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Preface 

The present volume is the second volume of the book "Singularities of 
Differentiable Maps" by V.I. Arnold, A. N. Varchenko and S. M. Gusein-Zade. 
The first volume, subtitled "Classification of critical points, caustics and wave 
fronts", was published by Moscow, "Nauka", in 1982. It will be referred to in 
this text simply as "Volume 1". 

Whilst the first volume contained the zoology of differentiable maps, that is it 
was devoted to a description of what, where and how singularities could be 
encountered, this volume contains the elements of the anatomy and physiology 
of singularities of differentiable functions. This means. that the questions 
considered in it are about the structure of singularities and how they function. 

Another distinctive feature of the present volume is that we take a hard look at 
questions for which it is important to work in the complex domain, where the 
first volume was devoted to themes for which, on the whole, it was not important 
which field (real or complex) we were considering. Such topics as, for example, 
decomposition of singularities, the connection between singularities and Lie 
algebras and the asymptotic behaviour of different integrals depending on 
parameters become clearer in the complex domain. 

The book consists of three parts. In the first part we consider the topological 
structure of isolated critical points of holomorphic functions. We describe the 
fundamental topological characteristics of such critical points: vanishing cycles, 
distinguished bases, intersection matrices, monodromy groups, the variation 
operator and their interconnections and method of calculation. 

The second part is devoted to the study of the asymptotic behaviour of 
integrals of the method of stationary phase, which is widely met with in 
applications. We give an account of the methods of calculating asymptotics, we 
discuss the connection between asymptotics and various characteristics of 
critical points of the phases of integrals (resolution of singularities, Newton 
polyhedra), we give tables of the orders of asymptotics for critical points of the 
phase which were classified in Volume 1 of this book (in particular for simple, 
unimodal and bimodal singularities). 

The third part is devoted to integrals evaluated over level manifolds in a 
neighbourhood of the critical point of a holomorphic function. In it we shall 
consider integrals of holomorphic forms, given in a neighbourhood of a critical 
point, over cycles, lying on level hypersurfaces of the function. Integral of a 
holomorphic form over a cycle changes holomorphically under continuous 
deformation of the cycle from one level hypersurface to another. In this way 
there arise many-valued holomorphic functions, given on the complex line in a 
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neighbourhood of a critical value of the function. We show that the asymptotic 
behaviour of these functions (that is the asymptotic behaviour of the integrals) as 
the level tends to the critical one is connected with a variety of characteristics of 
the initial critical point of the holomorphic function. 

The theory of singularities is a vast and rapidly developing area of 
mathematics, and we have not sought to touch on all aspects of it. 

The bibliography contains works which are directly connected with the text 
(although not always cited in it) and also works connected with volume 1 but for 
some or other reason not contained in its bibliography. 

References in the text to volume 1 refer to the above-mentioned book 

"Singularities of Differentiable Maps". 
The authors offer their thanks to the participants in the seminar on singularity 

theory at Moscow State University, in particular A. M. Gabrielov, A. B. 
Givental, A. G. Kushnirenko, D. B. Fuks, A. G. Khovanski and S. V. Chmutov. 
The authors also wish to thank V. S. Varchenko and T. V. Ogorodnikova for 
rendering inestimable help in preparing the manuscript for publication. 

The authors. 
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Part I 

The topological structure of 
isolated critical points of functions 

Introduction 

In the topological investigation of isolated critical points of complex-analytic 
functions the problem arises of describing the topology of its level sets. The 
topology of the level sets or infra-level sets of smooth real-valued functions on 
manifolds may be investigated with the help of Morse theory (see [255]). 'the idea 
there is to study the change of structure of infra-level sets and level sets of 
functions upon passing critical values. In the complex case passing tl!rough a 
critical value does not give rise to an interesting structure, since all the non­
singular level sets near one critical point are not only homeomorphic but even 
diffeomorphic. The complex analogue of Morse theory, describing the topology 
of level sets of complex analytic functions, is the theory of Picard-Lefschetz 
(which historically precedes Morse theory). In Picard-Lefschetz theory the 
fundamental principle is not passing through a critical point but going round it in 
the complex plane. 

Let us fix a circle, going round the critical value. Each point of the circle is a 
value of the function. The level sets, corresponding to these values, give a fibration 
over the circle. Going round the circle defines a mapping of the level set above the 
initial point of the circle into itself. This mapping is called the (classical) 
monodromy of the critical point. 

The simplest interesting example in which one can observe all this clearly and 
carry through the calculations to the end is the function of two variables given by 

It has a unique critical point z = w = O. The critical value is f = O. The critical level 
set Vo={(z,w):r+w2=O} consists of two complex lines intersecting in the 
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point O. All the other level sets 

V). = {(z, w):r+wZ=l} 

are topologically the same; they are diffeomorphic to a cylinder Sl x 1t1 

(figure 1). 

Fig. 1. Fig. 2. 

To show this, we consider the Riemann surface of the function w=V(l-r) 
(figure 2). This surface is glued together from two copies of the complex z-plane, 

joined along the cut ( - V1 VI). Each copy of the cut plane is homeomorphic to 
a half cylinder; the line of the cut corresponds to a circumference of the cylinder. 
In this way, the whole (four-real-dimensional) space £2 decomposes into the 
singular fibre Yo and the non-singular fibres VA, diffeomorphic to cylinders, 
mapping to the critical value 0 and the non-critical values l~O by the mapping 

Let us proceed to the construction of the monodromy. We consider on the 
target plane a path going round the critical value 0 in the positive direction 
(anticlockwise) : 

l(I)=exp(2xil)«, 0~t~1, «>0 (figure 3) 

Fig. 3. 

Introduction 3 

Let us observe how the fibre V).(,) changes as I varies from 0 to 1. For this we 
consider the Riemann surfaces of the functions 

w=V(l(I)-r). 

As the parameter I increases, both the branch points Z= ±Vl(I)=exp(xit) 

x (±~) move around the point z = 0 in the positive direction. As t varies 
from 0 to 1, each of these points performs a half tum and arrives at the other's 
place. In this way, as l(l) goes round the critical value 0, it corresponds to a 
sequence of Riemann surfaces, depicted in figure 4, beginning and ending with 
the same surface Va.. 

r)JI?Jt'¥{- f 
t"'O t 2 1/J t=2/J t=I 

Fig. 4. 

Now it is easy to construct a family continuous in I, of difTeomorphisms from 
the initial fibre V).(O) = Va. to the fibre V).(/) over the point l(l) 

beginning with the identity map, ro, and ending with the monodromy r1 = h. For 
example one may define r, in the following fashion. Choose a smooth "bump 
function", X(T), such that 

We let 

X(T)=1 for 0~T~2~, 

X(T)=O for T~3~. 

g,(z)=exp {XiI . X (lzl)} . z. 

The family of diffeomorphisms g, from the complex z-plane into itself defines the 
desired family of difTeomorphisms r,. The diffeomorphism h = r1 : v.,-+ v., of the 

cylinder is the identity outside a sufficiently large compact set (for Izi > 3 Y«>. 
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We consider now the action of the monodromy h on the homology of a non­
singular fibre Yo,. The first homology group HI (Yo,; Z) ~ Z of the cylinder Yo, 
is generated by the homology class of the "gutteral" circle A (figure 5). As a-+O 
the circle A tends to the point O. Therefore it is called the vanishing cycle of 

Picard-Lefschetz. 

Fig. 5. 

We consider further the first homology group Hf' (Yo, ; Z) of the fibre Yo, with 
closed support. According to Poincare duality, this group is also isomorphic to 
the group Z of integers. It is generated by the homology class of the "covanishing 
cycle" r - a line on the cylinder going from infinity to infinity and intersecting the 
vanishing cycle, A, once transversely (see figure 5). We shall suppose that the 
cycle r is oriented in such a way that its intersection number (J7 0 A) with the 
vanishing cycle A, determined by the complex orientation ofthe fibre Yo" is equal 

to +1. 
Figure 4 allows us to observe the action of the difTeomorphisms r, on the 

vanishing and covanishing cycles (figure 6). 

Fig. 6. 

We notice that the diffeomorphism h=r1 of the cylinder Yo,~SI x 1t1 can be 
described as follows: it is fixed outside a certain annulus, the circles forming the 
annulus rotate through various angles varying from 0 at one edge to 27t at the 
other. In this way, under the action of the monodromy mapping h. the vanishing 

Introduction s 

cycle A is mapped into itself, the covanishing cycle winds once around the 
cylinder (figure 7). 

v ltV 

Fig. 7. 

The diffeomorphism h is the identity outside some compact set. Outside this 
compact set the cycles rand h r coincide. Therefore the cycle h r - r is 
concentrated in a compact part of the cylinder. From figure 7 (or from figure 6) it 
is clear that 

hr-v= -A. 

In this way any cycle b with closed support gives rise to a cycle M -b with 
compact support. This defines a mapping from the homology of the fibre Yo, with 
closed support into its homology with compact support. It is called the variation 
and is denoted by 

Var: Hf'(Yo,; Z)-+Hl (Yo,; Z). 

From figure 7 or figure 6 it can be seen that we have 

Var b=(Aob)A 

for every cycle 

bEHf'(Yo,;Z)· 

Here (A ob) is the intersection number of the cylces A and b, defined by the 
complex orientation of the fibre Yo,. This relationship is called the formula of 
Picard-Lefschetz. 

We notice that, generally speaking, the difTeomorphisms r, are defined only up 
to homotopy and that there is no a priori reason why the mapping r 1 should be 
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ftxed outside a compact set. For example, the family of diffeomorphisms 

r;: (z, w)-+(z exp(xit), w exp(xit» 

deftnes the mapping 

rl=h':(z,w)-+(-z, -w), 

'Yhich is not ftxed outside a compact set and is not, therefore, suitable for 
deftning the variation (though it is suitable for derming the action of the 
monodromy on the compact homology). Thus we have considered the funda­
mental concepts of the theory of Picard-Lefschetz: vanishing cycles, monodromy 
and variation for the simplest example of the function !(z, w) = Z2 + w2

• 

In the general case of an arbitrary function of any number of variables, the 
topology of the ftbre VA will not be as simple as in the example we analysed. The 
investigation of the topology of the ftbre VA, the monodromy and the variation in 
the general case is a difficult problem, solved completely only for a few special 
cases. In this part we shall recount several methods and results which have been 
obtained along these lines. 

The fundamental method -which we shall make use of is the method of 
deformation (or perturbation). Under a small perturbation, a complicated 
critical point of a function of n variables breaks up into simple ones. These simple 
critical points look like the critical point 0 of the function 

!(Zl, .. . ,z .. )=~+ ... +~ 

and can be investigated completely in the same way as we analysed the case 
n = 2 above. In place of the cylinders VA, which occured in the case n = 2, the non­
singular ftbre in the general case are smooth manifolds 

which are diffeomorphic to the space TS"-l, the tangent bundle ofthe (n -:-1)­
dimensional sphere (giving a cylinder for n = 2). The vanishing cycle in Y1 is the 
real sphere 

S·-l={zell"cG;":r.+ ... +r.=1}. 

If complicated critical points break down under deformation into I" simple 
ones, then the perturbed function will have, in general, I" critical values (ftgure 8); 
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In this case it is possible in the target plane of the perturbed function to go round 
each of the 1". critical values. In this way we get, not one monodromy 
diffeomorphism h, but a whole monodromy group {h7}' where "I runs through the 
fundamental group of the set of non-critical values. 

~---~ 

-.-~--- ~ 

Fig. 8. Fig. 9. 

The non-singular ftbre VA of the perturbed function have the same structure 
(inside some ball surrounding the critical point of the initial function) as the non­
singular ftbre of the initial function. When the value of A. tends to one of the 
critical values of the perturbed function, a certain cycle on the non-singular ftbre 
vanishes. This cycle is a sphere whose dimension is a half ofthe (real) dimension 
of the ftbre VA (ftgure 9). Tending in this manner to all I" critical values, we derme 
in the non-singular ftbre I" vanishing cycles, each a sphere of the middle 
dimension. It happens that the non-singular ftbre is homotopy equivalent to a 
bouquet of these spheres. 

In the case when the real dimension of the non-singular ftbre is divisible by 4 
(that is when the number n of variables is odd), the intersection number gives a 
symmetric bilinear form in the homology group H II - 1 (VA; Z) ofthe non-singular 
level manifold. The self-intersection number of each of the vanishing cycles is 
equal to 2 or - 2, depending on the number of variables n. The action of going 
round the critical value corresponding to a vanishing cycle is equivalent to 
reflection in a mirror which is orthogonal to this cycle, where orthogonality is 
dermed by the scalar product given by the intersection numbers. 

For example, for the function of three variables 

a suitable perturbation is 
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1;,----
This function has p=k critical points (Ve/(k+ 1)e""0,0), where e. 
(m=1, ... ,k) are the k-th roots of unity. The corresponding vanishing cycles 
..11" .• , AI; can be chosen so that they have the following intersection numbers 

(..110..11)= -2, 

(..110.,12)=(..120..13)=", =(..11;-10.,11;)= 1, 

and all other intersection numbers are zero. The monodromy group is generated 
by the resulting reflections in the orthogonal complements of the cycles A"" and 
coincides with the Weyl group AI; (see [53]), that is with the group S(k+1) of 

permutations of (k + 1) elements. 
In this Part we shall generally (except in Chapter 5) be concerned with isolated 

singularities of functions. Therefore by the term "singularity" we shall 
understand the germ of a holomorphic functionj: ({::", O)-+({::, 0), having at the 
origin an isolated critical point (that is, a point at which all the partial derivatives 

of the function j are equal to zero). 
Let G: ({::-, O)-+({::', 0) be the germ at the origin of an analytic function, let U 

be a neighbourhood of the origin in the space {::", in which a representative of the 
germ G is defined, and letG l be a family off unctions from U to {::', analyti~ in A in 
a neighbourhood of 0 in {::, such that Go=G. We shall refer to the function GJ., 
for sufficiently small A, as a small perturbation () of the function G, without 
spelling out each time the dependence on the parameter 1. 

Throughout, the absolute homology groups will be considered reduced 
modulo a point; the relative groups of a pair "manifold-boundary" will be 
modulo a fundamental cycle. (For this reason the tilde over the letter H, which 
usually indicates a reduced homology group, will be omitted.) All the homology 
will be considered with coefficients in the group Z of integers, unless we 

specifically indicate otherwise. 
Let (::II be the n-dimensional complex vector space with coordinates 

The space (::IIg;:B?", considered as a real 2n-dimensional vector space, has a 
preferred orientation, which we shall call the complex one. This orientation 
is defined so that the system of coordinates in the space 1l

2
" given by 

U V U2 V2 U V has positive orientation. Complex manifolds will be 1, 1, , , ... ,.,. 

considered to have this complex orientation unless we specifically indicate 
otherwise. With this choice of orientation the intersection n~bers of complex 

submanifolds will always be non-negative. 

Chapter 1 

Elements of the theory of 
Picard-Lefschetz 

In this chapter we shall define concepts of Picard-Lefschetz theory such as 
vanishing cycles, the monodromy and variation operators, the Picard-Lefschetz 
operators, etc. As we have already said, they are used to investigate the topology 
of critical points of holomorphic functions. 

1.1 The m.odromy .... yariation operators 

Let j: M"-+(; be a holomorphic function on an n-dimensional complex 
manifold M", with a smooth boundary aM" (in the real sense). Let U be a 
contractible compact region in the complex plane with smooth boundary au. We 
shall suppose that the following conditions are satisfied: 
(i) For some neighbourhood U' of the region U, the restriction of j to the 
preimage of U' is a proper mapping j-1(U')-+U', that is a mapping for which 
the preimage of any compact set is compact. 
(ii) The restriction of j to aM-nj-1(U,) is a regular mapping into U', that is a 
mapping, the differential of which is an epimorphism. 
(iii) The function j has in the preimage, j-1(U,), of the region U' a finite 
number of critical points PI (i = 1, ... ,p) with critical values ZI = j (PI) lying 
inside the region U, that is in U ""' au. 

From condition (ii) it follows that the restriction of the function j to 
aM"nj-1(U) defines a locally trivial, and consequently (since the region U is 
assumed contractible) also a trivial fibration aM-nj-1(U)-+U. The direct 
product structure in the space of this fibration is unique up to homotopy. In 
addition, the restriction of the function j to the preimage j-1(U,,", {za) of the 
set of non-critical values is a locally trivial fibration. 

We will denote by F. (ZE U)the level set of the function j (F. = j-1(Z». H 
Z E U is a non-critical value of the function J, then the corresponding level set F,. 
is a compact (n -1 )-dimensional complex manifold with smooth boundary 
aF,.=F,.naM-. Let us fix a non-critical value Zo lying on the boundary au 
of the region U. Let "I be a loop in the complement of the set of critical values 
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V"", {z,li= 1, ... , p} with initial and end points at Zo (')': [0, 1)-+ V "'" {z,}, ')'(0) 
=')'(1)=zo). (We can suppose, without loss of generality, that all the loops and 
paths we encounter are piecewise smooth.) Going round the loop')' generates a 
continuous family of mappings I'r : F'so -+ M- (lifting homotopy), for which Fo is 
the identity map from the level manifold F:o into itself, j(I'r(X» = ')'(t), that is r. 
maps the level manifold F:o into the level manifold F7(.)· The homotopy I'r can 
and will be chosen to be consistent with the direct product structure on 
oM"nj-l(U). Indeed we can choose as {I'r} a family of diffeomorphisms 
F:o-+F,(.), but we shall not need this in the sequel. Thus the map 

is the identity map on the boundary iJF:o of the level manifold F.o' It is defined 
uniquely up to homotopy (fixed on the boundary iJFzJ by the class of the loop ')' 
in the fundamental group 1tl (V "'" {Zi}, zo) of the complement of the set of critical 

values. 

Definitions. The transformation hy of the non-singular level set Fzo into itself 
is called the monodromy of the loop ')'. The action hy. of the transformation h, on 
the homology of the non-singular level set H.(FzJ is called the monodromy 

operator of the loop ')'. 
The monodromy operator is uniquely defined by the class of the loop 'I in the 

fundamental group of the complement of the set of critical values. 
We shall discuss also the automorphism h<.;J induced by the transformation h, 

in the relative homology group H. (F zo' of zJ of the non-singular level set modulo 
its boundary. In the introduction to this Part we used, instead of the relative 
homology group H. (F zo' of zJ, the homology group Hf'(VJ with closed support 

(using the isomorphism 

Let ~ be a relative cycle in the pair (F.o' oFao>. Since the transformation hy is 
the identity on the boundary oFzo of the level manifold Fzo, the boundary of the 

cycle h ~ coincides with the boundary of the cycle~. Therefore the difference hy~ 
y th . -6 is an absolute cycle in the manifold Fzo. It is not hard to see that e mappmg 

~ ..... hy~ -6 gives the correct definition of the homomorphism 

Elements of the theory of Picard-Lefachetz 

Definition. The homomorphism 

is called the variation operator of the loop 'I. 

11 

It is not difficult to see that the automorphisms hy. and h~~ are connected with 
the variation operator by the relations 

where 

is the natural homomorphism induced by the inclusion 

If the class of the loop 'I in the fundamental group 1tl(V"" {z,},zo) of the 
complement of the set of critical values is equal to the product'll' '12 of the classes 
'11 and '12, then 

Therefore the mapping '1 ..... hy. is an (anti)homomorphism of the fundamental 
group 1tl (V"" {z,},zo) of the complement of the set of critical values into the 
group Aut H.(FzJ of automorphisms of the homology group H.(FzJ of the 
non-singular level set. We shall denote by (aob) the intersection number of the 
cycles (or homology classes) a and b. This notation will be used both in the case 
when both the cycles a and b are absolute and in the case when one of them is 
relative. Remember that the level manifold F.o is a complex manifold and there­
fore possesses the preferred orientation which defines the intersection number of 
the cycles on it. 
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LemJDa 1.1. Let 

be relative homology classes. 

Then 

dim a + dim b=2n -2. 

}'EX1(U,"" {za.zo). 

(var.,aovaryb)+(aovar.,b)+(varyaob)=O. 

Proof. Choose relative cycles which are representatives of the homology classes 
a and b so that their boundaries (lying in the boundary oE'zo of the level manifold 
F.J do not intersect. This can be done using the dimensional relationships 

dim oa+dim ob=2n-4 
<2n-3 
="dimoF.o• 

The chosen cycles we shall also denote by a and b. For such cycles the intersection 
number makes sense. though. of course. it is not an invariant of the classes in the 

homology group H.(Fzo.oE'zJ. We have 

varya=hya-a. var.,b=hyb-b. 

(vary a ovar.,b) + (var.,a ob) +(a 0 var.,b) = 
= (h.,a 0 h.,b) -(a 0 h.,b) -(h.,a 0 b)+(a ob) + 
+(h.,aob) -(aob)+(aoh.,b) -(aob)=O. 

since (h.,aoh.,b)=(aob). 

(hr~aovar.,b)+(var.,aob)=O. 

Proof. 

(hr~aovar.,b)+(var.,aob) 
= (i • . var.,aovar.,b) +(a o var.,b)+ (var.,a ob) 

=0 

Elements of the theory of Picard-Lefschetz 13 

since 

hr~=id+i. ·var.,. 
(i • . var.,a ovar.,b) = (var.,a 0 var.,b). 

1.1 V.nisbing cycles .... the lDCMlOdromy group 

Let us suppose now that all critical points PI of the function / are non-degenerate 
(that is that det(02 /lox}ox,J #:0). and all critical values ZI = /(PI) are different 
(i=1 •...• 1'). Remember that in this case the function/is said to be Morse. 

DefiDition. The monodromy group of the (Morse) function / is the image of the 
homomorphism of the fundamental group Xl (U '"" {ZI}. zo) of the complement of 
the set of critical values in the group Aut H.(Fzo) of automorphisms of the 
homology group H.(F"J of the non-singular level set F"o which is obtained by 
mapping the loop}' into the monodromy operator 

Let us be given in the region U a path u : [0. 1] -+ U. joining some critical value 
Zi with the non-critical value Zo (U(O)=Zh u(1)=zo) and not passing through 
critical values of the function / for 1 #: O. By the Morse lemma. there exists a 
local coordinate system Xl • ••.• XII in a neighbourhood o~ the non-degenerate 
critical point Pion the manifold Mil. in which the function / can be written in 
the form/(x17 •••• XII)=ZI+l:j=lxj. For values of the parameter 1 near zero. we 

ftx in the level manifold F.(I) the sphere 8(/)=V(U(/)-ZI)8"-t, where 

is the standard unit (n -1 )-dimensional sphere. 
Lifting the homotopy 1 from zero to one dermes a family of (n -1 )-dimen­

sional spheres 8(/) c F.(I) in the level mairifolds F.(I) for all 1 E (0. 1]. Note that for 
1=0 the sphere 8(/) reduces to the critical point PI. 

DefWIiua. The homology class LJEH.-l(F.J. represented by the (n-1)­
dimensional sphere 8(1) in the chosen non-singular level manifold F.o is called a 
vanishing (along the path II) cycle 0/ Picard-LeJscheIZ. 
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It is easy to see that the homotopy class of the path u in the set of all paths in the 
region U joining the critical value Zj with the non-critical value Zo and not passing 
through critical values of the function! for t ~ 0, defines the homology class of 
the vanishing cycle A modulo orientation. 

DefinitioD. The set of cycles £11 , ••• ,£1,. from the (n-l)st h,?mology group 
H.-1 (F.O> of the non-singular level set F.o is called distinguished if: 

(i) the cycles A,(i = 1, ... , JJ) are vanishing along non-self-intersecting paths 
u" joining the critical value z, with the non-critical value Zo; 

(ii) the paths u, and Uj have, for i~j, a unique common point u,(1) 

=uJ(l)=zo; 
(iii) the paths Ul, ••• , u,. are numbered in the same order in which they enter 

the point zo, counting clockwise, beginning at the boundary au of the region U 

(see figure 10). 

Reaaark. The need to choose a non-critical value Zo on the boundary au ofthe 
region U was dictated by the need to number the elements of the distinguished set 
of vanishing cycles according to condition (iii). 

J 

Fig. 10. Fig. 11. 

Eu ......... L Let us consider the Morse function !(x)=x1-3h, where.t is a 
small positive number. This function is a perturbation of the function fo (x) = x1 
(having the singularity type Al in the sense ofvolume 1), but we do not need that 

fact just now. The function! has two critical points (x = y'I and x = - y'I) with 

critical values Z 1 = - 2.t y'I and Zl = 2.t VI respectively. As the non-critical value 
of the function! we take Zo = O. Let us join the critical values z, (i = 1,2) with the 
non-critical value Zo by line segments Ul and "l' The level manifold {!=O} 

consists oftbree points Xl = - Vii, Xl = 0 and X3 = Vii (see figure 11). It is easy 
to see that the cycles, vanishing along the described paths Ul and &I] joining the 
critical values ZI and Zl with the non-critical value 0, are the differences 
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£11 = {X3} -{Xl} and Al={xl} -{xd of zeroth homology class represented by 
the points Xb Xl and X3' Note that the orientation of the cycles was chosen by us 
arbitrarily: any of them can be multiplied by -1. 

For greater clarity we chose the non-critical value Zo =0. It presupposes, 
certainly, a special choice for the region U. On this occasion it is not very 
important, but later, for the definition of a distinguished basis of vanishing cycles 
in the homology of a non-singular level manifold of a degenerate singularity, we 
shall consider the region tJ to be a disk of sufficiently large radius, in comparison 
with the critical values of the perturbed function~ The need to choose a non­
critical value on the boundary of the sufficiently large disk is dictated as, 
otherwise, firstly, the identification of the homology group of the non-singular 
level manifold of a singularity and its perturbation would not be unique and, 
secondly, the order in which the vanishing cycles must enter the distinguished 
basis would not be unique. In order to "correct" the example we considered 
above, we can choose a non-critical value z~ sufficiently large in absolute value 

(lz~1 ~ 2.t y'I), joining it with the non-critical value Zo = 0 by a path which does 
not pass through the critical values ofthe function/, and observe the change of 
the non-singular level manifolds! = Z as z moves along this path from Zo = 0 
to z~. We shall consider later an analogous construction in a more general case 
(§ 2.9). Here for simplicity we modify our example somewhat. 
1·. We consider the Morse function !(x)=r+3h, where .t is a positive 

number. The critical points of the function! are X = - y'I i and x = y'I i, the 

critical values are Zt = -2.ty'Ii and zl=2.ty'Ii. We choose as the region Ua 

disk of sufficiently large radius r with centre at zero (r~ 2.t y'I). We consider two 
non-critical values of the function!: Zo =0 andz~ =r. The critical values Zl,l are 
joined to Zo = 0 by segments, going along the imaginary axis, Zo = 0 is joined to 
z~ =r by a segment of the positive real half-axis. In this way we get pathS,"1 and 
Ul ,joining the critical values Zt,l with the non-critical value z~. As before the zero 
level manifold of the function! consists of three points 

The level manifold {J =zl} is near to the level manifold {fo =z~} of the function 

fo(x)=x1 (since Iz~l=r~2.ty'I). Therefore it consists of three points 

xr~exp( -21ti/3)trzi, 

xr~VZ8, 

xl ~exp (21ti/3) trzi. 
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It is not difficult to see that. along the line segment joining the critical value 

Zl = -H}I1i (respectively z2=H}I1i) with the non-critical value zo=O, the 
cycle {X2} - {xd (respectively {X3} - {X2}) vanishes~ Further, it is clear that as the 
non-critical value Z moves along the segment of the positive half-axis from Zo = 0 
to z8 = r the points of the manifold {/ = z} change in such a manner that the point 
X2 remains on the real axis, the point Xl is in the lower and the point X3 is in the 
upper half-plane. Therefore as z moves from Zo to z8, the points Xl, X2 and X3 go 
to the points xf, xf and xl respectively. Consequently, along the paths "1 and "2 
which we described joining the critical values Zl and Z2 of the function / with the 

non-critical value z8 the cycles 

Li l = {xf} -{xf} 

and 

Li2 = {xl} - {xf} 

respectively vanish. It is easy to see that the vanishing cycles Li l and Li2 form a 

distinguished set. 
2. As another example we consider the function of two variables /(x,y)=xl 
-3lx+ y. (1 is a small positive number). This function is a perturbation of the 
function /o(x,y)=xl+y., which also has singularity type A2 in the sense of 

volume 1. The function has the same critical values, Zl = - 21 V'l and Z2 = 21 V'l, 
as the function in the first example. These values are taken at the points (V'l, 0) 

and (-If'l, 0) respectively. We join the critical values Zl and Z2 with the non­
critical value Zo = 0 by segments "1 and "2 of the real axis. The zero level manifold 
of the function / (the complex curve {f =O}) is the graph of the two-valued 

functiony= ±V( -xl+3lx) and therefore is a double covering ofthe plane of 

the complex variable x, branching at the points Xl = - 01, X2 = 0 and X3 = 01· 
It can be obtained from two copies of the plane of the complex variable X with 
cuts from the point Xl to the point X2 and from the point X3 to inftnity (see figure 
12), glued together criss-cross along these cuts. 

t:. z, 

Fig. 12. 
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As Z m~ves along the real axis from Zl = - H V'l to Z2 = H V'l the manifold 
{J =z} IS deformed~ The movement of the branch points Xl =Xl (z), X2 =X2(Z), 
and X3 = X3 (z) as a double covering of the plane of the complex variable X is 
illustrated in figure 13. 

r "',, .r 
j, I:, ~,i ";'$, r 1; • 

.i=, 

z--2A.¥I" t-O 1'-2A.}'X 

Fig. 13. 

From this it is clear that the vanishing cycles corresponding to the critical values 

Zl = -21 V'l and Z2 =21 V'l and the paths "1 and "2 which we described joining 
them to the non-critical value 0 are the one-dimensional cycles Li l and Li2 
portrayed in figure 14 (we have indicated by dashes the part of the cycle lying on 
the second sheet of the surface; the orientation of the vanishing cycles again can 
be chosen arbitrarily). 

Fig. 14. 

z 
• 

Once again let" be a path joining some critical value Zj with a non-critical 
value Zoo 

Deftaition. A simple loop corresponding to the path " is an element of the 
fundamental group Xl (lA.. {z I}, zo) of the complement of the set of critical 
values represented by the loop going along the path" from the point Zo to the 
point Z;, going round the point Zj in the positive direction (anticlockwise) and 
returning along the path " to the point Zo. 

The region lJ, with the Il critical values {zlli= 1, ... , Il} of the function / 
removed from it is homotopically equivalent to a bouquet of Il circles. Therefore 
the fundamental group Xl(U"'-. {ZI},ZO) of the complement of the set of critical 
values of the function/is a free group on Il generators. If {"lli=1, ... ,Il} is a 
system ofloops, defining a distinguished set of vanishing cycles {Li l }, then the 
group Xl (U "'-. {ztl, zo) is generated by the simple loopST l> ••• , 'til corresponding 
to the paths "1' ... ,",.. 
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Definition. The set of vanishing cycles Lib' .. ,LI", defined by the set of paths 
{utl, is called weakly distinguished if the fundamental group Xl (U,", {ZI}, zo) of 
the complement of the set of critical values is the free group on the generators 

1:1>' •• ,1:", corresponding to the paths Ub' .• , u". 
We note that permutation of the elements preserves weak distinguishment of a 

set, but does not preserve its distinguishment. 
If the set of paths {ulli = 1, ... , I'} defines a weakly distinguished set of 

vanishing cycles {Ll
1
} in the (n -1)st homology group of the non-singular level 

manifold, then the monodromy group of the function / is generated by the 
monodromy operators h.,. of the simple loops 1:1 (i = 1, ... ,1'), corresponding to 
the paths",. Therefore the monodromy group of the (Morse) function/is always 

a group generated by I' generators. 

DefiDitioo. The monodromy operator 

hl=h".:H.(F%J~H.(F%J 

of the simple loop 1:1 is called the Picard-Le/schetz operator corresponding to the 

path UI (or the vanishing cycle LlI)' 

Examples. 1. We consider the Morse function / (x) = xl + 3 Ax of example 1-
following the definition of distinguished sets of vanishing cycles. Let 1:1 be the 
simple loop (with initial and final points at the point z8) corresponding to the 
path UI' As the non-critical value z moves along the loop 1:1, the level manifold {J 
=z} changes in the following manner: The points xf and xf approach each 
other, make a half-turn about a common centre, changing places, then move 
apart to the other's former place; the point xf returns to its own place. Therefore 
the monodromy h •• of the loop 1:1 exchanges the points xf and xf and fixes the 

points xf. From this it follows that 

hl.11 =h ••• Lll =h ... ({xf} -{xf}) = {xf} -{xI} = -Ll1> 

hl.12 =h ••• Ll2 = h ••• ({ xf} -{xI}) = {xf} - {xf} = Ll2 + Lll . 

Similarly 

h2L12 = - Ll2, 

h2.11 = Ll2 + Ll1· 
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The homology group H,.-l (Fn aF.) of the non-singular level manifold modulo 
its boundary is the dual group to the group H"-l (F.) (reduced modulo a point for 
n = 1). In the given case its role is filled by the ordinary zeroth homology group of 
the level manifold {J = z8 } (consisting of the three points xf, xt and xf), factored 
by the subgroup generated by the "maximal cycle" 

{xT} + {xt} + {xf}. 

It is generated by two cycles V1 and V2 such that 

We can take as these cycles 

From the description of the monodromy transformation h •• it follows that 

For the loop 1:2 we have 

We consider now the loop 1:, defined by the formula 1:(t) =z8 exp (21tit). The 
loop 1: goes once round the critical values of the function / in the positive 
direction (anticlockwise) along a circle of large radius. From the fact that for 
large Izi the level set {J =z} is close to the level set {xl =z}, it follows that 
the monodromy transformation hn of the loop 1: cyclically permutes the points 

xT, xf and xf 

(xf~xt-+xf~xT). 

From this it follows that 

h •• Ll1 =h •• ({xI} -{xT}) = {xf} -{xt} =Ll2, 

h..Ll2=h •• ({xf}-{xf})={xT}-{xf} = -Ll1-Ll2· 
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These relationships can be deduced also from the fact that the loop 't is 
homotopic to the product 't2't1 of the simple loops 't2 and 't1 and consequently 
h,.=h1 .h2. For the variation operator we have: 

The monodromy group of the Morse function f is generated by the mono­

dromy operators 

of the loops 't 1 and 't2 (the operators of Picard-Lefschetz). All the elements of this 
group preserve the intersection form in the homology group Ho(Fs3} of the non­
singular level manifold (reduced modulo a point), generated by the vanishing 
cycles.11 and .12. In order to describe the monodromy group visually, we con-

sider on the Euclidean plane six vectors oflength v'2 making with each other the 
angle x/3 (figure 15). It is not difficult to see that the group Ho(F:t.} (as a module 
over the ring of integers with an integral bilinear form on it) is isomorphic to the 
integer lattice on the plane, spanned by the vectors.11 and.12 (see figure 15; the 
six vectors, portrayed on the figure, are the elements ofthe lattice, the square of 
whose length equals 2). The operator h1 is realised by reflection in the line L1, 
orthogonal to the vector .11, whilst the operator h2 is realised by reflection in the 
line ~, orthogonal to the vector .12. From this it follows that the group of 
transformations of the lattice, generated by the operators h1 and h2 (the 

Fig. 15. 
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monodromy group of the Morse function!) is isomorphic to the group S(3} of 
permutations of three elements (namely the three vectors 

2. In example 2 the description of the level manifold {f = z} as a double covering 
of the plane of the complex variable x, branching in three points, allows us to 
observe the operation of the monodromy transformations hand hand obt"';n • '1'1 '1'2 a.J. 

the relationships 

h1.11 =.110 

h1.12 =.12 +.110 

h2.11 =.11 -.12, 

h2.12 =.12, 

We will not go over here the corresponding geometrical considerations 
leaving them to the reader.· We indicate only the relative cycles, which can ~ 
taken.as P1 and P2 (generating the relative homology group H1 (Fst., oFst.) of the 
non-stngular level manifold of the function f modulo the boundary so that 
(P, 0 .1 J) = b,J): see figure 16~ 

Fig. 16 . 

. The m?nodromy group of the Morse function f(x,y}=r-3.tx+r is 
Isomorphic to the subgroup of the group of non-singular (2 x 2) matrices 

• They are analogous to those which were discussed in the introduction for a simpler case. 
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generated by the matrices 

[~ !] and [_! ~l 
corresponding to the Picard-Lefschetz operators hi and h2 • This group coincides 
with the group of all integer matrices with determinant + 1. 

1.3 1be Picard-Lefschetz Theorem 

Let T be the simple loop corresponding to the path u, which joins the critical 
value Zj with the non-critical value zo, and let.1 e H ft - I (F,.o) be a cycle, vanishing 
along the path u. We want to define the action of the operators var~ and h~. in the 

respective homology groups. 
Without loss of generality we can suppose that the critical value Zj = u(O) is 

equal to zero and that in a neighbourhood of the critical point PI the functionf 

has the form 

f(Xh.·. ,xft)=l:jx} 

(for sufficiently small \\(XI' . .. , x ft)\\' for example for 

at the point PI all local coordinates xJ equal zero), the non-critical value Zo is 
sufficiently close to the critical value 0 (for example IZol = el), and u(t) = tzo· In 
addition, we shall suppose that all non-zero critical values of the function fare 
greater than 4el in absolute value. A linear change of coordinates allows us to 
suppose that B = 1, and Zo = 1. The loop 't can be changed by a homotopy into the 

loop T' :T'(t) =exp (21tit), t e [0, 1]. 

Let 

be the norm of the vector X=(XI' ... ,x,.). We denote by 1,. the intersection 
of the level set F,. with the closed ball B,. = {(XI, ... , x.) : r ~ 2} of radius 2 in the 

space CC". 

Lemma 1.1. For Izl < 4 the level set F,. is transverse to the (211 -1 )-dimensional 
sphere S2 =oB

2 
(the level set F,. is a manifold for z:;:O, the zero level set Fo is a 

manifold everywhere except zero). 
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Proof. Let x e F,. f"'I S2 and suppose that the level set F,. is not transverse to the 
sphe~e S2 at the point x. Then tJr2(x) is linearly dependent on df(x) and dJ(x), 
that IS tJr2(x)=a.df(x)+/Jd/(x), where IX, /JeCC. We have 

df(x) = 2l:.xj dxj , 

d/(x) = 2l:.xjdXj , 

tJr2(x)='I:.xjdxj + l:.xjdXJ , 

from which it follows that 

But not all coordinates Xj equal zero. Therefore 121X1 = 1, and so 

r(x)=2a.f(x), If(x)l=r(x)=4, 

which is what we had to prove. 
From this lemma it follows that, for 0<12'1<4, the sets 1,.=F,.f"'IB2 are 

manifolds with boundary, which are diffeomorphic to each other. It is clear that 
the set 10 is a cone with vertex at zero and is therefore contractible. 

Lemma 1.3. For 0 < 12'1 < 4 the manifold 1,. is diffeomorphic to the disk sub­
bundle of the tangent bundle of the standard (1I-1)-dimensional sphere S"-I. 

Proof. Without loss of generality it is possible to suppose that z = 1, that is to 
consider the manifold 1 •. Let Xj = Uj + Wj' where Uj and Vj are real. Using uJ and v· 
as coordinates, the manifold 11 is given by the equations J 

I~ the real vector space 1l2• with coordinates iij , vJ U = 1, ... , 11) the space of the 
disc bundle of the tangent bundle of the standard (11 -1 )-dimensional sphere, 



24 The topological structure of isolated critical points of functions 

lying in the space R", can be given in the form 

l:~=1, 

l:uijj=O 

l:Vj~~. 

(~ > 0 is the radius of the discs in the bundle, on which the type of the space of the 
bundle as a differentiable manifold does not, of course, depend). It is not difficult 

to check that the transformation lij = Uj/Vl:.q , Vj =Vj gives the required 

diffeomorphism (for 11 = 3/2). 
From this it follows that H,,(Pl)=O for k~n-1, H,,-1(P1)=Z. Moreover 

the homology group H" -1 (P1) is generated by the Picard-Lefschetz vanishing 
cycle .1, represented by the standard (n -1)-dimensional sphere 

Let us temporarily consider the manifold P1 with the orientation defined by 
the structure of the tangent bundle of the sphere. This means that at the point 
(1,0, ... ,0) of the manifold P1 a positively oriented coordinate system is 
U2, U3, • .. ,U", V2, V3, • .• ,V". The orientation of P1 as a complex manifold is 
defined by the following ordering of the coordinates: U2, V2,U3' V3,· •• , U,,' v ... It 
is easy to see that these two orientations differ by the sign (_1)(11-1)(,,-2)/2 .. 

The self-intersection number of the zero section of the tangent bundle of a 
manifold coincides with the Euler characteristic 1 of this manifold. This 
statement can be proved in the following manner. According to one of the 
definitions the Euler characteristic of a manifold N is the number of singular 
points of a general vector field von the manifold N, counted with the multiplicity 
+10r -1 according to their index (v: N-+TN, v(x)e TxN). In order to count the 
number of self-intersections (N 0 N) of the manifold N considered as the zero 
section of its tangent bundle TN, we can choose a perturbation N of the manifold 
N in the space TN, which intersects N transversally in a finite number of points, 
and define the intersection number (N 0 N) of the cycles N and N at these points. 
As such a perturbation we can take N = {(x, v (x» }, where x e N, v(x) e T ,lV, v is a 
vector field in general position on the manifold N. The points of intersection of 
the cycles Nand N coincide with the singular points of the vector field v. 
Moreover, simple counting shows that the intersection number of the cycles N 
and N at a point of intersection coincides with the index of this point as a singular 

point of the vector field v. 
The Euler characteristic 1(8 .. - 1) of the (n-1)-dimensional sphere 8 .. -

1 
is 

equal to 1 +( _1),,-1, that is it is equal to 0 for even n and 2 for odd n. From the 
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fact that the manifold P1 is diffeomorphic to the space of the disc subbundle of 
the tangent bundle of the (n -1 )-dimensional sphere, it follows that the self­
intersection number of the vanishing cycle .1 in the manifold P1 oriented 
according to the structure of the space of the tangent bundle of the sphere, is 
equal to 1(S .. -1)=1 +( _1),,-1. From this follows the following result: 

Lemma 1.4. The self-intersection number of the vanishing cycle .1 in the complex 
manifold P1 is equal to 

={+~ 
-2 

for n=O mod 2, 

for n=1 mod4, 

for n=3 mod4. 

By the theorem on Poincare duality the relative homology group H,,(P1 , aP1) 

is zero for k ~n -1, and the group H.-1 (P1> aP1) is isomorphic to the group Z of 
integers. Moreover the group H,,-l (P1 , aP1) is generated by the relative cycle V, 
dual to the vanishing cycle .1, that is such that the intersection number (Vo .1) is 
equal to one. As a representative of the cycle V we can choose the non-singular 

submanifold 

of the manifold P1 , oriented in a suitable manner. By the diffeomorphism of the 
level manifold P1 with the space of the tangent bundle of the sphere, constructed 
in Lemma 1.3, the submanifold Tcorresponds to a fibre ofthis bundle, that is the 
ball in the tangent space of the sphere 8,,-1 at the point (1,0, ... ,0). 

We consider the restriction of the function/to/- 1(1)1)",,B2 where B2 is the 
open ball of radius 2, 1>1 is the closed disk of radius 1 in the space £. It defines the 
locally trivial and hence trivial fibration 

over the unit disk 1>1. A lifting r, of the homotopy tl-+T'(t) =exp (2xit) to a 
homotopy of the fibre F1 can be chosen consistent with the structure of a direct 
product on the space /-1(1)1)",,B2 of this fibration. A relative cycle ~ of 
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dimension k from (F1, oF1) can be represented in the form 

where ~1 is a relative cycle in (11)01'1) and ~2 is a chain in F1",,-B2 • The 
transformation h

T
,=r1 of going round is the identity on F1",,-B2 • Therefore it 

preserves the chain ~2 and acts non-trivially only on the cycle ~1' In this way 

(here we use one and the same notation for the variation operators varT" 
corresponding to the pairs (M", aM,,) and (il2 , ail2». Ifthe dimension k of the 
cycle ~ is different from (n -1), then ~1 = 0 in the relative homology group 
H

1
(F1, 01'1) (this group is itself zero). From this follows the following assertion: 

Lemma 1.5. In all dimensions except the (n -1)st the variation operator varT, is 
zero, and the operators hT,. and h~~ are identical. 

If k=dim~=(n-1), then ~1 =m' V in the homology group H .. - 1(F1> 01'1)' 
Here m=(~oA). Therefore in order to determine the action of the variation 
operator varT, it is sufficient to calculate the homology class varT,(V)· 

Theorem of Picard-Lefsdtetz. 

varT(a)=( _1),,(,,+1)/2(aoA)A, 

hr~(a)=a+( _1),,(,,+1)/2(aoA)i.(A); 

hJ.a)=a+( _1),,(,,+1)/2(aoA)A. 

The last formula is usually called the Picard-Lefschetz formula. When the 
number of variables n is odd, it, together with Lemma 1.4 shows that the Picard-
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Lefschetz operator h
T

• is the reflection of the space H .. -1 (Fzo) in the hyperplane 
orthogonal (with respect to the intersection form) to the corresponding 
vanishing cycle A. 

A proof of the Picard-Lefschetz theorem can be obtained by elementary, 
though fairly heavy, straight calculation (see, for example, [150)). We give below 
a more invariant proof (see § 2.4). Here we give a proof for the case when the 
number of variables n is odd. 

There exists the natural lifting Ot of the homotopy tl-+-r'(t)=exp(21tit) 
(O~t~1) to a homotopy of the fibre 1'1 1-+ FT'(t) , which does not, however, agree 
with the structure of a direct product on the boundary. This lifting is given by 
the formula Ot(x)=exp(1tit)x. The homotopy Ot is not suitable for the 
determination of the variation operator varT" but it is not hard to see that with its 
help we can determine the action of the monodromy operator hT,. on the 
homology group H .. -1 (1'1) of the fibre. It is clear that the transformation 0 1 is 
multiplication by -1. In particular, on the vanishing sphere A it coincides with 
reflection in the centre. From this it follows that 

Ou(A)=h.,.(A)=( -1)"A. 

Let 

be the natural homomorphism induced by the inclusion 1'1 <=.(1'1' 01'1)' Since 

(AoA)=(i.(A)oA), (VoA)=1, 

then from Lemma 1.4 it follows that 

{
o for n=O mod 2, 

= 2( _1)( .. -11/2 V for n=1 mod 2. 

Since the homology group H.- 1fF1) of the fibre is isomorphic to the group of 
integers and is generated by the vanishing cycle A, then var.,(V)=mA for some 
integer m. From the fact that 
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when the number of variables n is odd, we get 

-.1=h.,.(.1) 

=.1 +2( _1)(11-1)/2 var., (V) 

=.1 +2( _1)(11-1)/2 m.1. 

From this it follows that m=( _1)(11+1)/2, which, for odd n, coincides with the 

statement of the theorem of Picard-Lefschetz. 

Chapter 2 

The topology of the non-singular level 
set and the variation operator of a 
singularity 

:U 11ae IlOIHiDguIar level set of a singularity 

Let/: (~", o)-+(~, 0) be a singularity, that is the germ of a holomorphic function, 
with an isolated critical point at the origin. It follows from implicit function 
theorem that in a neighbourhood of the origin in the space ~" the level set 1-1 

( e) 
for e#O is a non-singular analytic manifold and the level set/- 1 (O) is a non­
singular manifold away from the origin. At the point ° E ~" the revel set has a 
singular point. 

Lemma 2.1. There exists a e > 0, such that the sphere S. c ~" of radius r ~ e with 
centre at the origin intersects the level set 1-1 (0) transversely. 

Indeed, the function ~x 112 on the set 1-1 (0) (in a neighbourhood of the point 
OE~2) can take only a finite number of critical values (for the case wherelis a 
polynomial this assertion follows, for example, automatically from the 'curve 
selection lemma' of [256]; in the general case it can be derived from analogous 
reasoning). We choose as e a number such that its square is less than all critical 
values ofthe function IIxl12 on the manifold/- 1 (0)",-0. The fact that all critical 
values ofthe function IIxl12 on/-1 (0)",-0 are greater than fi is equivalent to the 
fact that for r~e the sphere S. of radius r with centre at the origin (which is a 
level manifold of the function Ilx112) intersects the manifold 1- 1 (0)",-0 trans­
versely. 

From Lemma 2.t it follows that for sufficiently small 80 > 0 the level manifold 
/-1 (e) is also transverse to the sphere Stl for lei ~80. Thus the function/: BtI-+~ 
satisfies conditions (i)-(iii) of § 1.1 (with the ball Btl of radius e with centre at the 
origin as M", the disk Droofradius80 with centre at zero in the plane ~ as Uand 
the unique critical point 0). We shall be interested in the topology of the.level set 
1-1 (e) in a neighbourhood of the origin. 
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DefiDitiOll. The non-singular level set of the singularity I near the critical point 0 is 

the set 

Va= /- 1 (6) f""Iii,l = {xeC':/(x)=s, Ilxll ~~} 

for 0<161~60, which is a complex manifold with boundary~ 
The manifold Va is defined uniquely up to diffeomorphism. It is known ([256]) 

that it has the homotopy type of a bouquet of spheres of dimension (n -1). The 
number p. = p.(f) of these spheres is called the multiplicity or Milnor number ofthe 
singularity f The homology group H,,( V.) of the non-singular level manifold is 
zero for k,,;:(n -1), H

n
- 1 (Va)~Z" is a free abelian group with p. generators. The 

assertions about the homology groups H,,(V.) of the non-singular level set we 
prove below (see Theorem 2.1). With a small addition (the proof of the simple 
connectedness of the manifold Va, which arises from the same considerations as 
in Theorem 2.1), from this follows also the result on the homotopy type of the 
non-singular level set (for n > 2). The fundamental group Xl (DI{) '" 0) of the 
complement of the set of critical values is isomorphic to the group of integers and 
is generated by the class of the loop 1'0, which goes once round the critical value 0 

in the positive direction (anticlockwise). We can, for example, set 

I'o(t) =6 . exp (21tit) (161 ~60, t e [0,1)). 

DefiDition. The classical monodromy h: Va-+ Va of the singularity I is the 
monodromy h70 of the loop 'Yo. The classical monodromy operator of the 
singularity lis the automorphism h. = h70 • of the homology group Hn- 1 (Va) of 
the non-singular level set Va. The variation operator of the singularity I is the 

variation operator 

of the loop 'Yo· 
A basis of the homology group H"_l(V.)~Z,.(f) of the non-singular level 

manifold Va of the singularity I can be constructed in the following manner~ Let 
j = 11 be a perturbation of the functionJ, defined in a neighbourhood of the ball 
ii, (we can, for example, take asj the perturbationj,. = I + Ag, where g ~ a linear 
function: 4["-+c:). For sufficiently small 1 (Ill~lo) the level set 1- 1

(s2 is 
transverse to the sphere S,I for lsi ~60 and the critical values ofthe function/on 
the ball B are less than 60 in modulus. It is easy to show that the non-singular 
level set ;-1(6)f""IB,I is diffeomorphic to the non-singular level set Va of the 
function I for Isl~60. From Sard's theorem it follows that almost all pertur-
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bations ] of the function I have in the ball ii, only non-degenerate critical 
points with distinct critical values (in the example this will take place for almost 
all linear functions g). 

Let us prove, for example, that the function] = I +g is Morse for almost all 
linear functions g : cen -+ce. For this we consider the mapping d I: ce" -+ ce", given 

by the formula 

dl(x) = (aflaX1 (x), . .. , aflax,,(x» 

(x = (Xl" .• ,x,.) e ce"). Almost all the values (11" .• , I,.) E cen are non-critical for 
this mapping (Sard's theorem). If (11" .. , I,.) E ce" is a non-critical value of the 
mapping dl, then the function I ~ 1: j Ij x j has only non-degenerate critical points. 
Indeed the critical points of the function/-1:Axj are those points at which 
aflaxj-Ij=O U= 1, ... , n), that is these are the preimages of the point (/1 " •• , I,.) 
for the mapping df Since the value (11" .• ,/,.) is non-critical for the mapping dJ, 
then at these points the matrix (ifflaxJaxJ has non-zer~ determinant, which 
means that the corresponding critical points of the functionl = I -1:AXj are non­
degenerate. The set of non-critical values of the mapping dl is open. Therefore 
the addition to] of a suitably small linear function does not remove it from the 
class of functions with non-degenerate critical points and allows us to obtain the 
fact that the critical values become pairwise distinct. 

We again get the situation described in Chapter 1. As before, let 

the function j has in the ball ii, several critical points Pi with distinct critical 
values z, (lz,1 <60, i= 1, ... ,p.), and {utl is a system of paths joining the critical 
values z, with the non-critical value Zo (Izol = 60) and defining in the homology 
group H. -1 (Fzo) of the non-singular level set of the function] a distinguished set 
of vanishing cycles {.1,}. Remember that the last condition means that the paths 
lit are not self-intersecting and pairwise do not have common points except the 

point zoo 

'I1Ieereaa 1.1. The distinguished set of vanishing cycles {A,} forms a basis of the 
(free abelian) homology group H. -1 (Fzo} ~ H. -1 (V.) of the non-singular level set 
of the singularity f In particular the number of non-<iegenerate critical points of 
the functionjin Jj,lf""lj-1(fj~ (into which ,the critical point of the function I 
decompo~s) is equal to the multiplicity p.(f) of the singularity f The group 
HI:(Fzo} is zero for k,,;:(n-l). 
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Proof. Let 

x=Bllnr1 (D..,) 

X=Bll n1- 1 (D..,), 

where Q>O and 80>0 as described above. We shall show that the space X is 
contractible. From the fact that the zero level set 1-1 (0) of the function I is 
transverse to the spheres Sr of radius r ~ Q with centre at the origin in the space 
ern, it immediately follows that the set/- 1 (0) nBII is homeo~orphic to the cone 
over the manifold/- 1 (0) n SII and consequently contractible. The contraction of 
the setr 1 (0) n BII to the point 0, belonging to it, can be realised with the help of 
a vector field on it, orthogonal to the submanifoldsr 1 (0) nS" r ~ Q (remember 
that the setr1(0)nBII is a manifold everywhere except zero). 

In its tum the space 1-1(0)nBII is a deformation retract of the space 
X = 1-1 (D..,) nB

II
. We can construct the required deformation retraction of the 

space X, for example, in the following manner. Choose a sequence (!=rO>r1 

> rz > ... > 0, monotonically decreasing to zero. Let &t be numbers such that 80 
>&1 >&z > .. , >Oand the level set/- 1 (&)is transverse to the sphere Sr. of radius 
rt with centre at zero for 1&I~llt. The function I determines locally trivial, and 

hence also trivial, fibrations 

Moreover trivialisations of these fibrations can be chosen so that they will 

coincide on the intersections 

We consider the deformation g, of the disk D.." defined for 0 ~ t ~ 80 and given by 

the formula 

{

t. x/llxll for Ilxll ~t, 
g,(x) = 

x for Ilxll ~t. 

The mapping g, maps the disk D.., of radius Eo into the disk of radius t, keeping 
the latter fixed. The mapping go is a deformation retraction of the disk 15.., into 
the point O. Since the function I defines the locally trivial fibration 

. I 
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there exists a family G, (0 < t ~ 110) of mappings of the set X = r 1 (D ) n Br into 
itself lifting the homotopy g,. This family can be chosen in accorda:ce with the 
structure of the direct product on the sets 

for t~&i' It is not difficult to see that the family G, (0<t~80) determines in a 
natural way the family G, with 0~t~80 in which the mapping Go is a defor­
mati~n retraction of the set X into the zero level set /- 1 (O)nBro-

If I is a sufficiently small perturbation of the function f, then the space X is 
diffeomorphic to the space X (as smooth manifolds with comers' indeed it is 
sufficient that X is homotopy equivalent to X) and therefore is also ~ontractible. 

The function I maps the space X into the disk D and away from the critical . .., 
po~nts Z1, Zz, . .. ,z" is a locally trivial fibration with fibre f'zo' We consider the 
umon UI"Ui(t)= Vofimages of paths Ut. It is a deformation retract of the disk 
D..,. It is not difficult to see that a deformation retraction ofthe disk D.., onto the 
sPac: V can be lifted to a deformation retraction of the space X onto the space 
Y = /- 1 (V) (analogous to the way that the deformation retraction ofthe disk D 
to the point 0 is lifted to a deformation retraction of the space X to the zero levcl 
set r 1 (O~ r: BII). If the singular .fibres 1-1 (Zj) are cut out from the space Y, then 
the remrumng space ~ur=1/-1(Z,) will be a fibration over the contractible 
space ~{z"j = 1, ... ,p}. Consequently, it is homeomorphic to the direct 
product of the fibre f'zo and the space ~{zjli=I, ... ,p} and therefore 
homotopy equivalent to the fibre f'zo' 

It is not difficult to show that up to homotopy type the space Y is obtained 
from the fibre f'zo by gluing n-dimensional balls BI to the vanishing spheres ..1 i· 
Her~ we define the mapping in one direction, determining the homotopy 
eqwvalence of the considered spaces. Let 

be a family of maps of the (n -1 )-dimensional sphere (the index i simply fixes the 
number of the copy), defining the vanishing cycle ..1 j =sl(l) (Si(O): Sr- 1 -+PI)' Let 
Bj be the n-dimensional ball, which is the cone over the sphere Sr - 1 

The space 
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obtained from the fibre F:o by gluing the n-dimensional balls B. to the vanishing 

cycles Ai is the quotient space of the space 

" F:ou U Bi 
i=1 

by the equivalence relation 

si(1)(a)-(1,a) (aesr-l, (1,a)eB., i=1, .. . ,p). 

The map 4> of it into the space Y, which is a homotopy equivalence, can be given 

in the following fashion: 

4>(x)=x for xeF:o c Y, 

4>(t,a)=si(t)(a) for (t,a)eBj, 0~t~1, aeSrl. 

" -There is the exact homology sequence of the pair (Y, Y - U /-I(Zi»: 
1=1 

. ,. - " -
... --+HA:+1 (Y)--+HA:+1 (Y, Y - U /-I(ZI»--+HI;(Y - U /-I(ZI»-+ 

i=1 1=1 

--+HI;(Y)-+ . .. 

Here H
I
( Y) = 0 (since the space Yis homotopica11y equivalent to the contractible 

space X; remember that the homology is considered to be reduced modulo a 

point), 

HA:+l(Y' Y"'- 0 i-1(z.»= fBr=I H A:+l(B.,oB.) 
1=1 

for k+n-1, 

for k=n-1, 

From the exactness of the sequence it follows that 

,. -
HI;(F"o)~HA:+l(Y' Y"'- U /-1 (z.» 

1=1 

={O for k+n-1, 

Z" for k=n-1, 
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the generators of the group H,,(B., oBI) mapping into the vanishing cycles AI· 
From this the result of the theorem follows. 

It is not diftkult to see that by considering the exact homotopy sequence of 
,. -

the pair (Y, Y"'- U /-I(Zi» we can deduce the simple-connectedness of the 
i=1 

" -space Y"'- U /-I(Zi) or, which is the same thing, the simple-connectednes of 
1=1 

the non-singular level set F:o for n > 2. 
From theorem 2.1 it follows that the multiplicity of the critical point of a 

singularity / is equal to the number of non-degenerate critical points into which 
it decomposes under a perturbation of general form. This number is equal to the 
number of preimages (near zero) of a general point under the map 

d/: CC"-+CC" 

(d/(Xl, .. . ,x,,) = (Of/OXI (x), .. . ,o//ox,,(x». From this we can obtain the 
following formula for the multiplicity of an isolated critical point of a function /: 

p(j)=dimc; ,.D/(O//OXl, ... ,o//ox,,), 

where ,,0 is the ring of germs at zero of holomorphic functions in n variables, 
(o//ox!> ... , o//ox,,) is the ideal in the ring ,,0, generated by the partial 
derivatives of the function / (the Jacobian ideal ofthe germ f). This result was 
proved in Chapter 5 of Volume 1. 

2.2 Vanishing Cycles and the Monodromy Group of a singularity 

It was shown in § 2.1 that almost all perturbations i of the singularity 
/: (C', O)--+(CC, 0) are Morse, that is in a neighbourhood of zero in the space CC" 
they have only non-degenerate critical points, equal in number to the multiplicity 
of the singularity J, all critical values Z 1, ••• , z" of the function i being different. 
The non-singular level set V, of the singularity / is diffeomorphic to the non­
singular level manifold F:o = i-I (zo) n BIP of the function j. The presence of such 
a diffeomorphism allows us to introduce the following definition. 

Defiaitioa. A vanishing cycle A in the homology group H,,-I(V,) of the non­
singular level set of the singularity / is an element of this group corresponding to 
a cycle in the homology group H,,-I(F:J of the non-singular level set of the 
function i, vanishing along a path joining some critical value ZI of the function i 
with the non-critical value Zo. 
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Definition. A basis of the homology group Hn - 1 (Yo) of the non-singular level 

manifold consisting of a distinguished set of vanishing cycles {.1 i } is called a 
distinguished basis. A basis consisting of a weakly distinguished set of vanishing 

cycles is called weakly distinguished. 
Theorem 2.1 asserts that any distinguished set of vanishing cycles forms a 

basis. It will be shown later that any weakly distinguished set also forms a basis 

(see 2.6). 

Remark. The terms "distinguished" and "weakly distinguished" were intro­
duced by A.M. Gabrielov. In the work [205] a distinguished basis was called 

"geometrical" . 

Definition. The monodromy group of the singularity I is the monodromy group 

of the (Morse) function f 
It is not difficult to show that the set of vanishing cycles and the monodromy 

group of a singularity I do not depend on the choice of the Morse perturbation 
] = /;. of the function f To see this we consider another such perturbation 
] = I: . The perturbations/). andl: can be included in one two-parameter family 
offunctions/).,. (f).,o= 1).,/0,.= I:). We can, for example, take/).,. = I). + I: -I 
as this family. In the space crl with coordinates (l, v) the values of the parameters 
(l, v) which correspond to non-Morse functions /;.,. form (in a neighbourhood of 
the point (0,0) E crl ) a set which is the image of an analytic set of complex 
dimension one. It does not, therefore, disconnect the space cr

l 
of values of the 

parameters (A, v). From this it follows that the perturbations] = I). and] = I: 
can be joined by a continuous one-parameter family of Morse functions 1).(,), .(r) 

(IE [0,1], /;.(0),'(0)=]' 1),(1),.(1)= ]). It is easy to see that along such a family of 
Morse functions the set of vanishing cycles and the monodromy group do not 

change. 
For the same reason the concepts of distinguished and weakly distinguished 

bases are independent of ' the choice of perturbation. 
From the results of chapter 1 it follows that the monodromy group of a 

singularity I is generated by the Picard-Lefschetz operators hi corresponding 
to the elements .1

i 
of a weakly distinguished basis in the homology of a non­

singular level set of the function I near the critical point. If the number of 
variables n is odd, this operator is the reflection in a hyperplane, orthogonal (in 
the sense of intersection forms) to the vanishing cycle .1 •. When, therefore, the 
number of variables is odd, the monodromy group of a singularity is a group 

generated by reflections. 
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Examples. A~ examples we can consider the functions I(x)=r and I(x,y) 
= r + r, which have the singularity type A2 in the sense of volume 1. Their 
Morse perturbations can be chosen in the form ](x)=r±Hx and ](x,y) 
=r-Hx+r respectively, where l is a small positive number. The distin­
guished bases in the homology of the non-singular level manifolds and the 
~o~odr?my groups of the Morse functions j (x) and j (x, y) (coinciding with the 
dlstmgulshed bases and mOnodrOmy groups of the singularities I(x) and 
I(x,y» were considered in the examples of § 1.2. 

2.3 The Variation Operator and Seifert Form of a Siagularity 

In § 2.1 the concept of the variation operator of a singularity was introduced. In 
order to study the properties of this operator we give another intrepretation of it 

([101], [217]). 
As above let I: (crn, O)-+(cr, 0) be a singularity, that is the germ of a 

holomorphic function, with an isolated critical point at zero, let l! be a 
sufficiently small positive number, and let S;"-1 be a sphere of radius (l with 
centre at the origin in the space cr". Put K= 1-1 (O)nS;"-1. From the fact that 
the level set 1-1 (0) intersects the sphere S;"-1 transversely, it follows that Kis 
smoo~ submanifold of the sphere S;,,-1 of codimension two. We denote by T a 
suffiCIently small open tubular neighbourhood of the manifold K in the sphere 
s;n-1. We derme the mapping tP: S;,,-1 ""T -+S1 ccr from the complement of 
the tubular neighbourhood of the manifold K to the circle by the formula 
tP(~)= l(x)/l/(x)1 =exp (i arg I(x». In [256] (§ 4) it is shown that the mapping 
tP IS a smooth fibration. Moreover the restriction of the mapping tP to the 
boundary o(s;n-1""n=oT has a natural structure of a trivial fibration 
KXS1-+S1. ' 
. The restriction of the function I to I -1 (S!,) n B,I defines a fibration over the 

rude S:O of radius 80, lying in the complex line cr, the fibre of which is the non­
singular level manifold V", = 1-1 (80)nB. of the singularity f As we explained 
abo~e, the ~s~ctio~ of the function I to the boundary 1-1 (S!,) nS. of the 
manifoldl (S:.,) nB. also has the structure of a trivial fibration. The classical 
mOnodrOmy and variation operators of the singularity are defined by way of the 

fibration 

~ 2.2 (see [256~ § 5). The two fibrations over the circles S1 and S:O de­
scnbed above are eqUlvalent (relative to the isomorphism of the circles given by 
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multiplication by £0). In particular, the fibre cP-1 (z) of the fibration cP is 
diffeomorphic to the non-singular level set of the singularity f near the critical 

point. 

In this way we can use the fibration cP to define the variation operator Var 1 0f 

the singularity f As before, we shall denote by 

the family of diffeomorphisms which lifts the homotopy 

tr-+exp (2nit) (Fo=id,tE[O,l]) 

and agree with the structure of the direct product on the boundary. 
We digress a little to recall some definitions. 
Let M be a (real) oriented n-dimensional manifold with boundary oM, let 

e1, ... , e,,-1 be a frame in the tangent space to the boundary oM at some point, 
and let eo be the outward normal to the boundary oM in the manifold M at the 
same point. We say that the frame el> .• . ,e.-1 defines the orientation of the 
boundary oM, if the frame eO,el> ••• , e,,-1 is a positively oriented frame in the 
tangent space of the manifold M. There is an analogous convention for chains 

and their boundaries. 
Let a and b be non-intersecting (n -1 )-dimensional cycles in the (2n -1)-

dimensional sphere S2,,-1. When n=l we shall suppose additionally that the 
cycles a and b are homotopic to zero. When n > 1 this condition is satisfied 
automatically. We choose in the sphere S2,,-1 an n-dimensional chain A, the 
boundary of which coincides with the cycle a. It is easy to see that the intersection 
number (A ob) of the chains A and b in the sphere S2,,-1 (which is well-defined, 
since the boundary of the chain A, which is equal to a, does not intersect the 
cycle b) does not depend on the choice of the chainA~ Indeed if A I is another such 
chain then the difference (A - A,) will be an absolute n-dimensional cycle in the 
sphere S2,,-1, from which it follows that «A-A')ob)=O, that is that 
(A 0 b) = (A I 0 b). The intersection number (A 0 b) of the chains A and b is called 
the linking number of the cycles a and b and denoted l(a, b). 

Another method of calculating the linking number goes as follows: Let D
2

• 

be the ball, the boundary of which is the sphere S2.-1. We choose two 
n-dimensional chains A and 11 in the ball D 2

., the boundaries of which coincide 
with the cycles a and b respectively and which lie wholly inside the ball D

2
., with 

the exception of their boundaries. In this case we can make sense of the 
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intersection number (A 0 ll)D of the chains A and II in the ball D2
• and 

l(a,b)=(Aob)s 

=( -l)"(Aoll)D 

=(lloA)D 

=( -l)"I(b,a). 
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In order to prove this result we must remark that the intersection number 
(A 0 ll)D is well-defined, that is it does not depend on the concrete choice of the 
chains A and B for which oA =a and oll=b. We can consider the ball D2" as a 
cone over the sphere S2,,-1, that is as the quotient space obtained from the 
product [0, 1] x S2"-1 ofthe interval [0, 1] and the sphere S2,,-1by factoring out 
the subspace {O~ x S2,,-1 (the slices {t} x S2.-1 (O~t~l) corresponding in the 
ball to concentnc spheres of radius t). Then as the chain B we can take the cone 
over the cycle.b ~th vertex at the centre ofthe ball D 2

• (B= [0, 1] x b/{O} x b), 
and as the chal~ A we can take the union of the cylinder [1/2, 1] x a over the cycle 
a and the cham {1/2}xA, lying in the sphere {1/2}xS2

,,-1 of radius 1/2 
~A c S2.-1, oA = a; for n = 1 see figure 17). In this case the chains A and B will 
mte.rsect ~t points of the form (1/2, x), where x is an intersection point of the 
cham A With the cycle b. The sign, which differs the corresponding intersection 
numbers can be calculated without difficulty. 

Fig. 17. 

. We r~tum to our consideration of the singularity f Let a and b be (n -1)­
dimensional cycles in the fibre cP -1 (1) of the fibration 

The cycle F1/2.b lies in the fibre cP- 1 ( -1) and therefore does not intersect the 
cycle a. Consequently, it makes sense to talk about the linking number of the 
cycles a and F1/2.b as cycles lying in the (2n -1 )-dimensional sphere. 
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nermitioa. The Seifert Form of the singularity f is the bilinear form L on the 
homology group HII _1(4)-1(1)) (~HII-l(Y.», dermed by the formula 

L(a, b) = I(a, r 1/2.b), 

The theorem of Alexander duality asserts that the linking number de­
fines a duality between the homology groups H II _1(4)-1(1)) and 
H.- 1 (82

.-
1 "-4> -1(1». 

It is not difficult to see that the fibre 4> -1 ( -1) is a deformation retract 
of the space S2.-1"-4>-1(1). Consequently, the homology group 
H._1(S2.-1,,-4>-I(1) is isomorphic to the group H._1(4)-I( -1); 

Since the transformation r1(2. is an isomorphism between the groups 
HII _1(4)-1(1)) and H._1(4)-I( -1», then the Seifert form defines a duality 
between the homology group H._1(4)-1(1)) and itself, that is it is a non­
degenerate integral bilinear form with determinant equal to (± 1). We remark 
that the Seifert form L, generally speaking, does not possess the property of 
symmetry. 

Let beH.-1 (4)-:"1 (1» be an absolute homology class and aeH._1(4)-1(1), 
04>-1(1» be a relative homology class modulo the boundary. 

Lenuna 2.3. L(Var,a,b)=(aob). 

Proof. Let us choose a relative (n -1)-cycle in the pair (4)-1(1), 134>-1(1» which 
is a representative of the homology class a (we shall denote it also by a). Let us 
consider the mapping (0, 1] x a -+ S2,. -1 from the cylinder over the cycle a into the 
sphere, mapping (t, c)e (0, 1] x a to r,(c)eS2

.-
1

• Under this mapping the lower 
end {o} x a of the cylinder (0, 1] x a maps to the chain a, the upper end { 1} x a to 
the chain r1 a, (0, 1] x oa maps to the boundary oTofthe tubular neighbourhood 
of the manifold K. Therefore this ~pping defines ann-chain in the sphere S2,.-1 
(its image), the boundary of which consists of two parts: the varitltion Var, a 
=r1a-a of the cycle a (lying in the fibre 4>-1(1» and a cycle lying on aT. 
Contracting the second part of its boundary inside the tubular neighbourhood T 
along radii, we obtain a chain A in the sphere S2. -1 , the boundary of which lies in 
the fibre 4>-1(1)cS2.-1 and is equal to Var,(a). The intersection of the chain A 
with the cycle r 1/2.b is the same as the intersection of the cycles r 1(2.a and r 1/2.b 
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in the fibre 4>-1( -1). Therefore 

L(Var, a, b) = l(Var, a, r 1(2.b) = 
=(A 0 r 1/2.b)s= (r1(2.a 0 r 1/2.b).-1( -1) =(aob).-l(I)' 

which is what we were trying to prove. 
Since the Seifert form L defines a duality between the homology group 

H.-l (4)-1(1)) and itself, and the intersection number defines a duality between 
the groups H._1(4)-1(1)) and H._1(4)-1(1), 134>-1(1», then we have 

1beorem 2.1. The variation operator Var, of the singularity f is an isomorphism 
of the homology groups 

or, which is the same thing, of the groups 

Remark. Ifwe already had a proof of the Picard-Lefschetz theorem in the general 
case, then this result could be obtained by assigning the matrix of the operator 
Var ,in a distinguished basis of the homology group H.- 1 (VJ and the basis of the 
group H.- 1 (y',oVJ dual to it (see §2.5). 

From this theorem and Lemma 2.3 follows 

Theorem 2.3. If a,beH.-1(VJ, then 

L(a, b) =(Vari1a o b). 

Remark. The definition of the linking number and the Seifert form sometimes 
differs from that given here either in sign or by a permutation of the arguments 
(for example in (101]). 

The Seifert form is very useful for studying the topological structure of 
singularities. In particular, it can be shown that the Seifert form (or the variation 
operator (H.-1(Y.»·-+H.-1(V.» determines the intersection form on the 
homology group H.-l (VJ of the non-singular level manifold. 

Theorem 204. For a,beH,.-l(Y.) 

(aob)= -L(a,b)+( -1)"L(b,a). 
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Proof. Since the variation operator of a singularity is an isomorphism, there exist 
relative cycles a',b'eHII-1(v"av,) such that a=Varja' and b=VarJb'. It 
remains to apply the result oflemma 1.1 to the cycles a' and b'. 

In addition to the intersection form the variation operator also determines the 
action of the classical monodromy operator of a singularity. The inverse of the 
variation operator, acts from the homology group HII - 1 (V,) of the non-singular 
level manifold to the group HII-1(v"av,) dual to it. To it corresponds the 
operator 

defined so that 

for a,beHII-1(V,). In matrix form it means that the matrix of the operator 
{Varjlt is obtained from the matrix ofthe operator Varj1 by transposition. 

Theorem loS ([199]). The classical monodromy operator h. of a singularity 
can be expressed in terms of its variation operator Var J by the formula 
h.=( -1)"VarJ{Varj1)T. 

Proof. We have the equality (xoy)=(i.xoy), where x,yeH,,_l(V,), i. 
is the homomorphism H II - 1 (V,)-+H .. -1 (V" aYe), induced by the inclusion 
v,<=+(v" aYe). Together with Theorem 2.4 it gives 

For the classical monodromy operator of the singularity we have 

h.=id+VarJi. 

=id-VarJ Varj1 +( -1}"VarJ{Varj1)T 

=( -1}"VarJ{Varj1f 

which is what we had to prove. 
There is an analogous result for the action of the classical monodromy in the 

relative homology group. 
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Theorem 2.6. 

2.4 Proof of tile Pieard-Lefschetz theorem 

We shall use here the notation of § 1.3. 
From the fact that the variation operator 

being the variation operator of the singularity 

f(Xl>" .,x,,)=~+ ... +~, 

is an isomorphism (Theorem 2.2), it follows that var •. (V) = ±A. To determine 
the sign in this formula we use Theorem 2.3. In the definition of the fibration ~ 
(for the critical point 0 of the function ~ + ... +~) we can suppose that e = 1. 
The fibration ~:S211-1"T-+S1 is given by the formula 

~(Xl>" .,x.)=(~+ ... +~)/I~+ ... +~I 

(lx1f + ... + IXllf = 1). The fibre ~-1(1) ofthis fibration is diffeomorphic to the 
level manifold Pl' The vanishing cycle A in the manifold PI corresponds in the 
fibre ~-1(1) to the cycle defined by the equations 

We shall denote this cycle by A also. 
We have 

(Var- 1 A oA)=L(A,A) 

=/(A,r1/hA) 

=( -1)"(.40»D, 

where A and) are n-dimensional chains in the ball D=D2
", the boundaries of 

which lie on the sphere S2,,-1 and are equal to A and r l12 • A respectively~ It is not 
diffICult to see that in order to calculate the linking number I(A,rl12 .A) it is 
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possible to use the family of diffeomorphisms 

r,: (j)-1(1)~(j)-1(exp(2nit», 

which do not necessarily agree with the structure of the direct product on the 
boundary. We can take for this the family defined by the formula 

r,(X1, ... , x.) = (exp(nit)x1, ... ,exp(nit)x.). 

Then the cycle r 1/2.Lt will be determined by the equations 

We can take as the chains A and» the chains in the ball D
1
., given by the 

equations {Im x J = o} and {Re xJ =o} respectively. The orientations ofthe chains 
A and» are in agreement with the help of a mapping from A to », which is 
multiplication by i. If a positively oriented system of coordinates on the disc A is 
the set U1, ••• , u" (x J = U j + iv j) then a positively oriented system of coordinates 
on the disc» will be Vb' .• ,v". The chains A and» are smooth manifolds 
(n-dimensional discs) and intersect transverselly at the point o. From this it 

follows that 

Therefore 

that is 

Var- 1 Lt =( _1),,(,,+1)/2 V, 

VarV=( _1),,(,,+1)/2 Lt, 

which is what we had to prove. 

As we have already said, the monodromy group of a singularity is generated by 
the Picard-Lefschetz operators hi, corresponding to the elements Lti of a weakly 
distinguished basis in the homology of the non-singular level manifold of the 
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singularity f near a critical point. By the Picard-Lefschetz theorem we have 

Thus the matrix of pairwise intersections of elements of a weakly distinguished 
basis determines the monodromy group of the singularity. 

Definition. The matrix S=(LtioLtj ) is called the intersection matrix of the 
singularity f (with respect to the basis {Lta). 

Remark. Here we use i for the number ofthe column, and j for the number of the 
row. This way of writing down the matrix of the bilinear form coincides with the 
way of writing it down as the matrix of an operator (in this case i.) from the 
homology space H"-l (VJ to its dual space H"-l (Vc, oVJ with bases {Lti} and its 
dual «Lti0 LtJ)=(i.Ltio Lt j ». 

Definition. The bilinear form associated with the singularity f is an integral 
bilinear form defined on the homology group H,,-l (Vc) of the non-singular level 
manifold of the singularity f by the intersection number. 

The bilinear form assOCiated with the singularity is symmetric for an odd 
number of variables n and antisymmetric for an even number of variables. The 
intersection matrix of the singularity is the matrix of the form with respect to the 
basis {Lt j }. The diagonal elements of the intersection matrix are determined in 
Lemma 2.4 of § 2.3 and are equal to 0 for even n and ± 2 for odd n. 

