space { f=z} has only isolated singularities inside the ball B,. It follows
from Sard’s theorem that the complement of the set X is everywhere dense in
the ball {z:|z| <&}<C’. For z¢X (||z| <&) the space

E={f=z}nB, ={xe@:|x| <@, f(x)=2}
is a non-singular (n —p)-dimensional complex manifold with boundary
{f=z}nS,.
Forall z¢ Z, |z|| <& the manifolds F, are diffeomorphic to each other. They are
called the non-singular level manifolds of the map f.
We get the result, analogous to Theorem 2.1 of § 2.1:
Theorem 5.4 ([156]). If the germ of the map
(€, 0)—~(C”,0)
defines a complete intersection with isolated singularity at zero then the non-

singular level manifold F; of the map fis homotopically equivalent to a bouquet
of spheres of dimension n—p.
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We outline the principal ideas of the proof of this theorem.
For p=1 the statement of Theorem 5.4 follows from Theorem 2.1 of § 2.1 and
is therefore proved. Let us suppose that it has already been proved for maps

(€~ 0)—>(C*1,0)

defining a complete intersection of dimension n —p + 1 with isolated singularity
at zero. The singular points of the map f': (", 0)—(C?, 0), that is the points xe C"
for which rk (0.£;/0x;) < p, form the germ of an analytic space S. The discriminant
set

(Z,0=(C%,0)
is the image of the germ S under the map f. The preimage of zero for the map
fls: S—>€?

consists of the one point 0 C*. Consequently, the map f|s is proper (in a
sufficiently small neighbourhood of the point 0 ¢ C*) and therefore the germ of
the discriminant set X is the germ of an analytic subspace of dimension (at least
no more than) p —1 in the space (C?, 0). From this it follows that for almost all
lines /< C? passing through zero the intersection /N X has zero as an isolated
point. We fix one such line. We can suppose that &, is chosen s6 small that inside
the ball {||z|| <&} in the space €7 the intersection /n X consists of the one point
0 CP. After making, if necessary, a linear change in the system of coordinates
Z4,...,2p in the space €7 we can suppose that it is chosen so that the line /
coincides with the coordinate axis

HQ=... =Zp-1 =0.

In this case, the subspace f ~! () c(€®, 0), which is the same as the zero level
manifold of the map

/=15 f-1): (€ 0) (T2, 0),

is acomplete intersection of dimension n —p + 1 with anisolated singular point at
zero. We have shown that almost all linear changes of the system of equations

fi=...=f,=0,

defining complete intersection of dimension n—p with isolated singularity at
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zero, reduce to a system of equations such that the first p —1 of them (f;=. ..
= f,-1=0) also define a complete intersection (of dimension n—p+1) with
isolated singularity at zero.

From the induction hypothesis, for aimost all sufficiently small

Z'=(2y,...,2,-,)eC"!
the set
F'=F.=(f)"'(z)nB,

is a non-singular (n —p + 1)-dimensional complex manifold with boundary and
homotopically equivalent to a bouquet of spheres of dimensionn —p+1. It can
be shown that for sufficiently small z’ all non-triviality of the homotopy type of
the space F}. is concentrated in a small neighbourhood of zero. More precisely it
means that, in particular, for |z’|| <3 the space F'=F, is homotopically
equivalent to its own subspace

F'=Fnf; ' {lzl<e)={xeF": f,(x)<}.

To prove this some care is needed in carrying out the induction, but we shall not
dwell on this.

The restriction f,|¢- of the function £, to F’ defines the map of the manifold F’
to the complex line €, possessing the properties described in § 1.1 (with the disc
{Iz,<€5} as the region U). The function f,|r, generally speaking, can have
degenerate critical points. Changing the function f | to a smali perturbationf,
of it, we obtain a function on the manifold F’, also possessing the indicated
properties. We can suppose that on the space

Fr=f1({lz,1<&2)

the function 7, has only non-degenerate critical points, v, in number, with
distinct critical values 2%, . . ., 2", lying inside the disc {|z,| <£3}. The space F” is
diffeomorphic to the space F” and therefore has the homotopy type of a bouquet
of spheres of dimension n—p+ 1. The non-singular level manifold

Jitz)
of the functionf, on the manifold F' is diffeomorphic to the non-singular level

manifold of the function f, | (for |z,| <¢9), which is the same as the non-singular
level manifold of the map f.
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We arrive at a situation very similar to that which was considered in the proof
of Theorem 2.1 of § 2.1. The role of the function f on the ball B, in the space €"is
played by the function f, on the manifold F’. Over the complement of the set

{,. .., 2)

of its critical values in the disc {|z,| <]} the function £, defines a locally trivial
fibration, the fibre of which is a non-singular level manifold of the map f. One
difference is that the preimage of the disc {lz,|<¢}} under the map f, is not
contractible, but is homotopically equivalent to a bouquet of g, spheres of
dimension n—p+1. Let z¥ be a non-critical value of the function f, with
29 =45,

1@ =F  §'{lz,|<h=F

(the space F” is homotopically equivalent to a bouquet of y, spheres of
dimension n—p+1).-

We choose a system of paths u (i=1,...,) joining the critical values
20, . 2 of the function f, with the non-critical value 7/ and satisfying the
conditions formulated in the definition of distinguished bases (§ 1.2). This means
that the paths are not self-intersecting and do not have common points other
than the chosen non-critical value - As above, such a system of paths defines a
set of v, vanishing cycles

AR

in the homology group H,-»(F; Z) of the non-singular level manifold F of the
map /. Carrying out the same argument as in the proof of Theorem 2.1 of § 2.1,
we obtain:
(i) the space _
F =7 (<)
is homotopy equivalent to its own subspace

X=f71 o {u®P

which is the preimage of the ypion of the paths s;
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(ii) the quotient space
X/F= X/]"p— 1 (Z(O))

is homotopy equivalent to a bouquet of v, spheres of dimension n—p+1;
(iii) under the action of the boundary homomorphism

Hn-p+l(X/n=Hu—p+l(Xs F)—’Hn—p(F)

of the pair (X, F) cycles corresponding to these spheres map into the homology
classes of the vanishing cycles 4,,...,4,,.

From this follows the simple-connectedness of the non-singular level mani-
fold F of the map f (for n —p >1; for n —p<1 the proof of Theorem 5.4 is even
simpler). From general results about complex submanifolds in the space C* it
follows that the homology groups H;(F; Z) of the space F are zero for i>n—p,
and the group H,_,(F;Z) is free Abelian. This follows, for example, from the
fact that any non-singular complex submanifold of the ball B, in the space C*
with (complex) dimension m is homotopy equivalent to a finite CW complex of
(real) dimension m. This theorem can be proved in exactly the same way as the
theorem of Andreotti and Frankel in [255], the difference being that the complex
manifold considered was not in the ball B, but in the whole space C".

From the exact homology sequence of the pair (X, F):

eo.oHi (X))~ Hi (X, F) - H(F)-»Hy(X)— ...

it follows that H,(F)=0 for i#n—p and there is a short exact sequence
0_’Hn—p+1(x)_’Hn—p+l(X’ F')_’Hu—p(iv)—’oy

in which all the groups are free Abelian. From this it follows that the non-
singular level manifold F of the map fis homotopy equivalent to a bouquet of
vo —# spheres of dimension n—p, where y, is the rank of the (n—p+1)th
homology group of the non-singular level manifold F of the map

f,=(.fl!' . ',fP"‘l)

and v, is the number of critical points of the function f, on the manifold F’
(counted with their multiplicities). Theorem 5.4 is thereby proved.
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By analogy with the case of an ordinary singularity of a function
(€, 0)—(C,0)

the number py =(vy —,), equal to the rank of the (n —p)th homology group of
the non-singular level manifold F of the germ of the map f: (€*, 0)—»(C?,0), is
called the Milnor number of the isolated singularity of the germ f.

In the proof of Theorem 5.4 we constructed a short exact sequence

02T >H, (F;Z)-0,
where g, is the Milnor number of the isolated singularity of the germ
f’=(.fl" .. ’f;—l): (Cn’ O)Q(CP_lsO)a

obtained from the germ f by forgetting one of the components (f,), v, is the
number of critical points (counting multiplicities) of the function f, of the non-
singular level manifold of the germ of the singularity /' near the critical point. A
basis of the group Z" is formed by the (formal) vanishing cycles

oy,

corresponding to the paths u,,...,u,,, described above. Their intersection
numbers on the non-singular level manifold F of the germ f define a bilinear form
on the group Z'. The group Z*' is the same as the group of linear relations
between the vanishing cycles 4, ,. . ., 4,, in the homology group H,_ ,(F) of the
non-singular level manifold of the map f. It, of course, lies in the kernel of the
form defined on the group Z* by the intersection numbers.

The natural numbers g, and vy, naturally, depend on the choice of system of
coordinates in the space €7. It is not difficuit to see, however, that for systems of
coordinates z,,. . . , z, in general position the numbers u, and v, depend only on
the germ f: (C", 0)—(C?, 0) itself. In this way, for isolated singularities of germs
of complete intersections, the short exact sequence

0242 Hy- (F) (=)0,

is defined invariantly.
In an analogous manner for the map

I, 0)(C*71,0)
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there is defined the short exact sequence
0-Z* T T -0,

and further the short exact sequences

0> ZPs » P — k2 _,,0’

0oZHr- 1 ZVr 25 Fkr-2 (),
02 -ty ZHe-1 50,

All together they give a long exact sequence (resolvent)
027 T2, ST T > T°—H,_(F, Z)-0,

consisting of free Abelian groups. Here v; is the number of critical points
(counted with their multiplicities) of the function f,_; on the non-singular level
manifold of the germ of the map

(s o5 fp-1-0): (€% 0) (€771, 0)

(for a choice of system of coordinates in general position in the space (C?,0)).

For the germ of a map, defining a complete intersection with an isolated
singularity, we can define its intersection matrix as the intersection matrix of the
vanishing cycles 4, ,. . ., 4,, defined above, and also the corresponding diagram
(for n—p=2 mod4). Remember that the cycles 4,,...,4,, generate the
(n —p)th homology group H,- ,(F; Z) of the non-singular level manifold, but do

-not form a basis in it. Therefore everywhere (except the trivial case when the

complete intersection defined by the map f'=(f;, - . .,f,-,) happens to be non-
singular, in which case the complete intersection, defined by the map f, is
isomorphic to the germ of a hypersurface) the intersection matrix of the germ of
such a map is degenerate, and the number of vertices in the corresponding
diagram is greater than the Milnor number of the singularity.

5.4 Singularities of projections onto a line
A projection onto a line (or here simply a projection) is a triple

ES(T,0)+(T,0)




|
\
|
|
|
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where E is the germ of a complete intersection of codimension p in the space C”,
with an isolated singular point at zero,

7:(C,0)~(C,0)

is a linear projection along the hyperplane € !'=z"'(0)cC". The two
projections E, < (C", 0)—~(C, 0) and E,<» (C", 0)—(C, 0) are considered equiva-
lent if there exists a commutative diagram

E= (T, 0)~(T,0)

{ | !
E~(T,0)—(C,0)

in which all vertical arrows are isomorphisms in a neighbourhood of zero.

As always, the singularity of the projection E — (C", 0)—(C, 0) is said to be
simple if among small perturbations of it there are a finite number of projections
which are distinct relative to the above equivalence. The simple singularities of
projection were described in [132]. They exist for p=1 and p=2. For a descrip-
tion of their representatives we choose in the space €" a system of coordinates
(x;, . . -, x,) such that the projection n maps the point (x,, ..., x,)eC"to x, e C.
For p=1 the simple singularities of projection exist for all n>>2. They are
given by the equations f; =0 with the following functions f; (x,, . . ., x,) (here
g=x3+...+x%): '

Ao:fr=xX1;
X,:fi=x,+X,, where X, is one of the simple singularities of functions
of the n —1 variables x,, . . ., X, (4,, D, or E,, u>0);

By fi=xi+xd+q (u>2);

Cuh=x1x2+x5+q (u23);

Fy:fi=xi+x3+q.
For p=2 simple singularities of projection exist for n=3. They are given by the
equations f; = f, =0 with the following functions f; and f;:

Si=x2x3, =X+ x5+ Q<k<l);
B4y fi=xd+x3, fi=x+x) (k=2);
I 2TV =843, fi=xitxx (k=1).
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If we fix the linear projection
z: (T, 0)-(C,0)

along a hyperplane €*~* c C*, then the germs of the complete intersections E,
and E,, entering into the equivalent singularites of projection

ES(T,0)~(C,0)

(i=1,2) are obtained one from the other under the action of a local analytic
isomorphism (C*, 0)—(C", 0) mapping the hyperplane €*! into itself. In this
manner, to the singularity of projection

ES (T, 0)-(C,0)

corresponds the germ of a complete intersection E with isolated singularity at
zero, considered modulo local analytic diffeomorphism (C”, 0)— (C", 0) mapp-
ing the hyperplane €"~! = €" to itself. Therefore the singularities of projections
are generalisations and in some sense are mixtures of boundary singularities and
singularities of germs of complete intersections, considered, respectively, in § 5.2
and §5.3.

In accordance with §5.2 and §5.3 for boundary singularities (that is for
isolated singularities of germs of functions or hypersurfaces in the space (C*, 0)
considered modulo local analytic isomorphisms of the space (€, 0), preserving
the hyperplane €*~! = €") and for isolated singularities of germs of complete
intersections in the space (€", 0), respectively, as also for ordinary singularities of
functions, we can define an integral lattice with integral bilinear form and chosen
(distinguished) sets of elements generating it. The difference from the usual
singularities of functions consists in the first case of the fact that among these
elements there are both “short” and “long” vanishing cycles (for n=3 mod 4
their self-intersection numbers equal —2 and —4 respectively), and in the second
case the difference consists of the fact that the set of these elements is redundant
in the sense that their number is more than the dimension of the lattice: they are
linearly dependent in it. Arising from the considerations described in § 5.2 and
§ 5.3, there is defined also for the singularity of projection

ES(C,0)~(T,0)
an integer lattice with an integral bilinear form and a chosen set of elements

generating it. These sets possess both the above-mentioned differences from the
case of ordinary singularities of functions: they include both short and
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long vanishing cycles and the number of elements in them is more than the
dimension of the lattice.

The precise construction of the lattice and the distinguished sets of elements in
it is as follows. Let the complete intersection E< (C", 0) be defined by the set of
equations

fi=fi=...=[=0

(dim E=n —p). Having made a linear change of general form to this system of
equations, we can suppose that the system of equations

fi=fi=...=fym1=0

defines a complete intersection of dimension n —p + 1 with isolated singularity at
zero (see §5.3). The non-singular level manifold

F,=le'={_f1 =Zyy .- .,f,_,=z,,_,}r\B,

has the homotopy type of a bouquet of spheres of dimension n —p +1, a number
which does not depend on the concrete choice of linear change of the system of
equations of general form:. The intersection of this level manifold w1th the
hyperplane €*~* c €" is a non-singular (n —p)-dimensional submanifold in the
manifold F’ (again for a general choice of system of equations), and the functio'n
f, definesa function on the manifold F’, withisolated critical point. Chang.ing, if
necessary, the function f, to a small perturbation of it, we can suppose that it has,
on the manifolds F’ and F'nC*"!, only non-degenerate critical points with
distinct critical values. For the pair of manifolds (F’, F’ n € ') and the function
f, on it we can realise the construction described in §5.2 for the pair (C"', Y.
This means that we ought to consider the double cover F’ of the manifold F’,
branching along the submanifold F'nC* ! and the function f,,, obtained from
£, by lifting to the covering space. On the level manifold of the function f',, actsthe
involution, interchanging the sheets of the cover. In the integral homology group
of the non-singular level manifold of the function f, there is picked out a
" subgroup H~ consisting of the homology classes, antiinvariant under this
involution. The subgroup H ~ is the integer lattice, associated to the singularity
of projection

E= (€, 0)—(C, 0).

To a system of paths joining the critical values of the function f, with the nop-
critical value (and satisfying the conditions applying to systems of paths defining
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distinguished bases) there corresponds a system of “ordinary” vanishing cycles
in the homology of the non-singular level manifold of the function f, on the
manifold F': two for each critical value of the function Jolr and one for each
critical value of the function f, | ~c=-1. The involution interchanges the first of
these and acts on the second by multiplication by —1. The differences of cycles
corresponding to the critical values of the function f,|;. and cycles correspond-
ing to the critical values of the function f,|r~e- generate the group H ™ of
antiinvariant cycles in the homology of the non-singular level manifold of the
function f, on the manifold F’. This set of cycles must be considered as
distinguished in the integer lattice H ™.

Since the manifold F” (as distinct from the space C") has, generally speaking,
non-trivial homology, the number of these cycles is greater than the dimension
of the lattice H~ (their number is equal to the sum of the dimensions of the
lattice H~ and the lattice consisting of antiinvariant homology classes of the
manifold F”). The intersection numbers of the above cycles allows us, using the
same rules as in § 5.2, to define the corresponding D-diagram. Here we must
bear in mind the fact that these rules define the diagram according to the inter-
section numbers of the vanishing cycles for n —p=2 mod 4. Therefore for
p=2 (n—p=1) we must formally perform the same count of intersection
matrices, which occurs with the addition of a quadratic function of one new
variable to the usual singularity (see § 2.8) and further construct the diagram as if
it were true that n —p =2 mod 4. In the given case this means that the ith and jth
vertices are joined by an edge of multiplicity (4,0 4;) (if even one of the cycles 4;
and 4;is short) or (4; 0 4,)/2 (if both of the cycles are long) for i <j (in accordance
with the usual order of cycles {4,} in the distinguished set); the arrows on the
edges are directed from the vertices corresponding to the long vanishing cycles to
the vertices corresponding to the short vanishing cycles.

It is not difficult to see that the simple singularities of projection onto a line

~with p=1 have diagrams coinciding with the diagrams of the same name of

ordinary singularities of functions or boundary singularities. The diagrams of
the singularities of projection C¥},(2<k</) and F,(u=5) have the form
depicted in figure 51 ({132]; the numbering of the vertices is omitted).

c:;"H".H—-‘.OQQ—o—o
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Fig. 51.




Part 11
Oscillatory integrals

This partisdevoted to an investigation of asymptotic oscillatory integrals, that is
integrals of the form

ID)= | D¢ (x)dx,. . .dx,,
R

for large values of the real parameter 7. Here S and ¢ are smooth functions. The
function f is called the phase, the function ¢ is called the amplitude. In
accordance with the principle of stationary phase the main contribution in the
asymptotics is given by neighbourhoods of the critical points of the phase. In this
part we discuss the connection between asymptotics and different characteristics
of the critical points of the phase (resolution of singularities, Newton polyhedra)
and explain the methods for calculating asymptotics. In Part I1I we discuss the
connection between asymptotics and the monodromy and mixed Hodge
structures of critical points.

In the last ten years the theory of singularities has been exceptionally closely
linked with the investigation of oscillatory integrals. On one hand a great many
reasonable problems of the theory of singularities arose from attempts to
understand the nature of the behaviour of integrals. On the other hand much of
the study of critical points has found direct application in the study of
asymptotics. As a first example, remember that the classification of simple
critical points of functions arose as a by-product of the calculation of
asymptotics of the simplest oscillatory integrals [11, 12]. Asa second example we
mention the connection between asymptotic integrals and the mixed Hodge
structure of critical points (see Part ).
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Chapter 6

Discussion of results

6.1 Examples and definitions
6.1.1 Oscillatory integrals and shortwave oscillations

The problems of optics, acoustics and quantum mechanics, the theory of partial
differential equations, probability theory and number theory lead to the need to
study oscillatory integrals with large values of the parameter.

Example. We consider a surface in three-dimensional space. We suppose that
each point of the surface radiates a spherical wave of fixed frequency and fixed
wavelength. We suppose that the wavelength is small in comparison with the size
of the surface and with the rate of change of the amplitude of the wave with
change of the point on the surface.

The total oscillatory behaviour at the point y of the space is given by the
function

sty ¢ ST o)dx
riot x x
T

where ¢ is the time, w is the frequency, A is the wavelength, S is the surface
radiating the wave, ¢ is the amplitude, and dx is an element of surface area. In
this way the complex oscillation is given by an oscillatory integral in which the
reciprocal of the wavelength plays the role of the large real parameter, and the
distance function from the point on the surface to the fixed point of the space
serves as the phase. The principal contribution to the complex oscillation (that is
to the oscillatory integral) is given by neighbourhoods of the critical points of the
phase. If all the critical points of the phase are non-degenerate, then the
contribution to the complex oscillation from each of them is proportional to the
wavelength. If the phase has degenerate critical points then the contribution of
their small neighbourhoods in the complex oscillation is still bigger, namely, the
order of the contribution is proportional to the wavelength to some power less
than one. As a rule the function on the surface, equal to the distance from the
fixed point of the space, has only non-degenerate critical points. The points of

!
i
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the space are called caustic or focal if the function on the surface, equal to the
distance from the point, has a degenerate critical point. The caustic points form
in the space a new surface called the caustic. At points of the caustic the complex
oscillation has exceptionally large magnitude. If the surface radiates light waves,
then the caustic is the surface of exceptionally bright points. It can be seen on a
wall, illuminated by rays reflected from a concave surface (for example, the
surface of a cup). Caustics can be defined in another way. The caustic is the set of
critical values of the exponential map of the space of the normal bundle of the
radiating surface. We racall the definition of the exponential map. A point of the
space of the normal bundle is a pair, consisting of a point on the surface and a
vector, based at it, which is perpendicular to the surface. The exponential map
maps such a pair to the point of space which is the endpoint of the vector. Finally
there is a third description of the caustic. On the normal to the radiating surface
we mark out the principal radii of curvature. The surface of the endpoints of all
these segments is the caustic (see [145]).

We give one more example of the appearance of oscillatory integrals.