If 1 is a perturbation of the function J, and {Lti} is a distinguished basis of 
vanishing cycles, defmed by a system of paths "1, ... , ",., then the loop 't", which 
goes in a positive direction round all the critical values into which the zero critical 

Fig. 18. 
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value of the function f decomposes, is homotopic to the product '1:,. ... '1:1 of 
simple loops, corresponding to the paths u,., .. . ,U1 (figure 18). 

From this follows 

Lemma 2.4. The classical monodromy operator h. of the singularity f is equal to 
the product h

1 
••• h,. of Picard-Lefschetz operators, corresponding to the 

elements {A;} of a distinguished basis in the homology of the non-singular level 

manifold. 
The action of the variation operator of the singularity f can be defined by the 

formulae 

Varf=var ......... . 
,. 

=L ,=1 
L var .... i.· var ••• · i • ..... i.· var ••. , 

h<il< ... <i r 

Choose in the group HII~1 (Va, iWJ, which is the dual of the group H.-1 (Va), 
the basis {Vi}, dual to the basis {Ai}, that is such that 

From the formula (*) it follows that 

Varf(Vi)=( _1t(II+1)/2 Ai+ L ciA}, 
J<i 

where ci are certain integers. So we have proved 

Lemma 2.5. With respect to a distinguished basis the matrix of the variation 
operator Varf of a singularity f is an upper triangular matrix with diagonal 

entries equal to ( -1 )"(11 + 1)/2. 

The same properties are possessed by the matrix of the operator Var j 1, which 
by theorem 2.3 coincides with the matrix of the Seifert form L of the singularity f 
(see the remark at the beginning of the section, defining the matrix entries of a 

bilinear form). 
Let S be the intersection matrix of the singularity f with respect to any basis, L 

be the matrix of the Seifert form (or of the operator Varj1) of this singularity 
with respect to the same basis, H be the matrix of the classical monodromy 
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operator h. ' H(') be the matrix of the operator h~) with respect to the dual basis. 

Theorems 2.4, 25 and 2.6 show that 

S= -L+( -1)"LT
, 

H=( -1tL-1LT
, 

Wr)=( _1)"LTr' 1 

(the symbol T means the transpose of the matrix). If {.1;} is a distinguished basis 
of vanishing cycles, then the matrix L with respect to it is upper triangular and the 
matrix LT is lower triangular. Thus the intersection matrix with respect to a 
distinguished basis has an invariant decomposition into the sum of an upper 

triangular and a lower triangular matrix. 
It was stated above that the intersection matrix of a singularity with respect to 

a distinguished basis determines its classical monodromy operator (with respect 
to the same basis). The converse is also true. Before proving this we formulate 

one useful general result. 

Lemma 2.6. Let A and B be upper triangular matrices with ones on the diagonal, 
and let C = ABT. Then the matrices A and B can be reconstructed from the 

matrix C. 
The following formulation of this result is equivalent to the previous one. 

Lemma 2.7. Let A and B be upper triangular matrices with ones on the diagonal. 
If ABT is the identity matrix then A and B are also identity matrices. 

The proof of this lemma does not present any difficulty. 

Theorem 1.7 ([205]). The matrix of the classical monodromy operator of a 
singularity with respect to a distinguished basis determines its variation operator 

and its intersection matrix. 
The proof applies Lemma 2~6 to the identity 

where 

in which land l-l are upper triangular matrices with ones on the diagonal. 
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2.6 Chaage of basis 

The system of paths {u.}, defining a distinguished or weakly distinguished basis, 
can be chosen in more than one way. If we change the initial system of paths, we 
can get different bases of vanishing cycles in the homology group H,. - 1 (Yo) of the 
non-singular level set of the singularity near the critical point. We describe 
several elementary operations of change of basis, preserving its distinguished or 
weakly distinguished character. Let {Ui} be a system of paths, defining the 
distinguished basis {Lt.} in the homology group 

of the non-singular level manifold. This means that the Ui are non-self­
intersecting paths, joining the critical values Zi of the perturbation 1 of the 
function/with the non-critical value Zo and intersecting each other only at the 
point Zo. Let 1"i be a simple loop corresponding to the path Ui. 

DefiDitioo of the operation ex,;. (1 ~ m < I')~ We define a new system of paths {u.} in 
the following manner: 

Here by U .. +11" ... we understand the path obtained by traversing the path U .. +1 

followed by the loop 1" ... It is clear (see below) that the system of paths { "'} defines 
a weakly distinguished set of vanishing cycles {J.}. It is not difficult to see that 
the system of paths {ii.} can be deformed a little so that it satisfies the conditions 
of the definition of a distinguished basis (figure 19). Therefore the basis {J.} is 
distinguished. The basis {Ji } is related to the basis {Lt.} by the following 
formulae: 

Ji=Lti for ;,;:m,m+1; 

J .. +1 =Lt .. ; 

(the Picard-Lefschetz transformation). The operation of transferring from the 
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distinguished basis {Lt.} to the distinguished basis {JA, described by these 
formulae, is denoted by a",. 

Fig. 19. Fig. 20. 

Definition of the operation P .. +l (1 ~m<I'). Let the system of paths {iii} be 
defined in the following manner: 

iii=ui for i,;:m, m+1; 

(figure 20). This system of paths defines a distinguished basis {Jj}, related to the 
basis {Lt i } by the fomulae: 

(the inverse Picard-Lefschetz transformation). The operation of transferring 
from the distinguished basis {Lt.} to the distinguished basis {J;}, described by 
these formulae, is denoted by P ... +l. 

It is not difficult to see that the operation Pili + 1 is the inverse of the operation 
a", in the sense that the successive application of these in either order brings one 
back to the initial basis. We consider the free group generated by the elements tX", 

(m = 1, ... , I' -1). To each element of this group (a word in the symbols a", and 
ex,; 1) there corresponds an operation of change of distinguished basis (taking into 
consideration the fact that the action of ex,; 1 on the basis coincides with the action 
of the operation P ... +1). It is clear that the actions of the operations a",a",. and 
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cx",.cx", are the same when 1m -m'I~2. In addition, the actions of the operations 
cx",cx",+1cx", and cx",+ lcx",cx",+ 1 are the same for anym from 1 to (P-2). The "proor' 
of this fact is given in figure 21. 

Fig. 21. 

In this way we get an action, on the set of distinguished bases of the homology 
group of the non-singular level set near a critical point, of the quotient group of 
the free group on the (p -1) generators cx", (m = 1, ... , p-1) by the relations 

cx",cx",.=cx",.cx", for Im-m'I~2. 

This group is the braid group with p strands (see, for example [57]; see also 
Section 3.3). 

We consider an operation which preserves the property of being weakly 
distinguished for a set of vanishing cycles. As a preliminary we show that any 
such set forms a basis in the homology of the non-singular level manifold. 

1beoreaa 1.8. Any weakly distinguished set of vanishing cycles forms a basis of 
the homology group H" -1 (Yo) of the non-singular level manifold. 
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Let {Ai} be a weakly distinguished set of vanishing cycles defined by the system 
of paths {lit}, and let 'ti be the corresponding simple loops. The set ofloops {'ti} is 
a system of free generators of the fundamental group Xl (U",,", {Zi} ; zo) of the 
complement of the set of critical values. In order to prove that the set of vanishing 
cycles {Ai} forms a basis of the group H,,-1 (Yo), it is sufficient to prove that any 
vanishing cycle A (defined with the help of the path v, joining a critical value Z J 

with the non-critical value zo) is linearly dependent on the cycles AI" .. , A,. with 
integer coefficients. We can suppose that the paths Uj and v coincide near the 
critical value Z J. In this case the loop'}' = U jV -1 can be considered as an element of 
the fundamental group Xl (U",,",{Zi}; zo) of the complement of the set of critical 
values. We have A = ±hy.Aj (the sign depending on the orientation of the 
vanishing cycles A and AJ In the group Xl(~{Zi};ZO) the loop'}' can be 
expressed in terms of the generators 't 1 , ... , 'til' Consequently the vanishing cycle 
A can be obtained from the cycle A J by the successive application of some Picard­
Lefschetz operators hi and their inverses, and is therefore linearly dependent on 
the cycles AI,' .. , A,. with integer coefficients. 

Definition of the operations cx",(m') and fJ .. (m') of change of wealdy distinguished 
basis. Let {Ui} be a system of paths, defining the weakly distinguished basis {Ai} 
ofthe homology group H,,-l (Yo) of the non-singular level manifold. For m:;: m' 
we define the operation of change of basis cx",(m') [fJ",(m'»), corresponding to the 
change of the path U",' to the path u...'t", [u...'t'; 1), that is transforming the wealdy 
distinguished basis {A;} into the basis {Ji } defined by the formulae 

The action ofthe operations cx",(m') and fJ",(m') on the system of simple loops 
{'t;} consists of changing the loop 't ... into a conjugate of it in the fundamental 
group Xl (~{z;}; Zo) of the complement of the set of critical values (that is 
't,;l't",.'t", for cx",(m') and 't",'t",.'t,;l for fJ .. (m'». For this reason, if the initial 
system of simple loops is a system offree generators of the group Xl (U",,", {Zi} ; zo), 
then the same property will be possessed also by the system of simple loops, 
obtained after application of the operation cx",(m') or fJ .. (m'). Therefore the 
operations cx",(m') and fJ .. (m') preserve the property of a basis being weakly 
distinguished. 
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It is easy to see that the operations a",(m') and (J .. (m') are inverses of each 
other. When the number of variables n is odd, these operations coincide. If a 
distinguished basis is considered as wealdy distinguished, and in particular we 
forget the order of the vanishing cycles, then the action of the operation a", 

coincides with the action of the operation lX",(m+ 1), and (J .. +l with (J .. +l (m). 
It can be shown (see [150» that any two distinguished bases can be obtained one 

from the other by iterations of operations IX", and (J". and a change of orientations 
of some elements. It was proved that any two weakly distinguished bases can be 
obtained one from the other in an analogous way with the help of operations 
a",(m') and (J",(m') (Humphries, S. P. [170] and, apparently, already Whitehead 
J. H. C., 1936). 

1.7 1be Variation Operator aad the Intersedion Matrix 
of a .. Direct Sum" of Singularities . 

Definition. The direct sum of the singularities I: (<<::",0)--+(<<::,0) and g: (~, 0) 
-+(<<::,0) of functions of nand m variables respectively is the singularity of the 
function I$g: (<<::,,+"',0)-+(4::,0) of (n+m) variables defined by the formula 

I$g(x, y)= I(x)+g(y) 

~ 1.8. The multiplicity Jl(f $ g) of the direct sum of the singularitiesl and 9 
IS equal to the product Jl{f) Jl(g) of their multiplicities. 

Indeed ifl(x) is a perturbation of the singularity J, with Jl(f) non-degenerate 
critical points Ph and g(y) is a perturbation of the singularity g, with Jl(g) non­
degenerate critical points qj, thenl(x) + g(y) is a perturbation of the singularity 
I$g with Jl(f)Jl(g) non-degenerate critical points (Phqj) (i=1, ... ,Jl(f); 
j= 1, ... , Jl(g». 

M. Sebastiani and R. Thom ([322» proved that the classical monodromy 
operator of the singularity 1 $ 9 is equal to the tensor product of the classical 
monodromy operators of the singularities 1 and g. A. M. Gabrielov ([116» 
obtained a description of the intersection matrix of the singularity 1 $ 9 under 
the condition that the intersection matrices of the singularities 1 and g, with 
respect to distinguished bases, are known. We give an account of these results in a 
form somewhat different from that found in [322] and [116]. 

We need one topological concept. 
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DefiaitioD. The join X * Y of the topological spaces X and Yis the quotient space 
of the direct product X x I x Y (I = [0, 1» by the equivalence relation: 

(x, 0, Yl) - (x, 0, Y2) for any Y10 Y2 e Y, x eX; 

(xl,1,Y)-(X2,1,y) forany X1o x2eX,yeY. 

We can consider that the spaces X and Ylie in their join X * Yas the lower and 
upper bases respectively ({(x, 0, y)} and {(x, 1, y)}). Therefore the join X* Y can 
be represented as the space swept out by non-intersecting segments joining every 
point of the space X to every point of the space Y. If we consider the projection 
(x, t, y) 1-+ t ofthe join X * Yto the line segment! = [0, 1], then the preimage of the 
point 0 coincides with the space X, the preimage of the point 1 coincides with the 
space Y and that of a point t e (0, 1) with the product X x Y. 
.' If Y is the space consisting of one point, then the join X * Y coincides with the 
cone over the space X If Y is the space consisting of two points, then the join 
X * Y is homeomorphic to the suspension of the space X (the quotient space of 
the cylinder [ -1, 1] x X over the space X by the equivalence relations 

for all Xl' Xl eX). If the space X is homeomorphic to the k-dimensional sphere 
S", and Y to the l-dimensional sphere Sl, then the join X * Y is homeomorphic to 
the (k + 1+ 1 )-dimensional sphere SHI +1. 

Lemma 1.9. Let the homology groups of the spaces X and Y either not have 
torsion or be considered with coefficients in a field. Then the homology group 
1I,,(X * Y) of the join of the spaces X and Y is isomorphic to 

In other words H.(X* y)=H.(X) ®H.(y) if we consider that dim (a ®b) 
=dima+ dimb + 1 for a e H.(X), b e H.(y). If ads a cycle in the spaCe X and (J is 
a cycle in the space Y, then the cycle corresponding to IX ® fJ in the space X * Y is 
the join of the cycles IX and (J. Here it is essential that the homology groups are 

supposed reduced modulo a point. 
The embedding 
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generally speaking, is defined only up to multiplication by (±1). It's choice is 
determined by a method of orientating the join of cycles. We can, for example, 
suppose that the orientation of the join a * b is induced from the usual 
orientation of the direct product axlxb. We note, however, that the results 
formulated below do not depend on this choice. 

Let/be a singularity (cr", O)-+(cr, 0), let V. be a non-singular level manifold of 
the singularity / near the critical point (V. = /-1 (8) n B,I), and let u be a path 
joining the non-critical value 8 with the critical value O. 

Lemma 2.10. There exists a continuous family of mappings 
H,: v.-+ v,,(,) = /-1 (u(t»nB,I(te [0,1]), 

such that 
1) Ho=id: v.-+v.; 
2) H, is the inclusion v.-+ v,,(,) for O~t< 1; 
3) HI maps V. into the point Oecr". 

The proof of this result can be constructed in an analogous way to the way 
that, in Theorem 2.1, it was shown that the space /-1 (0) nB,I is a deformation 
retract of the space /-1 (Doo) n B,I . 

The family of mappings H, is determined uniquely up to isotopy. It gives an 
embedding of the cone over the non-singular level manifold V. into the space C[" 

«x,t)-+H,(x)/or O~t~l). 
Now let/and 9 be two singularities in nand m variables respectively, let 

and 

be the non-singular level manifolds of the singularities/and 9 respectively and 
let u be a non-self-intersecting path in the target plane of the function/, joining 8 

with zero (without loss of generality, we can suppose that lI(t)=(1-t)8). We 
define a path v, joining 8 with zero in the target plane of the function g, by the 
formula v(t) =8 -u(l -I). Let H,(/): v.(/)-+ v.(,)(/) and H,(g): V.(g)-+ v,,(,)(g) 
be the families of functions described in Lemma 2.10. We define the inclusionj of 
the join V.(/) * V.(g) of the non-singular level manifolds v,(/) and V,(g) into the 
level set 
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by the formula 

j(x,t, y)=(H,(/)x, H 1 -,(g) y) 

for xe V.(/),ye V.(g), te [0, 1]. If we impose naturallimits on theradiiel, l!2 and 

l! (for example, 

thenj is an embedding of the join v.(/)* V.(g) into the level manifold 

of the singularity of / E9 9 near the critical point. 
The mapping 

together with the isomorphism 

defines the homomorphism 

In the work [322] was proved 

11Ieorem 1.9. The homomorphism j. is an isomorphism and the inclusion 

is a homotopy equivalence. 

The fact that the non-singular level manifold v.(f E9 g) of the singularity / E9 9 
is homotopically equivalent to the join V.(/)* V.(g) can be explained in the 
following manner. We consider the function/ on the manifold v.(f E9 g) (more 
precisely we ~nsider the function / 0 1tl' where 
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is the projection on the frrst factor). The preimage (f 0 Xl) -1 (z) ofthe point z e G:: 
consists of points (x, y)eC e C", for which f(x)=z, g(Y)=8 -z~ Therefore (if 
we ignore the details connected with the radii of the balls in wliich we consider the 
non-singular level manifolds of the functions) 

The mapping 

is non-degenerate outside the preimages of the points 0 and 8. We consider in the 
plane G:: the segment J = u([O, 1]) which is the image of the path u. It joins the 
points 0 and 8 (U(0)=8, u(1)=0). Over the complement of the segment J the 
mapping/01tl defines a locally trivial fibration. The segment J is a deformation 
retract of the plane G::. From this it follows that the space (f 0 1tl) -1 (1) is a 
deformation retract of the space v,(f E9 g) and is therefore homotopy equivalent 
to it. The space (f01tl)-l(U(t», for te(O, 1), is diffeomorphic to the product 
Vo, (/) x V,z (g) of the non-singular level manifolds of the singularities / and g. 
The space (f 0 Xl)-l (u(O» is diffeomorphic to/-1 (8) x g-l (0). The space g-l(O) 
is contractible to a point. Therefore (f 0 1tl) -1 (u(O» is contractible to a space 
diffeomorphic to the non-singular level manifold V,(/). Similarly the space 

is contractible to a space diffeomorphic to the non-singular level manifold V,(g). 
This description of the fibres of the mapping 

over the points of the segment J coincides with the description of the preimage of 
the points tel = [0, 1] under the projection V,(/) * Va(g)-+ 1 (see the definition of 
the join). Therefore the space (f 0 1tl) -1 (1) is homotopy equivalent to the join 
Va(/)* V,(g). A little more accurate reasoning allows one to turn this explana­
tion into a proof. 

From now on we shall identify the homology group H,.+M-t (Va(f e g» of the 
non-singular level manifold of the singularity / Ea 9 with the tensor product of 
the groups H.-l (V,(/) and H"'-l (Ya(g». This identification also determines an 
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identification of the relative homology group 

(which is the dual of the group H,.+rn-l (V,(f e g))) with the tensor product of the 
groups H,.-l (V,(/), aVo(/)~ and H",-l (V,(g), av,(g». 

1beorem 2.10 (p. Deligne, see [94)). 

For the proof it is sufficient to show that for any homology classes 

we have the equality 

We shall not carry out this proof in detail, but only outline its main steps (though 
it would not be difficult to reconstruct the whole proof). 

Let 

be the family of mappings described in Lemma 2.10 (for the sake of definiteness 
we suppose that u(t) = (1 - t)8). As we have already said, the family H,(/) defines 
an embedding of the cone over the level manifold Va(/) into the space C. Let Al 
be the cone over the cycle ai' determined by the family H,(/), Then Al is an n­
dimensional chain, the boundary of which lies in the non-singular level manifold 

V,(/) and coincides with the cycle al' Let 

r ,(/): v,(/)-+ V ffq(2f<iI)'(/) 

be the family of mappings obtained by lifting the homotopy 

e ...... exp(2xit)8 (0~t~1), 
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and let 

be the (n -1)-dimensional cycle in the level manifold V-.if). Let Al be the cone 
over the cycle iil , by an analogous construction. From the considerations of § 2.3 
it follows that 

the chains Al and Al intersecting only at zero. The chains Bl and Bl are defmed in 
the same way, with 

In order to define 

by the same ~ it is necessary to construct cones C1 and (;l over the cycles 
al ®b1 anda2®bl=rl/2(feg)(al ®bl). It is not difficult to see that we can 
take 

(AI x B1)n {(x, y): (f(x) +g(Y»/8~ 1} 

as C1 . We have an analogous result for (;l : we can take 

(Here we use the fact that r,(f e g)(al ® bl ) = r,if)(al) ® r,(g)(bl ).) It 
follows that 

([Vari~lI(al ®b1)]o [al ®blD=( -O"+-(C1 O(;l) 

=( -1)"+"([A1 xBdo [Al x Bl )) 

=( -1) .. + .. + .... (A1 o Al )(BI oJl ) 

=( -1)-(Vari1al oal)(Var;lb1 o~), 

which is what we were trying to prove. 
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Let {Lid (i = 1, ... ,I'if) be a distinguished basis in the homology group 
H,,-I(V.if) of the non-singular level manifold of the singularity J, let {Lli} 
U=1, ... ,I'(g» be a distinguished basis in the homology group H .. - 1(V,(g»· 
From Theorem 2.9 it follows that the elements 

form a basis of the homology group 

of the non-singular level manifold of the singularity f eg. The intersection 
matrix S of the singularity f e 9 with respect to this basis can be obtained with 
the help of Theorem 2.10 from the formula S= -L+( -1)"+"LT where Lis the 
matrix of the operator V ar i ~ II (or the Seifert form). From this follows 

Theorem.2.11. The intersection numbers of the cycles Ltij are given by the 

following formulae: 

(Lt"it 0 J llh) = sgn (il -i1)( -1) .... (LlI• oLlll)(LI.I. 0 LI.ll) 

for (il -i1)Ul-jl»0. 

This result was obtained by A. M. Gabrielov in (116). In addition the 

following result was proved. 

Theorem 2.12. The cycles Jij are vanishing cycles and form a distinguished basis 
of the homology group H .. + .. - 1 (V,(f eg» ofthe non-singular level manifold of 
the singularity f e g. It is implied that they are ordered lexicographically, that is 

that the cycle J lli• precedes the cycle JI:ah if 
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Theorem 2.10 is a generalisation of the above-mentioned results of M. 
Sebastiani and R. Thom ([322]), describing the classical monodromyoperator 
h.(f(JJ" of the singularity f fJ) g. 

TIaeorem 2.13. 

This theorem is an immediate corollary of Theorem 2.10 and the relation 
h.=( -lYVar(Var-1)T (Theorem 2.5). Conversely, Theorem 2.10 follows from 
Theorems 2.13, 2.12, the relation h.=( -lYVar(Var-1)T and Theorem 2.7, 
confmning that the matrix of the classical monodromy operator of a singularity 
with respect to a distinguished basis determines the matrix of its variation 
operator. 

Theorems 2.11 and 2.12 give the following description of the Dynkin diagram 
of the singularity fED 9 (for the definition see the following section). Its vertex set 
coincides with the direct product ofthe vertex sets of the diagrams corresponding 
to the singularitiesf and g. Two vertices (i1 ,i1) and (il ,h) are joined to each other 

(i) by an edge of the same multiplicity as that joining the vertices i1 and h in the 
second diagram, if i1 = i1 ; 

(ii) by an edge of the same multiplicity as that joining the vertices i1 and i1 in the 
first diagram, if i1 = h ; 

(iii) by an edge of multiplicity equal to minus the product of the multiplicities 
of the edges, joining the vertices i1 and i1 in the first diagram and i1 and h in the 
second diagram, if (i1-i1)Ul-i1»0. 

If (il - i1)Ul - i1) < 0, then the vertices (i1 ,it) and (il ,h) are not joined to each 
other. 

2.8 1be stabilisatioa of. siapmity 

Let f: (CC-, O)-+(CC, 0) be the germ of a holomorphic function with an isolated 
critical point at the origin. 

.Defiaitioa. The germ of the function 

is called a stabilisation of the germ f 
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The multiplicity of the singularity is equal to the multiplicity of its 
stabilisation. Indeed, ifJis a perturbation of the singularity J, decomposing the 
critical point at zero into Jl non-degenerate ones, then ] (X)+:Ej=l >7 is the 
perturbation of its stabilisation, possessing the same property. Moreover, the 
functions ](x) and ](x) + :Ej=.l >7 have the same set of critical values. The 
connection between the intersection matrix of a singularity and the intersection 
matrix of its stabilisation is given by the following theorem, which is a special 

case of Theorem 2.11. 

'I1Ieorem 2.14. Let {AI} be a distinguished basis of vanishing cycles in the 
homology of the non-singular level manifolds of the singularity f(x). Then there 
exists a distinguished basis {Jl } of the singularity f(x) +:Ej=l yj, such that the 
intersection matrix of its elements is defined by the relation 

Moreover the distinguished bases {AI} and {Ji } correspond to identical sets of 
paths joining the critical values of the perturbations](x) and](x)+:Ej=l >7 with 
the non-critical value. 

From Theorem 2.14 it follows that the intersection matrices of the stabilisa­
tions of the singularities determine each other. In addition for m =0 mod 4 the 
intersection numbers (JloJ) and (AloA) are equal for all i and i, for 
m = 2 mod 4 they differ by a sign. In this way we associate with each singularity 
two symmetric and two antisymmetric bilinear forms (the intersection forms of 
its stabilisation). Moreover the symmetric (and antisymmetric) forms differ only 
by a sign. With each singularity we associate also two groups of transformations 
of the integral lattice Z" (the monodromy groups of its stabilisations). The 
classical monodromy operator of the singularity f(x) coincides with the classical 
monodromy operator of its stabilisationf(x) +:Ej"l >7 for even m and differs 
from it by a sign for odd m. . 

Theorem 2.14 allows us to formulate results on intersection matrices of . 
singularities restricted to cases the dimensions of which have fixed residue 
modulo four. In the majority of cases it will be convenient to suppose that the 
number of variables is conjugate to three modulo four . 

DefiBltioa. The quadratic form of a singuklrity is the quadraticform, defined by 
the intersection numbers in the homology of the non-singular level manifolds of 
its stabilisation with number of variables N == 3 mod 4. 
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For this stabilisation the self-intersection number of the vanishing cycles 
(..1 i o..1/) is equal to -2, the Picard-Lefschetz operator acts on the homology 
group of the non-singular level manifold according to the formula h;(a)=a 
+ (a 0 ..1 i)J;. From this it is clear thath;(..1;) = -..1/ and that the transformation h; 
is reflection in the hyperplane orthogonal to the vector ..1 i • The orthogonality is 
in terms of the scalar product, defined by the quadratic form of the singularity. 
Thus we can see that the corresponding monodromy groups are groups 
generated by reflections. Such groups (or the corresponding quadratic forms 
which determine them) are most conveniently described with the help of certain 
graphs. 

Defioitioo. The Dynkin diagram (or D-diagram) of a singularity is a graph 
defined as follows: 

(i) its vertices are in one-to-one correspondence with the elements ..1; of a 
weakly distinguished basis of the homology of the non-singqlar level manifold of 
the stabilisation of the singularity with number of variables N == 3 mod 4; 

(ii) the ith and the jth vertices of the graph are joined by an edge of multiplicity 
(..1;o..1 j ) (The edges of negative multiplicity are depicted by dashed lines). 

The D-diagram of a singularity determines its monodromy group (although 
an effective description of the latter is obviously quite a hard problem). If the D­
diagram of a singularity (with a known number ofvariables) is given relative to a 
distinguished basis and with its vertices numbered in the same order, then from it 
we can determine the bilinear form of the singularity, and also its variation 
operator, its classical monodromy operator, etc. 

We consider the singularity !(X)=XH1 (a singularity of type At in the 
terminology of part II of volume 1). The level manifold V. consists of k + 1 points, 
the (k + 1 )th roots of B. The multiplicity of this singularity is equal to k, and the 
homology group Ho(V.) (reduced modulo a point) is isomorphic to zt~ 

The function](x)=xl+ 1-lx (1:;:0) is a Morse perturbation of the singu­
larity f We shall suppose that 1 is real and greater than zero~ The zero level 
manifold ]-1(0) of the function] also consists of k+l points: .xo=O, 

x.=Vle. (m= 1, ... ,k). Here e. are the kth roots of unity, enumerated 
clockwise: e.=exp( -27Cim/k)~ The critical points of the function] are 
determined by the equation]'(x)=(k+l)xi-1=0. Therefore] has k critical 
points 

P ... = if ()./(k + 1)) e .. 
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with critical values 

z ... = -(k~l»)Y(lf(k+l»e... (m=l, ... ,k). 

We choose as the non-critical value Zo a negative number of large modulus 

(Izol~(k~ 1») YO./(k+ 1»). 

Let u ... be the path joining the critical value z ... of the function 1 with zero along the 
radius (u".(t)=(l-t)z .. , tE [0,1]), and let v be the path going from zero to Zo 

along the negative real axis and going round the critical value 

in the positive direction (anticlockwise). See figure 22. 

o 
z, 

Fig. 22. 

It is easy to see that the system of paths {u".v} define a distinguished basis of 
vanishing cycles {..1 ... } in the homology group HO(]-I(ZO» (because by a small 
perturbation it can be reduced to a system of paths, satisfying the definition of a 
distinguished basis). In order to calculate the intersection numbers (..1 .. 0 ..1 ... ,) of 
the vanishing cycles in the homology group HO(]-1 (zo» it is convenient to 
homotop the point Zo along the path v to zero. In this way we reduce the problem 
to the calculation of the intersection numbers of the vanishing cycles, defined in 
the group H

O
U-- 1 (0» by the system of paths {u .. } (we shall denote these cycles 

by..1 .. too). 
It is easy to show that the cycles ..1 .. = x .. - ~ vanish along the paths u". (that is 

as we move in the target plane of the function! along the path u". from zero to the 
critical value z. the points x .. and Xo merge). Consequently we have (..1 .. 0 ..1.) = 2, 
(..1.0..1 .. ,)= 1 for any m:;:m'. For the stabilisation!(x)+n+Yi the appropriate 
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formula is (..1 .. 0..1 .. )= -2, (..1",0..1 .. ,)= -1 for any m'#:m; We obtain the 
D-diagram of the singularity f in the following form: there are k vertices, every 
pair of which are joined by a dashed line (that is by an edge of multiplicity -1). 

We simplify this diagram with the help of operations which change the 
distinguished basis. The operation OCI:-l (..1i-l =..1I:-..1I:- .. ..1i=..11:-1) reduces 
the diagram to the following form: all the vertices except the (k -l)th are 
joined pairwise by dashed lines (edges of multiplicity -1), the (k -1)th vertex is 
joined only to the kth by a line of multiplicity + 1. The operations 
«t-2 (..1i-2=..1i- .. ..1i-l =..11:-2), OCI:-3, ... ,OCI do not change the form of the 
diagram, but lead only to the renumbering of the vertices; The application of the 
following sequence of operators 

I-I 

~ 
A. 

~ a a 0 

Fig; 23. 

reduces the diagram to the classical Dynkin diagram AI: (figure 23). The basis of 
vanishing cycles we get can be described by the formulae 

..1~=(XI:-XI:_l)' ..1~=(XI:-l -XI:-2), ... , 

..1~-1 =(X2 -Xl), ..1~ = (Xl -Xo). 

As we move in the target plane of the function1 along the path v from zero to 
the non-critical value zo, the points XIII (m = 0,1, ... ,k) move in the complex 
plane (: tending to the rays 

argx=1t(2s+ l)/(k+ 1) 

(as Zo-+ - (0). The points Xo and XI: approach each other along the real axis, do a 
quarter rotation, anticlockwise, round the critical point Pit;, and go apart again. It 
is easy to show that on the ray 

argx=1t(2s+ l)/(k+ 1) 

(that isx=texp(1ti(2s+ l)/(k+ 1», t >0) the function1(x)=xl+1-lxdoes not 
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take negative real values except in the case when k is even and s = k /2. Indeed, 

1(x)= -tI:+ 1 -ltexp(1ti(2s+1)/(k+l», 

where the second term is real only when k is even and s=k/2. In this case the 
point XI:/2 moves along the negative real axis. From this it follows that as we move 
in the target plane of the function 1 along the path v from zero to Zo the points XIII 
approach the points 

x .. = I:+y( -zo)exp ( -1ti(2m + l)/(k+ 1» 

(m=O, 1, ... ,k). If in addition we travel in the target plane of the function in the 
negative direction (clockwise) from the point Zo to the point Zo = -Zo, then the 
points X'" will cross over to the points 

1 .. = I:+y( -zo)exp( -21ti(m+ l)/(k+ 1» 

(m=O, 1, ... ,k); 
We arrive at the following result: 

Theorem :1.15. On the level manifold Vt={x:xl+ 1 =1} of the singularity 
!(x)=xl+ 1 the distinguished basis is formed by the vanishing cycles 

where 

CJ =exp(21ti(j -l)/(k+ 1» 

are the (k + l)th roots of unity (j= 1, ... ,(k + 1»; The intersection numbers of 
these cycles are given by the formulae 

(..1J o..1J) =2, 

(..1J o..1J+1)= -1, 

(..1J o..1J')=O for 1i-j'l~2. 

The first calculation of the intersection forms and the classical monodromy 
operator for functions of several variables was given by F. Pham ([284]) for 
singularities of the form !(X)=l:Z"lxr' (al:~2). The multiplicity of this 



66 The topological structure of isolated critical points of functions 

singularity is equal to n:=t(a,,-l); E Pharo proved that in the homology 
group H.- t (V.) of the non-singular level set of the function f there exists a 
basis eft ... I .. (0~i,,~a,,-2) (in the notation of F. Pharo el, ... I .. -(n:=tw1")e), 
such that 

if i,,~,,~i,,+l for all k. In the remaining cases (except those arising from the 
previous ones by a permutation of cycles) 

The result ofF. Pham can be obtained from Theorem 2.11 (§2.7). Applying it 
to the singularity f(x)-l::=tx:" gives the same intersection matrix as that ofF. 
Pham, if as a distinguished basis ofthe singularity ft(x,,) = x:" we use the basis 
described in theorem 2.15; For the singularity ft(x,,)=~" we put 

The application in sequence of the constructions described in § 2.7 to the 
distinguished basis of the singularity ft(x,,) given by Theorem 2.15 reduces it, as 
it is not difficult to convince oneself, to the basis constructed by F. Pharo in [284]. 
We obtain the following result. . 

Assertloa. The basis of F; Pham is distinguished relative to the lexicographic 
ordering of its elements. 

This means that the D-diagraro of the singularity of F. Pham has the form 
depicted in figure 24 (n = 2, at = 6, a2 = 5). 
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Fig; 24; 

Chapter 3 

The bifurcation sets and the 
monodromy group of a singularity 

The characteristics of a singularity which were discussed in the second chapter 
(the multiplicity of a singularity, its intersection matrix, its monodromy 
group ... ) are closely linked to such objects as the level and function bifurcation 
sets of the singularity, its resolution and its polar curve. Several of these links will 
be discussed in this chapter. 

3.1 The bifurcatioD sets of a siDgalarity 

In order to define the bifurcation sets of a singularity, we recall the definition of 
its versal deformation (for a more detailed exposition see Volume 1 Chapter 8). 

DefiDitiOD. A deformation of the singularity f:(CC",O)-+(~,O) is the germ of a 
holomorphic function F(x, VHllE~I), 

F: (~II Ea ~/, O)-+(~, 0), 

such that F(x, 0) = f(x). 
The space ~I is called the parameter space or base space of the deformation F. 

DefiaitioD. The deformation F(x, v) of the singularity f is versaJ, if any 
deformation G(x, "H" E CC"') of the singularity f (G(x, 0) = f(x» is "equivalent 
to the deformation induced by F', that is there exists an analytic map 
"': (C", O)-+(~/, 0) of the parameter spaces and an analytic family g(x, v) 

9 : (~. Ea C", O)-+(CC", 0), 

g(', 0)- id: CC"-+CC" oflocal changes of coordinates such that 

G(x, l1)-F(g(x, 11), "'(11»; 
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The dimension I of the base space £' of the versal deformation F(x, v) is not 
less than the multiplicity p of the singularity f There exists a (unique in a natural 
sense) versal deformation of the singularity/with a base, the dimension of which 
is exactly equal to p. This deformation is said to be miniversal. 

A miniversal deformation F(x, v) of the singularity/can be constructed in the 
following fashion. In §2.1 it was indicated that the quotient ring of the ring ,,0 of 
germs of hoi om orphic functions on (C, 0) by the ideal generated by the partial 
derivatives of the function/(the Jacobian ideal) has dimension, as a complex 
vector space, equal to the multiplicity p of the singularity f Let the germs of the 
functions tPl : (£", O)~£ (i=O, 1, ... , p-1) give a basis of this space. Then the 
deformation 

,,-1 
F(x, v)=/(x)+ L VitP,(X) 

1=0 

is miniversal (v=(vo, V1,' .. , V,.-1»' We can take as tPo the germ of the function 
identically equal to unity. 

Let F(x, v) be a miniversal deformation of the singularity /(ve£"), let 

Wy={xe£":F(x, v)=O, Ilxll ~(l} 

be the zero level set of the function F(', v). Since F(x,O)=/(x), and the set 
{xe£": /(x)=O} is transverse to the sphere S,I of sufficiently small radius {!, 

there exists an6>0 such that for Ilvll ~6the set {xe£":F(x, v)=O} is transverse 
to the sphere S,I' From this it follows that if the set Wy is non-singular, then it is 
diffeomorphic to the non-singular level set of the function / near the critical 
point. The set of those values of the parameter v for which Wy is singular forms a 
set of (complex) codimension one. 

DefiDitlon. The level bifurcation set (or set bifurcation diagram) of the singularity 
/ is the space 1:. = {v e £" : II v II ~ 6,0 is acritical value of the function F(', v) in the 
ball Ilxll ~(l}; 

Examples. (i) A miniversal deformation of the singularity A2 (f(x) = xl) can be 
chosen in the form 

The local zero level set of the function F(' ; A1 , ~) does not have a singularity if 
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the polynomial 

does not have multiple roots; Therefore the level bifurcation set 1: consists of 
those values (A1' A2) e £2 for which the polynomial xl + A1 X + A2 has the form 
(x-a'f(x-b), where 2a+b=(}. We have 

Consequently, the bifurcation set 1: is described by the equation 

13 27 ]2=0 
.11.1 + 4 "'l . 

It (more precisely, of course, its real part) is depicted in figure 25. 

,J~2 _J 

~' 
Fig; 25. 

(ii) A miniversal deformation of the singularity A3 (f(x) = x') can be chosen in 

the form 

The local zero level set of the function F(' ; A1 , ~, A3) does not have a singularity 

if the polynomial 

does not have multiple roots. Therefore the level bifurcation set 1: consists of 
those values (A'1,A2,A3)e£3 for which the polynomial x'+A1r+A2x+A3 has 
the form (x -a'f(x-b) (x -c), where2a+b+c=0; The bifurcation set 1: has the 
name "swallow tail". It is depicted in figure 26. 

The topological type of the pair (D .. 1:.) (D. = { v e £" : II v II ~ 6} is a ball of 
radius 6 in the base of the miniversal deformation F) does not depend on 6 for 
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Fig. 26. 

sufficiently smallll and does not depend on the choice of miniversal deformation 
of the singularity t The space (D."'-l:.) (an open subspace of the ball D.) is the 
base of a locally trivial fibration 

with projection (x. v)l-+v. The fibre 

Wy = {xeG:;":F(x, v):::O. Ilx II ~(l} 

of this fibration is diffeomorphic to the non-singular level set of the singularity t 
As in any fibration. the fundamental group of its base acts on the homology of 

the fibre. In this way we get a natural representation 

.1tl (D."'-l:.) = 1tl (D."'-l: .. v) 

-+Aut H"-1 (Wy ) = Aut H,,-1 (V J. 

Theorem 3.1. The image of the representation 

of the fundamental group of the complement of the level bifurcation set of the 
singularity f in the homology of the non-singular level manifold coincides with 
the monodromy group of the singularity t 

For the proof we must choose a miniversal deformation F(x. v) of the 
singularity f in the form 
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where v' eG:;,,-I. voeG:;. v=(vo. v')~ As the perturbationf,.(x) ofthe singularity f 
we can take a perturbation of the form Fo(x. V'(A». Let p be the natural 
projection of the base G:;" of the miniversal deformation onto the space G:;" -1 • 

mapping v=(vo. v') into Vf~ If fJ.(x) is a Morse function (A is sufficiently small). 
then the line L=p-l(V'(A» is in general position with the manifold l: •. 
The line L intersects the bifurcation set l:. in those points (vo. v'(A»eG:;" for 
which Vo is a criticaJ value of the function fix). The number of such points is 
equal to the multiplicity JJ(/) ofthe singularity t The space L"l:. coincides with 
the complement of the set of critical values of the function fJ.. The restriction of 
the fibration 

{(x, v): vjl: .. F(x, v)=O}-+D."l:. 

described above, to L"l:. coincides with the fibration of the non-singular level 
manifolds of the function/J. over the complement of the set of its critical values. 
From this it follows that the natural representation 

the image of which is the monodromy group of the singularity J, factors through 
the fundamental group of the complement of the bifurcation set: 

where i. is the homomorphism of fundamental groups induced by the inclusion 

I:'"rom the fact that the line L is in general position with the manifold l:. it turns 
out that the homomorphism 

is an epimorphism. From this it follows that the image of the representation 

coincides with the monodromy of the singularity f 
The fact that the homomorphism 
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is an epimorphism is a variant of a theorem of Zariski ([413)), which goes as 
follows. Let Mbe a non-singular affme algebraic hypersurface in the space C', let 
L be a (complex) line in general position in the space C'. Such a line intersects 
transversely the hypersurface Min m points PI, ... ,P .... The theorem of Zariski 
asserts, in particular, that for the line L in general position the homomorphism of 
fundamental groups 

induced by the inclusion i: L"'-.M -+(::""'-.M, is an epimorphism. The funda­
mental group Xl (L "'-.M) = Xl (L"'-. {Pi}) of the line with m points removed is a free 
group on m generators. We can take as these generators simple loops, 
corresponding to a system of non-intersecting paths in the complex line L, 
joining the points Pi with the base point Po E L "'-.M. Thus the fundamental group 
of the complement of the hypersurface M is a group generated by the m 
generators described above. 

The theorem of Zariski also describes all the relations between the generators. 
In order to give this description, we consider the projection X :(::,.-+(::"-1 of the 
space (::" along the line ~ and its restriction XIM:M-+C'-l to the hypersurface 
M. The fact that the line L is in general position allows us, in particular, to 
suppose that the discriminant set of the map XIM (the image of the set of its 
critical points) is a reduced hypersurface in the space (::11-1. In more detail this 
means the following. The closure ofthe set of critical values of the map XIM is a 
complex hypersurface N in the space (::,.-1. If qe(::"-l"'-.N, then the preimage 
xIMl(q) consists ofm points, at each of which the differential ofthe map XIM is 
non-degenerate. Over each regular point of the hypersurface N apart from a set of 
codimension 1, a pair of points will merge. Near such points the hypersurface M 
can be given locally by the equation Xo + xi = 0, where the projection X maps the 
point (Xo, Xl> ••• ,x..-l) e (::" to (Xl> ••• ,xlI_l)eC'-l, and Nis given locally in the 
space (::,,-1 by the equation Xl =0. Let qoEC'-l"'-.N be the image of the line L 
under the projection x, let Ll be a line in general position in the space (::,.-1 
passing through the point qo. We can suppose that the line Ll intersects the 
hypersurface N only in regular points, to which are mapped merged pairs of 
points from the preimage X 1M 1 (q), all these intersections being transversal. In titis 
case X-I (L1) f"\ M is a non-singular curve in the two-dimensional complex space 
n- 1(Lt), 

is an m-fold branched cover over the line L 1. Let ql' . .. ,q" be the points of 
intersection of the line Ll with the discriminant set N, and let 1: be an arbitrary 
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loop in the space Lt "'-. {ql, ... ,q,,} with beginning and end at the point qo ~ Going 
round the loop 1: corresponds to a homeomorphism T., of the pair of spaces 
(x -1 (qo), X-I (qo) f"\ M) = (L, L f"\ M) into itself, defined, of course, only up to 
isotopy~ This homeomorphism induces a transformation 

of the fundamental group of the line with m deleted points, L"'-.M, into itsel[ 
It is clear that if aexl(L"'-.M), then i.a = i.T •• a where 

The theorem of Zariski asserts that the homomorphism 

induced by inclusion is an isomorphism, and the relations of the form we 
described generate all the relations between generators of the fundamental group 
Xl «(::""'-.M)~ Naturally we can take, as generators of the system of relations, the 
relations i.a = i.T. •• a. where {1:i} is a system of simple loops, corresponding to a 
system of non-intersecting paths joining the points ql' ... , q" with the point qo· 
From this it follows that the group Xl (C''''-.M) is a group with m generators and 

mk relations~ 
A local variant of this theorem, part of which we use here, is formulated in an 

analogous manner. The proof of this is given in (157). 
If y is a loop in the complement D."'-.'£. of the level bifurcation set of the 

singularity J, then by analogy with § 2.1 we shall denote by hy. the corresponding 
automorphism ofthe homology group of the non-singular level manifold of the 
singularity f (h,. belongs to the monodromy group of the singularity f). 

There is, corresponding to the singularity, one more bifurcation set - the 
function bifurcation set. For its definition we consider a miniversal deformation 
Fo(x, v) of the singularity fin the class of functions equal to zero at the point O. 
Such a deformation has 1'-1 parameters. We shall call it a restricted miniversal 
deformation~ We can, for example, take for it the deformation 

Fo(x, v) =f(x)+,£r.;l v,"',(x), 

where V=(1I1o ••• , V,,-l), and t/Io, "'1> ... , "',.-1 are germs generating a basis of 
the quotient ring of the ring of germs at zero of holomorphic functions by the 
Jacobian ideal (iJJ/iJXlt . .. , oJ/oxlI) of the singularity J, t/Io == 1, "'1(0)=0 for i~ 1 
(the deformation Fo(x, v) differs from the miniversal deformation F(x, v) by the 
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absence of the term Vo '1, which does not influence the type of the function); 
In a small ball-like neighbourhood D, of the origin in the base (;,,-1 of the 

restricted miniversal deformation we consisder the set of those values of the 
parameter 11 for which the function Fo(-, v) in a neighbourhood Bll of the origin in 
the space (;. is Morse, that is has only non-degenerate critical points (I' in 
number) with distinct critical values. Its complement t, is called the function 
bifurcation set of the singularity f The topological type of the pair (D .. t.) does 
not, of course, depend on I: for sufficiently small 1:; The set t. is a hypersurface in 
the space CC,,-l. It is, clearly, reducible, as it is the union of two hypersurfaces. 
One of these is the set of values of the parameter 11 for which the function Fo(', 11) 

has degenerate critical points, and the other is the set of those values v for which it 
has critical points with coincident critical values. 

Examples. 

(i) The function bifurcation set of the singularity ..42 consists, clearly, of one 
point .1.=0 in the base CC1 of the restricted miniversal deformation. 

(ii) The function bifur~tion set of the singularity ..43 consists of those values 
(.1.1 , .1.2) e CC2 for which the polynomial x4+.1.1.x2+~X either has a degenerate 
critical point or has two non-degenerate critical points with the same critical 
value. The second of these sets is {~ = O} c: (;2. The flfSt set is described by the 
condition that the polynomial4r + 2A.1 x + ~ (the derivative of the polynomial 
x4+.1.1r+~x) has multiple roots; This will be true for .1.l+if-A1=O. The 
function bifurcation set of the singularity is depicted in figure 27; 

Fig; 27; 

There is a natural map (projection) p from the base, CC", of the miniversal 
deformation to the base, CC,,-l, of the restricted miniversal deformation. It can be 
shown that the germ of the space t. coincides with the set of non-regular values 
of the map E.-+CC,.-l, obtained by composing the inclusion E.c:..CC" and the 
projection p. Over the complement of the function bifurcation set t, of the 
singularity / this map defines an I'-fold cover; 
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3.2 The eoaaeetedness of tile D-4iagnun ud tile 'irreducibility' of tile dassical 
JDODOdroIIly opentor of a siBpIarity 

In § 3.1 we indicated that the function bifurcation set of a singularity is always 
reducible (with the exception of trivial cases of singularities of multiplicity one or 
two). In contrast to this the level bifurcation set .of a singularity is irreducible. 

Theorem 3.2 (see, for example, [117]). The level bifurcation set E. of a 
singularity lis an irreducible analytic set. Furthermore, there exists a germ of a 
proper map (CC,.-I, O)-+(CC", 0), the image of which coincides with the space E. 
and which is an isomorphism outside the set of singular points of E •. 

The map ofihe space CC,,-l into the base of the miniversal deformation CC" of 
the singularity J, mentioned in the theorem, can be constructed in the following 
manner; We consider the set of germs of functions g: (CC·, O)-+(CC, 0), satisfying 
the conditions g(O)=O, dg(O)=O. On it acts the group of germs of analytic 
diffeomorphisms of the space CC·, fixing the point O. The orbit of the singularity/ 
under the action of this group is a non-singular complex manifold of codimen­
sion 1'-1 (a rigorous approach would consider everything in the space of jets of 
sufficiently high order). A transversal to the orbits at the point/has dimension 
(1'-1) and defines a (1'-1 )-parameter deformation of the singularity f Like any 
deformation of the singularity J, it is equivalent to the deformation induced from 
a miniversal one by a map of its base CC,,-l into the base CC" of a miniversal 
deformation. Since all the functions ofthe deformation we are considering have 
o as a critical value, the whole space CC,,-l is carried by this map into the level 
bifurcation set E •. This is the map described in Theorem 3.2. 

From this assertion A. M. Gabrielov ([117J) and F. Lazzeri ([205J) derive the 

following result. 

11teorem 3.3. The D-diagram of any singularity relative to a distinguished basis 

is connected. 

This assertion also follows from Theorem 3.4 (see below). The same result is 
true also for a weakly distinguished basis; 

CoroJWoy. Let fr(x) (I e [0, to)) be a deformation of the singularity/and suppose 
that for small t the functionfr(x) has, in a neighbourhood of zero in the space C[", 

k distinct critical points PI (t), . .. ,p.,(t). We suppose that all the critical values 
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j,{P,(t»)(i= 1, ... ,k)ofthefunctionj,coincide~ Thenk= 1, that is the functionj, 
has only one critical point (of multiplicity p(f). 

Indeed, it is easy to see that if k > 1 then the vanishing cycles, corresponding to 
distinct critical points of the deformation j,(x) of the singularity f, will have 
intersection number zero. Therefore the D-diagram of the singularity / 
decomposes into k disconnected components; which contradicts theorem 3.3. 
We shall prove here several results which are stronger than theorem 3.3. 

Theorem 3.4. The monodromy group of a singularity acts transitively on the set 
of vanishing cycles in the homology of the non-singular level set near the critical 
point, that is for any vanishing cycles ..11 and ..12 there exists an element of the 
monodromy group of the singularity mapping..11 to ±..12· 

Proof. As for the proof of Theorem 3.t, we consider a miniversal deformation of 
the singularity / of the form 

F(x, v)=Fo(x, v') -Yo, 

where 

As a perturbation] of the singularity/we take the function] = Fo(x, v') with fixed 
value of the parameter v'. We choose v' so that the function Fo(x, v') will be 
Morse. This will be satisfied for almost all values of the parameter v' (except 
those that lie in the function bifurcation set of the singularity). If L is the 
(complex) line p-1(V,) (p :(;" .... (;,,-1 is the projection of the base of the 
miniversal deformation), then the intersection L n 1:, consists of the points (Zh v') 
(i = 1, ... ,p), where ZI are the critical values of the function j. 

The vanishing cycles ..1 t (k = 1,2) in the homology of the non-singular level set 
{l = zo} are defmed by paths lit, joining the critical values z'" with the non-critical 
value Zo and not passing through the critical values of the function J We suppose, 
for simplicity, that forvery small t we have 1I.,(t)=Z,., + t. The paths "1 and "2 can 
be considered as paths in the complex line L c:(;". From the irreducible of the 
bifurcation set 1:. it follows that the set of non-singular points of the space 1:. is 
connected. Those (non-singular) points ofthe space 1: .. at which the projection 
p: 1:.-+(;,,-1 is degenerate, form a subset of (complex) codimension one. 
Therefore their mnoval from the set of noa-singular points of the space does not 
destroy its connectedness. From this it follows that the points (zit, v') and (Z'2' v') 
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can be joined by a path v (v (0) = (z'p v,), v(1)=(ZI2' v,», which will lie in its 
entirety in the set of non-singular points of the space 1:.. at which 
its projection into the space (;,,-1 is non-degenerate. We consider a loop w in 
the complement of the level bifurcation set 1:, in the space (;" (beginning and 
ending at the point (zo, v,», which is defined in the following manner. It goes 
from the point (zo, v') to the point (z" + to, v') = (111 (to), v') with sufficiently small 
to along the path "1, then it goes from the point (Zi. + to, v') to the point 
(zjz + to, v') =("2(10), v') along the path v+(to, 0), going parallel to the path v, and 
finally returns to the point (zo, v') along the path "2' It is not hard to see that the 
monodromy operator h ... , corresponding to the loop w, maps the vanishing cycle 
..11 into the vanishing cycle ..12 (maybe with changed orientation), which is what 
we were trying to prove. 

Theorem 3.3 is an immediate corollary of Theorem 3.4. Indeed, let the D-dia­
gram of the singularity/with respect to the (weakly distinguished) basis {..11} be 
disconnected. From the theorem of Picard-Lefschetz it follows that the Picard­
Lefschetz operators (and composites of them), acting on a basic vanishing cycle, 
map it into a cycle which is a linear combination of basic vanishing cycles from 
the same connected component ofthe diagram. Therefore in this case there will 
not exist an operator from the monodromy group of the singularity/which maps 
a basic vanishing cycle into a basic vanishing cycle from another connected 
component ofthe diagram, which contradicts Theorem 3.4. From this reasoning 
it follows that the D-diagram of the singularity is connected also in the case when 
the multiplicity of its edges are considered modulo m> 1. 

From Theorem 3.3 we can deduce several properties of the classical mono­
dromy operator of the singularity. We formulate one proposition about diagonal 

matrices which we need for this. 

I.eauDa 3.1. Let A and B be upper triangular p x p matrices with ones on the 
diagonal. We suppose that A . BT is a matrix such that the intersection of its first 
k columns with its last p -k rows contains only zeros. Then the same property is 
true also for the matrix BT , that is the matrix B is the direct sum of upper 
triangular matrices of dimension k x k and (p -k) x (p -k). 

The proof does not present any difficulty. 

'I1teoreIa 3.5. Let ..1 1, ••. , ..1" be a distinguished basis of the homology group 
H. -1 (V,) of the non-singular level set of a singularity, and let / be a subset of the 
set of indices {t, ... ,p} such that linear span of the basis elements ..1, with ie/is 
invariant relative to the classical monodromy operator h •. Then either / =" or 

/={1, ... ,p}~ 
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We prove what appears at ftrst sight to be a slightly stronger assertion, but 
which in fact is exactly equivalent to Theorem 35~ 

Let {Ll1 , ••• ,LI,J be a set of vanishing cycles in the homology of the non­
singular level manifold of the singularity J, defmed by a system of paths {ua 
(i = 1, ... ,k), joining some of the critical values of the perturbation 1 of the 
singularity f with its non-critical value Zo and not passing (for t :;: 0) through the 
critical values of the function]. We suppose that the paths Uj have no self­
intersections and do not intersect each other at points distinct from their ends 
which coincide with Zo. 

1beorem 3.6. If the linear span of the vanishing cycles Lilt ... , LI" in the homology 
group H,,-l (F.o) is invariant relative to the classical monodromy operator of the 
singularity, then either k=O or k=p(f). 

Proof. We shall suppose that the cycles Lilt ... ,LI" (and the paths (U1>' •• ,u,,» 
are numbered in the order which is ftxed by condition (iii) of the deftnition of 
a distinguished basis (~ § 1.2)~ It is easy to see that the system of paths 
{Ult i=1, .. . ,k} can be increased to the system of paths {Uj; i= 1, ... ,k, . .. , p}, 
deftning the distinguished basis Ll1 , ••• ,LI", ... ,LI,. in the homology group 
H,,-l(F.J. The ~ondition of invariance of the linear span of the elements 
Lll' ... ,LI. relative to the classical monodromy operator h. means that in the 
matrix H ot the operator h. relative to the basis Ll1 , ••• ,LI", ... ,LI,. there are 
zeros in the intersection of the ftrst k columns with the last I' - k rows. Applying 
Lemma 3.1 to the equality H = ( -1)" L -1 LT (where L is the matrix ofthe Seifert 
form of the singulari!y), we obtain the result that the matrix L is the direct sum of 
matrices of dimensions k x k and (I' -k) x (I' -k). Consequently the same 
property is possessed also by the intersection matrix of the singularity f with 
respect to the distinguished basis Ll1 ,. •• , LI,., which is equal to - L + ( -1)" LT. 
For k:;: 0, I' this means that the D-diagram of the singularity f decomposes into a 
disjoint union of two diagrams (with k and I' -k vertices respectively), which 
contradicts Theorem 3.3~ 

Corollary. If the classical monodromy operator of a singularity is multiplication 
by one or minus one, then the singularity is non-degenerate, that is its 
multiplicity I' is equal to one~ 

This result (as the Sebastiani conjecture) was proved by N. A'Campo in [4]. 
There it was deduced from the following result. 
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1beorem 3.7. The trace trh. of the classical monodromy operator of the 
singularity f: «;", 0)-«;, 0) of a function of n variables is equal to ( _1),,-1. 

3.3 The bifurcatioo sets of simple siagularities 

It is well known (see §3~6) that for the simple singularities A., D", E6 , E7 , E8 
with an odd number of variables, the monodromy group is the same as the 
corresponding classical Weyl group (of the same name) (see [53]). 

This group is the image of the fundamental group of the complement of the 
level bifurcation set 1:. of the singularity. For simple singularities the space 1:. can 
be obtained as follows~ 

Let Il· be a vector space on which the Weyl group W (A", D" or E" 
respectively) acts canonically and let (;" = Il" ®Il(; be its complexification. The 
action ofthe group Won the space III extends in a natural way to an action of W 
on the complexiftcation (;l. Let S be the union of the non-regular orbits of the 
action of the group W, that is the set of points on which the action of the group W 
is not free (has a non-trivial stabiliser subgroup). It is the same as the union of 
(complex) mirrors, reflection in which belongs to the group W. We consider the 
quotient space (;" / w. It is known ([53]) that it is isomorphic as an analytic space 
to k-dimensional complex linear space. 

Tbeorem 3.8 ([21]). For the simple singularities A", D", E. the pair «;"/W, S/W) 
is isomorphic (in a neighbourhood of zero) to the pair (D., 1:.), where 1:. is the 
level bifurcation set of the singularity. 

EumpIe. Letf(X)=XH1 (the singularity A,). In this case the Weyl group Wis 
the group of permutations of k + 1 elements. Its action on the space C is defined 
in the following manner. The space (;" is embedded in the space (;Hl of one 
larger dimension in the form of the hyperplane 1:~: l XI = 0, and the action of the 
group Won it is obtained by restricting its action on the space C + 1 as the group 
of permutations of coordinates. The quotient space C+ 1 /W is mapped 
isomorphically onto the space (;l + 1 by mapping the class of the point 
(Xl,. •• ,X1+1) to the point (0'1,. .. ,0'11:+1), where O'/=O'I(Xl,· .. ,x" + 1) is the ith 

elementary symmetric function of the variables Xl, ... ,Xl + 1 
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The fact that this map is an isomorphism of complex manifolds follows from the 
fundamental theorem on symmetric functions (any analytic symmetric function 
of the variables Xl' ••• ,Xt + 1 can be uniquely represented as an analytic function 
of the symmetric polynomials 0'10 ••• , O't+1 .) Under the isomorphism the space 
«::t/ W maps isomorphically onto the coordinate hyperplane 0'1 = o. The mirrors 
(non-regular orbits) are defined by the condition"x,=xj. A miniversal deforma­
tion of the singularity f(x) has the form 

Here 

where (Xi> . •• , XH 1) are the roots of the equation 

The level bifurcation set consists of those values of the parameters t=(to, 
t1, . .. , tt-l) for which the function F(·, t) has a critical point with critical value 
equal to zero, that is has a multiple root X, = X j. Hence in this case it is clear how 
to define the isomorphism mentioned in Theorem 3.8. 

Approximately the same arguments are used to prove Theorem 3.8 for the 
other simple singularities. 

Remember that a space of type K(x, 1) is a space with fundamental group x 
and all of whose subsequent homotopy groups (X2, X3, ••• ) are trivial. A space 
of type K(x, 1) is the base of a principal fibre bundle with group x and with 
homotopically trivial total space. 

In [57] it was proved that the space C/~S/W of regular orbits of the 
action of the group W is a space of type K(x,1), where x is the generalised 
Brieskom braid group of the Weyl group W. If Wis a group ofWeyl type At, 
then x is the ordinary Artin braid group with k + 1 strands. 

Short dignflsion. Braid groups. 
To make our account more independent, we quote several definitions and 

results from the theory of braids. A more detailed exposition can be found in 
[57]. 

The graphico-geometric definition of a braid is that a braid is an object as 
depicted in figure 28. The braid consists of n non-intersecting strands in the space 
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R. 3, joining n fixed points on the lower base (line segment) with the same set of 
points on the upper base and going monotonically upwards from the lower base 
to the upper one~ Two braids are considered equivalent if one can be deformed 
into the other without losing monotonicity and without allowing the strands to 
intersect each other~ The braids can be multiplied, by placing one of them on top 
of the other (figure 29)~ With this multiplication, the braids of n strands (more 
precisely, their equivalence classes) form a group B(n). The identity of this group 
is the "untangled" braid, consisting of vertical line segments joining points in the 
upper and lower bases. The braid inverse to a given one is obtained from it by 

reflection in a horizontal plane. 

IJXI 
i i +1 

Fig. 28. Fig~ 29. Fig. 30. 

It is not hard to see that the braid group B(n) ofn strands is generated by n-1 
generators gl , ... , g. -1, where gi is the braid which 'crosses over" the ith and the 
(i+ 1)th strands (figure 30). These generators are connected by the relations 

gjgj=gjg, for li-jl> 1, and 

glgl+lgl=gl+lg,g'+l (i= 1, ... , (n -2)). 

It can be shown that the indicated generators and relations define the group B(n). 
To each braid there corresponds in an obvious way a permutation of n elements. 
Therefore there is a natural epimorphism of the braid group B(n) onto the group 
S(n) of permutations of n elements. The kemel1i(n) of this homomorphism is 
called the coloured braid group on n strands. A coloured braid is a braid such 
that each of its strands returns to the same point as it started from. 

A more formal definition of the braid group, which makes clear why it is 
valuable for problems in analysis, can be obtained in the following way. That 
part of the space R. 3 enclosed between the horizontal planes containing the lower 
and upper bases can be identified with the product 1 x «:: of the segment 1 = [0, 1] 
and the plane of complex numbers 4:. Under this identification, for each number 
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t e [0, 1], the braid gives rise in a continuous way to an unordered set of n distinct 
complex numbers. To 1=0 and 1=1 there correspond the same fixed set of 
numbers. In this way the braid group B(n) is identified with the fundamental 
group of the space of all unordered sets of n distinct complex numbers. In exactly 
the same way, the coloured braid group B(n) is identified with the fundamental 
group of the space of all ordered sets of n distinct complex numbers. 

Let C' = {(Xl>' .. , x"): X, e (;} be the space of ordered sets of n complex 
numbers, let S be the union of all hyperplanes, defined by the equations x, = xi> 

and let (;""",S be the space of ordered sets of n distinct complex numbers~ We 
have B(n)=1tl «;""",S). 

On the space (;", the group S(n) of permutations of n elements acts by 
permuting the coordinates. The space (;" / S (n) is the space of unordered sets of n 
complex numbers. It is isomorphic to an n-dimensional complex vector space. 
The isomorphism is established by associating with an unordered set of complex 
numbers (Xl, ... , X") e (;"/S(n) the polynomial p(X)=nr=l(X-Xj) with roots 
Xl, ... , X" (or its coefficients, which up to sign are the elementary symmetric 

functions 0'l>""0'" of the variables Xl>""X": O'l=Xl+"'+X""", 
O',.=XI· ... ·x,.). The space 'I:.=S/S(n) corresponds to the set of polynomials 
with multiple roots. In this way «;,"",-S)/S(n)=(;"/S(n)"'-..'I:. is the space of 
unordered sets of n distinct complex numbers; the braid group B(n) coincides 
with its fundamental group 1tl(C'/S(n)"'-..'I:.)~ 

There is a stronger result which asserts that the space «;"/S(n)"",'I:.) is a space 
of type K(1t, 1) for the braid group B(n) on n strands. This means that 

for k> L Since the space (;""",S is an (n I-fold) covering space of (C'/S(n)"",'I:.), 
the assertion about the space C/S(n)"",'I:. is equivalent to the assertion that the 
space (;,"",-S is a space of type K(1t, 1) (for the coloured braid group B(n) on n 
strands). 

For the proof of the last assertion, we consider the map of the space (;'""'-S 
= {(Xl>' .. , X,.) e (;":X, =FxJ} into the space {(Xl>"" x._I)e(;·-l :Xj=FxJ}, 
mapping the point (Xl' .•. , X"-l' X,,) into (Xl-.' .. , X"-l)~ It is easy to see that this 
map is a fibration with fibre (;"",{Xl,' .. ,X.-l}' Since the fibre of this fibration 
has trivial homotopy groups from the second one upwards, the required 
assertion is proved by induction on the dimension n~ 

The group S(n) of permutations of n elements is one of the finite groups 
generated by reflections. The action of the group S(n) on the space C' by 
permuting the coordinates is reducible. It decomposes into the direct sum oftwo 
actions: the action on the subspace (;,,-1, given by the equation XI + ... + X" = 0, 
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and the trivial action on the one-dimensional space Xl = ... =X". On the 
subspace C'-1 its action is just the usual action of the Weyl group of type A"-l, 
which is isomorphic to the group S(n) of permutations of n elements. The u,nion 
of all the mirrors, corresponding to the reflections in the group S(n), in the space 
C'-1 (which are hyperplanes given by the equations x,=Xj) and its quotient 
space under the action ofthis group we shall denote, as before, by Sand 1: (this 
need not cause confusion). We have 

(;""",S=«;"-l"",S) x (;t, 

(;"/S(n)"",1: =«;"-1 /S(n)"",1:) x (;1. 

Therefore 

and 

The description of the coloured Braid group B(n) and the braid group B(n) as 
fundamental groups ofthe the spaces (;"-I",,,S and (;"-l/S(n)",,,1: respectively 
prompts a generalisation of this definition. 

Let Wbe a finite irreducible group, generated by reflections, acting on the real 
vector space It" of dimension n~ The group Wacts also on its complexification 
C'. We can show that the quotient space (;"/W is isomorphic to a complex 
vector space of dimension n (see [53]). Let {Vi} be the set of all hyperplanes in the 
space It", the reflections in which belong to the group W, and let Via:: c (;" be their 
complexifications~ Outside the subspace S = Uj Via:: the group Wacts freely. Let 
'I:.=S/W. The fundamental group 

of the space (;./~1: is called the (generalised) Brieskom braid group of the 
group W; the fundamental group Bw = 1tl (C'"",S) is called the (generalised) 
coloured Brieskom braid group of the group W. There exists an exact sequence 

I.eanaa 3.1. The spaces C/~1: and (;""",S are spaces oftype K(1t, 1) (for the 

groups Bw and Bw respectively). 
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When the group W is of type An-l (the group of permutations of n elements) 
this lemma is already proved. We show how it can be proved when W is of type Bn 
(isomorphic to the groups of type e.) and D •. Naturally it is sufficient to prove 

the assertion of the lemma only for the space C'""S. 
When the group W is of type B., the mirrors of the reflections which belong to 

the group Ware the hyperplanes {XI ± xJ = O} and {XI =O} in the space G::n~ Using 

induction, we can suppose that the space 

is a space of type K(1t, 1). The natural projection 

G::n'\,..S={(Xt> ... ,xn)eG::n :xdXJ~O, XI#O} 

...... {(Xl'. ; .. ,xn_l)eC[,,-l : Xj±Xj#O, XI~O} 

is a locally trivial fibration with fibre 

Since the fibre of this fibration has trivial homotopy groups from the second 
upwards, we can deduce the required asssertion about the space «:n'\,..s. 

When the group Wis of type D" the mirrors ofthe reflections belonging to the 
group Ware the hyperplanes {Xj ± xJ= O} in the space G:: •. We consider the map 

G::~S= {(Xl' . .. ,Xn) e G::.: XI ±Xj~O} 

...... {(Yl , •.. ,Yn_l)eG::·- 1 :Yi~ YJ,YI#O}, 

given by the formula YI = ~ - xl. This map is a locally trivial fibration~ Its fibre is 
an affine complex curve and therefore has trivial homotopy groups from the 
second up. Just as for the space ~S, corresponding to the group oftype Bn , 

(by considering the projection C' ...... «:.-l) it can be proved that the base 

of this fibration is a space of type K(1t, n Therefore it follows that the space 
C''\,..S of this fibration is also a space of type K(1t,1). 

In the general case the lemma follows from the following general results of 
Deligne ([91 ]). Let us be given in the space Itn a finite number of hyperplanes JII. 
Let V;c:::> «:. be their complexifications. Let us suppose that all the components 
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of the complement of the union Uj Vj in the space It" are open simplicial cones 
(that is they have exactly n faces). Then the space G::n'\,..(Uj Vjc) is a space of type 
K(1t,1). From Theorem 3~8 and Lemma 3.2 follows~ 

Theorem 3.9. For simple singularities the complement D.'\,..'£. of the level 
bifurcation set is a space of type K(1t,1). 

o. Lyashko and E. Looijenga (see [234], [231]) proved that for simple 
singularities the complement of the function bifurcation set is also a space of type 
K(1t, 1), where 1t is a subgroup of index Il!N"IWI-1 in the Artin braid group on Il 
strands (here IWI is the order of the corresponding Weyl group and N is the 
Coxeter number, that is, in the language of singularity theory, the order of the 
classical monodromy operator) . 

The inclusion of the fundamental group 1tl (<<:" -1 '\,.. t.) of the complement of 
the function bifurcation set of a simple singularity into the braid group on Il 
strands is constructed in the following manner. The braid group on Il strands can 
be considered as the fundamental group of the space of polynomials of the form 

which do not have multiple roots. In the complex vector space «:ra) 1, with 
coordinates (00, at, ... ,a,,-2)' the points corresponding to polynomials with 
multiple roots form an algebraic variety B. Its complement is a space of type 
K(1t, 1), where 1t is the braid group on Ilstrands. To each point v of the base «:,,-1 
of the restricted miniversal deformation of the singularity I corresponds a 
function F(', v), a perturbation of the singularity f If each critical value is 
. counted as many times as its multiplicity, then in a neighbourhood of zero in the 
space G::. this function has exactly Il critical values~ The function bifurcation set 
t. of the singularity lis distinguished in the base G::" -1 of the restricted miniversal 
deformation by the condition that its points correspond to the functions F(', v) 
which have less than Il distinct critical values. In this way when vet. some 
critical values of the function F(', v) coincide. 

Let v be a point of the base «:,,-1 of the restricted miniversal deformation, let 
F(', v) be the function corresponding to it, let Z1" •• ,z" be its critical values in a 
neighbourhood of zero in the space C' (the values Zi are not necessarily all 

distinct), let 
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be their arithmetic mean and let z; = Z; - i (i = 1, ... ,,,,). Let 

be the polynomial of degree '" with roots 

Since 

,. 
L z;=O, 
;=1 

the coefficient of the monomial x"-1 in the polynomial py(x) equals zero. 
Therefore the polynomial py(x) belongs to the space t::f .. ) 1 of polynomials of type 

Setting in correspondence with the point v e (;II -1 the polynomial py(x) e t::f .. ) 1 
we obtain a map 

from the base of the restricted miniversal deformation to the space t::fi 1. The 
map t/I maps the function bifurcation set t. into the space B of polynomials with 
multiple roots, and the complement t::,.-1 "t. of the bifurcation set into the 
space t::f .. )I"B of polynomials which do not have multiple roots. Direct 
calculation shows that in the complement of the bifurcation set t. the mapping t/I 
is non-<iegenerate, that is it has rank equal to '" -1. The preimage of zero under 
the map t/I is the set of values ofthe parameter vet::,.-1 for which the function 
F(', v) has a unique critical value. It follows from the corollary to Theorem 3.3 
that it has a unique critical point. In this way the preimage of zero under the map 
t/I coincides with the stratum '" = const in the base of the restricted miniversal 
deformation. For simple singulanties (and only for them!) this stratum consists 
of one point v=O. Therefore it follows that the map 

is proper in a neighbourhood of zero and its restriction to the complement 
t::,. -1 "t. of the function bifurcation set defines a cover of the space t::f .. ) 1 "B 
of polynomials without multiple roots. So the complement of the function 
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bifurcation set t. of a simple singularity is a cover of a space of type K( x, 1), from 
which it follows that it itself is a space of the same type. Moreover the map t/I 
induces an inclusion of the fundamental group of the complement of the 
bifurcation set t. into the fundamental group of the space t::f .. ) 1 "B of 
polynomials without multiple roots, which is the braid group on '" strands. 

If p: E-+B is a cover then its group of covering transformations is the group 
Aut(p)={h:E-+Elh is a homeomorphism, ph(x)=p(x) for xeE}. It is not 
difficult to see that the group of covering transformations Aut (P) of the cover p 

is isomorphic to the quotient group 

where N(XI (E» is the normaliser of the subgroup Xl (E) in the group Xl (B), 

that is 

For simple singularities the group of covering transformations Aut (t/I) of the 

cover 

of the complement of the function bifurcation set over the space of polynomials 
without multiple roots, which we constructed above, is described in [220]. It is 
cyclic for all simple singularities except Al and D4 • Its order is equal to the 
Coxeter number of the corresponding Weyl group (or, which amounts to the 
same thing, the order of the classical monodromy operator) for singularities of 
type A,.(",=#: 1), D,.(JJ=#:4) and E6 , whilst for singularities oftype E7 and E8 it is 
half the Coxeter number. For singularities of type D4 the group Aut(t/I) is 
isomorphic to Z3 E9 S(3), where S(3) is the group of permutations of three 
elements, for singularities of type Al the group Aut(t/I) is trivial. 

In the real case, that is when we are considering a real miniversal deformation 
of a real singularity, E. Looijenga ([232]) proved that the complement of the level 
bifurcation set of a simple singularity has contractible components. These 
components are in one to one correspondence with classes of W -conjugate 
elements of the second order in the adjacent class Wn, where n e Nt W is some 
element of the second order, W is the corresponding Weyl group and N is its 
normaliser in the group of all linear transformations. The group Nt Wis the same 
as the group of automorphisms of the corresponding Dynkin diagram. 

O. V. Lyashko ([234]) described all decompositions of simple singularities, 
found in the base of its restricted miniversal deformation. Let h(x) (A. e (t::, 0» be 
a deformation of a singularity f: (C[", O)-+(t::, 0). We say that under the 
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deformation/A the singularity / decomposes into types 

X=(X ..... ,Xt ), 

where X; = (Xu, ... , XI},), if for values of the parameter A sufficiently close to 
zero (but different from zero) the function /A has (in a small neighbourhood of 
zero in the space C[II) k distinct critical values Zl, . •. , Zt, the critical value ZI being 
attained at jl critical points, at which the function /A has singularities of types 
Xu, . .. , Xij,. 

We shall say that the D-diagram E (with respect to a distinguished basis 
Ll1 , ••• , LI,,) decomposes into the types 

where E;=(Eu , ... ,EI},), if: 
(i) {EI} is a decomposition of the set of vertices of the diagram E into disjoint 

subsets, the vertices of each of the diagrams EI (basic vanishing cycles) being 
numbered in the diagram E by successive integers; 

(ii) the vertices of the diagram EI are joined to each other by edges of the same 
multiplicity as they are joined in the diagram E; 

(iii) Eij are the connected components of the diagrams EI U = 1, ... ,jl)· 
The decomposition of the singularity / into the types X = (Xl, . .. , Xt ) 

(X, = (Xu, ... , Xij,» is said to be compatible with the decomposition of its 
diagram E into the types (E1 , • •• , Et ) (E,=(EI1 , ••• ,Eu,», if for each i the set 
Ell , ... ,Eu, is the set of D-diagrams of the critical points XI1 , • •• ,Xu, corre­
sponding to the ith critical value. It is easy to show that if the singularity / 
decomposes into the types X = (Xl, . .. ,Xl), then there exists a distinguished 
basis {LI,} such that the D-diagram E of the singularity / decomposes into the 
types (E1 , ••• , EJ compatible with the decomposition of the singularity. 
O. V. Lyashko proved that for simple singularities we have also a converse 
assertion: if the diagram E of a simple singularity / with respect to any 
distinguished basis decomposes into the types (E1 , ••• ,EJ (E1=(EI1 , ••• ,E,},», 
then there exists a deformation of the singularity/for which the decomposition is 
compatible with the decomposition of the diagram E. 

For a more detailed description of all the decompositions of simple 
singularities see [234]. 

3.4 TIle /I=eoBStaDt strahml ad die tOJlOlolbl type of siDpIarity 

Deformations which preserve the multiplicity of a singularity must not change its 
topology in an essential way. 
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Indeed, when the number of variables n #: 3, I.e and Ramanujam ([209]) 
proved that under a deformation which preserves the multiplicity, the topologi­
cal type of the singular level set (more precisely, of the pair 

where B, is a ball of sufficiently small radius (! with centre at the critical point) 
will not change and the differential type of the Milnor fibration will not change. 
The restriction n #: 3 arises from the fact that the proof makes use of the 
h-cobordism theorem. At present it is not known whether this result holds for 
n = 3. There were proofs offered in the case n = 3, but later gaps were found 

in them. 
Timourian ([353]) proved that under a deformation with constant multiplicity 

the topological type of the function also does not change. This means the 
following. Let F(x, t) be a smooth - in t E It' - deformation of the singularity 

/:(C[",O)-+(c[,O) (F(x,O)=/(x» 

such that for any t the germ F(·, t) has at zero a critical point of one and the same 
mUltiplicity 1'= I'(f) with critical value equal to zero. Then there exist 
neighbourhoods U of zero in C[" x It', Uo of zero in C[" and D of zero in It' 
and a homeomorphism oc: U -+ Uo x D (oc(O, t) = (0, t», giving the commutative 

diagram 

U ~ UoxD 
!F !Jxld 

C[ t- C[xD 

(here 1t is projection onto the first factor). 
It is easy to show that along the stratum I'=constant the intersection maxtrix 

and the monodromy group of the singularity do not change. 
Other characteristics of the singularity, however, which have a "more 

analytic" character, can change. F. Pham showed ([285]) that under a 
deformation with constant multiplicity the topology of the level bifurcation set 
of the singularity, more precisely its decomposition into pieces in correspon­
dence with the singularities of the zero level set, can change. 

In order to construct such an example, we consider the singularity 
/(x,y) = r +x9, the multiplicity of which is equal to 16. Its miniversal 
deformation has a base of dimension 16 and is given by the formula 

F(x,y,u, v)=r +u(x)y+ v(x), 
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where 

U(X)=Uo+U1 X+ ... +U7 X7 , 

V(X)=VO+V1 X+ ... +V7X7 +.x9, 

U=(Uo,U1,' .. ,U7), V=(VO,Vb···,V7)' 

Let X = F- 1(0) c er18 be the zero level set ofthe deformation Fand let G : X -+er!~D 
be its projection onto the base of the deformation. Denoting by X·" the (analytic) 
set of points z e X at which the curve G -1 (G(z» has degree 3 (that is locally given 
by an equation belonging to the cube of the maximal ideal) and the order of 
contact ~ ex. It is not difficult to see that the set X·" consists of quadruples 
(x, y, u, v) for which y = 0, x is a root of the equation u(x) = 0 of multiplicity ~ 2ex 
and a root of the equation v(x)=O of multiplicity ~3ex. In particular 

X •• =X.3={(x,y,u,v):x=y=0, v=O, u,=O for i<6}. 

The projecti~n T·· of the set X·· into the base er!~D of the miniversal 
deformation has dimension equal to 2 and is the stratum J.l=constant in it. 

We consider the set T·S/3 = G(X·S/3). It consists of pairs (u, v) e er!~D such that 
the polynomials u(x) and v(x) have a common root of mUltiplicity 4 for u(x) and 

multiplicity 5 for v(x). The set 

can be represented as the union oftwo sets: X·S/3 and X'. Here X' is the set of 
quadruples (x,y, u, v) eer18, such thaty=O, x is a root of the equation u(x) =0 of 
multiplicity 3 and of the equation V (x) =0 of multiplicity 4 and in addition the 
polynimials u(x) and v(x) have another common root of multiplicity 4 for u(x) 
and 5 for v(x). The intersection X" of these two sets X$S/3 and X' (more precisely 
of their closures) consists of quadruples (x,y, u,v)eer18 such that y=O, x is a 
root of multiplicity 7 for the equation u(x) =0 and a root of multiplicity 9 for the 
equation V (x) =0. From this it follows that v=(vo,.·· ,V7)=0, x=O and 
110 = ... = '4; = O. Thus the set X' lies in the set X·· but does not coincide with it. 
It means that the sets X·" approach different points of the set X·· in different 
fashions and it also means that the level bifurcation set changes along the 

stratum T·· (J.l=constant). 
It is not difficult to see that X$4/3 is the set of points z e X in which the curve 

G -l(G(Z» has a singularity of type E6 , X·S/3 is the set ofpointszeXin which the 
curve G- 1(G(z» has singularity type E8 • Therefore G(X,) is the set (more 
precisely its closure) of those values (u, v)eer!~D' for which the curve G-

1
(u, v) 
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has two singularities of types E6 and E8. The constructed reasoning shows that 
the stratum of the level bifurcation set, consisting of points in which the 
corresponding function has singularities of types E6 and E8 on the zero level set, 
changes (simply disappears) along the family J.l=constant (T··) of the 
singularity xl + x9

• 

S. M. Gusein-Zade and N. N. Nekhoroshev ([153J) gave an example of a 
deformation of constant multiplicity of a homogeneous polynomial of degree 22 
in two variables, along which the largest k such that an At singularity adjoins the 
given one changes. 

There was a conjecture, that in the base of the restricted miniversal 
deformation of a singularity the J.l = constant stratum, that is the set of values of 
parameters for which the corresponding function has a critical point of the same 
multiplicity as the initial singularity, is a non-singular manifold. A. M. Gabrielov 
proved ([117]) that the dimension of this set is equal to the modality of the 
singularity. 

The conjecture about the smoothness of the J.l = constant stratum is proved for 
the case where the number of variables n =2. This was first proved, apparently, 
by J. Wahl, 1971. As regards this see [56J, see also the article by Teissier [349J. 
I. Luengo has shown that this conjecture doesn't take place for n = 3. 

3.5 The resoIutioo of a singularity and some properties 
of the classical mooocIromy operator 

A useful instrument for studying the topology of a singularity is its resolution. 
Let I: (er", O)-+(er, 0) be a singularity, that is the germ of a holomorphic 

function with an isolated critical point at the origin. 

DefiDitioo. The resolution of a singularity 1 is a proper analytic map 

on a non-singular complex manifold Y such that: 
(i) the map 1t1~Yo is an analytic isomorphism: Y"Yo-+er""o (or from a 

neighbourhood of the space Yo in Y to a neighbourhood of zero in £-); 
(ii) the subspace Yo = 1t -1 (0) of the space Yis the union of non-singular (n -1)­

dimensional manifolds (divisors) in Y which are in general position; 
(iii) in a neighbourhood of any point of Yo = 1t -1 (0) there exists a local system 

of coordinates y1' ... ,y" such that 

101t(Yh'" ,y.)=yt, ..... ~ .. ; 
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and the Jacobian of the map 1t is equal to 

where g(O, ... ,0)#=0. 
The existence of a resolution of any singularity is a consequence of a theorem 

of Hironaka ([158]). In the case when f is a function of two variables, its 
resolution can be constructed with the help of some successive u-processes (see 

[328], and also § 4.3) at singular points. 
Many topological characteristics of a singularity (for example its multiplicity, 

the characteristic polynomial of its classical monodromy operator and others) 
can be expressed in terms of the topological characteristics of the divisors which 
are glued in during the resolution of the singularity~ Before formulating the 

corresponding results we introduce several concepts. 
The c/uuacteristic polynomial p/(z) (of the classical monodromy operator) of a 

singularity f is 

det (z . id -h.IH._,(Vj) 

(where V. is the non-singular level manifold of the singularity f). The roots of the 
characteristic polynomial p/(z) are the eigenvalues of the classical monodromy 

operator h. of the singularity. 
We can also express, in terms of the characteristic polynomial P ,(z) of the 

singularity J, the determinant det S of the intersection form in the homology 
H,,-l(V,;Z) of the non-singular level manifold of the singularity f It is an 
invariant, since the determinant of a change of basis of the integer lattice 
H,,-l (V, ; Z) is equal to ± 1. The determinant of the intersection form is the same 

as the determinant of the matrix of the operator 

If detS+O then it is equal, modulo the sign, to the order of the group 

We have 

detS=det( - Var-1 +( -1)"(Var-1)1) 

=( _1)",,(,,+1)f2det( -id+( _1)"Var(Var- 1)T) 

=( _1)""(,,+1)/2 det ( -id+h.)=( _1)"(11-1)(11-2)/2 P,(1). 
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Sometimes instead of the characteristic polynomial of the singularity it is more 
convenient to use what is called the C-function of the classical monodromy 
transformation h of the singularity. Firstly, it usually gives more beautiful 
solutions and, secondly, the C-function of the monodromy is defined also for 
non-isolated singularities, whilst the characteristic polynomial becomes practi­
cally meaningless. Many of the following results hold also for non-isolated 
critical points, but we shall not specially specify these. 

Definitioa. The C-function of the transformation 9 : X -+ X of the topological space 
X (for definiteness a finite CW complex) is the rational function 

In this definition the zeroth homology of the space X is taken into account, 
that is we do not suppose that the homology is reduced modulo a point~ The 
definition also makes sense for a pair of spaces (X, Y) and a transformation 
9 : X -+ X carrying the subspace Y into itself. In this case the action of the 
transformation 9 on the relative homology H,,(X, Y; It) figures in the formula 

for the (-function. 

Definitloa. The (-function of the monodromy of the singularity fis the C -function 
of the classical monodromy transformation h of the non-singular level manifold 

V, of the singularity f into itself. 
For isolated singularities we have H,,(V,)=O for q+O, 11-1. Consequently 

from which 

where Jl is the multiplicity of the singularity. Thus the characteristic polynomial 
P ,(z) and the C-function CAz) of a singularity can be derived from each other. 

It is easy to see that the degree of the rational function C,(z) (equal to the 
degree of the numerator minus the degree of the denominator) is equal to the 
Euler characteristic X(V.) of the non-singular level manifold Va· 
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The following result allows us to derive the (-function of a singularity from the 
topological invariants of the divisors which are glued in during its resolution~ Let 

be the resolution of the singularity f, let SIll be the set of points of the space Yo, in a 
neighbourhood of which the functionJ 011: in some local system of coordinates 
has the form x': (clearly the intersections of the glued in divisors do not enter into 

the set S .. ). 

Theorem 3.10 (N. NCampo [5]). 

Jl(V.)= L mx(S .. ), 
.. ;l=l 

(f(Z)= n (l_z"')X(SM). 
",;;'1 

For the proof we use .the property that ifthe transformation h : X -+ X preserves 

the subspace Y, then 

where hx,hy,h(x,y) are the transformation hconsidered on the corresponding 

spaces (or pair of spaces)~ There exists a map 

(the contraction of the non-singular fibre onto the singular one) for which points 
from S .. have m preimages, the preimage of the intersection of any k of the glued­
in divisors is a fibration whose fibres are (k -1 )-dimensional tori. The classical 
monodromy transformation h can be considered to be compatible with this map 
in the sense that it preserves preimages under the map cP of points of the space 
(f 011:) -1 (0), its action on it being trivial. Over the points of the set S", the 
transformation h carries out a cyclic permutation of preimages. The ,-function 
of a cyclic permutation of m points is equal to (1 - z"'). From this it follows that 
the (-function of the classical monodromy transformation h, restricted to the 
preimage cP- 1 (S".) of the set S", is equal to (l-z"'yls",). Over the points of 
intersection of the glued-in divisors the transformation h is represented as 
diffeomorphisms of tori which are shears and therefore do not contribute to the 

,-function. 
The idea of this construction is due to Oemens ([77]). 
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Fr~m the formula for the ,-function of a singularity, introduced in Theorem 
3~1~, It follo~s that ~l the eigenvalues of the classical monodromy operator of 
an ISolated sIngulanty are roots of unity of various degrees~ Therefore some 
power N of the classical monodromy operator has all its eigenvalues equal to 
o~~~ We ~ take for N a number which is divisible by the multiplicity m of all the 
diVisors which are glued in during the resolution~ In this way we obtain 

TbeoreIIl3.11. The operator (hZ -id) is nilpotent, that is (hZ - idt = 0 for some k. 

This theorem is due to Brieskom ([55]), Katz ([181]) and a number of other 
autho~. Its generalisation to the case of the germ of an analytic function on an 
analytic sp~, ~ level sets of which can have singularities, was obtained in [207]. 
~y conslden~g the resolution of an isolated singularity we can obtain an 

estlI~late o~ the s~e of the index k, which, as it is not difficult to see, is equal to the 
maXl~al dimenSion of the Jordan blocks of the classical monodromy operator. 
For this we take the map £u-+£", mapping u to Z =~ and consider over £ the 
family ofm~nifolds, induced from the family {(f01l:)(x)=z} over £z via-this 
map. ResolVIng the fibre over zero, we obtain a gluing in which all the divisors 
come with multiplicity 1 (that is Sill = 9 for m > 1). The monodromy operator 'Ii 
of ~his family is equal to hZ . Let Zj be that part of the fibre over zero, which is th; 
umon of all i-fold intersections of glued-in non-singular divisors. We have 

Z1 =(f01l:)-1(0)=>Z2=>Z3=>'" =>ZII=>ZII+1 =9. 

As befor:e w.e have a ~ap f~om the non-singular fibre into the singular fibre at 
zero: w~ch IS co~patlble With the monodromy transformation. It can be proved 
that If a IS a cycle In the non-singular fibre which lies in the preimage of the set Z 
then the cycle .1i~a -a is homologous to a cycle lying in the preimage of the ~~ 
Zi+1' From this It follows that ('Ii. -id)"=O, that is that(hZ -id)"=O. In this way 
we can take as the index k in Theorem 3.11 the number of variables nand 
cc.>nseq~ent1y the Jordan blocks of the classical monodromy operator h. have 
dnnenslon no larger than n x n. Thus we have proved. 

Theorem 3.11. The dimensions of the Jordan blocks of the normal form of the 
classical monodromy operator h. of the singularity 

J: (C, 0)-+(£, 0) 

of a function of n variables does not exceed n x n~ 
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For example if 1 is a singularity of a function of two variables, then the 
maximal possible dimension of the Jordan blocks of its classical monodromy 

operator is two. For the singularity 

I(x, y) = (.xl + y) (.xl + r) 

it is indeed equal to two. We can show that the classical monodromy operator of 
the singularity is not diagonalisable in the following way. The quadratic form of 
the singularity 1 can be found by the method of Chapter 4. In §4.4 it will be shown 
that it has the following indices of inertia: the positive index of inertia p + = 1, the 
zero index ofinertia Po = 1, the negative index of inertia p- = p - 2 = 9~ From the 
formula of Picard-Lefschetz it follows that the eigenvectors of the classical 
monodromy operator h. of the singularity corresponding to the eigenvalue 1 are 
elements of the space H" -1 (V.), orthogonal in the sense of the intersection form 
to all the vanishing cycles of the distinguished basis {.!ttl, and, consequently, to 
all the elements of the space H"-1(VJ~ In this way for the singularity of the 

function 

!(x,y, t)=/(x,y)+r 

the subspace of vectors aeH
rt

- 1(VJ satisfying the condition h.a=a is one­

dimensional. For the characteristic polynomial PJ(z) we have 

PJ(Z) = det (z ·id-h.)=det(z ·id-L -1L1) 

=det (zL + L1) = det (zLT +L) 

Consequently PJ(z) is a reflexive polynomial of degree p (the coefficients of the 
monomials zY and zI' - Y coincide)~ The multiplicity of unity, as a root of a reflexive 
polynomial is always even~ Therefore the space of elements of the homology 
group H

2
(VJ of the non-singular level manifold of the singularity!(x,y,t) 

associated with the eigenvalue 1 of the classical monodromy operator h. has 
even dimension and consequently does not coincide with the space of 
eigenvectors with eigenvalue 1~ In its turn the classical monodromy operator of 
the singularity I(x,y) is obtained from the classical monodromy operator of the 
singularity !(x, y, t) multiplied by -1 and therefore is also not diagonalisable, 
namely it has a Jordan block of dimension 2 x 2 corresponding to the eigen-

value -1. 
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Steenbrink ([343]) proved that the dimension of the Jordan block of the 
normal form of the classical monodromy operator of the singularity 
1:(4::",0)-+(4::,0), corresponding to the eigenvalue 1, does not exceed (n-1) 
x (n -1)~ See also § 13.2.5~ 

For a quasihomogeneous singularity I: (C, 0)-+(4::, 0) the germ of 1 belongs 
to its Jacobian ideal 

the classical monodromy operator h. has finite order, that is it is diagonalisable. 
Briancon and Skoda ([54]) proved that for an arbitrary singularity 1:(4::-,0) 
-+(4::,0) in n variables the nth power of the germ/belongs to the Jacobian ideal 'I. As we made clear above, the dimension of the Jordan blocks of the classical 
monodromy operator h. does not exceed n x n. Arising from these considera­
tions, Scherk ([316]) conjectured that if the kth power of the germfbelongs to the 
Jacobian ideal 'I' then the dimension of the Jordan blocks of the classical 
monodromy operator of the singularity 1 does not exceed k x k. In [317] he 
proved this conjecture. In this regard see also Theorem 14.19 in § 14.3.5. 

There is a way of constructing the resolution of a singularity using its Newton 
diagram (the so-called toral resolution). For almost all functions with a given 
Newton diagram it indeed leads to a resolution of the singularity. The 
construction of this resolution can be found in [358]. See also Chapter 8. 

Arising from this and Theorem 3.10, a description is obtained in [359] ofthe 
{-function (or the characteristic polynomial) of the classical monodromy 
operator of a singularity from its Newton diagram. 

Let reN" be a Newton diagram (N is the set of non-negative integers). 
The {-junction 01 the diagram r is the function 

" (r(z) = n ({'(Z»(-1)'-l, 
1=1 

where the polynomials {'(z) are defined below (they are defined by the 
intersections of the diagram r with all possible l-dimensional coordinate planes 
in the space llrt). 

If L is an l-dimensional affme subspace in the space art such that L 1"1 N" is an 
l-dimensional integer lattice, then we shall adopt the convention that the 
l-dimensional volume of the parallelepiped spanned by any basis in LI"IN- is 
equal to one. For a set Ie {1, ... ,n} with the number of elements # 1=1 we put 
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Let TJ(I)(j= 1, ... ,j(I) be all (/-1)-dimensional faces of the polyhedron LI f"lT 
and let LJ(l) be the (/-1 )-dimensional affine subspaces in which they lie. The 
quotient group of the lattice N- f"I LI by the subgroup generated by the vectors of 
N- f"I L J(I) is cyclic. Let us denote its order by mj(I). Let Jj(I) be the (/-1)­
dimensional volume of the face TJ(I) in the space LJ(I). We remark that 
mj(I) (I-I)! Jj(I) is equal to the product by I! of the 1 dimensional volume of the 

cone over TJ(I) with vertex at the origin. 
Let us put 

J(n 
('(Z)= n n (1_z"'J(Il)(I-l)!YJ!l). 

I:lH=1 j=l 

Theorem 3.13. For almost allfunctions/: (C, O)-(ct, 0) with NewtondiagramT 
the (-function of the classical monodromy operator of the singularity/coincides 

with the (-function of the diagram T. 

The condition identifying the set of functions for which the assertion of 
Theorem 3.13 holds can be expressed by means ofthe coefficients which enter in 
the expansion ofthe germ ofJin monomials lying in the Newton diagram T (see 
Chapter 8). Generally speaking, it can happen that all functions with Newton 
diagram T have non-isolated singularities. Nevertheless Theorem 3.13 remains 

correct. 
Since the degree of the (-function of the monodromy operator of a singularity 

coincides with the Euler characterstic of its non-singular level manifold there 
follows from Theorem 3.13 a result of A. G. Kushnirenko ([195]), expressing the 
multiplicity of a singularity in terms of its Newton diagram. 

3.6 The lIlORCMIromy group .... 6ItiDguisbed INIses 
of simple siDgularities 

A most effective description of the monodromy group exists for simple 
singularities, that is for singularities which do not have a continuous modulus 
(see Volume 1, Chapter 15). Just as for any singularity, we have here two distinct 
cases: singularities with an odd number of variables and singularities with an 
even number of variables. In the flfSt case the Picard-Lefschetz operator is 
reflection in a hyperplane, orthogonal in the sense of the intersection form to the 
corresponding vanishing cycle; the monodromy group is a group generated by 
reflections; In the second case the description of the Picard-Lefscbetz operator is 

more unusual; 
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As is well known, the monodromy group of a singularity is defined by its 
i~tersec~i~n matrix with respect to a weakly distinguished basis. For simple 
smgulanties we get the following result. 

~ 3.14. For the simple singularities Ak (.xl+ 1+:Elf), Dk(ry+yk-l 
+ :Eli), E6 (xl + y4 + :Elf), E7 (xl + XT + :E#), Es (xl + r + :Elf), there exist 
distinguished bases of vanishing cycles, in which the D-diagrams coincide with 
the classical diagrams of the corresponding Lie algebras of the same names 
(figure 31). The monodromy groups of these singularities with an odd number of 
variables are finite and isomorphic to the Weyl groups of the corresponding 
algebras. 

A~ __ ............... 0--... _. 
D ••• _ • < I 

£, E, 
a • I . · · I . . . . 

Fig.31. 

For a description of the classical Weyl groups see [53J. 
For a singularity of type Ak Theorem 3.14 was proved in §2.9. For the rest of 

the simple singularities the proof, based on the fact that all these singularities 
are stably equivalent to singularities of functions of two variables, will be 
constructed in §4.1. 

A method of constructing D-diagrams of simple singularities with an odd 
number of variables directly from the monodromy group was found by McKay 
([253]). 
~e denote by My) and My) the monodromy groups of singularities, stably 

eqwvalent to/, with an odd and an even number of variables respectively. The 
ge~rators of the groups MY) and My) are transformations of the integer 
lattice, defined by the formula of Picard-Lefschetz. These transformations 
coincide modulo two. Consequently, the corresponding groups of transforma­
tions of the homology H.-l(V.;~) of the non-singular level manifold with 
coefficients in ~ (H. -1 (V. ; ~) ~ (Z2)") are identical. Therefore there is one 
mo~odromy group MJ2 of the singularity modulo two, acting on the binary 
lattice (~)"; There are defmed natural epimorphisms 
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induced by the homomorphism Z-+Z2' Consequently, the monodromy group 
Mj2 in the homology with coefficients in Z2 is a quotient group of the group MY') 

and also of the group M(t· 
For simple singularities a description ofthe group Mj2 follows from the fact 

that the kernel of the homomorphism 

is either trivial (in which case Mj2~MY') or contains ±id, where id is the 
identity transformation (in this case Mj2~MY')/Z2)' The kernel of the map 

coincides with the group Z2 if and only if the monodromy group MY') of the 
singularity I with an odd number of variables contains the transformation which 

is multiplication by -1. 
For simple singularities with an even number of variables the monodromy 

group M'l is described by the following result. 

TbeoreIIl3.15 (A. N. Varchenko, S. V. Chmutov [72]; see also [6], [397)). For 
simple singularities with an even number of variables the monodromy group 
coincides with the group of all linear operators 9 on the integral lattice 

satisfying the following three conditions: 
(i) the operator 9 preserves the (skew-symmetric) intersection form of the 

singularity; 
(ii) the restriction of the operator 9 to the kernel of the intersection form (that 

is to the set of vectors orthogonal to all the elements of the lattice Z") is the 

identity transformation; 
(iii) the operator g, reduced modulo 2, belongs to the monodromy group MJ2 

in the homology with coefficients in the group ~. 
The necessity of satisfying conditions (i)-(iii) for any (not necessarily simple) 

singularity is obvious. For a singularity I of a function of two variables the 
dimension of the kernel K of the intersection form is equal to r -1 where r is the 
number of irreducible components of the germ of the curve {J == O}. Therefore 
for simple singularities we have: dimK==O for the singularities Ala, ~, Ea, 
dimK=1 for the singularities A2,+1' D2 ,+1' £., and dimK==2 for the singu-

larities D2 •• 
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In [74) a generalisation was obtained of Theorem 3.15 to the case of an 
arbitrary singularity. By Frobenius' theorem (see [243)) we can choose in the 
integral lattice 

Z"=H"-I(J~;Z) 

with antisymmetric intersection form an (integral) basis 

e1o'" ,e",h,··· ,I", g1o'" ,g, 

(2n+l=Jl(f) such that 

(eiojj)=~, (eiojj)=O for i=Fj, 

(e; 0 ej) = (jj ojj) = (g; 0 gi) =(ei 0 gi) = (jj ogj) =0, 

the integer 1; dividing the number Ai-I (i=2, ... ,n). The sequence of numbers 
Al , ... ,A." is defined uniquely. 

Analogous to the monodromy group MJ> in the homology H,,-1 (V. ; Z2) with 
coefficients in Z2, we can define the monodromy group MJk in the homology 
H,,-1 (V. ; ZJ with coefficients in the cyclic group Zt. In the following result a 
special role will be played by the case k = 2Al, where the integer Al was defined in 
the previous paragraph. 

~ ~16. The monodromy group My) of an isolated singularity of a 
function With an even number of variables coincides with the group of all linear 
operators 9 on the integral lattice 

satisfying conditions (i) and (ii) of Theorem 3.15 and also the following 
condition: 

(iii)'. the operator g, reduced modulo 2A.l belongs to the monodromy group 
MJ21. In the homology with coefficients in Z21,. 

For all singularities of functions of two variables Al = 1 ([74). 
. w. Ja?ssen obtained a generalization of this result of Chmutov for complete 
Intersections ([172), [173]) and gave a classification of skew-symmetric vanishing 
lattices. G. Dyuta has transferred the results of Chmutov to the case of boundary 
singularities ([171)). 
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In § 3.3 it was indicated that the problem of describing all decompositions of 
simple singularities, encountered in the base of the restricted miniversal 
deformation, reduces to the problem of describing all of its D-diagrams with 
respect to distinguished bases. From this the problem naturally arises of 

describing all distinguished bases of a singularity. 
Let I: «(;",0)_«(;,0) be an arbitrary germ of a function, with an isolated 

critical point at zero, let..11, ... ,..1" be a distinguished basis of vanishing cycles in 

the homology group 

of the non-singular level manifold. With respect to such a basis the variation 
operator V ar f of the singularity I is represented by an upper triangular matrix 
(§ 25). The classical monodromy operator h. of the singularity lis the product 

hi O ••• 0 h" of the Picard-Lefschetz operators hi 

corresponding to the variishing cycles ..11,· .. ,..1" (ibid.). 
It can be shown that for simple singularities there is also a converse result~ 

Theorem 3.17 ([151)). Let ..11, ... , .1" be a basis of the homology group 

of the non-singular level manifold of a simple singularity f We suppose that with 
respect to the basis ..11 " .. , ..1" the variation operator V ar f of the singularity I is 
represented by an upper triangular matrix. Then .11,· .. , .1" is a distinguished 

basis of vanishing cycles~ 

Theorem 3.18. Let .11" .. , .1" be a basis of vanishing cycles in the homology of 
the non-singular level manifold of a simple singularity f Let us suppose that the 
classical monodromy operator h. of the singularity fis the product hi 0 •.• 0 h" 
of Picard-Lefschetz operators corresponding to the vanishing cycles ..11 , ... , ..1". 

Then .11, ... ,..1,. is a distinguished basis of vanishing cycles~ 

The proof of Theorem 3.18 is contained in letters ofP. Deligne to E. Looijenga 
(1980, not published). For the proof of this, and other assertions, the following 

result is used which is of interest in its own right. 
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~tf: «(;",0)-«(;,0) be a simple singularity in an odd number of variables n, 
letf:. U -(; be a small Morse perturbation of it, defmed in a neighbourhood U of 
zero m the space (;", let ZI,' •• ,z" be the critical values of the function], let z be a 
non-critical value, such that ' 0 

IZil < IZol (i = 1, ... , Jl) 

and let ..1 be an arbitrary vanishing cycle in the homology of the non-singular 
level set l'zo of the function 1 

Lemma 3.3 ([151]). The cycle .1 is a vanishing cycle along some non-self­
intersecting path u, joining some critical value Zi of the function 1 with the non­
critical val~e ~o ~nd l~ing wholly inside the circle Izi < IZol (with the exception of 
the end comclding With the non-critical value zo). 

In the formulation of this result an essential c~ndition is thatfis a function of 
an odd number of variables and also that the path u lies inside the circle Izi < IZol. 
In the case when f is a singularity of a function of an even number of variables 
t~e ~s~rtion ofr:emma 3.3 is not true. Ifwe relax the requirement that the path ~ 
li.es mSI~e ~he Circle Izi < IZol then the lemma becomes trivial (true for any 
smgulanty m any number of variables) and without content. Lemma 3.3 is 
equivalent to the following assertion. 

Lemma 3.4. There exists a distinguished basis of vanishing cycles ..11 , ... , .1" in 
the homology of the non-singular level manifold of a singularity I with the first 
element ..11 coinciding with the vanishing cycle ..1. 

It is not known whether there are analogous theorems to Theorems 3.17 and 
3.18 and to Lemma 3.3 for singularities which are not simple. 

3.7 The poIu cane and the intersection matrix of a singularity 

Results were obtained in the work [119] relating the intersection matrix of an 
isolated singularity f: «(;II, 0)-«(;, 0) with the intersection matrix of one of the 
singularities f+z2 or 11%=0 and the invariants of the polar curve of the 
singularity I relative to the linear function z. They allow us to determine the 
intersection matrices for a large number of singularities and are also useful for 
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proofs of assertions about intersection matrices of singularities, using ind~ction 
on the dimension n (such an inductive argument was used, for example, 1D [74] 
for the proof of Theorem 3.16 of § 3.6). The present section contains a brief 
exposition of the results of the work [119]. The polar curve of a singularity arises 
also in other problems. A more detailed exposition of the theory of polar curves 

can be found in [350]. 
Let I : (C[II, O)~(C[, 0) be the germ of a holomorphic function with an isolated 

singularity at zero, let z: C[" ~C[ be a linear function. We consider the germ of the 

map 

(J,z): (C[II, 0)~(C[2, 0). 

The set of critical points of this map is the germ of an analytic space. We denote 
this by r,,(/). It is not difficult to see that r,,(/) is the germ of a curve, that is 
dimr,,(/)= 1. This follows, for example, from the fact that the critical points of 
the map (J, z) are critical points of all functions of the forml -sz (£ e C[), and each 
of the functions I - sz has (in a neighbourhood of zero in the space C[") a finite 

number of critical points. 

DefiDitioL The curve r" (f) is called the polar curve of the singularity I relative to 

the linear function z. 
Another (equivalent) way of describing the polar curve r,,(f) is the following: 

the curve r" (f) consists of all points x e C[" in which the tangent space of the level 
set of the function I (passing through this point) is parallel to the fixed 
hyperplane {z=O}, that is all points xeC[1I in which the differential dl is 

proportional to the differential dz. . 
Let r,.(/)=Uiri be the decomposition of the germ of the curve r,,(/) l~to 

irreducible components. As we have seen, the critical points of the function 
(/ _ sz) lie on the curve r" (f) for all £; Let Jli be the number of critical points of the 
function/-sz (£#0) lying in the component Ii (counted with their multipli-

cities). It is clear that I'(f) = 'I:.iJli· 
The critical points of the function/l. =. (on the hyperplane {z = £} c: C[") also lie 

on the polar curve r,,(f); Let Ii ¢. {z = O}, let 11, be the number of critical points of 
the function II,,:. (£#0) lying in the component r, (counted with their 
multiplicities). If the function II" -0 has an isolated critical point at zero, then no 
one of the components Ii lies in the hyperplane {z=O} and 1'(/1,._0)=1:,1Ii. 

If Ii¢. {z=O}, then/lr.¥O. Indeed, if/lr.=O, then 

d/lr.=O, dzlr.=O, zlr.=O. 
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On the curve Ii the functionl can be expanded in a series of (fractional) powers 
of z (this expansion coincides with the Puiseux expansion of the image of the 
curve Ii under the map 

(J, z): (C[", 0)~(C[2, 0), 

see§4.3). Leta,z'I' be thefirstterm of this expansion (a, # 0). We have IX, > 1. This 
follows from the fact that as £~O the roots of the equation/:=£ (defining the 
critical points of the function (/ - sz» must tend to zero. If Ii c: {z = O} (in this 
case the function/l"=0 has a non-isolated critical point), then/lr. =0. In this case 
we shall suppose that IX, = 1. 

Lemma 3.5. If (x, > 1 then 

Proof. If IX, > 1, then r,¢{z=O} and 

We suppose that the components Ii enter into the polar curve r,,(/) with 
multiplicity one; This means that the critical points ofthe functionl -sz (£#0), 
lying in the component Ii, are non-degenerate. In the opposite case the proof 
must be altered somewhat. We write down the Puiseux expansion of the image of 
the Ii under the map (J,z):(C[",0)~(C[2,0) in the form 

Z=Z(I)=li , 1= 1(1)=a,I"'+ ... 

(a series of integer powers of the variable I), where 1 is a uniformizing parameter. 
We have IX, = m/k. The number Jli is equal to the number of (non-zero) roots of 
the equation j,' -sz;, tending to zero as £~O. The number 11, is equal to the 
number of roots of the equation Z(I)=£. It is clear that Jli=m -k, 1I,=k, and 
hence 

J.tJ1I,=(m -k)/k = IX, -1, 

which is what we were trying to prove; 
Knowledge of the polar curve of a singularity allows us to observe the 

behaviour of the critical points and critical values for perturbations of a special 
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form. For example we consider a small perturbation 

F,=!+(z-e'f 

of the function! + z2~ The critical points of the fu~~on Fa .lie on t~e p~laro:~: 
f th . gul 't f We consider those cntlcal pomts which lie 

rz(f} 0 e sm an y . be determined from the 
component r l and tend to zero as e-O. They can -

equation (FJ;lr, =0. We have 

ajllji"-l + 2(z _e)+o(t',-l)=O. 

For Ill> 2 it follows from this that 

z=e+O(£",-l), F, = ai£'" +0(£"'). 

The number of such critical points is equal to VI' 

For 1X1=2, al-:f: -1 we have 

z=e/(al+ l)+o(e), Fa=e2al/(aj+ 1) + o (e2). 

The number of such critical points is also equal to VI' • • h 
For IX <2 we have to a first approximation!:=2e, which IS the same as

f 
t he 

I .' ~ +: (f-2u) The number 0 suc equation defining the CritiCal pomts of the lunc"on . 
critical points is equal to Jl.i. We have 

Therefore Fa=e2 + o (e2). 
From this follows 

Lemma 3.6. If QI-:f: -1 for 1Xj=2, then the Milnor number J.t(f+r) of the 

singularity! + r is equal to 

Corollary. 

J.t(f+r)~J.t(f\' ... o); 

J.t(f+r)=J.t(fI., .. o) if and only if 1Xj~2 for all i. 
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It is not hard to show that if!errf, that is if the Taylor expansion of the germ! 
does not have terms of degree < k, and if the linear function z is chosen in general 
position then Ill~k for all i. 

In order to determine the intersection matrix of the singularity J, we need to 
know the intersection matrix of the singularity (f + r) with respect to a 
distinguished basis of a special form. We describe this basis. Let A be the set of all 
distinct values ofthe index Ill~ From the asymptotics of the critical values of the 
perturbation 

F,=!+(z-e'f 

of the function! + z2 described before Lemma 3.6, it follows that for sufficiently 
small e -:f: 0 we can choose positive numbers r~ and r; for Il = 2 and for Il E A, Il > 2 
with r; < r;' for IX > p, such that the critical values of the function F, at the critical 
points belonging to the component Ii with IXj = IX > 2 are contained in the annulus 

and the critical values of the function F, at the critical points belonging to the 
component r l with IXj = IX ~ 2, are contained in the annulus 

{u:r2 < lui < rl}· 

Let u(r) be a continuous monotonic decreasing function such that u(r)=IX-l 
for r~~r~r;~ We let 

VIII = {u: argu+21tu(lul)~1t(2m -1)}, 

where m=1,2, ... , -1t~argu~1t. We suppose that (-al)"¢R.+, where 
IXj =Pl/qh (Ph qi)= 1 (R.+ is the positive half-axis). In this case the critical values 
of the function F, do not belong to the half-axis R._, nor to the boundaries of 
the regions VIII' We consider a system of paths joining the critical values of the 
function F, with the non-critical value 0, which defines the distinguished basis of 
vanishing cycles in the homology of the non-singular level manifold of the 
singularity! + r. We require of this system of paths that all paths intersect the 
half-axis R._ only at zero and that all paths leading from those critical values of 
the function F, which belong to the region VIII are themselves contained in VIII' In 
particular, we can choose, as such a- system of paths, a system of line segments 
joining the critical values of the function F, with zero. One of the principal results 
of the work [119] is the following. 
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TbeoI'eIIl 3.19. Let {Ai} be the distinguished basis of vanishing cycles for the 
singularity 1+ z2, defined by the system of paths described above. !hen: . 
1. There exists a distinguished basis of vanishing cycles {Aj} for the s18gulanty I 
with the following intersection numbers: 

(AjoAj')=(m' _m),,-l for 1m' -ml=1, 

(AjoAjr)=( -1),,(A
J
oAj') for 1m' -ml=1, (m' -m)U' -))<0, 

(AjoAy')=O for 1m' -ml> 1 or (m' -m)U' -))>O~ 

Here the pair (m,)) is admissible (that is there corresponds to it a vanishing 
cycle AT) if and only if the cycle A J vanishes along a path contained in V ... 
2. Aj=-!h.Aj-l for m> 1, where h. is the classical monodromy operator ofthe 

singularity f . 
3. The condition of admissibility of the pair (m,)) can be reformulated 18 the 
following way: for each i the ftrSt 1', pairs from (m,)) are admissible, where the 
cycle A J vanishes at a critical point belonging to the component Ii of the polar 

curve r.(f). 

There are analogous links between the intersection matrices of the sin~a­
rities/and/l.-o in the case when/la=o has an isolated singularity: !he functton 
G.= 11.=. is a small perturbation of the singularity fI.=o. The cntlcal values of 
the function G. at the critical points belonging to the component r" are equal to 

as s-+O. Consequently, for sufficiently smalls we can choose positive numbers r~ 
and r: for all exeA in such a way that 

r~<r; for all exeA, 

r:<r_ for ex>fJ 

and the critical values of the function G. at the critical points belonging to the 

curve r, with a,==oc,are contained in the annulus 
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W.e.define the function a(r), the regions V .. and the system of paths joining the 
cnttcal values of th~ function G. with the non-critical value 0 in exactly the same 
way as for the functton F", the only difference being that we include all ex e A, and 
~ot onl~ ex~2. Let {Jj} be a distinguished basis of vanishing cycles for the 
Sl~~~ty 11,,=0 defined by such a system of paths, let {J i} be the corresponding 
distt~gwsh~ basis ofvanishing cycles (defined by the same system of paths) for 
the s18gul~ty Ilz=o+z2, which is stably equivalent to the singularity 11.=0. 
The connec~on between the intersection matrices of the singularities/l.=o and 
1.1,,=0+z2 WIth respect to the distinguished bases {Jj} and {Jj } respectively is 
glVen by Theorem 2.14 of §2.8. 

~ ~.20. Suppose that the germ/lz=o has an isolated singularity at zero. In 
this.~ 18 theorem 3.19 the singularity I +z2 and the distinguished basis of 
vamshing cycles {Ai} can be changed into 11,,=0 +z2 and {Jj } respectively. 

Theorem 3.20 reduces the problem of calculating the intersection matrix of the 
~ingulari.ty I of ~ function of n variables to the problem of calculating the 
18tersectton matnx of the singularity 11,,=0 of a function of n -1 variables with 
respect to a distinguished basis of a special type and indices exj for the 
components Ii of the polar curve r,,(f). The results of the calculation for the 
majority of the singularities classified in Chapter 15 of Volume 1 are summarised 
in. tables displayed below. Here the intersection matrix of the singularity 11.=0 
~th re~pect to the distinguished basis {J j} and consequently also of the 
s18gulanty 11.=0 + z2 with respect to the distinguished basis {J i} is defined by one 
of the following D-diagrams: 

-----1 2 

for a singularity I from the series J and E; 

--132 

for a singularity I from the series X, Y, Z and W; 

for a singularity I from the series Q, S, T and U. 
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In the right-hand column of the tables are displayed numbers 
M 1 , • •• , MI" (p' = p(/I.,=o», where the natural number Mj is defined so that 
in the distinguished basis {Aj} of the singularity f there are cycles Aj with 
1::o.r;;m::o.r;;Mj • 

Singularity 

Jt •1 

4t 
E6H1 

E6H2 

Xt " r... 
z~, 
Zflt+61-1 

Zt2H61 

Zflt+61+1 

Jtilt 

Jti2H1 

Wt,I 
Wtj,-1 
Wtj, 
Jti2H5 

Jti2t+6 

Qt,l 

Q6t+4 

Q6l+5 

Q6l+6 

S12t-1 

S1lt 

St,l 

S:,1.,-1 
S:,1., 
S12H4 

S12t+5 

T,,f,r 
UUt 

Ut ,1.t-1 

Ut ,1.,(q>O) 
U12t+4 

M1 ,···,M,.. 

3k+i-l,3k-l 
3k,3k 
3k+l,3k 
3k+l,3k+l 

4k-l, 4k-l, 4k+p-l 
4k+r-l, 4k+s-l, 4k-l 
4k-l, 4k+3i-p-l, 4k+3i-l 
4k+3i, 4k-l, 4k+3i 
4k+3i+1, 4k-l, 4k+3i 
4k+3i+l, 4k-l, 4k+3i+l 
4k 4k, 4k 
4k+l, 4k, 4k 
4k+l, 4k+l, 4k+i+l 
4k+q+l, 4k+q, 4k+l 
4k+q+l, 4k+q+t, 4k+l 
4k+2, 4k+l, 4k+2 
4k+2, 4k+2, 4k+2 

2,2, 3k-l, 3k+i-l 
2,2, 3k, 3k 
2,2, 3k+t, 3k 
2,2, 3k+l, 3k+l 
2, 4k-l, 4k-l, 4k-l 
2, 4k, 4k-l, 4k-l 
2, 4k, 4k, 4k+i 
2, 4k+q, 4k+q-t, 4k 
2, 4k+q, 4k+q, 4k 
2, 4k+l, 4k, 4k+l 
2, 4k+t, 4k+t, 4k+1 
p-l, q-l, r-l, 2 
3k,3k,3k,3k 
3k+q, 3k+q, 3k, 3k+l 
3k+q+l, 3k+q, 3k, 3k+l 
3k+l, 3k+t, 3k+l, 3k+l 

For singularities of corank 2 (that is for singularities from the series J, E, X, Y, 
Z and W) analogous diagrams can be easily obtained by the methods of 

Chapter 4. 
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3.8 Intersection forms of UIIimodaI and bimodal siDguIuities 

In Chapter 15 of Volume 1 we derived the classification of unimodal and 
bimodal singularities offunctions. Here we shall derive results on their quadratic 
forms. 

The D-diagrams of unimodal singularities and their monodromy groups were 
calculated by A. M. Gabrielov [118]. They can be obtained using the results 
given in § 3.7. We denote by p+, Po and p_ the positive, zero and negative indices 
of inertia of the quadratic form of the singularity, that is the number of positive, 
zero and negative diagonal elements in a diagonalisation of the intersection form 
of a singularity stably equivalent to the given one and depending on n == 3 mod 4 
variables (p+ + Po + p- = p). 

Theorem 3.21. The D-diagrams of the parabolic singularities Ps, X9 and J10 with 
respect to some weakly distinguished bases have the form 

x, T .. 

For these singularities p+ =0, Po=2. 
The D-diagrams of the hyperbolic singularities T',ll,r have the form 

" ~-'·"--"""v~---'·"------.. ... 

For these singularities p+ = Po = 1. 
The D-diagrams of the 14 exceptional unimodal singularities have the form 
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Here (k,l,m) are the so-called Gabrielov numbers of the singularity (see the 
introduction to Part II of Volume 1), p =k + 1+ m; For these singularities p+ = 2, 

110=0; 

Between the Gabrielov numbers (GN) and the Dolgachev numbers (DN; see 
the introduction to Part II of Volume 1) of the exceptional unimodal 
singularities there is a "strange duality", expressed by the fact that the GN of 
each singularity is the same as the DN of some (generally speaking different) 
singularity, and the GN of the latter is the same as the DN of the former. An 
explanation of this duality was given by Dolgachev and Pinkham ([97), (290)). 
They showed that the DN of a quasihomogeneous unimodal singularity in some 

sense are its GN at infinity and vice-versa. 
The quadratic forms and D-diagrams of bimodal singularities in two variables 

and their indices of inertia can be easily obtained by the methods of Chapter 4. 
For bimodal singularities of three variables the D-diagrams were obtained by A. 
M. Gabrielov (see §3.7) but they are not convenient for the computation, for 
example, of the indices of inertia of their quadratic forms. The indices of inertia 
of quadratic forms can be obtained by using two general results which are due to 
Steenbrink. One of these gives a way of calculating the inertia indices of the 

quadratic forms for quasihomogeneous singularities. 
Let /:«:",0)-+«:,0) (n=3 mod4) be a quasihomogeneous singularity with 

weights WI"'" W" and degree 1 (this means that 

where I:r=lwdll=1), having an isolated critical point at the origin. We set 

" I(a)= L (al+ l)wI (ex = (al , ... , IX.,). 
i=1 

Let the monomials y;"IJI (j = 1,2, ... ,p) generate a basis of the local ring 
J = "O/(O//OXI) ofthe singularity f We denote by [e) the integral part of e. 

TheoreIIl 3.22 ([341)). 

1'+ = the number of ex(j): l(a(j)jZ, [/(aW») is even; 

1'_ = the number of ex(j): 1(cxW)jZ, [/(cxW)) is odd; 

110 = the number of a(j): l(exW) E Z. 

The bifurcation sets and the monodromy group of a singularity tt3 

This assertion in the form of a conjecture was previously formulated by V. I. 
Arnold (see (150)). 

Among the bimodal singularities some (but not all) have a quasihomoge­
neous representation. For these singularities Theorem 3.22 gives p+ =2,110 =0. 
To calculate the indices of inertia of the quadratic forms of the other bimodal 
singularities we use the following facts. 

Theorem 3.23 ([356)). Let f,(x) be a continuous deformation of the singularity 

/0: «:II, 0)-+«:, 0) (IE [0,1)), 

with p(/o)=p, p(/,)=p' for 0<1::S;;1. Then p~p' and the homology group 
H,,-l (Yr,).; Z) of the non-singular level set Yr,). of the germ of the function f, 
near zero has a natural inclusion in the homology group H II - 1 (Yo,).;Z) of the 
non-singular level set Vo,). ofthe germ/o. Moreover a distinguished basis of the 
group H II - 1 (Yr,).; Z) can be expanded to a distinguished basis of the group 
HII - 1 (Yo,).; Z). 

Theorem 3.24 ([342)). For any singularity p+ + 110 is even. 

From these results we infer 

Theorem 3.25. The quadratic forms of all bimodal singularities have the 
following indices of inertia: p+ = 2, 110 = O. 



Chapter 4 

De intersection matrices 
of singularities of functions 
of two variables 

The method of calculating the intersection matrix of a singularity of a function of 
two variables described in this chapter is due to S. M. Gusein-Zade ([147], [148]) 
and N. A'Campo ([7], [8]). It applies to all singularities of two variables. Using it 
allows us substantially to simplify many calculations connected with the 
quadratic form of a singularity (for example, the calculation of its signature). 

4.1 Intersection matrices of real singularities 

The intersection matrix of a real singularity of a functionf of two variables can be 
determined by the (real) zero level curve of a perturbationj of the function of a 

special type. 
Let f(x,y) be the germ of a real (that is taking real values on tt2

c(:2) 

holomorphic function «(:2, O)-(C::, 0) which has an isolated (in the space (:2) 

critical point at zero. We suppose that there exists a real perturbationj of the 
function f such that all its critical points (into which the critical point 0 of the 
function f bifurcates) are real and non-degenerate, and that the values of the 
function j at all the saddle points are zero. It is not difficult to see that in this case 
the values of the function j at all minima are negative, and at all maxima are 
positive. If such a perturbation exists, then the intersection matrix of the 
singularity f can be determined from the real curve { j (x, y) =O} in the plane tt

2
• 

In order to formulate the corresponding results, we introduce some definitions. 
Let us be given in the (open) disk D in the plane tt2 a real curve I (closed in the 

topological sense), which has as singularities only a finite number of simple 
double self-intersections and which approaches transversely the boundary circle 
of D. The curve 1 gives rise to symmetric and antisymmetric integral bilinear 

forms on a lattice according to the rules described below. 
Each connected component of the complement of the curve I is a curvilinear 

polygon. In such a polygon some pairs of vertices can coincide (as in figure 32). 
We divide the set of components of the complement of the curve I into two classes 
(the first and the second) so that two components with a common side are in 
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~ifferent classes. Such a division into two classes is possible and unique modulo 
mterchange of the two classes. We assign to each point p j of self-intersection of 
the curve I the fo~al ~enerator A}, to each relatively compact inD (that is having 
no boundary pomts m common with the complement of D) component of the 
complement of the curve 1 from the first class (V?) the formal generator A9 and 
from th~ second class (U;) the formal generator A~. We denote by II:;V, i) 
(respect~vely 11;1 (k,!» . t~e nu.mber of vertices of the curvilinear polygon U? 
(respectively Uk) comciding With the point Pi- The numbers 1I1OV, i) and 1121 (k,j) 
can take the values 0, 1 or 2. We denote by 1120 (k, i) the number of common edges 
of the curvilinear polygons U; and V? So, for example, in figure 32 II = 1 II 

2 1 (
. . k 1) ,20 ,10 

= ,1121 = 1=]= = . 

Fig. 32. 

We c~nst~c\on ~h~ gene~a~ors ~A:'} an integer lattice and will suppose that 
the baSIS At, ~J' Ai IS a dIstmgUIshed basis of this lattice (the order of the 
elements A:' With the same q i~ immaterial). The division of the components of 
the complemen! ~f the c~~ I mto two classes is used only for fixing the order of 
the elements A .. m the dIstmguished basis. 

~. The quadratic form corresponding to the curve I is defined by the 
follOWing table of scalar products of the generators: 

(A:' 0 A:'.) = -2c5_., 

(A~ 0 A}) = 1110 V, i), 

(A} 0 Ai) = 1121 (k,j), 

(A~ 0 Af) = -1I20(k, i). 

DefIaitioa. T?e antisymmetric bilinear form co"esponding to the curve I is defined 
by the followmg table of scalar products (the fact that the notation is the same as 



116 The topological struc:tuRI of isolated critical points of functions 

in the previous defmition will not create confusion): 

(A:'oA:'.)=O, 

(A} 0 AY) = nlO U, i), 

(A~ 0 A}) =n21 (k,j), 

(AYoAn=n20(k,i). 

(here if we interchange the arguments the scalar product changes sign.) 
By the D-diagram of the curve 1 we shall- mean the D-diagram of the 

corresponding quadratic form. Its vertices correspond to the self-intersections of 
the curve 1 and the relatively compact in D components of the complement of the 
curve I. The rule for joining vertices follows from the table of intersection 
numbers. For example, the D-diagram of the curve 1 in figure 32 is depicted in 
figure 33. We remark that this diagram is not the D-diagram of any singularity. 

. ' Lt. 
Fig. 33~ 

Let] be the perturbation of the singularity/ described above, that is such that 
all the critical points of the function] (into which the singularity /bifurcates) are 
real, and the values of the function] at all saddle points equal zero. In this case 
the real curve {] =O} (in a small disc D with centre at zero) has only simple 
double-intersections. We shall say that a component of the complement of this 
curve is ofthe first class if the function] takes negative values on it, and of the 
second class otherwise. The critical values of the function] (x, y) (or, which is the 
same thing, the function of three variables] (x, y) + t 2

) by assumption lie on the 
real axis in the plane G:: of values of the function]. We choose a Zo such that 1m Zo 
> 0, and fix a system of paths joining the non-critical value Zo with the critical 
values of the function], subject to the condition that these paths lie in their 
entirety in the upper half-plane 1m Z > 0 except for the ends which coincide with 
the critical values. We remark that the critical points of the function] are in one­
one correspondence with the self-intersections of the real curve {] =O} and the 
relatively compact components of its complement, because in each such 
component there is exactly one critical point of the function] (maximum or 
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minimum). Having fixed a system of paths in this way, we define distinguished 
bases of vanishing cycles in the homology of the non,.singular level manifold of 
the singularities /(x,y) and /(x,y)+t 2

• We shall denote these bases also by 
{A:'}. Here the cycles A} vanish at the saddle points Pj of the function], the cycles 
AY at the minima, lying in the components U? and the cycles A~ at the maxima 
lying in the components uf. ' 

Theorem 4.1. The intersection form in the homolo~ of the non-singular level 
manifold of the singularity /(x,y) with respect to the above-described 
distinguished basis {A:'} coincides with the antisymmetric bilinear form 
corresponding to the real curve {] =O}, and the intersection form of the 
singularity of three variables / (x, y) + t 2 with the quadratic form corresponding 
to the same curve. 

Examples • 

(i) Let /(x,y)=:x"'+y"~ The multiplicity of this singularity is equal to (m -1) 
·(n-1). Put 

Here T,,(x)=21 -"cos(n'arccosx) are the Chebyshev polynomials. It is not 
diffcult to see that the perturbation] of the singularity/satisfies the conditions 
of Theorem 4.1. The curve {(x,y)eR.2 : ](x,y)=O} and its D-diagram are 
depicted in figure 34 (m=6, n=5). For m=k+l, n=2 we get, as in §2.9, the 
classical Dynkin diagram At, but with the vertices in a different order. 

m"·· ... '···· ... · 
,''', I' ", , .. , , 

~ .., .. 
.. , ... ' ... , .. ' .. " .. ' .. , .. , 

Fig. 34. 

(ii) /(x,y)=x(xi-1 -r) is the singularity Dt , k~4. Its multiplicity is equal 
to k~ It is not difficult to choose a perturbation] of the function J, the zero level 
line of which (for k=9) is depicted in figure 35 (for this we can take the 
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perturbation of the function xl- 2 -I', similar to the one described in the 
previous example, and multiply it by (x-2A.2». Its D-diagram is the classical 

diagram Dl~ 

Fig. 35~ 

(iii) f(x,y)=.xl+xr=x(r+r) is the singularity E7 • A perturbation, 
satisfying the conditions of Theorem 4~ 1 is 

The curve {i=O} and its D-diagiam are shown in figure 36~ 

Fig. 36. 

, 
, 

A shortcoming of Theorem 4.1 is that generally it is hard to choose a 
perturbation i satisfying its conditions. In addition the diagrams of such 
singularities as, for example, . 

for the most natural choices of perturbation tum out to be different from their 
classical forms and require a transformation~ It turns out that it is simpler to 
construct not a perturbation of the function but a perturbation of its zero level 
line. A description of the corresponding procedure will be given in the following 
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sections. The result formulated below allows us in some degree to remove the 
second of the above shortcomings. 

Let the curve I be the same as before. If we divert our attention from the self­
intersections, then the curve I consists of several circles and intervals. This means 
that there exists a proper non-degenerate map X:L-+D of a one-dimensional 
smooth manifold L to the disc D such that 1m X = I, and X maps L to I bijectively 
outside the singular points of the curve I (the self-intersections). Let Xt: L-+ D 
(te[O, 1]) be a homotopy of the map X (x=Xo) in the class of proper non­
degenerate maps, constant on the preimage of the boundary circle of the disc D. 
I~ Xt is ~ homotopy of general form, then the type of the curve 1m Xt (as a one­
dunenslOnal smooth submanifold of the disc D with simple self-intersections) 
will change for a finite number of values ofthe parameter t. For these values of 
the parameter· t we will get one of three types of bifurcation: 
1) two points of self-intersection of the curve 1m Xt come together and vanish 
(figure 37, at the exceptional value of the parameter the two branches of the curve 
1m Xt simply touch); 

T~t7 7 ,_ 

Fig.37. 

2) there appear two new points of self-intersection (this type of bifurcation can 
be transformed into the previous one by changing the direction of the param­
eter t); 
3) three points of self-intersection of the curve 1m Xt come together and then 
separate again (figure 38, for the exceptional value of the parameter there 
appears on the curve 1m Xt a point of threefold intersection). 

Fig. 38. 

Other types of bifurcation of codimension one are absent, in view of the fact 
that a non-degeneracy condition (its differential not mapping to zero) has been 
imposed on the function Xt. For the first two types of bifurcation the total 
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number of points of self-intersection of the curve 1m Xr is not preserved, and 
therefore the dimension of the integer lattice corresponding to it changes~ For a 
bifurcation of the third type the dimension of the lattice is preserved~ It can be 
shown that if all bifurcations of the curve 1m Xt correspond to the third type, then 
the bilinear form corresponding to the curve 1m Xt also does not change~ We get 
only a change of basis of the lattice on which it is dermed. 

DefinitioD. The homotopy Xt is said to be admissible, if for each value of the 

parameter t E [0, 1] there do not exist points hl "" h2 of L for which 

Xt (hl ) = Xt(h2), 

1m dXt(hl) = 1m dXt(h2) 

(dXt is the diffe~ntial of the curve Xt) and in addition the curve 1m Xl has 

only simple double self-intersections. 
It can be shown that an admissible homotopy is a homotopy for which all the 

bifurcations of the curve 1m Xt are of the third type (and t = 1 is not an exceptional 
value of the parameter, that is there is not a bifurcation of the curve there). If Xt is 
an admissible homotopy, then the curves ImXo=1 and 1m Xl have the same 
num.,er of self-intersections (and also the same number of components of the 
complement). Therefore the integral lattices corresponding to these curves have 

the same dimension. 

Tbeorem 4.1. Let Xt : L-+ D be an admissible homotopy. Then the symmetric and 
anti symmetric bilinear forms, corresponding to the curve 1m Xl can be obtained 
from the forms, corresponding to the curve ImXo=1 with the help of the 

operations of change of distinguished basis. 

For the proof we can display explicitly the change of basis which corresponds 
to one bifurcation of the curve 1m Xt of the third type. We transform only four 
vanishing cycles, corresponding to the three points of self-intersection of the 
cUrve which come together in this bifurcation, and the curvilinear triangle with 
vertices at these points, which is a connected component of the complement 
of the curve 1m Xt. An explicit form for such a change of basis can be ob­
tained for one example in which the corresponding homotopy Xt can be realised 
as a deformation of the perturbation 1 of the singularity (for example, for 
.f.(x,y)=xy(x+y+I); the exceptional value of the parameter being 1=0). The 
set of paths defining the distinguished basis in this case were described in the 
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formul~tion of Theorem 4.1. The parameter t going out into the complex region 
and gomg half way round the exceptional value t = 0 allows us to observe the 
transformation of the corresponding system of paths. 

Let t = to be the value of the parameter for which there is a bifurcation of the 
curve 1m Xt of the third type. For definiteness we shall assume that for t < t the 
triangle with vertices at the three converging points belongs to the first cla:s of 
components of the complement of the curve 1m Xt (corresponding to the 
components on which the perturbation 1 takes negative values). For t> t the 
analogous triangle will belong to the second class Let LI LI A be° the . . . ..' .. +1, LJ .. +2 
vamshmg cycles corresponding to the three points of self-intersection let A be ' £1",+3 

the cycle corresponding to the triangle with vertices at these points. Then the 
sequence of operations 

is equivalent to the above bifurcation of the curve 1mXt. 

~ 
.. , . , , , , .. ~ ...... 

· · I · · 

I~ 
'-../ 

I 

Fig. 39. 

As ~xamples of th~ application of Theorem 4.2 we show in figure 39 the 
reduction of the D-dlagrams of the singularities 

(see examples (i) and (iii» to classical form with the help of an admissible 
homology. 

Thus we have completed the proof of Theorem 3.14 of § 3.6. 
. A sm~ modification allows us to adapt the above method of calculating the 
mtersectlon matrix of a singularity of two variables for a boundary singularity 
(see Volume 1, § 17.4) and prove that theD-diagrams of the singularities BI;, CI; 
and F4 are the classical diagrams of the corresponding Lie algebras, and their 
monodromy groups (for the case of an odd number of variables) are the 
corresponding classical Weyl groups (§ 5.2)~ 
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4.1 Germs of complex curves and singularities of functions 
of two yarlables 

Let f: «(;2,0)-+«(;,0) be the germ of a holomorphic function with an isolated 

critical point at zero. The germ of the .curve 

M(f) = {x E (;2 :f(x) = O} 

may be reducible. Let 

be its representation as a union of irreducible components. For each of t~e germs 
of the irreducible complex curves Mi there exists the germ of a mapptng 

(the uniformization) su<;h that Im~, = M, and ~,is an isomorphism of the curv~s 
(;, and M, away from zero. The germ ~. is defined modulo germs of hoi om orphic 

isomorphisms 

(a change of uniformizing parameter). For small perturbations ;Pi of the 

maps ~, in general position the complex curve 

(in a neighbourhood of zero) has as singularities only simple double points. Their 
number, which, of course, does not depend on the choice of perturbation, we 

denote by s=s{~.} =s(f)~ 

I.eamIa 4.1. The multiplicity of the singularity f is equal to 

1l(f)=2s(f) -(r-1). 

The problem of calculating the intersection matrix of an arbitr~ sin~a~ty 
of a function of two variables can be reduced to the case of a real smgulanty WIth 

the help of the following result. 
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'fbeorem4.3. For any set of germs of maps {~.} (~.: (£100)-+«(;2, o),~. maps (;. 
in a one-one fashion onto its image and Im~. #: 1m ~J for i #: j) there exists a 
set of real germs of maps {!/I,}, lying in the same connected component as ~i of the 
set s=const in the space of all sets of r maps (£h 0)-+«(;2, 0). 

The mappings (or curves) {~i} and {!/II} have the same Puiseux pairs and 
the same pairwise orders of tangency, which gives us a way of constructing the 
maps {!/IJ 

Corollary. For any singularity of a function of two variables there exists a real 
singularity, lying in the same connected component of the set Il = const in the 
space of all germs of functions «(;2,0)-+«(;,0) and having therefore the same 
intersection matrix~ 

For singularities of a greater number of variables analogous results have not 
been proved. 

If all the maps ~i are real and there exist real perturbations ;Pi of them such that 
the curve 

has only simple double points and all these s points are real, then the D-diagram 
of the real curve 

is the D-diagram of the singularity f, corresponding to the set of maps 
{~ili= 1, ... , r}.1t follows from this that the perturbation 1 of the singularity f, 
corresponding to the perturbations {;Pi} of the set of mappings {~i}' satisfies the 
conditions of Theorem 4.1. 

Theoreaa4.4. For any set of germs of real maps {~.} (~i: «(;100)-+«(;2,0» there 
exist real perturbations {;p.} for which the curve 

has only simple double points and all these points are real. 
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We remark that both existing proofs of this theorem have a constructive 
character, that is they contain ways of constructing such a perturbation~ One of 
these ways (more convenient for exposition but not more effective) will be 

described in § 4.3~ 
From Theorem 4.4 it follows that ifJ: (4::2 , 0)-«:, 0) is a real singularity such 

that the curve {J = O} is real (that is all its irreducible components are real), then 
there exists a real perturbation J of it, satisfying the conditions of Theorem 4.1, 
that is having only non-degenerate real critical points with the same critical value 

at all the saddle points. 
Almost in the same way this result can be proved for any real singularity of two 

variables. 

4.3 1be resolution of singularities of functions of two yariables 
and the construction of their real perturbations 

A resolution of the singularity of a function J: (4::2 ,0)_(4::, 0) (or of the 
curve {(x,y):J(x,y)=O}) can be constructed with the help of a sequence of 

a-processes. 
We consider the complex vector space «::- and the point 0 in it. The a-process 

with centre at the point 0 is the map 

a:n" .... 4::" 

of an n-dimensional complex manifold n", which is constructed in the following 
manner: outside the preimage of the point 0 e «::- the map a is an analytic 
isomorphism, the preimage a-I (0) of the point 0 is an (II -1 )-dimensional 
complex projective space 4::PII

-
1 (projectivisation of the space C), which is glued 

to the complement 

so that the line in the space 4::", passing through zero is pasted to that point of the 
projectivisation 4::PII -

1 of the space «::- to which it corresponds. Thus, the 
manifoldn" is obtained from the space «::- except that in place of the point 0 there 
is an (n -1 )-dimensional projective space 4::p. -1. 

The a-process with centre at zero in the space «::- can be described in the 

following manner. Let 
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be the projectivisation map, mapping each non-zero vector in the space (:" to the 
line generated by it~ We consider the graph of this map as a subspace of the 
product «::-X(:PII

-
1

• It is not a-closed submanifold of the space 4::·X(:plI-l~ 
However it can be shown that its closure nil is a non-singular n-dimensional 
closed submanifold of the product «::- x 4::P,,-l. The natural projection 

is a one-one mapping away from zero of the space (:11. The preimage of zero is the 
projective space 0 x 4::PII

-
1 

• The map n" -«::- is a a-process with centre at zero in 
the space «::-. 

Another (coordinate) description of the manifold nil is the following. Let 
Xl,· .. ,X. be the coordinates in the space C, and let Ul: ... : U. be the 
corresponding homogeneous coordinates in the complex projective space 
4::P" -1 • Let n" be the subspace of the product «::- x 4::P" -1 given by the equations 

(Xl> . .. ,x,,) e 4::", (Ul : ... : u.) e 4::P,,-l. We shall show below that n" is an n­
dimensional manifold. We denote by 

a:n"~4::" x 4::P,,-l_«::-

the projection onto the fIrst factor. If x=(Xl> ... ,x,,)#=O, then the preimage 
a-1(x) of the point xe«::- consists of the one point 

(Xl> ... , X" ; Xl : ... : xJ. 

. Therefore outside the preimage of the point 0 e «::- the map a is an isomorphism 

The preimage of the point 0 e «::- is the space 0 x 4::p. -1, which is isomorphic to 
the space (:p,,-l. 

Let L be the line in the space «::- passing through the points 0 and (xY, . .. ,~. 
It consists of points ofthe type (txt . .. , t~) (te(:). The preimage a-1(L'\.0) 
of the line L without the point 0 consists of points of the product «::- x £P" -1 of 
the form 

(txt· .. ,t~; xY: ... :~ (t#=O). 
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Therefore the Closure of the space a- 1(L",,0) is the line 

This line passes through the point (0, ... , 0; Xl : ... :~) of the preimage a-I (0) 
=0 x t::P"-l, corresponding to the line L. 

In order to show that the space n" is a non-singular complex manifold, we 
consider it at a neighbourhood of the point 

Let, for example, rIf:i= O. Since U1 : ... : U. are homogeneous coordinates in the 
space CCP,,-l, we can assume that rI/.= 1. Let Ct-1 c.CCP,,-l be the affine part of 
the projective space CCP,,-l given by the condition U1 = 1~ In the part 
CC" x Ct -1 of the product CC" x CCp· -1 the space n" can be given by the equations 

From this it can be seen that the space 

is isomorphic to an n-dimensional complex vector space with coordinates 
Xt, U2, • •• ,u" and is therefore non-singular; From the equations defining the 
space n" it follows that in the part defined by the condition Ul =1, the 
coordinates "2, ... , "II are expressed in terms of the coordinates Xl, ••• , x" in the 
space CC" by the formulae 

It is not difficult to show that the above construction does not depend on the 
choice of coordinates Xl' • •• ,X" in the space CC" and is therefore applicable to any 
complex analytic space and a non-singular point of it~ To prove this we need to 
verify that any local complex analytic isomorphism (C', O)-+(CC", 0) lifts to a 
complex analytic isomorphism n"-+n" in a neighbourhood of the preimage 
a-1(0)= t::P,,-l. 

Nowletn=2, letj: «(;2, O)-+(t::, 0) be the germ ofa holomorphic function with 
an isolated critical point at zero and let 

M={(x,y):j(X,y)=O} 
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be the germ of a complex analytic curve in the space t::2. Under the a-process 
a: n 2 -+t::2 with centre at zero, the projective line t::p1 c. n 2 with coordinates 
(u :v) is glued in place of the point Oet::2 • In this case the compositionjoa is a 
holomorphic function on a neighbourhood ofthe space a- 1(0) in the manifold 
n~. The functionj 0 a will, generally speaking, have non-isolated critical points. 
It IS zero on the glued-in projective line t::p1 C.n2 , moreover the line t::p1 lies in 
the divisor {J 0 a = O} with multiplicity equal to the degree m of the germ 
j: (CC2

, O)-+(CC, 0). This means that in the neighbourhood of the point 

given by the condition u=1, the functionjoa has the form 

joa=x'" ·91, 

where 91 is not identically zero on the glued-in projective line CCpl. The degree m 
of the germ j is the least of the degrees of the monomials occurring in the 
expansion of j with non-zero coefficients. We have an analogous relation 
(f 0 a. ~ y'" . g2) in the neighbourhood of the point (0: 1) e CCp1 C.n2, given by the 
condition v= 1. Therefore we need to consider as singularities of the function 
j 0 a no~ all the points at which its differential equals zero. There are too many 
such POlDtS and among them the majority are such that in a neighbourhood of 
them t~e functi~nj 0 a is equivalent to the function x"'. We need to consider only 
~he pOlDt~ at which the function 91 (or 92) takes the value zero. However gl (or g2) 
IS a functIOn on the part of the manifold n 2 defined by the condition that one of 
the coordinates is not equal to zero. To define it on the manifold n 2 in an 
invariant way is not possible (without considering it as a section of bundle). 

In order to avoid difficulties of this sort, we shall consider not the singularity 
of the function j: (CC2, O)-+(t::, 0), but the singularity of the germ of the curve 
M = {J = O}. In accordance with §4~2, we can replace the problem of construct­
ing a real perturbation of the function J, necessary for the definition of its 
intersection matrix, by the problem of constructing a real perturbation of the.. 
curve M~ Let 

be the decomposition of the germ M into irreducible components. Each of the 
curves M, can be given by an equationjj=O of degree m, (where 
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We consider temporarily one of the irreducible curves MI (the index i will for 
the present be omitted)~ As we said above, there exists a germ of a map 

the image of which is the germ M and which away from zero is an isomorphism 
cr""o~~O. The map q, is given by the formulae 

x=x(t) = at'" + ... , 

where the dots denote the sum of terms of higher degree (t is a coordinate on the 
line cr, x and y are coordinates in the plane cr2 ; either a:# 0 or b:# O)~ It can be 
shown that the natural number m is the same as the degree of the germ of the 
function defining the curve M. A linear change of coordinates in the space cr2 

allows us to take away the term of degree m from the series y(t), that is to suppose 

that 

x(t)=at"'+ ... , y(t)=bt"+ ... 

where n > m, a:# o. After this the (local) change of coordinates 

on the line cr allows us to suppose that 

x(t)=t"', y(t)=bt"+ ... (n>m)~ 

If n is divisible by m (n=km), then the change 

x=x, y=y-bxl 

eliminates the term of degree n from the series y(t)~ Therefore after change of 
coordinates in the source cr and in the target cr2 we can suppose that the map t/J is 

given by the formulae 

x(t)=t"', y(t)= L attt (n>m,a,,:#O), 
t~" 

where n is not divisible by m. Moreover the highest common factor of m, n and 
those k for which at:# 0 is equal to 1. It is not difficult to see that in this case the 
curve M touches the coordinate line y = O. The equation of the curve M can be 

The intersection matrices of singularities of functions of two variables 129 

written in the form 

The series 

of fractional powers of the variable x is called the Puiseux series of the 
curve M. The pair of natural numbers (n, m) we call the principal Puiseux indices 
of the curve M. 

For a fuller description of the germ M the set of so-called characteristic 
Puiseux pairs is used. We take the ratio nlm as a fraction in lowest terms nt/mi. 
The pair (nl' ml) is called the first characteristic Puiseux pair of the germ of the 
curve M. If the highest common factor of the numbers nand m (which is equal to 
mimi) is equal to 1 (in this case, ofcourse,ml =m), then this exhausts the set of all 
characteristic Puiseux pairs. If mimi> 1, then let 

k2 = min {k : at :# 0, k is not divisible by (mimi)}. 

We put the ratio k2/(mlml) in the form of a fraction in lowest terms n21m2. The 
pair (n2' m2) is called the second characteristic Puiseux pair of the germ of the 
curve M. If mimi m2 = 1, then this second pair exhausts the set of characteristic 
Puiseux pairs. If mimi m2 > 1, then let 

k3 = min {k : at :# 0, k is not divisible by (mimi m2)}, 

k3/(mlml m2) = n3/m3, . .. 

In the end we obtain a sequence of coprime pairs of natural numbers 

called the characteristic Puiseux pairs of the curve M. There are the relations: 

It can be shown that the characteristic Puiseux pairs give a sufficiently detailed 
description of the topology of the germ of the curve M. In particular, the germs of 
curves with the same characteristic Puiseux pairs are topologically equivalent to 
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each other and are the zero level manifolds of singularities of germs of functions 
which are in one family Jl. = const. 

Let us observe what happens to the curve M under the action of the O'-process 
0': n2 -+(:2. In the affine part of the manifold n2

, defined by the condition u = 1, 
the coordinates are x and ylx «u:v) are homogeneous coordinates in the 
projective line (:p1 c: n2)~ From the formulae 

x(t) = t"', y(t)=t"+ . .. 

it follows that in terms of the coordinates (x, v) on the manifold n2 we have 

x(t)=t"', v(t)=t"-"'+ ... 

From this it follows that the preimage 0' -1 (M".O) of the curve M without zero 
under the O'-process extends to the curve 0' -1 (M) in the manifold n2. The curve 
0'-1(M) intersects the glued-in projective line (:p1 at the point (1 :0). From the 
parametric equations defining the curve 0' -1 (M) it follows that they have in some 
sense a smaller degree than the equations of the curve M. If m < n < 2m, then the 
degree ofthe curve 0'-1(M) (equal to n -m) is strictly less than the de.gree of the 
curve M. Ifn>2m, then the degree of the curve 0'-1(M) (equal tom) IS the same 
as the degree of the curve M, but the first of the principal Puiseux indices (n 
-m,m) of the curve 0'-1(M) is less than that for the curve M. 

In this way the singularity of the curve 

is simpler in the above sense than the singularity of the curve M. Carrying out 
a O'-process on the surface n 2 with centre at the singular point of the curve 
M=0'-1(M), we obtain a surface n" (ii:n2-+n") and a curve 

on it, the singularity of which will be even simpler. The complex pr?ja:tive line 
00: the surface n" which is glued in during this O'-process will lDtersect 
transversely the projective line, glued in during the fITst O'-process, at one point 
only. Repeating th\s process the requisite number of times, we arrive in the end 
with the preimage of the curve M being non-singular. 

Suppose now that the curve M is not necessarily irreducible 
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Carrying out the O'-processes at zero and then at the singular points of the 
preimages of the curves Mit we arrive at a position in which all r preimages of 
the curves M, are non-singular. This means that we obtain an analytic map 

(a composition of O'-processes) from a non-singular analytic surface Z into the 
space (:2 such that: 

(i) the restriction of the map n to Z".Zo is an isomorphism 

(ii) the subspace Zo = n -1 (0) is the union of complex projective lines on the 
surface Z which are in general position; 

(iii) the preimages n -1 (Mi) of the curves M, c: (:2 (the closures of n -1 (M, ". 0» 
are non-singular curves on the surface Z. The fact that the projective lines from 
which the subspace Zo is constructed are in general position means that they only 
intersect each other in pairs, two projective lines either not intersecting at all or 
intersecting transversely at one point. 

The curves n- 1(Mi) can touch each other and also the glued-in complex 
projective lines. It is not difficult to see that a O'-process at a point of tangency of 
two non-singular curves reduces the degree of tangency, and a O'-process at a 
point of their transverse intersection separates them, that is gives no inter­
section. Therefore, by carrying out a sufficient number of O'-processes, we can 
suppose that the curves n- 1(M,) do not intersect each other and intersect the 
preimage Zo of zero transversely at its non-singular points (that is not at points of 
intersection of the glued-in projective lines). 

We shall call such a map 

a resolution of the curve 

M = {(x,y) :f(x,y)=O}. 

It can be proved that this map is a resolution of the singularity of the function fin 
the sense of § 3.5. 

Let, for example, the curve M be irreducible and given by the parametric 
equations 
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The a-process with centre at zero reduces it to a curve of the form 

The a-process at the singular point of this curve reduces it to a non-singular 
curve, touching the glued-in projective line, this tangency being simple. The 
q-process at the point of tangency reduces to the situation where the preimage of 
the curve M intersects two glued-in projective lines at the point of their 
intersection. Finally, the a-process at this point ofintersection at last reduces the 
preimage of the curve we started with and all the glued-in projective lines to 
general position (figure 40; for clarity the curve M and its preimage are depicted 
with heavier lines and the glued-in projective lines are numbered in the order of 

their introduction)~ 

-< -k -~.- tt-z
- t+. 

1 '1 1;) 1 4 

Fig. 40. 

Another example (for the singularity of the function f(x, y) = x (xl + r), 
M=Ml uMz, Ml ={x=O}, Mz = {xl +r =O}) leads to figure 41. 

Fig. 41. 

It is not difficult to prove that the multiplicity and consequently the 
intersection matrix of a singularity of a function corresponding to the curve 

is determined by which of the glued-in projective lines and preimages of the 
curves M

j 
intersect each other and does not depend on the specific points at 

which they (transversely) intersect. From this it follows that as far as the 
multiplicity of the singularity and its intersection matrix are concerned there is 
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no harm in supposing that all the glued-in projective lines and preimages of the 
curves M j are real (that is that all a-processes are carried out only at real points of 
the corresponding surfaces, and the curves M j themselves are real). In the case of 
figures 40 and 41 we depicted the real parts of the glued-in projective lines and the 
curves M j • 

The construction described above is in essence the proof of Theorem 4.3. 
The contraction of one of the glued-in projective lines (the last in the order'of 

~ntroduction) reduces us to the situation when several non-singular curves (glued-
10 projective lines and preimages of the curves M i) intersect at one point, pairwise 
transversely. By perturbation it is possible to arrange that these curves do not 
have more than simple intersections, and that the simple pairwise intersections 
are all real (figure 42). 

By contracting in this way all the glued-in projective lines (in the oppsite order 
t? their introducti?n in the resolution of the singularity) and at each step getting 
nd, by perturbation, of more than pairwise intersections, we arrive at a 
perturbation of the initial curves Mi which have only simple double intersections 
~th with themselves and with each other), all these intersections being real. In 
this way we construct the perturbation of the curves Mit required for the 
definition of the intersection matrix of the singularity in accordance with § 4.2. 

Fig.42. 

t-=F-t+-H'-
1 4 1 J 1 J 

-r-9<-oi-oo< 
, 1 , 

Fig~ 43. 
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9=+#-7f+-
3 t t 

-f-+-A- r 
Fig~ 44. 

For the singularities, the resolutions of which were depicted in figures 40 and 
41, the corresponding construction leads to figures 43 and 44~ 

The above-described way of constructing a real perturbation has the 
shortcoming that to carry it out we need to construct the resolution of the 
singularity with the help of a sequence of u-processes, which is rather a long 
procedure. For example, for the singularity x"'+y", discussed in § 4.1 
(Example 1), this method requires numerous (although simple) constructions. 
A more effective way is that based on induction on Puiseux pairs of the 
singularity, although it is more difficult to describe. 

4.4 Partial diagonalisation of tbe quadratic fonn of a singularity 

We have already said that the possibility of representing the D-diagram of a 
singularity of a function of two variables in the form of the D-diagram of a real 
curve allows us to simplify significantly some calculations connected with the 
corresponding quadratic forms (for example, the calculation of the inertia 
indices). The intersection numbers of the (formal) vanishing cycles, correspond­
ing to the real curve I (see § 4.1) are connected with each other by relations of a 
special form. 

Lemma 4.2. The following equality holds: 

The proof can be obtained from simple geometrical considerations. 
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We embed the integer lattice with basis 

in the real linear space It" with the same basis and we extend the quadratic form 
(xoy) to the whole space It". We define in the space lR" a new basis 

by the formulae 

A?=..1?+!l:j{..1?o..1J)..1] , 

A]=..1J, 

Al=..1l+!l:j{..1lo..1])..1] . 

Using Lemma 4.2 it is not difficult to verify that 

In addition (A] 0 AJ.) = - 2~JJ'. Thus we have obtained a partial diagonalisation 
of the intersection matrix. 