One of the classical problems of the theory of linear partial differential
equations is the problem of constructing the solution, asymptotic in a parameter,
of the Cauchy problem with rapidly oscillating initial conditions. Asymptotic
methods (see [244—-246]) reduce in this problem to the following result. For any
natural number N in a small neighbourhood of any point y° the solution of the
Cauchy problem can be represented in the form of a finite sum of oscillatory

integrals
§ 70Ny, x, (17 )dx

and a remainder term of order o(z~") as t— + co. In this integral F is a real
function, 7 is the large parameter of the problem, x are real parameters, the
function ¢ has compact support in x and is a polynomial in (it) 1. Therefore the
calculation of the asymptotic solution of the Cauchy problem is reduced to the
calculation of asymptotic oscillatory integrals.

For a multitude of examples of physical problems in which the need arises of
studying asymptotic integrals, see the works of M. Berry and J. Nye cited in the
bibliography. We note also the interesting articles [33, 122, 283].

6.1.2. The principle of stationary phase states: the principal contribution in
oscillatory integrals is given by a neighbourhood of a critical point of the phase.

Theorem 6.l.ﬂ Let the amplitude of an oscillatory integral have compact support.
Let the phase of the oscillatory integral not have critical points on the support of
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172 Ogscillatory integrals

the amplitude. Then as the parameter of the oscillatory integral tends to + co, the
integral tends to zero more rapidly than any power of the parameter.

Proof. First let the integral be one-dimensional. Integrating it by parts:
+ o0 —1 + o0 ,
| es@pudx=— [ V(S () x.
—@® -

Repeating the integration a sufficient number of times, we obtain; the theorem.
The many-dimensional case reduces to the one-dimensional case wtt.h the !1elp of
a partition of unity and a change to new variables of integration, in which the
phase function is one of the variables.

6.1.3 Fresnel integrals
An oscillatory integral the phase of which has only non-degenerate critical points

is called a Fresnel integral.

Example. We consider a one-dimensional oscillatory integral, the phase of which
is the function x2. In figure 52 we have depicted the graph of

y=cos (2x*)$(x),

which is the real part of the integrand of the oscillatory integral. Itisclear that for
large values of the parameter < the integral is proportional to the area }lnder the
first loop of the graph, that is proportional to ¢(0)7~ 122 Exact calculation shows
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that as the parameter  tends to + oo the oscillatory integral can be represented in
the form

¢(0) )/ (n/7) exp (in/4)

and a remainder term of order O(z~%?) (see [110]).
We consider the many-dimensional Fresnel integral

| exp (itf () (x)dx, . . .dx,.
e

Theorem 6.2 [109, 110]. We suppose that the phase of this integral has a non-
degenerate critical point at the origin, and that the support of the amplitude is
compact and does not contain any other critical point of the phase. Then as the
parameter of the integral tends to + oo the integral can be represented in the form

@(0) (27/t)"* exp (irf (0) +(in/4) sign f:.(0))|det £, (0)| '~
+0( "2,
where sign f;,(0) is the signature of the matrix of second derivatives of the phase

at the origin and det £}, (0) is the determinant of the matrix of second derivatives
of the phase at the origin.

Proof. By the Morse lemma the phase has the form

S Y JEEY

with respect to a suitable system of coordinates in a neighbourhood of the critical
point. Therefore it is sufficient to prove the theorem in this case. This case easily
reduces, with the help of Fubini’s theorem, to the assertion of the previous
example. The theorem is proved.

6.1.4 Caustics

In applications, as a rule, the phase and amplitude of oscillatory integrals depend
on additional parameters. We consider such integrals.
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174 Oscillatory integrals

Let us suppose that the phase is a general family of functions, depending on
additional parameters (a propos of this see Part II of Volume 1). In this case the
integral is a Fresnel integral for almost all values of the parameters and for these
values has order 72 (Theorem 6.2). The set of values of the parameters for
which the phase has degenerate critical points forms a hypersurface in the space
of parameters. This hypersurface is called the caustic. For caustic values of the
parameters the order with which the integral tends to zero is determined by the
degenerate critical points of the phase.

6.1.5 Asymptotic oscillatory integrals near caustics

Let us suppose that for a given value of the additional parameters the phase of an
oscillatory integral has a unique critical point and the phase, considered as a
family of functions depending on parameters, is a family of functions in general
position. In this case the caustic in a neighbourhood of the given value of the
parameter is said to be elementary.

Examples of elementary caustics, occurring when the number of parameters is
two and three are depicted in figures 53-57, where near each part of the caustic is
a label indicating the type of degenerate critical point occurring for these caustic
values of the parameters. For example A4, + 4, means that the phase has two

— =<

Fig. 53. Fig. 54. Fig. 55.

/
,

Fig. 56. Fig. 57.
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critical points of type 4, and the other critical points of the phase are non-
degenerate. Each degenerate critical point of the phase gives in the integral a
contribution of order t* ~"2, The number f for the critical points of types A4, Dy
is equal, respectively, to (k—1)/Q2k+2), (k—2)/(2k—2) (see Theorem 6.4
below).

In accordance with the results of Part I1I of Volume 1 for a phase depending in
a general way on two or three parameters, each elementary caustic is locally
diffeomorphic to one of the caustics depicted in figures 53—57. The integrals of
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equal orders correspond to the values of the parameters transforming one into
the other under local diffeomorphism.

Let us suppose that there are four additional parameters and one of the
parameters is chosen; we shall call it time. Then depending on the time the
caustic will be reconstructed. For a family of functions in general position all
possible reconstructions are shown in figures 58, 59. The classification of the
reconstructions of the caustic was carried out by V. M. Zakalyukin (see Part 111
of Volume 1). Each reconstruction has its own designation. The families
corresponding to these designations were given in § 22.3 of Volume 1.

Notice that figure 58, (the reconstruction 43, ., .) depicts the unique
reconstruction, for which for positive time the caustic is absent but for which for
negative time it exists. According to V. M. Zakalyukin this reconstruction,
possibly, illustrates the phenomenon of the disappearance of “flying saucers”.

6.1.6 Oscillatofy integrals in a halfspace

We return to the example of § 6.1.1. Let us suppose that the radiating surface is
opaque for the emitted waves. Then at a given point of the space there arrive
waves from the visible parts of the surface only. Therefore the complex
oscillation at a point of the space is expressed as a sum of oscillatory integrals
each of which is taken over a part of the surface. In this way it is useful in the
study of short-wave radiation to know how to calculate asymptotic oscillatory
integrals along a region with boundary. We investigate the case of a smooth
boundary.

Let us consider an oscillatory integral on that part of the space R" given by the
condition that the first coordinate is positive. Moreover we shall suppose that the
phase and the amplitude of the integral are smooth functions on the whole space.

Theorem 6.1'. Let the amplitude of the oscillatory integral on the halfspace have
- compact support. Let the phase of the oscillatory integral on the halfspace not
have critical points on the support of the amplitude in the region of integration.
Let the restriction of the phase to the boundary of the halfspace not have critical
points on the support of the amplitude. Then as the parameter of the oscillatory
integral tends to + oo the integral tends to zero more rapidly than any power of
the parameter.

Proof. It is sufficient to carry out the proof in the case when the support of the
amplitude is concentrated in a small neighbourhood of a boundary point of the
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halfspace. By changing the variables of integration we can transform to the case
in which the halfspace of integration is given by the condition that the first
variable is positive, but the phase is the second variable. After integrating by
parts with respect to the second variable a sufficient number of times, we obtain
the theorem:.

Let us suppose that the phase of an oscillatory integral in a halfspace does not
have critical points on the boundary of the halfspace. Let us suppose that all its
critical points inside the halfspace are non-degenerate and the critical points of
its restriction to the boundary of the halfspace of integration are also non-
degenerate. An oscillatory integral with such a phase we shall call a Fresnel
integral on a halfspace.

Theorem 6.2°. Let us consider a Fresnel integral on the halfspace in which the first
coordinate is positive. Let us suppose that the origin is not a critical point of the
phase, but is a non-degenerate critical point of the restriction of the phase to the
boundary of the halfspace. Let us suppose that the support of the amplitude is
compact, does not contain a critical point of the phase and does not contain
other critical points of the restriction of the phase to the boundary of the

halfspace. Then as the parameter of the integral tends to + oo the integral can be
represented in the form

@(0) (ir) "1 (22/t)"~ V72 exp (it f (0) + (in/4) sign f7,.(0)) x
x| det F7,.(0)|" 12 + O (z~ "+ 12),

where sign f7,.(0) is the signature of the matrix of second derivatives at the
critical point of the restriction of the phase to the boundary, and det 7,;',,,, (0)is the
determinant of the matrix of second derivatives at the critical point of the
restriction of the phase to the boundary.

Proof. In a neighbourhood of the origin we change the first variable so that the
halfspace of integration, as before, satisfies the condition that it is positive, and
the phase of the integral takes the form

xy+h(x,, ..., X,)

Then Theorem 6.2’ reduces to Theorem 6.2 by integrating by parts with respect
to the first coordinate.

Let us suppose that the phase and amplitude of an oscillatory integral in a
halfspace depend on additional parameters. Let us suppose that the phase,
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considered as a family of functions depending on parameters, is a famlly‘ of
functions in general position (see Part II of Volume 1). In thiscase the integralisa
Fresnel integral for almost all values of the parameters. Those values of tl_le
parameters for which the integral is not a Fresnel integral form a hypersurface in
the space of parameters called the caustic.

Let us suppose that for the given values of the pa:a.meters ?he phase h'fis.a
unique critical point on the boundary of the halfsp‘ace'of integration. A causticin
a neighbourhood of such values of the parameters 1s called elementary. _

Examples of elementary caustics, occuring when the number of parametersis 2

or 3 are depicted in figures 60-64.

A

=
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i

Fig. 62
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Fig. 64.

For caustic values of the parameters either the phase has a degenerate critical
point in the halfspace of integration or the phase has a critical point on the
boundary or the restriction of the phase to the boundary has a degenerate critical
point. On the diagrams near each part of the caustics is given the designation of
these critical points. For the normal forms of the critical points marked on the
caustics, see Chapter 17 of Volume 1 and also [16]. Each indicated critical point
gives in the integral a contribution of order #~"2, The number g for the critical
points of types

| A4, D, B, G, F,
are equal, respectively, to
—-1/(k+1), —1/2k-2), (k—1)/2k, 0, 1/6

(see Theorem 8.9 below).

In accordance with [18] (see also Chapter 17 of Volume 1) for the phase of an
oscillatory integral in a halfspace, depending in a general way on two or three
parameters, each elementary caustic is locally diffeomorphic to one of the
caustics depicted in figures 60—64. Values of the parameters which are related by
a local diffeomorphism give integrals of the same order.
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6.1.7 Light, dark and twilight zones (according to P. K. Mandrykin)

Let us suppose that the phase and amplitude of an oscillatory integral depend
on additional parameters. Let us consider the space of parameters and a caustic
located in it. Let us consider an arbitrary value of the parameters away from the
caustic. The phase of the oscillatory integral, corresponding to this value of the
parameters, has only non-degenerate critical points or, has no critical points at
all. In the first case the oscillatory integral has order 1™ "2, where n is the
dimension of the space of integration; in the second case as 1—+0 the
oscillatory integral tends to zero more rapidly than any power of the parameter 7.
Corresponding to these cases the region away from the caustic is called
— a light zonme, if to the values of the parameters from this region there
correspond oscillatory integrals, the phases of which have at least one critical
point;

_ a dark zone, if to the values of the parameters from this region there
correspond oscillatory integrals, the phases of which do not have even one

critical point.

Example. Figures 53-57 depict caustics corresponding to critical points of
types

AZ’ A39 A41 Df .

In the pictures of the caustics corresponding to

A29 A4’ D4+ >

the dark zones lie under the caustics. The other regions away from the caustics
depicted in the figure are light zones.

Let us suppose now that our oscillatory integral is an integral on a halfspace.
Let usconsider an arbitrary value of the parameters away from the caustic. There
are three possibilities:

(i) The phase of the oscillatory integral, corresponding to the given value of the
parameters, has at least one critical point in the halfspace of integration. In this
case the integral has order t~"2.

(ii) The phase of the oscillatory integral, corresponding to the given value of
the parameters, does not have a critical point in the halfspace of integration,
but the restriction of the phase to the boundary of the halfspace of integration
has at least one critical point. In this case the integral has order t~**!7?
(Theorem 6.2').

Discussion of results 181

(iif) The phase of the oscillatory integral, corresponding to the given value of
the garameters does not have a critical point in the halfspace of integration, and
al§(? its restriction to the boundary of the halfspace of integration does not have a
critical point. In this case as 7— + oo the integral tends to zero more rapidly than
any power of the parameter 7.

Corresponding to these three possibilities, the region away from the caustic is
called a light zone, a twilight zone or a dark zone, respectively.

Example. Figures 61-64 depict caustics, corresponding to critical points of
types

839 C3ia C4, B4, F4.

We shall indicate the dark and twilight zones on these pictures, the other regions
away from the caustics being light zones.

In ﬁgure 61a the twilight zone is above the caustic. In figure 61b the twilight
zone is under the caustic. In figure 61c the dark zone is above the caustic; the
twilight zone is between the two leaves of the caustic. In figure 62 the twiiight
zone is on one side of the plane of the caustic. In figure 63 the twilight zone is to
the right over the plane of the caustic. In figure 64 the dark zone is over all the
caustic; the twilight zone is behind the caustic under the plane of the caustic;
there is also a twilight zone to the right between the plane of the caustic and the;
ruled surface (the third part of the caustic).

I_t is interesting to ask if there exists a critical point, away from the caustic of
whlch .there are two dark zones. Probably the dark zones possess certain
convexity properties.

6.1.8.

Theorem 6.3 (on asymptotic expansions, see [32, 46, 47, 239, 358].
Let us consider the oscillatory integral

| exp(f () 9()dx, . .. dx,. ()
ll

Let the phase-be an analytic function in a neighbourhood of its critical point x°.
Then the oscillatory integral can be expanded in an asymptotic series

n—1
exp (it (x°) Y. ';o a.(p)r*(n1)* for 1—-+00 Q?)




182 Oscillatory integrals

if the support of the amplitude is concentrated in a sufficiently small
neighbourhood of this critical point of the phase. Here the parameter a runs
through a finite set of arithmetic progressions, depending only on the phase, and
consisting of negative rational numbers. The numerical coefficients a, , are
generalised functions of the amplitude. The support of each such generalised
function lies in the critical set of the phase.

Example [110]. Let us consider a Fresnel integral. Let us suppose that the phase of
the integral has a non-degenerate critical point at the origin and that the support
of the amplitude is compact and does not contain other critical points of the
phase. Then as the parameter tends to + o the integral can be expanded in the
asymptotic series

exp(i1:f((‘)))t”'/2 i ajt .
j=0

The number g; is equal to a linear combination of the (2;)th mixed derivatives of
the amplitude at the origin. The number a, is indicated in Theorem 6.2.

Remark. In Theorem 6.3 the condition that the phase is analytic is practically
always satisfied: the phase is a polynomial in suitable coordinates in a
neighbourhood of a finite-multiplicity critical point. Infinite-multiplicity critical
points are very rare: the coefficients of the Taylor series of an infinite-
multiplicity critical point satisfy an infinite set of independent algebraic
relations.

We give two proofs of Theorem 6.3. One, based on Hironaka’s theorem on the
resolution of singularities, is given in Chapter 7. For the other proof, which uses
complex analytic reasoning, see Chapter 11.

In the asymptotic series of oscillatory integrals the phase and the amplitude do
not enjoy the same status: the phase determines the indices for the powers of the
parameter, but the amplitude determines the coefficients for the powers of the
parameter. The dependence on the phase is more important. As a rule investi-
gating oscillatory integrals we fix the phase, but we allow the amplitude to
change. In the example in § 6.1.1 on a surface radiating waves, the phase depends
on the geometry of the radiating surface, but the amplitude depends on the
intensity of the radiation.
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6.1.9 The oscillation index and the singular index

The fundamental characteristics of the asymptotic series of an oscillatory
integral are: the index of the power of the parameter in the leading term of the
series;

the power of the logarithm of the parameter in the leading term of the series;
the numerical coefficient of the leading term of the series;

finally, the set of all the indices of the powers of the parameter occurring in the
series.

Definitions. The index set of an analytic phase at a critical point is the set of all
numbers a possessing the property: for any neighbourhood of the critical point
there is an amplitude with support in the neighbourhood for which in the
asymptotic series (2) there is a number k with the property that the coefficient a; ,
is not equal to zero. The oscillation index of an analytic phase at a critical point is
the maximal number in the index set. The oscillation index will be denoted by 8.
The multiplicity of the oscillation index of an analytic phase at a critical point is
the maximal number k possessing the property: for any neighbourhood of the
critical point there is an amplitude with support in this neighbourhood for which
in the asymptotic series (2) the coefficient a; 5 is not equal to zero. The
multiplicity of the oscillation index will be denoted by K.

Example. The index set of a phase in n variables at a non-degenerate critical point
is the set of all numbers of the form —n/2 —I, where /=0,1,. .. The oscillation
index of this critical point is equal to —n/2, its multiplicity is equal to zero.

The oscillation index and its multiplicity satisfy the following simple property.
Let

S5 x), gOase 50

be analytic functions with critical points at the origin. Then for the function
S, x)+9(s- -2 30

the oscillation index at the origin and its multiplicity are equal, respectively, to

the sum of the oscillation indices and the sum of the multiplicities of the
oscillation indices at the critical points of the functions fand g:

BU+9)=B(N)+B(9). K(f+9)=K()+K(9)
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(this is a corollary of Fubini’s theorem, see Chapter 9). The additivity of the
oscillation index and its multiplicity motivate the following definition.

Definition. The singular index of an analytic phase in 7z variables at a critical point
is the oscillation index at this critical point, increased by n/2. The multiplicity of
the singular index is the multiplicity of the oscillation index.

The singular index and its multiplicity are equal to zero at a non-degenerate
critical point of the phase. The singular index and its multiplicity are equal at
stably equivalent critical points.

6.1.10 Tables of singular indices

In this part we calulate (in the cases enumerated below) the principal
characteristics of critical points of phases of oscillatory integrals: the oscillation
index, its multiplicity, the index set. We describe amplitudes such that the
principal term of the asymptotic series is different from zero. The results proved
in this part allow us to calculate the singular indices and their multiplicities for all
critical points classified in Part II of Volume 1. Namely for all simple, unimodal
and bimodal critical points, for all critical points of multiplicity less than 16, for
all critical points existing in classes of codimension less than 10, see Chapter 15 of
Part 1.

The results of the calculations follow in tables 1-5. In the first row of the
tables is the designation of the type of critical point of the phase. The normal
forms of the critical points corresponding to these designations are shown in
§§ 15.1 and 17.1 of Volume 1. In the second row of the tables are the singular
indices. The meaning of our tables is this: if in a neighbourhood of the critical
point the phase is reduced to the tabulated form by a diffeomorphism of the
space, then its singular index is equal to the singular index of the tabulated
function.

For critical points of types

Jio+xs Xosss Yoo Pois Rims Rit™,
Rot Ty (@™ g7 4171 <), X, ,(p>0), Y2,
22, Z3s 61> Z3s+6is Z3r461> Z2)p

the multiplicity of the singular index is equal to 1, for all other critical points in
tables 1-5 the multiplicity of the singular index is equal to 0. For all the critical
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Table 1. Simple singularities.

4, | Dy | E, ‘ E, \ E,
k-1 k—2 H 4 7
2%+2 k2 12 9 1

Table 2. Unimodal singularities.

PB; X9y~’10"’10+b X9+b Yr,s’ YnP8+h Rl,m’ Emy Tp,q,n Tp,m

1

2
Ey | By LEu,Qlo Z | Zi0u ‘sz Wis, i 'Qn Su | U
11 8 13 6 5 _1_1_ _?_ 11 E l
21 |15 24 11 9 20 16 30 |26 | 12

Table 3. Bimodal singularities.

JS,O Zl.o’ E19 u’l,09 Wvl?lq—l; Q2,0,217 sl,O’ SI’.Z’q—la Wl7
JS.p Zl P Wl.m n’l’.Zv Qz,, sl.p sl.2'7 Qn
5 4 7 3
9 7 12 5
Su1 [Uro>Urzg-1,Usze| Ess IEzo |zl. |z,, |m. Ois | Qi |s1. IUts
5 11 17 (13 |10 [16 |17 | 25 | 29 [21 | 19
8 18 30 {24 |17 {27 | 28 | 42 | 48 | 34 | 30
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186
Table 4. Singularities of corank 2 with non-zero 4-jet. points in the tables (except
05 Jui l Eex l Eex+1 ‘ Ey+2 X0, Xups Y V Pg's, R':’+’ R;'_’ Tp.m)
2k -1 6k—1 Ak 6k+1 3k-1 : the multiplicity of the singular index is equal to 1, for all other critical points in
3k 9% +3 6k+3 9k +6 4k , tables 1-5 the multiplicity of the singular index is equal to 0. For all the critical
' points in the tables (except
Piw, B4, R, Toms
Zko, Zty, ZHhersi-15| Zi stk T " pem
il 7 for k>2 z?
Zin+eir Zizevsiva ) P the same assertion is true about the imaginary part of the coefficient ag .
. 2i45 For the proof of these results see Chapter 9.
ak 3i+8
6.2 Formulation of the results
2 2 2 Zio,Z, Z | Z Zgi+13 . . .
Zove | Ziave | Zis ves I Lo Thr bl bl . The main results of this part are formulated in terms of the Newton polyhedra of
6i+17 4i+12 6i+19 2i42 6i+8 4i+6 6i+10 the Taylor series of the critical points of the phase. The Newton polyhedron is
i 1

97130 314 9715 Giv 1l 9i+18 ‘ that convex polyhedron formed by the indices of the monomials occurring in the
Taylor series. We consider the class of critical points with fixed Newton
polyhedron. We prove that almost all critical points of the class have the same
oscillation index. We prove the formula expressing this common oscillation
index in terms of the geometry of the Newton polyhedron. The exceptions

9i+27 6i+19

* #
Wiz | Wize+s | W0, Wi Withe-1, Wil | Wisess | Wisrse

2 —1 ok 12k +2 9k+3 12k +5 consist of t.ht? critical p'oints, tl3e. coefficients of whose Taylor series satisfy a finite
T T T6k+8 12k +8 16k+ 12 set of explicit alg'e_bralc cfondm.ons. . .
The class of critical points with fixed Newton polyhedron is a useful thing to
consider in a study of discrete invariants of critical points. As a rule an in-
variant has a single value for almost all points of the class, and this common
Table 5. Singularities of corank 3 with reduced 3-jet and 3-jet x°y. ; value can be simply expressed in terms of the geometry of the Newton
‘ polyhedron (see § 6.2.4, 3.5, and also [31, 44, 45, 65-67, 76, 89, 106, 159165,
Q0 Oui | Oox+4 | QOex+s” l Osx+s | Si25-1 S12k ‘ 183, 195, 196, 200, 223, 314, 343, 358, 359, 380382, 386]).
o 4k -1 12k +1 8k+2 12k+5 12k-3 18k -3 s .
o 6k 18k +6 12k+6 | 18k+12 16k 24k +2 | 621 The Newton polyhedron
Let us consider the positive orthant of the space R”, that is the set of points
S0 S Us.2¢ Vios Vit2g-1 with non-negative coordinates. We define the Newton polyhedron of an
k0> ;;i"’ Sizx+a | Stakes Uiz Usze-1 Uizn+a Vi Vi2e » arbitrary subset of the orthant consisting of points with integer coordinates. At
Su Sizg ' . each point of the subset we take a parallel positive orthant. The Newton
6k 18k+3 | 12k+3 | 15k—1 | 10k+1 | 15k+4 5 polyhedron is the convex hull in R" of the union of all the orthants constructed
2ak+10 | 16k+8 | 18k+6 | 12k+6 |18k+12 8 above. The Newton polyhedron is a convex polyhedron with vertices at points

8k+2
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with non-negative integer coordinates. Together with each point it contains the
positive orthant parallel translated to this point. The Newton diagram of a subset
is the union of all the compact faces of its Newton polyhedron.

We consider the power series

f = Za,‘x"
with real or complex coefficients, where
k=(ky,. .., k), X*=xF...x".

The support of the series is the set of indices of all the monomials occurring in the
series with non-zero coefficients. The support of the series is a subset of the
positive orthant, consisting of points with non-negative integer coordinates. We
remove from the support the origin (if it lies in the support). The set obtained is
called the reduced support of the series. The Newton polyhedron of a power series
is the Newton polyhedron of its reduced support. The Newton diagram of a power
series is the Newton diagram of its reduced support.

The Newton polyhedron is denoted by I', the Newton diagram is denoted
by 4.

Example. For the functions

[=03+x3) +x,
_9=(x§ —x3)%,
h=(x, +x2)Px3 + X3+ %3

the Newton polyhedra and Newton diagrams of the Taylor series at the origin
are depicted in figure 65.
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For each face y of the Newton polyhedron of a power series the y-part of this
power series is the power series consisting of monomials the indices of which lie
in the face y; moreover each monomial occurs with the same coefficient as in the
original power series. If the face y is compact, then the y-part is a polynomial.
The principal part of a power series is a polynomial consisting of monomials, the
indices of which lie in the Newton diagram of the power series; moreover the
monomials occur with the same coefficients as in the original power series.
The y-part of the series f is denoted by f,, the principal part of the series is
denoted by f;.

Example. For the functions in the previous example the principal parts of the
Taylor series are the polynomials

fa=03+x3),

gda =(x§ _xg)z,
hy=(x;+x,)°x] +x3

6.2.2 Nondegeneracy of the principal part

We define the concept of nondegeneracy of the principal part of a power series.
In the sequel we shall see that functions, the Taylor series of which have non-
degenerate principal parts, have good properties: their discrete characteristics
can be simply expressed in terms of the geometry of their Newton polyhedra,
see § 6.2.4.

Definitions [195, 196]. The principal part of the power series f with real coeffi-
cients (respectively power series with complex coefficients) is R-nondegenerate
(resp. €-nondegenrate) if for every compact face y of the Newton polyhedron of
the series the polynomials

a1,10x,,. .., 0f,/0x,
do not have common zeros in (R\ 0)" (respectively in (C\0)").
Example. All principal parts in the previous example are C-degenerate, the

principal part of f, is R-non-degenerate, the principal parts of g,, h, are
R-degenerate.
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Remark. For any compact face y the y-part polynomial is quasihomogeneous. By
the Theorem of Euler on homogeneous functions, the common zeroes in (R\\ 0)*
of all the first partial derivatives of the y-part polynomial liec on the zero level
manifold of the y-part polynomial.

The following lemma shows that series with degenerate principal parts are
rare.

Lemma 6.1 (see [195, 196]). The set of R-degenerate (respectively C-degenerate)
principal parts is a proper semialgebraic (resp. constructive) subset in the space
of all principal parts corresponding to a given Newton polyhedron, the
complement of which is everywhere dense.

Proof. For a fixed compact face y of the Newton polyhedron we prove that, in the
space of polynomials which are y-parts, the semialgebraic subset corresponds to
those polynomials for which the zero level manifold has a singular point in
(R\\0)" and the complement of the subset is everywhere dense.

The Theorem of Tarski-Seidenberg (see [130, 325]) guarantees that the subset
is semialgebraic. Let us prove that the complement is dense. The zero level
manifold is given by the equation

Z C&Xk =0.

key

We pick out one of these monomials. Then the zero level manifold in (R\0)"
can be given by the equation

c,‘o= - z Ckxt—ko.
keyN\ko

By the Theorem of Bertini-Sard only a finite set of values of the coefficient ¢,

(where the other coefficients are fixed) correspond to singular zero level

manifolds. The lemma is proved.

6.2.3 The distance to a polyhedron and the remoteness of a polyhedron

To study oscillatory integrals we use geometrical characteristics of the Newton
polyhedron, called the distance to a polyhedron and the remoteness of a
polyhedron. Let us consider the bisector of the positive orthant in R", that is the
line consisting of points with equal coordinates. The bisector intersects the
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boundary of the Newton polyhedron in exactly one point. This point is called the
centre of the boundary of the Newton polyhedron. The coordinate of the centre is
called the distance to the Newton polyhedron. The remoteness of the Newton
polyhedron is the reciprocal of the distance, taken with a minus sign.

Example. For the functions f, g, h of the example on page 189, the distances to
the Newton polyhedra are equal, respectively, to ’

2, 12/5, 2,
whilst the remoteness of the Newton polyhedra are equal, respectively, to
—-1/2, —5/12, —1/2.

The further from the origin the Newton polyhedron is, the larger is its
remoteness. We call the Newton polyhedron remote if its remoteness is greater
than —1. In other words the Newton polyhedron is remote if it does not contain
the point (1,...,1).

We consider the open face which contains the centre of the boundary of the
Newton polyhedron. The codimension of this face, less one, is called the
multiplicity of the remoteness. In particular, if the indicated face is a vertex of the
polyhedron, then the multiplicity is equal to n —1, if the indicated face is an edge
of the polyhedron then the multiplicity is equal to n—2, and so on.

Exahlple. For the functions f, g, 4 of the example on page 189 the multiplicities of
the remoteness of the Newton polyhedra equal, respectively, 0, 0, 1.

6.2.4 Formulation of the main resaults

The main result of this part is the following: the oscillation index of a critical
point of the phase is determined by the remoteness of the Newton polyhedron of
its Taylor series (under conditions formulated in the following two theorems).

Theorem 6.4 {358). Let the phase be an analytic function in a neighbourhood of
its critical point. Let us suppose that the principal part of the Taylor series of the
phase at this critical point is R-nondegenerate, and that the Newton polyhedron

" - ——— e




|
|
%

192 Oscillatory integrals

of this series is remote. Then the oscillation index of the critical point of the phase
is equal to the remoteness of the Newton polyhedron.

Example 1. The degenerate critical point at the origin of the phase xkt 4 xk2
satisfies the conditions of the theorem. Its oscillation index is equal to
~1/ky —1/k,.

Example 2. The critical point at the origin of the phase f of the example on page
189 satisfies the conditions of the theorem. Its oscillation index is equalto —1/2.

The following assertions supplement the theorem.

(i) If the conditions of the theorem are satisfied then the muiltiplicity of the
oscillation index of the critical point of the phase is equal to the multiplicity of the
remoteness of the Newton polyhedron of the Taylor series of the phase at this
critical point.

(ii) If the principal part of the Taylor series of the critical point of the phase is
R-nondegenerate then the oscillation index of the critical point is not more than
the remoteness of the Newton polyhedron of the Taylor series.

(iii) Let us consider the critical point at the origin of the phase

G+ 33+ x5+ (xe — O+ + 33 + XD x5
Then the principal part of the Taylor series of the critical point is R-non-
degenerate; the remoteness of the Newton polyhedron of the Taylor series is less
than —1; the oscillation index of the critical point is less than the remoteness of
the Newton polyhedron.

(iv) If the Newton polyhedron of the Taylor series of the critical point of the
phase is remote then the oscillation index of the critical point of the phase is not
less than the remoteness of the polyhedron.

(v) If the Newton polyhedron of the Taylor series of the critical point of the
phase is remote, and this critical point has finite multiplicity, then the coefficient
of the principal term of the asymptotic series of the oscillatory integral (the
coefficient ay , of the series (2) on page 181) is equal to the value of the amplitude
at the critical point of the phase, multiplied by a non-zero constant, depending
only on the phase.

(vi) Let the principal part of the Taylor series of the critical point of the phase
be R-nondegenerate and the remoteness of the Newton polyhedron be equal
to —1. Then the oscillation index of the critical point of the phase is equal to —1
if at least one of the following two conditions is satisfied:
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— the open face which contains the centre of the boundary of the Newton
polyhedron has dimension less than n—1;

— the closure y of the open face which contains the centre of the boundary of the
Newton polyhedron is compact and the y-part of the Taylor series has a zero in
R\ 0)"~.

(vii) If the hypotheses of supplement (vi) are satisfied then the multiplicity of
the oscillation index of a critical point of the phase is equal to the multiplicity of
the remoteness of the Newton polyhedron of the Taylor series or to one less than
the multiplicity of the remoteness.

Theorem 6.4 and supplements (i), (ii), (iv), (v), (vi), (vii) will be proved in
Chapter 8, supplement (iii) will be proved in Chapter 9.

According to Theorem 6.4, the oscillation index of a critical point of the phase
can be expressed in terms of the Newton polyhedron of its Taylor series if the
principal part of the Taylor series is R-nondegenerate and the Newton
polyhedron of the Taylor series is remote. A system of coordinates in which the
Taylor series possesses these properties does not always exist. For example, it
does not do so for the critical point at the origin of the function g of the example
on page 189. None the less, for critical points of functions of two variables
conditions on the existence of the indicated system of coordinates can be
omitted.

Let the phase be an analytic function in a neighbourhood of its critical point.

The remoteness of the critical point of the phase is the upper bound of the
remotenesses of the Newton polyhedra of the Taylor series of the phase in all
systems of local analytic coordinates with origin at the critical point.

A local analytic coordinate system with origin at the critical point of the phase
is called adapted to the critical point if the remoteness of the Newton polyhedron
of the Taylor series of the phase in this system of coordinates has the greatest
possible value, equal to the remoteness of the critical point.

Theorem 6.5 (see [358]). Let the phase be an analytic function of two variables in
a neighbourhood of its critical point. Then the oscillation index of the critical
point is equal to its remotegess.

The following assertions supplement the theorem.

(i) Under the conditions of the theorem there exists a system of coordinates,
adapted to the critical point.

(ii) If the critical point of a two-dimensional phase has finite multiplicity then
the coefficient of the principal term of the asymptotic series of the oscillatory
integral (the coefficient ag , of series (2) on page 181) is equal to the value of the
amplitude at the critical point of the phase, multiplied by a non-zero constant
depending only on the phase.
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(iii) The oscillation index is greater than the remoteness for the critical point at
the origin of the phase

(=33 +3+25 +33) +x] +x3+x3
of three variables.

Theorem 6.5 and supplements (i), (ii) will be proved in § 8.4, supplement (iii)
will be proved in Chapter 9 (see also [358]).

In [358] there is described an algorithm for the creation of a system of
coordinates adapted to the critical point of a phase of two variables. The
following lemma is useful for the creation of adapted coordinates.

Lemma 6.2 (sce [358]). A local system of coordinates with origin at the critical
point of a phase of two variables is adapted to the critical point if at least one of
the following conditions is satisfied.

(i) The centre of the boundary of the Newton polyhedron of the Taylor series
of the phase with respect to this system of coordinates is a vertex of the polygon.

(ii) The centre of the boundary of the Newton polyhedron lies on a non-
compact edge of the polygon.

(iii) The centre of the boundary of the Newton polyhedron lies on a compact
edge of the polygon and neither the tangent nor the cotangent of the angle
formed by the edge and the first coordinate axis in R? is equal to an integer (we
remark that interchanging the axes changes tangents to cotangents and does not
influence the truth of the formulated condition).

Example. Let us consider the functions g and k of the example on page 189. The
system of coordinates x,, x, is adapted to the critical points of these functions
(because of sections (iii) and (i) of Lemma 6.2 respectively). By Theorem 6.5 the
oscillation indices are equal, respectively, to —5/12, —1/2.

Remark 1. The assertion of the fact that the coefficient of the leading term of the
asymptotic series is proportional to the value of the amplitude at a critical point
(see the supplements of Theorems 6.4, 6.5), can be used to solve the following
problem of integral geometry, posed by 1. M. Gelfand in Amsterdam in 1954.

Problem. Let ¢ be a smooth function with support concentrated in a small
neighbourhood of the critical point of a smooth function f. Knowing the
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integrals of the function ¢ over every level hypersurface of the function f find the
value of the function ¢ at the indicated critical point.

For the solution of this problem it is sufficient to take the coefficient of the
leading term of the asymptotic series of the oscillatory integral with phase fand
amplitude ¢ if the critical point of the function f has finite multiplicity and its
remoteness is greater than —1. For more details see § 7.3.

Remark 2, The singular index is non-negative for critical points of phases of one
and two variables (see Theorems 6.4, 6.5), for critical points satisfying the
conditions of supplement (iv) of Theorem 6.4. Using supplement (iv) of
Theorem 6.4, it can be proved that the singular index is non-negative for critical
points of phases of three variables. Apparently the singular index is always non-
negative. This means that the order of complex shortwave oscillation at a caustic
point is, apparently, always greater than the order of complex shortwave
oscillation at a non-caustic point (see §§6.1.1, 6.1.4). In particular a light caustic,
apparently, is always distinguished by its brightness.

In Chapter 13 we shall define the complex singular index of a critical point of
a holomorphic function. The complex singular index is always non-negative, see
§ 13.3. The proof of this fact uses the connection between asymptotic integrals
and mixed Hodge structures.

6.3  The resolution of a singularity

The proof of Theorems 6.3—6.5 uses the resolution of the singularity of the
critical point of the phase.

Letus consider a function f: R"— R, analytic in a neighbourhood of its critical
point x. Let us suppose that the value of the function at this point is equal to 0.
The resolution of the singularity of the critical point is an n-dimensional analytic
manifold Y and an analytic map

n:Y-R"

possessing the following properties.

1. At each point of the preimage of the critical point x there are local coordi-
nates with respect to which the function foz and the Jacobian map of = are
equal to monomials modulo multiplication by a function which does not take the
value zero.
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2. In a small neighbourhood of the critical point x there is a proper analytic
subset outside which in this neighbourhood the map = has an analytic inverse.
3. The preimage of any compact subset of a small neighbourhood of the point x
is compact.

Remark 1. In particular, from the first condition it follows that in a
neighbourhood of the preimage of the point x the zero level hypersurface of the
function fom is locally structured as the union of coordinate hyperplanes.

Remark 2. Sometimes the requirements of the map nare strengthened, property 2
being replaced by property 2’ or even by property 2” and property 4 being added.
2. In a small neighbourhood of the point x the map 7 is invertible outside the
zero level hypérsurface of the function f.

2”. In a small neighbourhood of the point x the map = is invertible outside the
critical set of the function f.

4. In a small neighbourhood of the preimage of the point x the zero level
hypersurface of the function fo=n is the union of non-singular (n—1)-
dimensional submanifolds.

Theorem 6.6 (Hironaka, see [158, 32]). There exists a resolution of the singu-
larity (with properties 1, 2”, 3, 4) of the critical point of an analytic function.

This theorem was formulated in [32]. It is a special case of a general theorem of
Hironaka on resolutions of singularities [158].

Remark 3. The concept of resolution of singularities has a natural complex
analogue. We consider the function f: €*—C, analytic in a neighbourhood of its
critical point x. The resolution is an n-dimensional complex analytic manifold Y
and an analytic map

n:Y-C"

which satisfies the properties formulated above. Also in this case, the theorem of
Hironaka is true.

The theorem of Hironaka leads the investigation of oscillatory integrals with
analytic phase to the investigation of sums of oscillatory integrals the phase of
each of which is a monomial. It is necessary for this to make a change of variables

E
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in the integral with the help of the map n. The oscillatory integrals with
monomial phase are called elementary. The elementary integrals are studied in
Chapter 7. For these it is not hard to find the oscillation index, its multiplicity
and its index set. Therefore in investigating oscillatory integrals with analytic
phase, it is important to know the resolution of the singularity of the phase, to be
able to see how the asymptotic series of the integral under investigation is added
up from asymptotic series of elementary integrals, to see whether or not the
leading term cancels out. The result of such analysis is an exp}ession for the
oscillation index and analogous characteristics in terms of the resolution of the
singularity of the phase (Theorem 7.5). Theorems 6.4 and 6.5 are reformulations
of the properties of resolutions of singularities, which arise in this analysis, in
terms of Newton polyhedra.

6.4 Asymptotics of volumes

The asymptotics of oscillatory integrals are closely connected with the asymp-
totics of the volume of the set of points at which the phase takes values less than
a given number, as this number changes and tends to the critical value of the
phase.

6.4.1 The Gelfand-Leray form

For the study of oscillatory integrals it is very useful to know the following
method, which reduces many-dimensional oscillatory integrals to one-dimen-
sional ones. The method consists of applications of Fubini’s Theorem. Namely,
let us consider the oscillatory integral:

[ & Dpx)dx, .. . dx,.
Rl

Using Fubini’s Theorem, we reduce the integral to another in which we first
integrate along a level hypersurface of the phase, and then with respect to the
remaining variable, the value of the phase. To do this, we change to new
variables, one of which is the phase.

We make two remarks. Firstly the phase can be taken as a variable only away
from its critical points. Therefore we cut out of consideration the union of the
critical level hypersurfaces of the phase. The union of these hypersurfaces has
zero measure and has no effect on the integral. Secondly, for the integration
along the level hypersurfaces we do not need to know each of the remaining new
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variables. It is sufficient to know on the level hypersurfaces the density (n —1)-
form, which after multiplication by the differential of the phase becomes the
volume form of the space. This density form is called the Gelfand-Leray form and
is denoted by

dx, A ... Adx,/df.

And so the oscillatory integral is reduced to the form

aw

fetl] ¢dx1A..._Adx,/df)dt.

-

In this representation the oscillatory integral is the Fourier transform of the
function given by the inside integral. The function of one variable, defined by the
inside integral, is called the Gelfand-Leray function.

The Gelfand-Leray function is smooth outside the critical values of the phafse.
In a neighbourhood of the critical value of the phase the Gelfand-Leray function
can be expanded in an asymptotic series of the form

)X 'i‘ a .(t —10)*(n (¢ —to)~.
e« k=0

Knowing the asymptotic series of the Gelfand-Leray function one can determine
the asymptotic series of the oscillatory integral and conversely the asymptotics of
the oscillatory integral give information about the asymptotics of the Gelfand-
Leray function. These properties of the Gelfand-Leray function will be proved in
Chapter 7.

6.4.2 The volume of an infralevel set

Let us suppose that the phase has an isolated minimum and that the minimal
value of the phase is equal to zero. Let us suppose also that the amplitude in a
neighbourhood of the minimum point is identically equal to 1. Let us denote byJ
the Gelfand-Leray function and let us consider the new function

Vio)=§ J6)ds.
/]

It is clear that for negative values of the argument this function is equal to zero,
and for small positive values of the argument this function is equal to the volume
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of the set of points in which the phase takes values less than the given one (an
“infralevel set”). In this way the asymptotics of the volume function of the
infralevel set determine the asymptotics of the oscillatory integral in the case
when the phase has an isolated minimum and the amplitude is equal to a constant
in a neighbourhood of the minimum point of the phase.

Let us find the rate of convergence to zero of the volume of the infralevel set for
simple isolated minimum points. The classification of critical minimum points,
not removed by a small perturbation from the family of functions depending on
at most 16 parameters, was produced by V. A. Vasilev in [386], and the
asymptotics of the volume of infralevel sets were evaluated in the same place.
According to this classification the only minimum points not removed by small
perturbations from the family of functions depending on at most 5 parameters
are minimum points in which the function can be reduced, by a diffeomorphism
of the space, to the form

Agixi i 43+ .. 422,

where s=1,3,5. For small positive ¢ the leading term of the asymptotics of the
volume of the infralevel set has the form

const - ¢ ~A*n2

where B is equal, respectively, to 0, 1/4, 1/3.
We formulate a general theorem on the evaluation of the rate at which the
volume of the infralevel set tends to zero.

Theorem 6.7 (cf. [386]). Let us suppose that an analytic function has an isolated
minimum and that the minimal value is equal to zero. Then as — + 0 the volume
function ¥ of the infralevel set can be expanded in the asymptotic series

) .f a t*(Int)*.

a k=0

Here the variable a runs through a finite number of arithmetic progressions,
consisting of positive rational numbers. If in addition it is known that the Taylor
series of the function at the minimum point has a R-nondegenerate principal
part, then the index a of the maximal term of the asymptotic series is equal to
minus the remoteness of the Newton polyhedron of the Taylor series.