It is not difficult to see that 

(A?oA?)= -2+! L [nloU,i)f, 
j 

(AloAl)= -2+! L [n21{k,j)]2. 
j 

From this it follows that if among the regions bounded by the curve I (or a curve 
obtained from it with the help of an admissible homotopy), there is even one 
quadrilateral, then its quadratic form is not negative definite, and that if among 
them there is a polygon with more than four edges then it is not even negative 
semi-definite. 

We shall demonstrate one application of this construction. For quadratic 
forms on the lattice Z" it makes sense to talk about the determinant, since 
the determinant of a change of basis in the integer lattice is equal to ± 1. We 
denote by D(f) the determinant of the quadratic form, corresponding to the 
singularity f The determinant D(f) is equal to zero if the map 
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of homology- groups induced by the inclusion V. c.. (V., iJ Va) (for the singularity 
!(x,y)+t2) is not a monomorphism and otherwise is equal, up to sign, to the 

order of the cokemel 

of the map i. (the matrix of the map i. is also the intersection matrix of the 

singularity). 

1beorem 4.5. Let!: «:2, 0) -+( (:, 0) be a singularity of a function of two variables 
and let r be the number of irreducible factors into which the germ of the function! 
can be decomposed (that is the number of irreducible components of the curve 

{/=o}). Then D(f) is divisible by 2r
-

1
• 

In particular, if the function/is reducible, that is ifr> 1, then the map i. (for 
the singularity !(x,y)+t2 ) cannot be an isomorphism~ 

Proof. In accordance with Theorems 43 and 4.4 (§ 4.2) we construct a set of real 
maps ilil: (:1-+(:2 (defined in a neighbourhood ofzero) such that the D-diagram 

of the curve 

is the same as the D-diagram of the singularity f Let {J:} be the basis of the 
lattice on which the quadratic form (x 0 y) is defined, corresponding to this 
curve. The number of self-intersections s of the curve 

is equal to the number of basic elements JJ. The number of remaining elements 
of the basis (Jf and JD is equal to s - (r -1) (compare with Lemma 4.1 of § 4.2). 
The transition matrix from the basis {J:'} of the integer lattice to the basis {J:,} 
of the space It", described above, has determinant equal to + 1. Therefore D(f) 
is equal to the determinant of the matrix of the quadratic form of the singular­
ity! with respect to the basis {J:,}. This determinant factors into the product of 

three determinants: 
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The last of these is equal to ( -2Y~ It is easy to see that the intersection numbers 
(JfoJ~) and (JioJ~) belong to the set of half-integers tz~ Therefore 

I(Jf oJ~)I'I(Ji o Ji,)1 e2-s+(r-1). Z, 

from which it follows that 

belongs 'to 2r
-

1Z, which is what we were required to prove~ 
For example, for the singularity At (f(x,y)=XH1 +r) the determinant D(f) 

is equal to (-1t(k+1). 
We give one more example of the application of the partial diagonalisation of 

the quadratic form of a singularity of a function of two variables. We consider 
the singularity of the function 

It is equivalent to the singularity of the function 

(xl + r) (xl + .r)~ 

A real perturbation of the curve {/(x,y)=Q}, which has only real simple double 
self-intersections, is depicted in figure 45. 

Fig. 45~ 
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The multiplicity of the singularity f is equal to 11; With respect to the basis 
A:', defined above, the quadratic form of the singularity f decomposes into the 
direct sum of three quadratic forms. One of these, on a six-dimensional subspace, 
generated by the elements A], is negative definite. The second, on the one­
dimensional subspace generated by the element AZ

, which in figure 45 
corresponds to the quadrilateral UZ, is zero; Finally the third, on the four­
dimensional subspace generated by the elements A? , ... , A~, which in figure 45 
correspond to the "monangles" and triangles Uf,· .. , U2. 

We have 

(A?oA?)=(A~oA~= -3/2, 

(A~oA~=(AgoA~= -1/2, 

(A? oA~)=(A~ o Ag)=(Ag oA~)= 1/2 

(see figure 46, where we have shown the self-intersection numbers and inter­
section numbers of the basic elements A? , multiplied, for convenience, by two). 

, 
• • • • 

-3 -, -t 

Fig; 46; 

Such a form is easily diagonalised and has its positive inertia index equal to 1 and 
its negative one equal to 3; From this it follows that the quadratic form of the 
singularity f has its positive inertia index Jl+ = 1, its zero one Po = 1 and its 
negative one Jl- =Jl-2=9. Therefore this singularity is hyperbolic in the sense 
of Volume 1. 

Chapter 5· 

The intersection forms of boundary 
singularities and the topology 
of complete intersections 

In this chapter we shall give a short exposition of some generalizations 
concerned, principally, with the concepts of the intersection form and vanishing 
cycles for singularities of functions on manifolds with boundary, for complete 
intersections, ... 

5.1 Singularities with the action of finite groups 

Some of the concepts and results which we discussed in the previous chapters can 
be generalised to the case when we consider the germ of a function 

which is invariant relative to the linear action of a finite group G on the space cr". 
In addition, there_ will arise on the way, in a natural manner, singularities 
corresponding to the Lie algebras 

the root systems of which contain vectors of different lengths. 
Let us suppose that we are given a linear representation of a finite group G on 

the complex vector space cr"; The transformation of the space cr", corresponding 
to an element 9 of the group G, we shall denote by T,. Let us suppose that 
f: (cr", O)-(cr, 0) is the germ of a function, invariant under the action of the 
group G, that is, such that 

f(T,x)=f(x) 

for all geG; In this case the group G acts on the non-singular level manifold 
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of the functionj near the critical point, and thus on its homology group H,,-t (V,) 
with coefficients in the groups Z, It or CC. 

In the case whenjis an ordinary singularity of a function (that is when the 
group G is trivial), the multiplicity or the singularity j is defmed to be the 
dimension ofthe space H,,-l(Y.;It)(or H,,-t(Y.;CC». The natural analogue of 
dimension for the case when the group G is not trivial is the G-module 

as an element of the ring R .. (G) (respectively Rt;{G» of real (respectively 
complex) representations of the group G (see [327]). We shall denote by [H) the 
element [H,,-t(Vc;CC)] of the ring R(G) = Rc:(G) of complex representations of 
the group G~ 

Let ,.l'J be the ring of germs at zero of hoi om orphic functions of n variables and 
let (oj/OXt, . .. , of/ax.) be the Jacobian ideal of the germ f, that is the ideal 
generated by the partial derivatives of the function f. The dimension of the 
quotient ring Q, of the ring ,,(9 by the Jacobian ideal (oj/OXt, . .. , of/ox.) (as 
a complex vector space) is the same as the multiplicity of the singularity f. The 
action of the group G on the space CC" defines its representation in the ring .,(!). In 
the case when the germjis invariant relative to the action of the group G, this 
representation in a natural way defines a representation of the group G on the 
vector space Q,. As we said above, the dimensions of the vector spaces 
H=H,,-t(Y.; CC) and Q,are the same. The relationship between [H) and [Q,] as 
elements of the group R(G) was revealed in [399]. 

The group G acts linearly on the space C, on which the germ of the functionj 
is defined. Therefore it acts on its nth exterior power 1·C', which is a one­
dimensional vector space. The action of the element 9 E G on the space 1 "CC" is the 
same as multiplication by the determinant det T, or the operator T,. 

The representation of the group G on the vector space V defines a 
corresponding representation on the dual vector space V·~ For example, the 
representation of the group G on the space H = H.- t (Y.; CC) of the homology of 
the non-singular level manifold has the corresponding dual representation on the 
space H* =H,,-t(Y.; CC) of cohomology ofthe non-singular level manifold. 

Theorem 5.1 ([399]). The G-modules (that is vector spaces with representations of 
the group G) 

Hand QI ®c:l •C 

are isomorphic. 
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The isomorphism whose existence is stated in Theorem 5.1 is not defined 
canonically. 

In § 35 we mentioned that instead of calculating the multiplicity of a 
singularity, that is the dimension of the homology group of the non-singular 
level manifold Y., it is frequently more convenient to calculate its Euler 
characteristic 1(Y.). If X is a topological space (for definiteness a finite CW 
complex) on which a group G acts, then the equivariant Euler characteristic 
IG(X) of the space X is the element 

l:,,( -l)"[H,,(X;CC)] 

of the ring R(G) of complex representations of the group G, where [H,,(X; CC)] is 
the element of the ring R(G) defined by the qth homology group of the space X 
with the corresponding representation of G~ The equivariant Euler characteristic 
IG(J~) of the non-singular level manifold Y. is equal to 

where [CC] is the element of the ring R(G) defined by the one-dimensional space 
CC with the trivial representation of the group G (the zeroth homology group 
Ho(y', CC) of the non-singular level manifold is one-dimensional and the 
representation of the group G on it is trivial). 

If the action of the group G preserves the CW-complex structure of the space X 
then there is defined on the vector space C,,(X; CC) of q-dimensional CW chains 
on the space X with coefficients in the field CC a natural representation of the 
group G~ We can show that by analogy with the relation 

for the ordinary Euler characteristic, we get the formula 

for the equivariant Euler characteristic. 
It is wen-known (see, for example [327]) that an element [V] of the ring R( G) 

of complex representations of the group G is defined by its character 

[V](g)=tr T,ly 

as a function on the group G (tr T,ly is the trace of the operator T,ly). If Xis a CW 
complex with the group action of G preserving the CW -complex structure, then 
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the value XG(X)(g) of the character of XG(X)eR(G) ongeG is the same as the 
(usual) Euler characteristic X(X,) of the set X, of fixed points of the action of the 
element 9 on the space X. If follows from this that outside the set X, the element 9 
moves cells and therefore these cells give zero contribution in 

The cells lying in X, stay in place and give in tr(g.IC,(Ye; £» a contribution of 
one. 

From this follows 

'IbeoreID 5.2. The character of the equivariant Euler characteristic of the non­
singular level manifold of the singularity f is defined by the formula 

where d, is the dimension of the subspace of the space C' on which the element 
9 e G acts trivially, and Jl, is the multiplicity of the restriction of the function f to 
this subspace. 

The multiplicity Jl, is defined, since if the function f has an isolated critical 
point at zero in the space C', then in the subspace fixed by the element 9 e G it also 
has an isolated critical point. 

Corollary. The character of the natural representation of the group G in the space 
of the homology H = H,,-1 (Ye ; £) ofthe non-singular level manifold is defined 
by the formula 

If G is a finite subgroup of the unitary group U(n), generated by reflections, 
then C'/G~C'~ The germf: (C',O)-+(£,O), invariant under the action of the 
group G, defines the germf. on (C'/G,O)~(C,O). 

1'heoreIIl 5.3 ([399]). The multiplicity Jl(f.) is equal to 

(1/IGI) L (-1)"-".Jl" 
lEG 

where IGI is the number of elements in the group G. 
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Example. Let G = Z2 be the group with two elements acting on the space £" with 
coordinates Xl, • •• ,X" according to the formula 

(O'eZ2 is the non-identity element of the group). An isomorphism of the space 
C/Z2 with the space (:" with coordinates YI, . .. ,y" is defined by the formulae 

In this case IGI =2, the subspace of the space C', fixed by the action of the 
transformation 0' is the (n-1)-dimensional space {Xl =O}. Theorem 5.3 gives 

where Jlifl{xi =O}) is the multiplicity of the restriction of the germ f to the 
subspace {Xl =O}~ It is not difficult to see that 

Therefore 

We consider the action of the group Z2 on the homology group H" -1 (V. ; It) of 
the non-singular level manifold of the function f The group Z2 has two 
irreducible real representations: the trivial one and multiplication by -1. 
Therefore the homology group H,,-1 (V,; It) decomposes into the direct sum 

where H+ is the space of cycles which are invariant under the involution 0', and 
H- is the anti-invariant one: 

dimH+ +dimH- =Jl{f). 

The corollary of Theorem 5.2 gives 

[H) (0') = dim H+ -dimH- = -Jlifl{xl =O})= -Jlif.I{YI =O}). 



144 The topological structure of isolated critical points of functions 

Since 

then 

These formulae can also be proved directly (without the use of Theorems 5.2 
and 5.3). We leave this as an exercise for the reader. 

The classification of singularities of functions invariant under such an action 
of the group Zz is the same as the classification of singularities of functions on 
manifolds with boundary (see Volume 1, Chapter 17)~ The classification of 
singularities of functions of small codimension, invariant relative to the action of 
the group (Z2)'l, (interpreted as the classification of singularities of functions on 
manifolds with "comers") was considered, in particular, in [336]. 

5.2 SiDguIarities of functions on manifolds witb boundary 

We shall give here a brief exposition of the analogues of some of the above 
concepts for singularities of functions on manifolds with boundary. A more 
detailed exposition and a motivation of the corresponding concepts can be found 
in [18]. 

Letfbe a singularity of a function on a manifold with boundary (see Volume 1, 
Chapter 17)~ This means that / is the germ of a holomorphic function 
(CO, 0)-+«:, 0) on the complex vector space CO in which the hyperplane (:,,-1 is 
fixed, the function/having an isolated critical point at zero both in the space (:" 
and on the subspace CO -I (or more generally not having a critical point at zero in 
the space (:,. We can suppose that the hyperplane CO-I is given by the equation 
Xl = 0, where XI, ••• , X" are the coordinates in the space (:". 

Let t" be the double covering of the space (:11, branching along the hyperplane 
c::" -I. If XI" .. , X" are the coordinates in the space ta, then the branched 
covering (:11-+(:11 is defined by the formulae 

On the space (:- there is the natural involution 
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i. e. an action of the cyclic group Z2 of order two. The germ / induces the germ 

of a function on the space (:" which is invariant under the action of the group Z2' 
A locally analytic automorphism of the space CO, preserving the subspace (:~-I 
induces a locally analytic automorphism, commuting with the action of the 
group Z2, of the space ta. In this way, a singularity of a function on a manifold 
with boundary can be considered in a natural way as the germ of a function 
!(XI, X2,' .. , XII)' invariant under the involution 

Conversely each such germ induces a singularity of a function on the manifold (:" 
with boundary (:11-1. 

A singularity / of a function on a manifold with boundary can define a non­
singular level manifold in two ways. To the function itself corresponds its non­
singular level manifold 

y'={xeCO:/(x)=e, Ilxll ~(!}, 

which is an (n -1 )-dimensional complex manifold with boundary (understood in 
the usual real sense). To the boundary CO -1 corresponds an (n - 2)-dimensional 
complex submanifold 

which is the non-singular level manifold of the restriction of the function/to the 
hyperplane c::" -I . 

From the exact homology sequence for the pair (Y., y") 

... -+HII _ I (y")-+HII - I (V.)-+HII_I (Y., y") 

-+HII - 2 (Y.')-+HII - 2 (Y.)-+ ... 

in which 

H,,(y')=O for k#n-1 

H,,(Y.')=O for k#n-2, 
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it follows that 

H,,(V., V,')=O for k~n-l, 

and H,,-l (V" V,') is a free abelian group, the rank of which equals the sum of the 
multiplicities ofthe critical point of the function! on the space (;" and the critical 
point of its restriction to the space (;" -1. From general theorems of homotopy 
topology it follows (at least, when the number of variables n> 2, when the space 
VJV; is simply connected; for n=2 the proof is still simpler) that the quotient 
space V,I v,' has the homotopy type of a bouquet of spheres. The number 
Jl. = Jl.(fIXl) of these spheres is called the multiplicity of the boundary singularity f 
(the notation identifying the function itself and the coordinate mapping to zero 
on the boundary (;,,-1). As we have shown, the multiplicity Jl.(fIXl) of a 
boundary singularity is equal to the sum 

of the multiplicities of singular points of the function! on the spaces (;" and (;" -1 . 

A basis in the homology group H" -1 (V" v,') can be constructed in the 
following way~ Let!be a perturbation of the singularity! of general form. This 
last expression means that the function! on the space (;" and its restriction 
!I(;"-l to the boundary (;,,-1 ={Xl =O} are Morse and in addition the critical 
values of the functions!and!l{xl =O} are ditTerenL In particular the function! 
does not have critical points lying on the hyperplane {Xl =O}. Let 

let Zl, ... ,z,.., be the critical values of the function!in a neighbourhood of zero in 
the space (;", let zl , ... ,Z~, be the critical values of the restriction of the function! 
to the subspace (;" -I = {XI = O}, and let Zo be a non-critical value of the functions 
!and!l{xl=O}. Let 

Ezo={xe(;":!(x)=zo, Ilxll~e} 

and let 

As for ordinary singularities of functions under natural restrictions there is a 
diffeomorphism between the pair of manifolds (F%O, 1;J and the pair (V" v,'). If u 
is a path joining some critical value z, of the function! with the non-critical value 
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Zo (and not passing through the critical values ofthe functions! and!1{ Xl = 0 D, 
then, as before, there corresponds to it a vanishing cycle .c1 in the homology group 
H" -1 (FzJ of the non-singular level manifold of the function], which is 
isomorphic to the homology group H" _ 1 (V,) of the non-singular level manifold 
ofthe function! Moreover, since the path u does not pass through the critical 
values of the function !I{XI =O}, a lifting of the homotopy I-U(t) to the 
homotopy of the fibre can be chosen so that it preserves the submanifold 

In this case the cycle .c1 lies entirely outside the submanifold Ezo f"\ {Xl = O}. 

From the exact sequence for the pair (Yo, V,') it follows that the natural 
homomorphism 

induced by the inclusion v,c.. (V" V,'), is a momomorphism. Therefore the path u 
gives rise to a vanishing cycle in the relative homology 

of the non-singular level manifold modulo the submanifold {Xl =O}. 
Ifuis a path joining the critical value zj of the function!l{xl =O} (which is not 

critical for the functionj) with the non-critical valuezo (u(O)=zj, u(l)=zo)and 
not passing through the critical values of the functions! and !I{XI =O}, then 
there corresponds to it a vanishing "hemicycle" 

defined in the following fashion. Letpje(;,,-l be a critical point of the function 
!I{XI =O}, andlet!(pj)=zj.ltcan be shown thatina neighbourhood of the point 
pj, by a local change of coordinates preserving the hyperplane {Xl =O}, the 
function! can be reduced to the form 

" != -Xl + L ~+zj. 
"=2 

Without loss of generality we can suppose that zj=O and that for 1 small U(I) = I. 
In this case for small t > 0 there is on the non-singular level manifold F..(I) = {l = t} 
an (n -l)-dimensional real submanifold D,,-l (t) with boundary defined by the 
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relations 

ImX1<=O (k=1,2, ... ,n) 

" L ~~t, 
1<=2 

II 

Xl= L ~-t~O 
1<=2 

(see figure 47 for n=2). The manifold D,,-l(t) is diffeomorphic to an (n-l)­
dimensional balL Its boundary (an (n -2)-dimensional sphere) lies on the 
submanifold 

Changing t from 0 to 1 defines a continuous family of (n -1 )-dimensional discs 
D,,-l(t)cF..(I), for which 

for all values of tE [0,1]. Here 

The disk D"-1(1)c~Ii' with boundary aD"-1(1)=S"-2(1), lying in the sub­
manifold ~on{xl =O}, defines a relative cycle A' in the homology group 

isomorphic to the group H,,-l(V., v.'). 

Fig~ 47. 

The intersection forms of boundary singularities and the topology of complete intersections 149 

Let "1, ... '"/10 (respectively "i, ... , "~I) be a system of paths joining the 
critical valueS Zl,' •• , z/Io (respectively zi, ... , Z~I) of the function1(respectively 
11{ Xl = O}) with the non-critical value Zo and defining in the homology of the non­
singular level manifold of the function 1 (respectively 11{Xl =O}) a distin­
guished basis of vanishing cycles. Moreover we shall suppose that the paths 

"1>' •• , "/Io,"i,· .. , "~1 do ~ot ~ss through the critical values Zt> ••• , z/Io' 
zi,··· ,Z~I of the functionsfandfl{xl =O} (for t*O)~ As we explained above, 
such a system of paths determines a set of vanishing cycles 

and a set of vanishing hemicycles 

Ai, .. . ,A~, 

in the relative homology group H,,-l(V., V./). The boundary homomorphism 

of the pair (V., V./) maps the vanishing hemicycle A j into the vanishing cycle in the 
homology of the non-singular level manifold of the function 11{Xl =O} 
corresponding to the path "j. From this and from the exact sequence ofthe pair 
(V., v.') it follows that the set of elements 

is a basis in the relative homology group H .. - l (V., V./). 
It can be shown that the rank of the homology group H.-l (V., V./) is the same 

as the dimension of the base of the miniversal deformation of the boundary 
singularity flxl, which is equal to 

where .fJ is the ring of germs of holomorphic functions at zero in the space cr". 
Everything that we have stated above suggests that the relative homology 

group H.-l(V., v,') must play the same role for boundary singularities as the 
absolute homology group H"-l (V.) does for ordinary singularities~ It turns out, 
however, that it is impossible to define an intersection form on the group 
H.- l (V., v.') in an invariant manner and to obtain an analogue of the Picard­
Lefschetz formula. This forces us to consider, in place of it, another group, also 
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isomorphic to the integer lattice 

of dimension 1l=1l(flxl), but not having a canonically defined isomorphism 
with the group H,,-lCV., V.'). This group is defined in the following manner. 

To the boundary singularity f we can associate one more non-singular level 
manifold - the level manifold Va of the corresponding function 1. which is 
invariant under the group Z2 on the space ct". On this level manifold is defined 
the action of the involution, induced from its action on the space ct-. The 
quotient space of the space Va by the action of this involution is the same as the 
level manifold V. of the function f The manifold Va is a ramified cover of the 
manifold V. with branching along the submanifold v.'. We have 

dim H,,-l (Y.) =2 dim H,,-l (V.) + dim H,,-2(V.') 

=dimH,,-l(V.)+dimH,,-l(V., v.') 

(see the example in § 5.1). In the homology group H"-l(Y.,Z) there are 
distinguished two subspaces H+ and H-, corresponding to the two possible 
irreducible real representations of the group Z2' The subspace H+ consists of 
homology classes which are invariant relative to the action of the involution u 
(that is such that u.a = a), and the subspace H- consists of the antiinvariant 
ones (u.a= -a). In the example in §5.1 it was shown that 

The group H- , isomorphic to the integer lattice of dimension 1l(fI{Xl = o}) plays 
the role for the boundary singularities that the group H" -1 (Y.) plays for ordinary 
singularities. In particular the intersection form is defined on it (as on a subgroup 
of the homology group H"-l(V.) of the non-singular manifold). 

A basis of the group H- can be constructed in the following manner. Let 

be a basis of vanishing cycles and hemicycles of the group H"-l (V.. Yo'), 
constructed above by. a system of paths "1, ... , "1'0' "i, ... , "~l' joining the 
critical values Zl,' •• , zl'O' zi, ... ,Z~l' of the functionsjandjl{xl =o} with the 
non-critical value Zoo The preimage of the cycle .11 (;=1, .. .,Po) under the 
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map Va .... V. (which is a double ramified cover, branching along the submanifold 
v.') consists of two cycles .1~1) and .1F), each of which projects isomorphically 
onto the cycle .11, Their difference 

is an antiinvariant cycle in the homology of the manifold Va ~ The preimage of the 
hemicycle .1i also consists of two hemicycles .1i(l) and .1i(2), projecting 
isomorphically onto .1;, but the hemicycles .1i(1) and .1j(2) have a common 
boundary (lying on the branch manifold). Therefore their difference 

A'_ .. ,(1) ,,'(2) 
LJj-LJj -LJj 

is also an absolute antiinvariant cycle in the homology of the manifold y'. The 
cycles 

form a basis in the group H- of the antiinvariant homology classes. 
They can also be described in the following manner. We consider the function 

It has Po + III critical values 

The critical values Zl" .• ,z"., are doubly degenerate and are taken at two 
separate critical points. To each of these critical values (ZI) there correspond two 
vanishing cycles J: and Jf. Moreover we can suppose that u.J; =Jf. To the 
critical value z; there corresponds one vanishing cycle J;. It is not hard to see that 
u.J;= A-J;. The cycles JI=J: -Jf and also the cycles J; areantiinvariant; the 
cycles .1: + Jf are invariant relative to the action of the involution u. The set of 
cycles 

{J" Ji} 

is the same as that described above. 
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In this way we define an integer lattice H- for the boundary singularities with 
an intersection form defined on it. A basis of the lattice H- , constructed from a 

system of paths {Uj, uj} joining the critical values Zi and zj of the_function J with 
the non-critical value zo, contains Po "long" vanishing cycles LI, ( = LI!l) - LlI21) 
and III "short" vanishing cycles Ai. If the number of variables 11=3 mod 4, then 

The monodromy group acts on the lattice H- as the image of the natural 

representation 

of the fundamental group of the complement of the set of critical values of the 
functionl The monodromy group is generated by the monodromy operators 
arising from the simple loops 'f, and 'fj, corresponding to the paths ", and ui. To 
the simple loop 'fj there corresponds the usual Picard-Lefschetz operator 

to the loop 'f, there corresponds the Picard-Lefschetz operator 

We remark that the intersection number (a 0 LlJ of an antiinvariant cycle a E H­
with a long vanishing cycle LI, is always even. When the number of variabl~s 
11 = 1 mod 2 the operators h, and hi are reflections in hyperplanes orthogonal (m 
the sense ofthe intersection form) to the vanishing cycles LI; and Llj respectively. 

For boundary singularities, as for ordinary ones, we define miniversal 
deformations and level and function bifurcation sets. The miniversal deforma­
tion of a boundary singularity flxl can be given in the form 

" F(x, 1) = f(x) + L A.;(/I;(x) 
;=1 

(X E er", A = (AI> .•• , A,.) E er"), where the germs 4>1> ... ,4>" form a basis of the 
vector space 
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The set (more precisely its germ at zero) of values of the parameters 
1 = (11 , ••• ,1,,) in the base of the miniversal deformation, for which either the 
corresponding functionF(-, 1) or its restriction to the boundary er"-l = {Xl =O} 
has zero as a critical value, is called the level bifurcatioll set of the boundary 
singularity flxl (and denoted by 2). The condition specifying the values ofthe 
parameters 1 E 1: can be changed to an equivalent condition, that zero is a critical 
value of the function 

The level bifurcation set of a boundary singularity is reducible. It is the union 
of two components. The first consists of those values of the parameter 1 for 
which the function F(·, 1) has zero as a critical value, and the second consists of 
those values 1 for which its restriction to the boundary er,,-l has zero as a critical 
value. Sometimes it is more convenient to say that the second component 
consists of those values 1 for which the hypersurface 

{x:F(x, l)=O} cern 

is not transverse to the boundary ern-I. This formulation does not need a special 
definition for the case n = 1. 

From the fact that the level bifurcation set of an ordinary singularity is 
irreducible (Theorem 3.2 of§ 3.2), it follows that each of the above components 
of the level bifurcation set of a boundary singularity is irreducible. Just as in 
Theorem 3.4 of § 3.2, it follows from this that the monodromy group of a 
boundary singularity acts transitively on the sets of short and long vanishing 
cycles (not mixing them, of course, with each other). 

For the simple boundary singularities Bt;, Ct;,F. (Volume 1, Chapter 17) the 
level bifurcation sets can be obtained in the way described in § 3.3 for ordinary 
singularities of functions. This means that it is biholomorphically equivalent to 
the variety of nonregular orbits of the corresponding group, generated by 
reflections, acting on the complexification of Euclidean space. Two types of 
mirrors (orthogonal to the long and the short roots respectively) generate the two 
components of the level bifurcation set of a simple boundary singularity. 

Let us show how to check this for simple singularities of types B,,(f(Xl) 
=~,1I=1) and C,,(f(XI>X2)=XIX2+xLII=2). Their miniversal deformation 
can be given in the form 

F=~+Al~-l+ ... +A" for B", 

F=XIX2+~+11~-1+ ... +At for C". 
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In both the first and the second case zero is not a critical value of the function 
F(',l) if the polynomial 

does not have multiple roots, and the local level manifold of the function F(· , 1) is 
transverse to the boundary {Xl = o} if zero is not a root of this polynomial. In this 
way the level bifurcation sets of the singularities Bt and Ct are identified with the 
space of polynomials of the form 

which have multiple or zero roots. 
The Weyl groups Bt and Ct are the same. They consist of the transfor­

mations of the space Itt (or its complexification crt) which are permutations 
of the coordinates with arbitrary changes of sign. The mirrors are the hyper­
planes 

In one case the frrst of these corresponds to the short cycles and the second to the 
long ones; in the other conversely. The space of orbits of the action of the Weyl 
group on the complexification C is identified with the space of polynomials of 
degree k of type 

(with complex coefficients), the identification taking the point (zt> ... ,zJ E C to 
the polynomial with roots r., ... ,~~ The space of polynomials of degree k is 
isomorphic to a k-dimensional complex vector space. The space of non-regular 
orbits (that is the image of the union of the mirrors under the factorisation map) 
consists of polynomials with multiple or zero roots, that is it is the same as the 
level bifurcation sets of the singularities Bt and Ct ~ 

The level bifurcation sets of the singUlarities B,. and C2 consist of two curves 

(figure 48)~ 
A description of bases of vanishing cycles and intersection forms for simple 

boundary singularities (and for other boundary singularities of two variables) 
can be obtained by the method of Chapter 4~ It can be shown that for boundary 
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Fig. 48. 

singularities there are Theorems analogous to 4.1, 4.2 and 4.3, but we shall not 
dwell on this~ For the simple singularities Bt (± ~ ±r), Ct (xy ±yl) and F4 (± xl 
+ yl) the corresponding equivariant germs of functions on the cover (:2 of the 
space C[2 are given by the formulae 

and 

J(x,y)=x2t+r for Bt. 

J(x,y)=y(X2 _ yt-l) for C1 

(the choice of sign is made deliberately to ensure that the curve {J=O} will be 
real). As ordinary germs of functions they have singularities of types A2t-t> 

ox 
DHI and E6 respectively. It is easy to construct perturbationsjofthe germs of 
functions J (or the germs of curves {J = O}) which would satisfy the conditions of 
Theorem 4.1 of § 4.1 and would be invariant under the involution acting on the 
space (:2. In fact the perturbations of the singularities A2t -1 , DH I and E6 used in 

ox 
Chapter 4 will possess these properties. The corresponding real curves {J = O} are 
depicted in figure 49. The line x=O is drawn with dashes. The basis of the 

, 

~ , , , 

Fig. 49. 

I 
I 

~ , , 
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homology group of the local level manifold of the singularity 

described in Theorem 4.1 of §~.1 is invariant relative to the involution 

(1: (x,y, 1)-+( -x,y, I), 

acting on the space (:3 in the sense that (1 • ..1 = -..1 if the basic vanishing cycle ..1 
corresponds to a critical point ofthe functionJ(x, Y> lying on the line x=O and 
s • ..11 =..12 if ..1~ and ..12 are basic vanishing cycles corresponding to critical points 
arranged symmetrically relative to the line x=O. From this it followes at once 
that the D-diagrams of the singularities Btt CI; and F4 are as shown in figure 50. 
The rules for reading these diagrams are somewhat different from the rules in 
§ 2.8. The arrows on the edges point from the vertices corresponding to long 
vanishing cycles (with self-intersection number -4) to vertices corresponding to 
short vanishing cycles (with self-intersection number -2). The intersection 
number of vanishing cycles corresponding to vertices joined by edges of 
multiplicity k is equal'to 2 k if both cycles are long and otherwise to k (if both are 
short or one of them is long and the other one is short). For the diagrams of the 
singularities Btt CI; and F4 , shown in figure 50, this means that the angle between 
vanishing cycles corresponding to vertices joined by edges of multiplicity 1 is 
equal to 21'{./3, and the angle between vanishing cycles, corresponding to vertices 
joined by arcs of multiplicity 2 is equal to 31'{./4. 

8. (11-)) 0 0 0 

ell (11-7) 0 0 0 0 0 

F". 0 0 

Fig. 50. 

I. G. Shcherbak proved that the transition from the function/(x,y) with 
boundary {x=O} to the function/(x,y)+zx with boundary {z=O} defines on 
the set of classes of stably equivalent boundary singularities an involution 
transposing the singularity in the non-boundary sense and its restriction to the 
boundary. 
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5.3 The topology of complete intersections 

Let 

I =Ui,· .. ,j,,): (CC-, 0)-+ (CC", 0) 

be the germ of an analytic map defining a complete intersection with isolated 
singularity at zero (n ~p, ii: (era, O)-+(CC, 0». This means that at all points of the 
germ of the analytic space {J=O} (that is {xeera:Ji(x)= ... =I,,(x)=O}), 
except zero, the map Ihas rank equal to p, that is its differential is surjective, or, 
which is the same thing, rk(a ii/ax}) = p. From this it follows that away from zero 
the space {J = O} is a non-singular (n - p )-dimensional complex manifold. 

By analogy with Lemma 2.1 of§2.1 it is not hard to show that there exists a 
(! > 0 such that for all 0 < r ~ (! the sphere Sr c: era of radius r with centre at zero 
intersects the manifold {J=O} transversely. In this case for sufficiently small 
z=(Zl>" .,zp)eCCP (1IzlI~80) the space {J=z} will intersect the sphere S. 
transversely. The space {J=z}, generally speaking, will not be non-singular for 
z#O~ The set (more precisely, the germ) I ofthosezeCCP(lIzll <80), for which the 
space {J = z} has a singular point inside the ball B, of radius (! with centre at zero 
is called the discriminant set of the map f It is not hard to see that for z e I the 
analytic space {J =z} has only isolated singularities inside the ball B,. It follows 
from Sard's theorem that the complement of the set I is everywhere dense in 
the ball {z: liz II ~80} c:CCP. For z¢I (liz II ~80) the space 

Fa={J=z}nB, = {xeera: IIxll ~(!,j(x)=z} 

is a non-singular (n -p)-dimensional complex manifold with boundary 

{J=z}nS,. 

For all z ¢ I, liz II ~80 the manifolds Fa are diffeomorphic to each other. They are 
called the non-singular level manifolds of the map f 

We get the result, analogous to Theorem 2.1 of § 2.1: 

1'1IeoreIn 5.4 ([156J). If the germ of the map 

I: (era, O)-+(CC', 0) 

defines a complete ·intersection with isolated singularity at zero then the non­
singular level manifold Fa of the map lis homotopicallyequivalent to a bouquet 
of spheres of dimension n -po 
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We outline the principal ideas of the proof of this theorem~ 
For p = 1 the statement of Theorem 5.4 follows from Theorem 2.1 of§ 2.1 and 

is therefore proved~ Let us suppose that it has already been proved for maps 

defIning a complete intersection of dimension n -p + 1 with isolated singularity 
atzero~ The singular points of the map/: (C, 0)--+(0::', 0), that is the pointsxeO::" 
for which rk(iJ ii/iJx J) <p, form the germ of an analytic space S. The discriminant 
set 

(E, 0) c (0::', 0) 

is the image of the germ S under the map f The preimage of zero for the map 

consists of the one ppint OeC~ Consequently, the map /Is is proper (in a 
sufficiently small neighbourhood of the point 0 e C') and therefore the germ of 
the discriminant set E is the germ of an analytic subspace of dimension (at least 
no more than) p -1 in the space (0::',0). From this it follows that for almost all 
lines leO::' passing through zero the intersection InE has zero as an isolated 
point. We fIx one such line. We can suppose that So is chosen s6 small that inside 
the ball {liz II ~ So} in the space (:, the intersection In E consists of the one point 
Oe(:'. After making, if necessary, a linear change in the system of coordinates 
Z1,' •. ,z, in the space (:, we can suppose that it is chosen so that the line I 
coincides with the coordinate axis 

Z1 = ... =Z,-1 =0. 

In this case, the subspace/-1(l)c(G::", 0), which is the same as the zero level 
manifold of the map 

is a complete intersection of dimension 11 - P + 1 with an isolated singular point at 
zero. We have shown that almost all linear changes of the system of equations 

/1='" =/,=0, 

defIning complete intersection of dimension 11 - P with isolated singularity at 
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zero, reduce to a system of equations such that the fIrst p -1 of them (f1 = ... 
=/,-1=0) also defIne a complete intersection (of dimension n-p+1) with 
isolated singularity at zero. 

From the induction hypothesis, for almost all sufficiently small 

the set 

is a non-singular (n -p+ 1)-dimensional complex manifold with boundary and 
homotopically equivalent to a bouquet of spheres of dimension n - p + 1. It can 
be shown that for sufficiently small z' all non-triviality of the homotopy type of 
the space F;. is concentrated in a small neighbourhood of zero. More precisely it 
means that, in particular, for Ilz'll ~e~ the space F'=F;. is homotopically 
equivalent to its own subspace 

F' =F' n/,-1({lz,l~e~})={xeF' :/,(x)~e~}. 

To prove this some care is needed in carrying out the induction, but we shall not 
dwell on this. 

The restriction/,Ir ofthe function/, to F' defInes the map of the manifold F' 
to the complex line (:, possessing the properties described in § 1.1 (with the disc 
{lz,1 ~e~} as the region U). The function /,Ir, generally speaking, can have 
degenerate critical points. Changing the function/,Ir to a small perturbation], 
of it, we obtain a function on the manifold F', also possessing the indicated 
properties. We can suppose that on the space 

the function], has only non-degenerate critical points, Vo in number, with 
distinct critical values z(1), • •• , r Vo

), lying inside the disc {Iz,1 <~}. The space F" is 
diffeomorphic to the space F" and therefore has the homotopy type of a bouquet 
of spheres of dimension 1I-P + 1. The non-singular level manifold 

of the function], on the manifold F' is diffeomorphic to the non-singular level 
manifold of the function/,Ir (for Iz,l ~e~), which is the same as the non-singular 
level manifold of the map f 
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We arrive at a situation very similar to that which was considered in the proof 
of Theorem 2~ 1 of§ 2.1. The role of the function10n the ball B, in the space CO is 
played by the functionj, on the manifold F'. Over the complement of the set 

of its critical values in the disc Hz,1 ~£~} the function1, defines a locally trivial 
fibration, the fibre of which is a non-singular level manifold of the map f One 
difference is that the preimage of the disc {lz,1 ~ g~} under the map I, is not 
contractible, but is homotopicaIly equivalent to a bouquet of III sph;res of 
dimension n - p + 1. Let z(O) be a non-critical value of the function I, with 
Iz(O)I=g~ 

(the space Fit is homotopically equivalent to a bouquet of P1 spheres of 
dimension n - p + 1) .. 

We choose a system of ~aths iii (i = 1, ... , "0)' joining the criti~l .values 
z(1), • •• ,tva) of the fUnction/II with the non-critica1 value z(O) and satIsfymg the 
conditions formulated in the definition of distinguished bases (§ 1 ~2)~ This means 
that the paths are not self-intersecting and do not have common points other 
than the chosen non-critica1 value z(O)~ As above, such a system of paths defines a 

set of "0 vanishing cycles 

~h'" ,Llva 

in the homology group H" - ,,(F; Z) of the non-singular level manifold F of the 
map f Carrying out the same argument as in the proof of Theorem 2.1 of § 2.1, 
we obtain: 

(i) the space 

is homotopy equivalent to its own subspace 

which is the preimage of the union of the paths .,,; 
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(ii) the quotient space 

is homotopy equivalent to a bouquet of 1'0 spheres of dimension n - p + 1 ; 
(iii) under the action of the boundary homomorphism 

H,,-,+1 (XIF) =H,,_ ,+1 (X, F)-+H,,- ,(F) 

of the pair (X, F) cycles corresponding to these spheres map into the homology 
classes of the vanishing cycles LIb' .. , Llvo. 

From this follows the simple-connectedness of the non-singular level mani­
fold Fofthe map/(for n -p> 1; for n -p~l the proof of Theorem 5.4 is even 
simpler). From general results about complex submanifolds in the space cr" it 
follows that the homology groups Hj(F; Z) of the space F are zero for i > n -p, 
and the group H,,_ ,(F; Z) is free Abelian. This follows, for example, from the 
fact that any non-singular complex submanifold of the ball BII in the space CC" 
with (complex) dimension m is homotopy equivalent to a finite CW complex of 
(real) dimension m. This theorem can be proved in exactly the same way as the 
theorem of Andreotti and Frankel in [255], the difference being that the complex 
manifold considered was not in the ball B, but in the whole space cr". 

From the exact homology sequence of the pair (X, F): 

it follows that H/(F) =0 for N=n-p and there is a short exact sequence 

O-+H,,-,,+l (X)-+H,,-,+1 (X, F)-+H,,- ,(F)-+O, 

in which all the groups are free Abelian. From this it follows that the non­
singular level manifold F of the map I is homotopy equivalent to a bouquet of 
VO-P1 spheres of dimension n-p, where P1 is the rank of the (n-p+1)th 
homology group of the non-singular level manifold F' of the map 

f'=Ui, ... '/,,-1) 

and 1'0 is the number of critical points of the function I, on the manifold F' 
(counted with their multiplicities). Theorem 5.4 is thereby proved. 
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By analogy with the case of an ordinary singularity of a function 

(C', O)~(<<::, 0) 

the number Po = (VO - Ill), equal to the rank of the (n - p )th homology group of 
the non-singular level manifold F of the germ of the map I: (<<::", 0)-+(<<::', 0), is 
called the Milnor number of the isolated singularity of the germ f 

In the proof of Theorem 5.4 we constructed a short exact sequence 

where III is the Milnor number of the isolated singularity of the germ 

obtained from the germ I by forgetting one of the components (f,), Vo is the 
number of critical poiD:ts (counting multiplicities) of the function I, of the non­
singular level manifold of the germ of the singularity f' near the critical point. A 
basis of the group Z'o is formed by the (formal) vanishing cycles 

corresponding to the paths "1, ... , ".0' described above. Their intersection 
numbers on the non-singular level manifold F of the germl define a bilinear form 
on the group Z·o. The group Z'" is the same as the group of linear relations 
between the vanishing cycles..11 , ••• , ..1.0 in the homology group H,,_ ,(F) of the 
non-singular level manifold of the map f It, of course, lies in the kernel of the 
form defined on the group Z·o by the intersection numbers. 

The natural numbers III and Vo, naturally, depend on the choice of system of 
coordinates in the space «::'. It is not difficult to see, however, that for systems of 
coordinates Zl,' .• ,z, in general position the numbers III and '0 depend only on 
the germ/: (C', 0)-+(<<::', 0) itself. In this way, for isolated singularities of germs 
of complete intersections, the short exact sequence 

is defined invariantly. 
In an analogous manner for the map 

f': (C', O)~(<<::'-l, 0) 
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there is defined the short exact sequence 

0~Z"2~Z·'-+Z"'-+0, 

and further the short exact sequences 

All together they give a long exact sequence (resolvent) 

consisting of free Abelian groups. Here Vi is the number of critical points 
(counted with their multiplicities) of the function/,_i on the non-singular level 
manifold of the germ of the map 

(for a choice of system of coordinates in general position in the space (<<::',0». 
For the germ of a map, defining a complete intersection with an isolated 

singularity, we can define its intersection matrix as the intersection matrix of the 
vanishing cycles ..1 1 , ••• , ..1'0 defined above, and also the corresponding diagram 
(for n-p=2 mod4). Remember that the cycles ..110 " .,..1'0 generate the 
(n -p)th homology group H,,_ ,(F; Z) of the non-singular level manifold, but do 
not form a basis in it. Therefore everywhere (except the trivial case when the 
complete intersection defined by the map f' = (Ji, ... ,1,-1) happens to be non­
singular, in which case the complete intersection, dermed by the map f, is 
isomorphic to the germ of a hypersurface) the intersection matrix of the germ of 
such a map is degenerate, and the number of vertices in the corresponding 
diagram is greater than the Milnor number of the singularity. 

5.4 Singularities of projections onto • Hoe 

A projection onto a line (or here simply a projection) is a triple 

Ec.(C', 0)-+(<<::, 0) 
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where E is the germ of a complete intersection of codimension p in the space C, 
with an isolated singular point at zero, 

1t : (C, 0)-+«(;, 0) 

is a linear projection along the hyperplane C -1 = 1t -1 (0) C C. The two 
projections El c. «(;", 0)-+«(;, 0) and E"c... «(;", 0)-+(£', 0) are considered equiva­
lent if there exists a commutative diagram 

E1c...(C', 0)-+«(;, 0) 

l l l 
E2~(C"0)-+«(;,0) 

in which all vertical arrows are isomorphisms in a neighbourhood of zero. 
As always, the singularity of the projection E -+«(;", 0)-+«(;,0) is said to be 

simple if among small perturbations of it there are a ftnite number of projections 
which are distinct relative to the above equivalence. The simple singularities of 
projection were described in [132]. They exist for p= 1 andp=2. For a descrip­
tion of their representatives we choose in the space C' a system of coordinates 
(Xl' ... , xJ such that the projection 1t maps the point (Xl' ... , XII) E C to Xl E (;. 

For p=1 the simple singularities of projection exist for all n~2. They are 
given by the equations Ji = 0 with the following functions Ji (Xl> ... , x..) (here 

q=xi+··· +x!): 

X,.:Ji =Xl + X,., where X,. is one of the simple singularities off unctions 
of the n -1 variables X2," .,X .. (A,.,D,. or E,.,p>O); 

B,.:Ji=xr+~+q (P~2); 

C,.:/l=xlx2+~+q (P~3); 

F4:Ji=xi+~+q. 

For p = 2 simple singularities of projection exist for n = 3. They are given by the 
equationsJi =12=0 with the following functions 11 and 12: 

CI:,I. 
1:+1· Ii =X2 X3, fz=Xl+~+~ (2~k~/); 

FU + 1 : Ji=~+~, fz=Xl +~ (k~2); 

FU+4 : Il=~+~' fz=Xl +X2~ (k~1). 
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If we ftx the linear projection 

1t: (C, 0)-+«(;, 0) 

along a hyperplane (;_-1 c C, then the germs of the complete intersections El 
and E2 , entering into the equivalent singularites of projection 

(i = 1,2) are obtained one from the other under the action of a local analytic 
isomorphism (C, 0)-+«(;", 0) mapping the hyperplane C'-1 into itself. In this 
manner, to the singularity of projection 

corresponds the germ of a complete intersection E with isolated singularity at 
~o, considered modulo local analytic diffeomorphism (C', 0)-+ «(;-,0) mapp­
mg the hyperplane (;"-1 c (;" to itself. Therefore the singularities of projections 
are generalisations and in some sense are mixtures of boundary singularities and 
singularities of germs of complete intersections, considered, respectively, in § 5.2 
and § 5.3. 

In accordance with § 5.2 and § 5.3 for boundary singularities (that is for 
isolated singularities of germs of functions or hypersurfaces in the space «(;11, 0) 
considered modulo local analytic isomorphisms of the space «(;11, 0), preserving 
the hyperplane C' -1 c C) and for isolated singularities of germs of complete 
intersections in the space «(;-,0), respectively, as also for ordinary singularities of 
functions, we can deftne an integral lattice with integral bilinear form and chosen 
(distinguished) sets of elements generating it. The difference from the usual 
singularities of functions consists in the ftrst case of the fact that among these 
elements there are both "short" and "long" vanishing cycles (for n == 3 mod 4 
their self-intersection numbers equal - 2 and -4 respectively), and in the second 
case the difference consists of the fact that the set of these elements is redundant 
i? the sense that their number is more than the dimension of the lattice: they are 
linearly dependent in it. Arising from the considerations described in § 5.2 and 
§ 5.3, there is defmed also for the singularity of projection 

Ec:.(c, 0)-+«(;, 0) 

an integer lattice with an integral bilinear form and a chosen set of elements 
generating it. These sets possess both the above-mentioned differences from the 
case of ordinary singularities of functions: they include both short and 
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long vanishing cycles and the number of elements in them is more than the 
dimension of the lattice. 

The precise construction of the lattice and the distinguished sets of elements in 
it is as follows. Let the complete intersection Ec.. (CO, 0) be defined by the set of 

equations 

fi=fi=···=/p=O 

(dim E=n -pl. Having made a linear change of general form to this system of 
equations, we can suppose that the system of equations 

defines a complete intersection of dimension n - p + 1 with isolated singularity at 
zero (see § 5.3). The non-singular level manifold 

has the homotopy type of a bouquet of spheres of dimension n -p + 1, a number 
which does not depend on the concrete choice of linear change of the system of 
equations of general form~ The intersection of this level manifold with the 
hyperplane CO- 1 c (:" is a non-singular (n -p )-dimensional submanifold in the 
manifold F' (again for a general choice of system of equations), and the function 
/p defines a function on the manifold F', with isolated critical poinL Changing, if 
necessary, the function/p to a small perturbation of it, we can suppose that it has, 
on the manifolds F' and F' n CO- 1, only non-degenerate critical points with 
distinct critical values. For the pair of manifolds (F', F' n (:"-1) and the function 
/p on it we can realise the construction described in §5~2 for the pair «(:", (:"-1)~ 
This means that we ought to consider the double cover p' of the manifold F', 
branching along the submanifold F'n(:,,-l and the functionJp , obtained from 
/p by lifting to the covering space. On the level manifold of the function JP acts the 
involution, interchanging the sheets of the cover. In the integral homology group 
of the non-singular level manifold of the function JP there is picked out a 
subgroup H- consisting of the homology classes, antiinvariant under this 
involution. The subgroup H- is the integer lattice, associated to the singularity 
of projection 

Ec.. «(:", O)~«(:, 0). 

To a system of paths joining the critical values of the function JP with the non­
critical value (and satisfying the conditions applying to systems of paths defining 
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~istinguished bases) there corresponds a system of "ordinary" vanishing cycles 
In the homology of the non-singular level manifold of the function J. on the 
manifold F': two for each critical value of the function J. IF' and one for each 
critical value of the function/plF'f"It::--1. The involution int=rchanges the first of 
these and acts on the second by multiplication by -1. The differences of cycles 
corresponding to the critical values of the function /plF' and cycles correspond­
ing to the critical values of the function.t;,IF'f"IC'-1 generate the group H- of 
antiinvariant cycles in the homology of the non-singular level manifold of the 
function JP on the manifold F'. This set of cycles must be considered as 
distinguished in the integer lattice H - . 
Sin~ ~he manifold F' (as distinct from the space (:") has, generally speaking, 

non-tnVlal homology, the number ofthese cycles is greater than the dimension 
of the lattice H- (their number is equal to the sum of the dimensions of the 
lattice H-~ and the lattice consisting of antiinvariant homology classes of the 
manifold F'). The intersection numbers of the above cycles allows us, using the 
same rules as in § 5.2, to define the corresponding D-diagram. Here we must 
bear in mind the fact that these rules define the diagram according to the inter­
section numbers of the vanishing cycles for n -p==2 mod 4. Therefore for 
p = 2 (n - p c= 1) we must formally perform the same count of intersection 
matrices, which occurs with the addition of a quadratic function of one new 
~ariable to the usual singularity (see § 2.8) and further construct the diagram as if 
It were true that n -p == 2 mod 4. In the given case this means that the ith and jth 
vertice~ are joined by an edge of multiplicity (A; 0..1 j) (if even one of the cycles ..1; 
and ..1 j lS short) or (..1;0..1 j)/2 (if both ofthecycles are long) for i <j(in accordance 
with the usual order of cycles {At} in the distinguished set); the arrows on the 
edges are directed from the vertices corresponding to the long vanishing cycles to 
the vertices corresponding to the short vanishing cycles. 

It is not difficult to see that the simple singularities of projection onto a line 
. with p = 1 have diagrams coinciding with the diagrams of the same name of 
ordinary singularities of functions or boundary singularities. The diagrams of 
the singularities of projection CN,(2~k~1) and F. (p~5) have the form 
depicted in figure 51 ([132]; the numbering of the ve~ices is omitted). 

CAl .;'-.·.r· .. D 
o 0 

F~ ~o--~~--_ .... ~ 
Fig. 51. 



Part II 

Oscillatory integrals 

This part is devoted to an investigation of asymptotic oscillatory integrals, that is 
integrals of the form 

/(r)= J ei<f(x)q,(x)dx1 ••• dx", 
R" 

for large values of the real parameter T. Here land q, are smooth functions. The 
function I is called the phase, the function q, is called the amplitude. In 
accordance with the principle of stationary phase the main contribution in the 
asymptotics is given by neighbourhoods of the critical points of the phase. In this 
part we discuss the connection between asymptotics and different characteristics 
of the critical points of the phase (resolution of singularities, Newton polyhedra) 
and explain the methods for calculating asymptotics. In Part III we discuss the 
connection between asymptotics and the monodromy and mixed Hodge 
structures of critical points. 

In the last ten years the theory of singularities has been exceptionally closely 
linked with the investigation of oscillatory integrals. On one hand a great many 
reasonable problems of the theory of singularities arose from attempts to 
understand the nature of the behaviour of integrals. On the other hand much of 
the study of critical points has found direct application in the study of 
asymptotics. As a fIrst example, remember that the classification of simple 
critical points of functions arose as a by-product of the calculation of 
asymptotics of the simplest oscillatory integrals [11, 12]. As a second example we 
mention the connection between asymptotic integrals and the mixed Hodge 
structure of critical points (see Part III). 



Chapter 6 

Discussion of results 

6.1· Examples and definitiom 

6.1.1 Oscillatory integrals aad shortwave osciUatiom 

The problems of optics, acoustics and quantum mechanics, the theory of partial 
differential equations, probability theory and number theory lead to the need to 
study oscillatory integrals with large values of the parameter. 

Example. We consider a surface in three-dimensional space. We suppose that 
each point of the surface radiates a spherical wave of fixed frequency and fixed 
wavelength. We suppose that the wavelength is small in comparison with the size 
of the surface and with the rate of change of the amplitude of the wave with 
change of the point on the surface. 

The total oscillatory behaviour at the point y of the space is given by the 

function 

where t is the time, (J) is the frequency, A. is the wavelength, S is the surface 
radiating the wave, q, is the amplitude, and dx is an element of surface area. In 
this way the complex oscillation is given by an oscillatory integral in which the 
reciprocal of the wavelength plays the role of the large real parameter, and the 
distance function from the point on the surface to the fIXed point of the space 
serves as the phase. The principal contribution to the complex oscillation (that is 
to the oscillatory integral) is given by neighbourhoods of the critical points of the 
phase. If all the critical points of the phase are non-degenerate, then the 
contribution to the complex oscillation from each of them is proportional to the 
wavelength. If the phase has degenerate critical points then the contribution of 
their small neighbourhoods in the complex oscillation is still bigger, namely, the 
order of the contribution is proportional to the wavelength to some power less 
than one. As a rule the function on the surface, equal to the distance from the 
fixed point of the space, has only non-degenerate critical points. The points of 
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the space are called caustic or focal if the function on the surface, equal to the 
distance from the point, has a degenerate critical point. The caustic points form 
in the space a new surface called the caustic. At points of the caustic the complex 
oscillation has exceptionally large magnitude. If the surface radiates light waves, 
then the caustic is the surface of exceptionally bright points. It can be seen on a 
wall, illuminated by rays reflected from a concave surface (for example, the 
surface of a cup). Caustics can be defined in another way. The caustic is the set of 
critical values of the exponential map of the space of the normal bundle of the 
radiating surface. We racall the definition of the exponential map. A point of the 
space of the normal bundle is a pair, consisting of a point on the surface and a 
vector, based at it, which is perpendicular to the surface. The exponential map 
maps such a pair to the point of space which is the endpoint of the vector. Finally 
there is a third description ofthe caustic. On the normal to the radiating surface 
we mark out the principal radii of curvature. The surface of the endpoints of all 
these segments is the caustic (see [145]). 

We give one more example of the appearance of oscillatory integrals. 
One of the classical problems of the theory of linear partial differential 

equations is the problem of constructing the solution, asymptotic in a parameter, 
of the Cauchy problem with rapidly oscillating initial conditions. Asymptotic 
methods (see [244-246]) reduce in this problem to the following result. For any 
natural number N in a small neighbourhood of any point yO the solution of the 
Cauchy problem can be represented in the form of a finite sum of oscillatory 
integrals 

and a remainder term of order otr-N) as .-+ + 00. In this integral F is a real 
function, • is the large parameter of the problem, x are real parameters, the 
function q, has compact support in x and is a polynomial in (iT) -1. Therefore the 
calculation of the asymptotic solution of the Cauchy problem is reduced to the 
calculation of asymptotic oscillatory integrals. 

For a multitude of examples of physical problems in which the need arises of 
studying asymptotic integrals, see the works of M. Berry and J. Nye cited in the 
bibliography. We note also the interesting articles [33, 122, 283]. 

6.1.2. The principle of stationary phase states: the principal contribution in 
oscillatory integrals is given by a neighbourhood of a critical point of the phase. 

Theorem 6.1. Let the amplitude of an oscillatory integral have compact support. 
Let the phase of the oscillatory integral not have critical points on the support of 
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the amplitude~ Then as the parameter of the oscillatory integral tends to + 00, the 
integral tends to zero more rapidly than any power of the parameter. 

Proof. First let the integral be one-dimensional. Integrating it by parts: 

+00 -1 +00 J eit/(x)q>(x)dx=-.- J eit/(X) (q> (x)/f'(x»'dx. 
-00 n -00 

Repeating the integration a sufficient number of times, we obtain the theorem. 
The many-dimensional case reduces to the one-dimensional case with the help of 
a partition of unity and a change to new variables of integration, in which the 

phase function is one of the variables. 

6.1.3 FresIIeI integrals 

An oscillatory integral the phase of which has only non-degenerate critical points 

is called a Fresnel integral. 

Example. We consider a one-dimensional oscillatory integral, the phase of which 
is the function xl. In figure 52 we have depicted the graph of 

which is the real part of the integrand of the oscillatory integral. It is clear that for 
large values of the parameter 't the integral is proportional to the area under the 
frrst loop of the graph, that is proportional to tP (O)'t -1/2 • Exact calculation shows 

Fig. 52. 
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that as the parameter 't tends to + 00 the oscillatory integral can be represented in 
the form 

4>(0) V(1t/'t) exp (;1t/4) 

and a remainder term of order O('t- 3/
2) (see [110D. 

We consider the many-dimensional Fresnel integral 

J exp (i-r/(x»q>(X)dxl' . . dx". 
R" 

Theorem 6.2 [109, 110]. We suppose that the phase of this integral has a non­
degenerate critical point at the origin, and that the support of the amplitude is 
compact and does not contain any other critical point of the phase. Then as the 
parameter of the integral tends to + 00 the integral can be represented in the form 

q>(0)(21r./-r),,/2 exp (i-r/(O) + (i1t/4) sign /;"(O»ldet/;"(O)I- I /2 

+O(-r-"/2-1), 

where sign /;,. (0) is the signature of the matrix of second derivatives of the phase 
at the origin and det /;"(0) is the determinant of the matrix of second derivatives 
of the ph.ase at the origin. 

Proof. By the Morse lemma the phase has the form 

rl+··· +>1->1+1-"'-r. 

with respect to a suitable system of coordinates in a neighbourhood of the critical 
point. Therefore it is sufficient to prove the theorem in this case. This case easily 
reduces, with the help of Fubini's theorem, to the assertion of the previous 
example. The theorem is proved. 

6.1.4 ~ 

In applications, as a rule, the phase and amplitude of oscillatory integrals depend 
on additional parameters. We consider such integrals. 
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Let US SUppose that the phase is a general family of functions, depending on 
additional parameters (a propos of this see Part II of Volume 1)~ In this case the 
integral is a Fresnel integral for almost all values of the parameters and for these 
values has order 1: - ,,/2 (Theorem 6.2). The set of values of the parameters for 
which the phase has degenerate critical points forms a hypersurface in the space 
of parameters. This hypersurface is called the caustic. For caustic values of the 
parameters the order with which the integral tends to zero is determined by the 
degenerate critical points of the phase. 

6.1.5 Asymptotic oscillatory integrals near caustics 

Let us suppose that for a given value of the additional parameters the phase of an 
oscillatory integral has a unique critical point and the phase, considered as a 
family of functions depending on parameters, is a family of functions in general 
position. In this case the caustic in a neighbourhood of the given value of the 
parameter is said to be elementary. 

Examples of elementary caustics, occurring when the number of parameters is 
two and three are depicted in figures 53-57, where near each part of the caustic is 
a label indicating the type of degenerate critical point occurring for these caustic 
values of the parameters. For example Al + A2 means that the phase has two 

Fig. 53. Fig. 54. Fig. 55. 

Fig. 56. Fig. 57. 
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critical points of type A2 and the other critical points of the phase are non­
degenerate. Each degenerate critical point of the phase gives in the integral a 
contribution of order 1:/1- "/2. The number P for the critical points of types At> D t 

is equal, respectively, to (k -1)/(2k + 2), (k - 2)/(2k - 2) (see Theorem 6.4 
below). 

In accordance with the results of Part III of Volume 1 for a phase depending in 
a general way on two or three parameters, each elementary caustic is locally 
diffeomorphic to one ofthe caustics depicted in figures 53-57. The integrals of 

m
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Fig. 58. 

Fig. 59. 
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equal orders correspond to the values of the parameters transforming one into 
the other under local diffeomorphism. 

Let us suppose that there are four additional parameters and one of the 
parameters is chosen; we shall call it time. Then depending on the time the 
caustic will be reconstructed. For a family of functions in general position all 
possible reconstructions are shown in figures 58, 59. The classification of the 
reconstructions of the caustic was carried out by V. M. Zakalyukin (see Part III 
of Volume 1). Each reconstruction has its own designation. The families 
corresponding to these designations were given in § 22.3 of Volume 1. 

Notice that figure 58, (the reconstruction Ai, +, +) depicts the unique 
reconstruction, for which for positive time the caustic is absent but for which for 
negative time it exists. According to V. M. Zakalyukin this reconstruction, 
possibly, illustrates the phenomenon of the disappearance of "flying saucers". 

6.1.6 Oscillatory integrals in a balfspace 

We return to the example of § 6.1.1. Let us suppose that the radiating surface is 
opaque for the emitted waves. Then at a given point of the space there arrive 
waves from the visible parts of the surface only. Therefore the complex 
oscillation at a point of the space is expressed as a sum of oscillatory integrals 
each of which is taken over a part of the surface. In this way it is useful in the 
study of short-wave radiation to know how to calculate asymptotic oscillatory 
integrals along a region with boundary. We investigate the case of a smooth 
boundary. 

Let us consider an oscillatory integral on that part of the space .R" given by the 
condition that the first coordinate is positive. Moreover we shall suppose that the 
phase and the amplitude of the integral are smooth functions on the whole space. 

TheoI'em 6.1'. Let the amplitUde of the oscillatory integral on the half space have 
compact support. Let the phase of the oscillatory integral on the half space not 
have critical points on the support of the amplitude in the region of integration. 
Let the restriction of the phase to the boundary of the halfspace not have critical 
points on the support of the amplitUde. Then as the parameter of the oscillatory 
integral tends to + 00 the integral tends to zero more rapidly than any power of 
the parameter. 

Proof. It is sufficient to carry out the proof in the case when the support of the 
amplitude is concentrated in a small neighbourhood of a boundary point of the 
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half space. By changing the variables of integration we can transform to the case 
in which the half space of integration is given by the condition that the first 
variable is positive, but the phase is the second variable. After integrating by 
parts with respect to the second variable a sufficient number of times, we obtain 
the theorem. 

Let us suppose that the phase of an oscillatory integral in a halfspace does not 
have critical points on the boundary of the halfspace. Let us suppose that all its 
critical points inside the halfspace are non-degenerate and the critical points of 
its restriction to the boundary of the half space of integration are also non­
degenerate. An oscillatory integral with such a phase we shall call a Fresnel 
integral on a halfspace. 

Theorem 6.2'. Let us consider a Fresnel integral on the halfspace in which the first 
coordinate is positive. Let us suppose that the origin is not a critical point of the 
phase, but is a non-degenerate critical point of the restriction of the phase to the 
boundary of the halfspace. Let us suppose that the support of the amplitude is 
compact, does not contain a critical point of the phase and does not contain 
other critical points of the restriction of the phase to the boundary of the 
half space. Then as the parameter of the integral tends to + 00 the integral can be 
represented in the form 

qJ(O)(ir)-1 (21t/rY"-I)/2 exp (ir/(O) + (i1t/4) sign j~:x'(O» x 

x I det j~:x.(0)1-1/2 + O(r-("+1)/2), 

where sign j;.x'(O) is the signature of the matrix of second derivatives at the 
critical point of the restriction of the phase to the boundary, and det j;. x'(O) is the 
determinant of the matrix of second derivatives at the critical point of the 
restriction of the phase to the boundary. 

Proof. In a neighbourhood of the origin we change the first variable so that the 
half space of integration, as 1?efore, satisfies the condition that it is positive, and 
the phase of the integral takes the form 

Xl +h(X2' ... ,X,,). 

Then Theorem 6.2' reduces to Theorem 6.2 by integrating by parts with respect 
to the first coordinate. 

Let us suppose that the phase and amplitUde of an oscillatory integral in a 
half space depend on additional parameters. Let us suppose that the phase, 
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considered as a family of functions depending on parameters, is ~ family. of 
functions in general position (see Part II of Volume 1). In this case the mtegralls a 
Fresnel integral for almost all values of the parameters. Those values of t~e 
parameters for which the integral is not a Fresnel integral form a hypersurface m 
the space of parameters called the caustic~ 

Let us suppose that for the given values of the par~eters ~he phase h~s. a 
unique critical point on the boundary of the half space of mtegratlon. A caustic m 
a neighbourhood of such values of the parameters is called elementary~ . 

Examples of elementary caustics, occuring when the number of parameters IS 2 

or 3 are depicted in figures 60-64. 

Fig. 60. 

Fig. 61. 

Fig. 62 Fig. 63. 
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.···f 

Fig. 64. 

For caustic values of the parameters either the phase has a degen6rate critical 
point in the half space of integration or the phase has a critical point on the 
boundary or the restriction of the phase to the boundary has a degenerate critical 
poinL On the diagrams near each part of the caustics is given the designation of 
these critical points. For the normal forms of the critical points marked on the 
caustics, see Chapter 17 of Volume 1 and also [16J. Each indicated critical point 
gives in the integral a contribution of order 1:,-n/2. The number P for the critical 
points of types 

are equal, respectively, to 

-1/(k+l), -1/(2k-2), (k-l)/2k, 0,1/6 

(see Theorem 8.9 below). 
In accordance with [18J (see also Chapter 17 of Volume 1) for the phase of an 

oscillatory integral in a halfspace, depending in a general way on two or three 
parameters, each elementary caustic is locally diffeomorphic to one of the 
caustics depicted in figures 60-64. Values of the parameters which are related by 
a local diffeomorphism give integrals of the same order. 
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6.1.7 Light, dark and twilight zones (according to P. K. Mandrykin) 

Let us suppose that the phase and amplitude of an oscillatory integral depe~d 
on additional parameters. Let us consider the space of parameters and a causttc 
located in it. Let us consider an arbitrary value of the parameters away from the 
caustic. The phase of the oscillatory integral, corresponding to t~~ value .of the 
parameters, has only non-degenerate critical points or, has no cntlCal POI~tS at 
all. In the first case the oscillatory integral has order 't - Nfl, where n IS the 
dimension of the space of integration; in the second case as 't--+ + 00 the 
oscillatory integral tends to zero more rapidly than any power o~ th~ parameter 't. 
Corresponding to these cases the region away from the caustic IS called 
_ a light zone, if to the values of the parameters from this region ~~ere 
correspond oscillatory integrals, the phases of which have at least one cntlcal 

point; 
_ a dark zone, -if to the values of the parameters from this region there 
correspond oscillatory integrals, the phases of which do not have even one 

critical point. 

Example. Figures 53-57 depict caustics corresponding to critical points of 

types 

In the pictures of the caustics corresponding to 

the dark zones lie under the caustics. The other regions away from the caustics 

depicted in the figure are light zones. 
Let us suppose now that our oscillatory integral is an integral on a halfspace. 

Let us consider an arbitrary value of the parameters away from the caustic. There 

are three possibilities: 
(i) The phase of the oscillatory integral, corresponding to th~ given ~alue of t~e 

parameters, has at least one critical point in the halfspace of mtegratton. In this 
case the integral has order 't - rtf2 • 

(ii) The phase of the oscillatory integral, corresponding to the gi~en valu~ of 
the parameters, does not have a critical point in the half space of I~tegratl?n, 
but the restriction of the phase to the boundary of the half space of mtegratlOn 

. . . th' I h d -(N+l)fl has at least one critIcal pomt. In this case e mtegra as or er 't 

(Theorem 6.2'). 
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(iii) The phase of the oscillatory integral, corresponding to the given value of 
the parameters does not have a critical point in the half space of integration, and 
also its restriction to the boundary of the half space of integration does not have a 
critical point. In this case as 't --+ + 00 the integral tends to zero more rapidly than 
any power of the parameter T. 

Corresponding to these three possibilities, the region away from the caustic is 
called a light zone, a twilight zone or a dark zone, respectively. 

Example. Figures 61-64 depict caustics, corresponding to critical points of 
types 

We shall indicate the dark and twilight zones on these pictures, the other regions 
away from the caustics being light zones. 

In figure 61a the tWilight zone is above the caustic. In figure 61 b the twilight 
zone is under the caustic. In figure 61c the dark zone is above the caustic; the 
twilight zone is between the two leaves of the caustic. In figure 62 the twilight 
zone is on one side of the plane of the caustic. In figure 63 the twilight zone is to 
the right over the plane of the caustic. In figure 64 the dark zone is over all the 
caustic; the twilight zone is behind the caustic under the plane of the caustic; 
there is also a twilight zone to the right between the plane of the caustic and the 
ruled surface (the third part of the caustic). 

It is interesting to ask if there exists a critical point, away from the caustic of 
which there are two dark zones. Probably the dark zones possess certain 
convexity properties. 

6.1.8. 

Theorem 6.3 (on asymptotic expansions, see [32,46,47,239, 358]. 
Let us consider the oscillatory integral 

I exp (iif(x» cp (x) tUl ... tUlI ' (1) 
•• 

Let the phase be an analytic function in a neighbourhood of its critical point xO. 
Then the oscillatory integral can be expanded in an asymptotic series 

lI-1 
exp (iif(xO» L L al:,.(cp)'t"'(ln T)I: for 't--+ + 00 (2) 

• 1:=0 
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if the support of the amplitude is concentrated in a sufficiently small 
neighbourhood of this critical point of the phase. Here the parameter IX runs 
through a finite set of arithmetic progressions, depending only on the phase, and 
consisting of negative rational numbers. The numerical coefficients at.. are 
generalised functions of the amplitude. The support of each such generalised 
function lies in the critical set of the phase. 

Example [110]. Let us consider a Fresnel integral. Let us suppose that the phase of 
the integral has a non-degenerate critical point at the origin and that the support 
of the amplitude is compact and does not contain other critical points of the 
phase. Then as the parameter tends to + 00 the integral can be expanded in the 
asymptotic series 

co 

exp (i1:/(0»1:-"/2 L aj1:- j. 

j=O 

The number aj is equal to a linear combination of the (2j)th mixed derivatives of 
the amplitude at the origin. The number tlo is indicated in Theorem 6.2. 

Remark. In Theorem 6.3 the condition that the phase is analytic is practically 
always satisfied: the phase is a polynomial in suitable coordinates in a 
neighbourhood of a fmite-multiplicity critical point. Infinite-multiplicity critical 
points are very rare: the coefficients of the Taylor series of an infinite­
multiplicity critical point satisfy an infinite set of independent algebraic 
relations. 

We give two proofs of Theorem 6.3. One, based on Hironaka's theorem on the 
resolution of singularities, is given in Chapter 7. For the other proof, which uses 
complex analytic reasoning, see Chapter 11. 

In the asymptotic series of oscillatory integrals the phase and the amplitude do 
not enjoy the same status: the phase determines the indices for the powers of the 
parameter, but the amplitude determines the coefficients for the powers of the 
parameter. The dependence on the phase is more important. As a rule investi­
gating oscillatory integrals we fix the phase, but we allow the amplitude to 
change. In the example in § 6.1.1 on a surface radiating waves, the phase depends 
on the geometry of the radiating surface, but the amplitude depends on the 
intensity of the radiation. 
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6.1.9 1be osciIIation index and the singular index 

The fundamental characteristics of the asymptotic series of an oscillatory 
integral are: the index of the power of the parameter in the leading term of the 
series; 
the power of the logarithm of the parameter in the leading term of the series; 
the numerical coefficient of the leading term of the series; 
finally, the set of all the indices of the powers of the parameter occurring in the 
series. 

Definitions. The index set of an analytic phase at a critical point is the set of all 
numbers IX possessing the property: for any neighbourhood of the critical point 
there is an amplitude with support in the neighbourhood for which in the 
asymptotic series (2) there is a number k with the property that the coefficient at .• 
is not equal to zero. The oscillation index of an analytic phase at a critical point is 
the maximal number in the index set. The oscillation index will be denoted by fJ. 
The multiplicity 0/ the oscillation index of an analytic phase at a critical point is 
the maximal number k possessing the property: for any neighbourhood of the 
critical point there is an amplitude with support in this neighbourhood for which 
in the asymptotic series (2) the coefficient a"., is not equal to zero. The 
multiplicity of the oscillation index will be denoted by K. 

Example. The index set of a phase in n variables at a non-degenerate critical point 
is the set of all numbers of the form -n/2-1, where 1=0,1, ... The oscillation 
index of this critical point is equal to -n/2, its multiplicity is equal to zero. 

The oscillation index and its multiplicity satisfy the following simple property. 
Let 

/(Xl,· .. , x,,), g(Yl,'" ,y,) 

be analytic functions with critical points at the origin. Then for the function 

/(Xl>'" ,x,,)+g(Yl>'" ,y,) 

the oscillation index at the origin and its multiplicity are equal, respectively, to 
the sum of the oscillation indices and the sum of the multiplicities of the 
oscillation indices at the critical points of the functions / and g: 

fJ(f+g) =fJ(f) + (J(g), K(f+g) =K(f) +K(g) 
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(this is a corollary of Fubini's theorem, see Chapter 9)~ The additivity of the 
oscillation index and its multiplicity motivate the following definition. 

Definition. The singular index of an analytic phase in n variables at a critical point 
is the oscillation index at this critical point, increased by n12. The multiplicity of 
the singular index is the multiplicity of the oscillation index. 

The singular index and its multiplicity are equal to zero at a non-degenerate 
critical point of the phase. The singular index and its multiplicity are equal at 
stably equivalent critical points. 

6.1.10 Tables of singular indices 

In this part we calulate (in the cases enumerated below) the principal 
characteristics of critical points of phases of oscillatory integrals: the oscillation 
index, its multiplicity, the index set. We describe amplitUdes such that the 
principal term of the asymptotic series is different from zero. The results proved 
in this part allow us to calculate the singular indices and their multiplicities for all 
critical points classified in Part II of Volume 1. Namely for all simple, unimodal 
and bimodal critical points, for all critical points of multiplicity less than 16, for 
all critical points existing in classes of codimension less than 10, see Chapter 15 of 
Part 1. 

The results of the calculations follow in tables 1-5. In the fIrst row of the 
tables is the designation of the type of critical point of the phase~ The normal 
forms of the critical points corresponding to these designations are shown in 
§§ 15.1 and 17.1 of Volume 1. In the second row of the tables are the singular 
indices. The meaning of our tables is this: if in a neighbourhood of the critical 
point the phase is reduced to the tabulated form by a diffeomorphism of the 
space, then its singular index is equal to the singular index of the tabulated 
function. 

For critical points of types 

the multiplicity of the singular index is equal to 1, for all other critical points in 
tables 1-5 the multiplicity of the singular index is equal to O. For all the critical 
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Table 1. Simple singularities. 

Al Dl E6 

k-1 k-2 5 

2k+2 2k-2 12 

Table 2. Unimodal singularities. 

E12 E13 E14 , QIO Z12 

11 8 13 6 - - -
21 15 24 11 

Table 3. Bimodal singularities. 

J3•0 Zl.0,E19 

J3., Zl., 

5 4 

9 7 

S17 U 1•0 , U 1•Zf - 1 , U1.Zf E18 

5 11 17 
-

8 18 30 

E7 

4 

9 

1 

2 

Z13,Qll 

5 

9 

Ezo Z18 

13 10 -
24 17 

7 

12 

E8 

7 

15 

W12 

11 

20 

Z19 

16 

27 

W13 ,Sll Q12 

9 17 -
16 30 

W18 Q16 Q18 

17 25 29 
-

28 42 48 

S12 

15 

26 

3 
5 

S18 

21 

34 

185 

U12 

7 -
12 

U 16 

19 

30 
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Table 4. Singularities of corank 2 with non-zero 4-jet. 

2k-l 
3k 

Z~3+61 

6i+17 
9i+27 

Wllt 

12k-l 
16k+4 

6k-l 
9k+3 

Zt,o, Zt", Zt2t+61-l>} 

Zt2t+6h Zt21+61+1 

3k-l 
4k 

Z~+61 Z~S+61 

4i+12 6i+19 

6i+19 9i+30 

E6i.+1 

4k 
6k+3 

for k>2 

ZI,O,ZI" 

2i+2 
3i+4 

6k+l 
9k+6 

Z61+11 

6i+S 
9i+15 

Wllt+1 Wt,o, Wt,,, Wt~29-1' W~29 

9k 12k+2 

12k+4 16k+S 
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3k-l 
~ 

zl.o 

zl., 

2i+5 
3i+S 

Z61+1l 

4i+6 
6i+ll 

W121+S 

9k+3 
12k+S 

Z61+13 

6i+l0 
9i+1S 

W121+6 

12k+5 
16k+12 

Table 5. Singularities of corank 3 with reduced 3-jet and 3-jet xly. 

Qt,O,Qt,1 Q61+4 Q6t+5- Q6t+8 8 12t- 1 8 12t 

4k-l 12k+l Sk+2 12k+5 12k-3 ISk-3 

6k ISk+6 12k+6 ISk+12 16k 24k+2 

8t,o,8t~29-1 
8 121+ 4 8 121 +5 U121 

U1,2t U121+4 
V1,o, V1~29-1 

8 1,,,8:'24 U1.29- 1 V1", Vl~29 

6k ISk+3 12k+3 15k-l 10k+l 15k+4 5 

Sk+2 24k+l0 16k+S ISk+6 12k+6 ISk+12 S 
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points in the tables (except 

the multiplicity of the singular index is equal to 1, for all other critical points in 
tables 1-5 the mUltiplicity of the singular index is equal to O. For all the critical 
points in the tables (except 

P+ ~+ + iIo- - q, 
8+1:, .l{,. t ,.l{Ift' ,.1 ".r,,, 

the same assertion is true about the imaginary part of the coefficient aK,fJ. 

For the proof of these results see Chapter 9. 