The theorem will be proved in §8.3.3.
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Remark 1. If the volume form of the space is changed (that is if it is multiplied by a
positive function) then the order of the leading term of the above asymptotic
series does not change.

Remark 2. The above asymptotic series converges for small positive ¢.

6.4.3 The area of a level surface

In § 8.3.3. we shall formulate a theorem on calculating the asymptotic of area
of a compact level surface as the level tends to the critical one.

6.4.4 The set of points with small gradient

Yet one more characteristic of critical points, similar to those considered
above, is the rate at which the volume of those points at which the length of the
gradient is less than a given number tends to zero as the given number tends to
zero.

Let us suppose that in the space there is given a Riemannian metric. This
metric (with the help of the matrix inverse to the matrix of the metric) defines a
metric on the cotangent bundle of the space. In this metric we calculate the
square of the length of the gradient

df=(0f]0x,,. .., df]0x,)

of the function f under consideration. In a neighbourhood of the chosen critical
point of the function we consider for each small positive ¢ the volume ¥ (¢) of the
set of those points in the neighbourhood for which the square of the length of
the gradient is less than 7. We shall be interested in the asymptotic of the volume
as t— +0. Since all the metrics in a neighbourhood of the point are mutually
bounded, the order of the leading term of the asymptotic series will not depend
on the choice of metric.

Example. For critical points of types

An’ D‘; D’(”>4)9 E67 E7’ Eﬂa
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the leading term of the asymptotic series of the function ¥ has the form, as
t—+0,

const -t~ **"2(In )k,

where (&, k) equal, respectively, ((u —1)/24,0), (1 /2,0),(1/2,1),(7/12,0), (5/8, 0),
(5/8,0).

To calculate the asymptotics of the volume of the set of points with small
gradient we can use Theorem 6.7, applied to the function (df, df ), and we can also
use Theorems 6.4 and 6.5.

6.5 Uniform estimates

As well as the asymptotics of individual oscillatory integrals it is often useful to
have uniform estimates of oscillatory integrals, depending on additional
parameters.
We define the concept of uniform estimate and the uniform oscillation index.
Let f: R"— R be a smooth function. A deformation of it isany smooth function

F:R"xR'-R,

which is equal to the function f when the second argument takes the value zero.

Definition. At the critical point x° of the phase f we get.a uniform estimate with
index o if for any deformation F of the phase f there is a neighbourhood in
R" x R! of the point x° x 0 such that for any smooth function ¢ with support in
this neighbourhood and for any positive ¢ there exists a number C(g, ¢), for
which for all positive ©

j eizF(X.!)q,(x’y)dxl - dx,. < C(S, ¢)t¢+e'
R.

The lower bound of such numbers a is called the uniform oscillation index of the
phase at the critical point.
1t is clear that the uniform oscillation index is not less than the individual one.
There arises a natural conjecture, formulated by V. I. Arnold in [12, 13, 14],
that the uniform oscillation index is equal to the individual index. That is that an
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oscillatory integral permits a uniform estimate with respect to additional
parameters in terms of quantities proportional to the value of the integral for the
initial values of the additional parameters.

For a justification of this conjecture it is necessary that the individual
oscillation index is upper semicontinuous for a continuous deformation of
critical point. Namely it is necessary that the oscillation index of a complex
critical point is not less than the oscillation index of a simpler critical point,
obtained by decomposing the complex one. An analysis of the tables of singular
indices and the known adjacencies of the critical points classified in Part II of
Volume 1, shows that such semicontinuity takes place for the critical points
classified in Part II of Volume 1.

Theorem 6.8. The uniform oscillation index is equal to the individual one for
critical points of functions of one variable (I. M. Vinogradov [391]), for simple
critical points (J. J. Duistermaat [100}]), for parabolic critical points (Y. Colin de
Verdier [80]), for hyperbolic critical points of the series T,,, (V. N. Kar-
pushkin [178]), for critical points of functions of two variables (V. N.
Karpushkin [176]).

Corollary. For critical points, occurring unavoidably in a family of phases in
general position, depending on not more than seven parameters, the uniform
oscillation index is equal to the individual one.

According to Theorem 6.8, as we move on a caustic, corresponding to one of
the critical points enumerated in the theorem, the intensity of the shortwave
oscillation at the limiting point is not less than the intensity of the radiation at
a point near the limiting point. Surprisingly, this phenomenon does not take
place for all caustics. Namely there are examples of degenerate critical points of
phases for which the uniform oscillation index is greater than the individual one
(see [358)).

An exposition of these examples will be given in Chapter 9. The critical points
of the constructed examples are very degenerate, the codimension of such critical
points being of order 80 or more (that is these critical points disappear under
small perturbations from a family of functions with less than this number of
parameters).

According to the constructed examples there exists a critical point and a
deformation of it which has the following property. The oscillation index of the
critical point of the deformation for the chosen value of the parameter is less than
the oscillation index of the critical point of the deformation for a general value of
the parameter, that is the modulus of the oscillatory integral of the deformation
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for the chosen value of the parameter is substantially less than the modulus of the
integral for a general value of the parameters.

It would be interesting to elucidate whether it is possible to observe the indicated
phenomenon physically in the form of a subset of a caustic which is dark in
comparison with its neighbourhood. As we have already mentioned such a
phenomenon cannot be observed on caustics in general position in small-
dimensional spaces (Theorem 6.8 and its corollary).

Remark. The proof of V. N. Karpushkin of the equality of the uniform and
individual oscillation indices for critical points of functions of two variables is
based on Theorem 6.5. As we have already mentioned, the equality of the
uniform and individual oscillation indices is possible only under the condition of
upper semicontinuity of the individual oscillation index under deformations of
the critical point. According to Theorem 6.5 this property of semicontinuity can
be reformulated for functions of two variables as follows: let us be given an
arbitrary family of functions of two variables, depending on a parameter and
having a critical point at the origin, then the remoteness of this critical point
depends in an upper-semicontinuous way on the parameter. It is very likely that
this result is correct for functions of any number of variables. An interesting
problem in this case is to express the uniform oscillation index in terms of the
other characteristics of the critical point (the Newton polyhedron, the resolution
of the singularity etc.). It could be that the uniform oscillation index can be
expressed in terms of the remoteness of critical points, stably equivalent to the
given one. Another likely candidate for expressing the uniform oscillation index
is the complex oscillation index, to be defined in Chapter 13. The complex
oscillation index is defined for critical points of holomorphic functions. It is the
complex analogue of the oscillation index. B. Malgrange in [239] formulated a
conjecture on semicontinuity of the complex oscillation index under defor-
mation of the critical point. The complex oscillation index is one of the spectral
numbers of a critical point of a holomorphic function (the spectrum will be
defined in Chapter 13). In § 14.3 is formulated a conjecture of V. 1. Arnold on
the semicontinuity of spectra under deformation of the critical point. The
conjecture is proven in [371-375, 345].

In this part we study the asymptotics of individual oscillatory integrais. In this
section we discussed uniform estimates of them. There is yet another approach to
the estimation of integrals — this is the estimate in mean. We formulate the
corresponding results.

Let us consider an oscillatory integral depending on additional parameters,

I(T,}’)= ," eitp(x”)¢(x9y)dxl" .. ,dx,,.
R.
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Let us denote by Z the set of critical points of the phase, that is

Z ={(x, »)|0F/0x;(x, ) =0, j= 1,...,n}

Theorem 6.9 (sce [100]). Let us suppose that X is a submanifold, that is that the
differentials d(8F/0x;), j=1,. . .,n,are linearly independent at each point of the
set - Let us suppose that the support of the amplitude is concentrated in a small
neighbourhood of one of the points of the set ¥. Then as t—o0 we get the
asymptotic expansion

o

j lI(T,y)dez 2 al(‘p)t_l’

i=n

where the numerical coefficients 4, are generalised functions of the amplitude
with support in Z. In particular the leading coefficient a, is proportional to the
integral of the square of the modulus of the amplitude over the critical set Z.

This result corresponds to results on the unitariness of the canonical operator
of Maslov (see [244-246, 144]) and means that, for individual values of the
additional parameters, the asymptotic behaviour of the integral may have
complex character but the integral of the square of the modulus of the oscillatory
integral behaves as if the phase had only non-degenerate critical points in the

variables of integration.
The proof of Theorem 6.9 is based on the fact that the integral of the square of

the modulus is an oscillatory integral. Its phase
F(x,y)—F())
has critical points on the set
{x, 3, )Ix=2,(x,y)€ X}
@if x, z are sufficiently close), and the critical points are non-degenerate in a

transversal direction to this set.

6.6 The number of integral points in 2 family of homothetic regions

Let us consider in the space R"a bounded region D with smooth boundary. We
shall estimate the difference between the volume of the region, stretched out bya
factor of A, and the number N(4) of points with integer coordinates lying in the
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stretched out region, that is the difference
R(A)=2"V(D)—N(4).

The study of this question is motivated by the following considerations
(see [80]):

1) The case in which D is an ellipsoid is considered in number theory in
connection with the study of the arithmetical properties of quadrati

ic fi

[37, 169, 175, 218, 240, 392]). ! orms (e

2) If the region D is defined by the condition { f <1}, where f : R™\0—-R . isa
smoo‘th homoget.leous function (say a homogeneous polynomial), then the
function N(J) is interpreted as the spectral function of the pseudodifferential
operator P on the torus R"/(2nZ)", given by its spectral decomposition

P(exp (i<k, x))) = f (k) exp (i<k, X))

3) The follo“.ring problem, arising in numerical integration, is studied in an
analogous fashion: let f be a smooth function and

ND= Y [f(x/3).

xeADNZ”

It is required to estimate the difference

Ry()=2" ‘j, fdx—N;(Q).

For the differen i im
et 4. R(c}:; f g.()l’(’))t.xe usually obtains an estimate by the degree of the
.A trivial estimate for any region is obtained if we take f=n—1. Indeed the
igfuc:szz I; g{:: 1:15: ;l::z It)hree \gr;);l:ne of the neighbourhood of width 2 l/r_t of the
For a ball of radius 1 with centre at the origin f>n —2. More precisely there
are arbitrarily large A for which ~ 4”2 points with integer coordinates lie on the
sphere A D. Indeed, let us consider the integer points lying between the spheres

(/1+1)6P and A 8D. Their number is proportional to the volume, that is
proportional to ’

A+1)y =2~ a1,

Between these spheres there are approximately A spheres with centre at the origin
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for which the square of the radius is an integer. Therefore A"~ ! integer points lie
on 4 spheres, and so there is a sphere on which lie not less than ~ 4"~ points.

The best (least) number f§ depends on the form of the region. The most studied
case has been a region in the plane.

Theorem 6.10 (see [297, 299, 80]). Let us suppose that n=2. Let us denote by
! the maximal order of vanishing of the curvature of the boundary of the
region. Then if /=0 or 1 (this is the situation of general position), § can be
taken as 2/3. If />1, then B can be taken as 1—1/(/+2). Furthermore
if I>2, then, generally speaking, f cannot be taken smaller (for example for

D={x"*+y*<1}).

In the many-dimensional situation the only cases studied have been that of a
strictly convex region and for n<7 the case of a region with boundary lying in
general position.

Theorem 6.11 (sec [297, 298)). If the region d=IR" is convex and the second
fundamental form of its boundary is non-degenerate then we can take g as
n—2+42/(n+1).

Theorem 6.12 (see [80]). Let us suppose that n<7. Let X be a compact oriented
smooth manifold of dimension n—1. Then there exists an open, everywhere
dense, subset in the space of all embeddings of the manifold X in R", which
possesses the property : if the embedding belongs to the subset and the image of
the embedding bounds a region in R”, then for this region as the number f we can
take n—2+42/(n—1).

As the example of a sphere with centre at the origin shows, the estimate with
f=n—-2+2/(n—1) cannot, generally speaking, be substantially improved.

6.6.1 The Poisson summation formula

We explain how the estimate of the number of integer points is connected with
oscillatory integrals.

The number of points on the integer lattice in the blown-up region 1D is equal
1

to the number of points on the condensed lattice 1

Z* in the original region. We
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shall suppose for simplicity that A is a natural number and that the region Dliesin
a standard n-dimensional cube with edge length 1. In this case we can consider
the region as a region on the torus 7"=R"/Z" and count up on the torus the
points on the projection of the lattice % Z" falling in D. We shall denote by y the
characteristic function of the region D, that is the function equal to 1 on D and
equal to 0 outside D. Then

R(A)=1" | ydx — Y x(x/A).

™ 0K Xy,. .., X €A1
We expand the characteristic function in a Fourier series

1x)= 3, (k)exp(2mnilk,x)),
keZn
and consider the analogous difference for each term of the series:
A" § exp 2mik, x))dx —Y exp (2milk, x)/A).

For k=0, the difference is equal to zero. If k#0, then the first term of this
difference is equal to zero and it remains to calculate the second term. The second
term is the product of sums of n geometric progressions. Summing these we find
that the second term of the difference is equal to zero if at least one of the
coordinates of the vector k is not divisible by A. If all the coordinates of the vector
k are divisible by 4, then the sum is equal to —A". This argument shows that

RA=-a Y fl)=-2 Y {0kK). €))
kelZ™\0 ke*\0

This formula is called the Poisson summation formula. Unfortunately for
characteristic functions it is not correct: in the derivation of the formula we
transposed the order of summation with respect to k and summation with respect
to the points of the condensed lattice. For the Poisson formula to be correct it is
sufficient that the Fourier series be bounded by an absolutely convergent series
with constant coefficients. In particular the Poisson formula is true for any
smooth finite function y on R™.

To study the difference R(1) we first smooth out the characteristic function,
then apply the Poisson formula and study its right-hand part (see, for example,
[80]). To smooth the characteristic function we convolute with a standard
function. The Fourier transform of the convolution is equal to the product of
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the Fourier transforms of the characteristic function and the standard one.
Therefore for studying the right-hand part of the Poisson formula, applied to the
smoothed characteristic function it is important to know how the Fourier
coefficient 3(Ak) of the characteristic function behaves as A— oo. The Fourier
coefficients are oscillatory integrals.

6.6.2 The Fourier transform of a characteristic function

The Fourier coefficient
£(k)=| exp(—2milk, x))dx
D

is an oscillatory integral, in which the réle of the larger parameter is played by the
length of the vector k, and the role of the phase is played by the function
—<a(k), x), where a(k)=k/|/k|| is the corresponding vector of unit length. This
formula is transformed by Stokes’ formula into an oscillatory integral on the
boundary of the region. The phase of the new integral, as before, is the function
—<{a(k), x). Consequently the magnitude of the Fourier coefficient (k) when
the vector k has large length is determined by the critical points of the restriction
to the boundary of the linear function {a(k), x). For example, if the region is
convex and the second fundamental form of the boundary is non-degenerate,
then all the critical points of the restriction are non-degenerate and

x‘(k)~ "k" —(n+1)/2

(Theorem 6.2).

Let us analyse in more detail the case of a region in the plane. The critical
points of the restriction of the function {a(k), x> to the curve oD are those
points at which the normal vector to the curve is equal to +a(k). If at such a
point the curvature of the curve is different from zero, then the critical point is
non-degenerate and its contribution to the Fourier coefficient has order ||k| ~32.
If at a point of the boundary with normal +a(k) the multiplicity of zero of the
curvature is equal to /, then the critical point has type A;., and in this case its
contribution to the Fourier coefficient has order

"k" “1-1/d+2)

The normal at a point on the boundary at which the curvature is zero can
have a gradient with irrational tangent. Such a point of the boundary wili not be

Y S P ——

!
i
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a critical point for the function {a(k), x>. The contribution of such a point to the
sum (3) is determined by the rate at which the tangent of the gradient of its
normal can be approximated by rational numbers. If the tangent of the gradient
has a good approximation by a rational number with relatively small numerator
and denominator, then the critical points of the restriction of the linear function
{a(k), x> with vector k of relatively short length will be almost degenerate and
will give a large contribution to the sum (3). A curve in general position in the
plane has as degeneracies only points of inflection, that is for a curve in general
position the multiplicity of zero of the curvature function is not more than 1.
Therefore for a curve in general position the critical points of the restriction to
the boundary of a linear function are either non-degenerate, or have type A4,.
Consequently in general position we can estimate that R(1)~4%". These
arguments explain Theorem 6.10.

6.6.3 The estimate averaged over rotations

The principal contribution to the Fourier coefficients of the characteristic
function of a region is given by neighbourhoods of those points of the boundary
at which the normal has rational direction and the curvature is zero. B. Randol
had theidea that after rotating the region such points, in general, would not exist,
and that the estimate, averaged over rotations could be better than an individual
estimate.

Theorem 6.13 (see [299, 300, 366, 367]). Let us denote by ds the Haar measure on
the special orthogonal group SO,. Let us denote by R(4,s) the difference,
corresponding to the region blown up by a factor of 1 and then rotated by the
transformation s€ SO,. Then

[ IRQ,s)lds=0 (a2 +2e+n),

SOn

Theorem 6.14 (see [299, 300, 366, 367]). Let us denote by G the group of all
motions of the form sz, where se SO, and ¢ is parallel translation of the space
R". Let /<= G be the subgroup of all parallel translations by vectors with integer
coordinates. Let us denote by H the factor group G/I. H is topologically
equivalent to SO, x T", where T"=R"/Z" is the n-dimensional torus. Let us
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denote by dh the Haar measure on H. Then

<I IR(4, h)P dh)l/Z =0(A"~ 1),
H

An analogue of Theorem 6.13 for polyhedra in R” was proved by M. Tar-
nopolska-Weiss.

Theorem 6.15 (see [347]). Let D be a polyhedron in R” containing the origin and
possessing the property: the prolongations of its faces do not pass through the
origin. Then

[ IR(, s)|ds=0((n 2y *%).

SOn

The proofs of Theorems 6.13 and 6.14 are based on an estimate of the square of
the modulus of the Fourier coefficients of the characteristic function of the
region.

Theorem 6.16 ([366, 367]). As [[k]|—co the following estimate is correct

s;) 13k, s)Pds=O(||k]| ="+ V). @

If the boundary of the region depends in an infinitely differentiable manner on
the additional parameters, then this estimate is uniform with respect to the
additional parameters under the condition that the parameters differ little from
their initial values.

The proof of this theorem is analogous to the proof of Theorem 6.9.

Let us deduce Theorem 6.14 from Theorem 6.16. Each element he H has a
unique representation in the form st, where s€ $O,, te T". Let us fix s. Then
R(4, h) is a function on T™. Let us expand it in a Fourier series:

R(4,st)=Y a(4,s, K)e2mi<ke>,
x

A simple, direct calculation shows that

a(l,s,0)=0, a(d,s,k)=(—1"11(—Ak,s)i"

Discussion of results 211

Using Parseval’s equality we obtain

j(j IR(}.,st)Izdt)ds= X AMR(=Ak, s)*ds.
SOn \T= .

SOn keZ™\0

Then Theorem 6.16 follows from (4).

Remark. For a region, the boundary of which has a non-degenerate second
fundamental form, the estimate (k) ~ ||k||~®*""2 is true (see § 6.7.2). Therefore
for such a region

(f IR(4, t)‘zdt>1/2 _ O(l(n_ 1)/2).
Tl

6.6.4. The proof of Theorem 6.12 is based on two interesting results on
uniform estimates of oscillatory integrals, depending on additional parameters.
In these resylts it is assumed that all critical points of the phase are either simple
or parabolic.

Theorem 6.17 (see [80]). Let us consider the oscillatory integral

I(z,y)= | €TV o(x, y)dx.
2

Let us suppose that for each value of the additional parameters all the critical
points of the phase of this integral are either simple or parabolic. Then we get the
inequality

(z,y)l<const-7™"* Y |det FL(x, »)I 72,
(x,y)eZnsupp @

where we denote by X the set of all critical points of the phase with respect to the
variables of integration, and by Fy, the matrix of second derivatives of the phase
with respect to the variables of integration.

In order to formulate the following theorem we make several remarks. Let
F:R" x R*= R be a minimal versal deformation of a simple or parabolic critical
point (i is the multiplicity of the critical point). Let us denote by W, the subset of




212 : Oscillatory integrals

the base of the deformation consisting of all points y for which the function
F(-, y) has a critical point of multiplicity r. The set W, has codimension r —1 with
the exception of the case when the initial critical point is parabolic. In this case
the dimension of the set W, is equal to 2. We shall denote by (o) the oscillation
index of the critical point of type o.

Theorem 6.18 (sce [80]). Let us suppose that the phase of the oscillatory integral
I(z, y) is a minimal versal deformation of a simple or parabolic critical point.
If the support of the amplitude is concentrated in a sufficiently small neigh-
bourhood of the initial critical point, then the oscillatory integral permits the
estimate:

H(z, i< @, ()72,

where B, =max { 8(o)|o is a critical point of multiplicity p adjacent to the initial
critical point} and

@p(y)<const-d(y, W,.,) " %*...d(y, W,) ™%

In this formula d is the distance with respect to an arbitrary Riemannian metric
on the base of the versal deformation, the numbers ab,; ..., af are positive
rational numbers, depending on the initial critical point (see [80] for their
definitions).

Remark 1. In this theorem p=1,. . ., u. For p = u the theorem asserts the uniform
estimate of the oscillatory integral with the uniform index equal to the individual
index of the initital critical point.

Remark 2. All simple and parabolic critical points are quasihomogeneous. The
base of the versal deformation of a quasihomogeneous critical point has a
natural quasihomogeneous structure. Simple and parabolic critical points are
distinguished in the class of quasihomogeneous critical points by the condition
that the weights of quasihomogeneity of the base of the versal deformation are
non-negative. The non-negativity of the weights is the basis of the proofs of
Theorems 6.17 and 6.18. The theorems are proved by induction on the
muttiplicity of the initial critical point. In the basis of the versal deformation is
considered a quasisphere. By the induction hypothesis applied to the restriction
of the parameters of the deformation to the quasisphere the required estimate is
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already proved. This estimate can be extended to the whole base with the help of
the quasihomogeneous structure. The numbers af, occurring in the theorem, are
constructed from the weights of quasihomogeneity of the base and the oscillation
index of the adjacent critical points.