6.2 Formulation of the results 

The main results of this part are formulated in terms of the Newton polyhedra of 
the Taylor series of the critical points of the phase. The Newton polyhedron is 
that convex polyhedron formed by the indices of the monomials occurring in the 
Taylor series. We consider the class of critical points with fixed Newton 
polyhedron. We prove that almost all critical points of the class have the same 
oscillation index. We prove the formula expressing this common oscillation 
index in terms of the geometry of the Newton polyhedron. The exceptions 
consist of the critical points, the coefficients of whose Taylor series satisfy a finite 
set of explicit algebraic conditions. 

The class of critical points with fixed Newton polyhedron is a useful thing to 
consider in a study of discrete invariants of critical points. As a rule an in­
variant has a single value for almost all points of the class, and this common 
value can be simply expressed in terms of the geometry of the Newton 
polyhedron (see §§ 6.2.4,3.5, and also [31,44,45,65-67, 76, 89, 106, 159-165, 
183, 195, 196, 200, 223, 314, 343, 358, 359, 380-382, 386D. 

6.2.1 The Newton polyhedron 

Let us consider the positive orthant of the space It", that is the set of points 
with non-negative coordinates. We define the Newton polyhedron of an 
arbitrary subset of the orthant consisting of points with integer coordinates. At 
each point of the subset we take a parallel positive orthant. The Newton 
polyhedron is the convex hull in It" of the union of all the orthants constructed 
above~ The Newton polyhedron is a convex polyhedron with vertices at points 
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with non-negative integer coordinates~ Together with each point it contains the 
positive orthant parallel translated to this point. The Newton diagram of a subset 
is the union of all the compact faces of its Newton polyhedron~ 

We consider the power series 

with real or complex coefficients, where 

k=(k1 , ••• ,kIll, xl=~l ... x!". 

The support of the series is the set of indices of all the monomials occurring in the 
series with non-zero coefficients. The support of the series is a subset of the 
positive orthant, consisting of points with non-negative integer coordinates. We 
remove from the support the origin (ifit lies in the support). The set obtained is 
called the reduced support of the series. The Newton polyhedron of a power series 
is the Newton polyhedron of its reduced support. The Newton diagram of a power 
series is the Newton diagram of its reduced support. 

The Newton polyhedron is denoted by r, the Newton diagram is denoted 

by Lt. 

Example. For the functions 

f=(xf+~f+~, 

g=(xf-~f, 

h=(Xl +xlfxf+~+~ 

the Newton polyhedra and Newton diagrams of the Taylor series at the origin 

are depicted in figure 65. 

k: : ref) lS: 
reg) 

Fig. 65. 

~. : :: .. re,,) 
. ... .. .. 
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For each face }' of the Newton polyhedron of a power series the },-part of this 
power series is the power series consisting of monomials the indices of which lie 
in the face}, ; moreover each monomial occurs with the same coefficient as in the 
original power series. If the face }' is compact, then the },-part is a polynomial. 
The principal part of a power series is a polynomial consisting of monomials, the 
indices of which lie in the Newton diagram of the power series; moreover the 
monomials occur with the same coefficients as in the original power series. 
The },-part of the series f is denoted by f1' the principal part of the series is 
denoted by f~. 

Example. For the functions in the previous example the principal parts of the 
Taylor series are the polynomials 

f~=(xf+~f, 

g~=(xf-~f, 

h~=(Xl +xlfxf+~ 

6.2.2 Nondegeoeracy of tbe priocipal part 

We define the concept of non degeneracy of the principal part of a power series. 
In the sequel we shall see that functions, the Taylor series of which have non­
degenerate principal parts, have good properties: their discrete characteristics 
can be simply expressed in terms of the geometry of their Newton polyhedra, 
see § 6.2.4. 

DefiDitiODi [195, 196]. The principal part of the power seriesfwith real coeffi­
cients (respectively power series with complex coefficients) is R-nondegenerate 
(resp. ~-nondegenrate) if for every compact face }' of the Newton polyhedron of 
the series the polynomials 

do not have common zeros in (R'\,.O)" (respectively in (~'\,.O)"). 

Example. All principal parts in the previous example are ~-degenerate, the 
principal part of f~ is R-non-degenerate, the principal parts of g~, h~ are 
R-degenerate. 
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Remark. For any compact face "I the "I-part polynomial is quasihomogeneous. By 
the Theorem of Euler on homogeneous functions, the common zeroes in (It'\,. 0)" 
of all the ftrst partial derivatives of the "I-part polynomial lie on the zero level 
manifold of the y-part polynomial. 

The following lemma shows that series with degenerate principal parts are 
rare. 

Lemma 6.1 (see [195,196]). The set oCR-degenerate (respectively ([-degenerate) 
principal parts is a proper semialgebraic (resp. constructive) subset in the space 
of all principal parts corresponding to a given Newton polyhedron, the 
complement of which is everywhere dense. 

Proof. For a ftxed compact face "I of the Newton polyhedron we prove that, in the 
space of polynomials which are y-parts, the semialgebraic subset corresponds to 
those polynomials for which the zero level manifold has a singular point in 
(R'\,.O)" and the complement of the subset is everywhere dense. 

The Theorem of Tarski-Seidenberg (see [130, 325]) guarantees that the subset 
is semialgebraic. Let us prove that the complement is dense. The zero level 
manifold is given by the equation 

We pick out one ofthese monomials. Then the zero level manifold in (JR'\,.O)" 
can be given by the equation 

Cto= - L cl .x1- to. 
kEY".ko 

By the Theorem of Bertini-Sard only a ftnite set of values of the coefficient Cto 

(where the other coefficients are ftxed) correspond to singular zero level 
manifolds. The lemma is proved. 

6.2.3 The distance to a polyhedron and the remoteness of a poIyheclroo 

To study oscillatory integrals we use geometrical characteristics of the Newton 
polyhedron, called the distance to a polyhedron and the remoteness of a 
polyhedron. Let us consider the bisector of the positive orthant in It", that is the 
line consisting of points with equal coordinates. The bisector intersects the 
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boundary of the Newton polyhedron in exactly one point. This point is called the 
centre of the boundary of the Newton polyhedron. The coordinate of the centre is 
called the distance to the Newton polyhedron. The remoteness of the Newton 
polyhedron is the reciprocal of the distance, taken with a minus sign. 

Example. For the functions/, g, h of the example on page 189, the distances to 
the Newton polyhedra are equal, respectively, to • 

2, 12/5, 2, 

whilst the remoteness of the Newton polyhedra are equal, respectively, to 

-1/2, -5/12, -1/2. 

The further from the origin the Newton polyhedron is, the larger is its 
remoteness. We call the Newton polyhedron remote if its remoteness is greater 
than -1. In other words the Newton polyhedron is remote if it does not contain 
the point (1, ... , 1). 

We consider the open face which contains the centre of the boundary of the 
Newton polyhedron. The codimension of this face, less one, is called the 
multiplicity ofthe remoteness. In particular, if the indicated face is a vertex of the 
polyhedron, then the multiplicity is equal to n -1, if the indicated face is an edge 
of the polyhedron then the multiplicity is equal to n - 2, and so on. 

Example. For the functions/, g, h of the example on page 189 the multiplicities of 
the remoteness of the Newton polyhedra equal, respectively, 0, 0, 1. 

6.2.4 Fonnulatioo of the main results 

The main result of this part is the following: the oscillation index of a critical 
point of the phase is determined by the remoteness of the Newton polyhedron of 
its Taylor series (under conditions formulated in the following two theorems). 

Theorem 6.4 [358]. Let the phase be an analytic function in a neighbourhood of 
its critical point. Let us suppose that the principal part of the Taylor series of the 
phase at this critical point is It-nondegenerate, and that the Newton polyhedron 
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of this series is remote. Then the oscillation index of the critical point of the phase 
is equal to the remoteness of the Newton polyhedron. 

Example 1. The degenerate critical point at the origin of the phase ~I + ~2 
satisfies the conditions of the theorem. Its oscillation index is equal to 

-l/ki -1/k2 • 

Example 2. The critical point at the origin of the phase f of the example on page 
189 satisfies the conditions of the theorem. Its oscillation index is equal to -1/2. 

The following assertions supplement the theorem. 
(i) If the conditions of the theorem are satisfied then the multiplicity of the 

oscillation index of the critical point of the phase is equal to the multiplicity of the 
remoteness of the Newton polyhedron of the Taylor series of the phase at this 

critical point. 
(ii) If the principal part of the Taylor series of the critical point of the phase is 

It-nondegenerate then the oscillation index of the critical point is not more than 
the remoteness of the Newton polyhedron of the Taylor series. 

(iii) Let us consider the critical point at the origin of the phase 

Then the principal part of the Taylor series of the critical point is It-non­
degenerate; the remoteness of the Newton polyhedron of the Taylor series is less 
than -1; the oscillation index of the critical point is less than the remoteness of 

the Newton polyhedron. 
(iv) If the Newton polyhedron of the Taylor series of the critical point of the 

phase is remote then the oscillation index of the critical point of the phase is not 

less than the remoteness of the polyhedron. 
(v) If the Newton polyhedron of the Taylor series of the critical point of the 

phase is remote, and this critical point has finite multiplicity, then the coefficient 
of the principal term of the asymptotic series of the oscillatory integral (the 
coefficient aK,1 of the series (2) on page 181) is equal to the value of the amplitude 
at the critical point of the phase, multiplied by a non-zero constant, depending 

only on the phase. 
(vi) Let the principal part of the Taylor series of the critical point of the phase 

be It-nondegenerate and the remoteness of the Newton polyhedron be equal 
to -1. Then the oscillation index of the critical point of the phase is equal to -1 
if at least one of the following two conditions is satisfied: 
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- the open face which contains the centre of the boundary of the Newton 
polyhedron has dimension less than n -1 ; 
- the closure "I of the open face which contains the centre of the boundary of the 
Newton polyhedron is compact and the "I-part of the Taylor series has a zero in 
(It,,",O)ft. 

(vii) If the hypotheses of supplement (vi) are satisfied then the multiplicity of 
the oscillation index of a critical point of the phase IS equal to the multiplicity of 
the remoteness of the Newton polyhedron of the Taylor series or to one less than 
the multiplicity of the remoteness. 

Theorem 6.4 and supplements (i), (ii), (iv), (v), (vi), (vii) will be proved in 
Chapter 8, supplement (iii) will be proved in Chapter 9. 

According to Theorem 6.4, the oscillation index of a critical point of the phase 
can be expressed in terms of the Newton polyhedron of its Taylor series if the 
principal part of the Taylor series is 1R-nondegenerate and the Newton 
polyhedron of the Taylor series is remote. A system of coordinates in which the 
Taylor series possesses these properties does not always exist. For example, it 
does not do so for the critical point at the origin of the function 9 of the example 
on page 189. None the less, for critical points of functions of two variables 
conditions on the existence of the indicated system of coordinates can be 
omitted. 

Let the phase be an analytic function in a neighbourhood of its critical point. 
The remoteness of the critical point of the phase is the upper bound of the 

remotenesses of the Newton polyhedra of the Taylor series of the phase in all 
systems of local analytic coordinates with origin at the critical point. 

A local analytic coordinate system with origin at the critical point of the phase 
is called adapted to the critical point if the remoteness of the Newton polyhedron 
of the Taylor series of the phase in this system of coordinates has the greatest 
possible value, equal to the remoteness of the critical point. 

Theorem 6.S (see [358]). Let the phase be an analytic function of two variables in 
a neighbourhood of its critical point. Then the oscillation index of the critical 
point is equal to its remoteoess. 

The following assertions supplement the theorem. 
(i) Under the conditions of the theorem there exists a system of coordinates, 

adapted to the critical point. 
(ii) If the critical point of a two-dimensional phase has finite multiplicity then 

the coefficient of the principal term of the asymptotic series of the oscillatory 
integral (the coefficient aK,1 of series (2) on page 181) is equal to the value of the 
amplitude at the critical point of the phase, multiplied by a non-zero constant 
depending only on the phase. 
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(iii) The oscillation index is greater than the remoteness for the critical point at 
the origin of the phase 

of three variables. 

Theorem 6.5 and supplements (i), (ii) will be proved in § 8.4, supplement (iii) 
will be proved in Chapter 9 (see also [358]). 

In [358] there is described an algorithm for the creation of a system of 
coordinates adapted to the critical point of a phase of two variables. The 
following lemma is useful for the creation of adapted coordinates. 

Lemma 6.2 (see [358]). A local system of coordinates with origin at the critical 
point of a phase of two variables is adapted to the critical point if at least one of 
the following conditions is satisfied. 

(i) The centre of the boundary of the Newton polyhedron of the Taylor series 
of the phase with respect to this system of coordinates is a vertex of the polygon. 

(ii) The centre of the boundary of the Newton polyhedron lies on a non­
compact edge of the polygon~ 

(iii) The centre of the boundary of the Newton polyhedron lies on a compact 
edge of the polygon and neither the tangent nor the cotangent of the angle 
formed by the edge and the first coordinate axis in R2 is equal to an integer (we 
remark that interchanging the axes changes tangents to cotangents and does not 
influence the truth of the formulated condition). 

Example. Let us consider the functions g and h ofthe example on page 189. The 
system of coordinates Xl, X2 is adapted to the critical points of these functions 
(because of sections (iii) and (i) of Lemma 6.2 respectively). By Theorem 6.5 the 
oscillation indices are equal, respectively, to -5/12, -1/2. 

Remark 1. The assertion of the fact that the coefficient of the leading term of the 
asymptotic series is proportional to the value of the amplitude at a critical point 
(see the supplements of Theorems 6.4, 6.5), can be used to solve the following 
problem of integral geometry, posed by I. M. Gelfand in Amsterdam in 1954. 

Problem. Let q, be a smooth function with support concentrated in a small 
neighbourhood of the critical point of a smooth function f Knowing the 
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integrals of the function q, over every level hypersurface of the function / find the 
value of the function q, at the indicated critical point. 

For the solution of this problem it is sufficient to take the coefficient of the 
leading term of the asymptotic series of the oscillatory integral with phase/and 
amplitude q, if the critical point of the function/has finite mUltiplicity and its 
remoteness is greater than -1. For more details see §7.3. 

Remark. 2. The singular index is non-negative for critical points of phases of one 
and two variables (see Theorems 6.4, 6.5), for critical points satisfying the 
conditions of supplement (iv) of Theorem 6.4. Using supplement (iv) of 
Theorem 6.4, it can be proved that the singular index is non-negative for critical 
points of phases of three variables. Apparently the singular index is always non­
negative. This means that the order of complex shortwave oscillation at a caustic 
point is, apparently, always greater than the order of complex shortwave 
oscillation at a non-caustic point (see §§ 6.1.1, 6.1.4). In particular a light caustic, 
apparently, is always distinguished by its brightness. 

In Chapter 13 we shall define the complex singular index of a critical point of 
a holomorphic function. The complex singular index is always non-negative, see 
§ 13.3. The proof of this fact uses the connection between asymptotic integrals 
and mixed Hodge structures. 

6.3 The resolution of a singularity 

The proof of Theorems 6.3-6.5 uses the resolution of the singularity of the 
critical point of the phase. 

Let us consider a function/: It"-+ It, analytic in a neighbourhood of its critical 
point x. Let us suppose that the value of the function at this point is equal to O. 
The resolution of the singularity 0/ the critical point is an n-dimensional analytic 
manifold Y and an analytic map 

1t: Y-+It" 

possessing the following properties. 
1. At each point of the preimage of the critical point X there are local coordi­
nates with respect to which the function/ox and the Jacobian map of x are 
equal to monomials modulo multiplication by a function which does not take the 
value zero. 
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2. In a small neighbourhood of the critical point x there is a proper analytic 
subset outside which in this neighbourhood the map 11: has an analytic inverse. 
3. The preimage of any compact subset of a small neighbourhood of the point x 
is compacL 

Remark 1. In particular, from the first condition it follows that in a 
neighbourhood of the preimage of the point x the zero level hypersurface of the 
function f 011: is locally structured as the union of coordinate hyperplanes. 

Remark 2. Sometimes the requirements of the map 11: are strengthened, property 2 
being replaced by property 2' or even by property 2" and property 4 being added. 
2'. In a small neighbourhood of the point x the map 11: is invertible outside the 
zero level hypersurface of the function f 
2". In a small neighbourhood of the point x the map 11: is invertible outside the 

critical set of the function f 
4. In a small neighbourhood of the preimage of the point x the zero level 
hypersurface of the function f 011: is the union of non-singular (n -1)­

dimensional submanifolds. 

Theorem 6.6 (Hironaka, see [158,32]). There exists a resolution of the singu­
larity (with properties 1,2", 3, 4) of the critical point of an analytic function. 

This theorem was formulated in [32]. It is a special case of a general theorem of 
Hironaka on resolutions of singularities [158]. 

Remark 3. The concept of resolution of singularities has a natural complex 
analogue. We consider the functionf: G::"-+ct, analytic in a neighbourhood of its 
critical point x. The resolution is an n-dimensional complex analytic manifold Y 
and an analytic map 

11:: Y-+C[" 

which satisfies the properties formulated above. Also in this case, the theorem of 
Hironaka is true. 

The theorem of Hironaka leads the investigation of oscillatory integrals with 
analytic phase to the investigation of sums of oscillatory integrals the phase of 
each of which is a monomial. It is necessary for this to make acbange of variables 
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in the integral with the help of the map 11:. The oscillatory integrals with 
monomial phase are called elementary. The elementary integrals are studied in 
Chapter 7~ For these it is not hard to find the oscillation index, its multiplicity 
and its index set. Therefore in investigating oscillatory integrals with analytic 
phase, it is important to know the resolution ofthe singularity of the phase, to be 
able to see how the asymptotic series of the integral under investigation is added 
up from asymptotic series of elementary integrals, to see whether or not the 
leading term cancels out. The result of such analysis is an expression for the 
oscillation index and analogous characteristics in terms of the resolution of the 
singularity of the phase (Theorem 7 .5)~ Theorems 6.4 and 6.5 are reformulations 
of the properties of resolutions of singularities, which arise in this analysis, in 
terms of Newton polyhedra. 

6.4 Asymptoties of volumes 

The asymptotics of oscillatory integrals are closely connected with the asymp­
totics of the volume of the set of points at which the phase takes values less than 
a given number, as this number changes and tends to the critical value of the 
phase. 

6.4.1 The Gelfaod-Leny form 

For the study of oscillatory integrals it is very useful to know the following 
method, which reduces many-dimensional oscillatory integrals to one-dimen­
sional ones. The method consists of applications of Fubini's Theorem. Namely, 
let us consider the oscillatory integral: 

J eiT/(%)q>(x)dx1 ••• dx". 
It· 

Using Fubini's Theorem, we reduce the integral to another in which we first 
integrate along a level hypersurface of the phase, and then with respect to the 
remaining variable, the value of the phase. To do this, we change to new 
variables, one of which is the phase. 

We make two remarks. Firstly the phase can be taken as a variable only away 
from its critical points. Therefore we cut out of consideration the union of the 
critical level hypersurfaces of the phase. The union of these hypersurfaces has 
zero measure and has no effect on the integral. Secondly, for the integration 
along the level hypersurfaces we do not need to know each of the remaining new 
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variables. It is sufficient to know on the level hypersurfaces the density (n -1 )­
form, which after multiplication by the differential of the phase becomes the 
volume form of the space. This density form is called the Gelfand-Leray form and 
is denoted by 

dx1 /\ ••• /\ dx"ldf 

And so the oscillatory integral is reduced to the form 

In this representation the oscillatory integral is the Fourier transform of the 
function given by the inside integral. The function of one variable, defined by the 
inside integral, is called the Gelfand-Leroy function. 

The Gelfand-Leray function is smooth outside the critical values of the phase. 
In a neighbourhood of the critical value of the phase the Gelfand-Leray function 
can be expanded in an asymptotic series of the form 

,,-1 

L L al:.,"(t-to)'"(ln(t-to)f. 
'" 1:=0 

Knowing the asymptotic series of the Gelfand-Leray function one can determine 
the asymptotic series of the oscillatory integral and conversely the asymptotics of 
the oscillatory integral give information about the asymptotics of the Gelfand­
Leray function. These properties of the Gelfand-Leray function will be proved in 
Chapter 7. 

6.4.2 The volume of aD infnlevel set 

Let us suppose that the phase has an isolated minimum and that the minimal 
value of the phase is equal to zero. Let us suppose also that the amplitude in a 
neighbourhood of the minimum point is identically equal to 1. Let us denote by J 
the Gelfand-Leray function and let us consider the new function 

t 

V(t) = J J(s)ds. 
o 

It is clear that for negative values of the argument this function is equal to zero, 
and for small positive values of the argument this function is equal to the volume 
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of the set of points in which the phase takes values less than the given one (an 
"infralevel set"). In this way the asymptotics of the volume function of the 
infralevel set determine the asymptotics of the oscillatory integral in the case 
when the phase has an isolated minimum and the amplitude is equal to a constant 
in a neighbourhood of the minimum point of the phase. 

Let us find the rate of convergence to zero of the volume of the infralevel set for 
simple isolated minimum points. The classification of critical mi~mum points, 
not removed by a small perturbation from the family of functions depending on 
at most 16 parameters, was produced by V. A. Vasilev in [386], and the 
asymptotics of the volume of infralevel sets were evaluated in the same place. 
According to this classification the only minimum points not removed by small 
perturbations from the family of functions depending on at most 5 parameters 
are minimum points in which the function can be reduced, by a diffeomorphism 
of the space, to the form 

where s=1,3,5. For small positive t the leading term of the asymptotics ofthe 
volume of the infralevel set has the form 

const. t- fJ + ,,/2 

where P is equal, respectively, to 0, 1/4, 1/3. 
We formulate a general theorem on the evaluation of the rate at which the 

volume of the infralevel set tends to zero. 

Theorem 6.7 (cf. [386]). Let us suppose that an analytic function has an isolated 
minimum and that the minimal value is equal to zero. Then as 1-+ + 0 the volume 
function V of the infralevel set can be expanded in the asymptotic series 

,,-1 

L L at .• III(ln I)t. 
• t=o 

Here the variable ex runs through a finite number of arithmetic progressions, 
consisting of positive rational numbers. If in addition it is known that the Taylor 
series of the function at the minimum point has a It-nondegenerate principal 
part, then the index ex of the maximal term of the asymptotic series is equal to 
minus the remoteness of the Newton polyhedron of the Taylor series. 

The theorem will be proved in § 8.3.3. 
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Remark 1. If the volume form of the space is changed (that is if it is multiplied by a 
positive function) then the order of the leading term of the above asymptotic 
series does not change. 

Remark 2. The above asymptotic series converges for small positive t. 

6.4.3 The area of a level surface 

In § 8.3.3. we shall formulate a theorem on calculating the asymptotic of area 
of a compact level surface as the level tends to the critical one. 

6.4.4 The set of points with small gradient 

Yet one more characteristic of critical points, similar to those considered 
above, is the rate at which the volume of those points at which the length of the 
gradient is less than a given number tends to zero as the given number tends to 
zero. 

Let us suppose that in the space there is given a Riemannian metric. This 
metric (with the help ofthe matrix inverse to the matrix of the metric) defines a 
metric on the cotangent bundle of the space. In this metric we calculate the 
square of the length of the gradient 

df=(of/ox., . .. , of/ox,,) 

of the functionfunder consideration. In a neighbourhood of the chosen critical 
point of the function we consider for each small positive t the volume V(t) of the 
set of those points in the neighbourhood for which the square of the length of 
the gradient is less than t. We shall be interested in the asymptotic of the volume 
as 1-+ +0. Since all the metrics in a neighbourhood of the point are mutually 
bounded, the order of the leading term of the asymptotic series will not depend 
on the choice of metric. 

Example. For critical points of types 
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the leading term of the asymptotic series of the function V has the form, as 

t-+ +0, 

where (01, k)equal, respectively, «Jl-1)/2Jl, 0), (1/2, 0), (1/2,1), (7/12, 0), (5/8, 0), 

(5/8,0). 

To calculate the asymptotics of the volume of the set of points with small 
gradient we can use Theorem 6.7, applied to the function (df, df), and we can also 
use Theorems 6.4 and 6.5. 

6.S Uniform estimates 

As well as the asymptotics of individual oscillatory integrals it is often useful to 
have uniform estimates of oscillatory integrals, depending on additional 

parameters. 
We define the concept of uniform estimate and the uniform oscillation index. 
Let f: Rft -+ 1R be a smooth function. A deformation of it is any smooth function 

F:R"xR'-+JR., 

which is equal to the functionfwhen the second argument takes the value zero. 

Defmition. At the critical point Y!' of the phasefwe get a uniform estimate with 
index 01 if for any deformation F of the phase f there is a neighbourhood in 
JR." x Il' ofthe point Y!' x 0 such that for any smooth function t/J with support in 
this neighbourhood and for any positive E there exists a number C(E, t/J), for 

which for all positive 1" 

The lower bound of such numbers IX is called the uniform oscillation index of the 
phase at the critical point. 

It is clear that the uniform oscillation index is not less than the individual one. 
There arises a natural conjecture, formulated by V. I. Arnold in [12, 13, 14], 

that the uniform oscillation index is equal to the individual index. That is that an 
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oscillatory integral permits a uniform estimate with respect to additional 
parameters in terms of quantities proportional to the value of the integral for the 
initial values of the additional parameters. 

For a justification of this conjecture it is necessary that the individual 
oscillation index is upper semicontinuous for a continuous deformation of 
critical point. Namely it is necessary that the oscillation index of a complex 
critical point is not less than the oscillation index of a simpler critical point, 
obtained by decomposing the complex one. An analysis of the tables of singular 
indices and the known adjacencies of the critical points classified in Part II of 
Volume 1, shows that such semicontinuity takes place for the critical points 
classified in Part II of Volume 1. 

Theorem 6.S. The uniform oscillation index is equal to the individual one for 
critical points of functions of one variable (I. M. Vinogradov [391]), for simple 
critical points (J. J. Duistermaat [100]), for parabolic critical points (Y. Colin de 
Verdier [80]), for hyperbolic critical points of the series Tp,q,r (V. N. Kar­
pushkin [178]), for critical points of functions of two variables (V. N. 
Karpushkin [176]). 

Coronary. For critical points, occurring unavoidably in a family of phases in 
general position, depending on not more than seven parameters, the uniform 
oscillation index is equal to the individual one. 

According to Theorem 6.8, as we move on a caustic, corresponding to one of 
the critical points enumerated in the theorem, the intensity of the shortwave 
oscillation at the limiting point is not less than the intensity of the radiation at 
a point near the limiting point. Surprisingly, this phenomenon does not take 
place for all caustics. Namely there are examples of degenerate critical points of 
phases for which the uniform oscillation index is greater than the individual one 
(see [358]). 

An exposition of these examples will be given in Chapter 9. The critical points 
of the constructed examples are very degenerate, the codimension of such critical 
points being of order 80 or more (that is these critical points disappear under 
small perturbations from a family of functions with less than this number of 
parameters). 

According to the constructed examples there exists a critical point and a 
deformation of it which has the following property. The oscillation index of the 
critical point of the deformation for the chosen value of the parameter is less than 
the oscillation index of the critical point of the deformation for a general value of 
the parameter, that is the modulus of the oscillatory integral of the deformation 
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for the chosen value of the parameter is substantially less than the modulus ofthe 
integral for a general value of the parameters. 

It would be interesting to elucidate whether it is possible to observe the indicated 
phenomenon physically in the form of a subset of a caustic which is dark in 
comparison with its neighbourhood. As we have already mentioned such a 
phenomenon cannot be observed on caustics in general position in small­
dimensional spaces (Theorem 6.8 and its corollary). 

Remark. The proof of V. N~ Karpushkin of the equality of the uniform and 
individual oscillation indices for critical points of functions of two variables is 
based on Theorem 6.5. As we have already mentioned, the equality of the 
uniform and individual oscillation indices is possible only under the condition of 
upper semicontinuity of the individual oscillation index under deformations of 
the critical point. According to Theorem 6.5 this property of semicontinuity can 
be reformulated for functions of two variables as follows: let us be given an 
arbitrary family of functions of two variables, depending on a parameter and 
having a critical point at the origin, then the remoteness of this critical point 
depends in an upper-semicontinuous way on the parameter. It is very likely that 
this result is correct for functions of any number of ' variables. An interesting 
problem in this case is to express the uniform oscillation index in terms of the 
other characteristics of the critical point (the Newton polyhedron, the resolution 
of the singularity etc.). It could be that the uniform oscillation index can be 
expressed in terms of the remoteness of critical points, stably equivalent to the 
given one. Another likely candidate for expressing the uniform oscillation index 
is the complex oscillation index, to be defined in Chapter 13. The complex 
oscillation index is defined for critical points of hoi om orphic functions. It is the 
complex analogue of the oscillation index. B. Malgrange in [239] formulated a 
conjecture on semicontinuity of the complex oscillation index under defor­
mation of the critical point. The complex oscillation index is one ofthe spectral 
numbers of a critical point of a holomorphic function (the spectrum will be 
defined in Chapter 13). In § 14.3 is formulated a conjecture of V. I. Arnold on 
the semicontinuity of spectra under deformation of the critical point. The 
conjecture is proven in [371-375, 345]. 

In this part we study the asymptotics of individual oscillatory integrals. In this 
section we discussed uniform estimates of them. There is yet another approach to 
the estimation of integrals - this is the estimate in mean. We formulate the 
corresponding results. 

Let us consider an oscillatory integral depending on additional parameters, 

I(r,y)= J el<F(X,')qJ(X,y)dxt. ... ,dx". 
It" 
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Let us denote by 1: the set of critical points of the phase, that is 

I = {(x, y)\oF/oxj(X' y)=O, j= 1, ... , n}. 

Theorem 6.9 (see [100)). Let us suppose that 1: is a submanifold, that is that the 
differentials d(oF/oxj),j= 1, ... ,n, are linearly independent at each point of the 
set 1:; Let us suppose that the support of the amplitude is concentrated in a small 
neighbourhood of one of the points of the set 1:. Then as -r--+OO we get the 

asymptotic expansion 

00 

J \I(-r,y)\2dy~ L a,(cp)-r- ' , 
1=11 

where the numerical coefficients a, are generalised functions of the amplitude 
with support in 1:. In particular the leading coefficient a., is proportional to the 
integral of the square of the modulus of the amplitude over the critical set I. 

This result corresponds to results on the unitariness of the canonical operator 
of Maslov (see [244-246,144)) and means that, for individual values of the 
additional parameters, the asymptotic behaviour of the integral may have 
complex character but the integral of the square of the modulus of the oscillatory 
integral behaves as if the phase had only non-degenerate critical points in the 

variables of integration. 
The proof of Theorem 6.9is based on the fact that the integral of the square of 

the modulus is an oscillatory integral. Its phase 

F(x,y) -F(z,y) 

has critical points on the set 

{(X,y,z)\X=z, (x, y)e1:} 

(if x, z are sufficiently close), and the critical points are non-degenerate in a 

transversal direction to this set. 

6.6 TIte DUDlber of integral points in a falllily of bolllOthetic regions 

Let us consider in the space R" a bounded region D with smooth boundary. We 
shall estimate the difference between the volume of the region, stretched out by a 
factor of A, and the number N(A) of points with integer coordinates lying in the 
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stretched out region, that is the difference 

R(A)=A"V(D) -N{A). 

The study of this question is motivated by the following considerations 
(see [80)): 

1) The case in which D is an ellipsoid is considered in number theory . 
r .h In connec Ion WIt the study of the arithmetical properties of quadratic forms (see 

[37,169, 175,218,240,392)). 
2) If the regionDisdefined by the condition {J ~ 1}, wheref: R"",,"O--+R+ is a 

smoo~h homo~e~eous function (say a homogeneous polynomial), then the 
functIon N{A) IS Interpreted as the spectral function of the pseudodifferential 
operator P on the torus JR"/{2nZ)", given by its spectral decomposition 

P{exp(i(k,x»))= f{k)exp{i(k, x») 

3) The follo~ing problem, arising in numerical integration, is studied in an 
analogous fashion: let f be a smooth function and 

Nf{A)= L f{X/A). 
xeWnZ' 

It is required to estimate the difference 

Rf(A)=A" J fdx-Nf{A). 
D 

For the difference R{A) one usually obtains an estimate by the degree of the 
parameter A: R{A)=O{AP). 

. A trivial estimate for any region is obtained if we take p =n -1. Indeed the 

dIfference R{A) is less than the volume ofthe neighbourhood of width 2 vn of the 
boundary of the blown-up region. 

For ~ bal~ of radius 1 wit~ centre at the origin p~n -2. More precisely there 
are arbItranly large A for which"'" A .. - 2 points with integer coordinates lie on the 
sphere A oD. Indeed, let us consider the integer points lying between the spheres 
{A+ 1)O~ and A oD. Their number is proportional to the volume that is 
proportional to ' 

Between these spheres there are approximately A spheres with centre at the origin 
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for which the square of the radius is an integer. Therefore A"-l integer points lie 
on A spheres, and so there is a sphere on which lie not less than _A"-2 points. 

The best (least) number p depends on the form of the region. The most studied 
case has been a region in the plane. 

Theorem 6.10 (see [297,299,80)). Let us suppose that n=2. Let us denote by 
1 the maximal order of vanishing of the curvature of the boundary of the 
region. Then if 1=0 or 1 (this is the situation of general position), p can be 
taken as 2/3. If 1~1, then p can be taken as 1-1/(/+2). Furthermore 
if 1~2, then, generally speaking, P cannot be taken smaller (for example for 
D={rl+rl~1}). 

In the many-dimensional situation the only cases studied have been that of a 
strictly convex region and for n ~ 7 the case of a region with boundary lying in 
general position. 

Theorem 6.11 (see [297,298)). If the region deRft is convex and the second 
fundamental form of its boundary is non-degenerate then we can take p as 
n -2+2/(n+1). 

Theorem 6.12 (see (80)). Let us suppose that n~7. Let Xbe a compact oriented 
smooth manifold of dimension n -1. Then there exists an open, everywhere 
dense, subset in the space of all embeddings of the manifold X in R ft, which 
possesses the property: if the embedding belongs to the subset and the image of 
the embedding bounds a region in R", then for this region as the number p we can 
take n-2+2/(n-1). 

As the example of a sphere with centre at the origin shows, the estimate with 
p = n - 2 + 2/(n -1) cannot, generally speaking, be substantially improved. 

6.6.1 The Poissoa summation formula 

We explain how the estimate of the number of integer points is connected with 
oscillatory integrals. 

The number of points on the integer lattice in the blown-up region A.D is equal 

to the number of points on the condensed lattice ~ Z" in the original region. We 
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shall suppose for simplicity that A is a natural number and that the region D lies in 
a standard n-dimensional cube with edge length 1. In this case we can consider 
the region as a region on the torus T"=R"/Zft and count up on the torus the 

points on the projection of the lattice ~ zft falling in D. We shall denote by X the 

characteristic function of the region D, that is the function equal to 1 on D and 
equal to 0 outside D. Then 

R(A)=Aft J Xdx - X (X/A). 

We expand the characteristic function in a Fourier series 

x(X)= L X<k)exp(21ti(k,x», 
leZ" 

and consider the analogous difference for each term of the series: 

Aft J exp(21ti(k, x»dx - L exp (21ti(k, X)/A). 
x 

For k=O, the difference is equal to zero. If k=#=O, then the first term of this 
difference is equal to zero and it remains to calculate the second term. The second 
term is the product of sums of n geometric progressions. Summing these we find 
that the second term of the difference is equal to zero if at least one of the 
coordinates ofthe vector k is not divisible by A. If all the coordinates of the vector 
k are divisible by A, then the sum is equal to -Aft. This argument shows that 

R(A)= -Aft L i(k) = -Aft L i(A.k)· (3) 
ker"o 

This formula is called the Poisson summation formula. Unfortunately for 
characteristic functions it is not correct: in the derivation of the formula we 
transposed the order of sUIll1!lation with respect to k and summation with respect 
to the points of the condensed lattice. For the Poisson formula to be correct it is 
sufficient that the Fourier series be bounded by an absolutely convergent series 
with constant coefficients. In particular the Poisson formula is true for any 
smooth finite function X on R ". 

To study the difference R(A) we first smooth out the characteristic function, 
then apply the Poisson formula and study its right-hand part (see, for example, 
(80)). To smooth the characteristic function we convolute with a standard 
function. The Fourier transform of the convolution is equal to the product of 
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the Fourier transforms of the characteristic function and the standard one. 
Therefore for studying the right-hand part of the Poisson formula, applied to the 
smoothed characteristic function it is important to know how the Fourier 
coefficient i(Ak) of the characteristic function behaves as ,1.-+ 00. The Fourier 
coefficients are oscillatory integrals. 

6.6.2 'The Fourier transform of a characteristic function 

The Fourier coefficient 

i(k) = J exp( -21ti(k,x»dx 
D 

is an oscillatory integral, in which the role of the larger parameter is played by the 
length of the vector k, and the role of the phase is played by the function 
-(IX(k), x), where ex(k)=k/llkll is the corresponding vector of unit length. This 
formula is transformed by Stokes' formula into an oscillatory integral on the 
boundary of the region. The phase ofthe new integral, as before, is the function 
-(IX(k), x). Consequently the magnitude of the Fourier coefficient i(k) when 
the vector k has large length is determined by the critical points of the restriction 
to the boundary of the linear function (ex (k), x). For example, if the region is 
convex and the second fundamental form of the boundary is non-degenerate, 
then all the critical points of the restriction are non-degenerate and 

i(k)_llk ll-(n+1)/2 

(Theorem 6.2). 
Let us analyse in more detail the case of a region in the plane. The critical 

points of the restriction of the function (lX(k),x) to the curve an are those 
points at which the normal vector to the curve is equal to ±1X(k). If at such a 
point the curvature of the curve is different from zero, then the critical point is 
non-degenerate and its contribution to the Fourier coefficient has order Ilk 11-3/2. 
If at a point of the boundary with normal ± ex(k) the multiplicity of zero of the 
curvature is equal to I, then the critical point has type A,+! and in this case its 
contribution to the Fourier coefficient has order 

Ilk ll-1-lf(I+2). 

The normal at a point on the boundary at which the curvature is zero can 
have a gradient with irrational tangent. Such a point of the boundary will not be 
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a critical point for the function (lX(k), x). The contribution of such a point to the 
sum (3) is determined by the rate at which the tangent of the gradient of its 
normal can be approximated by rational numbers. If the tangent of the gradient 
has a good approximation by a rational number with relatively small numerator 
and denominator, then the critical points of the restriction of the linear function 
(IX (k),x) with vector k of relatively short length will be almost degenerate and 
will give a large contribution to the sum (3). A curve in general position in the 
plane has as degeneracies only points of inflection, that is for a clfrve in general 
position the multiplicity of zero of the curvature function is not more than 1. 
Therefore for a curve in general position the critical points of the restriction to 
the boundary of a linear function are either non-degenerate, or have type A2 • 

Consequently in general position we can estimate that R(l) - A.2/3 . These 
arguments explain Theorem 6.10. 

6.6.3 The estimate averaged over rotations 

The principal contribution to the Fourier coefficients of the characteristic 
function of a region is given by neighbourhoods of those points of the boundary 
at which the normal has rational direction and the curvature is zero. B. Randol 
had the idea that after rotating the region such points, in general, would not exist, 
and that the estimate, averaged over rotations could be better than an individual 
estimate. 

'Theorem 6.13 (see [299, 300, 366, 367]). Let us denote by ch the Haar measure on 
the special orthogonal group SOn. Let us denote by R(l, s) the difference, 
corresponding to the region blown up by a factor of l and then rotated by the 
transformation SESOn • Then 

J IR(l,s)lch = o (In-.l +2/(n+1». 
so. 

Theorem 6.14 (see [299, 300, 366, 367]). Let us denote by G the group of all 
motions of the form st, where SE SOn and t is parallel translation of the space 
1R n. Let leG be the subgroup of all parallel translations by vectors with integer 
coordinates. Let us denote by H the factor group G/I. H is topologically 
equivalent to SOn X 1"', where 1"'=]R.n/zn is the n-dimensional torus. Let us 
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denote by dh the Haar measure on H. Then 

( )

1/2 L IR(l, h)12 dh = o (l(n-1)/2). 

An analogue of Theorem 6.13 for polyhedra in JR.n was proved by M. Tar­
nopolska-Weiss. 

Theorem 6.15 (see [347]). Let D be a polyhedron in JR." containing the origin and 
possessing the property: the prolongations of its faces do not pass through the 
origin. Then 

f IR(l, s)lds= o «(In l)2 +I). 
SOn 

The proofs of Theorems 6.13 and 6.14 are based on an estimate ofthe square of 
the modulus of the Fourier coefficients of the characteristic function of the 

region. 

Theorem 6.16 ([366, 367]). As IIkll-+oo the following estimate is correct 

f Ii(k, s)12 th=0(llk ll-(n+1)). (4) 
SOn 

If the boundary of the region depends in an infinitely differentiable manner on 
the additional parameters, then this estimate is uniform with respect to the 
additional parameters under the condition that the parameters differ little from 

their initial values. 

The proof of this theorem is analogous to the proof of Theorem 6.9. 
Let us deduce Theorem 6.14 from Theorem 6.16. Each element heH has a 

unique representation in the form st, where seSOn , teT". Let us fix s. Then 
R(l, h) is a function on T". Let us expand it in a Fourier series: 

R(l, st) = L a(l, s, k)e2lri (t,I). 

t 

A simple, direct calculation shows that 

a(l, s, 0)=0, a(l, s, k) =( _1)"-1 i( -Ak,s)).". 
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Using Parseval's equality we obtain 

f (f IR(l,st)12dt) th= f L l2nli( -Ak,s)12th. 
SOn T- SOn keZO,,",O 

Then Theorem 6.16 follows from (4). 

Remark. For a region, the boundary of which has a non-<iegenerate second 
fundamental form, the estimate i(k)_llkll-(n+1)/2 is true (see §6.7.2). Therefore 

for such a region 

6.6.4. The proof of Theorem 6.12 is based on two interesting results on 
uniform estimates of oscillatory integrals, depending on additional parameters. 
In these results it is assumed that all critical points of the phase are either simple 

or parabolic. 

Theorem 6.17 (see [80]). Let us consider the oscillatory integral 

I(r,y)= f eiTF(X,Y)<P(x,y)dx. 
It" 

Let us suppose that for each value of the additional parameters all the critical 
points of the phase of this integral are either simple or parabolic. Then we get the 

inequality 

I/(t", y)1 ~const· ,[-n/2 

(x,y)eXnsupp<p 

where we denote by I the set of all critical points of the phase with respect to the 
variables of integration, and by F:X the matrix of second derivatives of the phase 
with respect to the variables of integration. 

In order to formulate the following theorem we make several remarks. Let 
F:1t n x It" -+ It be a minimal versal deformation of a simple or parabolic critical 
point (/lis the multiplicity of the critical point). Let us denote by W. the subset of 
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the base of the deformation consisting of all points y for which the function 
F(· ,y) has a critical point of multiplicity r. The set Wrhascodimension r-l with 
the exception of the case when the initial critical point is parabolic. In this case 
the dimension of the set w,. is equal to 2. We shall denote by p(a) the oscillation 
index of the critical point of type a. 

1beorem 6.18 (see [SO]). Let us suppose that the phase of the oscillatory integral 
/(,r, y) is a minimal versal deformation of a simple or parabolic critical point. 
If the support of the amplitude is concentrated in a sufficiently small neigh­
bourhood of the initial critical point, then the oscillatory integral permits the 
estimate: 

where p,=max {p(a)la is a critical point of multiplicity p adjacent to the initial 
critical point} and 

In this formula d is the distance with respect to an arbitrary Riemannian metric 
on the base of the versal deformation, the numbers a.~+1 •.. , a.& are positive 
rational numbers, depending on the initial critical point (see [80] for their 
definitions). 

Remark 1. In this theorem p = 1, ... , Jl.. For p = Jl. the theorem asserts the uniform 
estimate of the oscillatory integral with the uniform index equal to the individual 
index of the initital critical point. 

Remark 2. All simple and parabolic critical points are quasihomogeneous. The 
base of the versal deformation of a quasihomogeneous critical point has a 
natural quasihomogeneous structure. Simple and parabolic critical points are 
distinguished in the class of quasihomogeneous critical points by the condition 
that the weights of quasihomogeneity of the base of the versal deformation are 
non-negative. The non-negativity of the weights is the basis of the proofs of 
Theorems 6.17 and 6.1S. The theorems are proved by induction on the 
multiplicity of the initial critical point. In the basis of the versal deformation is 
considered a quasi sphere. By the induction hypothesis applied to the restriction 
of the parameters of the deformation to the quasisphere the required estimate is 
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already proved. This estimate can be extended to the whole base with the help of 
the quasihomogeneous structure. The numbers a.1, occurring in the theorem, are 
constructed from the weights of quasihomogeneity of the base and the oscillation 
index of the adjacent critical points. 

6. 7 The greatest singular index 

Let us consider critical points, which are not removable by small perturbations 
from families of functions in n variables, depending on I parameters. The 
maximum of their singular indices in dependence on I and n has the form 

p,(n) = 1/2 -l/N, 

where the number N for n ~ 3 is given by the table 

I 0 1 2 3 4 5 6 7 8 9 10, tt, to, 
n=3 n=3 n>3 

N +2 +3 +4 +6 +8 +12 00 00 -24 -16 -12 -8 -6 

All the numbers P, = p,(n) are rational (see § 7.4). For sufficiently large n the 
number P, does not depend on n (a corollary of the theorem of Kushnirenko in 
§ 12.7 of Volume 1 and a theorem on selection of squares in§ 11.1 of Volume 1). 

The calculation of all these rational numbers seems to be a hard problem. 
Probably, P,-V(21)/6. It is conjectured that a non-degenerate cubic form in n 
variables is the critical point with maximal singular index for its codimension 
(that is for l=n(n+ 1)/2). In other words Pn(n+1)/2 =n/6 (see [12]). From Theorem 
6.5 it follows that 

P, (2) -1 - V(2/l)· 

From Theorem 6.5 it also follows that for n = 2 the maximum singular index for 

given multiplicity Jl. has asymptotic 1 -2/YP. 

6.8 Ammgement of the material in the next three chapters 

In Chapter 7 we define the Gelfand-Leray form and we discuss its properties. We 
consider the critical point of a monomial and express its oscillation index and 
index set in terms of the indices of the monomial. We define discrete 
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characteristics of the resolution of singularities of critical point of an analytic 
phase and express in terms of them the oscillation index and the index set of the 
critical point. 

In Chapter 8 we prove Theorem 6.4. For this we construct in terms of the 
Newton polyhedron an analytic manifold and its mapping onto 1R". The 
constructed manifold and its mapping resolve the singularities of any critical 
point with the given Newton polyhedron under the condition that the principal 
part ofits Taylor series is 1R-nondegenerate. In Chapter 9 we prove the additivity 
of the oscillation index and its multiplicity, we make explicit the calculation of 
the indices of the tabulated functions, and produce examples, demonstrating the 
absence of semicontinuity of the oscillation index under deformation of the 
critical point. 

Chapter 7 

Elementary integrals and the resolution 
of singularities of the phase 

In this chapter we shall study the asymptotics of an oscillatory integral, the phase 
of which is a monomial. We shall indicate the connection between the 
asymptotics of an oscillatory integral and the poles of the meromorphic function 

F(A.) = f P(x)q,(x) dx, 

wherefis the phase, and q, is the amplitude of the oscillatory integral. We shall 
introduce the discrete characteristics of the resolution of the singularity of a 
critical point of the phase: the weight of the resolution and the multiplicity set. 
We shall describe the connection between these characteristics and the basic 
characteristics of the asymptotic behaviour of the oscillatory integral: the 
oscillation index, its multiplicity and the index set. 

7.1 The Gelfand-Leray fOnD 

In the study of integrals of the form 

where 't, A. are parameters, it is convenient to take as one of the variables the 
function! In this case the integrals turn into the usual Fourier transform and the 
Mellina transform of the integral with respect to the remaining variables. The 
expression under the integral sign in this latter integral is called the Gelfand­
Leray form. 

Letf: 1R"-+ R be a smooth function, and (J) be a smooth differential n-form on 
R". We shall denote by t/I a smooth differential (n -I)-form for which 

df A t/I=(J). (1) 

Lemma 7.1. If at a certain point the differential of the function! differs from 
zero, then in a neighbourhood of the point there exists a form t/I with 
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property (1). The restriction of this form to an arbitrary level manifold of the 

function is defined uniquely. 

The form with the property (1) is called the Gelfand-Leroy form of the form 00 

and denoted by wId! 
For a proof of the lemma it is sufficient to change to coordinates in which the 

function is one of the coordinates. 

Example. Let 

f(x,y)=r -xl-sx 

(where s is a number) be a function, 00 = dx " dy be a 2-form. Then on the level t 
curve the Gelfand-Leray form is equal to 

-dxI2y= -dx12 y'(xl +sx+t). 

The integral of such a form is called elliptic. 
We shall prove two remarkable properties of the Gelfand-Leray form. 
Let us orient the level manifold of the function in the standard way. 

Lemma 7.2. 

1. Let 00 be a smooth differential n-form with compact support. Let us suppose 
that the support of the form does not intersect the critical set of the function! 

Then 

(2) 

2. Let '" be a smooth differential (n -1 )-form with compact support. Let us 
suppose that the support of the form does not intersect the critical set of the 

function! Then 

(3) 

Proof. Property (2) clearly follows from Fubini's theorem. Property (3) is a 

corollary of Stokes' theorem (see [55,213]). 
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Corollary. Letfbe a non-constant analytic function, 00 be a smooth differential 
n-form with compact support, then 

(4) 

Indeed, the union of the singular level manifolds is of measure zero . . 

7.2 The asymptotics of integrals of the Gelfand-Leray fonn 

Definition. An elementary oscillatory integral is an integral of the form 

J e +it~'···x!·I""'l ""'"IA.(x x)dx dx - A1 ••. ..\.,. 'f' 1, ••• , II 1 • • • II· (5) 

R" 

where k1 , • •• ,k", ml, ... ,m" are non-negative integers, <P is a smooth function 
with compact support, and't is a real parameter. 

Further, we shall denote by fthe function ±~1 ... x!", and by 00 the form 

We shall suppose that kl + ... +k .. ~2. 
For non-zero t let us put 

J(t)= J wId! 
f=t 

J is a smooth function on 1R ",0, equal to zero outside a sufficiently large interval. 
The function J is called the Gelfand-Leroy function of the form 00. 

We shall study the asymptotic behaviour of the elementary integral as 't-+ + 00 

in the following way. First we make explicit the asymptotics of the Gelfand­
Leray function and then, using formula (4) and standard formulae for the 
asymptotics of one-dimensional oscillatory integrals [110], we obtain the 
asymptotic expansion of the elementary integral. 

We shall need the following theorem. 

Theorem 7.1 (see [174]). The Gelfand-Leray function can be expanded in the 

asymptotic series 
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,,-1 

J(t)~L L ak';",t"'(Intl as t.-.+O (6) 
'" 1=0 

,,-1 

J(t) ~ L L at.",t'" (In t)l as t.-. -0 (7) 

'" 1=0 

where 0( runs through some discrete subset of the real numbers, bounded below. 
These asymptotic expansions can be differentiated term by term. 

Theorem 7.1 can be proved without difficulty by induction on n. 
In order to describe the asymptotic expansion of the Gelfand-Leray function, 

we consider the integrals 

F± = . J (±f)Aw, 
±f>O 

where 1 is a complex parameter. We shall prove that the integrals are 
meromorphic functions of the parameter. We shall express the coefficients of the 
series (6) and (7) and the indices 0( in these series by the poles and Laurent 
coefficients of the resulting meromorphic functions. Then we shall give these 
poles and Laurent coefficients explicitly. 

7.2.1 Asymptotics of the GeHand-Leray function and the poles of its 
MeUina transformation 

Let J: (0, (0).-.1R be a smooth function equal to zero for sufficiently large 
values of the argument. Let us suppose that there is an asymptotic expansion 

I 

J(t)~L L a1,,,,t"'(Int)1 as t.-. +0 (8) 
/I 1=0 

where 0( runs through some discrete subset of the real numbers, bounded below. 
Let us consider the integral 

00 

F(1) = J tAJ(t)dt, 
o 

where 1 is a complex parameter. The integral is well defined if the real part of the 
parameter is sufficiently large and under these conditions the integral depends 
holomorphically on the parameter. 
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Theorem 7.2 (see [123]). The function F can be analytically continued over the 
whole complex plane as meromorphic function. The analytic continuation has 
poles at the points 1= -(0(+1), where 0( runs through the same discrete set as 
in (8). The coefficient of(0(+1 +).)-(10:+1) in the Laurent expansion at the point 
1= -(0(+1) is equal to (-1)kk!ak,,,,. 

7.2.2 Poles and Laurent coefficients of tbe Mellina transfonn 
of tbe Gelfand-Leray function 

Let f = ±~1 ... x!" be a monomial. Let us consider two integrals 

where 1 is a complex parameter. According to formula (2) on page 216 

00 o 
F~ (1) = J tA1(t)dt, F_ (1) = J (- t)A J(t)dt, 

o 

where J is the Gelfand-Leray fUnction. Consequently, the integrals depend 
holomorphically on the parameter for sufficiently large values of its real part. 
Under analytic continuation over the whole complex plane the integral has as 
singularities poles arranged on a discrete subset of the real numbers. Theorem 7.2 
connects the poles and the Laurent coefficients with the asymptotic expansion of 
the Gelfand-Leray function. We shall show that the poles of the analytic 
continuation and the Laurent coefficients can be given explicitly. In this way we 
can give explicitly the asymptotic expansion of the Gelfand-Leray function. 

Lemma 7.3. 1. The functions f± are holomorphic away from the points of the 
complex plane which belong to the following n arithmetic progressions: 

-(m1+1)/kt. -(mt+ 2)/k1, ... ,; 

-(m2 + 1)/k2, -(m2 +2)/k2,· .. ,; 

At a point belonging to exactly r of these progressions the functions F± have 
poles of not higher than rth order. 
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n-l 

J(t)~L L a~CltCl(1nt)t as t-+ +0 (6) 
CI 11:=0 

n-l 

J(t)~L L al,CltCl(lnt)t as t-+-O (7) 
CI 11:=0 

where oc runs through some discrete subset of the real numbers, bounded below. 
These asymptotic expansions can be differentiated term by term. 

Theorem 7.1 can be proved without difficulty by induction on n. 
In order to describe the asymptotic expansion ofthe Gelfand-Leray function, 

we consider the integrals 

F±= J (±JYw, 
±f>O 

where A is a complex parameter. We shall prove that the integrals are 
meromorphic functions of the parameter. We shall express the coefficients of the 
series (6) and (7) and the indices oc in these series by the poles and Laurent 
coefficients of the resulting meromorphic functions. Then we shall give these 
poles and Laurent coefficients explicitly. 

7.2.1 Asymptotics of the GeHand-Leray function and the poles of its 
MeDina transformation 

Let J: (0, 00)-+ It be a smooth function equal to zero for sufficiently large 
values of the argument. Let us suppose that there is an asymptotic expansion 

I 

J(t)~ L L all:,Cl tCl (1n t)1I: as t-+ +0 (8) 
CI 11:=0 

where oc runs through some discrete subset of the real numbers, bounded below. 

Let us consider the integral 

00 

F(A) = J t A J(t)dt, 
o 

where A is a complex parameter. The integral is well defined if the real part of the 
parameter is sufficiently large and under these conditions the integral depends 

holomorphically on the parameter. 
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Theorem 7.2 (see [123]). The function F can be analytically continued over the 
whole complex plane as meromorphic function. The analytic continuation has 
poles at the points A= -(oc+1), where oc runs through the same discrete set as 
in (8). The coefficient of (oc+ 1 + A)-(II:+ 1) in the Laurent expansion at the point 

A= -(oc+1) is equal to (-1)lI:k!all:,CI' 

7.2.2 Poles and Laurent coefficients of the MeDina traILflorm • 
of the Gelfand-Leray fnnction 

Let f = ±~, ... x!" be a monomial. Let us consider two integrals 

F± (A) = J (±f)).lxi' .. · x:'"Iq>(x., .. . , xn)dx1 .. • dxn , 
±f>O 

where A. is a complex parameter. According to formula (2) on page 216 

co o 
F~ (A.) = J t). J(t)dt, F_ (A.) = J (- t»). J(t)dt, 

o -00 

where J is the Gelfand-Leray function. Consequently, the integrals depend 
holomorphically on the parameter for sufficiently large values of its real part. 
Under analytic continuation over the whole complex plane the integral has as 
singularities poles arranged on a discrete subset ofthe real numbers. Theorem 7.2 
connects the poles and the Laurent coefficients with the asymptotic expansion of 
the Gelfand-Leray function. We shall show that the poles of the analytic 
continuation and the Laurent coefficients can be given explicitly. In this way we 
can give explicitly the asymptotic expansion of the Gelfand-Leray function. 

Lemma 7.3. 1. The functions F± are holomorphic away from the points of the 
complex plane which belong to the following n arithmetic progressions: 

-(ml +1)/k1 , -(m~ +2)/k., ... ,; 

-(m2+ 1)/k2, -(m2 +2)/k2,···,; 

-(mn + l)/kn , -(mn + 2)/kn ,· ••• 

At a point belonging to exactly r of these progressions the functions F± have 
poles of not higher than rth order. 
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2. All the coefficients of the Laurent expansion of the functions F ± at an 
arbitrary point of the complex plane are generalised functions of the ampli­
tude ({'. 

Proof. It is sufficient to prove the conclusion for the integral 

a a 

F(A.) = J. .. J ~,H"', ... x!nH","({'(x)dx1 ••• dxn , 
o 0 

where a is a positive number. It is useful to consider a more general integral 

a a 

£(,1.1>' .. , An) = J. .. J ~,)., +"" ... x!"J.n+"'"({'(x)dx1 • •• dxn • 

o 0 

Let N be a large natural number. Let us make the transformation 

1 a a iJ" 
X J J .-1:2).2+"'2 ·-LJ.n+"'n ({' (0 )dx dx -1 ••• ~2 ... A.... -iJ" ,X2'" "Xn 2·" n' 

I! 0 0 Xl 

(9) 

where R({' is the difference between the function ({' and its Taylor polynomial of 
degree N in Xl • 

The first of these integrals does not have a singularity in ,1.1 for 

and the poles in ,1.1 of the second term in the right hand side belong to the first of 
the progressions indicated in the lemma. Repeating successively with each 
integral in the right hand side the same procedure with respect to the other 
variables and then putting 

we obtain the first part of the lemma. This argument allows us to give an explicit 
analytic continuation of the integral in a neighbourhood of the given point of the 
complex plane (see [123]). Each coefficient of the Laurent expansion at an 
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arbitrary point of the plane is equal to the sum of the integrals of the function ({' 
and its derivatives over some coordinate subspace. This proves the second part of 
the lemma. 

Lemma 7.4. Let the number A.o belong to exactly r of the arithmetic progressions 
of Lemma 7.3. For definiteness let us suppose that it is the first r l>rogressions, 
and 

A.o= -(ml +11 + 1)jkl = ... = -(mr+lr+ 1)jkr 

where 11, ... , lr are certain non-negative integers. Then the coefficient of 
(A. -A.o)-r in the Laurent expansion at the point A.o of the function Fis equal to 

where (J»).=J.o denotes analytic continuation of the integral in parentheses to the 
point A.o. 

Lemma 7.4 is a corollary of formula (9). 

Lemma 7.5. 

1. Let JJ=max{ -(ml +1)jkl"'" -(mn+1)jkn} be the maximal number in the 
union of the arithmetic progressions of Lemma 7.3. Let us suppose that the 
number JJ belongs to exactly r arithmetic progressions of Lemma 7.3. Let us 
suppose that the amplitudes ({1 in the integrals F+ , F_ are non-negative and that 
their values at the origin are positive. Then the sums of the coefficients of 
(A. _JJ)-r in the Laurent expansions of the functions F+ and F_ are positive, and 
each of these coefficients is non-negative. 

2. Among the numbers k 1 , • •• , kn let precisely one be equal to 1. Let this be k 1 • 

Let A.o be a number belonging to the first progression of Lemma 7.3 and 
belonging to no other progression of Lemma 7.3. In particular this means that 
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where I is a non-negative integer. Let us denote by a+, a- the coefficients of 
(l -~) -I in the Laurent series at the point ~ of the functions F+ and F_ 

respectively. Then 

3. Let/have a minimum at the origin, that is 

/= +~' ... x!", 

where all the powers are even. Then F_ (l) =0. In addition if p, r, qJ are the same 
as in Section 1, then the coefficient of (l _p)-r in the Laurent expansion of the 

function F+ is greater than zero. 

This lemma is clearly a corollary of Lemma 7.4 and the decomposition of the 
integrals F+, F_ into sums of integrals on the coordinate orthants. 

7.2.3 Asymptotics of elementary oscillatory integrals 

lbeorem 7.3 (see (358)). 

1. An elementary oscillatory integral (see (5) on page 217) can be expanded, 

as t-+ + 00, in the asymptotic series 

,,-I 

L L ak,/I(qJ)-rIlOn -r)k, (10) 
II k=O 

where the numerical coefficients a",/I are generalised functions of the amplitude 
qJ, and the parameter a runs through the arithmetic progressions of Lemma 7.3. 
If the number a belongs to exactly r arithmetic progressions of Lemma 7.3, then 

a",/I=O for k~r. 
2. Let 

p=max{ -(ml +1)/k1, ... , -(m,,+1)/k,,} 

be the maximal number in the union of the arithmetic progressions of Lemma 
7.3. Let r be the number of arithmetic progressions of Lemma 7.3 to which p 
belongs. Let us suppose that p is not an odd integer. Let us suppose that the 
amplitude qJ is non-negative and that its value at the origin is positive. Then the 
real part of the numerical coefficient of the leading term of the asymptotic series 
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(that is the real part of the number ar-I,p) is not equal to zero and has the same 
sign as the number cos (1tP/2); in this way the sign of the real part is determined 

by the number p. 
3. Let kl = 1 and ml be even, that is let the hypersurface XI = 0 not belong to the 

critical set of the phase of the elementary integral and not belong to the subset on 
which the expression under the integral sign of the elementary integral is not 
smooth. Then in the expansion (10) the number a runs through only the 
arithmetic progressions of Lemma 7.3 with numbers 2, ... ,n. • 

4. Let the phase of the elementary integral have a minimum at the origin, that is 

let 

/= +~' ... x!", 

where all the powers are even. Let the amplitude qJ be non-negative and let its 
value at the origin be positive. Then the numerical coefficient of the leading term 
of the asymptotic series (that is the number ar-I,p) is not equal to zero and has the 
same argument as the number exp ( -1tiP/2), where the numbers p, r were defined 
in section 1 ; in this way the argument of the coefficient is determined by the 

number p. 
Theorem 7.3 follows easily from Theorems 7.1, 7.2 and Lemmas 7.3, 7.5 with 

the help of the following standard formulae. Let f): IR -+ 1R be a smooth function 
with compact support, identically equal to 1 in a neighbourhood of the origin. 
Then as -r-+ + 00 modulo infinitesimals of arbitrarily high order 

COJ itt 110 "f) d" r(a+1) 
o e tnt) (t)dt ~ da" (-i-r)II+1' 

(11) 

OJ itt II k dk r(a+ 1) 
_ co e (- t) On( - t» f)(t)dt ~ da" (i-r)IZ+ I 

In these formulae arg(±i-r)= ±1t/2, and r is the gamma-function (see [110]). 

7.2.4 Asymptotics of elementary Laplace integrals 

Definition. An elementary Laplace integral is an integral 

J e-t -4····x!-lxT' ... x:'"lqJ(XI'··· ,x,,)dxl ••• dx", 
It· 
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where kl , .•. ,k", ml" •• ,m" are non-negative integers, kl , •.• ,k" are even, 
kl + ... +k,,~2, qJ is a smooth function with compact support, 't" is a real 
parameter. 

Theorem 7.4. 

1. An elementary Laplace integral can be expanded, as .~ + 00, in an 
asymptotic series (10), with the properties indicated in the conclusion of section 1 
of Theorem 7.3. 

2. Let the amplitude qJ be non-negative and its value at the origin be positive. 
Then in the asymptotic series of the elementary Laplace integral the numerical 
coefficient of the leading term (that is the coefficient a,-l,p) is positive, where the 
numbers r, {J were defined in section 2 of Theorem 7.3. 

The proof of Theorem 7.4 is the same as the proof of Theorem 7.3, except that 
the reference to formula (11) must be replaced by a reference to the formula (see 
[110]) 

7.3 Asymptotks and the resolution of singularities 

7.3.1 The weight of the resolution of a singularity and the multiplicity set 

Let us consider a functionf: )R" ...... JR, analytic in a neighbourhood of its critical 
point x. Let us suppose that the value of the function at this point is equal to zero. 
Let us consider the resolution of the singularity of this critical point (see § 6.4). 
We shall introduce the characteristics of the resolution of the singularity through 
which we shall express the oscillation index of the critical point, its multiplicity 
and its index set. 

The resolution of a singularity is a manifold Yand a map 7t: Y ...... It", possessing 
the properties indicated in § 6.4. In a small neighbourhood of the preimage of the 
critical point x we consider the decomposition into irreducible components of 
the zero level hypersurface of the functionf 07t~ To each irreducible compo­
nent which intersects the preimage of the point x there are associated two 
non-negative integers: the multiplicities of zero on this component of the 
function [ 0 7t, and of the Jacobian of the map 7t, respectively. Let us denote these 
numbers by k, m, respectively. The ordered pair (k, m) is called the multiplicity of 
the component, the number -(m+l)/k is called the weight of the component. 
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Definition. The multiplicity set of the resolution of a singularity is the set of all 
pairwise distinct multiplicities, possessing the properties 

(k, m)#(1, 0), k>O. 

Let us denote the multiplicity set by Mu. 

Definition. The weight of the resolution o[ a singularity is the maximum weight of 
the components, the multiplicities of which possess the properties 

(k,m)#(1,0), k>O. 

In this way the weight of the resolution is equal to the number 

max { -(m+1)/kl(k,m)eMu}. 

Remark. The multiplicity set is finite by virtue of the properties of the map 7t. 

Example. Let [ be a homogeneous polynomial of degree N with a finite­
multiplicity critical point at the origin. Let 

7t: Y ...... JR" 

be a a-process at the origin (see § 4.3. and also Chapter 4 of Part II in [328]). 
This map resolves the singularity at the origin. The multiplicity set of the 
resolution consists of the one pair (N, n -1). The weight of this resolution is 
equal to -niNo 

Let us define the concept of the multiplicity of a number relative to the 
resolution ofthe singularity. '[0 do this we must first define the concept of the 
multiplicity of a number at a point of the preimage of a critical point. 

Let (X be a number, let y be a point of the preimage (relative to the map of the 
resolution) of the critical point X. Let us consider a small neighbourhood of the 
point y and a decomposition in it of the zero level hypersurface of the function 
f 0 7t into irreducible components. The multiplicity of the number (X at the point y 
is the number of irreducible components of weight (X which intersect at y. The 
multiplicity of the number (X relative to the resolution o[ the singularity is the 
maximum of the multiplicities of the number (X at points of the preimage of the 
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critical point x. It is clear that the multiplicity of a number is an integer, 
constrained to lie between 0 and n. 

Example. Let us consider the critical point and its resolution, indicated in the 
previous example. Let n#N. Then the multiplicity of the number (-njN) 
relative to the indicated resolution is equal to 1. The multiplicity of the 
number -1 is equal to zero if the function / is semidefinite and equal to 1 
otherwise. The multiplicity of the remaining numbers is equal to O. 

7.3.2 Asymptotic series of oscillatory integrals 

Theorem 7.S (see [358]). Let us consider the oscillatory integral 

J ei<f(x)q>(x)dx1 ••• dxn· 
It" 

Let us suppose that the phase is an analytic function in a neighbourhood of its 
critical point. Let us suppose that the value of the phase at this critical point is 
equal to zero. Let us consider the resolution of the singularity at the critical point. 
We assert: if the support of the amplitude is concentrated in a sufficiently small 
neighbourhood of the critical point of the phase then 

1. The oscillatory integral can be expanded in an asymptotic series 

n-1 

L L ak,II(q» r'"On r)k as r ..... + 00. 
II k=O 

The numerical coefficients ak,lI are generalised functions of the amplitude. The 
support of each generalised function lies in the critical set of the phase. The 
parameter (X runs through the following arithmetic progressions. One of these is 
the negative integers and the others are parametrised by the elements of the set of 
multiplicities of the resolution of the singularity of the critical point of the phase. 
The pair (k, m) corresponds to the arithmetic progression 

-(m+1)jk, -(m+2)jk, .... 

2. Let y be a point of the preimage of the critical point of the phase and 
(k1 ,m1), ... , (kn' mn) be the multiplicities at y of the components ofthe zero level 
hypersurface of /0 1t. Let us consider the arithmetic progressions of Lemma 7.3. 
If for any y the number (X is contained in not more than k progressions then the 
generalised function ak,," is identically equal to zero. 
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3. If the weight of the resolution of the singularity at the critical point of the 
phase is greater than -1 then 

(i) the oscillation index of the critical point of the phase is equal to the weight of 
the resolution of the singularity; 
(ii) the multiplicity of the oscillation index of the critical point of the phase is 
equal to one less than than the multiplicity of the number equal to t~e weight of 
the resolution of the singularity relative to the resolution of the singularity; 
(iii) if the amplitude is non-negative and its value at the critical point of the phase 
is positive, then the numerical coefficient of the leading term of the asymptotic 
series of the oscillatory integral (that is the coefficient aK,flo where P is the 
oscillation index, and K is the multiplicity of the oscillation index) is non-zero; 
(iv) if the critical point of the phase has finite multiplicity then the numerical 
coefficient of the leading term ofthe asymptotic series of the oscillatory integral 
is equal to the value of the amplitude at the critical point ofthe phase, multiplied 
by a non-zero constant which depends only on the phase. 

4. If the critical point of the phase is a maximum or minimum point then the 
conclusions (i)-(iv) of section 3 of this theorem are true. 

5. Let us denote by 1t the map of the resolution of the singularity. Let us 
suppose that there does not exist a point in the preimage of the critical point of 
the phase at which intersect two or more irreducible components of the zero level 
hypersurface of the function/o1t, the multiplicities of which are equal to (1,0). 
(We note that this assumption is satisfied if the phase has finite multiplicity at the 
critical point (if n = 2, we must also exclude the case of a nondegenerate critical 
point». Then the parameter (X in the asymptotic series ofthe oscillatory integral 
runs through only the arithmetic progressions of Section 1 of this theorem, 
parametrised by the elements of the set of multiplicities of the resolution of the 
singularity. In particular, the oscillation index of the critical point of the phase is 
not more than the weight of the resolution of the singularity. 

6. Let P be the weight of the resolution of the singularity and let k be the 
multiplicity ofthe number P relative to the resolution of the singularity. Let us 
consider all the points of the preimage (relative to the map of the resolution of the 
singularity) at which the multiplicity of the number P is equal to k. Let us suppose 
that this set does not intersect any irreducible component of the zero level 
hypersurface of the function f 0 1t, the multiplicity of which is equal to (1,0). Let 
us suppose that the condition of section 5 is satisfied. Let us suppose that the 
weight ofthe resolution of the singularity is not an odd integer. Then conclusions 
(i)-(iv) of section 3 of this theorem are true. 

7. Let us suppose that the weight of the resolution of the singularity is equal 
to -1 and that the multiplicity of the number -1 relative to the resolution of the 
singularity is not less than 2. Then the oscillation index of the critical point of the 
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phase is equal to -1. Furthermore the multiplicity of the oscillation index is 
equal to the multiplicity of the number -1 relative to the resolution of the 
singularity or to one less than the multiplicity of the number -1. 

Remark 1. This theorem implies Theorem 6.3 on asymptotic expansions. 

Remark 2. The resolution of the singularity at the critical point is not uniquely 
defined. However, iffor one resolution the weight is greater than -1 then for any 
other resolution the weight is also greater than -1 and does not depend on the 
resolution (Section 3 of Theorem 7.5). It would be interesting to find a purely 
algebraic proof of this fact. 

Remark 3. Practically all critical points have a resolution of the singularity of 
weight greater than -1. For a sufficient condition for this see Theorem 8.5 and 
also supplement 1 of Theorem 6.4. 

Remark 4. In § 9.2 (see also [358]) we shall cite an example of a critical point 
and a resolution of its singularity with the properties: the weight ofthe resolution 
is less than -1, and the oscillation index is less than the weight of the resolution. 

Remark S. Let us return to the problem of reconstructing the value of the 
function 4> at the critical point of the function / in terms of the integrals of the 
function 4> over the level hypersurfaces of the functionJ, see § 6.3. For a critical 
point of finite multiplicity of the functionJ, satisfying the conditions of one of 
Sections 3, 4, 6 of Theorem 7.5, this problem can be solved in the following way. 
Let us take as density on the level hypersurfaces of the function/the differential 
(n -1 )-form of Gelfand-Leray 

dx1 A •.• A dXn/df 

In this way, knowing the Gelfand-Leray function 

J(t) = J 4>dx1 A ••• A dxnldJ, 
1=1 

we must reconstruct the value of the function at the critical point. According to 
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formula (4) on page 217 the oscillatory integral is the Fourier transform of the 
Gelfand-Leray function. Therefore assertion 3(iv) of Theorem 7.5 gives the 
solution of the problem. 

Example. Let / be a homogeneous polynomial of degree N, with a critical point 
of finite multiplicity at the origin. The resolution of the singularity at this critical 
point was indicated in the example on page 225. The multiplicity set of the 
resolution consists of pairs (N, n -1). According to Theorem 7.5 in the 
asymptotic expansion of the oscillatory integral with phase / the parameter ex 
runs through the arithmetic progression 

-n/N, -(n+1)/N, .... 

If N>n (or lis of definite sign), then the oscillation index of the critical point 
is equal to -n/N, and the multiplicity of the oscillation index is equal to O. 

Proof of the theorem. We shall make a change of variables in the oscillatory 
integral with the help ofthe map n: Y-+.Rn ofthe resolution of the singularity. 
Then the integral is transformed into an integral over Y. Using a sufficiently fine 
partition of unity we transform the latter integral into a sum of elementary 
integrals (this is possible since n is a resolution of the singularity). 

Now Sections 1 and 2 of Theorem 7.5 follow immediately from Section 1 of 
Theorem 7.3. Analogously, Sections 3, 4, 5, 6 of Theorem 7.5 follow, 
respectively, from Sections 2, 3, 4, 2 of Theorem 7.3. 

We shall prove Section 7. We have 

00 00 

J eiT/lPdx=J eiTl J(t)dt + J e-iTlJ(-t)dt, 
It" 0 0 

where J is the Gelfand-Leray function. Using the resolution of the singularity 
and Theorem 7.2 we obtain . 

J(±t):::::a~o(lnt)' + ... +4.0+ L t"'(lnt)A:at"" 
",>0 

where (r + 1) is the multiplicity of the number -1 relative to the resolution of the 
singularity, at", are real numbers. If the amplitude has fixed sign and is different 
from zero at the critical point of the phase, then according to Lemma 7.7 the 
numbers a~o have one and the same sign, and their sum is different from zero. 
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Applying formula (11) on page 223, we can convince ourselves that in the 
asymptotic expansion of an oscillatory integral the real part of the coefficient of 
(In-r)'-1/-r is proportional to a,:o+a,::-o and the coefficient of (In-r}'/-r is 
proportional to a:o - a'::-o, the constants of proportionality being different from 
zero. Section 7 is proved. 

Remark. The assumptions of Sections 3, 4, 6 of Theorem 7.5 are necessary in 
order that the principal term of the asymptotic series is not influenced by points 
on the non-singular part of the zero level hypersurface of the function f. 

7.3.3 1be asymptotics of the Laplace integral 

A Laplace integral is an integral of the form 

J -t/(x) ()dx dx e qJ x l' . . n, 

where -r is a positive real parameter. The functions f and qJ are called the phase 
and amplitude respectively. 

Let us suppose that the phase has a minimum point and that it is an analytic 
function in a neighbourhood of the minimum point. Let us suppose that the 
value of the phase at the minimum point is equal to zero. 

1beorem 7.6. If the support of the amplitude is concentrated in a sufficiently 
small neighbourhood of the minimum point, then as -r-+ + 00 the Laplace 
integral can be expanded in the asymptotic series 

"-1 

L L al,CI(qJ) 't'" (In -r)l, 
CI 1=0 

for which the conclusions of Sections 1, 2, 4 of Theorem 7.5 are true. 
The proof of Theorem 7.6 is obtained from the proof of Theorem 7.5 by 

replacing the references to Theorem 7.3 by references to Theorem 7.4. 

Corollary. For each small positive t let us denote by V(t) the volume of the set of 
those points at which the value of the phase is less than t. Then as t-+ +0 the 
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function V can be expanded in the asymptotic series 

n-1 

L L al,lIrCl(ln t)l. 
CI 1=0 

Here the parameter (X runs through a finite set of arithmetic progressions, 
consisting of positive rational numbers. These arithmetic progressions are the 
progressions of Section 1 of Theorem 7.5. The assertions about the coefficients of 
the series and the order of the leading term of the series, given in the conclusions 
of Sections 2 and 4 of Theorem 7.5, are true. 

Proof of the corollary. The derivative of the function Vis equal to the Gelfand­
Leray function of the phase f and an amplitude which is identically equal to 1. 

7.4 1be rationality of the greatest singular index II,(n), 
defmed in § 6.8 

Let us consider a polynomial of degree N with indeterminate coefficients and 
with zero constant and linear terms. 

f(x,a)= 

For fixed real coefficients a the polynomial defines the function 

f(', a): JR"-+ It, 

with a critical point at the origin. According to Theorem 7.5 there exists an 
arithmetic progression containing the index set of this critical point. 

1beorem 7.7. There exists one arithmetic progression containing the index set at 
the origin of the phasef(',a) for all a. 

Theorem 7.7 follows from Lemma 7.8. 

Lemma 7.8. Let us suppose that in the space of coefficients of the polynominal f 
there is chosen a semialgebraic set A. Then there exists a proper semi algebraic 
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subset Be A and an arithmetic progression Q with the property: for any 
aeA"-..B the index set of the critical point of the phase f(· ,a) at the origin 
belongs to Q. 

Proof. We can suppose that A is non-singular and connected. Let /' be the 
restriction of the polynominal f to the manifold It" x A. Let us consider the 
resolution of the singularity 

1t: y-+It" x A 

of the zero level hypersurface of the function/" see [158]. From the Theorem of 
Sard-Bertini follows the existence of a proper algebraic subset Be A with the 
property: for any a e A "-..B the restriction of the map of the resolution of the 
singularity to the preimage of the set JR." x a is a resolution of the singularity of 
the zero level hypersurface of the function 

f(·, a) : JR." x a-+ JR.. 