6.7 The greatest singular index

Let us consider critical points, which are not removable by small perturbations
from families of functions in n variables, depending on / parameters. The
maximum of their singular indices in dependence on / and » has the form

Bi(m)=1/2—1/N,

where the number N for n3 is given by the table

110 1 2 3 4 5 6 |7 8 9 10, | 11, { 10,
n=3 {n=3 |n>3

N{+2 | +3{+4 | +6 | +8 |+12 |00 fo0o | —24|—-16|—-12] -8 | —6

All the numbers g, = B,(n) are rational (see § 7.4). For sufficiently large n the
number B; does not depend on n (a corollary of the theorem of Kushnirenko in
§ 12.7 of Volume 1 and a theorem on selection of squares in § 11.1 of Volume 1).

The calculation of all these rational numbers seems to be a hard problem.
Probably, g, ~l/(71—)/6. It is conjectured that a non-degenerate cubic form in n
variables is the critical point with maximal singular index for its codimension
(thatis for/=n(n+1)/2). In other words B, +1)2 =n/6 (see [12]). From Theorem
6.5 it follows that

B@)~1-@2/D).

From Theorem 6.5 it also follows that for n=2 the maximum singular index for
given multiplicity p has asymptotic 1 -2/ l/;

6.8 Arrangement of the material in the next three chapters
In Chapter 7 we define the Gelfand-Leray form and we discuss its properties. We

consider the critical point of a monomial and express its oscillation index and
index set in terms of the indices of the monomial. We define discrete
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characteristics of the resolution of singularities of critical point of an analytic
phase and express in terms of them the oscillation index and the index set of the
critical point.

In Chapter 8 we prove Theorem 6.4. For this we construct in terms of the
Newton polyhedron an analytic manifold and its mapping onto R”. The
constructed manifold and its mapping resolve the singularities of any critical
point with the given Newton polyhedron under the condition that the principal
part of its Taylor series is R-nondegenerate. In Chapter 9 we prove the additivity
of the oscillation index and its multiplicity, we make explicit the calculation of
the indices of the tabulated functions, and produce examples, demonstrating the
absence of semicontinuity of the oscillation index under deformation of the
critical point.

Chapter 7

Elementary integrals and the resolution
of singularities of the phase

In this chapter we shall study the asymptotics of an oscillatory integral, the phase
of which is a monomial. We shall indicate the connection between the
asymptotics of an oscillatory integral and the poles of the meromorphic function

F()={ fA(x)p(x)dx,

where fis the phase, and ¢ is the amplitude of the oscillatory integral. We shall
introduce the discrete characteristics of the resolution of the singularity of a
critical point of the phase: the weight of the resolution and the multiplicity set.
We shall describe the connection between these characteristics and the basic
characteristics of the asymptotic behaviour of the oscillatory integral: the
oscillation index, its multiplicity and the index set.

7.1 The Gelfand-Leray form

In the study of integrals of the form
fe@px)dx, [  x)P(x)dx,

where 7, A are parameters, it is convenient to take as one of the variables the
function. In this case the integrals turn into the usual Fourier transform and the
Mellina transform of the integral with respect to the remaining variables. The
expression under the integral sign in this latter integral is called the Gelfand-
Leray form. )

Let /' : R"— R be a smooth function, and  be a smooth differential n-form on
R". We shall denote by ¥ a smooth differential (n—1)-form for which

df Ay =o. 1)

Lemma 7.1. If at a certain point the differential of the function f differs from
zero, then in a neighbourhood of the point there exists a form y with
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property (1). The restriction of this form to an arbitrary level manifold of the
function is defined uniquely.

The form with the property (1) is called the Gelfand-Leray form of the form @
and denoted by w/df.

For a proof of the lemma it is sufficient to change to coordinates in which the
function is one of the coordinates.

Example. Let
S, )=y —x*—sx

(where 5 is a number) be a function, o =dx A dybe a 2-form. Then on the level ¢
curve the Gelfand-Leray form is equal to

—dx[2y=—dx[2)/ (> +sx+1).

The integral of such a form is called elliptic.
We shall prove two remarkable properties of the Gelfand-Leray form.
Let us orient the level manifold of the function in the standard way.

Lemma 7.2.
1. Let @ be a smooth differential n-form with compact support. Let us suppose

that the support of the form does not intersect the critical set of the function f.
Then

] w=+5w § w/df) dt. )
R - =t

2. Let y be a smooth differential (n—1)-form with compact support. Let us
suppose that the support of the form does not intersect the critical set of the
function /. Then

d
a(10)- g ®

Proof. Property (2) clearly follows from Fubini’s theorem. Property (3isa
corollary of Stokes’ theorem (see [S5, 213]).
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Corollary. Let f be a non-constant analytic function, w be a smooth differential
n-form with compact support, then

f ePp= T) e < | w/d f) dr. @)
R —a J=t

Indeed, the union of the singular level manifolds is of measure zero.

7.2 The asymptotics of integrals of the Gelfand-Leray fohn

Definition. An elementary oscillatory integral is an integral of the form

§ et (xy s X)Xy . A ()
Rl

where ky,. .., k,, my,. . .,m, are non-negative integers, ¢ is a smooth function
with compact support, and 7 is a real parameter.
Further, we shall denote by f the function +x}'... x}", and by w the form

[xXP1. . x| @(xg,e - s X)X A L A dx,.

We shall suppose that k; + ... +k,2>2.

For non-zero ¢ let us put
J(O= | w/df.
I=t

Jis a smooth function on R\ 0, equal to zero outside a sufficiently large interval.
The function J is called the Gelfand-Leray function of the form .

We shall study the asymptotic behaviour of the elementary integral as t— + oo
in the following way. First we make explicit the asymptotics of the Gelfand-
Leray function and then, using formula (4) and standard formulae for the
asymptotics of one-dimensional oscillatory integrals [110], we obtain the
asymptotic expansion of the elementary integral.

We shall need the following theorem.

Theorem 7.1 (sce [174]). The Gelfand-Leray function can be expanded in the
asymptotic series

i
1
'
i
i
1
!
H
!
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n—1
JO=Y Y alt*(nr) as t—>+0 ©)
a k=0
n—-1
JO=Y Y ai.t*(ne) as t——0 U]
a k=0

where a runs through some discrete subset of the real numbers, bounded below.
These asymptotic expansions can be differentiated term by term.

Theorem 7.1 can be proved without difficulty by induction on n.

In order to describe the asymptotic expansion of the Gelfand-Leray function,
we consider the integrals

F; = 'j o(:tfjlah

where A is a complex parameter. We shall prove that the integrals are
meromorphic functions of the parameter. We shall express the coefTicients of the
series (6) and (7) and the indices a in these series by the poles and Laurent
coefficients of the resulting meromorphic functions. Then we shall give these
poles and Laurent coefficients explicitly.

7.2.1 Asymptotics of the Gelfand-Leray function and the poles of its
Mellina transformation

Let J: (0, 0)—R be a smooth function equal to zero for sufficiently large
values of the argument. Let us suppose that there is an asymptotic expansion

JO=Y 20 ar.t*(Inn)* as t—-+0 ®)

where a runs through some discrete subset of the real numbers, bounded below.
Let us consider the integral

F()= ]') t*I(0)adt,
0

where 1 is a complex parameter. The integral is well defined if the real part of the
parameter is sufficiently large and under these conditions the integral depends
holomorphically on the parameter.

e

SE—————"—
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Theorem 7.2 (see [123]). The function F can be analytically continued over the
whole complex plane as meromorphic function. The analytic continuation has
poles at the points A= —(x+ 1), where « runs through the same discrete set as
in (8). The coefficient of (x+1+1)~®*V in the Laurent expansion at the point
A= —(a+1) is equal to (—1)*k!a, ,.

7.2.2 Poles and Laurent coefficients of the Mellina transform
of the Gelfand-Leray function

Let f= +x%'... xk be a monomial. Let us consider two integrals

Fr(M= | (2N x™e(x,. ... x)dx,. . . dXn,

tf>0

where A is a complex parameter. According to formula (2) on page 216
© 0
Fi()=[J@d, F.(D)= [ (0@,
o — o

where J is the Gelfand-Leray function. Consequently, the integrals depend
holomorphically on the parameter for sufficiently large values of its real part.
Under analytic continuation over the whole complex plane the integral has as
singularities poles arranged on a discrete subset of the real numbers. Theorem 7.2
connects the poles and the Laurent coefficients with the asymptotic expansion of
the Gelfand-Leray function. We shall show that the poles of the analytic
continuation and the Laurent coeificients can be given explicitly. In this way we
can give explicitly the asymptotic expansion of the Gelfand-Leray function.

Lemma7.3. 1. The functions £, are holomorphic away from the points of the
complex plane which belong to the following 7 arithmetic progressions:
—(my+)ky, —(my+2)ky,...,;
—(my+10)/ky,  —(my+2)/kys. .., ;

—(my+1)/kn,  —(ma+2)/kps- - . .

At a point belonging to exactly r of these progressions the functions Fy havef
poles of not higher than rth order. i

|
\
!
[
|
|
4
i
!
|
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JO=Y "il ai t*(ne)* as 1—-+0 ©
a k=0
n—1
JO=Y Y ait*(ne)* as t—>—0 )
a k=0

where o runs through some discrete subset of the real numbers, bounded below.
These asymptotic expansions can be differentiated term by term.

Theorem 7.1 can be proved without difficulty by induction on n.

In order to describe the asymptotic expansion of the Gelfand-Leray function,
we consider the integrals

F,= _‘. o(if)lw’

where A is a complex parameter. We shall prove that the integrals are
meromorphic functions of the parameter. We shall express the coefficients of the
series (6) and (7) and the indices a in these series by the poles and Laurent
coefficients of the resulting meromorphic functions. Then we shall give these
poles and Laurent coefficients explicitly.

7.2.1 Asymptotics of the Gelfand-Leray function and the poles of its
Mellina transformation

Let J: (0, 0)—» IR be a smooth function equal to zero for sufficiently large
values of the argument. Let us suppose that there is an asymptotic expansion

JO=Y éo a t*(ne)* as 1—»+0 ®)

where « runs through some discrete subset of the real numbers, bounded below.
Let us consider the integral

F(A) .--? t2J(0)dt,
0

where 1is a complex parameter. The integral is well defined if the real part of the
parameter is sufficiently large and under these conditions the integral depends
holomorphically on the parameter.
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Theorem 7.2 (see [123]). The function F can be analytically continued over the

whole complex plane as meromorphic function. The analytic continuation has

poles at the points A= —(a+ 1), where « runs through the same discrete set as

in (8). The coefficient of (x+1+4)~**! in the Laurent expansion at the point
= —(a+1) is equal to (—1)*k!ay ,.

7.2.2 Poles and Laurent coefficients of the Mellina transform
of the Gelfand-Leray function

Let f=+x%'... x}* be a monomial. Let us consider two integrals

Fe(D)= [ (N .. xmlo(xy,. . ., xa)dxy . .. dxy,

tf>0

where 1 is a complex parameter. According to formula (2) on page 216
© 1]
Fr(W)=[J@d, F-(H)= [ (-n*J@)dt,
0 -

where J is the Gelfand-Leray function. Consequently, the integrals depend
holomorphically on the parameter for sufficiently large values of its real part.
Under analytic continuation over the whole complex plane the integral has as
singularities poles arranged on a discrete subset of the real numbers. Theorem 7.2
connects the poles and the Laurent coefficients with the asymptotic expansion of
the Gelfand-Leray function. We shall show that the poles of the analytic
continuation and the Laurent coefficients can be given explicitly. In this way we
can give explicitly the asymptotic expansion of the Gelfand-Leray function.

Lemma 7.3. 1. The functions F; are holomorphic away from the points of the
complex plane which belong to the following n arithmetic progressions:
_(ml+1)/kl’ —(m;+2)/kl,...,;
—(my+ ks,  —(my+2ky,. ..,

—(mn+1)/km _(mn+2)/k,,,. e

At a point belonging to exactly r of these progressions the functions F; have
poles of not higher than rth order.
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2. All the coefficients of the Laurent expansion of the functions F, at an
arbitrary point of the complex plane are generalised functions of the ampli-
tude o.

Proof. It is sufficient to prove the conclusion for the integral
Fy={...Jxprrm xpd*™o(x)dx, . .. dx,,
4] 1]
where a is a positive number. It is useful to consider a more general integral

FQy,. . d)=f.. .Jopderm  xhedntPng(x)dx, . . . dx,.

a
0

©Q ey, B

Let N be a large natural number. Let us make the transformation
. @ a N ak;lx+m1+h+1
F=(j; ... (j;x"“"‘R(pdx+hz=:° mx
2 oo
xkrhatmz  kndntmn e ©,xz,...,x)dx; . .. dx,,
®

© tonmmy,

1 e
xii—!g...

where R is the difference between the function ¢ and its Taylor polynomial of
degree N in x;.
The first of these integrals does not have a singularity in 4, for

Re(kd; +my+N+1)>0,

and the poles in 4, of the second term in the right hand side belong to the first of
the progressions indicated in the lemma. Repeating successively with each
integral in the right hand side the same procedure with respect to the other
variables and then putting

ll =}.2= e =).,.=}»,
we obtain the first part of the lemma. This argument allows us to give an explicit

analytic continuation of the integral in a neighbourhood of the given point of the
complex plane (see [123]). Each coefficient of the Laurent expansion at an
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arbitrary point of the plane is equal to the sum of the integrals of the function ¢
and its derivatives over some coordinate subspace. This proves the second part of
the lemma.

Lemma 7.4. Let the number 4, belong to exactly r of the arithmetic progressions
of Lemma 7.3. For definiteness let us suppose that it is the first r progressions,
and

lo=—(my+L+Dky=...=~(m+]+1)/k,

where /,,...,l, are certain non-negative integers. Then the coefficient of
(A—2) " in the Laurent expansion at the point 4, of the function F is equal to

" k,+1A+m, A+
15 =t B - MARREE. -t

©,....0,x4+1,.--, X)d%;41- - dx,,)
A=2A9?

where ({),- 1, denotes analytic continuation of the integral in parentheses to the
point Ag.

Lemma 7.4 is a corollary of formula (9).

Lemma 7.5.

1. Let f=max { —(m, +1)/ky,. .., —(my+1)/k,} be the maximal number in the
union of the arithmetic progressions of Lemma 7.3. Let us suppose that the
number # belongs to exactly r arithmetic progressions of Lemma 7.3. Let us
suppose that the amplitudes @ in the integrals F, , F. are non-negative and that
their values at the origin are positive. Then the sums of the coefficients of
(A—p) " in the Laurent expansions of the functions F, and F_ are positive, and
each of these coefficients is non-negative.

2. Among the numbersk, ,. . ., k, let precisely one be equal to 1. Let thisbek; .
Let A, be a number belonging to the first progression of Lemma 7.3 and
belonging to no other progression of Lemma 7.3. In particular this means that

Ao= —(m, +I+ 1),
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where [ is a non-negative integer. Let us denote by a*, a~ the coefficients of
(A—40)"! in the Laurent series at the point i, of the functions Fy and F_
respectively. Then

at=(-1a".
3. Let f have a minimum at the origin, that is
f=+x...

where all the powers are even. Then F_ (1) =0. In addition if §, r, ¢ are the same
as in Section 1, then the coefficient of (A — )" in the Laurent expansion of the
function F, is greater than zero.

This lemma is clearly a corollary of Lemma 7.4 and the decomposition of the
integrals F,, F_ into sums of integrals on the coordinate orthants.

7.2.3 Asymptotics of elementary oscillatory integrals

Theorem 7.3 (see [358]).

1. An elementary oscillatory integral (see (5) on page 217) can be expanded,
as T— + oo, in the asymptotic series

n—1
Z Z ak,a((p)Ta(ln T)k9 (10)

a k=0

where the numerical coefficients a, , are generalised functions of the amplitude
@, and the parameter « runs through the arithmetic progressions of Lemma 7.3.
If the number a belongs to exactly r arithmetic progressions of Lemma 7.3, then
@, =0 for k>r.

2. Let

p=max{—(m, +1)/ky,. .., —(m,+1)/k.}

be the maximal number in the union of the arithmetic progressions of Lemma
7.3. Let r be the number of arithmetic progressions of Lemma 7.3 to which 8
belongs. Let us suppose that § is not an odd integer. Let us suppose that the
amplitude ¢ is non-negative and that its value at the origin is positive. Then the
real part of the numerical coefficient of the leading term of the asymptotic series
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(that is the real part of the number g, -, g) is not equal to zero and has the same
sign as the number cos (n8/2); in this way the sign of the real part is determined
by the number f.

3. Letk; =1 and m, be even, that islet the hypersurface x; =0 not belong to the
critical set of the phase of the elementary integral and not belong to the subset on
which the expression under the integral sign of the elementary integral is not
smooth. Then in the expansion (10) the number o runs through only the
arithmetic progressions of Lemma 7.3 with numbers 2,...,n. '

4. Let the phase of the elementary integral have a minimum at the origin, that is
let

f=+xb. . x

where all the powers are even. Let the amplitude ¢ be non-negative and let its
value at the origin be positive. Then the numerical coefficient of the leading term
of the asymptotic series (that is the number a, _ ;) is not equal to zero and has the
same argument as the number exp ( —nif/2), where the numbers §, r were defined
in section 1; in this way the argument of the coefficient is determined by the
number f.

Theorem 7.3 follows easily from Theorems 7.1, 7.2 and Lemmas 7.3, 7.5 with
the help of the following standard formulae. Let 6: R— IR be a smooth function
with compact support, identically equal to 1 in a neighbourhood of the origin.
Then as t— + o0 modulo infinitesimals of arbitrarily high order

I ~d" I'(e+1)
(j;e t (1nt)"0(t)dt~;1? G
11)
o _d* T'(@+1)
J =0 a0t~ g ot

In these formulae arg (+it)= +n/2, and I is the gamma-function (see [1101).

7.2.4 Asymptotics of elementary Laplace integrals
Definition. An elementary Laplace integral is an integral

5 e—rxgl...x:"‘x!lm e XM (X, e XXy dx,,
R.
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where k,,...,k,, my,...,m, are non-negative integers, k,,...,k, are even,
ki+...+k,22, ¢ is a smooth function with compact support, 7 is a real
parameter.

Theorem 7.4.

1. An elementary Laplace integral can be expanded, as t— +o0, in an
asymptotic series (10), with the properties indicated in the conclusion of section 1
of Theorem 7.3.

2. Let the amplitude ¢ be non-negative and its value at the origin be positive.
Then in the asymptotic series of the elementary Laplace integral the numerical
coefficient of the leading term (that is the coefficient a, -, ) is positive, where the
numbers r, § were defined in section 2 of Theorem 7.3.

The proof of Theorem 7.4 is the same as the proof of Theorem 7.3, except that
the reference to formula (11) must be replaced by a reference to the formula (see
(110)

d* I'(a+1)

—tt 4 ( 4 ~_
e (00 dt~ g —wr

Oty 8

7.3  Asymptotics and the resolution of singularities
7.3.1 The weight of the resolution of a singularity and the multiplicity set

Let us consider a function f: R"— R, analytic in a neighbourhood of its critical
point x. Let us suppose that the value of the function at this point is equal to zero.
Let us consider the resolution of the singularity of this critical point (see § 6.4).
We shall introduce the characteristics of the resolution of the singularity through
which we shall express the oscillation index of the critical point, its multiplicity
and its index set.

The resolution of a singularity is a manifold ¥ and a map n: Y—R", possessing
the properties indicated in § 6.4. In a small neighbourhood of the preimage of the
critical point x we consider the decomposition into irreducible components of
the zero level hypersurface of the function f on. To each irreducible compo-
nent which intersects the preimage of the point x there are associated two
non-negative integers: the multiplicities of zero on this component of the
functionf o, and of the Jacobian of the map =, respectively. Let us denote these
numbers by k, m, respectively. The ordered pair (k, m) is called the multiplicity of
the component, the number —(m+ 1)/k is called the weight of the component.
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Definition. The multiplicity set of the resolution of a singularity is the set of all
pairwise distinct multiplicities, possessing the properties

(e, m)#(1,0),  k>0.

Let us denote the multiplicity set by Mu.

Definition. The weight of the resolution of a singularity is the maximum weight of
the components, the multiplicities of which possess the properties

k,m)#(1,0), k>0.
In this way the weight of the resolution is equal to the number

max { —(m +1)/k|(k, m) € Mu}.
Remark. The multiplicity set is finite by virtue of the properties of the map =.

Example. Let f be a homogeneous polynomial of degree N with a finite-
multiplicity critical point at the origin. Let

n:Y-R"

be a o-process at the origin (see § 4.3, and also Chapter 4 of Part II in {328]).
This map resolves the singularity at the origin. The muitiplicity set of the
resolution consists of the one pair (N,n —1). The weight of this resolution is
equal to —n/N.

Let us define the concept of the multiplicity of a number relative to the
resolution of the singularity. To do this we must first define the concept of the
multiplicity of a number at a point of the preimage of a critical point.

Let « be a number, let y be a point of the preimage (relative to the map of the
resolution) of the critical point x. Let us consider a small neighbourhood of the
point y and a decomposition in it of the zero level hypersurface of the function
f o into irreducible components. The multiplicity of the number « at the point y
is the number of irreducible components of weight « which intersect at y. The
multiplicity of the number o relative to the resolution of the singularity is the
maximum of the multiplicities of the number « at points of the preimage of the
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critical point x. It is clear that the multiplicity of a number is an integer,
constrained to lie between 0 and ».

Example. Let us consider the critical point and its resolution, indicated in the
previous example. Let n# N. Then the multiplicity of the number (—n/N)
relative to the indicated resolution is equal to 1. The multiplicity of the
number —1 is equal to zero if the function f is semidefinite and equal to 1
otherwise. The multiplicity of the remaining numbers is equal to 0.

7.3.2 Asymptotic series of oscillatory integrals
Theorem 7.5 (see [358]). Let us consider the oscillatory integral

| P o(x)dxy . . . dx,.
R.

Let us suppose that the phase is an analytic function in a neighbourhood of its
critical point. Let us suppose that the value of the phase at this critical point is
equal to zero. Let us consider the resolution of the singularity at the critical point.
We assert: if the support of the amplitude is concentrated in a sufficiently small
neighbourhood of the critical point of the phase then

1. The oscillatory integral can be expanded in an asymptotic series

n—1

Z Z ak.a((P)Ta(lnt)k as t1— -+ o0.
k=0

The numerical coefficients a; , are generalised functions of the amplitude. The
support of each generalised function lies in the critical set of the phase. The
parameter a runs through the following arithmetic progressions. One of these is
the negative integers and the others are parametrised by the elements of the set of
multiplicities of the resolution of the singularity of the critical point of the phase.
The pair (k,m) corresponds to the arithmetic progression

—(m+ 1)k, —(m+2)/k,. ...

2. Let y be a point of the preimage of the critical point of the phase and
(ky,my),. . ., (k,, m,)be the multiplicities at y of the components of the zero level
hypersurface of fo n. Let us consider the arithmetic progressions of Lemma 7.3.
If for any y the number « is contained in not more than k progressions then the
generalised function g, , is identically equal to zero.
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3. If the weight of the resolution of the singularity at the critical point of the
phase is greater than —1 then

(i) the oscillation index of the critical point of the phase is equal to the weight of
the resolution of the singularity;

(ii) the multiplicity of the oscillation index of the critical point of the phase is
equal to one less than than the multiplicity of the number equal to the weight of
the resolution of the singularity relative to the resolution of the singularity;
(iii) if the amplitude is non-negative and its value at the critical point of the phase
is positive, then the numerical coefficient of the leading term of the asymptotic
series of the oscillatory integral (that is the coefficient ag 5, where § is the
oscillation index, and K is the multiplicity of the oscillation index) is non-zero;
(iv) if the critical point of the phase has finite multiplicity then the numerical
coefficient of the leading term of the asymptotic series of the oscillatory integral
is equal to the value of the amplitude at the critical point of the phase, multiplied
by a non-zero constant which depends only on the phase.

4. If the critical point of the phase is a maximum or minimum point then the
conclusions (i)—(iv) of section 3 of this theorem are true.

5. Let us denote by n the map of the resolution of the singularity. Let us
suppose that there does not exist a point in the preimage of the critical point of
the phase at which intersect two or more irreducible components of the zero level
hypersurface of the function fo x, the multiplicities of which are equal to (1, 0).
(We note that this assumption is satisfied if the phase has finite multiplicity at the
critical point (if n=2, we must also exclude the case of a nondegenerate critical
point)). Then the parameter « in the asymptotic series of the oscillatory integral
runs through only the arithmetic progressions of Section 1 of this theorem,
parametrised by the elements of the set of multiplicities of the resolution of the
singularity. In particular, the oscillation index of the critical point of the phase is
not more than the weight of the resolution of the singularity.

6. Let B be the weight of the resolution of the singularity and let k be the
multiplicity of the number S relative to the resolution of the singularity. Let us
consider all the points of the preimage (relative to the map of the resolution of the
singularity) at which the multiplicity of the number #is equal to k. Let us suppose
that this set does not intersect any irreducible component of the zero level
hypersurface of the function fo =, the multiplicity of which is equal to (1, 0). Let
us suppose that the condition of section 5 is satisfied. Let us suppose that the
weight of the resolution of the singularity is not an odd integer. Then conclusions
(1)(iv) of section 3 of this theorem are true.

7. Let us suppose that the weight of the resolution of the singularity is equal
to —1 and that the multiplicity of the number —1 relative to the resolution of the
singularity is not less than 2. Then the oscillation index of the critical point of the
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phase is equal to —1. Furthermore the multiplicity of the oscillation index is
equal to the multiplicity of the number —1 relative to the resolution of the
singularity or to one less than the multiplicity of the number —1.

Remark 1. This theorem implies Theorem 6.3 on asymptotic expansions.

Remark 2. The resolution of the singularity at the critical point is not uniquely
defined. However, if for one resolution the weight is greater than — 1 then for any
other resolution the weight is also greater than —1 and does not depend on the
resolution (Section 3 of Theorem 7.5). It would be interesting to find a purely
algebraic proof of this fact.

Remark 3. Practically all critical points have a resolution of the singularity of
weight greater than — 1. For a sufficient condition for this see Theorem 8.5 and
also supplement 1 of Theorem 6.4.

Remark 4. In § 9.2 (see also [358]) we shall cite an example of a critical point
and a resolution of its singularity with the properties : the weight of the resolution
is less than —1, and the oscillation index is less than the weight of the resolution.

Remark S. Let us return to the problem of reconstructing the value of the
function ¢ at the critical point of the function fin terms of the integrals of the
function ¢ over the level hypersurfaces of the function £, see § 6.3. For a critical
point of finite multiplicity of the function f; satisfying the conditions of one of
Sections 3, 4, 6 of Theorem 7.5, this problem can be solved in the following way.
Let us take as density on the level hypersurfaces of the function f'the differential
(n —1)-form of Gelfand-Leray

dx, A ... ANdx,[df.

In this way, knowing the Gelfand-Leray function

J)= | @dx, A ... andx,/df,
J=t

we must reconstruct the value of the function at the critical point. According to
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formula (4) on page 217 the oscillatory integral is the Fourier transform of the
Gelfand-Leray function. Therefore assertion 3(iv) of Theorem 7.5 gives the
solution of the problem.

Example. Let f be a homogeneous polynomial of degree N, with a critical point
of finite multiplicity at the origin. The resolution of the singularity at this critical
point was indicated in the example on page 225. The multiplicity set of the
resolution consists of pairs (N,n—1). According to Theorem 7.5 in the
asymptotic expansion of the oscillatory integral with phase f the parameter o
runs through the arithmetic progression

—n/N, —@m+1)/N,....

If N>n (or fis of definite sign), then the oscillation index of the critical point
is equal to —n/N, and the multiplicity of the oscillation index is equal to 0.

Proof of the theorem. We shall make a change of variables in the oscillatory
integral with the help of the map n: Y—R" of the resolution of the singularity.
Then the integral is transformed into an integral over Y. Using a sufficiently fine
partition of unity we transform the latter integral into a sum of elementary
integrals (this is possible since = is a resolution of the singularity).

Now Sections 1 and 2 of Theorem 7.5 follow immediately from Section 1 of
Theorem 7.3. Analogously, Sections 3, 4, 5, 6 of Theorem 7.5 follow,
respectively, from Sections 2, 3, 4, 2 of Theorem 7.3.

We shall prove Section 7. We have

[ €Y pdx={ e*J(D)dt+ [ e" ™I (~1)dt,
R 0 0

where J is the Gelfand-Leray function. Using the resolution of the singularity
and Theorem 7.2 we obtain

J(xt)=ai(ney+... +ago+ Y, t*(Indtad,,

a>0

where (r + 1) is the multiplicity of the number — 1 relative to the resolution of the
singularity, af, are real numbers. If the amplitude has fixed sign and is different
from zero at the critical point of the phase, then according to Lemma 7.7 the
numbers a3, have one and the same sign, and their sum is different from zero.
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Applying formula (11) on page 223, we can convince ourselves that in the
asymptotic expansion of an oscillatory integral the real part of the coefficient of
(Int)y "/t is proportional to ay+4,, and the coefficient of (Int)/z is
proportional to a;'o —a; o, the constants of proportionality being different from
zero. Section 7 is proved.

Remark. The assumptions of Sections 3, 4, 6 of Theorem 7.5 are necessary in
order that the principal term of the asymptotic series is not influenced by points
on the non-singular part of the zero level hypersurface of the function f.

7.3.3 The asymptotics of the Laplace integral

A Laplace integral is an integral of the form

[ e M p()dx,. .. dx,,
2

where 7 is a positive real parameter. The functions f and ¢ are called the phase
and amplitude respectively.

Let us suppose that the phase has a minimum point and that it is an analytic
function in a neighbourhood of the minimum point. Let us suppose that the
value of the phase at the minimum point is equal to zero.

Theorem 7.6. If the support of the amplitude is concentrated in a sufficiently
small neighbourhood of the minimum point, then as t— +oo the Laplace
integral can be expanded in the asymptotic series

n—1
X L aalo)r(nef,

for which the conclusions of Sections 1, 2, 4 of Theorem 7.5 are true.
The proof of Theorem 7.6 is obtained from the proof of Theorem 7.5 by
replacing the references to Theorem 7.3 by references to Theorem 7.4.

Corollary. For each small positive ¢ let us denote by ¥(r) the volume of the set of
those points at which the value of the phase is less than . Then as t— +0 the
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function ¥ can be expanded in the asymptotic series

n—1
Y ¥ a7 (o)
k=0 :

a

Here the parameter « runs through a finite set of arithmetic progressions,
consisting of positive rational numbers. These arithmetic progressions are the
progressions of Section 1 of Theorem 7.5. The assertions about the coefficients of
the series and the order of the leading term of the series, given in the conclusions
of Sections 2 and 4 of Theorem 7.5, are true.

Proof of the corollary. The derivative of the function V is equal to the Gelfand-
Leray function of the phase f and an amplitude which is identically equal to 1.

7.4 The rationality of the greatest singular index B;(n),
defined in § 6.8

Let us consider a polynomial of degree N with indeterminate coefficients and
with zero constant and linear terms.

fx,a)= Y R - LU -
k

For fixed real coefficients a the polynomial defines the function
fCG,a):R"-R,

with a critical point at the origin. According to Theorem 7.5 there exists an
arithmetic progression containing the index set of this critical point.

Theorem 7.7. There exists one arithmetic progression containing the index set at
the origin of the phase f(-, a) for all a.

Theorem 7.7 follows from Lemma 7.8.

Lemma 7.8. Let us suppose that in the space of coefficients of the polynominal f
there is chosen a semialgebraic set 4. Then there exists a proper semialgebraic
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subset Bc 4 and an arithmetic progression Q with the property: for any

ae A\ B the index set of the critical point of the phase f(-,a) at the origin
belongs to Q.

Proof. We can suppose that A is non-singular and connected. Let f* be the
restriction of the polynominal f to the manifold R” x 4. Let us consider the
resolution of the singularity

n:Y->R"x A

of the zero level hypersurface of the function f”, see [158]. From the Theorem of
Sard-Bertini follows the existence of a proper algebraic subset B < 4 with the
property: for any ae A\ B the restriction of the map of the resolution of the
singularity to the preimage of the set IR" x a is a resolution of the singularity of
the zero level hypersurface of the function

f(,a):R"xa—-R.

Furthermore the topology of this resolution and ail the multiplicities depend on a
locally constantly. Then the Lemma follows from Theorem 7.5.

Chapter 8
Asymptotics and Newton polyhedra

We shall consider the class of critical points of the phase, the Taylor series of
which have fixed Newton polyhedron. If the Newton polyhedron is remote, then
almost all the critical points of the class have the same oscillation index. This
common oscillation index is equal to the remoteness of the Newton polyhedron.
A critical point of the class has the typical oscillation index if the principal part of
its Taylor series is R-nondegenerate. (Remember that the condition of R-
nondegeneracy is an explicitly written-out algebraic condition on a finite set of
Taylor coefficients , see § 6.2). This assertion was formulated as Theorem 6.4.
Its proof occupies the whole of the present chapter. The proof uses the resolu-
tion of the singularity of the critical point of the phase. In the previous chapter we
defined a numerical characteristic of the resolution of a singularity, namely the
weight, and we proved that if the weight is greater than —1 then the
oscillation index of the critical point is equal to the weight (Theorem 7.5). In this
section we construct a manifold and a map of it into R”, which resolves the
singularity of almost all the critical points of the class we are considering. We
shall show that the weight of the constructed resolution of the singularity is
equal to the remoteness of the Newton polyhedron. In this way we shall prove
Theorem 6.4.

The resolution of the singularity is constructed in terms of the Newton
polyhedron and consists of three stages. In the first stage we use the Newton
polyhedron to construct a decomposition of the positive orthant of the spaceinto
convex cones, each of which is given by a finite set of linear conditions with
rational coefficients. In the second stage the cones are broken into smaller pieces
to construct a new decomposition of the positive orthant. The new decom-
position is inscribed in the previous one, all of its cones are simpicial and their
multiplicity is equal to 1 (for the definitions see §8.1.1). In the third stage we
construct from the new decomposition a manifold and a map of it into R”. The
manifold and the map resolve the singularities of almost all the critical points of
the class we are considering.

Each stage uses only the results of the previous stage: in the second stage we do
not use the Newton polyhedron, in the third stage we do not use the first
decomposition. In the first and third stages the initial data uniquely determine
the results. The result of the second stage (the new decomposition) is not
determined uniquely by the first decomposition. In this way the resolution of the
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singularity is not uniquely determined by the Newton polyhedron, although it is
constructed from the Newton polyhedron.

We shall describe the third stage first. We shall construct a manifold in terms
of a set of cones with the properties mentioned above and we shall define its
natural projection onto R” (see § 8.1.6). Then we shall describe the first two
stages and we shall prove that the manifold and map constructed as a result of the
three stages resolve the singularities at the critical points of the class where the
Taylor series has R-nondegenerate principal part. At the end we shall derive
Theorem 6.4 from Theorem 7.5.

On the manifold which will be constructed in this chapter there acts in a
natural way a group — an n-dimensional torus (for more detail see § 8.1.4). A
manifold with an action of a torus is called toral. For further discussion of the
theory of toral manifolds see [88, 184]. The orbits of the action of the torus on the
toral manifold are in one-to-one corresponence with a certain collection of
convex cones, constructed with the help of the manifold. Inits turn this collection
of cones uniquely determines the toral manifold. Our third stage of construction
of the resolution of the singularity is this standard (in the theory of toral
manifolds) transition from a collection of cones to a manifold. Toral manifolds
are remarkable in that the majority of analytic and topological constructions on
them reduce to linear algebraic constructions on the corresponding collection of
cones. See, for example, our calculation in this chapter of the weight of the
resolution of a singularity.

In the study of singularities, Newton polyhedra were first applied in
[195, 196]. Toral manifolds were first related to Newton polyhedra by A. G.
Hovanski (see [45, 159, 160,] and also [358, 359]).

8.1 Construction of the manifold

8.1.1 Cone, skeleton, multiplicity, fan

The cone generated by the vectors a,, . . ., a,€ R" is the cone consisting of linear
combinations of these vectors with nonnegative coefficients.

A cone with vertex at the origin is said to be rational if it can be generated by a
finite set of vectors with integer coordinates.

The skeleton of a rational cone is the set of all of its primitive (not multiple)
integer vectors in the faces of dimension 1. It is clear that the skeleton of the cone
generates the cone itself.

Example. The cone depicted in figure 66 is rational. Its skeleton consists of the
vectors (3,1), (1, 2).

e
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Fig. 66.

A rational cone is said to be simplicial, if the vectors making up its skeleton are
linearly independent.

The multiplicity of a simplicial cone of highest dimension is the index of the
sublattice generated by the vectors of the skeleton in the integer lattice of the
space. It is clear that the multiplicity of a cone is equal to 1 if and only if its
skeleton forms a basis of the integer lattice of the space. Further, if the
multiplicity is greater than 1, then there are integer vectors belonging to the
cone which are linear combinations of vectors of the skeleton in which all
the coefficients are nonnegative, less than 1 and at least one coefficient is not
equal to 0. :

Example. The cone depicted in figure 66 is simplicial (all two-dimensional
rational cones are simplicial). The multiplicity of the cone is equal to 5.

Exercise. Prove that the multiplicity of the cone is equal to the absolute value of
the determinant formed from the coordinates of the vectors of the skeleton.

A fan is a finite set of rational cones possessing the properties:
(i) each face of a cone from the set also belongs to the set;
(ii) the intersection of any two cones from the set is a face of each of them.
The fan is said to be simple if
(iii) all the cones of the fan are simplicial and the skeleton of any cone can be
extended to a basis of the integer lattice of the whole space.

8.1.2 Monomial maps
A rational map A : R"—>R" of the form

xoh=x%.. . x% i=1,...,n,
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where af is an integer matrix with determinant equal to +1 is said to be
monomial. The region of definition of a monomial map always contains the
complement of the union of the coordinate hyperplanes.

Itisclear that the inverse map of a monomial map is monomial and is given by
the inverse matrix. The region of definition of a monomial map is the whole space
if and only if the matrix of the monomial map has non-negative elements.

Let us be given an ordered pair of bases of the integer lattice of the space R™. A
monomial map is said to be associated with this pair if it is given by the matrix of
the dual operator to the operator which transforms the second basis into the first
and which is written down in terms of the second basis. In this way in the columns
of the matrix are the coordinates of the vectors of the first basis expressed in
terms of the second basis.

Example. Let‘ us be given in the integer lattice of the space R? two bases: the first
(1,0), (1, 1), the second (1, 0), (0, 1). Then the monomial map A associated with
this pair is given by the formulae

x, 0h=xix}

x,0h=x9x}

Lemma 8.1. If we change the order of the pair then the monomial map associated
with the pair will change to its inverse. If we are given three bases then the map
associated with the first and third basis is equal to the composition of the map
associated with the first and second basis and the map associated with the second
and third basis. In other words h; 3;=h, 305, ;.

The proof is obvious.

8.1.3 The manifold associated with a simple fan

Let us be given a simple fan. With the help of the fan we shall construct a non-
singular n-dimensional real analytic manifold. The construction of the manifold
generalises the construction of the standard compactifications of the space
(R\\0)". Namely, for the fans indicated in figures 67a and 67b, the construction
leads to the manifolds (R P')", R P", respectively.

The charts of the manifold are in one-to-one correspondence with the n-
dimensional cones of the fan. Each chart is equal to R". We introduce an
equivalence relation for points of different charts. Then on the set of equivalence

R

Py
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(03) (01)
(10) n (1.0)

-1,-1

Fig. 67a and b.

classes we introduce a topology and the structure of a manifold. We shall find it
useful to order the vectors of the skeleton of each cone of the fan. Let us fix these
orders. Later on we shall easily convince ourselves that the manifold which we
construct does not depend on this choice of order.

To any ordered pair of charts there is associated a monomial map from the
first chart to the second. This is the monomial map associated with an ordered
pair of bases of the integer lattice of the space, where the first (respectively
second) basis is that basis generated by the skeleton of the n-dimensional cone
which corresponds to the first (respectively second) chart. For the future
manifold this monomial map will play the role of the transition function from the
first chart to the second.

We shall say that a point of the first chart is equivalent to a point of the second
chart if the monomial map relating these charts is defined at the point of the first
chart and maps this point to the point of the second chart.

Example. In the space R? let the skeleton of the first cone consist of the vectors
(1,1), (1,2), and the skeleton of the second cone consist of the vectors (1, 1),
(3, 2). Then the monomial map 4 from the first chart to the second is given by the
formulae .

x,0h=xix3

x;0h=x3x;"!

Therefore, for example, the point (0, 2) of the first chart is equivalent to the point
(0, 1/2) of the second chart.

The relation we have introduced on pairs of points will be an equivalence
relation if we verify its symmetry. The symmetry follows from Lemma 8.2.
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Lemma 8.2. The monomial map relating an ordered pair of charts possesses the
following property. If we are given a sequence of points of the first chart, for
which the following conditions are satisfied :

(i) the sequence has a finite limit in the first chart;

(ii) the monomial map is defined at the points of the sequence;

(iii) the sequence of images of points of the sequence has a finite limit in the
second chart;

then the monomial map is defined and non-degenerate at the limit point of the
sequence.

The proof of the lemma is based on the fact that the intersection of the cones
corresponding to the two charts is a face of each of them. It is sufficient to take
the case when the sequence of points lies on a smooth curve and the limit point
of the sequence corresponds to the point on the curve the value of whose
parameter is zero. The existence of such a curve follows from the curve selection
lemma (see [256]).

So let the curve have the form

x;(=t(c;+0®), j=1,...,n
where the numbers ¢, .. ., ¢, are all non-zero. Then its image has the form
xi(t)=t™(d;+0(1)), j=1,...,n

where m;=Xa'k; and a} is the matrix of the monomial map. By definition, the
indices k; and m; are non-negative. According to the formula the vector
(my, ...,m,) is a linear combination of the columns of the matrix &} with
coefficients k4, . . ., k,. By definition, in the columns are the coordinates of the
skeleton of the cone, corresponding to the first chart, expressed in terms of the
vectors of the skeleton of the cone corresponding to the second chart. The non-
negativity of the numbers m; means that the indicated linear combination of
vectors of the first skeleton belongs to the second cone. However the intersection
of the cones is a face of each of them. Therefore if in the linear combination the
coefficient k; is different from zero then in the jth column of the matrix of the
monomial map all the elements except one are equal to 0 and the remaining
coefficient is equal to 1. The positivity of the coefficient k;means that the limiting
point of the curve as 1—0 lies on the hyperplane x;=0. According to the above
proof the monomial map is defined and non-degenerate at a general point of this
hyperplane. The lemma is proved.
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So on pairs of points of the charts we are given an equivalence relation. We
shall define on the set of equivalence classes a topology and the structure of an
analytic manifold.

Each chart is included in a natural way as a subset in the set of equivalence
classes. We shall say that a set is open if its intersection with every chart is open.
From Lemma 8.2 it follows easily that this definition gives on the set of
equivalence classes the structure of a Hausdorff topological space. The inclusion
of charts defines a covering of the topological space by open sets ‘and defines a
homeomorphism of these sets onto IR”. By construction, the transition functions
connected with these homeomorphisms are monomial maps in their regions of
definition. In this way on a simple fan we have constructed an analytic manifold.
We shall call this manifold the manifold associated with the simple fan.

Exercise. Show that (R P!)" and IR P" are the manifolds associated with the fans
depicted in figures 67a and 67b respectively.

8.1.4 A torus acts on the manifold associated with a simple fan

The space (R\\0)" together with coordinatewise multiplication forms a group
called the n-dimensional torus. The torus acts on itself. Its action extends
naturally to R".