Furthermore the topology of this resolution and all the multiplicities depend on a 

locally constantly. Then the Lemma follows from Theorem 7.5. 

Chapter 8 

Asymptotics and Newton polyhedra 

We shall consider the class of critical points of the phase, the Taylor series of 
which have fixed Newton polyhedron. If the Newton polyhedron is remote, then 
almost all the critical points of the class have the same oscillation index. This 
common oscillation index is equal to the remoteness of the Newton polyhedron. 
A critical point of the class has the typical oscillation index if the principal part of 
its Taylor series is R-nondegenerate. (Remember that the condition of It­
nondegeneracy is an explicitly written-out algebraic condition on a finite set of 
Taylor coefficients, see § 6.2). This assertion was formulated as Theorem 6.4. 
Its proof occupies the whole of the present chapter. The proof uses the resolu­
tion of the singularity of the critical point of the phase. In the previous chapter we 
defined a numerical characteristic of the resolution of a singularity, namely the 
weight, and we proved that if the weight is greater than -1 then the 
oscillation index of the critical point is equal to the weight (Theorem 7.5). In this 
section we construct a manifold and a map of it into It", which resolves the 
singularity of almost all the critical points of the class we are considering. We 
shall show that the weight of the constructed resolution of the singularity is 
equal to the remoteness of the Newton polyhedron. In this way we shall prove 

Theorem 6.4. 
The resolution of the singularity is constructed in terms of the Newton 

polyhedron and consists of three stages. In the first stage we use the Newton 
polyhedron to construct a decomposition of the positive orthant of the space into 
convex cones, each of which is given by a finite set of linear conditions with 
rational coefficients. In the second stage the cones are broken into smaller pieces 
to construct a new decomposition of the positive orthant. The new decom­
position is inscribed in the previous one, all of its cones are simpicial and their 
mUltiplicity is equal to 1 (for tJte definitions see § 8.1.1). In the third stage we 
construct from the new decomposition a manifold and a map of it into It". The 
manifold and the map resolve the singularities of almost all the critical points of 

the class we are considering. 
Each stage uses only the results of the previous stage: in the second stage we do 

not use the Newton polyhedron, in the third stage we do not use the first 
decomposition. In the first and third stages the initial data uniquely determine 
the results. The result of the second stage (the new decomposition) is not 
determined uniquely by the first decomposition. In this way the resolution of the 
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singularity is not uniquely determined by the Newton polyhedron, although it is 
constructed from the Newton polyhedron. 

We shall describe the third stage first. We shall construct a manifold in terms 
of a set of cones with the properties mentioned above and we shall define its 
natural projection onto JR." (see § 8.1.6). Then we shall describe the first two 
stages and we shall prove that the manifold and map constructed as a result ofthe 
three stages resolve the singularities at the critical points of the class where the 
Taylor series has JR.-nondegenerate principal part. At the end we shall derive 
Theorem 6.4 from Theorem 7.5. 

On the manifold which will be constructed in this chapter there acts in a 
natural way a group - an n-dimensional torus (for more detail see § 8.1.4). A 
manifold with an action of a torus is called toral. For further discussion of the 
theory oftoral manifolds see [88, 184]. The orbits of the action of the torus on the 
toral manifold are in one-to-one corresponence with a certain collection of 
convex cones, constructed with the help of the manifold. In its turn this collection 
of cones uniquely determines the toral manifold. Our third stage of construction 
of the resolution of the singularity is this standard (in the theory of toral 
manifolds) transition from a collection of cones to a manifold. Toral manifolds 
are remarkable in that the majority of analytic and topological constructions on 
them reduce to linear algebraic constructions on the corresponding collection of 
cones. See, for example, our calculation in this chapter of the weight of the 
resolution of a singularity. 

In the study of singularities, Newton polyhedra were first applied in 
[195,196]. Toral manifolds were first related to Newton polyhedra by A. G. 
Hovanski (see [45, 159, 160,] and also [358,359]). 

8.1 Construction of the manifold 

8.1.1 Cone, skeleton, multiplicity, fan 

The cone generated by the vectors ai' ... , a. E:R" is the cone consisting of linear 
combinations of these vectors with nonnegative coefficients. 

A cone with vertex at the origin is said to be rational if it can be generated by a 
finite set of vectors with intege!' coordinates. 

The skeleton of a rational cone is the set of all of its primitive (not multiple) 
integer vectors in the faces of dimension 1. It is clear that the skeleton of the cone 
generates the cone itself. 

Example. The cone depicted in figure 66 is rational. Its skeleton consists of the 
vectors (3, 1), (1, 2). 
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Fig. 66. 

A rational cone is said to be simplicial, if the vectors making up its skeleton are 
linearly independent. 

The multiplicity of a simplicial cone of highest dimension is the index of the 
sublattice generated by the vectors of the skeleton in the integer lattice of the 
space. It is clear that the multiplicity of a cone is equal to 1 if and only if its 
skeleton forms a basis of the integer lattice of the space. Further, if the 
multiplicity is greater than 1, then there are integer vectors belonging to the 
cone which are linear combinations of vectors of the skeleton in which all 
the coefficients are nonnegative, less than 1 and at least one coefficient is not 
equal to O. 

Example. The cone depicted in figure 66 is simplicial (all two-dimensional 
rational cones are simplicial). The mUltiplicity of the cone is equal to 5. 

ExereR. Prove that the multiplicity of the cone is equal to the absolute value of 
the determinant formed from the coordinates of the vectors of the skeleton. 

A fan is a finite set of rational cones possessing the properties: 
(i) each face of a cone from the set also belongs to the set; 
(ii) the intersection of any two cones from the set is a face of each of them. 
The fan is said to be simple if 
(iii) all the cones of the fan are simplicial and the skeleton of any cone can be 
extended to a basis of the integer lattice of the whole space. 

8.1.2 Monomial maps 

A rational map h: :R" ..... :R. of the form 

xloh=x'{' ... x'!, i= 1, ... ,n, 
\ 
\ 
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where at is an integer matrix with determinant equal to ± 1 is said to be 
monomial. The region of definition of a monomial map always contains the 
complement of the union of the coordinate hyperplanes. 

It is clear that the inverse map of a monomial map is monomial and is given by 
the inverse matrix. The region of definition of a monomial map is the whole space 
if and only if the matrix of the monomial map has non-negative elements. 

Let us be given an ordered pair of bases of the integer lattice of the space JR". A 
monomial map is said to be associated with this pair if it is given by the matrix of 
the dual operator to the operator which transforms the second basis into the first 
and which is written down in terms of the second basis. In this way in the columns 
of the matrix are the coordinates of the vectors of the first basis expressed in 
terms of the second basis. 

Example. Let us be given in the integer lattice of the space 1t2 two bases: the first 
(1,0), (1, 1), the second (1,0), (0,1). Then the monomial map h associated with 
this pair is given by the formulae 

xloh=xlxl 

x2oh=x~xl 

Lemma 8.1. If we change the order of the pair then the monomial map associated 
with the pair will change to its inverse. If we are given three bases then the map 
associated with the first and third basis is equal to the composition of the map 
associated with the first and second basis and the map associated with the second 
and third basis. In other words hl •3 =h2 •3 ohl •2 . 

The proof is obvious. 

8.1.3 The manifold associated with a simple fan 

Let us be given a simple fan. With the help of the fan we shall construct a non­
singular n-dimensional real analytic manifold. The construction of the manifold 
generalises the construction of the standard compactifications of the space 
(1t,",,0)". Namely, for the fans indicated in figures 67a and 67b, the construction 
leads to the manifolds (ltpl)", ItP", respectively. 

The charts of the manifold are in one-to-one correspondence with the n­

dimensional cones of the fan. Each chart is equal to It". We introduce an 
equivalence relation for points of different charts. Then on the set of equivalence 
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(0.1) 

(I.O' 
n -2 

a) 

Fig. 67a and b. 

classes we introduce a topology and the structure of a manifold. We shall find it 
useful to order the vectors of the skeleton of each cone of the fan. Let us fix these 
orders. Later on we shall easily convince ourselves that the manifold which we 
construct does not depend on this choice of order. 

To any ordered pair of charts there is associated a monomial map from the 
first chart to the second. This is the monomial map associated with an ordered 
pair of bases of the integer lattice of the space, where the first (respectively 
second) basis is that basis generated by the skeleton of the n-dimensional cone 
which corresponds to the first (respectively second) chart. For the future 
manifold this monomial map will play the role of the transition function from the 
first chart to the second. 

We shall say that a point of the first chart is equivalent to a point of the second 
chart if the monomial map relating these charts is defined at the point of the first 
chart and maps this point to the point of the second chart. 

Example. In the space JR2 let the skeleton of the first cone consist of the vectors 
(1,1), (1,2), and the skeleton of the second cone consist of the vectors (1,1), 
(3,2). Then the monomial map h from the first chart to the second is given by the 
formulae 

xloh=xl.4 

X2 oh=X/xi l 

Therefore, for example, the point (0, 2) ofthe first chart is equivalent to the point 
(0,1/2) of the second chart. 

The relation we have introduced on pairs of points will be an equivalence 
relation if we verify its symmetry. The symmetry follows from Lemma 8.2. 



238 Oscillatory integrals 

Lemma 8.2. The monomial map relating an ordered pair of charts possesses the 
following property. If we are given a sequence of points of the first chart, for 
which the following conditions are satisfied: 
(i) the sequence has a finite limit in the first chart; 
(ii) the monomial map is defined at the points of the sequence; 
(iii) the sequence of images of points of the sequence has a finite limit in the 
second chart; 
then the monomial map is defined and non-degenerate at the limit point of the 
sequence. 

The proof of the lemma is based on the fact that the intersection of the cones 
corresponding to the two charts is a face of each of them. It is sufficient to take 
the case when the sequence of points lies on a smooth curve and the limit point 
of the sequence corresponds to the point on the curve the value of whose 
parameter is zero. The existence of such a curve follows from the curve selection 
lemma (see [256]). 

So let the curve have the form 

where the numbers Cl' ••• , c" are all non-zero. Then its image has the form 

where mj = 'T.a}k; and a} is the matrix of the monomial map. By definition, the 
indices k j and mj are non-negative. According to the formula the vector 
(ml' ... , mR) is a linear combination of the columns of the matrix a} with 
coefficients kl' .. . ,k". By definition, in the columns are the coordinates of the 
skeleton of the cone, corresponding to the first chart, expressed in terms of the 
vectors of the skeleton of the cone corresponding to the second chart. The non­
negativity of the numbers mj means that the indicated linear combination of 
vectors of the first skeleton belongs to the second cone. However the intersection 
of the cones is a face of each of them. Therefore if in the linear combination the 
coefficient k j is different from zero then in the jth column of the matrix of the 
monomial map all the elements except one are equal to 0 and the remaining 
coefficient is equal to 1. The positivity of the coefficient k j means that the limiting 
point ofthe curve as t-+O lies on the hyperplane Xj=O. According to the above 
proof the monomial map is defined and non-degenerate at a general point of this 
hyperplane. The lemma is proved. 
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So on pairs of points of the charts we are given an equivalence relation. We 
shall define on the set of equivalence classes a topology and the structure of an 
analytic manifold. 

Each chart is included in a natural way as a subset in the set of equivalence 
classes. We shall say that a set is open if its intersection with every chart is open. 
From Lemma 8.2 it follows easily that this definition gives on the set of 
equivalence classes the structure of a Hausdorff topological space. The inclusion 
of charts defines a covering of the topological space by open sets "and defines a 
homeomorphism of these sets onto IRR. By construction, the transition functions 
connected with these homeomorphisms are monomial maps in their regions of 
definition. In this way on a simple fan we have constructed an analytic manifold. 
We shall call this manifold the manifold associated with the simple fan. 

Exercise. Show that (IRpl)R and IRP" are the manifolds associated with the fans 
depicted in figures 67a and 67b respectively. 

8.1.4 A torus acts on the manifold associated with a simple fan 

The space (R "-O)R together with coordinatewise multiplication forms a group 
called the n-dimensional torus. The torus acts on itself. Its action extends 
naturally to RR. 

Let us consider the manifold associated with a simple fan. The torus acts on 
charts of the manifold. It is easy to see that this action extends to an action of the 
torus on the whole manifold. We shall describe the orbits of this action. 

There is one n-dimensional orbit, isomorphic to the torus. In an arbitrary 
chart it is (R"-Ot. 

The (n -1 )-dimensional orbits are in one-to-one correspondence with the one­
dimensional cones of the simple fan. Indeed each chart intersects n (n -1)­
dimensional orbits. Their closure in local coordinates coincides with the 
coordinate hyperplanes. We put in correspondence with the (n -1)-dimensional 
orbit lying in the hyperplane,xj=O the jth vector of the skeleton of the cone 
corresponding to the chart. (Remember that the vectors of the skeletons of the 
cones of the fan were ordered). 

Lemma 8.3. 

1. This relation correctly defines a one-to-one correspondence between the set 
of (n -1 )-dimensional orbits and the set of one-dimensional cones of the simple 
fan. 
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2. The closure of an arbitrary (n -1 )-dimensional orbit is an (n -1)­
dimensional submanifold. 

Proof. Let us consider two charts of the manifold and the transition function 
from the fIrst chart to the second. 

Let an (n -1)-dimensional orbit, lying in the fIrst chart, be identifyed with 
(n -1 )-dimensional orbit, lying in the second chart. Let us suppose for simplicity 
that these orbits, both in the fIrst and in the second chart, lie in the hyperplane 
Xl =0. We shall prove that corresponding to them is one and the same one­
dimensional cone. Indeed the transition function is a monomial map. By 
assumption all the elements in the fIrst column of the monomial map are zero 
except the fIrst, which is equal to 1. According to the definition of the transition 
functions this means that in the skeletons of the cones corresponding to the two 
charts the first vector is the same, which is what we are trying to prove. It can be 
shown, analogously, that if (n -1)-dimensional orbits in different charts 
correspond to one and the same one-dimensional cone then these orbits are the 

same. 
The assertion of the second part of the lemma is trivial. The lemma is proved. 

A one-to-one correspondence analogous to the above, can be established 
between the set of k-dimensional orbits and (n-k)-dimensional cones of a 
simple fan. The closure of the orbits are submanifolds. In the local charts these 
are coordinate planes. If one orbit lies in the closure of another orbit, then the 
cone corresponding to the second orbit is a face of the cone corresponding to the 
fIrst orbit. For more details see [184]. 

8.1.5 The map of maoifolcls associated with simple faos 

Let us be given two fans. We shall say that the first fan is inscribed in the 
second fan if for any cone of the first fan there is a cone of the second fan which 
contains it. 

Let us consider two simple fans. Let us suppose that the first fan is inscribed in 
the second fan. Let us consider the manifold associated with these fans. We shall 
defIne an analytic map of the first manifold into the second. To do this we shall 
define the restriction of the map to each chart of the fIrst manifold. Let us 
consider an arbitrary chart of the first manifold. A chart corresponds to an 
n-dimensional cone of the first fan. By assumption there is a cone of the second 
fan which contains this cone of the fIrst fan. The cone of the second fan is also. of 
course, n-dimensional. Therefore the cone of the second fan corresponds to a 
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chart of the second manifold. So we have an ordered pair of charts. Let us 
consider the monomial map connected with these charts from the first chart to 
the second one (see § 8.1.3). The elements of the matrix of this monomial map are 
non-negative, since the fIrst cone is inscribed in the second. In this way we have 
defIned an analytic map of an arbitrary chart of the manifold associated with the 
fIrst fan into one of the charts of the manifold associated with the second fan. 

Lemma 8.4. These local maps are in agreement and correctly define an analytic 
map of the fIrst manifold into the second one. 

Lemma 8.4 is a direct corollary of Lemma 8.1. 

Remark. On each manifold there is a unique n-dimensional orbit of the action of 
a torus. The map we have constructed gives an isomorphism of these orbits. 

Theorem 8.1. (see [184]). Let us be given two simple fans, with the fIrst fan 
inscribed in the second. Let us consider the manifolds associated with the fans 
and the map, constructed above, of the first manifold into the second. Then we 
assert that if the union of the cones of the first fan contains the union of the cones 
of the second fan then this map is proper. The converse is also true. 

Corollary. Under the conditions of the theorem the fIrst manifold maps onto the 
second manifold. 

Indeed the map is proper and invertible on an everywhere dense subset. 
The fIrst part of the theorem follows from Lemma 8.5. The converse is 

analogous. 

Lemma 8.5. Let us be given in one of the charts of the second manifold a curve of 
the form 

where the numbers dl , ... , d" are all non-zero. Then there exists a chart of the 
fIrst manifold in which the preimage of the curve has a finite limit as t ..... O. 

The proof is analogous to the proof of Lemma 8.2. We must select a chart of 
the fIrst manifold and a curve in this chart of the form 
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where the numbers Cl, ••• , Crt are all non-zero, in such a way that its image 
coincides with our curve. We shall restrict ourselves to showing how to take the 
chart. Let us consider a basis forming the skeleton of a cone corresponding to a 
chart of the second manifold. Let us consider a linear combination of this basis 
with non-negative coefficients ml, ... , m". As a result we shall obtain a vector 
belonging to the cone. By the conditions there exists an n-dimensional cone of the 
first fan which contains this vector. The n-dimensional cone of the first fan 
corresponds to a chart of the first manifold. In this chart the preimage of our 
curve has a finite limit. We shall leave the verification ofthis fact to the reader. 

8.1.6 Important example 

Let us consider two simple fans. Let us suppose that the second fan consists of 
one n-dimensional cone and its faces. Let us suppose that the union of the cones 
of the first fan coincides with the n-dimensional cone, generating the second fan. 
According to the construction of § 8.1.3, there is a manifold associated with each 
fan. The manifold associated with the second fan consists of one chart and is 
isomorphic to JR.". According to the construction of § 8.1.5, there is a proper 
analytic map from the manifold associated with the first fan to the manifold 
associated with the second fan, that is to JR.". This map is invertible outside the 
union of the coordinate hyperplanes. 

This example will be used in § 8.2 for the construction of the resolution of a 
singularity. 

Exercise. Let n = 2 and as the first fan take the fan depicted in figure 68. Prove 
that the map onto 1t2 of the manifold associated with the first fan is the same as a 
a-process at the origin. 

Fig. 68. 
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8.1.7 Complex analogue 

The constructions of manifolds and maps of manifolds, described in this section, 
have natural complex analytic analogues. Instead of charts, isomorphic to JR." we 
need to take charts isomorphic to (C", and all the maps are given by the same 
formulae. The modified construction will lead to complex analytic manifolds 
and complex analytic maps of them. The complex manifolds constructed in this 
way have natural real parts. The real parts are real manifolds and coincide with 
the manifolds constructed in this section. The complex analytic maps preserve 
the real parts. The restrictions of the complex analytic maps to the real parts 
coincide with the maps constructed in this section. 

8.2 Resolution of singularities 

8.2.1 The fan associated with a Newton polyhedron 

Let us consider a Newton polyhedron, that is a convex polyhedron in JR." with 
vertices at points with non-negative integer coordinates, which together with 
each point contains the positive orthant, parallel translated to this point (see 
§6.2.1). We shall denote the polyhedron by r. 

The supporting function of a Newton polyhedron is a function on the positive 
orthant ofthe space dual to JR.". Its value on the covector a ofthe positive orthant 
is equal to 

The supporting function is denoted by Ir . 

The trace on the Newton polyhedron of the covector a of the positive orthant 
is the face of the polyhedron distinguished by the condition 

{keFl(a,k)=lr(a)}. _ 

The joint trace of the covectors of the positive orthant is the intersection of their 
traces. 

Two covectors of the positive orthant are said to be equivalent relative to a 
Newton polyhedron if they have the same trace. 

Lemma 8.6. The closure of any equivalence class is a rational cone in the space 
dual to It". Furthermore the collection of all these cones forms a fan. 
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The proof follows easily from the definition of supporting functions. For 
further details see [159]. 

The fan formed by the closures of the equivalence classes is called the fan 
associated with the Newton polyhedron. The union of the cones making up this fan 
coincides with the positive orthant of the space dual to R'•. 

Example. Figure 69a depicts a Newton polyhedron in R2. Figure 69b depicts the 
fan associated with it. 

OJ 

Fig. 69a and b. 

8.2.2 A simple subordinate fan 

A simple fan in the space dual to It" is said to be subordinate to a Newton 
polyhedron if it is inscribed in the fan associated with the polyhedron and if the 
union of the cones making up this simple fan coincide with the positive orthant. 

Lemma 8.7 (see [184]). There exists a simple fan subordinate to a Newton 
polyhedron. 

An algorithm to construct a simple fan, inscribed in a given fan and such that 
the union of all its cones is the same as before, was given on pages 32-35 in [184]. 
We shall not reproduce the algorithm in detail. We shall indicate its main 
features. 

The algorithm consists of two stages. In the first stage the cones of the original 
fan are broken down in an arbitrary way into simplicial cones. In the second 
stage of the algorithm we must make the multiplicty of all the n-dimensional 
cones of the decomposition equal to 1. This is done by decreasing induction on 
the number of cones with maximal multiplicity and then by decreasing induction 
on the number equal to the maximum multiplicity of the cones of the 
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decomposition. At each step of the second stage we need to break up the 
simplicial cones of multiplicity greater than one into simplicial cones of smaller 
multiplicity. It can be done by the addition of a one-dimensional cone, generated 
by a correctly chosen integer vector. We need to take as this vector integer vector 
which is a linear combination of the vectors of the skeleton such that all the 
coefficients are non-negative, less than 1 and at least one coefficient is not 
equal to O. 

Example. In figure 69b was depicted the fan associated with the Newton 
polyhedron depicted in figure 69a. All the cones of this fan are simplicial. The 
multiplicity of the cones O's, 0'6, 0'7 are equal, respectively, to 3, 5, 3. An example 
of a simple fan, subordinate to the indicated polyhedron, is depicted in figure 70. 

Fig. 70. 

8.2.3 1beorem on the resolution of singularities 

Let us consider a simple fan, subordinate to a Newton polyhedron. With the 
simple fan there is associated a manifold. This manifold is called the manifold 
subordinate to the Newton polyhedron. The union of the cones making up the 
simple fan coincides with the positive orthant, which in particular is a simplicial 
cone of multiplicity 1. According to the construction of § 8.1.5, the manifold 
subordinate to the polyhedron projects onto R" (see § 8.1.6). This projection is 
said to be associated with the manifold subordinate to the Newton polyhedron. 
The projection is a proper analytic map. 

Theorem 8.2 (on resolutions of singularities, see [45, 159,358,359]). Let us 
consider a convergent power series in n variables without constant term, with 
real coefficients and with R-nondegenerate principal part. The series gives an 
analytic function in a neighbourhood of the origin in It". Let us consider the 
manifold, subordinate to the Newton polyhedron of the power series and the 
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projection, associated with the manifold, of the manifold into It". We assert that 
the manifold and the projection resolve the singularity at the origin of the 
function given by the series. 

The proof of the theorem is based on two lemmas formulated below. 

8.2.4 Auxiliary lemmas 

Let us consider two simplicial n-dimensional cones of multiplicity 1 in the space 
dual to lR". Let us suppose that the first cone belongs to the positive orthant, and 
the second cone coincides with the positive orthant. Let us suppose that the 
skeletons of the cones are ordered, the skeleton of the second cone being ordered 
in the standard way: 

(1, 0, ... ,0), ... , (0, ... , 0, 1). 

Let us denote by ai = (a{, ... , a!.) the jth covector of the ordered skeleton of the 
first cone. The skeletons of the cones give an ordered pair of bases of the integer 
n-dimensional lattice. There is a monomial map associated with the pair of bases 
(see§8.1.2). Let us denote it by h. The matrix (a{) of this monomial map has non­
negative elements since the first cone is inscribed in the second. Let us consider a 
power series f in the variables Xl' •.• , x". A monomial map with non-negative 
matrix induces a transformation ofthe power series into the power series foh. 

Lemma 8.8. 

1. The maximal power of the variable Xi' by which the power series is divisible 
after the monomial transformation is equal to the value of the supporting 
function of the Newton polyhedron of the initial power series evaluated on the 
jth covector of the ordered skeleton of the first cone. 

2. The Jacobian of the monomial map is equal modulo a sign to the monomial 
in which the power of the variable X J is equal to one less than the sum of the 
coordinates of the jth covector of the ordered skeleton of the first cone. 

3. The Newton diagram of the power series after the monomial transfor­
mation is a point if and only if all the covectors of the interior of the first cone are 
equivalent relative to the Newton polyhedron of the initial power series. 

4. The image of the coordinate hyperplane xJ=O is contained in the 
coordinate plane given by the equations Xl = 0, i E I, where I is the set of positions 
of all the non-zero coordinates of the jth covector of the ordered skeleton of the 
first cone. 
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The proof is obvious. 
Let us suppose that the power series f has real coefficients and converges. We 

shall denote by the same letter the function given by the series. Let us consider the 
function foh induced from the function f by the monomial map. With each 
coordinate hyperplane there are associated two numbers: the multiplicity of zero 
on the hyperplane of the function f 0 h and the multiplicity of zero on the 
hyperplane of the Jacobian ofthe monomial map. Let us denote the first number 
by k and the second by m. The number -(m+ l)/k was called, in Chapter 7, the 
weight of the hyperplane. Weights playa fundamental role in Theorem 7.5. Let 
us give a clear geometrical meaning to the weight of a coordinate hyperplane. 
For definiteness, let this hyperplane be given by the equation Xl =0. 

Let us denote by y the Newton polyhedron of the initial power series. Let us 
consider the hyperplane in R" given by the equation 

where a l is the first covector of the ordered skeleton of the first cone, lr is the 
supporting function of the polyhedron r. The intersection of this hyperplane 
with the polyhedron is the trace of the covector a l

. The hyperplane intersects the 
bisector of the positive orthant in exactly one point (t, ... , t). According to 
Lemma 8.8, the weight of the coordinate hyperplane Xl = 0 is equal to 

See figure 71. This remark explains the appearance in Theorem 6.4 of a number 
equal to the remoteness of the Newton polyhedron. 

Fig. 71. 

Let us formulate the second auxiliary lemma. 
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Lemma 8.9. Let us suppose that the conditions of Lemma 8.8 are satisfied. Let us 
suppose that under the monomial map h the hyperplane given by the equation 
Xl =0 maps into the origin. Let us suppose that the power series / (without 
constant term) converges and has :R-nondegenerate principal part. Let us 
suppose that all the covectors of the interior of the first cone are equivalent 
relative to the Newton polyhedron of the series f Then at each point of the 
hyperplane Xl = 0 there exist local coordinates in which the function /0 h and the 
Jacobian of the map h are equal to monomials modulo multiplication by a 
function which does not map to zero. 

Proof. It is sufficient to prove that the above-mentioned local coordinates exist 
for points at which the first s Euclidean coordinates are equal to zero and the rest 
of the Euclidean coordinates are different from zero. 

By assumption the series /0 h can be put in the form 

xr(a') ... x~(a") (const+O(xl, .. . ,xn», 

where const ¥- 0 (see Sections 1 and 3 of Lemma 8.8). Let us rewrite the series /0 h 
in the form 

It is sufficient to prove that the hypersurface given by the equation /0 =0 does 
not have singular points in (It ",0)". 

All the coordinates of the covector a l are positive (Section 4 of Lemma 8.8) 
therefore to is a polynominal. Let us denote by y the joint trace of the covectors 
a l , ... , at. Now y is a non-empty compact face ofthe Newton polyhedron. Let us 
denote by /y the ')I-part of the series f It is clear that 

I' 0 h = x'r(a1
) x'r(a") I' 

Jy l' .. s JO' 

In view of the JR-nondegeneracy of the principal part of the series / the first 
partial derivatives of the y-part do not have common zeros in (It", 0)". The map 
h gives a diffeomorphism 

therefore the polynomials 

/0, a/o/ax.+1," .,a/o/ax" 

do not have common zeros in (It ",0)", which is what we were required to prove. 

Asymptotics and Newton polyhedra 249 

8.2.5 Proof of Theorem 8.2 

Let us verify that the three sections of the definition of the resolution of a 
singularity, listed on page 195-196 are satisfied. 

Let us consider the manifold, subordinate to the Newton polyhedron of the 
series / and the projection associated with it of the manifold onto JR n. According 
to Theorem 8.1, the projection is a proper analytic map. Consequent!y, Section 3 
of the definition of the resolution of a singularity is satisfied. The projection is 
invertible away from the union of the coordinate hyperplanes in JRn

• Con­
sequently, Section 2 of the definition is satisfied. Finally Section 1 is a direct 
corollary of Lemma 8.9. The theorem is proved. 

Remark 1. The resolution of the singularity in Theorem 8.2 is determined by a 
simple fan, subordinate to the Newton polyhedron. By changing the fan we can 
provide a resolution of the singularity with additional properties. Namely we can 
choose a simple fan, subordinate to the Newton polyhedron, such that the map 
of the resolution of the singularity, indicated in Theorem 8.2, is invertible away 
from the zero level hypersurface of the function given by the power series [210]. 
Invertibility ofthe map outside the zero level hypersurface means that condition 
2' on page 197 is satisfied. 

Lemma 8.10. The resolution of the singularity, indicated in Theorem 8.2, satisfies 
condition 2' on page 196 if the simple fan defining the resolution satisfies the 
following additional property: This fan includes any cone of the fan associated 
with the polyhedron if this cone is simplicial and its skeleton can be extended to a 
basis of the integer lattice. 

Example. In figures 69 and 70 were depicted a Newton polyhedron, the fan 
associated with it and a simple fan subordinate to the Newton polyhedron. The 
simple fan possesses the property indicated in Lemma 8.10. 

The lemma is easily proved with the help of Sections 1 and 4 of Lemma 8.8, 
see also [359]. 

Lemma 8.11. There exists a simple fan subordinate to the Newton polyhedron 
and possessing the property indicated in Lemma 8.10. 

Such a simple fan can be constructed by the algorithm indicated in § 8.2.2. 
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Remark 2. Let us formulate the complex analogue of Theorem 8.2. 

Theorem 8.2' (see [45, 159,359]). Let us consider a convergent power series 
in n variables without constant term, with complex coefficients and with 
C[;-nondegenerate principal part. The series gives an analytic function in a 
neighbourhood of the origin in C[;n. Let us consider a complex analytic manifold, 
subordinate to the Newton polyhedron of the power series and the projection, 
associated with the manifold, of the manifold onto C[;n (see § 8.1.7). We assert that 
the manifold and the projection resolve the singularity at the origin of the 
function given by the series (that is that the function, the manifold and its map 
onto C[;n possess properties 1-3 on page 195-196). 

The proof is the same as the proof of Theorem 8.2. 
Theorem 8.2', like Theorem 8.2, admits the condition: there exists a manifold, 

subordinate to the Newton polyhedron of the power series, for which the 
resolution of the singUlarity in Theorem 8.2' possesses the property 2' on page 
196 (see [359]). 

8.3 Application to oscillatory integrals 

8.3.1 

Theorem 8.3 (see [358]). Let us consider the oscillatory integral 

J ei<f(x)qJ(X)dxl'" dxn • 

R' 

Let us suppose that the phase is an analytic function in a neighbourhood of 
the origin. Let us suppose that the Taylor series of the phase at the origin has 
1R-nondegenerate principal part. Let us consider the Newton polyhedron of the 
Taylor series. Let us consider a simple fan, subordinate to this Newton 
polyhedron. In connection with these objects we claim the following asser­
tions 1-5. 
1. The index set of the phase at the origin belongs to the union of the following 
arithmetic progressions, depending only on the fan and not depending on the 
coefficients of the Taylor series. One sequence is that of the negative integers. The 
rest of the progressions are parametrised by the one-dimensional cones of the 
fan, on which the supporting function of the Newton polyhedron is different 
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from zero. To such a cone corresponds the arithmetic progression 

_(al + ... +a")/Ir(a), -(1 +al + ... +a")/Ir(a), . .. , 

where a = (al , ... ,a") is the primitive covector generating the cone and Ir is the 
supporting function of the Newton polyhedron. 
2. The oscillation index of the phase at the origin is not more than the 
remoteness of the Newton polyhedron. 
3. The oscillation index of the phase at the origin is equal to the remoteness of 
Newton polyhedron if at least one of the following three conditions is satisfied: 

(i) The polyhedron is remote. 
(ii) The phase has a maximum or a minimum at the origin. 
(iii) Let us denote by ')I the closure of the open face of the Newton polyhedron 

to which the centre of the boundary of the Newton polyhedron belongs (see 
§ 6.2.3); it is required that the ')I-part of the Taylor series of the phase at the origin 
does not have a zero in (1R,,-o)n and the remoteness of the Newton polyhedron 
was not an odd integer (the condition about the absence of a zero is satisfied, in 
particular, if ')I is a vertex of the polyhedron). 
4. If at least one of the conditions (i)-(iii) of section 3 of the theorem is satisfied, 
then the multiplicity of the oscillation index of the phase at the origin is equal to 
the multiplicity of the remoteness of the Newton polyhedron (in particular, if the 
bisector of the positive orthant passes through a vertex of the Newton 
polyhedron then the multiplicity equals n -1, if through an edge then the 
multiplicity equals n - 2, etc.). If the support of the amplitUde is concentrated in a 
sufficiently small neighbourhood of the origin, the amplitude is of fixed sign and 
is different from zero at the origin, then the numerical coefficient of the leading 
term of the asymptotic series of the oscillatory integral (that is the coefficient aK,fJ 

of the series (2) on page 181) is different from zero. 
5. Let us suppose that at least one of the conditions (i)-(iii) of section 3 of the 
theorem is satisfied. Let us suppose that the phase has a critical point of finite 
multiplicity at the origin and that the support of the amplitude is concentrated in 
a small neighbourhood of the" origin. Then the numerical coefficient of the 
leading term of the asymptotic series of the oscillatory integral (that is the 
coefficient aK,fJ of the series (2) on page 181) is equal to the value of the amplitude 
at the origin, multiplied by a non-zero constant, depending only on the phase. 
6. Let us suppose that the remoteness of the Newton polyhedron is equal to -1. 
Then the oscillation index of the phase at the origin is equal to -1 if at least one 
of the following two conditions is satisfied: 
(i) the open face, to which the centre of the boundary of the Newton polyhedron 
belongs, has dimension less than n -1. 
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(ii) The closure y of the open face to which the centre of the boundary of the 
Newton polyhedron belongs is compact and the y-part of the Taylor series has a 
zero on (R.""-O)ft. 

Furthermore in this case the mUltiplicity of the oscillation index of the phase at 
the origin is equal to the mUltiplicity of the remoteness of the Newton 
polyhedron or one less than the multiplicity of the remoteness. If conditions (i) 
and (ii) are satisfied simultaneously, then the multiplicity of the oscillation index 
is equal to the multiplicity of the remoteness. 

Remark 1. Theorem 6.4 and its supplements (i), (ii), (vi), (vii) are corollaries of 
the theorem we have just formulated. 

Remark 2. In Section 1 of the theorem we indicated the method of constructing 
arithmetic progressions. There is a different method for constructing similar 
progressions. This method uses only the Newton polyhedron, and does not use 
the simple fan, subordinate to the polyhedron. The method can be used if the 
function has at the origin a critical point of finite multiplicity and the Taylor 
series of the phase has «::-nondegenerate principal part. The method is based on 
the following theorem of Malgrange. With each critical point of finite multi­
plicity of the function there is connected the linear monodromy operator in the 
vanishing homology at the point (see Part I). With each root A. of the 
characteristic polynomial of the monodromy operator is connected the arith­
metic progression of all the numbers oc for which exp (21tioc) = A.. The theorem of 
Malgrange (see Chapter 11) asserts: the index set of the critical point is contained 
in the union of the progressions we constructed. In Theorem 3.13 we indicated a 
formula expressing the characteristic polynomial of the monodromy operator in 
terms of the Newton polyhedron of the Taylor series of the critical point. 

Proof of the theorem. 

Let us suppose that 1(0)=0. With the simple fan of the theorem there is 
associated a manifold subordinate to the Newton polyhedron of the Taylor 
series. This manifold and the projection associated with it resolve the singularity 
of the phase at the origin (Theorem 8.2)~ We apply Theorem 7.5. For the proof of 
section 1 of the theorem we must indicate the set of multiplicities of the resolution 
of the singularity, that is we must indicate the multiplicities of the irreducible 
components of the zero level hypersurface of the phase, lifted to the manifold 
resolving the singularity. In a local chart of the manifold the lifted phase is equal 
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to the product of a monomial and a function with non-singular zero level hyper­
surface (see Lemma 8.9); in addition to which the Jacobian of the resolution 
is equal to a monomial (Lemma 8.8). Therefore in terms of a local chart 
the irreducible components with mUltiplicity not equal to (1,0) (see § 7.3) are 
those coordinate hyperplanes on which the multiplicity of zero of the lifted phase 
is greater than 1. Lemma 8.8 expresses the multiplicity of zero of the lifted phase 
and the Jacobian of the resolution in terms of the correspondipg primitive 
covectors of the one-dimensional cone of a simple fan. Then Section 1 of the 
theorem follows from Theorem 7.5 and Lemma 8.8. 

Let us take notice of the geometrical meaning of the first number of the 
arithmetic progression corresponding to a primitive covector of a one-dimen­
sional cone (see the remark after Lemma 8.8). This first number is equal to minus 
the reciprocal of the intersection parameter of the bisector of the positive orthant 
and the hyperplane defined by the covector and leaning upon the polyhedron. 
Therefore among the first numbers of the arithmetic progressions, indicated in 
section 1 of the theorem there is certainly a number equal to the remoteness ofthe 
polyhedron. Namely, the remoteness is the first number of the arithmetic 
progression corresponding to any covector the trace of which contains the centre 
of the boundary of the polyhedron. 

Let us prove Section 2. If the remoteness of the Newton polyhedron is equal to 
-1 then Section 2 follows from Section 1 of Theorem 7.5. If the remoteness is less 
than -1 then the Taylor series of the phase is not divisible by anyone of the 
variables. According to Lemmas 8.8, 8.9 this means that the conditions of 
Section 5 of Theorem 7.5 are satisfied. Then Section 2 of the theorem follows 
from Section 5 of Theorem 7.5. The case in which the remoteness of the Newton 
polyhedron is greater than -1 is examined during the proof of Section 3. 

Section 3(i) of the theorem follows from Section 3 of Theorem 7.5, since in this 
case the weight of the resolution is greater than -1 and equal to the remoteness 
of the Newton polyhedron. Section 3(ii) follows from Section 4 of Theorem 7.5. 

Sections 4(i) and 4(ii) will follow from Sections 3, 4 of Theorem 7.5 if it is 
proved that the mUltiplicity of the weight of the resolution equals the multiplicity 
of the remoteness of the Newton polyhedron. For the proof we mention the 
following obvious fact. Let 11S consider all the cones of the simple fan, 
subordinate to the Newton polyhedron, which possesses the property: the traces 
of all the covectors forming the cone contain the centre of the boundary of the 
Newton polyhedron. Then the maximum dimension of the indicated cones is 
equal to one more than the multiplicity of the remoteness of the Newton 
polyhedron. Then the required result follows from Lemma 8.8. 

Sections 5(i) and 5(ii) follow, respectively from Sections 3(iv) and 4(iv) of 
Theorem 7.5. Sections 3(iii), 4(iii) and 5(iii) follow from Section 6 of Theorem 
7.5. Section 6 follows from Section 7 of Theorem 7.5. The theorem is proved. 
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According to Theorem 8.3, the order of the oscillatory integral is equal to the 
remoteness of the Newton polyhedron of the phase, if the amplitude is of 
constant sign and its value at the critical point of the phase is different from zero. 
We shall formulate an assertion describing the order of the integral in the case 
when the amplitude is equal to zero at the critical point of the phase. 

Let us be given two Newton polyhedra. By the coeffICient of inscription of the 
first polyhedron in the second we shall mean the lower bound of the following set 
of positive numbers. A number belongs to the set if the homothety with centre at 
the origin and expansion coefficient equal to the number maps the first 
polyhedron inside the second. 

We put into correspondence with the amplitude of an oscillatory integral the 
Newton polyhedron of its Taylor series multiplied by the product of all the 
variables. In this way we have two polyhedra: this polyhedron and the Newton 
polyhedron of the Taylor series of the phase. By the remoteness of the polyhedra 
of the phase and the amplitude we shall mean minus the reciprocal of the 
coefficient of inscription of the first polyhedron in the second. 

Exercise. Prove that the remoteness of the polyhedra of the phase and the 
amplitUde is equal to the remoteness of the Newton polyhedron of the phase if 
the Taylor series of the amplitude has non-zero constant term. 

Example. Let the Taylor series of the phase and the amplitude be equal, 
respectively, to 

Then the remoteness of their polyhedra is equal to -7/9. 

1beorem 8.4. Let us suppose that the phase of an oscillatory integral is an 
analytic function in a neighbourhood of the origin. Let us suppose that the 
Taylor series of the phase at the origin has R-nondegenerate principal part. 
Then: 

1. The power of the parameter of the leading term of the asymptotic series of 
the oscillatory integral is not greater than the remoteness of the polyhedra of the 
phase and the amplitude. 

2. The power of the parameter of the leading term is equal to the remoteness 
of the polyhedron of the phase and the amplitude if this remoteness is greater 
than -1 and the polyhedron put in correspondence with the amplitude is 
congruent to the positive orthant. 
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The proof is analogous to the proof of Theorem 8.3, except that instead of 
the references to Theorem 7.5 we must refer directly to Theorem 7.3. We notice 
that Section 2 of the theorem is analogous to Section 3(i) of Theorem 8.3. There 
are true analogies to Sections 3(ii), 3(iii), 4, 5. 

In conclusion we analyse the case of a degenerate principal part of the Taylor 
series. 

Theorem 8.S (see [358]). Let the phase be an analytic function in a neighbour­
hood of the origin. Let us suppose that the Newton polyhedron of the Taylor 
series of the phase at the origin is remote. Then the oscillation index of the phase 
at the origin is not less than the remoteness of this polyhedron. 

Corollary 1. The weight of the resolution of the singularity of the phase is greater 
than -1. 

See Theorem 7.5. 

Corollary 2. The assertion of Section 3 of Theorem 7.5 is true for the phase. 

Corollary 3. Let the phase be a function of two variables with a degenerate 
critical point at the origin. Then the oscillation index of this critical point is equal 
to the weight of the resolution of its singularity. 

Indeed in this case it is easy to select a system of coordinates in which the 
remoteness of the Newton polyhedron of the Taylor series of the phase is greater 
than -1. 

Corollary 4. The remoteness of the critical point is not greater than the oscilla­
tion index if the remoteness is greater than -1 (see the definition in § 6.2.4). 

We note that Theorem 6.5 asserts the equality of the remoteness and the 
oscillation index for all critical points of a phase of two arguments. 

Proof of the theorem. Let us consider the manifold X subordinate to the Newton 
polyhedron and the projection 

1t:X-+R.ft 
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associated with it. With the help of the projection we lift the phase to the 
manifold and we resolve all the singularities of the lifted phase on the preimage 
of the origin. Namely, by the theorem of Hironaka [158], there exists a new 
manifold Yand a map q, : Y - X, possessing the property: the map 11: 0 q, resolves 
the singularity of the phase at the origin. The phase, lifted to X, has a component 
of the zero level hypersurface with weight equal to the remoteness of the Newton 
polyhedron (see the proof of Theorem 8.3). The preimage of this component on 
Yhas the same weight. Now the theorem follows from Section 3 of Theorem 7.5. 

8.3.2 Generalisation of Theorem 8.3 to the Laplace integral 

1beorem 8.6. Let us consider the Laplace integral 

J -<fIx) ()d dx e <p x Xl'" /I' 

." 
Let us suppose that the phase is an analytic function in a neighbourhood of the 
origin and has a local minimum at the origin. According to Theorem 7.6 as 
t - + 00 the Laplace integral can be expanded in the asymptotic series 

/I-I 

e-<f(O) L L at.lltll(lnt)k. 
"=0 II 

Let us suppose that the Taylor series of the phase at the origin has 1R-non­
degenerate principal part. Let us consider the Newton polyhedron of the Taylor 
series of the phase. Let us consider a simple fan subordinate to this Newton 
polyhedron. Then the asymptotics of the Laplace integral possess the properties 
of the asymptotics of an oscillatory integral with the same phase, indicated in 
Theorem 8.3 in Sections 1, 3,4, 5. 

The proof of Theorem 8.6 is obtained from the proof of Theorem 8.3 by 
changing the references to Theorem 7.5 to references to Theorem 7.6. 

CoroUary of the theorem (compare with the corollary of Theorem 7.6). For 
each positive t let us denote by V(t) the volume ofthe set of points in which the 
value of the phase is less than t. According to Theorem 7.6 the function Vas 
t - + 0 can be expanded in the asymptotic series 

L L a1.lItll(1n t)". 
II 1 
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It is asserted that the order a of the maximal term of this series is equal to minus 
the remoteness of the Newton polyhedron of the Taylor series of the phase at the 
minimum point (under the condition of 1R-nondegeneracy of the principal part 
of the Taylor series). 

Remark. The assertion that the leading term of the asymptotic ~eries of the 
Laplace integral is equal to the remoteness of the Newton polyhedron of the 
phase was proved byV. A. Vasilevin [386] for the case when the principal part of 
the Taylor series of the phase is 1R-nondegenerate and the Newton polyhedron 
intersects each coordinate axis. The proof of V. A. Vasilev does not use the 
resolution of singularities. 

8.3.3 The area of the level surface of a function 

Let us suppose that on the space there is given a Riemannian metric. The 
Riemannian metric on the space gives rise to a Riemannian metric on the level 
hypersurface of a function. The Riemannian metric on the hypersurface 
determines an (n -1 )-dimensional volume form. Let us calculate the volume of 
compact level manifolds of a function and let us consider the asymptotic volume 
as the level tends to the critical value. 

Theorem 8.7. Let us suppose that the analytic function/has an isolated mini­
mum point and that the minimal value of the function is equal to zero. Let us 
suppose that in the space there is given an analytic Riemannian metric. For small 
positive t let us denote by V(t) the (n -1)-dimensional volume of the level t 

manifold. Then as t- +0 the function V can be expanded in the asymptotic 
series 

11-1 

L L at.ll tll (1nt)". 
II 1=0 

in which the parameter a runs through a finite set of arithmetic progressions 
consisting of positive rational numbers. If in addition it is known that the 
principal part of the Taylor series of the function/ is 1R-nondegenerate at the 
minimum point and that the principal part of the Taylor series of the function 
(dJ, df) is It-nondegenerate at the minimum point ofthe function/then the order 
a of the maximal term of the asymptotic series depends only on the Newton 
polyhedra of the above Taylor series and is calculated according to the following 
rule. 
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Rule. Let us consider the Newton polyhedron of the Taylor series of the function 
(dJ, df) at the minimum point of the function! Let us consider the image of this 
polyhedron under the action of the homothety with coefficient 112 and centre at 
the origin. Let us move the resulting polyhedron to the vector (1, ... , 1). Let us 
consider a second polyhedron, namely the Newton polyhedron of the Taylor 
series of the function f at the minimum point. Let us denote by k the coefficient of 
inscription of the first polyhedron in the second. Then the order (X of the maximal 
term of the asymptotic series is equal to 11k-I. 

The proof of the theorem is based on the fact that the number -11k is the 
index of the maximal term of the asymptotic series of the Laplace integral 

J e-<f(X)V(dJ,df)qJ(X)dxl" .dxn 

It" 

as t- + 00, if the amplitude qJ is identically equal to 1 in a small neighbourhood 
of the minimum point and the support of the amplitude is concentrated in a small 
neighbourhood of the minimum point. 

8.3.4 Oscillatory integrals in a half space 

Let us consider the oscillatory integral in the halfspace 

J ei<f(X)qJ(x)dx1 ••• dxn, 
Xt;;!::O 

where the phase and the amplitude are smooth functions on the whole space. Let 
us suppose that the phase is an analytic function in a neighbourhood of the 
origin. If the support of the amplitude is concentrated in a sufficiently small 
neighbourhood of the origin and the restriction of the phase to the boundary of 
the halfspace does hot have a critical point at the origin then as t- + 00, the 
integral decreases faster than any power of the parameter (Theorem 6.1 '). Let us 
suppose that the restriction of the phase to the boundary has a critical point at 
the origin. 

Theorem 8.8. The oscillatory integral on the halfspace can be expanded in the 
asymptotic series 

n-l 

ei<f(O) L L a1.II(qJ)tll(lnt)1 as t- + 00 
II 1=0 
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if the support of the amplitude is concentrated in a sufficiently small 
neighbourhood of the origin. Here the parameter (X runs through a finite set of 
arithmetic progressions depending only on the phase and consisting of negative 
rational numbers. The numerical coefficients a1,11 are generalised functions of the 
amplitude. The support of each generalised function lies in the union of the 
critical sets of the phase and the restriction of the phase to the boundary. 

The proof is analogous to the proof of Theorem 7.5. For the proof we need to 
consider the resolution of the singularity at the origin of the function xd (it is 
simultaneously a resolution of the singularity of the functionf), and then repeat 
the reasoning of the proof of Theorem 7.5. In the result for an oscillatory integral 
on a half-space we shall prove the assertions of Sections 1-5 of Theorem 7.5 
(a natural addition is needed in Section 5: it is true if the phase is not divisible 
by Xl)' 

If the origin is a critical point of the restriction of the phase to the boundary, 
but is not a critical point of the phase, the analysis of the asymptotic integral on 
the halfspace reduces to the analysis ofthe oscillatory integral on the boundary. 
Indeed by a diffeomorphism preserving the boundary the phase can be reduced 
to the form 

Then we can integrate by parts with respect to Xl' 

Let us suppose that the phase has a critical point at the origin. Let us suppose 
that the principal part of the Taylor series of the phase at the origin is R­
nondegenerate. 

Theorem 8.9. Under the above assumptions the asymptotics of the oscillatory 
integral on the halfspace possess the properties indicated in Sections 1-5 of 
Theorem 8.3. 

The proof is the same as the proof of Theorem 8.3. 
Let us consider one more type.of oscillatory integral on a half space, namely an 

integral of the type 

J eitf(x)qJ(X)Xl1/2dxl" .dxn • 

%1>0 

Here, as earlier, the phase and the amplitude qJ are smooth functions on the 
whole space. The analysis of such integrals can be reduced to the analysis of the 
integrals we considered earlier on the half space with the help of the change 
Xl =z2. We shall formulate one of the results obtained in this manner. 
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1beorem 8.10. Let us suppose that the phase is an analytic function in a 
neighbourhood of the origin. Let us suppose that the principal part of the Taylor 
series of the phase at the origin is R-nondegenerate. Then the oscillation index of 
the phase for integrals of the indicated type is determined by the Newton 
polyhedron of the Taylor series of the phase and is equal to minus the reciprocal 
of the value of the parameter of the point of intersection of the line 

where t E JR, and the boundary of the Newton polyhedron, if the value is greater 
than 1. 

All the conclusions about the asymptotics of oscillatory integrals on a 
halfspace formulated in this section are true for the asymptotics of Laplace 
integrals on a halfspace. 

8.4 The two-variable case 

According to Theorem 8.3 the oscillation index of the critical point of the phase is 
equal to the remoteness of the Newton polyhedron of its Taylor series in some 
system of coordinates if in this system of coordinates the principal part of the 
Taylor series is R-nondegenerate and the Newton polyhedron is remote. This 
theorem applies to an arbitrary critical point of the phase depending on one 
argument. If the phase depends on two or more arguments then the indicated 
system of coordinates does not always exist (see § 6.2.4). All the same, we have 
managed to investigate to the end the case of a phase depending on two 
arguments and prove the equality ofthe oscillation index and the remoteness of 
the Newton polyhedron of the Taylor series of the phase in a correctly chosen 
system of coordinates. The correctly chosen system of coordinates is said to be 
adapted to the phase and was defined in § 6.2.4. 

1beorem 8.11 (see [358]). Let us consider the double oscillatory integral 

J eiT/(:JC)<p(x)dxldx2· 

Il' 

Let us suppose that the phase is an analytic function in the neighbourhood of its 
degenerate critical point. Then 

1. The oscillation index of the critical point is equal to its remoteness. 
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2. There exists a system of local coordinates adapted to the critical point. 
3. The multiplicity of the oscillation index of the critical point is equal to 1 if 

there exists a system of coordinates, adapted to the critical point, in which the 
centre of the boundary of the Newton polygon of the Taylor series of the critical 
point lies at the intersection of two edges of the polygon. Otherwise the 
multiplicity of the oscillation index is equal to O. 

Remark 1. The assertions of Sections 1 and 2 are true also for non-degenerate 
critical points; the assertion of Section 3 is not (example: !=XIX2). 

Remark 2. The assertions about asymptotics, formulated in the theorem, are true 
also for asymptotic Laplace integrals with phases depending on two arguments. 

Remark 3. Theorem 8.11 implies Theorem 6.5 and its supplement (i). Supple­
ment (ii) follows from Corollary 3 of Theorem 8.5 and Section 3 of Theorem 7.5. 

Remark 4. In [358] there is given an algorithm to search for an adapted system of 
coordinates and it is shown how to recognise adapted coordinates. According to 
one of the signs a system of coordinates is adapted to the critical point if the 
centre of the boundary of the Newton polygon of the Taylor series of the critical 
point lies on the intersection of two edges of the polygon, cf. Section 3 of the 
theorem. 

Remark S. The oscillation index of a degenerate critical point of a phase of two 
arguments is not less than the remoteness of the critical point according to 
Corollary 4 of Theorem 8.5. 

The proof (as also the proof of Theorem 8.3) depends on the analysis of the 
resolution of the singularity oftfie critical point of the phase. The analysis of the 
resolution of the singularity of the critical point of the phase in the case of two 
arguments is made simpler by two circumstances. Firstly, in this case there are 
simple algorithms for the resolution of the singularity by sequences of (1-

processes at points. Secondly, in the two-dimensional case the weight of the 
resolution of a singularity of an arbitrary degenerate critical point is greater than 
-1 (Corollary 3 of Theorem 8.5.). In accordance with the second remark, the 
oscillation index is equal to the weight of the resolution of the singularity 
(Section 3 of Theorem 7.5). In this way it remains to prove that the weight of the 
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resolution of the singularity is equal to the remoteness of the Newton polyhedron 
of the Taylor series of the phase adapted to the phase of the coordinate system. 

Theorem 8.11 is a direct corollary of Theorem 8.12 below. 

Theorem 8.12 (see [358]). Let us consider the resolution of the singularity of a 
degenerate critical point of an analytic function of two arguments. Then 

1. The weight of the resolution of the singularity is equal to the remoteness of 
the critical point. 

2. There exists a system of local analytic coordinates in which the remoteness 
of the Newton polyhedron of the Taylor series of the critical point is equal to the 
weight of the resolution of the singUlarity. 

3. The multiplicity of the number, equal to the weight, relative to the 
resolution of the singularity (for the definition see § 7.3.1) is equal to 2 if there 
exists a system of coordinates, adapted to the critical point, in which the centre of 
the boundary of the Newton polygon lies at the intersection of two edges of the 
polygon. Otherwise the mUltiplicity is equal to 1. 

Chapter 9 

The singular index, examples 

In this chapter we shall prove the additivity of the oscillation index, and describe 
explicitly the calculation of the singular index in the tables in § 6.1.1 O. In the 
second part of the chapter we give an example of the deformation of a critical 
point. This example illustrates several phenomena. First, the absence of 
semicontinuity of the oscillation index. Second, the existence of critical points 
which are complex equivalent but which have distinct singular indices. Third, the 
existence of a critical point in which the singular index is not equal to the 
remoteness. Finally, the existence of a critical point in which the principal part of 
the Taylor series is R-nondegenerate but the remoteness of the Newton 
polyhedron is greater than the oscillation index. 

9.1 The singular index 

9.1.1 The additivity of the oscillation index and its multiplicity 

Let J:R"-+.R and g:.R'-+R be smooth functions, and let x and y be their 
respective critical points. The critical point x x y of the function 

J+g :R" x R'-+.R 

is called the direct sum of the critical points x and y. 

I..emma 9.1. The oscillation index and the multiplicity of the oscillation index are 
additive. 

Proof. Let us denote by {J, K, respectively, the oscillation index and the 
multiplicity of the oscillation index. 

It is clear that (J(x x y) ~ (J(x) + (J(y), and if (J(x x y) = (J(x) + (J(y) then 
K(xxy)~K(x)+K(y). Indeed if the amplitude ofthe oscillatory integral with 
phase J + g can be decomposed as the product of two functions, one of which is 
a function on R" and the other is a function on R', then the integral itself 
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decomposes into a product of oscillatory integrals with phases, respectively, J 
and g. 

We shall prove the opposite inequality. Let us consider the oscillatory integral 
with phase J + g. Let us suppose that the support of the amplitude is concentrated 
in a small neighbourhood of the point x x y. In this case the integral can be 
expanded in the asymptotic series 

.. +1-1 

L L a",« .<<(In .l, 
« k=O 

where the numerical coefficients a",« are generalised functions of the amplitude. 
The generalised functions a",« for a.> P(x) + P(y) are identically equal to zero, 
since in the space of the amplitudes the linear combinations of amplitudes which 
can be decomposed into a product of a function on R" and a function on JR.I form 
an everywhere dense set. Therefore 

P(x xy)=P(x)+P(y)· 

The equality 

K(xxy)=K(x)+K(y) 

is proved analogously. 

CoroUary. The singular index and its multiplicity are equal for stably equivalent 
critical points. 

9.1.2 Calculation of the siogular index in the tables of § 6.1.10 

The singular index and its multiplicity for the critical points of the tables were 
calculated with the help of Theorems 8.3 and 8.11. Theorems 8.3 and 8.11 can be 
applied to the critical points classified in Part II of Volume 1, since each of the 
indicated critical points either has a Taylor series with R.-nondegenerate 
principal part or, if it is a function of two variables, is written down with respect 
to an adapted system of coordinates. The result formulated may be simply 
verified in each separate case. After this the calculation leads to the calculation of 
the remoteness of the Newton polyhedron of the Taylor series. 
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9.2 Examples 

Example I. Let us put 

wherey is a real parameter,p~9. Let us denote by Py the oscillation iJ).dex of the 
critical point at the origin in JR.3 of the function F(·,y) . 

Theorem 9.1 (see [358]). The family F of functions on 1R3 depending on the 
parameter y has the following properties. 

1. The function F(', y) for all values of the parameter y has a critical point of 
finite multiplicity at the origin. 

2. Po= -5/8. 
3. For y>O, Py = -3/4. 
4. For y<O, Py > -(1/2+y(p», where the function y(p) tends to zero as 

p-++oo. 
5. The remoteness of the critical point at the origin of the function F(', y) for 

y#O is equal to -3/4. 
6. There exists a neighbourhood U of the origin in R 3 and a neighbourhood V 

of the origin in R. such that the oscillation index of the function F(-, y), Y E Vat 
any of its critical points x E U"'-0 is less than -1. 

Corollary I. For the critical point at the origin of the function F(',O) for 
sufficiently large p the uniform oscillation index is greater than the individual 
oscillation index. 

From the proof of Theorem 9.1 it follows that such an occurrence has already 

been observed for p=9. 

CoroUary 2. The critical points at the origin of the functionsF(', y) andF(', -y) 
for p =41 are complex equivalent (that is they can be transformed into each other 
by a holomorphic diffeomorphism of the space ([3), however they have a 
different oscillation index. 

Corollary 3. The remoteness of the critical point at the origin of the function 
F(',y) for y<O is less than the oscillation index. 
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Proof. Assertion 1 can be verified by direct calculation. Assertions 2, 3 follow 
from Theorem 8.3 in view of the R-nondegeneracy of the principal part of the 
polynomial F(', y) for indicated y. Assertion 5 follows from the fact that the 
remoteness of the critical point at the origin of the function 

is equal to - 3/2. 
For the proof of assertion 6 it is sufficient to observe that for small y and for 

critical points x that are near to zero the coordinates X2, X3 are equal to zero. 
This, as it is easy to see, implies that 

ifF/oX20X3(X, y) =0, 

ifF/oxi(x,y)~O 

ifF/o~(x,y)~O, 

that is that the rank of the second differential is not less than 2. According to the 
generalised Morse lemma in a neighbourhood of such a critical point the 
function reduces to the form 

For this function assertion 6 follows from Theorem 8.3. 
The proof of Section 4 is based on Theorem 7.5. A resolution of the singularity 

of the critical point at the origin is constructed and one can prove that the weight 
of this resolution is greater than -(1/2+y(p» where y(p) tends to zero as 
p--+ + 00. In the construction of the resolution first a u-process is performed at 
the origin and then a u-process is performed p/2 times with centre on the curve 
which is the intersection of the preimage ofthe origin and the proper preimage of 
the zero level surface of the function F. The component arising last has 
sufficiently high weight to prove Section 4. For more details see [358]. 

Example 2. Let 

f+ =~+xf+x!+xK+(X4 -(xi +xt+xi+~» 'Xs, 

f- =~+xf+x!+xK+(X4 -( -xf+xt+xi+~» ·Xs· 

1beorem 9.2. For sufficiently large p the polynomialsJ± possess the following 
properties. 

The singular index, examples 267 

1. Their principal parts are R-nondegenerate. 
2. Their Newton polyhedra coincide. 
3. The oscillation index at the origin of the polynomialf+ is equal to -7/4. 
4. The oscillation index at the origin of the polynomial f _ is not less than 

-(1/2 + 1 +y(P», where y(p) tends to zero as p--+ + 00. 

5. The remoteness of the Newton polyhedra of the polynomials is less 
than -1. 

CoroUary 1. There exists a resolution of the singularity of the critical point at the 
origin of the polynomial f +, the weight of which is greater than the oscillation 
index. 

Indeed the resolution of the singularity indicated in Theorem 8.2 is such a 
resolution (see also Theorem 8.3). 

CoroUary 2. The remoteness of the Newton polyhedron of the critical point at the 
origin of the polynomialf+ is greater than the oscillation index. 

Proof. Section 2 is obvious. Sections 1 and 5 can be verified by direct calculation. 
We shall prove Section 3. Section 4 is proved analogously. 

We make the substitution 

then 

We make the substitution 

and then v=s+t, u=s-t, then 

where F is the function from example 1. Then Section 3 follows from Theorem 
9.1 and Lemma 9.1. 



Part ill 

Integrals of holomorphic forms 
over vanishing cycles 

The first part of the book was devoted to the topology of a critical point of a 
holomorphic function; the third part is devoted to its analysis. The basic object 
of study is the integral of a holomorphic form, defined in a neighbourhood of a 
critical point, over a cycle lying in the level manifold of the function and 
vanishing at the critical point. We shall study the change in the integral under 
continuous deformation of the cycle from one level manifold to another. We 
shall show that the asymptotic behaviour of such integrals under deformation of 
the cycles at the critical point contains information about a very varied collection 
of objects, connected with the critical point. 

In Chapter 10 we shall give an account of the simplest properties of the 
integrals (holomorphic dependence on parameters, expansion in series, con­
nection with the monodromy group). In Chapter 11 we shall describe the 
interaction of asymptotic integrals over cycles with asymptotic integrals of the 
saddle point method, for which the holomorphic function serves as the phase (in 
particular with the asymptotics of oscillatory integrals). In Chapter 12 we shall 
discuss the differential equations which are satisfied by the functions given by the 
integral of a holomorphic form over a cycle depending continuously on 
parameters. Chapter 13 is dedicated to a discussion of properties of coefficients 
of asymptotic expansions of integrals of holomorphic forms over cycles, 
depending continously on parameters. In Chapter 13 we shall define the mixed 
Hodge structure of a finite-mul~plicity critical point of a holomorphic function. 
In Chapter 14 we shall discuss the interaction of the mixed Hodge structure of a 
critical point with the other characteristics of the critical point. In Chapter 15 we 
shall construct with the help of integrals maps from the base of a versal 
deformation of a critical point into the cohomology vanishing at the point. These 
maps carry the structures found in the cohomology to the base of the versal 
deformation. 



Chapter 10 

The simplest properties 
of the integrals 

In this chapter we shall prove the holomorphic dependence of the integral on the 
parameters; we shall explain the connection between branches of integrals and 
the monodromy group in homology; we shall prove that the integral can be 
expanded in a series in a neighbourhood of the given value of the parameter. 

We mention the importance of the concepts, defined in §§ 10.3.1 and 10.3.4, on 
the specialisation of the unfolding of a deformation of the germ of a holomorphic 
function and the Milnor fibration of the deformation of the germ of a 
holomorphic function. 

10.1 Example 

Let us consider in C[2 the level lines of a polynomial. If the level value is not 
critical then the level line is a non-singular Riemann surface. As an example we 
can consider the level lines of the polynomial 

/(x,y)=Y+.x3, 

all of them with the exception of the zero level line are surfaces of genus 1 from 
which one infinitely distant point has been deleted. Let us suppose that on C[2 we 
are given a polynomial differential 1-form, for example, the form w=ydx. 
Finally let us suppose that on one ofthe non-singular level lines is chosen a closed 
curve. Let us consider the integral of the form along the curve. We shall study the 
change of the integral under continuous deformation of the curve from one non­
singular level line to another. In our chosen case the integral is called elliptic and 
in this way we intend to study the dependence on the parameter of the period of 
the elliptic integral. 

We shall prove that outside a finite set of exceptional values of the parameter 
the integral is a many-valued holomorphic function ofthe parameter. We shall 
explain the connection between the branches of the integral and the topology of 
the fibration which is given by the polynomial restricted to the complement of the 
union of the exceptional level lines. We shall prove that in a neighbourhood of an 
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arbitrary value of the parameter the integral can be expanded into a series of 
fractional powers of the parameter and integral powers of the logarithm of the 
parameter in which the powers of the parameter and the powers of the logarithm 
of the parameter are determined by the Jordan structure of the monodromy 
operator in the one-dimensional homology of a level line, corresponding to 
going round the exceptional value of the parameter. 

10.1.1 Holomorpbic dependence on parameters 

We begin with an important remark: a form, restricted to a level line, is closed. 
Indeed on a complex curve there are no non-zero holomorphic 2-forms. This 
remark has two consequences. First, the integral does not change as the curve of 
integration changes to a homologous curve (Stokes' theorem). Second, the 
integral of a form along a curve, deformed into a neighbouring non-singular level 
line, is well-defined. Indeed, two different continuous deformations into 
neighbouring level lines lead to homologous curves. In this way the integral of a 
form along a curve, deformed into level lines near to the chosen one, defines a 
function relating the integral to the value of the polynomial. 

Theorem 10.1. The integral is an analytic function of the value of the polynomial. 

We have a function in a neighbourhood of a chosen point of a complex line, we 
shall prove its holomorphicity. First we shall prove that this function is smooth. 

In a neighbourhood of the initial curve of integration the polynomial does 
not have critical points, therefore in a neighbourhood of the initial curve of 
integration the map/: C[2 --+C[l is a smooth locally trivial fibration. We choose its 
smooth trivialisation and with the help of the trivialisation we carry the initial 
curve of integration into a neighbouring level lines of the polynomial. Let us 
consider the integral of the form along one curve of the constructed family. It is 
equal to the integral along the initial curve of integration ofthe form carried with 
the help of a diffeomorphism of the trivialisation to the initial level line. In this 
way on the initial level line there is a curve and a differential1-form smoothly 
depending on a complex parameter. By a standard theorem of analysis the 
integral of the form along a curve deperids smoothly on the parameter. 

Let us denote by u(s) a curve on the s-levelline constructed with the help of the 
trivialisation. 

To complete the prooflet us represent our integral in the form of the integral of 
a meromorphic 2-form on a real surface. As our 2-form let us take the form 

d/ A w/(f - t) 
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where I is the value of the polynomial on the initiallevelline~ Let us describe the 
surface. On the complex line let us consider a small path ')I going round the 
number t anticlockwise. Let us denote by r the surface in (:2, formed by the 
union of the curves: 

r = u.eya(s). 

Lemma 10.1. The integral 

(112m) J df 1\ wl(f-/) 
r 

does not depend on the choice of path ')I and equals Ja(I)W. 

The theorem follows from the lemma, since the integral represented in the 
lemma depends holomorphically on I. 

Proof of the lemma. The non-<iependence on the path follows from Stokes' 
theorem in view of the fact that 2-forms are closed. Let us prove the equality of 
the integrals. 

1 f( f ) ds 1 f( f f) ds =- w --+- w- w--
2ni s - I 2ni s - I . 

y a(I) y a(.) a(I) 

The first integral on the right hand side is equal to our integral. The expression 
under the integral sign of the second integral depends smoothly on s. Therefore 
the second integral tends to zero, if we take as the path a circle of radius tending 
to zero. In this way the second integral is equal to zero. The lemma is proved~ 

10.1.2 Branching of an integral 

We shall give an account of the global properties of functions given as the 
integral of a polynomial difTerentiall-form along a closed curve lying in the level 
line of a polynomial. 
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According to standard theorems (see [357,390)) we can remove from (:2 a 
finite set oflevellines of a polynomial so that the restriction ofthe polynomial to 
their complement is a locally trivial fibration. Let us denote these level values by 
11,· .. , IN· In our chosen example it is sufficient to delete the zero level line. 

Let us return to the integral J w. The integral can be continued in a well-
a(5) 

defined manner along any path in (:I"'-{ tI, ... ,IN} beginning at the. point I. It is 
necessary for this to deform continuously the curve a(/) to the level lines over 
points of the path; the homology class of the curve, lying in the level line 
corresponding to the final point of the path, is determined by the path and does 
not depend on the way it was deformed. If two paths with the same end-point are 
homotopic in (:I"'-{/l> ... , tN}' then the values of the continued integrals at the 
final point are the same. In this way the integral is a many-valued holomorphic 
function on (:I"'-{tI' .. . ,IN}. 

The branching of the integral is defined by a monodromy transformation of 
the one-dimensional homology of the level t line. To each homotopy class of 
closed paths in (:I"'-{/l> ... , IN} beginning at the point I corresponds a linear 
automorphism - the monodromy - of the one-dimensional homology of the level 
I line; it is defined by continuous deformation of cycles in the level lines over the 
points of the path (see Part I). If My is the monodromy automorphism 
corresponding to the path ')I then the continuation of the integral along the path ')I 
by definition equals 

where aCt) is the homology class determined by the curve a(t). 
For our chosen example the restriction of the polynomial to the complement 

of the zero level line is a smooth locally trivial fibration. Therefore the elliptic 
integral J y dx under consideration is a many-valued holomorphic function on 
(;1"'-0. All the closed paths in (:I~ 0 are a multiple of one, going round the origin 
once anticlockwise. Therefore to understand the branching of the considered 
integral we need to understand the structure of the linear monodromy trans­
formation, corresponding to the indicated path. In our example the non-singular 
level line is a torus with one point missing. Its first homology group is a two­
dimensional vector space. 

Let us represent the level t line itself, that is the curve 

{(x, y) E (:21r + xl = t}, 
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as a double cover of the x-axis with branching at the cube roots of t The 
projection onto the x-axis of cycles giving a basis (a, b) of the fIrst homology is 
depicted in fIgure 72a. The monodromy diffeomorphism, corresponding to 
taking t round zero once, can be given by the formula 

(x, y) t-+(exp (211:i/3)x, exp (211:i/2) y). 

The image of the cycles is depicted in fIgure 72b. Therefore the monodromy is 
given by 

Ma=a-b, Mb=a. 

aJ 

Fig. 72a, b. 

To describe the branching of the integral of a holomorphic form along a cycle of 
the family generated by the cycle 0-(1), it is sufficient to know the expression ofthe 
homology class given by the cycle 0-(1) in terms of a basis and to know the integral 
of the form along"'the basis classes. 

Remark. For such a simple form as ydx we can describe the branching without 
knowing the monodromy transformation in the homology. The map 

gives a diffeomorphism ofthe level 1 line to the level I line. The restriction of the 
form ydx to the level I line mapped with the help of this diffeomorphism to the 
level 1 line after multiplying by t - 5/6 is equal to the restriction of the form ydx to 
the level 1 line. Therefore the function given by an integral of the form ydx along 
a cycle of the family is equal to const . 15/6 where const is the integral of the form 
along a cycle of the family lying on the level 1 line. 
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10.1.3 Expansion of tbe integral in series 

We have explained that the integral of a polynomial differential form along 
a cycle depending on a parameter is a many-valued holomorphic function on 
([l"'-{ 110 , •• , IN}' Consequently each branch of this function in a neighbourhood 
of an arbitrary value of the parameter which is not exceptional can be expanded 
in a Taylor series. We shall prove that in a neighbourhood of an "'exceptional 
value of the parameter the integral can be expanded as a series also. However this 
is now a series in fractional powers of the parameter, the coefficients of which are 
polynomials in the logarithm of the parameter. Such a series converges in each 
sector of a small neighbourhood of the exceptional value of the parameter 
(convergence of the series is considered in sectors but not in the full 
neighbourhoods because of the presence oflogarithms). In the description of the 
series an important role is placed by the monodromy transformation, corre­
sponding to going round the exceptional value of the parameter. So the powers 
of the parameter are the logarithms of the eigenvalues of the monodromy 
transformation, divided by 211:i, and the degree of any polynomial in the 
logarithms which are the coefficients of the series are always less than the 
maximum dimension of the Jordan blocks associated with the corresponding 
eigenvalue. 

Let us formulate a theorem. To keep the notation simple we shall assume that 
the exceptional value of the parameter is equal to zero. Let us choose in a 
neighbourhood of zero the sector a~arg I~b and for each non-zero number I 
from the sector let us choose a basis 

of the one-dimensional integral homology of the level I line, continuously 
depending on I. Let us denote by M the monodromy transformation corre­
sponding to the parameter going round zero anticlockwise. 

Theorem 10.2 (see [55, 93,138,181,239,262]). In the indicated sector the vector 
function 

1(1)=( J w, ... , J w) 
.. \It) .... (t) 

can be expanded in the series 

L aA:,IIIIIOnlt. 
II,A: 
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The series converges if the modulus of the parameter is sufficiently small. The 
coefficients of the series are vectors in the space C[:". The real parts of all the 
numbers IX are greater than some constant. Each number IX possesses the 
property: exp (2niIX) is an eigenvector of the operator M. A coefficient at, .. of this 
series is equal to zero if the Jordan form of the operator M does not have a block 
of dimension k + 1 or more associated with the eigenvalue exp (2niIX). 

Remark. According to Theorems 3.11 and 3.12 the eigenvalues of the mono­
dromy operator Mare roots of unity and the dimensions of their Jordan blocks 
do not exceed two. Therefore in the above series all the numbers IX are rational 
and the power of the logarithm is not greater than 1. 

Example. Let r +.xl be the polynomial on the level lines of which lie the cycles, 
and (J) = ydx. Then in a neighbourhood of zero 

f w=const· t 5
/
6 

O'(t) 

(see remark in § 10.1.2). In § 10.1.2 we described the monodromy transformation, 
corresponding to going round zero, for this case. Its eigenvalues are distinct and 
equal to exp(±ni/3). Therefore according to the theorem for any polynomial 
form (J) its integral in a neighbourhood of zero can be expanded in the series 

L a,t5
/
6 +'+ L b,t7

/
6 +', , , 

where the i are integers, amongst which there is only a finite set of negatives; 
Actually, as we shall see in § 10.1.4, all the indices of the terms ofthe series are 
positive. 

The proof of the theorem on expansion in series is based on the following 
important theorem that the integral of a polynomial form in each sector of a 
neighbourhood of the exceptional value of the parameter grows no faster than a 
suitable degree of the parameter. 

Theorem 10.3 (see [239, 262, 263]). There exists a natural number N for which 
the following inequality holds in the indicated sector. 

I f (J)1~const·ltl-N, j=1, ... ,1". 
O'J(t) 
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We shall not prove this theorem, but we shall indicate one of the methods of 
proving it. We resolve the singularity of the exceptional level line. Then with 
respect to suitable coordinates in a neighbourhood of an arbitrary point of the 
resolved level line the polynomial becomes a monomial, the polynomial form 
becomes a holomorphic one and the integral along the part of the cycle lying in 
the neighbourhood can be used to estimate the re,!uired form. We note that it is 
necessary to resolve the singularities at infinitely remote points of the exceptio­
nal level line, in order to estimate the integral along a part of the cycle diverging 
to infinity; In a neighbourhood ofthe resolution of such points the form reduces 
to a meromorphic one but for meromorphic forms the required estimate is not 
hard to obtain (see [364, 387]). For an elementary proof, not involving 
resolution of singularities, see [262,263]. 

To derive Theorem 10.2 from Theorem 10.3 we must be able to take the 
logarithm of a non-degenerate linear transformation. 

Lemma 10.2. Let A be a non-<iegenerate I" x J.l matrix. Then there exists a I" x J.l 

matrix B for which expB=A (expB=I:.B"/n!). 

Before proving the lemma we give some definitions. A linear operator is 
semisimpie if the space on which it acts has a basis consisting of eigenvectors of 
the operator. A linear operator is unipotent if all its eigenvalues are equal 
to 1. It is well known that for any non-<iegenerate linear operator M there exists a 
unique pair of commuting operators, a semisimple operator M. and a unipotent 
operator My> for which M = MuM. (the operator M. is that operator which on 
the eigenspace of the operator M acts as multiplication by the corresponding 
eigenvalue, see [327]). The operators M u , M. are called, respectively, the 
unipotent and semisimpie parts of the operator M. 

Proof of Lemma 10.2. It is sufficient to prove the lemma for matrices in Jordan 
form and furthermore for matrites consisting of a single block. Let A. be the 
eigenvalue of the block. Then the block matrix can be decomposed into the 
product of the matrix A. . Id and a matrix which has all its eigenvalues equal to 1. 
The first matrix is the semisimple part and the second is the unipotent part. The 
matrices of the semisimple and unipotent parts commute. Therefore it is 
sufficient to take logarithms of each of them. The logarithm of the first is equal to 
In A. ·Id. The logarithm of the second is given by the formula 

InC=ln(Id+(C-Id»= L( -1)'+ 1 (C-Id)"/s. 
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Remark. The matrix In C is nilpotent, that is all its eigenvalues are equal to zero. 

Proof of Theorem 10.2. In a small neighbourhood of zero we extend by 
continuity a basis of the integral one-dimensional homology to values of the 
parameter with arbitrary argument. Integrating the form over the basis extends 
the vector function / to a many-valued vector function in a small punctured 
neighbourhood of zero. As the parameter goes round zero anticlockwise the 
vector 1(1) changes into the vector /(t)· A, where A is the matrix of the 
monodromy transformation M, with respect to the basis 

al (t), . .. , a,,(I). 