Let us consider the manifold associated with a simple fan. The torus acts on
charts of the manifold. It is easy to see that this action extends to an action of the
torus on the whole manifold. We shall describe the orbits of this action.

There is one n-dimensional orbit, isomorphic to the torus. In an arbitrary
chart it is (R\\0)".

The (n —1)-dimensional orbits are in one-to-one correspondence with the one-
dimensional cones of the simple fan. Indeed each chart intersects n (n —1)-
dimensional orbits. Their closure in local coordinates coincides with the
coordinate hyperplanes. We put in correspondence with the (n — 1)-dimensional
orbit lying in the hyperplane x;=0 the jth vector of the skeleton of the cone
corresponding to the chart. (Remember that the vectors of the skeletons of the
cones of the fan were ordered).

Lemma 8.3.

1. This relation correctly defines a one-to-one correspondence between the set
of (n —1)-dimensional orbits and the set of one-dimensional cones of the simple
fan.
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2. The closure of an arbitrary (n—1)-dimensional orbit is an (n—1)-
dimensional submanifold.

Proof. Let us consider two charts of the manifold and the transition function
from the first chart to the second.

Let an (n —1)-dimensional orbit, lying in the first chart, be identifyed with
(n —1)-dimensional orbit, lying in the second chart. Let us suppose for simplicity
that these orbits, both in the first and in the second chart, lie in the hyperplane
x; =0. We shall prove that corresponding to them is one and the same one-
dimensional cone. Indeed the transition function is a monomial map. By
assumption all the elements in the first column of the monomial map are zero
except the first, which is equal to 1. According to the definition of the transition
functions this means that in the skeletons of the cones corresponding to the two
charts the first vector is the same, which is what we are trying to prove. It can be
shown, analogously, that if (n—1)-dimensional orbits in different charts
correspond to one and the same one-dimensional cone then these orbits are the
same.

The assertion of the second part of the lemma is trivial. The lemma is proved.

A one-to-one correspondence analogous to the above, can be established
between the set of k-dimensional orbits and (n—k)-dimensional cones of a
simple fan. The closure of the orbits are submanifolds. In the local charts these
are coordinate planes. If one orbit lies in the closure of another orbit, then the
cone corresponding to the second orbit is a face of the cone corresponding to the
first orbit. For more details see [184].

8.1.5 The map of manifolds associated with simple fans

Let us be given two fans. We shall say that the first fan is inscribed in the
second fan if for any cone of the first fan there is a cone of the second fan which
contains it.

Let us consider two simple fans. Let us suppose that the first fan is inscribed in
the second fan. Let us consider the manifold associated with these fans. We shall
define an analytic map of the first manifold into the second. To do this we shall
define the restriction of the map to each chart of the first manifold. Let us
consider an arbitrary chart of the first manifold. A chart corresponds to an
n-dimensional cone of the first fan. By assumption there is a cone of the second
fan which contains this cone of the first fan. The cone of the second fanis also, of
course, n-dimensional. Therefore the cone of the second fan corresponds to a
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chart of the second manifold. So we have an ordered pair of charts. Let us
consider the monomial map connected with these charts from the first chart to
the second one (see § 8.1.3). The elements of the matrix of this monomial map are
non-negative, since the first cone is inscribed in the second. In this way we have
defined an analytic map of an arbitrary chart of the manifold associated with the
first fan into one of the charts of the manifold associated with the second fan.

Lemma 8.4. These local maps are in agreement and correctly define an analytic
map of the first manifold into the second one.
Lemma 8.4 is a direct corollary of Lemma 8.1.

Remark. On each manifold there is a unique n-dimensional orbit of the action of
a torus. The map we have constructed gives an isomorphism of these orbits.

Theorem 8.1. (see [184]). Let us be given two simple fans, with the first fan
inscribed in the second. Let us consider the manifolds associated with the fans
and the map, constructed above, of the first manifold into the second. Then we
assert that if the union of the cones of the first fan contains the union of the cones
of the second fan then this map is proper. The converse is also true.

Corollary. Under the conditions of the theorem the first manifold maps onto the
second manifold.

Indeed the map is proper and invertible on an everywhere dense subset.
The first part of the theorem follows from Lemma 8.5. The converse is
analogous.

Lemma 8.5. Let us be given in one of the charts of the second manifold a curve of
the form

X O)=1"(d;+0@), m=0, j=1,....n,

where the numbers d,, . . ., d, are all non-zero. Then there exists a chart of the
first manifold in which the preimage of the curve has a finite limit as 1—0.

The proof is analogous to the proof of Lemma 8.2. We must select a chart of
the first manifold and a curve in this chart of the form

x;(N=t(c;+0@), j=1,...,n,
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where the numbers c,, . . .,c, are all non-zero, in such a way that its image
coincides with our curve, We shall restrict ourselves to showing how to take the
chart. Let us consider a basis forming the skeleton of a cone corresponding to a
chart of the second manifold. Let us consider a linear combination of this basis
with non-negative coefficients m,, . .., m,. As a result we shall obtain a vector
belonging to the cone. By the conditions there exists an n-dimensional cone of the
first fan which contains this vector. The n-dimensional cone of the first fan
corresponds to a chart of the first manifold. In this chart the preimage of our
curve has a finite limit. We shall leave the verification of this fact to the reader.

8.1.6 Important example

Let us consider two simple fans. Let us suppose that the second fan consists of
one n-dimensional cone and its faces. Let us suppose that the union of the cones
of the first fan coincides with the n-dimensional cone, generating the second fan.
According to the construction of § 8.1.3, there is a manifold associated with each
fan. The manifold associated with the second fan consists of one chart and is
isomorphic to R". According to the construction of § 8.1.5, there is a proper
analytic map from the manifold associated with the first fan to the manifold
associated with the second fan, that is to IR". This map is invertible outside the
union of the coordinate hyperplanes.

This example will be used in § 8.2 for the construction of the resolution of a
singularity.

Exercise. Let n=2 and as the first fan take the fan depicted in figure 68. Prove
that the map onto R? of the manifold associated with the first fan is the same as a
a-process at the origin.

()
(1)

(10)

jﬂ_'

Fig. 68.
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8.1.7 Complex analogue

The constructions of manifolds and maps of manifolds, described in this section,
have natural complex analytic analogues. Instead of charts, isomorphic to R" we
need to take charts isomorphic to €”, and all the maps are given by the same
formulae. The modified construction will lead to complex analytic manifolds
and complex analytic maps of them. The complex manifolds constructed in this
way have natural real parts. The real parts are real manifolds and coincide with
the manifolds constructed in this section. The complex analytic maps preserve
the real parts. The restrictions of the complex analytic maps to the real parts
coincide with the maps constructed in this section.

8.2 Resolution of singularities
8.2.1 The fan associated with a Newton polyhedron

Let us consider a Newton polyhedron, that is a convex polyhedron in R® with
vertices at points with non-negative integer coordinates, which together with
each point contains the positive orthant, parallel translated to this point (see
§6.2.1). We shall denote the polyhedron by I'.

The supporting function of a Newton polyhedron is a function on the positive
orthant of the space dual to R". Its value on the covector a of the positive orthant
is equal to

minkel' <a’ k>
The supporting function is denoted by /..

The trace on the Newton polyhedron of the covector a of the positive orthant
is the face of the polyhedron distinguished by the condition

{keI'Ka,ky=lr@)}. .

The joint trace of the covectors of the positive orthant is the intersection of their
traces.

Two covectors of the positive orthant are said to be equivalent relative to a
Newton polyhedron if they have the same trace.

Lemma 8.6. The closure of any equivalence class is a rational cone in the space
dual to R". Furthermore the collection of all these cones forms a fan.
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The proof follows easily from the definition of supporting functions. For
further details see [159].

The fan formed by the closures of the equivalence classes is called the fan
associated with the Newton polyhedron. The union of the cones making up this fan
coincides with the positive orthant of the space dual to R".

Example. Figure 69a depicts a Newton polyhedron in R Figure 69b depicts the
fan associated with it.

Fig. 69a and b.

8.2.2 A simple subordinate fan

A simple fan in the space dual to R" is said to be subordinate to a Newton
polyhedron if it is inscribed in the fan associated with the polyhedron and if the
union of the cones making up this simple fan coincide with the positive orthant.

Lemma 8.7 (sce [184]). There exists a simple fan subordinate to a Newton
polyhedron.

An algorithm to construct a simple fan, inscribed in a given fan and such that
the union of all its cones is the same as before, was given on pages 32-35in [184].
We shall not reproduce the algorithm in detail. We shall indicate its main
features.

The algorithm consists of two stages. In the first stage the cones of the original
fan are broken down in an arbitrary way into simplicial cones. In the second
stage of the algorithm we must make the multiplicty of all the n-dimensional
cones of the decomposition equal to 1. This is done by decreasing induction on
the number of cones with maximal multiplicity and then by decreasing induction
on the number equal to the maximum multiplicity of the cones of the
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decomposition. At each step of the second stage we need to break up the
simplicial cones of multiplicity greater than one into simplicial cones of smaller
multiplicity. It can be done by the addition of a one-dimensional cone, generated
by a correctly chosen integer vector. We need to take as this vector integer vector
which is a linear combination of the vectors of the skeleton such that all the
coefficients are non-negative, less than 1 and at least one coefficient is not
equal to 0.

Example. In figure 69b was depicted the fan associated with the Newton
polyhedron depicted in figure 69a. All the cones of this fan are simplicial. The
multiplicity of the cones a5, o, 0+ are equal, respectively, to 3, 5, 3. An example
of a simple fan, subordinate to the indicated polyhedron, is depicted in figure 70.

Fig. 70.

8.2.3 Theorem on the resolution of singularities

Let us consider a simple fan, subordinate to a Newton polyhedron. With the
simple fan there is associated a manifold. This manifold is called the manifold
subordinate to the Newton polyhedron. The union of the cones making up the
simple fan coincides with the positive orthant, which in particular is a simplicial
cone of multiplicity 1. According to the construction of § 8.1.5, the manifold
subordinate to the polyhedron projects onto R” (see § 8.1.6). This projection is
said to be associated with the manifold subordinate to the Newton polyhedron.
The projection is a proper analytic map.

Theorem 8.2 (on resolutions of singularities, see [45, 159, 358, 359]). Let us
consider a convergent power series in # variables without constant term, with
real coefficients and with R-nondegenerate principal part. The series gives an
analytic function in a neighbourhood of the origin in IR". Let us consider the
manifold, subordinate to the Newton polyhedron of the power series and the
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projection, associated with the manifold, of the manifold into R". We assert that
the manifold and the projection resolve the singularity at the origin of the
function given by the series.

The proof of the theorem is based on two lemmas formulated below.

8.2.4 Auxiliary lemmas

Let us consider two simplicial n-dimensional cones of multiplicity 1 in the space
dual to R”™. Let us suppose that the first cone belongs to the positive orthant, and
the second cone coincides with the positive orthant. Let us suppose that the
skeletons of the cones are ordered, the skeleton of the second cone being ordered
in the standard way:

(1,0,...,0),...,(0,...,0,1).

Let us denote by e/ =(a{, . . ., a}) the jth covector of the ordered skeleton of the
first cone. The skeletons of the cones give an ordered pair of bases of the integer
n-dimensional lattice. There is a monomial map associated with the pair of bases
(see §8.1.2). Let us denote it by 4. The matrix (&) of this monomial map has non-
negative elements since the first cone is inscribed in the second. Let us consider a
power series f in the variables xy, . . ., x,,. A monomial map with non-negative
matrix induces a transformation of the power series into the power series foh.

Lemma 8.8.

1. The maximal power of the variable x;, by which the power series is divisible
after the monomial transformation is equal to the value of the supporting
function of the Newton polyhedron of the initial power series evaluated on the
jth covector of the ordered skeleton of the first cone.

2. The Jacobian of the monomial map is equal modulo a sign to the monomial
in which the power of the variable x; is equal to one less than the sum of the
coordinates of the jth covector of the ordered skeleton of the first cone.

3. The Newton diagram of the power series after the monomial transfor-
mation is a point if and only if all the covectors of the interior of the first cone are
equivalent relative to the Newton polyhedron of the initial power series.

4. The image of the coordinate hyperplane x;=0 is contained in the
coordinate plane given by the equations x; =0, i€ I, where /is the set of positions
of all the non-zero coordinates of the jth covector of the ordered skeleton of the
first cone.
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The proof is obvious.

Let us suppose that the power series f has real coefficients and converges. We
shall denote by the same letter the function given by the series. Let us consider the
function fo A induced from the function f by the monomial map. With each
coordinate hyperplane there are associated two numbers : the multiplicity of zero
on the hyperplane of the function foh and the multiplicity of zero on the
hyperplane of the Jacobian of the monomial map. Let us denote the first number
by k and the second by m. The number —(m + 1)/k was called, in C}iapter 7, the
weight of the hyperplane. Weights play a fundamental role in Theorem 7.5. Let
us give a clear geometrical meaning to the weight of a coordinate hyperplane.
For definiteness, let this hyperplane be given by the equation x; =0.

Let us denote by y the Newton polyhedron of the initial power series. Let us
consider the hyperplane in R” given by the equation

a',x)y=I(a"),

where a! is the first covector of the ordered skeleton of the first cone, I is the
supporting function of the polyhedron I'. The intersection of this hyperplane
with the polyhedron is the trace of the covector a!. The hyperplane intersects the
bisector of the positive orthant in exactly one point (¢, ..., ). According to
Lemma 8.8, the weight of the coordinate hyperplane x, =0 is equal to

—(@ + ... +ad)/lp@)=—1/t.

See figure 71. This remark explaihs the appearance in Theorem 6.4 of a number
equal to the remoteness of the Newton polyhedron.

,
a)x,+a! x.-l,(u\

Fig. 1.

Let us formulate the second auxiliary lemma.
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Lemma 8.9. Let us suppose that the conditions of Lemma 8.8 are satisfied. Let us
suppose that under the monomial map A the hyperplane given by the equation
x; =0 maps into the origin. Let us suppose that the power series f (without
constant term) converges and has IR-nondegenerate principal part. Let us
suppose that all the covectors of the interior of the first cone are equivalent
relative to the Newton polyhedron of the series f. Then at each point of the
hyperplane x, =0 there exist local coordinates in which the function f o Aand the
Jacobian of the map h are equal to monomials modulo multiplication by a
function which does not map to zero.

Proof. It is sufficient to prove that the above-mentioned local coordinates exist
for points at which the first s Euclidean coordinates are equal to zero and the rest
of the Euclidean coordinates are different from zero.

By assumption the series f o h can be put in the form

xlr@ Xl (const +0(xy, - - ., X)),

where const # 0 (see Sections 1 and 3 of Lemma 8.8). Let us rewrite the series foh
in the form

xlr@) @ (fi(xi1s e s Xm) FO(1, -, X)),

It is sufficient to prove that the hypersurface given by the equation f, =0 does
not have singular points in (R\\0)".

All the coordinates of the covector a! are positive (Section 4 of Lemma 8.8)
therefore f, is a polynominal. Let us denote by 7 the joint trace of the covectors
a', ..., a" Now yisanon-empty compact face of the Newton polyhedron. Let us
denote by f, the y-part of the series f. It is clear that

fioh=x@, k@

In view of the R-nondegeneracy of the principal part of the series f the first
partial derivatives of the y-part do not have common zeros in (R \\0)". The map
h gives a diffeomorphism

(RN\0)"—>(R\0)",
therefore the polynomials

Jo, 0fo/0Xe1s-. .50 f0/0x,

do not have common zeros in (R\\ 0)", which is what we were required to prove.
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8.2.5 Proof of Theorem 8.2

Let us verify that the three sections of the definition of the resolution of a
singularity, listed on page 195-196 are satisfied.

Let us consider the manifold, subordinate to the Newton polyhedron of the
series f and the projection associated with it of the manifold onto IR". According
to Theorem 8.1, the projection is a proper analytic map. Consequently, Section 3
of the definition of the resolution of a singularity is satisfied. The projection is
invertible away from the union of the coordinate hyperplanes in R". Con-
sequently, Section 2 of the definition is satisfied. Finally Section 1 is a direct
corollary of Lemma 8.9. The theorem is proved.

Remark 1. The resolution of the singularity in Theorem 8.2 is determined by a
simple fan, subordinate to the Newton polyhedron. By changing the fan we can
provide a resolution of the singularity with additional properties. Namely we can
choose a simple fan, subordinate to the Newton polyhedron, such that the map
of the resolution of the singularity, indicated in Theorem 8.2, is invertible away
from the zero level hypersurface of the function given by the power series [210].
Invertibility of the map outside the zero level hypersurface means that condition
2’ on page 197 is satisfied.

Lemma 8.10. The resolution of the singularity, indicated in Theorem 8.2, satisfies
condition 2’ on page 196 if the simple fan defining the resolution satisfies the
following additional property: This fan includes any cone of the fan associated
with the polyhedron if this cone is simplicial and its skeleton can be extended to a
basis of the integer lattice.

Example. In figures 69 and 70 were depicted a Newton polyhedron, the fan
associated with it and a simple fan subordinate to the Newton polyhedron. The
simple fan possesses the property indicated in Lemma 8.10.

The lemma is easily proved with the help of Sections 1 and 4 of Lemma 8.8,
see also [359].

Lemma 8.11. There exists a simple fan subordinate to the Newton polyhedron
and possessing the property indicated in Lemma 8.10.
Such a simple fan can be constructed by the algorithm indicated in § 8.2.2.
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Remark 2. Let us formulate the complex analogue of Theorem 8.2.

Theorem 8.2’ (see {45, 159, 359]). Let us consider a convergent power series
in n variables without constant term, with complex coefficients and with
C-nondegenerate principal part. The series gives an analytic function in a
neighbourhood of the origin in €". Let us consider a complex analytic manifold,
subordinate to the Newton polyhedron of the power series and the projection,
associated with the manifold, of the manifold onto €" (see § 8.1.7). We assert that
the manifold and the projection resolve the singularity at the origin of the
function given by the series (that is that the function, the manifold and its map
onto €" possess properties 1-3 on page 195-196).

The proof.is the same as the proof of Theorem 8.2.

Theorem 8.2, like Theorem 8.2, admits the condition : there exists a manifold,
subordinate to the Newton polyhedron of the power series, for which the
resolution of the singularity in Theorem 8.2’ possesses the property 2’ on page
196 (see [359]).

8.3 Application to oscillatory integrals
8.3.1

Theorem 8.3 (see [358]). Let us consider the oscillatory integral

[ &P o(x)dx, . . . dx,.
R-

Let us suppose that the phase is an analytic function in a neighbourhood of
the origin. Let us suppose that the Taylor series of the phase at the origin has
RR-nondegenerate principal part. Let us consider the Newton polyhedron of the
Taylor series. Let us consider a simple fan, subordinate to this Newton
polyhedron. In connection with these objects we claim the following asser-
tions 1-5.

1. The index set of the phase at the origin belongs to the union of the following
arithmetic progressions, depending only on the fan and not depending on the
coefTicients of the Taylor series. One sequence is that of the negative integers. The
rest of the progressions are parametrised by the one-dimensional cones of the
fan, on which the supporting function of the Newton polyhedron is different

REIE———"—
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from zero. To such a cone corresponds the arithmetic progression
—@+...+a"l(a), —(1+a' +... +a%Ira),.. .,

where a=(a',. . .,a") is the primitive covector generating the cone and /. is the
supporting function of the Newton polyhedron. .

2. The oscillation index of the phase at the origin is not more than the
remoteness of the Newton polyhedron.

3. The oscillation index of the phase at the origin is equal to the remoteness of
Newton polyhedron if at least one of the following three conditions is satisfied ;

(i) The polyhedron is remote.

(ii)) The phase has a maximum or a minimum at the origin.

(iii) Let us denote by y the closure of the open face of the Newton polyhedron
to which the centre of the boundary of the Newton polyhedron belongs (see
§ 6.2.3); it is required that the y-part of the Taylor series of the phase at the origin
does not have a zero in (R\\0)" and the remoteness of the Newton polyhedron
was not an odd integer (the condition about the absence of a zero is satisfied, in
particular, if y is a vertex of the polyhedron).

4. If at least one of the conditions (i)—(iii) of section 3 of the theorem is satisfied,
then the multiplicity of the oscillation index of the phase at the origin is equal to
the multiplicity of the remoteness of the Newton polyhedron (in particular, if the
bisector of the positive orthant passes through a vertex of the Newton
polyhedron then the multiplicity equals n—1, if through an edge then the
multiplicity equals n —2, etc.). If the support of the amplitude is concentrated ina
sufficiently small neighbourhood of the origin, the amplitude is of fixed sign and
is different from zero at the origin, then the numerical coefficient of the leading
term of the asymptotic series of the oscillatory integral (that is the coefficient ax g
of the series (2) on page 181) is different from zero.

5. Let us suppose that at least one of the conditions (i)—(iii) of section 3 of the
theorem is satisfied. Let us suppose that the phase has a critical point of finite
multiplicity at the origin and that the support of the amplitude is concentrated in
a small neighbourhood of the” origin. Then the numerical coefficient of the
leading term of the asymptotic series of the oscillatory integral (that is the
coefficient ag 4 of the series (2) on page 181)is equal to the value of the amplitude
at the origin, multiplied by a non-zero constant, depending only on the phase.
6. Let us suppose that the remoteness of the Newton polyhedron isequal to —1.
Then the oscillation index of the phase at the origin is equal to —1 if at least one
of the following two conditions is satisfied:

(i) the open face, to which the centre of the boundary of the Newton polyhedron
belongs, has dimension less than n—1.
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(ii) The closure y of the open face to which the centre of the boundary of the
Newton polyhedron belongs is compact and the y-part of the Taylor series has a
zero on (R\\0)".

Furthermore in this case the multiplicity of the osciliation index of the phase at
the origin is equal to the multiplicity of the remoteness of the Newton
polyhedron or one less than the multiplicity of the remoteness. If conditions (i)
and (ii) are satisfied simultaneously, then the multiplicity of the oscillation index
is equal to the multiplicity of the remoteness.

Remark 1. Theorem 6.4 and its supplements (i), (ii), (vi), (vii) are corollaries of
the theorem we have just formulated.

Remark 2. In Section 1 of the theorem we indicated the method of constructing
arithmetic progressions. There is a different method for constructing similar
progressions. This method uses only the Newton polyhedron, and does not use
the simple fan, subordinate to the polyhedron. The method can be used if the
function has at the origin a critical point of finite multiplicity and the Taylor
series of the phase has €-nondegenerate principal part. The method is based on
the following theorem of Malgrange. With each critical point of finite multi-
plicity of the function there is connected the linear monodromy operator in the
vanishing homology at the point (see Part I). With each root 4 of the
characteristic polynomial of the monodromy operator is connected the arith-
metic progression of all the numbers a for which exp (2niz) = A. The theorem of
Malgrange (see Chapter 11) asserts : the index set of the critical point is contained
in the union of the progressions we constructed. In Theorem 3.13 we indicated a
formula expressing the characteristic polynomial of the monodromy operator in
terms of the Newton polyhedron of the Taylor series of the critical point.

Proof of the theorem.

Let us suppose that £(0)=0. With the simple fan of the theorem there is
associated a manifold subordinate to the Newton polyhedron of the Taylor
series. This manifold and the projection associated with it resolve the singularity
of the phase at the origin (Theorem 8.2). We apply Theorem 7.5. For the proof of
section 1 of the theorem we must indicate the set of multiplicities of the resolution
of the singularity, that is we must indicate the multiplicities of the irreducible
components of the zero level hypersurface of the phase, lifted to the manifold
resolving the singularity. In a local chart of the manifold the lifted phase is equal

O ———
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to the product of a monomial and a function with non-singular zero level hyper-
surface (see Lemma 8.9); in addition to which the Jacobian of the resolution
is equal to 2 monomial (Lemma 8.8). Therefore in terms of a local chart
the irreducible components with multiplicity not equal to (1, 0) (see §7.3) are
those coordinate hyperplanes on which the multiplicity of zero of the lifted phase
is greater than 1. Lemma 8.8 expresses the multiplicity of zero of the lifted phase
and the Jacobian of the resolution in terms of the corresponding primitive
covectors of the one-dimensional cone of a simple fan. Then Section 1 of the
theorem follows from Theorem 7.5 and Lemma 8.8.

Let us take notice of the geometrical meaning of the first number of the
arithmetic progression corresponding to a primitive covector of a one-dimen-
sional cone (see the remark after Lemma 8.8). This first number is equal to minus
the reciprocal of the intersection parameter of the bisector of the positive orthant
and the hyperplane defined by the covector and leaning upon the polyhedron.
Therefore among the first numbers of the arithmetic progressions, indicated in
section 1 of the theorem there is certainly a number equal to the remoteness of the
polyhedron. Namely, the remoteness is the first number of the arithmetic
progression corresponding to any covector the trace of which contains the centre
of the boundary of the polyhedron.

Let us prove Section 2. If the remoteness of the Newton polyhedron is equal to
—1 then Section 2 follows from Section 1 of Theorem 7.5. If the remoteness is less
than —1 then the Taylor series of the phase is not divisible by any one of the
variables. According to Lemmas 8.8, 8.9 this means that the conditions of
Section 5 of Theorem 7.5 are satisfied. Then Section 2 of the theorem follows
from Section 5 of Theorem 7.5. The case in which the remoteness of the Newton
polyhedron is greater than —1 is examined during the proof of Section 3.

Section 3(i) of the theorem follows from Section 3 of Theorem 7.5, since in this
case the weight of the resolution is greater than —1 and equal to the remoteness
of the Newton polyhedron. Section 3(ii) follows from Section 4 of Theorem 7.5.

Sections 4(i) and 4(ii) will follow from Sections 3, 4 of Theorem 7.5 if it is
proved that the muitiplicity of the weight of the resolution equals the multiplicity
of the remoteness of the Newton polyhedron. For the proof we mention the
following obvious fact. Let us consider all the cones of the simple fan,
subordinate to the Newton polyhedron, which possesses the property : the traces
of all the covectors forming the cone contain the centre of the boundary of the
Newton polyhedron. Then the maximum dimension of the indicated cones is
equal to one more than the multiplicity of the remoteness of the Newton
polyhedron. Then the required result follows from Lemma 8.8.

Sections 5(i) and 5(ii) follow, respectively from Sections 3(iv) and 4(iv) of
Theorem 7.5. Sections 3(lii), 4(iii) and 5(iii) follow from Section 6 of Theorem
7.5. Section 6 follows from Section 7 of Theorem 7.5. The theorem is proved.
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According to Theorem 8.3, the order of the oscillatory integral is equal to the
remoteness of the Newton polyhedron of the phase, if the amplitude is of
constant sign and its value at the critical point of the phase is different from zero.
We shall formulate an assertion describing the order of the integral in the case
when the amplitude is equal to zero at the critical point of the phase.

Let us be given two Newton polyhedra. By the coefficient of inscription of the
first polyhedron in the second we shall mean the lower bound of the following set
of positive numbers. A number belongs to the set if the homothety with centre at
the origin and expansion coefficient equal to the number maps the first
polyhedron inside the second.

We put into correspondence with the amplitude of an oscillatory integral the
Newton polyhedron of its Taylor series multiplied by the product of all the
variables. In this way we have two polyhedra: this polyhedron and the Newton
polyhedron of the Taylor series of the phase. By the remoteness of the polyhedra
of the phase and the amplitude we shall mean minus the reciprocal of the
coefficient of inscription of the first polyhedron in the second.

Exercise. Prove that the remoteness of the polyhedra of the phase and the
amplitude is equal to the remoteness of the Newton polyhedron of the phase if
the Taylor series of the amplitude has non-zero constant term.

Example. Let the Taylor series of the phase and the amplitude be equal,
respectively, to

X +x3x3+x§ and x.x,.

Then the remoteness of their polyhedra is equal to —7/9.

Theorem 8.4. Let us suppose that the phase of an oscillatory integral is an
analytic function in a neighbourhood of the origin. Let us suppose that the
Taylor series of the phase at the origin has R-nondegenerate principal part.
Then:

1. The power of the parameter of the leading term of the asymptotic series of
the oscillatory integral is not greater than the remoteness of the polyhedra of the
phase and the amplitude.

2. The power of the parameter of the leading term is equal to the remoteness
of the polyhedron of the phase and the amplitude if this remoteness is greater
than —1 and the polyhedron put in correspondence with the amplitude is
congruent to the positive orthant.
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The proof is analogous to the proof of Theorem 8.3, except that instead of
the references to Theorem 7.5 we must refer directly to Theorem 7.3. We notice
that Section 2 of the theorem is analogous to Section 3(i) of Theorem 8.3. There
are true analogies to Sections 3(ii), 3(iii), 4, 5.

In conclusion we analyse the case of a degenerate principal part of the Taylor
series.

Theorem 8.5 (see [358]). Let the phase be an analytic function in a neighbour-
hood of the origin. Let us suppose that the Newton polyhedron of the Taylor
series of the phase at the origin is remote. Then the oscillation index of the phase
at the origin is not less than the remoteness of this polyhedron.

Corollary 1. The weight of the resolution of the singularity of the phase is greater
than —1.
See Theorem 7.5.

Corollary 2. The assertion of Section 3 of Theorem 7.5 is true for the phase.

Corollary 3. Let the phase be a function of two variables with a degenerate
critical point at the origin. Then the oscillation index of this critical point is equal
to the weight of the resolution of its singularity.

Indeed in this case it is easy to select a system of coordinates in which the

remoteness of the Newton polyhedron of the Taylor series of the phase is greater
than —1.

Corollary 4. The remoteness of the critical point is not greater than the oscilla-

tion index if the remoteness is greater than —1 (see the definition in § 6.2.4).
We note that Theorem 6.5 asserts the equality of the remoteness and the

oscillation index for all critical points of a phase of two arguments.

Proof of the theorem. Let us consider the manifold X subordinate to the Newton

polyhedron and the projection

n: X-»R"
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associated with it. With the help of the projection we lift the phase to the
manifold and we resolve all the singularities of the lifted phase on the preimage
of the origin. Namely, by the theorem of Hironaka [158], there exists a new
manifold Y and a map ¢ : Y— X, possessing the property: the map n o ¢ resolves
the singularity of the phase at the origin. The phase, lifted to X, has a component
of the zero level hypersurface with weight equal to the remoteness of the Newton
polyhedron (see the proof of Theorem 8.3). The preimage of this component on
Y has the same weight. Now the theorem follows from Section 3 of Theorem 7.5.

8.3.2 Generalisation of Theorem 8.3 to the Laplace integral

Theorem 8.6. Let us consider the Laplace integral

| e Ppx)dx, . .. dx,.
»*

Let us suppose that the phase is an analytic function in a neighbourhood of the
origin and has a local minimum at the origin. According to Theorem 7.6 as
7+ oo the Laplace integral can be expanded in the asymptotic series

n—1
e 'Y Y g *(Int).
k=0 a

Let us suppose that the Taylor series of the phase at the origin has R-non-
degenerate principal part. Let us consider the Newton polyhedron of the Taylor
series of the phase. Let us consider a simple fan subordinate to this Newton
polyhedron. Then the asymptotics of the Laplace integral possess the properties
of the asymptotics of an oscillatory integral with the same phase, indicated in
Theorem 8.3 in Sections 1, 3, 4, 5.

The proof of Theorem 8.6 is obtained from the proof of Theorem 8.3 by
changing the references to Theorem 7.5 to references to Theorem 7.6.

Corollary of the theorem (compare with the corollary of Theorem 7.6). For
each positive ¢ let us denote by V(¢) the volume of the set of points in which the
value of the phase is less than ¢. According to Theorem 7.6 the function V as
t— +0 can be expanded in the asymptotic series

Y a . *(no)k
a k
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It is asserted that the order a of the maximal term of this series is equal to minus
the remoteness of the Newton polyhedron of the Taylor series of the phase at the
minimum point (under the condition of R-nondegeneracy of the principal part
of the Taylor series). -

Remark. The assertion that the leading term of the asymptotic geries of the
Laplace integral is equal to the remoteness of the Newton polyhedron of the
phase was proved by V. A. Vasilev in [386] for the case when the principal part of
the Taylor series of the phase is R-nondegenerate and the Newton polyhedron
intersects each coordinate axis. The proof of V. A. Vasilev does not use the
resolution of singularities.

8.3.3 The area of the level surface of a function

Let us suppose that on the space there is given a Riemannian metric. The
Riemannian metric on the space gives rise to a Riemannian metric on the level
hypersurface of a function. The Riemannian metric on the hypersurface
determines an (n —1)-dimensional volume form. Let us calculate the volume of
compact level manifolds of a function and let us consider the asymptotic volume
as the level tends to the critical value.

Theorem 8.7. Let us suppose that the analytic function f has an isolated mini-
mum point and that the minimal value of the function is equal to zero. Let us
suppose that in the space there is given an analytic Riemannian metric. For small
positive ¢ let us denote by V(f) the (n —1)-dimensional volume of the level ¢
manifold. Then as t— +0 the function ¥ can be expanded in the asymptotic
series

n—1

Y Y a . t*(nnt

a k=0 .
in which the parameter a runs through a finite set of arithmetic progressions
consisting of positive rational numbers. If in addition it is known that the
principal part of the Taylor series of the function f is R-nondegenerate at the
minimum point and that the principal part of the Taylor series of the function
(df, df)is R-nondegenerate at the minimum point of the function fthen the order
o of the maximal term of the asymptotic series depends only on the Newton
polyhedra of the above Taylor series and is calculated according to the following
rule.
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Rule. Let us consider the Newton polyhedron of the Taylor series of the function
(df, df) at the minimum point of the function f. Let us consider the image of this
polyhedron under the action of the homothety with coefficient 1/2 and centre at
the origin. Let us move the resulting polyhedron to the vector (1,...,1). Let us
consider a second polyhedron, namely the Newton polyhedron of the Taylor
series of the function fat the minimum point. Let us denote by & the coefficient of
inscription of the first polyhedron in the second. Then the order « of the maximal
term of the asymptotic series is equal to 1/k —1.

The proof of the theorem is based on the fact that the number —1/k is the
index of the maximal term of the asymptotic series of the Laplace integral

§ e IOV, d) p(x)dx, . . . dx,
R

as T + oo, if the amplitude ¢ is identically equal to 1 in a small neighbourhood
of the minimum point and the support of the amplitude is concentrated in a small
neighbourhood of the minimum point.

8.3.4 Oscillatory integrals in a halfspace
Let us consider the oscillatory integral in the halfspace

| P (x)dx, .. .dx,,

x1 20

where the phase and the amplitude are smooth functions on the whole space. Let
us suppose that the phase is an analytic function in a neighbourhood of the
origin. If the support of the amplitude is concentrated in a sufficiently small
neighbourhood of the origin and the restriction of the phase to the boundary of
the halfspace does hot have a critical point at the origin then as T— + o0, the
integral decreases faster than any power of the parameter (Theorem 6.1°). Let us
suppose that the restriction of the phase to the boundary has a critical point at
the origin.

Theorem 8.8. The oscillatory integral on the halfspace can be expanded in the
asymptotic series

n—1
€TOY Y g (p)*(n)* as T+
a k=0
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if the support of the amplitude is concentrated in a sufficiently small
neighbourhood of the origin. Here the parameter a runs through a finite set of
arithmetic progressions depending only on the phase and consisting of negative
rational numbers. The numerical coefficients a, , are generalised functions of the
amplitude. The support of each generalised function lies in the union of the
critical sets of the phase and the restriction of the phase to the boundary.

The proof is analogous to the proof of Theorem 7.5. For the proof we need to
consider the resolution of the singularity at the origin of the function x, f (it is
simultanecusly a resolution of the singularity of the function f), and then repeat
the reasoning of the proof of Theorem 7.5. In the result for an oscillatory integral
on a half-space we shall prove the assertions of Sections 1-5 of Theorem 7.5
(a natural addition is needed in Section 5: it is true if the phase is not divisible
by x,).

If the origin is a critical point of the restriction of the phase to the boundary,
but is not a critical point of the phase, the analysis of the asymptotic integral on
the halfspace reduces to the analysis of the oscillatory integral on the boundary.
Indeed by a diffeomorphism preserving the boundary the phase can be reduced
to the form

Xy +h(x2,- .. ,x,.).

Then we can integrate by parts with respect to x;.

Let us suppose that the phase has a critical point at the origin. Let us suppose
that the principal part of the Taylor series of the phase at the origin is R-
nondegenerate.

Theorem 8.9. Under the above assumptions the asymptotics of the oscillatory
integral on the halfspace possess the properties indicated in Sections 1-5 of
Theorem 8.3.

The proof is the same as the proof of Theorem 8.3.
Let us consider one more type-of oscillatory integral on a halfspace, namely an
integral of the type

| €Y Po(x)xiPdx; .. .dx,.

x1>0

Here, as earlier, the phase and the amplitude ¢ are smooth functions on the
whole space. The analysis of such integrals can be reduced to the analysis of the
integrals we considered earlier on the halfspace with the help of the change
x; =2>. We shall formulate one of the results obtained in this manner.
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Theorem 8.10. Let us suppose that the phase is an analytic function in a
neighbourhood of the origin. Let us suppose that the principal part of the Taylor
series of the phase at the origin is R-nondegenerate. Then the oscillation index of
the phase for integrals of the indicated type is determined by the Newton
polyhedron of the Taylor series of the phase and is equal to minus the reciprocal
of the value of the parameter of the point of intersection of the line

2x1 =Xp=X3=...=X,=I,

where t € R, and the boundary of the Newton polyhedron, if the value is greater
than 1.

All the conclusions about the asymptotics of oscillatory integrals on a
halfspace formulated in this section are true for the asymptotics of Laplace
integrals on a halfspace.

8.4 The two-variable case

According to Theorem 8.3 the oscillation index of the critical point of the phase is
equal to the remoteness of the Newton polyhedron of its Taylor series in some
system of coordinates if in this system of coordinates the principal part of the
Taylor series is IR-nondegenerate and the Newton polyhedron is remote. This
theorem applies to an arbitrary critical point of the phase depending on one
argument. If the phase depends on two or more arguments then the indicated
system of coordinates does not always exist (see § 6.2.4). All the same, we have
managed to investigate to the end the case of a phase depending on two
arguments and prove the equality of the oscillation index and the remoteness of
the Newton polyhedron of the Taylor series of the phase in a correctly chosen
system of coordinates. The correctly chosen system of coordinates is said to be
adapted to the phase and was defined in § 6.2.4.

Theorem 8.11 (see [358]). Let us consider the double oscillatory integral

| e P o(x)dx,dx,.
RI

Let us suppose that the phase is an analytic function in the neighbourhood of its
degenerate critical point. Then
1. The oscillation index of the critical point is equal to its remoteness.
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2. There exists a system of local coordinates adapted to the critical point.

3. The multiplicity of the oscillation index of the critical point is equal to 1 if
there exists a system of coordinates, adapted to the critical point, in which the
centre of the boundary of the Newton polygon of the Taylor series of the critical
point lies at the intersection of two edges of the polygon. Otherwise the
multiplicity of the oscillation index is equal to 0.

Remark 1. The assertions of Sections 1 and 2 are true also for non-degenerate
critical points; the assertion of Section 3 is not (example: f=x;Xx,).

Remark 2. The assertions about asymptotics, formulated in the theorem, are true
also for asymptotic Laplace integrals with phases depending on two arguments.

Remark 3. Theorem 8.11 implies Theorem 6.5 and its supplement (i). Supple-
ment (ii) follows from Corollary 3 of Theorem 8.5 and Section 3 of Theorem 7.5.

Remark 4. In [358] there is given an algorithm to search for an adapted system of
coordinates and it is shown how to recognise adapted coordinates. According to
one of the signs a system of coordinates is adapted to the critical point if the
centre of the boundary of the Newton polygon of the Taylor series of the critical
point lies on the intersection of two edges of the polygon, cf. Section 3 of the
theorem.

Remark 5. The oscillation index of a degenerate critical point of a phase of two
arguments is not less than the remoteness of the critical point according to
Corollary 4 of Theorem 8.5.

The proof (as also the proof of Theorem 8.3) depends on the analysis of the
resolution of the singularity of the critical point of the phase. The analysis of the
resolution of the singularity of the critical point of the phase in the case of two
arguments is made simpler by two circumstances. Firstly, in this case there are
simple algorithms for the resolution of the singularity by sequences of o-
processes at points. Secondly, in the two-dimensional case the weight of the
resolution of a singularity of an arbitrary degenerate critical point is greater than
—1 (Corollary 3 of Theorem 8.5.). In accordance with the second remark, the
oscillation index is equal to the weight of the resolution of the singularity
(Section 3 of Theorem 7.5). In this way it remains to prove that the weight of the
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resolution of the singularity is equal to the remoteness of the Newton polyhedron
of the Taylor series of the phase adapted to the phase of the coordinate system.
Theorem 8.11 is a direct corollary of Theorem 8.12 below.

Theorem 8.12 (see [358]). Let us consider the resolution of the singularity of a
degenerate critical point of an analytic function of two arguments. Then

1. The weight of the resolution of the singularity is equal to the remoteness of
the critical point.

2. There exists a system of local analytic coordinates in which the remoteness
of the Newton polyhedron of the Taylor series of the critical point is equal to the
weight of the resolution of the singularity.

3. The multiplicity of the number, equal to the weight, relative to the
resolution of the singularity (for the definition see § 7.3.1) is equal to 2 if there
exists a system of coordinates, adapted to the critical point, in which the centre of
the boundary of the Newton polygon lies at the intersection of two edges of the
polygon. Otherwise the multiplicity is equal to 1.

Chapter 9

The singular index, examples

In this chapter we shall prove the additivity of the oscillation index, and describe
explicitly the calculation of the singular index in the tables in § 6.1.10. In the
second part of the chapter we give an example of the deformation of a critical
point. This example illustrates several phenomena. First, the absence of
semicontinuity of the oscillation index. Second, the existence of critical points
which are complex equivalent but which have distinct singular indices. Third, the
existence of a critical point in which the singular index is not equal to the
remoteness. Finally, the existence of a critical point in which the principal part of
the Taylor series is IR-nondegenerate but the remoteness of the Newton
polyhedron is greater than the oscillation index.

9.1 The singular index
9.1.1 The additivity of the oscillation index and its multiplicity

Let f:R"-R and g:R'-R be smooth functions, and let x and y be their
respective critical points. The critical point x x y of the function

f+g:R"xR'->R

is called the direct sum of the critical points x and y.

Lemma 9.1. The oscillation index and the multiplicity of the oscillation index are
additive. ’

Proof. Let us denote by B, K, respectively, the oscillation index and the
multiplicity of the oscillation index.

It is clear that B(xxy)=p(x)+p(y), and if B(xxy)=H(x)+p(y) then
K(x x y)=K(x)+ K(y). Indeed if the amplitude of the oscillatory integral with
phase f+g can be decomposed as the product of two functions, one of which is
a function on R" and the other is a function on R/, then the integral itself
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decomposes into a product of oscillatory integrals with phases, respectively, f
and g.

We shall prove the opposite inequality. Let us consider the oscillatory integral
with phase f+ g. Let us suppose that the support of the amplitude is concentrated
in a small neighbourhood of the point x x y. In this case the integral can be
expanded in the asymptotic series

n+i-1

Y ¥ @, . (In ),
a k=0

where the numerical coefficients g, , are generalised functions of the amplitude.
The generalised functions & , for a > B(x)+ B(p) are identically equal to zero,
since in the space of the amplitudes the linear combinations of amplitudes which
can be decomposed into a product of a function on R” and a function on R! form
an everywhere dense set. Therefore ’

B(xxy)=p(x)+B(»).
The equality
K(xxy)=K(x)+K(y)

is proved analogously.

Corollary. The singular index and its multiplicity are equal for stably equivalent
critical points.

9.1.2 Calculation of the singular 