Let us consider in a punctured neighbourhood of zero the many-valued 
holomorphic matrix function 

J(/)=exp( -In (I) . In (A)/21ti), 

where In (A) is one of the possible values of the logarithm of the matrix A. As the 
parameter goes round zero anticlockwise the matrix J(/) changes into the matrix 
A-I J(I). Therefore the vector function 1 f-+ I(/)J(/) is a single-valued function in 
a punctured neighbourhood of zero. 

We shall prove that the function /. J is meromorphic at zero, that is we shall 
prove that its coordinates grow no faster than a suitable power of the parameter 
as the parameter tends to zero. According to Theorem 10.3 it is sufficient to 
prove the analogous result about the coordinates of the matrix J. 

Let us explain how to find the elements of the matrix J. To do this it is 
sufficient to explain how to find the elements of the matrix J in the cases in which 
the matrix A is diagonal or unipotent (see Lemma 10.2). In the first case the 
matrix J is also diagonal, with powers of the variable 1 on the diagonal. In the 
second case the elements of the matrix are polynomials in In I, the degrees of the 
polynomials being less than the dimensions of the Jordan blocks (see the remark 
after Lemma 10.2). Therefore for arbitrary matrices A each element of the matrix 
J(t) has the form of a finite sum 

L I"P,,(ln/)~ 
" 

In this sum each number IX possesses the property: exp ( - 21tiIX) is an eigenvalue 
of the matrix A. For each IX the coefficient P" is a polynomial in In I, with degree 
less than the maximum dimension of the Jordan blocks of the matrix A 
associated with the eigenvalue exp( -21tiIX). 
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This result means that the coefficients of the matrix J grow sufficiently slowly. 
Therefore the vector function / . J is meromorphic at zero. Consequently it can be 
expanded in a Laurent series in which there are a finite set of negative degrees. 
Then multiplying this series by r 1 we obtain Theorem 10.2. 

10.1.4 More precise specifications of lbeorems 10.2 and 10.3 

Ifunder the deformation of a cycle into an exceptional level line the cycle remains 
in a bounded part of the space, then the integral along the cycle of a polynomial 
form remains bounded during the deformation process. Furthermore if the 
cycle, having been deformed into the exceptional level line, is homologous to 
zero in it, then the integral of the polynomial form along the cycle tends in the 
deformation process to zero. This result was proved by B. Malgrange [239]. Let 
us give an exact formulation of it. We shall assume, as before, that the 
exceptional value is equal to zero. 

Let us denote by X, the level t line. Let us denote by X"R the set of points on 
the level t line, remote from the origin by a distance no greater than R. For small 
real positive 1 let us consider a family of integral one-dimensional homology 
classes (1(t)EH1(X"Z), continously depending on I. We say that for 1 .... 0 this 
family is a family of homologies bounded by the ball of radius R if for all 
sufficiently small 1 the class (1(/) lies in the image of a natural homomorphism 

YR: HI (X"R, Z) .... H1 (X" Z). 

It is clear that if a family is bounded by a ball of radius R then it is bounded 
also by any ball of larger radius. 

We say that as 1 .... 0 a family of bounded homologies is a family of vanishing 
homologies if there exist R > 0, b > 0, with the properties 
(i) the family is bounded by a ball of radius R; 
(ii) for each IE(O, b) there exists a class aR(/)EHI (X"R, Z) which is mapped by 
the homomorphism YR into a(t) and which belongs to the kernel of the natural 
homomorphism 

HI (X,.R' Z) .... H1 (X, Z) 

where X=U,eCO,6)X"R' 

Theorem 10.3' (see [239]). If a is a family of bounded homologies then as I .... +0 
there exists a finite limit for the integral J w. This limit is equal to zero if the .. (,) 

family is a family of vanishing homologies. 
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Corollary of Theorems 10.2 and 10.3'. Let q be a family of bounded homologies~ 
In a small neighbourhood of zero we extend it by continuity to a parameter with 
arbitrary arguments. We obtain a many-valued family of integral homology 
classes continuously depending on the parameter. According to Theorem 10.2 
the function given as the integral of a polynomial form over the classes of the 
family can be expanded in a neighbourhood of zero in the series 

According to Theorem 10.3' in this series all the ex are non-negative and all the 
coefficients a",o for k > 0 are equal to zero. Furthermore if q is a family of 
vanishing homologies then all the ex are positive. 

Example. Let y2 + X3 be the polynomial on the level lines of which lie cycles. In a 
neighbourhood of zero any family of integral one-dimensional homologies, con­
tinuously depending on a parameter is a family of vanishing one-dimensional 
homologies (see the remark in § 10.1.2). Therefore in the series of the example on 
page 276 all the indices are positive. 

In the following sections of this chapter we shall generalise in three directions 
the results we have obtained. Firstly we shall increase the dimension of the space. 
Secondly we shall allow the polynomial to depend holomorphically on 
additional parameters. Thirdly we shall replace the polynomial by a holo­
morphic function. 

10.2 Holomorpbk dependence on parameters 

Let us consider a holomorphic function, the variables of which are divided into 
two groups: 

F(Xl,·· . ,X",Yl , ... ,Yl)' 

This function gives a family of holomorphic functions on (:", holomorphically 
depending on the parameters Y = (Yl , ... ,Yl)' Let us denote by X(I.,) the level 1 

hypersurface of the function F(',y): 

X(I,,) = {XE (:"IF(x, y) = I}. 

Let us suppose that on the non-critical level 10 hypersurface of the function 
F(', Yo) there is chosen an (n -1 )-dimensional cycle. By continuously deforming 
this cycle from one level hypersurface to another, we obtain a continuous family 
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of cycles, on the level hypersurfaces near to the chosen level, of functions the 
parameters of which are near to the chosen one. Let us denote the cycle lying on 
the hypersurface X(I,,) by q(t, y). 

10.2.1 Integrals of holomorpbic (n -I)-fonns 

Let us suppose that on the space (:" we are given a holomorphic differential 
(n -1 )-form, holomorphically depending on the parameters y: 

" .1"0. 
W= L h;(xl,'" ,x"' Yl"" ,Yl)dx1 A ••• dx; ... A dx", 

;=1 

where {hi} is a holomorphic function. 
Let us consider the integral 

/(/, y) = J w(y). 
cr(t,,) 

The integral is defined as a function of the parameters 1 and Y in a neighbour­
hood of the point (/0' Yo) in the space (: x (:". 

The restriction of the form to the level hypersurface is closed (since on an 
(n -1 )-dimensional holomorphic manifold there are no non-zero holomorphic 
n-forms). Consequently the integral is determined by the class of the cycle in the 
(n -1 )st homology group of the hypersurface and does not depend on the cycle 
representing the class. In addition, the integral of the form along the cycle 
deformed into a neighbouring level hypersurface does not depend on the 
deformation since different deformations lead to homologous cycles. 

Theorem 10.4 (see [55, 239]). The integral depends holomorphically on (I, y). 

The proof of the theorem is practically the same as the proof of Theorem 10.1. 
In the construction of the proof we need the concept of the coboundary 
operator of Leray, which we have already implicitly used in the formulation of 
Lemma 10.1. 

Let M be a holomorphic manifold, and let Nbe a holomorphic submanifold of 
it of codimension 1. Then for any I there is a natural homomorphism 



282 Integrals of holomorphic forms over vanishing cycles 

called the coboundary operator of Leray. It is defined as follows. We choose a 
tubular neighbourhood of the submanifold in the manifold~ We consider the 
projection onto the submanifold of the boundary ofthe tubular neighbourhood. 
The projection is a locally trivial fibration with fibre a circle. We consider a 
homology class on the submanifold and a cycle representing it. We consider the 
preimage of the cycle on the boundary of the tubular neighbourhood~ This is a 
cycle, the dimension of which is one greater than the dimension of the initial 
cycle. By definition this cycle, considered as a cycle in the complement of the 
submanifold, represents the image of the initial homology class under the 
coboundary operator of Leray. It is easy to see that the homology class in the 
complement does not depend on the choice of cycle representing the initial 
homology class on the submanifold or on the choice of tubular neighbourhood. 

Proof of Theorem 10.4. A standard theorem of analysis says: if we are given a 
chain and a form which depends holomorphically on parameters then the 
integral of the form over the chain depends holomorphically on the parameters. 
To apply this theorem we need to represent the integrals of the given form along 
cycles of the family lying in different hypersurfaces as the integral of a new form 
on one and the same chain. The role of the new form is played by the initial form 
multiplied by 

dF(·,Y)/(F("Y) -t). 

The role of the common chain is played by the cycle representing simultaneously 
the images of all the homology classes of cycles of the family under the 
coboundary operator of Leray of the pair consisting of the level hypersurface 
and C (cf. Lemma 10.1). 

Let us consider the boundary of the tubular neighbourhood of the hyper­
surface X(lo"0) in C. Let us consider on the boundary an n-dimensional cycle au, 
representing the image of the homology class of the cycle u(to,Yo) on the 
hypersurface under the coboundary operator of Leray. The same cycle 
represents the image of the homology class of the cycle u(t, y) on the 
hypersurface X(I.,) under the coboundary operator of Leray if the point (t,y) is 
sufficiently close to (to, Yo)· 

There is an integral representation 

1 
I(t'Y)=-2 . f dF(·,y) 1\ w(y)/(F(',y)-t), 

1[l ".,(1.1) 
(1) 

where we denote by au( t, y) the image ofthe homology class of the cycle u( t, y) on 
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X(I,,) under the coboundary operator of Leray. (Notice that the expression under 
the integral sign on the right-hand side is closed in ([""'-X(I,,) so the integral on 
the right does not depend on the cycle representing the class au(t,y». The proof 
of the formula cited here is the same as the proof of Lemma 10.1. 

Therefore for all (t,y) near to (to, Yo) there is an integral representation 

1 
I(t,y)=-. f dF(',y) 1\ w(y)/(F(·,y)-t). 

2m "., 

Now applying standard theorems of analysis we obtain Theorem 10.4. 
Further we shall prove the holomorphic dependence on the parameters of the 

integrals of the Gelfand-Leray form over a continuous family of cycles. 

10.2.2 The Gelfand-Leray fonn in the complex case is defined 
in tbe same way as in tbe real case; see § 7.1 

Let f be a holomorphic function in a region of the space ([". Let " be a 
holomorphic differential n-form in the same region. Let us consider a point of the 
region which is not a critical point of the function. 

Lemma 10.3. There exists a holomorphic differential (n -1 )-form t/I, given in a 
neighbourhood of the point, for which 

,,=df 1\ t/I. 

The restriction of this form to the non-criticallevel hypersurface of the function 
is defined invariantly (that is it does not depend on the choice of form t/I satisfying 
the preceding equation). 

The restriction of the form '" to the non-critical level hypersurface of the 
function is called the Gelfand-Leray form of the form" and is denoted by ,,/df 

For the proof of the lemma see § 7.1. 

10.2.3 Integrals of tbe Gelfand-Leny fonn 

Let us return to the situation described at the beginning of the section. Let us 
suppose that on the space ([" we are given a holomorphic differential n-form", 
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holomorphically depending on the parameters y: 

In this way for fixed values of the parameters there is given on the space a 
holomorphic function and a holomorphic form of the top dimension. Conse­
quently, on each non-critical level hypersurface there is given a Gelfand-Leray 
form. Let us consider its integral along a cycle, chosen on the level hypersurface: 

[(t,y) = J " (y)/d",F(' ,y), 
a(t,y) 

where d", is the differential with respect to the variable x. 

Theorem 10.5 (see [55,239]). This integral depends holomorphically on (t,y). 

Theorem 10.5 follows from the integral representation 

1 
[(t'Y)=-2' J ,,(y)/(F(',y)-t) 

m 8a(t,y) 
(2) 

(compare with (1», its proof is analogous to the proof of Lemma 10.1. 

10.2.4 Derivatives of functions given by integrals 

It is useful to represent these in the form of an integral along the same cycle. Such 
formulae are given by the integral representations (1), (2). 

For brevity of description we shall suppose in the following formulae that the 
values of the parameters ofthe forms are the same as the values ofthe parameters 
of the cycles. The form will have the lower indexj to denote that the coefficients 
of the form have been differentiated with respect to yj. 

According to (1), (2) we have 

a 1 - J W=-. J dE 1\ w/(F-t'f= at a(t,,) 2m 8a(t,,) 

1 
=-. J dw/(F-t)= J d"w/d",F, 

2m 8a(t,1) a(t,1) 
(3) 
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a 1 - J 00=-. J (dE 1\ OOj/(F-t) + 
oYj a(t,7) 2m "a(t,7) 

+dFj 1\ oo/(F-t)-FjdF 1\ oo/(F-t)2) = 

=~ J (dFI\ooj/(F-t)-Fjd"w/(F-t»= 
2m 8a(t,7) 

= J (ooj-Fjd",oo/d",F). (4) 
a(t,y) 

The second equation in these formulae is proved by changing the form to a 
cohomologous one. 

10.3 Branching of integrals and expansion 
of integrals in series 

In order to study the analytic continuation of holomorphic functions given by 
integrals we must know how to deform continuously a cycle along which is 
integrated a form in hypersurfaces of remote non-criticallevels of a function. For 
this it is sufficient that the aggregate of non-criticallevel hypersurfaces form a 
locally trivial fibration. We shall not investigate the most general situation for 
which this property takes place (compare § 1.1). We shall restrict ourselves to the 
local case which we shall investigate below. 

10.3.1 The Milnor fibration of a defonnation of a critical point 
of a boIomorpbic function 

Let us be given the germ of a deformation of an isolated critical point of a 
holomorphic function. (Usually we shall be interested in the two extreme cases, 
in which the deformation is miniversal or trivial). A Milnor fibration is a fibration 
the fibres of which are local non-singular level hypersurfaces of the functions 
forming the deformation. Let us give a more precise definition. 

Let 

/: «(:11, 0)-+«(:, 0) 

be the germ of a holomorphic function with a finite-multiplicity critical point. 
Let F:(G.::" x (:i,O x 0)-+«(:,0) be a deformation of it, that is the germ of a 
holomorphic function with the property: 

F(-,O)=/. 
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Let us consider the unfolding of the deformation, that is the germ of the map 

given by the formula (x,y) 1-+ (F(x,y),y). 

Let F, G be representatives of the germs F, G. 
For small a> 0, '1 > 0, 15 > 0 let us consider in the spaces CC", CC, CCl balls of 

corresponding radii: 

Put 

B;={xeCC"1 IIxil <a}, 

B: = {ueCCliul < '1}, 

B;={yeCClliiyii <15}. 

X=(B; xB;)nG-1(S), 

X.=XnG-1(s) for seS, 

see figure 73. 

Let us choose the number a so small that for all r, 0 < r~a, the boundary aB: 
of the ball of radius r transversely intersects the zero level hypersurface of the 

Fig. 73. 
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function F(·, 0). Let us choose the numbers '1, 15 so small in comparison with the 
number a that for any point (u, y) e S the boundary aB; of the ball of radius (} 
transversally approaches the level u hypersurface ofthe function F(- ,y). A triple 
of numbers a, '1, 15 with the indicated properties is said to be admissible. 

If a triple of numbers is admissible, then the map X -+S, which is the restriction 
of the map G, is called a specialisation of the unfolding of the deformation. 
Further restriction of a map will be denoted by the same letter as the map itself. 

Let us denote by 1: the set of critical values (discriminant) of the map G: X -+S, 
that is the set {se SIX.is singular}. Ifa triple of numbers (}, '1, 15 is admissible then 
the restriction of the map G: X -+S to the complement of the preimage of the set 
of critical values is a smooth locally trivial fibration (see § 1.1), that is the map 

where S'=S"'-1:, X'=X"'-G- 1(1:) is a smooth locally trivial fibration. This 
fibration is called the Milnor fibration of the deformation (more precisely, the 
Milnor fibration of the specialisation of the unfolding of the deformation). 

The fibre of the Milnor fibration is an (n -l)-dimensional complex analytic 
manifold with boundary (and correspondingly a (2 n - 2)-dimensional real 
manifold). According to Milnor's theorem [256] (see also § 2.1) the fibre is 
homotopy equivalent to a bouquet of spheres of the middle dimension, the 
number Jl of these spheres equal to the multiplicity of the initial critical point. 
Therefore 

X._S,,-1 V ••• V S,,-1 for seS' 
\ , 

Jl spheres 

The differential type of the fibre of the Milnor fibration does not depend on 
the choice of admissible triple. For different admissible triples the germs of the 
sets 1: and S' at the origin of the space S are the same. If the first number of the 
first triple is less than the first number of the second triple, then for all points of 
the base near the origin the fibre pfthe first fibration is included in the fibre of the 
second fibration. Furthermore the first fibre is a deformation retract of the 
second fibre. Therefore the inclusion of the first fibre in the second induces an 
isomorphism of homology and cohomology groups of the fibres of the Milnor 
fibrations, corresponding to the different admissible triples. In this sense the 
homology and the cohomology of the fibre of the Milnor fibration are defined 
invariantly. 

We shall be interested in the (n -l)st homology and cohomology groups of the 
fibre of the Milnor fibration. They are the same as for a bouquet of spheres and 
are free modules over the coefficient ring. Their dimension is equal to the 
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multiplicity of the original critical point if n -1 > 0 and to 1 more than the 
multiplicity in the case n -1 = 0 (a bouquet of JJ zero-dimensional spheres is JJ + 1 
points). We shall always (without further reminder) consider the reduced. 
homology and cohomology groups. The rank of the reduced (co)homology 
group equals the multiplicity ofthe critical point, independently of the value of n. 
For n> 1 the reduced (n -1)st (co)homology is the same as the ordinary one. 

The cohomology and homology of the fibre of the Milnor fibration will be 
called vanishing at the original critical point. 

10.3.2 Bunching of integrals 

Let us be given the germ /: «:11, 0)-+«:, 0) of a holomorphic function with an 
isolated critical point. Let us be given a deformation 

F: «:11 x (:1,0 X 0)-+«:, 0) 

of the germ /. Let us choose an admissible triple of numbers e, 1/, ~ and let us 
consider the specialisation corresponding to it of the unfolding and the Milnor 
fibration. 

Let us suppose that in one of the fibres of the Milnor fibration there is chosen 
an (n -1 )st integral homology. class. Continuous deformation of a cycle 
representing it defines a family of (n -1)st integral classes in the fibre of the 
Milnor fibration which depends continuously on the point of the base of the 
fibration. This dependence is many-valued. The many-valuedness of the classes 
ofthe family are described by the monodromy group in the (n -1 )st homology of 
the fibre of the fibration: if in the base there is chosen a closed path and over the 
initial point of the path there is chosen one of the homology classes of the family 
then as this class is extended to the fibres over the points of the path, the 
homology class corresponding to the final point of the path is obtained from the 
homology class corresponding to the initial point of the path by the action of the 
monodromy transformation corresponding to the path. 

Let us suppose that in a neighbourhood of the origin in (:II x (:A: there is given a 
holomorphic differential (n -1 )-form. Let us suppose that this neighbourhood is 
so large that it contains the space of the Milnor fibration. Let us consider the 
integral of the form along a cycle of the family. AccoT(iing to Theorem 10.4 this 

• Remember that the reduced kth homology group ofa topological space is the kernel of the map of 
the kth homology group of the space into the kth homology group ofa point induced by the map of 

the space into the point. Analogously. the reduced kth cohomology group is the cokerneI of the 
map of the kth cohomology group of a point into the kth cohomology group of the space. 
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integral gives a many-valued holomorphic function on the base of the Milnor 
fibration. 

The branching of this function is described by the monodromy group in the 
(n -1)st homology of the fibre of the Milnor fibration. If (J) is the form, q(u,y) is 
the homology class ofthe family, lying in the fibre over the point (u,y)eS', y is a 
closed path in the base of the fibration with initial and final points at (u,y), My is 
the monodromy transformation corresponding to it, then the value of the 
analytic continuation of the branch of the function corresponding to the integral 
J (J) is equal to J (J). In this way the branching of the holomorphic 

U(U.Y) Myu(u.y) 

function given by integration along the homology class vanishing at the critical 
point is determined by the topology of the Milnor fibration of the considered 
deformation and, in the final analysis, by the topology of the Milnor fibration of 
the versal deformation of the initial critical point. 

Remark 1. The monodromy group in the (n -1 )st homology of the fibre of the 
Milnor fibration of the versal deformation of the critical point is called the 
monodromy group of the critical point. Part I was devoted to the monodromy 
groups of critical points. Any result about monodromy groups can be con­
sidered as a result about the branching of the corresponding integrals. 

Remark 2. Let us suppose that in a neighbourhood of the origin in (:" x (:1 we are 
given a holomorphic differential n-form " (instead of the (n -1 )-form as before). 
The form 1/ defines on each fibre of the Milnor fibration a holomorphic (n -1)­
form "/d,,F(we must restrict the form 1/ and the function Fto a subspace in X' of 
the form y =const, which is a region in (:11, then divide the form by d"F). Let us 
consider the integral of the form 1//d"F along the class of the family indicated 
above. These integrals give many-valued holomorphic functions on the base of 
the Milnor fibration (Theorem 10.5). The branching of this function, like the 
branching of the functions given hy the integrals of (n -1 )-forms is defined by the 
monodromy group in the (n -1 )st homology of the fibre of the Milnor fibration. 
We could begin not with an n-form, but with an (n + k)-form and divide it not by 
d"Fbut by 

The result will be that on each fibre there will be a well-defined holomorphic 
(n -1 )-form. Its integral along the class of the family defines a holomorphic 
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many-valued function on the base of the Milnor fibration (Theorem 10.5)~ The 
branching of this function like the previous one is determined by the monodromy 
group. 

Remark 3. If an (n -1 )-form w is defined in a neighbourhood of the origin 
in· (;" x (;1, not containing the space of the Milnor fibration for the given 
admissible numbers e, Pl, ~, then, generally speaking, it is impossible to integrate 
along an arbitrary homology class of the family. However it is possible to 
integrate along a class of the family lying in the fibres over points lying 
sufficiently near the origin in (; x (;". This is explained by the fact that such 
classes have representing classes lying in a sufficiently small neighbourhood of 
the origin in (;" x (;". More precisely, the region of definition of the form 
(however small it was) contains the space of a Milnor fibration defined with the 
help of sufficiently small admissible numbers, now the inclusion of the fibre of 
the smaller Milnor fibration in the fibre of the larger Milnor fibration induces an 
isomorphism of the homology and cohomology groups (see § 10.3.1). 

10.3.3 Expansion of the integral in series 

Let us suppose that in the space S (the base of the specialisation) there is chosen a 
complex line. Let us suppose that the line is not contained in the set of critical 
values I. In this case the intersection of the line with the set of critical values is 
discrete. Let us consider one of the intersection points. We shall prove that the 
restriction to the line of a many-valued holomorphic function given by the 
integral of a holomorphic form along a cycle of a continuous family (see § 10.3.2), 
in a neighbourhood of the chosen point of intersection of the line with I can be 
decomposed into a series of fractional powers of the parameter on the line, the 
coefficients of which are polynomials in the logarithm of the parameter on the 
line. This result is a direct analogue of Theorem 1 0~2. 

Let us denote by 1 a local holomorphic coordinate on the line with origin at the 
chosen intersection point. In a small neighbourhood of the intersection point let 
us choose the sector a:!6;arg t:!6;b. For each non-zero value of the parameter 1 

belonging to the sector let us choose a basis 0"1 (I), • . . ,0"11(1) of the (n -1)st 
integral homology of the fibre of the Milnor fibration, lying over the corre­
sponding point of the line, so that this basis depends continuously on the point of 
the line. Let us denote by M the monodromy transformation in homology, 
corresponding to the parameter of the line going along a small path round zero 
anticlockwise. (Remember that according to Theorems 3.11 and 3~12 the 
eigenValues of this operator are roots of unity and the dimension of its Jordan 
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blocks is not greater than n.) Let w be a holomorphic differential (n -1 )-form, 
given in a neighbourhood of the origin in (;" x crt, containing the space of the 
preimage of the specialisation of the deformation (see the definition in 
§ 10.3~1). Then in the sector indicated above there is defined a vector function 

1(1)=( J w, ... , J w). 
atll) a,,(I) 

Theorem 10.6 (see [55,93, 138, 181,239,262]). This vector function can be 
expanded in the series 

L a""lz(ln t)". 
.. ,1 

The series converges if the modulus of the parameter is sufficiently small. The 
coefficients of the series are vectors in the space (;11. The numbers (X are non­
negative rational numbers. All the coefficients 0",0, for k > 0, are equal to zero. 
Each number oc possesses the property: exp (21tioc) is an eigenvalue of the 
operator M. The coefficients a", .. are equal to zero at any time that the Jordan 
form of the operator M has no blocks of dimension k + 1 or more associated with 
the eigenvalue exp (21tioc). 

Remark.. Let us suppose that the line in the base S (about which we were speaking 
in Theorem 10.6) is a line of values of the function F for fixed y and transversally 
intersects the discriminant at a point corresponding to a non-degenerate critical 
point of the function F with y fixed. In this case the expansion, mentioned in 
Theorem 10.6, can be made more precise; see Lemma 12.2 on page 321. 

Theorem 10.6 depends on Theorem 10.7, which is formulated below, and 
follows from it in exactly the same way as Theorem 10.2 follows from 
Theorem 10.3. 

Theorem 10.7 (see [239, 262, 263]). There exists a natural number Nfor which in 
the sector indicated above we have the inequality 

! 
J w!:!6;cOnst'III-N, j=1, ... ,Jl. 

"J(I) 

Furthermore if we choose in the sector a ray arg 1 =const, then there exists a 
finite limit of the vector function as the parameter tends to zero along the ray. 
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We shall not prove Theorem 10.7 (see [239J and the remark relating to 
Theorem 10.3)~ Theorem 10.7 has a more precise specification (compare with 
Theorem 10.3') and we shall formulate it. 

First let us define the concept of a family of homologies, vanishing at the 
chosen intersection point of the line and the discriminant r (compare with the 
definition in § 10.1.4). Let us denote by X, the fibre of the Milnor fibration lying 
over the point of the line at which the parameter equals t. Let us assume that on 
the line is chosen a ray arg t = const, and for each sufficiently small t, belonging to 
the ray, there is chosen a homology class 

o-(t) E H"-1 (X" Z), 

continuously depending on t. We shall say that this family of homologies is a 
family of vanishing homologies as the parameter tends to zero along the ray, if 
for each sufficiently small t, the class o-(t) belongs to the kernel of the natural 
homomorphism 

If a continuous family of homologies is defined for parameters belonging to 
the sector then it is easy to show that the property of being a family of vanishing 
homologies does not depend on the ray of the sector. 

Theorem 10.7' (see [239]). Let us suppose that a continuous family of homologies 
has been defined for parameters belonging to a sector. Let us suppose that the 
family is a family of vanishing homologies as the parameter tends to zero along 
one of the rays of the sector. Then the limit of the integral f co is equal to zero as 
the parameter tends to zero along the ray. 17(') 

Remember that the existence of a finite limit follows from Theorem 10.7. 

Corollary to Theorem 10.7'. The integral of the holomorphic form over a family 
of vanishing homologies can be expanded in each sector in the series 

in which each ex is positive. 
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10.3.4 'The Milnor fibration of a critical point 

Let us consider the germ f: (CC", O)--+(CC, 0) of a holomorphic function with an 
isolated critical point. The germ is its own trivial deformation. Let us consider for 
such a deformation the objects introduced in the previous sections. Namely let us 
consider a specialisation f: X --+S of the germ and the correspond}ng Milnor 
fibration f: X' --+S'. 

For any holomorphic differential (n -1 )-form on X its integral along the class 
of a continuous family of integral vanishing homologies defines a holomorphic 
many-valued function on the punctured disc S'. The branching of this function 
as the parameter goes round zero is determined by the monodromy transfor­
mation of the homology, which in the given case is called the classical monodromy 
(see § 2.1)~ In each sector a ~ arg t ~ b this function can be expanded in the series 

In this series all the powers of the parameters are positive. In addition all the 
powers of the parameters are logarithms of the eigenvalues of the classical 
monodromy operator divided by 27ti. Each power of the logarithm of the 
parameter in this series is less than the maximum size of the Jordan block of the 
classical monodromy operator associated with the corresponding eigenvalue 
(see Theorems 10.7 and 10.7'). 

Let us consider on the space X a holomorphic differential n-form " and a 
continuous many-valued family of integral vanishing homologies o-(t), where 
tES'. Let us consider on the base of the Milnor fibration the many-valued 

holomorphic function J "Id! 
a(t) 

Theorem 10.8 (see [239]). In each sector a~arg t~b this function can be 
expanded in the series 

The series converges if the modulus of the parameter is sufficiently small. All the 
numbers ex are rational. Each number ex is greater than -1. Each number ex 
possesses the property: exp (27tiex) is an eigenvector of the classical monodromy 
operator in the homology. The coefficients a" ... are equal to zero at any time that 
the classical monodromy operator does not have Jordan blocks of dimension 
k + 1 or greater associated with the eigenvalue exp (27tiex). 
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Proof. In view of the Poincare lemma ,,= dw, where w is a holomorphic 
differential (n -1)-form. According to formula (3) on page 284 

d/dl J W= J ,,/dj. 
a(t) a(t) 

Now the theorem follows from Theorem 10.6. 

Remark about the application of the Poincare lemma. It is easy to show that X is 
a Stein manifold (see the definitions in [113, 146]). Consequently the cohomo­
logy of the manifold X can be calculated with the help of hoI om orphic forms (see 
[113], [326, Theorem 12.13]). The manifold Xis contractible, the form" is closed, 
therefore there exists on X a holomorphic (n -1 )-form w, for which ,,= dw. 
Theorem 10.8 can be proved without using the steinness of the manifold X. In 
view of the standard Poincare lemma for the given form " there exists a 
holomorphic (n -1 )-form w, given in a sufficiently small neighbourhood of the 
origin in ce", for which ,,=dw. Now formula (5) is true for sufficiently small I. 
This assertion is sufficient for the proof of Theorem 10.8. 

Example. Let 

f=.xi+ ... +~. 

The space of vanishing homologies is generated by vanishing cycle. Let u(t) be a 
vanishing cycle over I, continuously depending on the parameter. As the 
parameter goes round zero 

u(t) 1-+ ( -1)"u(t). 

Let w be a holomorphic differential (n -1 )-form. Let us consider the holomor­
phic function 1(1)= J w. According to Theorem 10.6 

a(t) 

1(1)= La .. t", 

where« = 1,2, ... for n even, and« = 1/2, 3/2, ... for n odd. Decomposing w into 
homogeneous parts 

W,,-l +w,,+ ... , 
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and using the homogeneity of the germ, we obtain the result that the integral 
J wp is equal to zero if p -n is odd, and equals ap/2tP/2 if p -n is even. Let us 

a(t) 

calculate the first coefficient a,,/2. Taking 1 to be real, we obtain 

J L(-1)iA j x j dx1 " ••• dXj ••• dx,,= 
a(t) j 

=LAj j (J dx1 " .•• dx"/df ) ds=LAjVol(D")I,,/2, 
j 0 a(s) j 

where Vol (D") is the volume of the n-dimensional ball of radius 1. 



Chapter 11 

Complex oscillatory integrals 

In the study of the asymptotic behaviour off unctions one frequently has to study 
the asymptotic behaviour of integrals of the form 

J e<f(Je)4J(x)dx1 1\ ••• 1\ dxn 
r 

for large values of the parameter T. Heref, 4J are holomorphic functions on cen, 
r is a real n-dimensional chain, lying in ern, and T is a large real parameter. 
The functionfis called the phase, the function 4J is called the amplitude. Such 
integrals are called integrals of the saddle-point method. For examples of 
problems in which the need to study these arises see, for example, the book ofM. 
B. Fedoryuk, "The saddle-point method" [110]. 

The saddle-point method, by which such integrals are studied, consists of the 
following. By Stokes' formula the integral is not changed if the chain is deformed 
without changing its boundary. Therefore the chain is deformed, without 
changing the boundary, so as to decrease on it the magnitude of the real part of 
the phase (for it is this that for large positive values of the parameter determines 
the magnitude ofthe integral). We can decrease the real part of the phase, moving 
the interior of the chain along a trajectory of the gradient of the phase. This 
process can be continued until the chain encounters a critical point of the phase, 
at which the gradient equals zero. Further deformation results in a decrease of 
the real part of the phase on parts ofthe chain not encountering the critical point, 
but does not change the maximum of the real part of the phase on the chain. Now 
the problem of studying the asymptotics ofthe integral leads to the local problem 
of estimating the integral in a neighbourhood of a critical point of the phase on 
which the chain is encountered and to estimate the integral in a neighbourhood 
of the boundary of the chain if the maximum of the real part of the phase is 
attained on the boundary chain. 

In this way the saddle-point method consists of two parts: a topological part, 
consisting of deforming the chain (called a saddle-point contour) as indicated 
below, and an analytic part, consisting of an estimate of the integral along the 
saddle-point contour in a neighbourhood of the critical point of the phase, and 
also of an estimate of the integral along a neighbourhood of the boundary of the 
saddle-point contour (if the maximum of the real part of the phase is attained on 
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the boundary of the chain). In applications as a rule the maximum of the real part 
of the phase is not attained on the boundary. 

This chapter is devoted to the analytic part of the saddle-point method: we 
shall study the asymptotic behaviour of the integral of the saddle-point method 
over a chain lying in a small neighbourhood of an isolated critical point of the 
phase, and arranged so that on the boundary of the chain the real part of the 
phase is less than the real part of the critical value of the phase. We 'shall show 
that in this case the integral can be expanded in an asymptotic series of the form 

We shall show that the power of the parameter and the power of the logarithm of 
the parameter in this series are connected with the (classical) monodromy 
operator in the (n -1 )st homology of the Milnor fibration of the critical point of 
the phase~ Namely, the power of the parameter is the logarithm of the eigenvalue 
of the monodromy operator divided by 2ni and the power of the logarithm of the 
parameter is less than the maximum dimension of the Jordan blocks of the 
monodromy operator associated with the corresponding eigenvalue. 

This phenomenon has the following explanation. The boundary of the chain 
of the integral of the saddle-point method determines in a natural way a con­
tinuous family of integral vanishing homologies in the fibres of the Milnor 
fibration (see § 11.1.2). Let us consider a function on the base of the Milnor 
fibration, given by integrals over the class of the family of the form 

4Jdx1 1\ ••• 1\ dxn/df, 

where f, 4J are the phase and the amplitude of the integral of the saddle-point 
method. It turns out that the integral of the saddle-point method is (correctly 
understood) the Laplace transform of this function. The function itself in a 
neighbourhood of the critical value of the phase can be decomposed into a series 
of fractional powers of the argument and integral powers of the logarithm of the 
argument (Theorem 10.8)~ The connection between these degrees and the 
monodromy operator was indicated in Theorem 10.8. We shall prove that the 
term-by-term Laplace transform of this series leads to an asymptotic series for 
the integral of the saddle-point method. 

This is the fU"St theme of this chapter~ 
In the second part of the chapter we shall consider an oscillatory integral on 

R" with analytic phase, supposing, moreover, that the support of the amplitude 
is concentrated in a sufficiently small neighbourhood of a finite-multiplicity 
critical point of the phase. The phase of the function can be complexified and 
considered as a holomorphic function on C, real on the real part of the complex 
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space. Now we can compare the asymptotic behaviour of an oscillatory integral 
on R" with the asymptotic behaviour of integrals of the saddle-point method 
with the indicated complexification of the phase. We shall prove that in a 
neighbourhood of a critical point of the phase there exists a saddle-point contour 
(called real), the integral over which has the same asymptotic expansion as the 
oscillatory integral over R."~ This result has two corollaries. As the first corollary 
we obtain a new proof of Theorem 6.3 on the asymptotic expansions of 
oscillatory integrals. As the second corollary we obtain a geometrical meaning of 
the power of the parameter and the power of the logarithm of the parameter in 
the asymptotic expansion of the oscillatory integral: the power is expressed in 
terms of the Jordan structure of the classical monodromy operator of the 
complexification of the critical point of the phase~ 

This is the second theme of this chapter~ 
In the third part of the chapter we shall consider the integral with phase 

f(x)+g(y) and express its asymptotics in terms of the integrals with phases 
fandg. 

The fundamental results of the chapter (Theorems 11.1, 11.3, 11.4) are due to 
B. Malgrange [239]. 

H.I Integrals of the saddle-point method 

Let us consider the function f: (CC", 0)-.(<<::, 0), holomorphic in a neighbourhood 
of its own critical point at the origin. Let us consider an n-dimensional chain r, 
lying in a small neighbourhood of the critical point. Let us suppose that on the 
boundary of the chain the real part of the values of the function is negative. A 
chain with such a property we shall call admissible. Let us consider the 
holomorphic differential n-form co, given in a neighbourhood of the critical 
point. We shall study the asymptotic behaviour of the integral 

for large positive values of the parameter T. The integral is called a complex 
oscillatory integral or an integral of the saddle-point method. 

We shall say that two chains rand F' are equivalent if there exists an (n + 1)­
dimensional chain V, lying in a small neighbourhood of the critical point, with 
the property: on the n-dimensional chain 

r-r'+ov 

(after cancellation) the real part of the values of the function is negative. 
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Lemma H.I. Let r, r' be two equivalent admissible chains. Then as T-' + 00 

J e'fco- J e'fco=o(T-N ) 

r r' 

for every natural number N. 

Proof. We have 

r=r'+ov+r", 

where Re fir < o. Consequently 

J-J=J, 
r r' TN 

but the last integral is exponentially small. 
We shall study the asymptotic behaviour of complex oscillatory integrals 

modulo terms small in comparison with T - N for every natural number N. 

Example. Letf(x) =r, co = dx. An arbitrary admissible contour is equivalent to 
a linear combination of the two contours rl , r2 , depicted in figure 74. The 
integrals over rl and r2 are conjugate. 

I <Xl 

J e''''dx=(1_e+2lli/3) J e- a3dx=( .. . )T- I /3 J e-,,3dx+o(T-N ). 

T, 0 0 

Let us make more precise the concepts of admissible and equivalent contours. 

-1 

Fig. 74. 
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11.1.1 Precise definition 

Let us suppose that the function/: (er", O)-(er, 0) is holomorphic at the origin 
and has at the origin a finite-multiplicity critical point. Let us consider a pair of 
positivenumbersQ,,,. Let us denote by Sthedisk {/eerliitl <,,} and by S- its left 
half: {/eSIRe/<O}. Let us denote by X the set 

{xeer"I/(x)eS, Ilxll <Q}, 

by X- the set Xn/-l(S-), by X, the set Xn/-l(/) (see figure 75). We 
shall suppose that the pair of numbers e, " are admissible for the critical point 
(see § 10.3.1). 

Fig~ 75. 

The n-dimensional chain r c C' is said to be admissible if 

Admissible chains r, r' are called equivalent, if there exists an (n + 1)­
dimensional chain VeX with the property: 

(r-r'+oV)cX-. 

The equivalence classes of admissible chains with the operations of addition and 
multiplication by scalars form a vector space, by definition coinciding with 
H .. (X,X-). 
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11.1.2 Expansion in series 

To each element 

[r]eH,,(X,X-) 

we associate a family of (n -1 )-dimensional reduced homology elasses in the 
fibre of the Milnor fibration, lying over S-. For this we consider the exact 
sequence 

The numbers e, " are admissible. Therefore X is contractible and a is an 
isomorphism between the group H .. (X, X-) and the (n -1)st reduced homology 
group of the space X-. 

The restriction of the function / to X' = ~Xo is a smooth locally trivial 
fibration (the Milnor fibration of the critical point). In particular,J : X- _ S - is a 
trivial fibration. Therefore the homology of the set X- is isomorphic to the 
homology of an arbitrary fibre over S-. In this way we have defined an 
isomorphism 

o,:H,,(X,X-)-H"_l(X,) 

for any teS-, where H,,-l(X,) is the reduced homology group. If r is an 
admissible chain, representing the element [F]eH .. (X,X-), then taking the 
boundary of the chain r and contracting it in the set X - to the fibre X" we obtain 
a cycle representing the element 

The family of classes o,[rJ depends continuously on Ie S -. 
In the example on page 299 the fibre X, of the Milnor fibration consists of the 

roots of the equation.xl = t. To the element [rd e Hl (X, X-) there corresponds a 
family of zero -dimensional homologies a, [rd. The class o,[rd is represented by 
the cycle ~ - Xl, where XO i~ the lower point of the fibre and Xl is on the left 
(see figure 74). 

Lemma 11.2. Let (J) be a holomorphic differential n-form on X, and let 
[F] e H .. (X, X-). Then 

J e~f(J)~j e-"( J (J)/dfJdl. 
[I') ° a - .[T) 

(1) 
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Here to is a small positive number, belonging to S, on the right-hand side is an 
integral along a segment of the real axis, the sign ~ means that the right hand 
side differs from the left by a term o(r- N) as 't'-+ + 00, where N is any number. 

This lemma relates the integral of the saddle-point method with the integral of 
a holomorphic form over a family of vanishing homology classes. The integral of 
the holomorphic form can be expanded in a series of powers of the parameter and 
powers of the logarithm of the parameter (see Chapter 10). Formula (1) allows 
the integral of the saddle-point method to be expanded in an analytic series. 

Proof. Let us choose a chain r, representing [r], so that ar eX-to' Then for any 
holomorphic (n -1)-form l/J on X 

J dl/J= -r (J dl/J/df)dt. 
T 0 MTJ 

(2) 

Indeed according to Stokes' formula the integral on the left is equal to the 
integral of the form l/J over ar. The cycle ar represents a_toW]. Let us consider 
the function 

I(t)= J l/J. 
Dr[T) 

It is holomorphic on S - and tends to zero as the parameter tends to zero along a 
radius (see Theorems 10.4, 10.7'). Consequently, its value at to is equal to the 
integral of its derivative from 0 to - to. According to formula (3) on page 284 the 
derivative of the function 1 is given by the integral of the form dt/>Idf. The formula 
(2) is proved. 

For fixed 't' there is on X a holomorphic (n -l)-form l/J with the property: 

(by Poincare's lemma). Then formula (2), applied to l/J, gives the result of the 
lemma. 

Remuk. Here as in Theorem 10.8 we need accuracy in the application of 
Poincare's lemma; see the remark on page 294. 
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1beorem 11.1 (see [239]). Let w be a holomorphic differential n-form on X, and 
let [r] E Hn(X, X-). Then as 't'-+ + 00 the integral 

J etfw 
IT) 

can be expanded in the asymptotic series 

L al:,II't'II(ln't')I:. 
11,1: 

(3) 

(4) 

Here the parameter ex runs through a finite set of arithmetic progressions, 
depending only on the phase and consisting of negative rational numbers. 
Moreover, each number ex possesses the property: exp (-27tiex) is an eigenvalue 
of the classical monodromy operator of the critical point of the phase. The 
coefficient al:,l1 is equal to zero whenever the classical monodromy does not have 
Jordan blocks of dimension k + 1 or more associated with the eigenvalue 
exp( -27tiex). 

The prooffollows from (1). The inside integral on the right-hand side of formula 
(1) can be expanded on the positive real semiaxis in the series 

L hl:,lItll(ln t)l:, (5) 

indicated in Theorem 10.8 on page 293. It is easy to show that we can obtain the 
asymptotic expansion of the integral (3) by calculating the asymptotic integrals 
of the individual terms of series (5). Using the standard formula 

(6) 

1 ao 

where r(.) is the gamma function and changing J to J ' we obtain series (4). 
o 0 

Remark. Series (4) determines series (5). Therefore the study of asymptotic 
integrals of the saddle-point method is an equivalent problem to the study of 
integrals of holomorphic forms over homology classes of continuous families of 
vanishing homologies. 
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11.1.3 Example 

Let j = x" + 1. Then x = 0 is a critical point of multiplicity 1'. Let us fix chains 
rlo • •• , r,., generating a basis in Hl (X, X-). For this let us denote by 810 ... ,8,.+ 1 
the roots of the equation x"+1 = -1, where 

and let us put rj equal to the segment 8j+ 1 ij, see figure 76. Let us denote by W, the 
form xI- 1dx. 

Lemma 11.3. For 1 ~/,j~1' 

where 

J eTf w,=aT«, 
(T)) 

IX = -1/(1' + 1), 

and r(.) is the gamma-function. 

Fig. 76. 

Remark. An integral with phase x"+1 and arbitrary form w reduces by 
integration by parts to a linear combination of integrals with the same phase and 
forms w" 1 =1, ... , 1'. The coefficients of the linear combination are formal 
series in l/T. 
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Proof of the lemma~ For negative t let us denote by 81 (I), . .. ,8,.+1 (t)the roots of 
the equation x" +1 = t, where 

arg 8j(t) = 1t(2j -1)/(1' + 1). 

For such 1 we have that at [rj] is represented by the O-cycle 8j(t) -8j+ 1 (I). The 0-
form w,fdfis equal to the function X

,
-,,-l/(I'+l). Consequently" 

J W,fdj=(8J+l -8j)ltl
,
/(,.+1)-1/(1' + 1). (7) 

a,[T)) 

Then Lemma 11.3 follows from Lemma 11.2 and formula (6). 

In conclusion let us mention an important property of the forms Wl, ... , w" of 
the example. 

Lemma 11.4. The forms 

wt/d/, ... ,w,./dj 

generate a basis in the vanishing cohomology in each fibre of the Milnor 
fibration. Furthermore 

where 1~, I~I', and e,. is a non-zero constant. 

Proof. In view of formula (7) it is sufficient to prove that there does not exist a 
non-zero polynomial 

taking the same value at the points 81, ... ,8,. + 1. It is clear that 

P(81) = ... =P(8,.+1) 

= (P(81) + ... + P(8,.+ 1»/(1' + 1)=0. 

Consequently, P=.O. 
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Corollary. 

where B,. is a non-zero constant. 

Remark. We shall prove below, with the help of Lemma 11.4 and its corollary, 
that for any critical point of multiplicity /l there exist forms 

which after division by the differential of the phase generate a basis in the 
vanishing cohomology in each fibre of the Milnor fibration (see Theorem 12.1). 

11.2 An oscillatory integral is a special case of an integral 
of the saddle-point method 

Let us consider a function f: (~", 0)-4(~, 0), holomorphic at the origin and 
having a critical point at the origin. Let us suppose that the values of the function 
on the real subspace JR." c~" are real. Such a function can be both the phase of an 
oscillatory integral on JR." and also the phase of an integral of the saddle-point 
method~ We shall prove that there exists an admissible n-chain r, lying in a 
neighbourhood of the origin, for which 

f eiT! rpdx ~ f tiT! lpdx 
It" r 

(8) 

for all rp with support in a sufficiently small neighbourhood of the origin. In this 
wayan oscillatory integral is a particular case of an integral of the saddle-point 
method. 

Let us give three points of clarification. First, the equality is satisfied modulo 
terms decreasing faster than any power of the parameter t as t-+ + 00. Second, an 
admissible chain for an integral with phase itf (instead of tf as in the previous 
section) is a chain on the boundary of which the imaginary part of the functionf 
is positive. Third, the amplitude rp must be defined not only on R.", but also on r; 
therefore the equality (8) will be proved for amplitudes of the form "'0, where '" is 
a holomorphic function and ° is a smooth bounded function with support 
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concentrated in a sufficiently small neighbourhood of the origin and identically 
equal to 1 in a still smaller neighbourhood of the origin. 

According to Theorem 11.1, the asymptotics of the right-hand integral can be 
expressed in terms of the Jordan structure of the classical monodromy operator 
of the critical point. Consequently, the asymptotics of the left-hand integral are 
connected in the same way with the monodromy operator. Moreover it is not 
important that the equality (8) has been proved only for analytic amplitudes qJ 
(see Lemma 11.5 below). 

11.2.1 Change of defmition 

In connection with the presence of the number i in the phase of integral (8) we 
shall change (for this section only) the definition of admissible chain. Let us 
suppose thatfhas a finite-multiplicity critical point at the origin. Let us use the 
notation from §11.1.1 and denote by S+i the semicircle {tESIImt>O}. Let us 
denote by X + i the set 

Let us call the n-chain reX admissible if iJ reX + i. Let us call two admissi hie 
chains equivalent if they define the same class in H,,(X, x+ i). The integral 

of the holomorphic n-form (JJ along the admissible chain r we shall call an 
integral of the saddle-point method. Integrals along equiValent chains have 
equal asymptotic expansions as t-+ + 00 (Lemma 11.1). Let us reformulate 
Theorem 11.1. 

Theorem 11.2. Let (JJ be a holomorphic differential n-fonn on X, and let 
[r] E H,,(X, x+ i). Then as t -+ + 00 the integral 

f eiT! (JJ 

[T) 

can be expanded in the asymptotic series 

possessing the properties indicated in Theorem 11.1. 
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11.2.2. 

1beorem 11.3 (see [239]). Let us suppose that the value of the function/is real 
on the real subspace. Then there exists a class 

[rtt1eH,,(X,X+ i) 

(called real) which possesses the following property; Let 0: CI::"-+R be an 
infinitely differentiable function with support in X and identically equal 
to 1 in a neighbourhood of the origin. Then for any holomorphic function 
qJ:CI::"-+CI:: 

f. eit
' qJOdx1 /\ ••• /\ dx.::::: f ilt

' qJdx1 /\ ••• /\ dx" 
It· [raJ 

modulo terms which for any N are of magnitude o(r-N) as T-+ + 00. 

Corollary of Theorems 11.2, 11.3 (compare with Theorem 6.3 on asymptotic 
expansions). The oscillatory integral 

f e
it

' '" dx1 /\ ••• /\ dx" 
It· 

can be expanded in the asymptotic series 

as T-+ + 00, if the amplitude has the form indicated in Theorem 11.3. In this series 
the parameter oc runs through a finite set of arithmetic progressions depending 
only on the phase and consisting of negative rational numbers. Namely each 
number oc possesses the property: exp ( -2nioc) is an eigenvalue of the classical 
monodromy operator of the critical point of the phase, considered as a 
holomorphic function. The coefficient at.« is equal to zero whenever there are, in 
the classical monodromy, no Jordan blocks of dimension k + 1 or more 
associated with the eigenvalue exp ( - 2nia.). 

Remark 1. With the help of Lemma 11.5 (see below) the indicated condition on 
the amplitude can be replaced by the condition: the support of the amplitude 
must lie in a sufficiently small neighbourhood of the origin. 
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Remark 2. It would be interesting to describe all the real classes [r.u for different 
real forms of one and the same holomorphic function f. 

In § 9.2 we gave an example of two complex equivalent but real nonequivalent 
germs of analytic functions which had different singular indexes. Consequently 
the real classes corresponding to these real forms are arranged differently relative 
to the linear functions given by integrals of the saddle-point ptethod on 
H,,(X,X+ i). 

Proof of Theorem 11.3. We shall construct a chain r It, representing the class 
[r It] and then we shall prove the theorem for it. The chain r It is that part of the 
real subspace It" lying in X with edges turned up into X+i. The edges are turned 
up along the trajectories of the vector field i· gradf. Before we make the 
construction more precise let us give an example. Let / =.xl. Then the chain r It is 
depicted in figure 77a. 

Let us choose a sufficiently small r> 0 and consider the smooth vector field ~ 
on X, equal to zero for Ixl < r/4 and possessing the properties 

~(lmf)~O, 

~(lmf»O for x~r/2, 

see figure 77b. 

oJ 6) 

Fig. 77. 

Let B. be the intersection of the balllxl =so r and It" . For sufficiently small s > 0 
the diffeomorphism exp (s~) defines in X a disk 

B.(s) = exp (s~ )(B.), 

the boundary of which lies in X+i. Consequently, B.(s) defines a class in 
H,,(X, x+ i), which clearly does not depend on s. We shall show that for this class 
Theorem 11.3 is true. 



, 
"j I, 

310 Integrals of holomorpbic forms over vanishing cycles 

We can assume that the support of the function () lies in the ball/x/ < 3rl4 and 
that ()= 1 on the ball/x/ ~r12 (changing the function () away from the origin does 
not change the asymptotic expansion of the oscillatory integral). 

Then on the one hand the expressions under the integral signs in 

J elf! rp()dx and 
B,.(s) 

J elf! rpdx 
B,.(.) 

differ only on a compact set in X+ I and so the difference between these integrals 
is exponentially small. 

On the other hand 

f elf! ()rpdx = J (exp (se»· [elf! ()rpdx]. 
B,.(.) Br 

The expression under the integral sign on the right-hand side can be written in the 
form 

Then for sufficiently small s > ° 
(i) Im.r.~O on Br • 

(ii) .r. does not have critical points on Br,""O. 
(iii) .r. = f, «()(!»s = ()t/J on Br/4 • 

It follows from (i)-(iii) that f elf! ()rpdx and f eirf-«() rp).dx differ by ofr - N) for any 
Br Br 

N as -r -+ + 00. The theorem is proved. 

We shall prove a lemma expressing the asymptotics of an oscillatory integral 
with smooth amplitude in terms of asymptotic integrals with amplitude of the 
form indicated in Theorem 11.3. 

Lemma 11.5. Let qJ1,· •• , qJ,. be monomials generating a basis over It in the local 
algebra 

It {x}/(ojlox), 

and let the function () be the same as in Theorem 11.3. Then for any smooth 
amplitude qJ with support lying in a sufficiently small neighbourhood of the 
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origin we obtain, as -r-+ + 00, the equality of the asymptotic series 

,. 
J elf! rpdx~ L Ct(-r- 1) J elf! rpt()dx, 
It" t=1 It" 

where Ct is a suitable formal series in lit. 

Proof. We can represent qJ in the form 

where at are numbers and ht are smooth functions with compact support. Then 

The numbers a1
, • •• , a" are the constant terms of the series C1(-r- 1), ... , C,.(-r- 1). 

Transforming the right-hand integral in a way analogous to the way that the 
initial integral was transformed we obtain the coefficients of the formal series, 
standing for t -1 etc. 

Remark. In [286] it was proved that the series {Ct(-r-1)= Lci-r-i} after dividing 
thejth coefficient by j! converges for sufficiently large t, if the amplitude rp has 
the form indicated in Theorem 11.3. 

11.2.3 The singular index of a simple critical point 
and the Coxeter DlDJlber 

V. I. Arnold noticed the following phenomenon (see [11, 12]): the oscillation 
indices of simple critical points of smooth functions of three variables are given 
by the formula 

p= -l-lIN 

where N is the Coxeter number of the corresponding group generated by 
reflections. Theorem 11.3 explains the presence in these formulae of the 
number N. 
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Assertion. An oscillatory integral with phase depending on three variables and 
having a simple critical point can be expanded in an asymptotic series of the form 

where IX is a rational number with denominator equal to the Coxeter number of 
the corresponding group generated by reflections. 

Indeed, in this case, the monodromy operator is the Coxeter transformation of 
the corresponding group (see Theorem 3~14). Therefore MN =Id. According 
to Theorem 11.3 the index IX, multiplied by N, is an integer. 

11.3 Complex oscillatory integrals with phase !(x)+g(y) 

The asymptotics of integrals with phase / + g can be expressed in terms of the 
asymptotics of the integrals with phases / and g, since the exponent of a sum is 
equal to the product of the exponents of the terms. In particular the asymptotics 
of integrals with phase 

X~+l + ... +X:+l 

can be expressed in terms of the asymptotics of integrals with phase 

~+l 

(which were calculated in § 11.1.3). From these expressions we can extract non­
trivial information about the asymptotics of integrals with arbitrary phase since 
an arbitrary isolated critical point is found in a versa! deformation of the critical 
point ~+l + ... +X:+

1 (for sufficiently large p). In particular on this path we 
can prove the following important theorem: if we are given a critical point of 
a function / of multiplicity p, {WI, ... , W,.} is a sufficiently general set of 
holomorphic n-forms and {OI(I), • •• , «5,.(I)} is a basis, depending continuously 
on I, of the integral homology, vanishing at the critical point, then the function 

is not identically equal to zero in a neighbourhood of the point 0 E~, and 
furthermore the order of its zero at the point 0 is equal to p(n - 2) (see 
Theorem 12.1, and compare with Lemma 11.4). 

Complex oscillatory integrals 313 

11.3.1 Fubini's theorem for oscillatory integrals 

Let /: (~ft, O)-+(~, 0), g: (~', O)-+(~, 0) be functions, holomorphic at the origin 
and having at the origin a critical point of finite multiplicity. Let us consider 
the function 

/+g :(£"+', O)-+(~, 0) 

The function/ + g has at the origin a critical point of (finite) multiplicity equal to 
the product of the multiplicities ofthe critical points of the functions/and g. Let 
W be a holomorphic n-form given in a neighbourhood of the origin in ~ft, and let" 
be a holomorphic I-form given in a neighbourhood ofthe origin in ~'. We shall 
compare the asymptotics of the three integrals 

f e t
' W, f e t

' ", f et(f + g) W /\ ", 

choosing in a coherent way admissible chains of integration. 
Let rl c (;ft, r2 c~' be admissible chains, respectively, for the critical points of 

the functions / and g. Let us suppose that 

Re /IDr. = Re g IDrl = -a, 

a/2>Re/lr .. Reglrl~-a 

for a sufficiently small number a > 0 (satisfying this condition can be achieved by 
changing the chain to an equivalent one). Then the chain 

is admissible for the critical point ofthe function/+g.1t is easy to see that this 
construction gives a linear map from the tensor product of the groups of 
equiValence classes of chains, admissible for the critical points of the functions! 
and g, to the group of equivalence classes of chains, admissible for the critical 
point of the function/+g. It can be shown (see [322], and also Theorem 2.9), that 
this -map is an isomorphism. 

Remark; In [322] is given a topological proof of this result. We can obtain 
another proof using theorems about determinants, formulated at the beginning 
of § 11.3 (see § 13.3.5, and also Corollary 1 of Lemma 11.6). 
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Theorem 11.4 (see [239)). 

J e~(/+g)o)l\"= J e~/O) J e~II". 
T, XTl T, Tl 

Theorem 11.4 is a direct corollary of Fubini's theorem. 

Corollary. The asymptotic series of the left-hand integral is equal to the product 
of the asymptotic series of the integrals on the right-hand side. 

11.3.2 Integrab with phase f = xf + 1 + ... + x:+ 1 (an example of 
. the application of Theorem 11.4) 

The multiplicity of the critical point of the function xr + 1 + ... + x: + 1 is equal 
to JI'. Let uS construct 1''' n-chains rh ... i" (1 ~h, . .. ,j" ~Jl.), admissible for this 
critical point. 

Each of the chains r1 , ••• , r,. c (::, indicated in § 11.1.3 and admissible for the 
critical point x" + 1, we change into an equivalent one so that 

Let us put the chain IJ, ..... i" c (::" equal to 

IJ.xrhx ... xrln · 

It is easy to see that the chain IJ •..... i" is admissible for the critical point 
xr+1 + ... +X:+l. 

Let us denote by O)i' wherej=Ub'" ,j.), the form 

...J.-l In- 1d dx 
A} ••• X" Xl 1\ ••• 1\ •• 

Let us denote by J the set of indices j = Ul, ... ,j,.), for which 1 ~1' ••• ,j" ~Jl.. 

Lemma 11.6. 

1. For any j, leJ 
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where r,=-(/1 + ... +I,,)/(Jl.+1); 81, ... ,8,.+1 are the roots of the equation 
x"+I= -1, indicated in § 11.1.3 and ro is the gamma function. 
2. For any j, leJ, 

where B,. is the non-zero constant defined in the corollary to Lemma 11.4. 
Lemma 11.6 is clearly a corollary of Theorem 11.4 and Lemmas 11.3 and 11.4. 

Remark. An integral with phase xr + 1 + ... + x: + 1 and arbitrary form £0 reduces 
by integration by parts to a linear combination of integrals with the same phase 
and forms £0" leJ (compare with Lemma 11.5). 

Corollary 1. The chains ri , jeJ, generate a basis in the group of equivalence 
classes of chains, admissible for the critical point of the function 

Indeed these chains are linearly independent (Section 2 of Lemma 11.6), and 
their number equals the multiplicity of the critical point. 

Corollary 2. We have 

where C,. is a non-zero constant. 
Corollary 2 obviously follows from Lemma 11.6 and formula (6) on page 303 . 

Remark I. It is easy to see that Corollary 2 for the critical point 

xr+1 + ... +X:+1 

is equivalent to the assertion of the theorem on determinants formulated at the 
beginning of § 11.3. 

Remark 2. Lemma 11.6 and its corollary can easily be generalised to the case of a 
critical point of the function xy· + ... + x:-. 



Chapter 12 

Integrals and differential equations 

In this chapter we shaH prove that many-valued functions, given as integrals of a 
holomorphic differential form over classes of continuous families of homo­
logies, vanishing at the critical point of a holomorphic function, are all solutions 
of an ordinary homogeneous linear differential equation, the order of which is 
not greater than the multiplicity of the critical point. The analysis of this 
phenomenon leads to the concept of the Gauss-Manin connection in the 
fibration of vanishing cohomologies associated with the Milnor fibration of the 
critical point. 

In the fIrst section of the chapter we shaH prove a theorem about determinants, 
from which, in particular, foHows the existence of holomorphic differential n­
forms in (::", which after division by the differential of our function generate a 
basis of the cohomology of each fibre of the Milnor fibration of the critical point 
of this function. In the second section we shall prove the result on differential 
equations which was formulated above. In the third section we shall discuss the 
concept of the Gauss-Manin connection. 

We note the introduction in § 12.2 of the concept of the Picard-Fuchs 
singularity of a finite-multiplicity critical point of a holomorphic function, and 
also the introduction in § 12.3 of the concepts of the (co)homologicaI Milnor 
fibration, covariantly constant section of the (co)homological fibration and 
geometrical section of the cohomological fibration. 

12.1 Theorem aboot detenninaats 

In this section we shall prove Theorem 12.1 which is formulated below. It is one 
of the principal results about integrals. 

Let us consider the germJ ; (~", 0)-+«(::, 0) of a holomorphic function with a 
critical point of multiplicity JJ. Let us consider a specialisation f; X -+S of 
the germ and the Milnor fibration corresponding to this specialisation (see page 
287). Let us choose in the fibres of the Milnor fibration bases of the integral 
(n-1)st homology, depending continuously on the point of the base. Let us 
denote the basis in the fibre over the point 1 by 

«51 (I), ... , b,,(/). 
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(Note that the basis is a many-valued function of the point ofthe base.) Let us 
consider an arbitrary set of JJ holomorphic differential n-forms WI' ••. , w", given 
in a neighbourhood of the origin in C. Let us suppose that the space X is 
contained in a neighbourhood in which the forms are defmed. We shaH study the 
properties of the function 

det2 ;/l-+det2( J Wddf)' j, /=1, ... ,JJ. 
"J(t) 

Theorem 12.1 (see [364]). 

1. The function det2 is single-valued in a neighbourhood of the point 1=0. 
2. The function det2 has at 1 = 0 a zero of order not less than JJ(n - 2) (in 

particular, for n> 1 the function det2 is holomorphic at 1=0). 
3. If the set of forms is sufficiently general (the finite jets of the forms at the 

point OE~" do not satisfy certain complex analytic relation), then the order of 
the zero at 1=0 of the function det2 is equal to JJ(n -2). 

Defiaitioa. The set of forms WI , ... , w" is caIIed a Irivialisation if for some family 
of bases b1 , ••• , b" (and so also for any) the function dee is not identically equal 
to zero. 

Defiaitioa. The set of forms 

W1""'W" 

is caIIed a basis Irivialisalion iffor some family of bases «51 , .•. , b" (and so also for 
all) the function dee has for 1 = 0 a zero of order JJ(n - 2). 

Corollary of Theorem 12.1. For any finite-multiplicity critical point of a 
holomorphic function there exists a trivialisation and furthermore there exists a 
basis trivialisation. 

Remark 1. The first proof of the existence of a trivialisation was given in [55]. 
It is based on theorems (A) and (B) of H. Cartan. 
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Remark 2. In § 12.3 we shall define the cohomological Milnor fibration of a 
critical point. This is a vector bundle, the base of which is the same as the base of 
the usual Milnor fibration. Its fibres are the vector spaces of cohomologies ofthe 
fibres of the usual Milnor fibration. The set of forms, described in the definition 
oftrivialisation, gives a trivialisation of the cohomological Milnor fibration over 
a neighbourhood of the point 1=0. 

Remark 3. The concept of trivialisation does not depend on the choice of 
specialisation of the germ (see § 10.3.1, and Remark 3 in § 10.3.2). 

Remark 4. In Corollary 2 of Lemma 11.6 we produced a set of forms which were 
a basis trivialisation for the critical point of the function x: + ... + x:. Theorem 
12.1 is derived from the existence of a basis trivialisation for the 
indicated critical point. For the proof of the theorem see §§ 12.1.3, 12.1.5. In 
§§ 12.1.1, 12.1.2 we shall prove an auxiliary results about the function det2. 

Before passing on to the proof of Theorem 12.1, let us formulate the properties 
of trivialisations. 

I. If COt,· •• , co" is a trivialisation then the Gelfand-Leray forms 

COt /d/, ... ,co,,/d/ 

form a basis of the (n -1)st cohomology with complex coefficients in all the 
fibres of the Milnor fibration of the critical point 0 of the function/, lying over a 
sufficiently small neighbourhood of the point t = O~ 
II. Let CO, COt , ••• ,co" be holomorphic differential n-forms given in a neigh­
bourhood of the origin in CC". If COt, ••• ,co,. is a trivialisation then on a suf­
ficiently small punctured neighbourhood of the point 1 = 0 there exists also 
unique holomorphic functions PI, • .. 'PIA with the property 

for any continuous family ~ o(integral (n -1)st homologies in the fibres of the 
Milnor fibration of the critical point 0 of the function f If, furthermore, 
COt,· •• ,co,. is a basis trivialisation, then the functions Pt, ... ,p,. can be 
holomorphically continued to the point t = O. 

Property I is obvious. Let us prove Property II. Taking as the families ~ the 
families ~t, ..• ,~,. generating bases of the homologies of the fibres of the Milnor 
fibration, we obtain a system of linear equations in PI, . .• 'PIA' Its determinant is 
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non-zero by the definition of trivialisation. Solving the system of equations by 
Cramer's rule, we obtain the functions we are looking for in the form of quotients 
of pairs of determinants~ Each quotient is holomorphic at t = 0 if COl , ••• , co,. is a 
basis trivialisation. 

12.1.1 Elementary properties of the function det2 

It is convenient to consider the function det2 not on the base of the Milnor 
fibration of the critical point but on the base of the Milnor fibration of a versal 
deformation of the critical point. 

Let 

be a versal deformation of the germ /. Let us consider a specialisation G : X -+S of 
an unfolding of the deformation and the corresponding Milnor fibration 
G: X' -+S' (for the notation and definitions see § 10.3.1 on page 286, see also 
figure 73 on page 286). Let us choose in the fibres of the Milnor fibration bases of 
the integral (n -1)st homologies, continuously depending on the points of the 
base. If seS', let us denote by ~I (s), . .. , «5,.(s) a basis in the fibre over s. Let 
,., ,., be holomorphic differential n-f orms on X. Let F: X -+ (; be a holo-'-VI, •.. , \AI" 
morphic function, representing the germ F. The forms COt, ••• ,co,. on each fibre 
of the Milnor fibration determine holomorphic differential (n -1 )-forms 

(the forms co., . .. ,co,. must be restricted to a subspace of the form (;N x y and 
divided by d" F). Let us consider on the base S' the function 

Lemma 12.1. The function det2 is single-valued and holomorphic. 

Proof. The elements of the matrix are many-valued holomorphic functions on 
the base (Theorem 10.5). By analytic continuation along a closed path the value 
of the function det2 is multiplied by the square of the determinant of the 



320 Integrals of holomorphic forms over vanishing cycles 

monodromy operator in the homologies; The monodromy operator is non­
degenerate and integral as is its inverse. Therefore the square of its determinant is 
equal to 1. Consequently the function det2 is single-valued. 

Remark. If n is even, then the function det is already single-valued and 
holomorphic. It is sufficient to verify the singlevaluedness by analytic con­
tinuation along a small path round a non-singular point of the discriminant in 
the base of the versal deformation. The determinant of the corresponding 
monodromy transformation is equal to the determinant of the Picard-Lefschetz 
transformation, which for even n is equal to 1. 

According to the definitions in § 10.3.1, the base S' ofthe Milnor fibration is 
the complement of a hypersurface in the product of balls 

The difference 1: = S"",S' is called the discriminant. 

1beorem 12.2 (see [364]). The function det2 is meromorphic at the origin of the 
base S and, furthermore, can be represented in the form gh--2 where 9 and h are 
functions on S, holomorphic at the origin, and h being that function, the zeros of 
which define the discriminant (without multiplicities). 

Proof. On S we are given coordinates: yeB: is the parameter of the defor­
mation, ueB: is the value of the function F. For fixed y the line of values 
intersects the discriminant in p points (counting multiplicities). For general 
values of the coordinates y the line of values intersects the discriminant in p 
different non-singular points. It is sufficient to prove that near these non­
singular points the discriminant function det2 /~-2 is holomorphic. Indeed then 
by the theorem on removing singularities the function det2 / h" - 2 is holomorphic 
everywhere on S. Holomorphicity in a neighbourhood of a non-singular point of 
the discriminant follows from explicit calculation of the integrals along cycles, 
vanishing at non-degenerate critical points (see the example in § 10.3.4 on page 
294). 

And so let so=(Uo,Yo) be a non-singular point of the discriminant, in a 
neighbourhood of which the discriminant is the graph of the function u=u(y). 
The function F( . ,y) has one critical point in X f"\ (CO X y) with critical value u(y), 
and this critical point is non-degenerate; Let us consider the monodromy 
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operator M corresponding to going round the point (u(y), y) along a small circle 
lying in the line of values. The operator M is the Picard-Lefschetz operator of 
"reflection" in the homology class of a cycle, vanishing as S-+SO. Using the 
monodromy operator, we shall change all the bases 

151 (s), . .. ,t5,,(s) 

simultaneously for all S in a small neighbourhood of the point So by the same 
linear transformation. (This causes det2 to be multiplied by the square of the 
determinant of the transformation). If n is odd then M has a (p -1 )-dimensional 
subspace of invariant vectors and a one-dimensional subspace of anti-invariant 
vectors, generated by a class of a cycle, vanishing as S-+So. Let us use as a new 
basis 

151 (s), . .. ,t5,,(s), 

where 151 (s) is the class of a cycle, vanishing as s-+so, and 152 (s), ... ,t5,,(s) are any 
classes forming a basis of the invariant classes. If n is even then all the eigen­
values of the operator M are equal to 1, and the subspace of invariant vectors is 
(p -1)-dimensional. Let us use as a new basis 

151 (s), . .. ,t5,.(s), 

where 151 (s) is the class of a cycle, vanishing as s-+so, 152 (s) is any homology class 
the intersection number of which with 151 (s) is equal to 1, and 

153 (S) , ... , t5,,(s) 

are any classes making, together with 151 (S), a basis of the invariant classes. 
Then Theorem 12.2 follows from Lemma 12.2. 

I.anma 12.2. Let w be a holomorphic differential n-form, given in a neigh­
bourhood of the origin in ~" x crt which contains the space X. If n is odd, then 
in a neighbourhood of the point So e I the following expansions are valid: 

J w/d"F=(u-u(y»,,/2-1 P1(u,y), (1) 
',,",y) 

J w/d" F= Pj(u,y), j=2, ... ,p, (2) 
'/(II,y) 
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where PI, ... , PI' are functions, holomorphic at the point So. If n is even, then in a 
neighbourhood of the point soeE expansion (1) is valid as is expansion (2) for 
j=3, ... ,Jl, and also expansion 

where PI,· .. 'PI' are functions, holomorphic at the point So. 

Proof of the lemma. The restriction of the form w to a subspace of the form 
f:;" x y is closed. By Poincare's lemma there exists in a neighbourhood of the 
origin in·f:;" x f:;1: a holomorphic (n -1)-form.p, the restriction of the differential 
of which to any subspace of the form ([" x y coincides with the restriction of the 
form w. According to formula (3) on page 284. 

(4) 

If the cycle ~J is invariant under M, then in a neighbourhood of the point So the 
integral of the form.p over ~J(u,y) is single-valued and depends holomorphically 
on (u,y)eS"\.E. According to Theorem to.7 this integral has a finite limit as 
u-+u(y) along the line y = const. Consequently, in a neighbourhood of the point 
So it can be extended holomorphically to E. Consequently its derivative (4) can 
also be extended holomorphically to E. Lemma 12.2 is proved forj=3, 4, ... , Jl 
andj=2 for n odd. 

In a neighbourhood of a non-degenerate critical point, with critical value 
u(y), the function F( ',y) can be reduced to the form 

zi+ ... +~+u(y) 

by the holomorphic change of the variables of the form x=x(z,y). In terms of 
these coordinates, using the calculations of the example in § 10.3.4 on page 294, 
we obtain 

J .p=(u-u(y»,,/l Q(u,y), 
Idu,y) (5) 

where Q is a holomorphic function. This in conjunction with (4) proves the 
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lemma for j = 1. It follows from the Picard-Lefschetz formula for n even that 

J 
In(u -u(y» 

.p= + ----'---..::....:...:.. J .p+P(u,y), 
',(u,y) - 21ti Idu, 1) 

(6) 

where P is a single-valued function in a neighbourhood of the point So 

(the ± sign is chosen according to the parity of the number nI2). In an analo­
gous way to the above, we can holomorphically extend P to E. Consequently 
the lemma is true for j=2 and n even. Lemma 12.2 and Theorem 12.2 are 
proved. 

Corollary 1 of Theorem 12.2. Let 

Oh,· .. , wI' 

be holomorphic differential n-forms on X. Let us suppose that the restriction of 
the function 

det2 :Sl-+det2 ( J W1ldxF) , j,I=1, ... ,Jl, 
'J(') 

to the line y = 0 has at the origin a zero of order Jl(n - 2). Then the function det2 

can be represented in the form det2 =gh,,-2 where g is a holomorphic function on 
S, different from zero at the point s = 0, and h is a holomorphic function on S, the 
zeros of which give the discriminant (without multiplicities). Furthermore, in 
this case the forms 

generate a basis of the (n-1)st cohomology in all the fibres of the Milnor 
fibration of a versal deformation, lying over. the points of the base sufficiently 
near to the origin s=O. 

Indeed the multiplicity of the intersection of the line y = 0 and the discriminant 
at the point s = 0 is equal to Jl. Therefore the restriction of an arbitrary function, 
giving the discriminant without multiplicities on the line y = 0 has at the origin 
a zero of order Jl. According to Theorem 12.2 the quotient of the function det2 

and the (n - 2)nd power of the function giving the discriminant is invertible at the 
origin on S. The second assertion follows obviously. 
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Remark. The existence of a set offorms COl" •• , CO"' for which the restriction of 
the function det2 to the line y = 0 has at the origin a zero' of order Il (n - 2), will be 
proved in § 12.1.5. 

Corollary 2 of Theorem 12.2~ Let 

be holomorphic differential n-forms on X. Let us suppose that the restriction of 
the function 

det2:Sl-+dee( J CO,/dJcF), j, 1=1, ... ,Il, 
"j(S) 

to the line y = 0 has at the ongm a zero of order Il(n - 2)~ Then in a 
neighbourhood of the origin on S there exist unique holomorphic functions 
PI> ... , Pm, possessing the property: 

for any continuous family (j of integral (n -1)st homologies in the fibres of the 
Milnor fibration of a versal deformation. 

Proof. See Corollary 2 of Theorem 12.1. 

12.1.2 Each coefficient of the expansion in series of the integral of a form along 
the class of a family of vanishing homologies depends only 00 a finite jet of 
the form and depends on this jet boIomorpbicaUy 

We shall state this result more precisely in the following lemma. 
Letf:(C', O)-+(er, 0) be a function, holomorphic at the origin, and having at 

the origin a critical point of finite multiplicity. Let 
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be a differential n-form, holomorphic at the origin. Let 

be a class of homologies, continuously depending on a paramter, of the fibre X, 
of the Milnor fibration of the critical point 0 of the function f According to 
Theorem 1 0~8 there, is in each sector of a small neighbourhood of the point t = 0 
an expansion in series 

J co/df= L (XA:,,,t"(lntt', (7) 
6(1) k ... 

where the numbers (X depend only on f and do not depend on CO, (j. 

Lemma 12.3. For any k and (X the coefficient ak, .. depends only on a finite jet of 
the function g at the point Oeern and it depends on this jet holomorphically. 

Corollary. Each coefficient of the Laurent series at the point t = 0 of the function 
det2 , defined in Theorem 12.1, depends only on finite jets of the forms 

COl""'CO" 

at the point 0 e ern and it depends on these jets holomorphically. 

Proof of the lemma. Let us denote by J, the ideal in er«Xl,' .. , xn», generated 
by the functions 

Of/OX1,' .. , of/oxn • 

Let Nbe a natural number. For the proof ofthe first assertion of the lemma it is 
sufficient to prove that for g e(1, fN all the powers (X in the series (7) are greater 
than N -1. Here (I, )2N is the ideal generated by 2N-fold products of elements in 
'/~ Indeed the ideal " contains some power Qfthe maximal ideal (in view of the 
finite-multiplicity of the critical point). Therefore the ideal (I,f N also contains 
some power of the maximal ideal. For any function g from this power of the 
maximal ideal all the (X in series (7) are greater than N -1. 

We shall prove that for g e (I, fN in series (7) all (X are greater than N -1. The 
proof is by induction. For N =0 the result is true (Theorem 10.8). Let 
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where 

Then according to formula (3) on page 284 

where 

By the induction hypothesis the expansion in series of the integral on the right­
hand side begins with a power greater than N ~ 2. Consequently, the series of the 
integral of the form wid! begins with a power greater than N -1. 

The second part of the lemma easily follows from the obvious result: if we are 
given a meromorphic function, holomorphically depending on parameters, then 
the coefficients of its Laurent series holomorphically depend on parameters 
(compare with the proof of Theorem 102). 

12.1.3 Beginning of the proof of Theorem 12.1 

The first and second assertions of the theorem are corollaries of Lemma 12.1 and 
Theorem 12.2. According to the corollary of Lemma 12.3, it is sufficient for the 
proof of the third assertion of Theorem 12.1 to prove the existence of at least one 
set of forms for which the function det2 has at the origin a zero of order no more 
than p(n - 2). The proof of existence is derived from Corollary 2 of Lemma 11.6; 
see § 12.1.5. First we shall prove an auxiliary result. 

12.1.4 A critical point of multiplicity Jl is to be found in a yersal deforma~on of the 
critical point of the function xl' + ••• + x: for N~ p + 2 

The result is stated more precisely in the following lemma. 

Lemma 12.4. Let the function/: (C', 0)-+«;, 0) be holomorphic at the origin and 
have at the origin a critical point of multiplicity p. Then for any N~ p + 2 there 
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exists a polynominal 

ft 
P(X1,· .. , x~, 15, 61,· .. , 6n)=Q(X1,· .. , Xn , 15)+ L (1 +6j)xf, 

j=l 

possessing the properties: 
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1. For fixed c5:;t!: 0, 610 ••• ,Bn the function P: (;ft -+ (; and the function I are 
equivalent in a neighbourhood of the point O. 

2. 

3. There exist numbers 15, 61, ... ,6n , as small in modulus as we like, for which the 
hypersurface 

is non-singular away from the origin. 

Corollary. Let us consider a versal deformation F of the germ of the function 
xf + ... + x: at the origin. Let us denote by A the germ of the set of all values of 
the parameters ofthe deformation for which F has a unique critical point, with 
critical value zero, which is equivalent to the critical point 0 of the function f 
Then for N~p+2, A is not empty. 

The corollary is true since the deformation indicated in Lemma 12.4 can be 
induced from a versal deformation. 

Proof of the lemma. Let us take as Q the polynominal 

whereiN+! (Xl, . .. ,xn}is the Taylor polynominal of degree N + 1 of the function 
I at the origin. By the theorem on finite determinacy (see Volume 1 Chapter 6) 
the function in a neighbourhood of the critical point of multiplicity p is 
equivalent to its own Taylor polynomial of degree p + 1. Therefore Section 1 of 
the lemma is true. Section 2 is obvious. Section 3 is proved in an analogous way to 
Lemma 6.1. 
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12.1.5 There exists at least one set of forms for whieb the function det2 , defined in 
Theorem 12.1, has at the origin a zero of order DO greater than p(n - 2) 

Such a set was produced for a critical point of the form xf + ... + x: in 
§ 11.3.3 (see Corollary 2 of Lemma 11.6). An arbitrary critical point of finite 
multiplicity is to be found in a versal deformation of a critical point of the form 
xf + ... + X:. Therefore the fibre of the Milnor fibration of an arbitrary critical 
point is included in the fibre of the Milnor fibration of a versal deformation of a 
sum of powers. This inclusion induces a monomorphic inclusion of vanishing 
homologies. The forms of the set produced for the sum of powers can be 
integrated over the classes of homologies vanishing at the critical point of finite 
mUltiplicity we are studying. We shall prove that the set of forms we are seeking 
for the initial critical point can be chosen from the set produced for the sum of 
powers. Now let us give some more details. 

Let N~ Jl. + 2. Let us consider a versal deformation 

of the germ at the origin of the function xf + ... + X:. Let us consider a 
specialisation G: X -S of the unfolding of the versal deformation and the 
corresponding Milnor fibration G : X' -+S'~ 

Let us denote by J the set of multiindices j=Ut. .. . ,jn) , where 
1 ::;Jl,· .. ,j. ~ N. The number of these multiindices is equal to the Milnor 
number p' of the critical point ofthefunctionxf + ... +X: :Jl.'=(N -1)". Let us 
consider on Xholomorphic differential n-forms W}>jEJ, where 

Let us sUppose that in the fibre of the Milnor fibration G: X' -S' we are given 
a basis ~1 (s), . .. A.· (s), continuously depending on the point of the base, of 
(n-1)st integer homologies, where seS'. Let us consider on S' the function 

According to Theorem 12.2 this function is single-valued and holomorphic and 
is a meromorphic function on S-S' v x; According to Corollary 2 of Lemma 
11.6 and Coronary 1 ofTbeorem 12;2 the function det2 can be represented in the 
formdet2 _gJi'-l. wbere,isaWomorphic function on S, different from zero at 

the on S the zeros of which give the 
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The space S (the base ofthe specialisation) is the product of balls B: x B! (the 
coordinates in B:, B! are denoted, respectively, by u,y); Let us denote by A the 
set of those yeB! for which the function F( ',y) has on X n«:n xy) a unique 
critical point with critical value zero which is equivalent to the critical point of 
the function f (Fis the representative on X of the germ F). According to Lemma 
12A, A is not empty. • 

Let YoEA. Let us denote by (.xO,Yo) the critical point of the function 
F( ',Yo) with zero critical value. For fixed (!' > 0 let us denote by Y(U,70) the subset 
of all points of the fibre X(u,,,o) of the specialisation, of distance less than (I' from 
(.xO,Yo); see figure 78 and compare with figure 73 on page 286. 

Fig. 78. 

If the number (I' is sufficiently small, and the number ,( > 0 is sufficiently small 
in comparison with (I', then the union vu Y(U,70)' where u~O, lui < ,,', together 
with the natural projection Y(U,70) 1-+ (u,Yo) forms the Milnor fibration of the 
critical point (.xO,Yo) of the function 

The fibre Yo( ) of this fibration is homotopy equivalent to a bouquet of Jl. U,70 

(n -1 )-dimensional spheres. The inclusion 

induces a monomorphism of (n -1)st homologies in accordance with Theo­
rem 2.1. 
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Over the line Y=Yo in a neighbourhood of the point (O,Yo) we make 
simultaneous, linear over JR, changes of all the bases 151 (s), . .. , b,.(s) so that 

1) the frrst Jl elements of the bases of the new family vanish as 

(that is they are bases of the (n -l)st homology of the fibres y.( ) of the Milnor 
11,)'0 

fibration of the critical point (x",Yo) of the function G( .,Yo»; 
2) the last Jl' - Jl elements of the bases of the new family belong to the root 

subspace associated with the eigenvalue 1 of the monodromy operator, 
generated by going round (0, Yo) on the line y = Yo. 

Such a basis exists, since the subspace 

is invariant relative to the indicated monodromy operator, and the action of this 
monodromy operator on the quotient space is trivial (indeed, 

Let us consider the restriction of the function det2 to the line y = Yo. Mter 
changing basis the function det2 is multiplied by a number, equal to the 
determinant of the change of basis. The restriction of the function det2 has for 
u=O a zero of order Jl(n -2). Indeed, the critical point (x",Yo) of the function 
F( ., Yo) branches under small deformations into Jl non-degenerate critical points, 
and at each non-singular point of the discriminant the function dee has a zero of 
order n-2. 

Our problem consists of proving the existence in the matrix 

of a minor of dimension Jl, occurring in the frrst Jl rows and having for u = 0 a zero 
of order not greater than Jl(n - 2)/2 (in the first Jl rows occur the integrals over the 
frrst Jl elements of the basis of homology). 

The existence of such a minor follows from two remarks: 

where I c J is a subset of Jl elements, Al is the minor of dimension Jl, OCCurring in 
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the frrst Jl rows and in the columns with numbers in I, and if! is the algebraic 
complement of the minor AI. 

2) For any I the minor JI can be expanded in a series of powers of the 
parameter u and powers of the logarithm of the parameter u, all powers of the 
parameter in this series being non-negative. 

The first remark is the theorem on the expansion of a determinagt in terms of 
the minors of the first Jl rows. The second remark follows from Theorem 10.6 and 
formula (3) on page 284 in view of the coice of the last Jl' - Jl elements of the basis 
of the homologies. 

Theorem 12.1 is proved. 

12.2 The integral is the solution of an ordinary homogeneous 
linear differential equation with a regular singular point 

12.2.1 Integrals of a single form 

Theorem 12.3. Let the function/:(C,O)-+(CC,O) be holomorphic in a neigh­
bourhood ofthe origin and have at the origin a critical point offinite multiplicity. 
Let us be given a holomorphic differential n-form w in a neigh­
bourhood of the origin in C. Then in a sufficiently small punctured neighbour­
hood of the point ° E CC there exist unique holomorphic functions PI' ... ,p" for 
which the ordinary differential equation 

(8) 

has the property: all its solutions are linear combinations of many-valued 
holomorphic functions of the form 

I(t)= f wid!, (9) 
I(t) 

where 15 is an arbitrary continuous family of integral (n -l)st homologies in the 
fibres of the Milnor fibration of the critical point ° of the function f 

DefiDitioa. Equation (8) is called the Picard-Fuchs equation of the form w. 

Example. Let / be a quasihomogeneous polynomial of type (OCI, ••• ,cx,,) of 
weight 1. Let w be a quasihomogeneous polynomial differential n-form of type 
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(al,' .. , a,,) of weight r. This means that relative to the stretch function 

the polynomial and the form have the properties: 

u:t us suppose that I has an isolated critical point at the origin and that there 
eXists at !east one cla~s of h~mologies, vanishing at the critical point of the 
polynoIDlal J, over whIch the Integral ofthe form w is different from zero. Then 

. dl/dl=(r-1)//1 

is the Picard-Fuchs equation of the form w. In particular, for/=xi+ ... +~ 

dl/dl=(n/2 -1)/// 

is the Picard-Fuchs equation of the form dx1 /\ ••• /\dx". Indeed 

The stretch function g.t induces an isomorphism between the homolOgies of the 
fibres of the Milnor fibration~ Therefore all integrals of the form w/dl have the 
form const . I r - 1 • 

Remark. We can sh~w (using Corollary 1 of the theorem about determinants) 
that the ord.er .o~ a Picard-Fuchs equation of a sufficiently general form is equal 
to the multiplICIty of the critical point. 

Proof of.the theorem. Let 151 (I), . .. ,15,,(1) be a basis, depending continuously on 
I, of the Integral (n -1)st homologies in the fibre of the Milnor fibration ofthe 
critical point of the function f Let us consider the many-valued vector function 

1(/)=( J w/dl,· .. , J W/dl ). 
,,(r) ' .. (r) 
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For any natural number k let us denote by LII:(/) c: (;" the subspace generated by 
the vectors 

1(/),/(1)(1), . .. ,/(11:)(/). 

The subspace L,,(I) depends on the choice of the argument I . • flowever, its 
dimension does not depend on the choice of the argument 1 (under change of 
argument all the vectors are multiplied by the monodromy operator). For all 1 

with sufficiently small modulus the dimensions of the subspaces LII:(/) are equal. 
Indeed, the dimension of the subspace is the dimension of the maximal non-zero 
minor of the matrix, consisting of the coordinates of vectors generating the 
subspace. According to Theorem 10.8, the minors of the matrix consisting of the 
coordinates of the vectors I, . .. ,/(11:) can be expanded in series in a neigh­
bourhood of the point 1 = O. Therefore, if a minor is not identically equal to zero, 
then it is not mapped to zero in a sufficiently small punctured neighbourhood of 
the point 1 = O. Let, then, I be the smallest natural number for which the vector 
1(1)(1) is a linear combination of the vectors 

1(/), 1(1)(t), . .. ,/(I-l)(t) 

(for all 1 with sufficiently small modulus). We have 

(10) 

where PI,' .. ,PI are holomorphic functions in a punctured neighbourhood of 
zero. These functions are single-valued, since under change of argument 1 the 
function 1 and all its derivatives are multiplied by the monodromy operator. By 
construction each coordinate of the vector function 1 is a solution of equation 
(10), and the linear combinations of the coordinates generate the l-dimensional 
solution space. The theorem is proved. 

Corollary. The order of the differential equation (8) is not greater than the 
multiplicity of the critical point 0 of the function f 

Definition. Let 

be a differential equation, the coefficients of which are defined in a punctured 
neighbourhood of the point 1 = 0 and are holomorphic. Then t = 0 is called a 
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singular point of the equation if at least one of the coefficients cannot be 
holomorphically continued to the point t = O. The point 1 = 0 is called regular 
singular point, ifthe point 1 = 0 is singular and the coefficients of the equation can 
be represented in the form 

where the functions Pi> . .. ,~ are holomorphic at 1 = O. 

Example. Let / and W be the same as in the previous example. The Picard-Fuchs 
equation of the form W has for 1=0 a non-singular point ifr=1 and a regular 
singular point if r =1= 1. 

Theorem 12.4 (see [79]). A necessary and sufficient condition for the singular 
point 1 = 0 to be a regular singular point of the differential equation 

is that an arbitrary solution of the equation in an arbitrary sector a < arg 1 < b 
grows no faster, as 1-+0, than a suitable power of the parameter /(I)=o(rN) 
for some N. 

Corollary. For the Picard-Fuchs equation of a holomorphic differential form 
(see (8» the point 1 = 0 is either a non-singular or a regular singular point. 

Indeed, see Theorem 10.7. 

Idea of the proof of sufficiency. We use induction on I. For 1= 1 the theorem is 
true, since 

Let us suppose that we have proved sufficiency for I=m and let us prove 
sufficiency for 1= m + 1. First, the initial equation has a solution of the form 

where a e G::, and tP is a function, holomorphic at 1 = O. Indeed if 
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is a fundamental system of solutions, then we can take as 10 the eigenvector L Cj~ 
of the monodromy transformation of the solutions (a and the eigenvalue A. are 
connected by the relation A.=e"i,,). Second, for any j, 

is a holomorphic function. Third, the change 

1=/ofJdl 

reduces the equation to a homogeneous linear equation of order m. The 
coefficients of the new equation can be explicitly calculated in terms of the 
coefficients of the original equation and expressions of the form 1/1)/10. By the 
induction hypothesis the new equation has a regular singular point. Returning to 
the original equation and using explicit formulae for the coefficients, we obtain 
the regularity of its critical point. 

Idea of the proof of necessity. The change of variables 

Y1 =1, Y2 =1/(1), . .. ,YI=/I-1[11-1) 

reduces the equation to the system of homogeneous linear first order equations: 

dy/dl = Ay, 

in which the matrix A has for 1 = 0 a pole of first order. Then necessity follows 
from Theorem 12.6 which is discussed below. 

The Picard-Fuchs equation describes integrals of a single form. Let us 
consider a system of differential equations, describing the integrals of forms 
generating a basis of the vanishing cohomology. Such a system contains 
information, not only about the forms, but about the critical point of the 
function. 

12.2.2 Integrals of fonns generating a basis in tbe vanisbing cohomology 

Let the function/:(G::'"O)-+(G::,O) be holomorphic at the point OeC' and have 
there a critical point of multiplicity p. Let WI, • •. ,W,. be holomorphic dif­
ferential n-forms, given in a neighbourhood of the point 0 e G::" and constituting a 
trivialisation for the critical point 0 of the function f (see page 317). 
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~ 12.5. In ~ sufficiently small punctured neighbourhood of the point 0 e C[ 

there eXIsts a umque J.l x p matrix A of holomorphic functions for which the 
system of ordinary differential equations 

dJi " . 
-d = L: AU", j=l, ... ,p, 

t "=1 (11) 

possesses the property: all the solutions of the system are linear combinations of 
vector functions of the form 

l(t)=(J wIld!, ... , J W"ldf\ 
. 6(,) 1('») (12) 

where lJ is an ar~itrary con~inuous family of integral (n -1 )st homologies in the 
fibres of the Mdnor fibratIOn of the critical point 0 of the function! 

Definitioll. The system (11) is called the Picard-Fuchs equation of the trivialisation 

The proof of the theorem is analogous to the proof of Theorem 12.3. 

~emark. The coefficients of the matrix A are meromorphic at the point t = 0 in 
VIew of Theorem 10.8. 

Example of the Picard-Fuchs equations of a trivialisation. Let 

j=xr+ l + ... +X:+ l • 

Let w»jeJ ~ t~e.set .offorms, defined before Lemma 11.6 on page 314. These 
forms are a tnVlabsatIOn for the critical point of the functionj(Corollary 2 of 
Lemma 11.6). The Picard-Fuchs equations of this trivialisation are the system 

d/ildt=(Ul + ... +j,,)/(p+1)-1)li/t, jeJ. 
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12.2.3 The lattice in the solution space 

There can be chosen a p-dimensional integer lattice in the linear space of 
solutions of the Picard-Fuchs equations of a trivialisation: a solution belongs to 
this lattice if it has the form (12), that is if its coordinates are integrals over a class 
of the continuous family of integral homologies. This lattice po~sesses two 
properties: 

1. A basis over Z of the lattice is a basis over c:: of the p-dimensional complex 
space of all solutions of the system. 

2. Let us consider the monodromy operator of the solutions, that is the linear 
operator in the solution space, generated by analytic continuations of solutions 
along a path going once anticlockwise round the point t = O. Then both the 
monodromy operator itself and its inverse preserve the lattice. 

Let us denote by V the space of solutions, by Vz the lattice, and by M the 
monodromy operator. Then properties 1 and 2 can be written: 

Property 1 corresponds to the assertion: the natural image of the group 
H"-l(X,, Z) in H"-l(X,, C[) forms a p-dimensional integer lattice, a basis for 
which over Z is a basis over c:: in H"-l (X" C::) (here X, is the fibre of the Milnor 
fibration ofthe critical point 0 of the function!). Property 2 corresponds to the 
assertion: the monodromy operator, acting on H" -1 (X" C[), preserves the image 
of the group H,,_l(X', Z). 

Let us define the real subspace in the space of solutions as the real vector space 
generated by the lattice: 

VJl === Vz ®zR.. 

The space V of all SOlutions of the system is the complexification of the real 
subspace: 

This decomposition defines in V an operation of complex conjugation. 

R~ The relationship between the asymptotics of solutions and the 
operation of complex conjugation leads to the concept of the mixed Hodge 
structure of a critical point of a holomorphic function (see Chapters 13, 14 
below). 
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A structure, analogous to a lattice, exists in the space of solutions of the 
Picard-Fuchs equation of a holomorphic differential n-form (see (8». That is, we 
can choose in the linear space of its solutions a module over Z with p. generators: 
a solution belongs to the module if it has the form (9). In this case also the 
monodromy operator and its inverse preserve the module. 

12.2.4 The cbange in the system of equations under a change of triviaiisatiOD 

Let us make explicit what happens to the system of equations (11) under change 
of trivialisation~ Let wi, ... ,w~ be the new trivialisation. Put 

. /[}(t)= I wJldf, j, /=1, ... ,p.~ 
6,(/) 

By the definition of trivialisation there exists for any t from a sufficiently small 
punctured neighbourhood of the point t=O a unique invertible p. x p. matrix Q(t) 
for which 

Ji(t)=L Q!(t)r(t), j=1, ... ,p.~ 

The coefficients of the matrix Q (just as the coefficients of the matrix A above) are 
single-valued holomorphic functions, defined in a punctured neighbourhood of 
the point t=O~ The coefficients of the matrix Q are meromorphic at t==O by 
virtue of Theorem 10.8. The new system of equations has the form 

The solutions of the old system are connected with the solutions of the new 
system by the meromorphic transformation 

I=QI'. 
(13) 

This transformation carries the lattice in the space of solutions of the new system 
into the lattice in the space of solutions of the old system~ The monodromy 
operator in the space of solutions commutes with this transformation. 

Lemma 12.S. If the forms 

W1. ... ,w~ 
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make up a basis trivialisation (see page 317), then the coefficients of the matrix Q 
are holomorphic for t = O. 

Proof. See Property II of trivialisations on page 317. 

Corollary. If both the forms W1,' .• ,w,. and the forms wi, ... ,w~ are basis 
trivialisations, then the coefficients of the matrix Q are holomorphic at 
t=O and the matrix Q(O) is invertible. 

Therefore the Picard-Fuchs equations of two basis trivialisations are mapped 
onto each other by a holomorphic invertible transformation (13) of the unknown 
functions. This transformation preserves the lattice in the space of solutions of 
these equations. 

We shall prove that, conversely, any holomorphic change of unknown 
functions in the Picard-Fuchs equations of a basis trivialisation, which is 
invertible for t = 0, can be induced by a transition to a new basis trivialisation. 

Lemma 12.6. Let the forms wi, ... ,w~ be a basis trivialisation (see page 317). 
Q be an invertible p. x p. matrix of holomorphic functions, given on a 
neighbourhood of the point 0 E cr. Then there exist forms W1,' •• , w,., which are a 
basis trivialisation and for which the transition (13) from the Picard-Fuchs 
equations of the trivialisation W1, ••• ,w,. to the Picard-Fuchs equations of the 
trivialisation 

I I 
Wt. ... ,w,. 

is given by the matrix Q~ 

Proof. As the required forms we can take the forms 

w}=L Q(f)!.w;, j=1, ... ,p., 

where Q(J) is a matrix function in a neighbourhood of the origin in C', induced 
from the matrix function Q by the map j:(C',O)-+(cr, 0). 
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A structure, analogous to a lattice, exists in the space of solutions of the 
Picard-Fuchs equation of a holomorphic differential n-form (see (8». That is, we 
can choose in the linear space of its solutions a module over Z with Jl generators: 
a solution belongs to the module if it has the form (9). In this case also the 
monodromy operator and its inverse preserve the module. 

12.2.4 The change in tbe system of equations under a change of trivialisation 

Let us make explicit what happens to the system of equations (11) under change 
of trivialisation. Let wi, ... ,w~ be the new trivialisation. Put 

Iji(t) = J wjld/, j, 1= 1, ... ,Jl. 
",(t) 

By the definition of trivialisation there exists for any t from a sufficiently small 
punctured neighbourhood of the point t ~ 0 a unique invertible Jl x It matrix Q(t) 
for which 

Ji(t)=L Q!(t)r(t), j=1, ... ,Jl. 

The coefficients of the matrix Q (just as the coefficients of the matrix A above) are 
single-valued holomorphic functions, defined in a punctured neighbourhood of 
the point t=O. The coefficients of the matrix Q are meromorphic at t=O by 
virtue of Theorem 10~8. The new system of equations has the form 

The solutions of the old system are connected with the solutions of the new 
system by the meromorphic transformation 

I=QI'. (13) 

This transformation carries the lattice in the space of solutions ofthe new system 
into the lattice in the space of solutions of the old system~ The monodromy 
operator in the space of solutions commutes with this transformation. 

Lemma 12.5. If the forms 

wi, ... ,w~ 
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make up a basis trivialisation (see page 317), then the coefficients of the matrix Q 
are holomorphic for t = O. 

Proof. See Property II of trivialisations on page 317. 

Corollary. If both the forms Wi" •. ,w,. and the forms wi, ... ,w~ are basis 
trivialisations, then the coefficients of the matrix Q are holomorphic at 
t=O and the matrix Q(O) is invertible. 

Therefore the Picard-Fuchs equations of two basis trivialisations are mapped 
onto each other by a holomorphic invertible transformation (13) of the unknown 
functions. This transformation preserves the lattice in the space of solutions of 
these equations~ 

We shall prove that, conversely, any holomorphic change of unknown 
functions in the Picard-Fuchs equations of a basis trivialisation, which is 
invertible for t=O, can be induced by a transition to a new basis trivialisation. 

Lemma 12.6. Let the forms wi, ... ,w~ be a basis trivialisation (see page 317). 
Q be an invertible Jl x Jl matrix of holomorphic functions, given on a 
neighbourhood of the point 0 E £. Then there existforms Wl>' •• ,w,., which are a 
basis trivialisation and for which the transition (13) from the Picard-Fuchs 
equations of the trivialisation Wi, ••• , w,. to the Picard-Fuchs equations of the 
trivialisation 

wi, ... ,w~ 

is given by the matrix Q. 

Proof. As the required forms. we can take the forms 

Wj= L Q(f)tw;, j= 1, ... , Jl, 
r 

where Q(f) is a matrix function in a neighbourhood of the origin in C', induced 
from the matrix function Q by the map f: (C', 0)-+(£, 0). 

I 
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12.2.5 The definition of the Picard-Fuchs singularity 
of a finite-multiplicity critical point 

Le.t A be a J.I. x J.I. matrix of holomorphic functions, given in a punctured 
neighbourhood of the point 0 E cr. Let us consider the system of differential 
equations 

" dJijdt= L Ai/I:, j=1, ... ,J.I.. 
1:=1 

(14) 

Let us suppose that in the J.I.-dimensional space of solutions of this system there is 
given a J.I.-dimensional integer lattice, a basis of which is a basis over cr of the 
whole solution space (that is, if V is the solution space and Vz c V is the lattice 
then V = Vz ®z cr)~ Let us consider the monodromy operator M of the solutions 
(that is the linear operator in the solution space generated by analytic 
continuation of solutions along a path going once clockwise round the point 
t = 0). Let us suppose that the monodromy operator and its inverse preserve the 
lattice (that is M(Vz)=M-1(Vz)= Vz). In this case the system (14) is said to be 
rigged and the lattice in the space of solutions is called a rigged system. 

Examples of rigged systems satisfy the Picard-Fuchs equations of a tri­
vialisation (see (11», and the rigging of these systems give solutions of the 
form (12). 

Remark. A system of differential equations can be rigged if and only if in the 
space of its solutions there exists a basis, with respect to which the monodromy 
operator and its inverse are integral. 

Let us consider two rigged systems of J.I. equations. Let us denote their 
matrices, solution spaces and riggings, respectively, by 

A, V, Vz, A', V', Vi 

These systems are said to be equivalent if in a neighbourhood of the point 0 E cr 
there exists an invertible J.I. x J.I. matrix Q of hoi om orphic functions for which the 
change of variables 

[i{t) = L Q!{t)r{t), j=1, ... ,J.I., 
r 
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maps the first system into the second, moreover preserving the rigging, that is 

An equivalence class of systems is called a singularity of rigged systems of 
differential equations. 

According to Lemmas 12.5 and 12.6 the Picard-Fuchs equations of basis 
trivialisations constitute exactly one equivalence class. This equivalence class is 
called the Picard-Fuchs singularity of the critical point 0 of the.holomorphic 
function! 

Problem. Describe the Picard-Fuchs singularity of a critical point. 
For example, indicate the normal form of the singularity. Show which 

singularities of rigged systems can be Picard-Fuchs singularities of critical 
points~ 

Reasonable questions about Picard-Fuchs singularities of critical points have, 
very likely, reasonable answers. For example, a Picard-Fuchs singularity has a 
diagonal representation {that is a representation of the form 

if and only if the critical point is holomorphically equivalent to the critical point 
of a quasihomogeneous function. {Proof: The Picard-Fuchs singularity of the 
critical point of a quasihomogeneous function has a diagonal representation 
according to [341] or [239, Example (6.7)], and the converse assertion can easily 
be derived from [306] (compare with [363])). 

Conjecture. The Picard-Fuchs singularities of finite-multiplicity critical points 
are different for holomorphically inequivalent critical points, at least for nearby 
ones. 

This conjecture is analogous to Torelli's theorem in algebraic geometry 
(see [141], [9]). 

As a circumstance stimulating the study of the problem and supporting the 
conjecture we note that the Picard-Fuchs singularity of a critical point 
determines the mixed Hodge structure ofthe critical point. See § 13.2 below for 
further details. 
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12.2.6 The Picard-Foe. equations of a triviaJisation have 
a regular singular point 

We recall a classical theorem from the theory of ordinary linear differential 
equations. 

Theorem 12.6 (see [79]). Let A be a Jl. x Jl. matrix of holomorphic functions in a 
punctured neighbourhood of the point 0 e cr~ Let us consider the system of Jl. 
homogeneous linear differential equations 

dI/dl=AI,I(I)eC[". (15) 

Then the following properties of the system of equations are equivalent. 
1. Let 

I=(JI, ... ,I") 

be an arbitrary solution of the system of equations. Then in an arbitrary sector 
a<argl<b each coordinate of the solution grows, as 1-+0, no faster than a 
power of the form: 

for some N. 

2. There exists an invertible Jl. x Jl. matrix Q of holomorphic functions in a 
punctured neighbourhood of the point 1=0, meromorphic at the point 1=0, for 
which the substitution 1= QI' transforms the original system of equations into a 
system of equations with a simple pole at the point 1=0, that is the matrix of 
functions 

has at the point 1=0 a pole of order no higher than the ftrst. 

Definition. The point 1=0 is called a singular point of the system of equations 
(15), if at least one of the coordinates of the matrix A cannot be continued 
holomorphically to the point 1=0. A singular point of the system of equations 
(15) is called regular if the system satisftes the properties 1 and 2 indicated in 
Theorem 12.6. 
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The Picard-Fuchs equation of a trivialisation has at the point 1=0 a regular 
singular or a non-singular point in accordance with Theorem 10.7. 

Remark. The point 1=0 is a non-singular point of the Picard-Fuchs equation of 
the trivialisation if and only if the critical point 0 of the function f is non­
degenerate, the number of variables of the function is equal to two and the 
trivialisation is a basis trivialisation. (The proof follows easily from Theorem 
1O~8 and Theorem 4.6~)~ 

Idea of the proof of Theorem 12.6. 
(1) => (2). Let M be the monodromy transformation of the solutions, generated 
by going anticlockwise round I = O~ Let In M be one of the possible values of the 
logarithm of the matrix M. Let B be the matrix of a fundamental system of 
solutions of the equation (15)~ Then 

P=Bexp( -lnl lnM/21ti) 

is a matrix of meromorphic functions. The change I = PI' reduces the equation to 
the form 

d/'/dl= -(lnM/21til)I'. (16) 

Remark 1. The matrix 

exp (-lnl In M/21ti) 

is the matrix of a fundamental system of solutions of the equation (16). Therefore 
the solutions of the equation (15) can be expanded in a series of the form 

~ at ... I"(ln t)t 

(in the presence of the property indicated in section 1 of the theorem); compare 
with the proof of Theorem 10.2. 

Remark 2. An arbitrary system of equations (15) can be reduced by change of 
variables 1= PI' to the form (16). However Pwill not always be a meromorphic 
matrix. 
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(2)::;.. (1). Since A has a pole of first order, 

dllBllldr~const IIBll/r 

where r = Itl~ Therefore 

For more detail see [111]. 

12.3 The Gauss-Manin connection 

In this section we shall discuss a geometrical interpretation of a system of 
differential equations which are satisfied by the integrals of hoi om orphic forms 
over the classes of continuous families of integral vanishing homologies. 

With an arbitrary locally trivial fibration 1t there is associated the complex 
vector bundle of kth (co)homologies of its fibres. In this vector bundle there is 
defined a natural operation of translation of the fibres over curves in the base 
(since the (co )homologies of nearby fibres of the initial fibration are canonically 
isomorphic). The operation of translation is called the Gauss-Manin connection 

in the (co)homology fibration. 
A many-valued covariantly constant section ofthe (co)homology fibration is a 

many-valued section (that is a section ofthe (co )homology fibration, lifted to the 
universal cover of the base), the values of which are invariant under the 
operation of translation. Covariantly constant sections make up the first 
important class of sections of the (co)homology fibrations. 

Let us suppose now that the fibration 1t is complex analytic. Let us consider on 
the total space of the fibration a holomorphic differential k-form, the restriction 
of which to the fibre is closed~ The form determines a (single-valued) section of 
the fibration of kth cohomologies: a point of the base is mapped to the 
cohomology class of the restriction of the form to the fibre lying over the point. 
The sections obtained in such a geometrical way form the second important class 
of sections of the cohomology fibration (the class of geometric sections, for a 
precise definition see § 12.3.2). The fibrations of the kth homologies and kth 
cohomologies are in a natural way conjugate. Having a covariantly constant 
section of the fibration of kth homologies and a geometric section of the 
fibration of kth cohomologies and calculating pointwise the value of one section 
on the values of the other, we obtain a many-valued function on the base. The 
values of this function are none other than the integrals of the form giving the 
geometric section over a cycle representing in the fibres the homology which is 
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the values of the covariantly constant section. Such functions on the base of the 
Milnor fibration were considered in Chapter 10. 

Let us suppose that there is given a basis of geometric sections and it is known 
how to translate cohomologies with respect to coordinates given by this basis. 
Let us suppose that we want to find the coordinates of the covariantly constant 
sections. Then to find them it is necessary to solve a system of differential 
equations of first order. This system of differential equations for the case of the 
Milnor fibration of a critical point is conjugate to the Picard-Fuchs equation of 
the trivialisation given by a set of forms defining the bases of the geometric 
sections (see § 12.2). Now let us discuss these facts in more detan. 

12.3.1 The (co)bomological fibration associated with a locally trivial fibration 

Let 1I::X -+B be a locally trivial fibration (not necessarily a vector bundle). For 
any k~O we define complex vector bundles of k-dimensional homology and k­
dimensional cohomology of the fibres of the fibration 11:. Put 

Denote by 11:. the natural projection Hk-+B. 
Let U c B be a contractible open subset. Then 11: -1 (U) is homeomorphic to a 

direct product of the fibre and the set U. The natural inclusion of an arbitrary 
fibre over U into 11: - 1 (U) induces an isomorphism of (co )homologies. In this way 
we have defined a trivialisation of the projection 11:. over open contractible 
subsets of the base B. The constructed trivialisations define over 

the structure of a complex vector bundle. This bundle is called the bundle of 
k-dimensional homology associated with 11:. 

The bundle of k-dimensional cohomology associated with the bundle 11: is 
defined analogously. The bundles of k-dimensional homology and k-dimen­
sional cohomology are, in a natural way, conjugate (since k-dimensional 
homology and k-dimensional cohomology are conjugate). 

Remark. The transition functions of the constructed trivialisations are locally 
constant. 

In the (co)homology bundle there is defined a natural operation of parallel 
translation of fibres over curves in the base. (If a curve is given in the base then 
there is induced by it from 11: a fibration over a segment. This fibration is trivial. 
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Therefore the (co )homology of the fibres over the initial and final points of the 
curve are canonically isomorphic.) The operation of parallel translation 
possesses the following properties: 

1. The map of the fibre over the initial point of the path into the fibre over the 
terminal point of the path is a linear isomorphism. 

2. The map does not depend on the choice of curve in the homotopy class of 
curves with fixed ends. 

The operation of translation of (co)homologies is called the Gauss-Manin 
connection in the (co)h~.?logi5al fibration. The operation of translation in the 
homological fibration and in the cohomological fibration are coordinated _ 
translation commutes with dualization. 

A section of the (co)homological fibration over an open subset of the base is 
said to be covariantly constant if its values are invariant relative to parallel 
translation along any curves lying in this open set. 

If the base B is locally simply connected (a manifold, for example), then any 
vector of an arbitrary fibre of the (co )homological fibration can be extended, in a 
unique way, to a covariantly constant section over a sufficiently small neigh­
bourhood of its projection into the base (for this the vector must be parallel 
translated into nearby fibres). Further extension of this covariantly constant 
section leads to a many-valued covariantly constant section over the entire base, 
that is to a covariantly constant section of the (co )homological fibration, lifted to 
the universal cover of the base. 

In each fibre of the (co )homological fibration there are additional structures: a 
real subspace and in it an integral lattice. The real subspace is the natural image 
in the (co )homologies of the fibres of the fibration 1t with complex coefficients of 
the (co )homologies with real coefficients; the integral lattice in the real subspace 
is the natural image of the (co)homology groups of the fibres with integer 
coefficients. A fibre of the (co )homological fibration is the complexification of its 
real subspace, the lattice generates the real subspace (under addition and real 
scalar multiplication). The real subspace and the integral lattice are invariant 
relative to parallel translation. 

Let us suppose that the base of the fibration 1t is a holomorphic manifold. 
Then the (co)homological fibration, associated with 1t possesses the canonical 
structure of a holomorphic vector bundle. Indeed, we define the holomorphic 
sections of the (co)homological fibration as sections having holomorphic 
coordinates relative to an arbitrary frame of the (co)homological fibration, 
formed from covariantly constant sections~ This definition is well-defined, since 
the transition functions between frames, arising from covariantly constant 
sections, are locally constant. 

Remark. In connection with the Gauss-Manin connection see [241,242,287]. 
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12.3.2 The (co)bomoiogicaI Milnor fibration of a defonnation 

Let f: (C[", 0)-+(<<:, 0) be the germ of a holomorphic function having a critical 
point of finite multiplicity p. Let 

F : (<<:,. x a::t, 0 x 0)-+(<<:, 0) 

be a deformation of the germ. Let G : X -+S be a specialisation of the deformation 
and let G: X'-+S' be the corresponding Milnor fibration (see page 287). The 
bundle of (n -1 )st (co )homologies associated with the Milnor fibration is called 
the (co)homological Milnor .fwration of the deformation (more precisely of the 
specialisation of the deformation). The (co)homological Milnor fibration 
possesses the canonical structure of a holomorphic vector . bundle. I~ the 
(co)homological Milnor fibration there is given a Gauss-Mamn connection. 

Remark. The fibre of the Milnor fibration has the homotopy type of a bouquet 
of (n -1 )-dimensional spheres. Therefore the associated bundle of kth 
(co )homologies is interesting only for k = n -1. .. 

Let us define the class of geometric sections of the cohomologIcal Mllnor 
fibration. Let 00 be a holomorphic differential n-form on X. For any point bE S' 
the restriction of the Gelfand-Leray form to the fibre X. of the Milnor fibration 
defines the cohomology class 

The section 

of the cohomological Milnor fibration is called the geometric section of the 
form 00 and is denoted by s[oo]. 

Let ~ be a many-valued covariantly constant section of the homological 
Milnor fibration. Let us conSider on S' the many-valued function (s[oo], ~). 
According to our definition 

(s[oo],~) = J oojd"F. , 
Functions of this sort were considered in Chapter 10. 
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The function (s [ro], b) is holomorphic according to Theorem 1 O~5~ Therefore 
a geometric section of a holomorphic differential n-form is a holomorphic 
section of the cohomological Milnor fibration~ 

The collection of geometric sections is a module over the ring of holomorphic 
functions on the base S of a specialisation of the deformation: if s[ro] is a 
geometric section, and g is a holomorphic function on S, then the section gs [ro) is 
a geometric section of the form s [(g 0 G) . ro]. 

According to Theorems 12.1 and 122 there exists a set of Jl geometric sections, 
the values of which generate bases in all the fibres of the cohomological Milnor 
fibration, lying over the points of the base which are sufficiently near to the origin 
OeS. 

Remark. The module of germs of geometric sections at the origin of the base S of 
a versal deformation of a critical point of the germ f is a free module of rank Jl 
over the ring of germs of holomorphic functions at the origin of the base S. It is 
not hard to show, using the corollaries of Theorem 12.2 and the results of§ 12.1.5 
(see below the case of a trivial deformation of a germ). A basis of the module is 
given by geometric sections of forms for which the restriction of the function dee 
to the axis of values, passing through the origin, has at the origin a zero of 
minimal multiplicity, see the corollary of Theorem 12.2. 

12.3.3 The Gauss-Manin connection and tbe Picard-Fuchs equations 
of a trivialisatioo 

Let us restrict ourselves further to the case of a trivial deformation of a germ f. 
Let us consider a specialisation /: X -+S of the germ and the corresponding 
Milnor fibration/:X'-+S'. Let S1, • •• ,s,. be a basis over S' of the holomorphic 
sections of the (co)homological Milnor fibration. 

Lemma 12.7. On S' there exists a unique matrix B of hoI om orphic functions, for 
which the system of differential equations 

dJijdt= "fBil", j=1, ... ,Jl, (17) 

have the property: the section E Ji sJ is covariantly constant in the Gauss-Manin 
connection if and only if 

(Ji, . .. , ]I') 

is a solution of the system. 
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The system of differential equations (17) is called the equations of covariantly 
constant sections with respect to the frame S1, ••• ,s". 

Proof. The set of many-valued covariantly constant sections of the (co )homo­
logical Milnor fibration forms a Jl-dimensional complex vector space. Expand­
ing the covariantly constant sections in terms of the basis S1 , .•• , s,,' we obtain a 
Jl-dimensional complex vector space of holomorphic vector functions 

(It, . .. ,I"), 

invariant relative to analytic continuation of the vector functions around the 
point O. The existence and uniqueness of a system of differential equations, such 
that the vector functions of such a space serve as their solutions, is proved 
analogously to Theorems 12.3 and 12.5. 

Let ro1, ... ,ro" be holomorphic differential n-forms on X, the geometric 
sections of which 

form a basis of the sections of the cohomological Milnor fibration. The set of 
such forms was called in § 12.1 a trivialisation (their geometric sections give a 
trivialisation of the cohomological Milnor fibration). 

With such set of forms there are connected two systems of differential 
equations. On the one hand, there are the equations (17) of covariantly constant 
sections with respect to the frame S1, • •• , s,,' on the other hand there are the 
equations (11) of the Picard-Fuchs trivialisation. 

Lemma 12.8. The matrix B of the equations of the covariantly constant sections 
and the matrix A of the equations of the Picard-Fuchs trivialisation are 
connected by the relationship 

A+B*=O. 

Corollary. Let s1, ... ,~ be the frame of the homological Milnor fibration 
conjugate to the frame S1 , ••• ,s". Then the map 

([1, ... ,]I') 1--+ EJisi 



,I 
" 
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gives an isomorphism of the space of solutions of the Picard-Fuchs equations 
(11) and the space of covariantly constant sections of the homological Milnor 
fibration. Under this isomorphism the lattice in the space of solutions of the 
Picard-Fuchs equations, given in § 12.2.3, maps to the lattice of covariantly 
constant sections of the homological Milnor fibration formed by sections, the 
values of which belong to the natural image of the homology with integer 
coefficients. 

The proof of the lemma follows easily from the definitions. 

Lemma 12.8 and its corollary give a geometrical interpretation of the 
equations of the Picard-Fuchs trivialisation. 

Let us consider a basis trivialisation 

(see page 317). According to Property II of trivia lis at ions (page 318) there exist 
for any geometric section sew] holomorphic functions 

PI,··· 'PI" 

given in a neighbourhood of the point OeS, for which 

Consequently, the geometric sections of a basis trivialisation generate a basis 
of the module of germs of geometric sections at the point 0 e S. This prop­
erty singles out basis trivialisations among all trivialisations (Lemmas 12.5 
and 12.6). 

In this way, the Picard-Fuchs singularity of a critical point (see § 12.2.5) is the 
class of equations of covariantly constant sections of the homological Milnor 
fibration with respect to frames dual to frames of geometric sections generating a 
basis of the module of germs of geometric sections at the point OeS. 

Chapter 13 

The coefficients of series expansions 
of integrals, the weight 
and Hodge fIltrations and the spectrum 
of a critical point 

Let us consider the integral of a holomorphic differential form over a homology 
class of a continuous family of integral homologies of fibres of the Milnor 
fibration of a critical point. The function given by the integral can be expanded in 
a series of powers of the parameter and powers of the logarithm of the parameter 
of the family (Chapter 1 O)~ Each coefficient of the series depends linearly both on 
the form and on the continuous family of integral homologies. If the form is fixed 
but the continuous family varies, then each coefficient of the series is a linear 
function of the continuous families. Linear combinations, over ce, of continuous 
families of integral homology classes form the space of covariantly constant 
(with respect to the Gauss-Manin connection) sections of the homological 
Milnor fibration. Therefore (if the form is fixed) each coefficient of the series is a 
linear function on the space of covariantly constant sections of the homological 
Milnor fibration, that is it is a covariantly constant section of the cohomological 
Milnor fibration. 

This can be seen in a different way as follows. A holomorphic form 
corresponds to a (single-valued) geometric section of the cohomological Milnor 
fibration. Let us choose in the cohomological fibration a covariantly constant 
frame and let us decompose the geometric section in terms of this frame. The 
coefficients of the decomposition could be many-valued functions. It is not hard 
to convince oneself that the coefficients of the decomposition have the form 

Regrouping the terms, we obtain an expansion of the geometric section in a series 
of powers and logarithms of the parameter with coefficients which are 
covariantly constant sections. In order to define the integral of a form over 
homology classes of covariantly constant families of homologies, it is sufficient 
to determine the values of the coefficients of the series on a given covariantly 
constant section of the homological Milnor fibration. 



352 Integrals of holomorpbic forms over vanishing cycles 

And so a geometric section can be expanded in a series 

s[w} = L t"(lnt)" Ar,,.lk!, 
t.,. (1) 

where w is a form, and Ar,,. is a covariantly constant section~ The coefficients Ar,,. 
completely determine the cohomological properties of the form wid/, given on 
the fibres of the Milnor fibration. Furthermore, the collection of coefficients of 
all the forms contains information about the critical poinL 

In § 13.1 we shall prove the fundamental properties of the coefficients: 

where M" is the unipotent part of the classical monodromy operator M in 
cohomology. 

2. The section Ar,,. belongs to the root subspace of the operator M 
corresponding to the eigenValue exp ( - 2 7I:irl). 

3. Each section Ar,,. depends holomorphically on the form w (more precisely 
on its finite jet at the original critical point). 

We shall define further the principal part of a form (of a geometric section) as 
the sum of terms of the series (1) with fixed tx, which is the smallest of those 
occurring in the series. This smallest rl is called the order of the form. We shall 
formulate a results on the calculation of the order of a form. 

Section § 13.2 is fundamental. In that section we construct from the principal 
parts of all the forms a decreasing filtration· in the fibres of the cohomological 
Milnor fibration. This is called the Hodge filtration. We construct further, using 
the Jordan structure of the monodromy operator, an increasing filtration in the 
fibres of the cohomological Milnor fibration. It is called the weightfiltration. The 
subspaces of the filtrations in the different fibres are coherent: they form a 
holomorphic subfibrations of the cohomological Milnor fibration. In § 13.2 we 
shall formulate a theorem about the mixed Hodge structure in the fibres of the 
cohomological Milnor fibration of an isolated critical point. Chapter 15 will be 
devoted to a discussion of this theorem. 

In § 13.3 we shall define numerical characteristics of the weight and Hodge 
filtrations - the spectral pairs of a critical point. The set of spectral pairs is an 
unordered set of /l pairs of numbers, where /l is the multiplicity of the critical 
point. The first of the numbers in the pair is a rational number, the second is an 
integer. The unordered set of frrst numbers of the pairs is called the spectrum of 
the critical point. The spectral numbers are the logarithms of the eigenvalues of 

• A filtration of a linear space is an ordered sequence of linear subspaces. 
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the monodromy operator divided by 271:i. The choice of branch of the logarithm 
is made with the help of the principal part of the holomorphic forms. The second 
numbers in the spectral pairs are the Jordan levels, renormalised in the right way, 
of elements of the Jordan basis. The spectrum of a critical point possesses 
remarkable properties: 

1. The sum of all the spectral numbers is equal to 

/l(nI2 -1), 

where /l is the multiplicity of the critical point and n is the num~r of variables. 
2. The spectrum is symmetric relative to the point nl2 -1. 
3. The spectrum of a non-degenerate critical point consists of one number 

nl2 -1. If the spectrum is concentrated at the point nl2 -1, that is, if it consists of 
several numbers nl2 -1, then the critical point is non-degenerate. 

4~ The spectrum does not change under deformations of the critical point 
which do not change its mUltiplicity. 

5. If {rli}, i = 1, ... ,/l, is the spectrum of the critical po~~t of t~e germ 
f: «([n, 0)-+«([, 0), and {p}},j= 1, ... , '1, is the spectrum ofthecntlcal POlDt ofthe 
germ 9 : «([', 0)-+«([, 0), then 

{ai+pj+1}, i=1, ... ,/l, j=1, ... ,'1, 

is the spectrum of the critical point of the germ 

f +g : «([n x ([',Ox 0)-+«([, 0). 

These, and other properties of the spectrum also, are discussed in § 13.3 and in 
Chapter 14. 

13.1 CoefrICients of expansions in series 

13.1.1 Coefficients and the mOliodromy operator 

Let us consider the germ 

f : «([", 0)-+«([, 0) 

of a holomorphic function, with a critical point of finite multiplicity. Let us 
consider a specialisation f: X -+S of it and the corresponding Milnor fibrat~on 
f: X' -+S' (see page 287). If w is a holomorphic differential n-form on X and lJ lsa 
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covariantly constant section of the homological Milnor fibration, then 

f w/dj= L a",IJ1IJOn/)"/k f, 
"(t) ",IJ (2) 

according to Theorem 10.8. In this formula the coefficients 1/k f are inserted in 
order to simplify subsequent formulae. In the series (2) the numbers k and IX do 
not depend on the forms or the sections but are determined only by the 
monodromy operator of the Milnor fibration. For a fixed form and fixed k and IX 

the coefficients a",IJ determine the covariantIy constant many-valued section A'" 
of the cohomological Milnor fibration by the formula t,IJ 

By definition 

S[W](/) = L IIJOn I)" A:',IJ(/)/k f, 
",IJ (3) 

where s[w]. is the geometric section corresponding to the form w. The series (3) 
converges m each sector 

a<arg/<b 

if the modulus of the parameter 1 is sufficiently small. 

Lemma 13.1. 

(4) 

where Mu is ~he u~potent part of the operator in the (n -1)st cohomology. 
2. The sectIOn A",IJ belongs to the root subspace of the eigenValue exp ( _ 21[;IX) 

of the monodromy operator in the (n -1)st cohomologies. 

Remark. The.monodromy operator Min cohomologies (or in the covariantly 
constant ~tJons of the cohomological Milnor fibration) is the monodromy 
operator m the Gauss-Manin connection generated by going anticlockwise 
round the point 1=0. If Mbom is the monodromy operator in the (n-1)st 
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homologies, defined in an analogous fashion, then 

where • denotes the dual operator. 

The proof of the lemma follows from the following remark. Analytic 
continuation round the point t = 0 of the left-hand side offormula (2) leads to the 
integral ofthe formw/djover Mbom!5(t). Analytic continuation of the right-hand 
side round the point t = 0 consists of substituting the expression t~i in place of t. 
By equating the two methods of doing the analytic continuation, we obtain the 
lemma. For further details see [364]. 

Corollary of Lemma 13.1. 

1. The geometric section s[w] is determined by the sections A:',IJ with k=O. 
2. If, for any IX, AO,IJ = 0, then for all k, A:',IJ = O. 
3. For any IX 

t IJ (AO,IJ(t) + ... +Ontt-1A:'-l,«(t)/(n-1)!)= 

=exp On (IX Id -In(Mu)/2m))Ao.<<(t). 

(Note that the dimensions of the Jordan blocks of the monodromy operator are 
not greater than n, therefore the coefficients A:',IJ with k~n are equal to zero). 

4. The section given by the previous formula is a holomorphic single-valued 
section of the cohomological Milnor fibration. 

Lemma 13.2. Each section A:',IJ depends only on a finite jet of the form w at the 
point OeC[" and, furthermore, it depends on this jet holomorphically. 

Lemma 13.2 is a corollary of Lemma 12.3. 

13.1.2 Elementary sections 

Let A be a covariantly constant section of the cohomological Milnor fibration, 
belonging to the root subspace of the eigenvalue A. of the monodromy operator in 
cohomology. Let a be a rational number with the property: exp ( - 21[;a) = A.. Let 
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us define the section s [A, IX] of the cohomological fibration by the formula 

seA, a] =exp [In t(aId -In (Mu)/21ti)]A. 

The section seA, a] is called an elementary section of order a generated by the 
section A~ 

According to Lemma 13.2 a geometric section is a sum of elementary sections: 

s[w]= L s[A8: .. ,a] . .. 

Lemma 13.3.1. The sections[A, IX] is a single-valued holomorphic section of the 
cohomological fibration. 

2. If the covariantIy constant sections 

belong to the root subspace of the eigenvalue,1. of the operator M and are linearly 
independent over cr:::, then the values of the sections 

s[A1 ,a], ... ,s[A"a] 

are linearly independent at each point of the base of the cohomological fibration. 
3. We have 

tVa/ills [A, IX] =as[A, IX] +s[ -In (Mu)· A/21ti, IX], 

where Va/ill is differentiation with respect to the Gauss-Manin connection, that is 
differentiation of the coordinates of a section with respect to a covariantIy 
constant frame. 

Proof. Sections 1 and 3 are obvious. Section 2 follows from the linear 
independence of covariantly constant sections and the non-degeneracy of the 
linear transformation exp [.]. 

13.1.3 The order and the principal part of a fonn 

Let w be a holomorphic differential n-form on X (the domain of the 
specialisation of the germ I). The order of the form (or of the geometric section 
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determined by the form) is the smallest number IX for which the coefficient A8: .. is 
different from zero. The order will be denoted by cz(w). 

Remember that, according to Lemma 13.1, if A8: .. =O then Ar. .. =O for all k. 
The principal part of a form (or the geometric section determined by the form) 

is the single-valued holomorphic section Smax [w] of the cohomological Milnor 
fibration of the critical point of the germ / given by the formula 

Remark 1. Let " be a holomorphic differential (n -1 )-form on X. Its restriction to 
the fibre of the Milnor fibration determines a geometric section s[,,]. By 
construction 

s[,,]=s[df 1\,,]. 

This equation determines the order and the principal part of the form" and its 
geometric section. 

Remark 2. If the form defines the zero geometric section, then we put its order 
equal to + 00, and its principal part equal to the zero section of the 
cohomological fibration. 

'Example. Letfbe a quasi homogeneous polynomial and let w be a quasihomo­
geneous n-form. Then the integral of its Gelfand-Leray form on the homology 
classes of a covariantIy constant section has the form 

const . t .. - 1, 

where IX is the ratio of the degrees of the quasihomogeneous form and the 
polynomial. Therefore the principal part of the form is equal to its geometric 
section, that is 

s[w](t)=smax[w](t) = 1'"-1 A8: .. -1 (t). 

Let us formulate a useful property of orders and principal parts. 

Lemma 13.4 (see [364]). Let Wl , .•. , w" be holomorphic differential n-forms on 
X. Let 151 , ••• ,15" be a basis of covariantly constant sections of the homological 
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Milnor fibration of the critical point of the germ / ~ Let us denote by ord the order 
of zero at t = 0 of the function 

then 

det
2

:tf-+det2 (f Wildf ) , j, /=1, ... ,1', 
I,(t) 

ord/2~IX(wl)+ ... +IX(W,.), 

equality holding if and only if the principal parts of the forms 

Wl,···,W,. 

are linearly independent sections of the cohomological Milnor fibration. 
The proof is obvious. 

13.1.4 The order of a fonn and tbe index of tbe principal part 
of the asymptotics of an oscillatory integral 

Let us consider a complex oscillatory integral with phase / over an admissible 
chain concentrated in a neighbourhood of the critical point of the germ / , that is 
the integral 

f et'w, 
[T] 

where [r] eH,,(X, X-), and W is a holomorphic differential n-form on X 
(see § 11.1). According to Theorem 11.1 as T -+ + 00 the integral can be expanded 
in the series 

Let us denote by P(w, [r)) the largest a occurring in this series, that is P(w, [r)) is 
the index of the principal term of the asymptotic series. 

Lemma 13.S. For any chain [r] e H,,(X, X-) we have the inequality 

P(W, [r])~ -a(w)-1, 
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where a(w) is the order ofthe form w. Furthermore there exists [r] for which 

P(w, [r))= -1X(W)-1. 

Proof. See formulae (4)-(6) on page 303. 

13.1.5 The complex oscillation index 

Let us denote by lXmin the smallest number among the orders of holomorphic 
n-forms on X. The number 

is called the complex oscillation index of the critical point of the germ /. 
According to Lemma 13.5 the complex oscillation index is the largest possible 

value of the index of the principal term of the asymptotics of the complex 
oscillatory integral with phase / over an admissible chain concentrated in a 
neighbourhood of a critical point of the germ /. 

Example. For the critical points of the functions xl' + 1, and xt + ... + X; the 
complex oscillation index is equal, respectively, to -1/{J.l+ 1), -nI2. 

Lemma 13.6. Let us suppose that the germ /, restricted to the real subspace 
R"eC', takes only real values. Then the oscillation index of the germ 
flR.", defined in Chapter 6 is no greater than the complex oscillation index of the 
germ /. 

Proof. The complex oscillation index is equal to the largest possible value of the 
order of the complex oscillatory integral with phase / for all possible [r], w. The 
real oscillation index is equal to the largest possible value of the order of the 
complex oscillatory integral with phase / on the real contour [r.u for all possible 
w (see Theorem 11.3). 

As example 1 of Chapter 9 shows the complex oscillation index can be strictly 
greater than the real oscillation index. 
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Definition. The complex singular index of the critical point of a germ I is the 
number 

nl2 -(1 + 1Xm;.,), 

equal to the complex oscillation index increased by n/2~ 

Example. For the critical points of the functions xl' + 1, and .xf + ... + ~ the 
complex singular index is equal, respectively, to 1/2-1/{Jt+1), O. 

The complex singular indices are equal for stably equivalent points, see 
§ 13.3.5. The complex singular index is non-negative, see § 13.3.3. 

13.1.6 The order of a fonn and the resolution of the critical point 
of the geon f 

According to Theorem 7.3 the oscillation index of a critical point of a real 
analytic function is equal to the weight of the resolution of the singularity. We 
shall formulate a complex analytic analogue of this result. 

Let 1t: Y -+ X be a resolution of the singularity of the critical point 0 of the 
functionj: X -+S (wherej: X -+S is a specialisation of the germ f). This means 
that 

1. Y is a non-singular complex analytic n-dimensional manifold, 1t is a proper 
holomorphic map, inducing a biholomorphism between ~1t-l(O) and X'\,.O. 

2. the fibre (f 01t)-1(O) is a union of smooth divisors on Y, intersecting 
normally (see Sections 1-4 of the definition of resolution on page 195-196). 

A resolution of the singularity exists according to Hironaka's theorem [158]. 
Let us decompose the preimage of the critical point of the function j into the 

union of non-singular irreducible (n -l)-dimensional complex analytic sets 

To each of these irreducible components we can associate two well-defined non­
negative integers: the multiplicities of zero on this component of, respectively, 
the functionj 0 1t and the Jacobian of the map 1t. Let us denote these numbers by, 
respectively, k and m. The number 

-(m+1)/k 

is called the weight 0/ the component (compare with § 7.3.1). The maximum of the 
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weights of the components 

is called the weight of the resolution oj the singularity. 
Let Q) be a holomorphic differential n-form on X. To the form 1t.Q) on Yand 

an arbitrary component E;, i = 1, ... , N, we can associate two well-defined non­
negative integers: the multiplicities of zero on this component of, re~pectively, 
the functionjand the form 1t.Q). Let us denote these numbers, respectively, by k 
and m. The number 

-(m+1)/k 

is called the weight oj the component relative to Q). The maximum of the weights 
of the components 

is called the weight relative to Q) oj the resolution of the singularity. 
It is easy to see that the weight of the resolution of the singularity is equal to the 

weight of the resolution of the singularity relative to the form 

1'beorem 13.1 (see [364]). 
1. The complex oscillation index of the critical point of a germ I is not greater 

than the weight of the resolution of the singularity of the critical point. The 
complex oscillation index is equal to the weight of the resolution if the weight of 
the resolution is not less than -1. 

2. Let Q) be a holomorphic differential n-form on X. Let oc(Q) be its order. Then 
the number 

-(OC(Q)+ 1) 

is not greater than the weight relative to Q) of the resolution of the singularit~ of 
the critical point of the germ I.-Furthermore -(OC(Q)+ 1) is equal to the weight 
relative to Q), if the weight relative to Q) is not less than -1. 

Remark. This theorem is analogous to Theorem 7.5 and is a more precise version 
of Theorem 10.7'. The results of the theorem concerning inequalities were proved 
also in [387]. 
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For the proofs of the inequalities in the results of the theorem we need to lift an 
arbitrary form w to Yand estimate in terms of the numbers k and m the integral 
of its Gelfand-Leray form in a neighbourhood of an arbitrary point of the 
preimage of the critical point of the germ /. For the proofs of the equalities in the 
results we must produce, for an arbitrary form w, relative to which the weight of 
the resolution is not less than -1, a continuous family of vanishing homologies, 
the integrals over which of the form wid/have the required order. For this we 
define in the right way the limit of the form n*(wldf) on each non-compact 
divisor 

more precisely on a suitable k(E;)-fold cover of this non-compact divisor~ The 
limiting form is a holomorphic (n -1)-form on covers, meromorphic near 
pairwise intersections of divisors. If the weight relative to the form w is not less 
than -1, then on one of the coverings the poles of the limiting form have no 
higher than the first order. According to Deligne's theorem (see [92, 142]) such a 
form generates a non-zero cohomology class. On this particular cover we choose 
an (n -1 )-dimensional cycle, over which the integral of the limiting form is 
different from zero. Movement of this cycle off the cover of the divisor in the level 
hypersurface of the functionf 0 n determines the required family of vanishing 
homologies. See [364], Chapter 4. 

13.1.7 The order of a fonn and Newton polyhedra 

Let us reformulate the result of Theorem 13.1 in terms of the Newton polyhedra 
of the critical point of the germ / and the form w. 

Let w be a holomorphic differential n-form on X Let us define a rational 
number, called the remoteness of the polyhedra of the germ / and the form w. 
Let us write w in the form 

gdx1 A ••• A dx", 

and let us consider the Newton polyhedron 

r(Xl ... x"g) 

of the Taylor series ofthe functiong, calculated at the critical point of the germ /, 
and multiplied by the product of all the variables. Let us consider a second 
polyhedron - the Newton polyhedron of the Taylor series of the critical point of 
the germ /. The remoteness of the polyhedra of the germ / and the form w is minus 
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the reciprocal of the coefficient of inscription of the first polyhedron in the 
second (see § 8.3.1, page 254). 

Theorem 13.2 (see [364] and also [106, 387]). Let us suppose that the Taylor series 
of the critical point of the germ / has a cr-nondegenerate principal pa~. 

1. The complex oscillation index of the critical point of the germ / IS not 
greater than the remoteness of the Newton polyhedron ofthe critical point. T~e 
complex oscillation index is equal to the remoteness if the Newton polyhedron IS 

remote (see the definitions in Chapter 6). _ 
2. Let w be a holomorphic differential n-form on X Let tX(w) be its order. Then 

the number 

-(tX(w) + 1) 

is not greater than the remoteness ofthe polyhedron of the germ / and the form 
w. Furthermore the number 

-(tX(w) + 1) 

is equal to the remoteness of the polyhedra of the germ and the form if the 
remoteness is not less than -1. 

Theorem 13.2 is derived from Theorem 13.1 in the same way as Theorems 8.3 
and 8A were derived from Theorem 7.5. 

Example. Let 

/ =~ +.xfxi +.4, 
and 

W=XIX2dxl A dx2. 

Then the complex oscillation index of the germ / is equal to - 7/18 and the order 
of the form w is equal to - 7/9. 

We now state the assertion from [380], cf. [314], which strengthens Theo­
rem 13.2: The number -(tX(w) + 1) is equal to the remoteness of the polyhedron 
of the germ and the form if the remoteness cannot be increased by adding to w a 
form of the type df A tJr,. . 

There exist complex analytic analogues of Theorems 6.5 and 8.5, for which 
see [364]. 
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13.2 'The Hodge and weight fdtrations in the fibres 
of the cobomological Milnor fibration of a critical point 

13.2.1 'The Hodge fdtration 

Among the holomorphic sections of the cohomological Milnor fibration we can 
single out a class of geometric sections. This consists of the sections generated by 
the Gelfand-Leray forms of holomorphic n-forms. There are many geometric 
sections (from them we can obtain a basis of the holomorphic sections of the 
cohomological fibration). However, geometric sections behave in a very special 
way in relation to covariantly constant sections as the point of the base tends to 
the point t = o. A characteristic of the asymptotic properties of geometric 
sections is the concept of the Hodge filtration of the cohomological Milnor 
fibration, defined below. The Hodge filtration is a decreasing sequence of 
analytic subfibrations of the cohomological Milnor fibration. The cohomology 
class of a fibre of the Milnor fibration (or, which is the same thing, a vector of the 
fibre of the cohomological Milnor fibration) belongs to the subfibration with 
number k if it is the value of the principal part of a geometric section, the order of 
which is not greater than n -k-1. 

Now let us give a more precise definition. Let us define a sequence of analytic 
subfibrations 

of the cohomological Milnor fibration of the critical point of the germ /. We 
shall call this sequence the Hodge filtration of the cohomological Milnor 
fibration f*: H"-l-+S' of the critical point of the germ /. Let us define 
subfibrations giving their sections. Let the fibres 

P, (teS') 

be the linear subspaces generated by the values of the principal parts of geometric 
sections or order not greater than n - k -1. If a section of such an order does not 
exist then we put P, = {O}. In other words P, are subspaces spanned by vectors of 
the form 

s ..... ;[oo](t), 

where 00 is a holomorphic differential n-form on X, of order not greater than 
n -k -1. Let us list some obvious corollaries of the definition. 

The coefficients of series expansions of integrals, ... 365 

Lemma 13.7. 1. For any keZ, teS', the subspace 

is the direct sum of its intersections with the root subspaces of the monodromy 
operator, that is the Hodge filtration is invariant relative to the semisimple part 
of the monodromy operator. 

2. For any keZ 

P(f*):Fl-+S' 

is an analytic subfibration of the cohomological Milnor fibration. 
3. The subfibrations of the Hodge filtration form a decreasing filtration, that is 

for any k 

4. If k~n, then F1(f*) is a subfibration of rank O. 
5. There exists a k for which P is the same as H,,-l. 

Proof. Section 1 is a corollary of Section 2 of Lemma 13.1. 

Let us prove Section 2. If the form is multiplied byfthen the geometric sections 
of the form are multiplied by t. Therefore the subspace P, is generated by the 
principal parts ofthe geometric sections, the weights of which lie within the limits 

n -k-2<(X(oo)~n-k-1. 

Now Section 2 is a corollary of Section 2 of Lemma 13.3. 
Section 3 is obvious. Section 4 is a corollary of Theorem 10.8. 
For the proof of Section 5 we need to produce a set of forms for which the 

principal parts form a basis of the sections of the cohomological Milnor 
fibration. According to the theorem on determinants, there exist on X 
holomorphic n-forms 

for which the geometric sections form a basis ofthe sections of the cohomologi­
cal fibration. If the principal parts ofthese forms form a basis of the sections then 
Section 5 is proved. If they do not form a basis then we must modify the forms. 
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For this we must take a suitable non-degenerate Jl x Jl matrix Q of hoi om orphic 
functions on S, induce by the mapfa matrix Q(f) of hoi om orphic functions on X 
and consider the new forms 

The existence of a matrix for which the principal parts of the new forms form a 
basis of the sections easily follows from the choice of the forms 

For further details see [364]. 

Remark. From the formulation of the theorem below on mixed Hodge structures 
(see also [364]) it follows that po is the same as H ft - 1 . 

Example 1. Let 

The cohomological Milnor fibration is a fibration of rank Jl of the reduced zeroth 
cohomologies of the fibres of the Milnor fibration (each of which consists 
of (P + 1) points). According to Lemma 11.3 

Example 2. Let 

/=xt+ ... +r.. 
The cohomological Milnor fibration is one-dimensional. According to the 
example in § 1()-.3A, 

and the subfibration F[,,/21(j*) is generated by the principal part of the form 

dxI A ••• A dx". 
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13.2.2 1be weight filtration of a linear operator 
(see [140, 142, 320)) 

367 

With a linear nilpotent operator (that is with a linear operator the eigenvalues of 
which equal zero) we can associate an increasing filtration in the space where the 
operator acts. We shall list below three equivalent definitions of it. The first of 
these is the least invariant and the most intelligible. The last definition is the most 
usual and probably the least intelligible. 

Let H be a finite-dimensional vector space, let N: H -+ H be a nilpotent linear 
operator, and let k be an integer. The sequence of subspaces 

(5) 

defined below is called the weight filtration of the operator N with central 
index k. 

Defmitionl. Let us consider an arbitrary Jordan basis ofthe operator N. Each 
subspace of the weight filtration is generated by a set, defined below, of vectors of 
the Jordan basis. Let us divide the elements of the basis into groups, putting into 
one group vectors of one Jordan block. We shall depict one group: 

0-+0-+ ... -+0, 

where the boxes are the vectors of the group, and the arrows are the action of the 
operator, the last vector mapping to zero. Now we shall depict all the groups one 
above the other, arranging them symmetrically relative to a vertical axis and 
reserving for the arrows the space of one box, see figure 79. To each vector of the 

[J-0-E] 
C)-E] 
C)-E] 
o 

lw •. , lW. lWa-I 
Fig. 79. 
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For this we must take a suitable non-degenerate Jl x Jl matrix Q of hoi om orphic 
functions on S, induce by the mapf a matrix Q(f) of hoi om orphic functions on X 
and consider the new forms 

W'=LQ(fY,Wj, j=1, ... ,Jl. 
j 

The existence of a matrix for which the principal parts of the new forms form a 
basis of the sections easily follows from the choice of the forms 

For further details see [364]. 

Remark. From the formulation of the theorem below on mixed Hodge structures 
(see also [364]) it follows that pO is the same as H ft - l • 

Example 1. Let 

The cohomological Milnor fibration is a fibration of rank Jl of the reduced zeroth 
cohomologies of the fibres of the Milnor fibration (each of which consists 
of{P+1) points). According to Lemma 11.3 

Example 2. Let 

/=xi+ ... +~. 

The cohomological Milnor fibration is one-dimensional. According to the 
example in § 103.4, 

and the subfibration FlII/2)(f.) is generated by the principal part of the form 

dxl A ••• Adxll • 
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13.2.2 1be weight mtratioo of a linear operator 
(see [140, 142, 320)) 

367 

With a linear nilpotent operator (that is with a linear operator the eigenvalues of 
which equal zero) we can associate an increasing filtration in the space where the 
operator acts. We shall list below three equivalent definitions of it. The first of 
these is the least invariant and the most intelligible. The last definition is the most 
usual and probably the least intelligible. 

Let H be a finite-dimensional vector space, let N: H -+ H be a nilpotent linear 
operator, and let k be an integer. The sequence of subspaces .. 

{O} c: ... c: JJ-ic: JJ-i+l c: ... c:H (5) 

defined below is called the weight filtration of the operator N with central 
index k. 

Defmitioo 1. Let us consider an arbitrary Jordan basis of the operator N. Each 
subspace of the weight filtration is generated by a set, defined below, of vectors of 
the Jordan basis. Let us divide the elements of the basis into groups, putting into 
one group vectors of one Jordan block. We shall depict one group: 

0-+0-+ ... -+0, 

where the boxes are the vectors of the group, and the arrows are the action of the 
operator, the last vector mapping to zero. Now we shall depict all the groups one 
above the other, arranging them symmetrically relative to a vertical axis and 
reserving for the arrows the space of one box, see figure 79. To each vector of the 

E]-EJ-E] 
O-[J 
O-[J 

EJ 
lw •.• Lw. lw •. \ 

Fig. 79. 
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basis we assign an integer - the signed distance to the axis of symmetry (in 
figure 79 the numbers are written in the boxes). Let w,,+lcH be the subspace 
generated by vectors of the basis with number no more than I (see figure 79). 

Definition 2. Let he H. Put 

1+ (h) = min {/lheker N'}, 

L (h) =max {/lh e 1m N
'
}. 

Let us define the subspace w" +I by the property 

Definition ~ (in the form of a lemma, see [320)). There exists a unique filtration 
(5), possessmg the following properties (i), (ii). 

(i) N(w,)c W,-2, leZ. 

Put 

According to (i) N induces a map grIW-+gr,_2 W. 

(ii) 

is an isomorphism, for Ie Z. 

Lemma 13.8 (see [320]). Definitions 1-3 are equivalent. 

13.2.3 11ae weight ffltration of the cobomological Milnor fibration 

Let us define a sequence of analytic subfibrations 

w,(f*): w,-+S', leZ 

of the cohomological Milnor fibration of the critical point of the germ /. We 
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shall call this sequence the weight filtration of the cohomological Milnor 
fibration of the critical point of the germ /. 

First we shall define the intersections of the fibres of the subfibrations 

{W,(f*)} 

with the root subspaces of the monodromy operator, and then we shall put the 
fibres of the subfibration equal to the direct sum of their intersections with the 
root subspaces. 

Let us denote by Hr 1 (X" CC) the root subspace of the eigenvalue A. of the 
monodromy operator in Hn

-
1 (X" CC). Let us denote by Nthe logarithm of the 

unipotent part of the monodromy operator. Now N is a nilpotent operator, 
commuting with the monodromy operator and so preserving its root subspaces. 

Suppose A. of: 1. Then as the weight filtration in 

we take the weight filtration of the operator N with central index n -1. Suppose 
A. = 1. Then as the weight filtration in 

we take the weight filtration of the operator N with central index n. Put the fibre 
over t of the fibration w,(f*) equal to 

Let us list the obvious corollaries of the definition. 

Lemma 13.9. 1. The weight filtration is an increasing sequence of analytic 
subfibrations of the cohomological Milnor fibration. 

2. The weight filtration is invariant relative to the Gauss-Manin connection 
(that is the covariant derivatives of sections of each subfibration belong to the 
same subfibration). 

3. The weight filtration is invariant relative to the action of the semisimple part 
of the monodromy operator. 

4. For any leZ and for any point teS' 
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Furthennore, if A. =F 1, then 

is an isomorphism, and if A.= 1, then 

is an isomorphism. 
The proof is obvious. 

Let us formulate one more property ofthe weight filtration. Remember that in 
the fibres of the cohomological Milnor fibration there is an operation, invariant 
relative to the Gauss-Manin connection, of complex conjugation: the space 

is the complexification of the natural image in H,,-l(Xt , (C) of the space 
H,,-1(Xt ,1R). Furthennore there is in the fibres an integral structure which is 
invariant relative to the Gauss-Manin connection: the lattice in H"-1 (Xt> (C) 
being the natural image of the group H" -1 (Xt> Z). 

Lemma 13.10. For any leZ the fibres of the subfibration W,if*) are invariant 
relative to conjugation. Furthermore the fibre of the subfibration W,if*) can be 
given in terms of coordinates with respect to a basis of the integer lattice by 
equations with integer coefficients. 

The proof follows easily from the definition of a weighted filtration. 

Example I. Let f = xl' + 1. The eigenvalues of the monodromy operator are 

exp (27tik/{J.t + 1», k=1, ... ,Il. 

Therefore {O}= W- 1 c: Wo=H'. 

Example 2. Let 

f=r.+···+~. 

Then (-1)" is the unique eigenvalue of the monodromy operator. Therefore 

{OJ = "'2[lIm-l c: "'2[1I/1]=H"-1. 
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Example 3. Let us suppose that the monodromy operator in the cohomology, 
vanishing at the critical point of a holomorphic function in n variables, has 
finite order (for example, for the critical point of a (semi)quasihomogeneous 
function). Then 

Remark 1. The dependence, indicated in the definition of the weight filtration, of 
the central index of the filtration on the eigenvalue ofthe monodromy operator is 
motivated by a theorem, formulated below, on mixed Hodge structures. The 
central index is chosen so that the weight filtration, together with the Hodge 
filtration, makes up a mixed Hodge structure. 

Remark 2. According to Theorem 3.12 the dimension of the Jordan blocks of the 
monodromy operator of a critical point of a function of n variables is not greater 
than n. Therefore a priori 

{OJ = W- 1(H1;Dc:-Wo(H1;Dc: ... c: "'2,,-1(H1;D=H1;L 

{OJ = Wo(H;-1)c: Wi (Hr-1)c: ... c: "'2,,-1 (Hr- 1)=Hr- 1
. 

However, according to the theorem formulated below on mixed Hodge 
structures the dimension of the Jordan blocks associated with the eigenvalue 1 is 
not greater than n -1. Therefore 

Wi (Hr- 1)= {O}, "'2,,_1(Hr-1)=Hr-1, "'2,,_l=W-l. 

13.2.4 1be reciprocal arrangement of the weight and Hodge ffltratiom 
(elementary properties) 

Lemma 13.11. For any k, leZthe intersection of the spaces P, W, together with 
the projection onto the base forms a holomorphic subfibration 

Pr'o w,(f*):Pr'o w,-S' 

of the cohomological Milnor fibration of the critical point of the germ f· 
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Proof. It is sufficient to prove that all the fibres of the projection 

have equal dimensions. Since the subfibration F"(f*) is generated by the 
principal parts of forms with given orders, it is sufficient to prove that the 
values of the principal part of an arbitrary form belong or do not belong to W, 
simultaneously for all points of the base (see Section 2 of Lemma 13.3). Let us 
prove this. According to formula (4) on page 354 the value of the principal part 
smax[w](t) at the point tES' belongs to W, if and only if the vector Ag:IZ(Q»(t) 
belongs to wI· This vector belongs to W, if and only if the section Ag:IZ(ID) is a 
section of the subfibration w,(f*), which is what we were trying to prove. 

For any I let us denote by 

gr,W(f*): gr, W ~S' 

the quotient fibration of the subfibrations w,(f*), W,-I (f*); its fibre is the 
quotient space 

where tES'. The fibration gr,W(f*) possesses an induced Gauss-Manin 
connection in view of Section 2 of Lemma 13.9. In the fibres of the fibration 

gr,W(f*) 

there are given a real and an integral structure (in view of Lemma 13.10) and an 
action of the semisimple part of the monodromy operator (in view of Section 3 of 
Lemma 13.9). 

Remark. The action of the monodromy operator in the fibres of the fibration 

gr,W(f*) 

is the same as the action of its semisimple part, see Sections 3 and 4 of 
Lemma 13~9. 

Corollary of Lemma 13.11. The projection into gr,W(f*) of the fibration 
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pic n w,(f*) defines a subfibration 

its fibre is the quotient space 

where tES'. 
The subfibration 

Pgr, W(f*) c gr, W(f*) 

is invarilmt relative to the action of the semisimple part of the monodromy 
operator (Lemmas 13.7 and 13.9) and invariant relative to the Gauss-Manin 
connection (Section 3 of Lemma 13.3). 

Let us consider the operator N - the logarithm of the unipotent part of the 
monodromy operator. The operator N defines a morphism of fibrations 

(that is a linear map on the fibres, commuting with the projection onto the base 
and preserving the class of holomorphic sections). 

Lemma 13.12. For any k, IEZ 

Proof. It is sufficient to prove that if a holomorphic differential n-form w 
possesses the properties: 
(i) it has order no greater than n -k -1 ; 
(ii) its principal part is a section of the subfibration 

w,(f*); 

then the projection of the section Ns....,.[w] into the quotient fibration 
gr'-2 W(f*) is a section of the subfibration 
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Note that according to Lemma 13.1 

(6) 

Therefore it is sufficient to produce two forms and a linear combination of them, 
for which the principal part possesses the properties: 
(iii) it is a section of the subfibration W,-2(f*); 
(iv) its projection into grl-2 W(f*) is proportional to the projection of the 
section Nsmax[co]; 
(v) its projection into grl-2 W(f*) is a section of the subfibration 

The first form is f co, 

The second form is the arbitrary form 

I/I=df /\", 

where d" = co. 
According to formula (3) on page 284 

, 
smax[I/I] = J smax[co](u)du = 1<1(01)+ 1 (A:'II(CD)/(a(co) + 1)-

o 

(7) 

where we have ommitted terms in which there occur either A:' ... (OI) , with k ~ 2, or 
(In It with k~ 1. A linear combination with the properties (iii)-(v) is the form 

fco-(a(co) + 1)1/1. 

Indeed, 

(8) 

where we have left out terms of the same sort. According to Lemma 13.1 we have 
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properties (iii) and (iv). Since the order of the linear combination is equal to 

a (co) + 1, 

we have property (v). The lemma is proved. 

Remark. As formulae (6) and (8) show, the operation of transition from smax[co] 
to smax[fco -(a(co) + 1)1/1] is very like the application to smax[co] of the logarithm 
of the unipotent part of the monodromy operator. In addition, the forms f co and 
fco-(a(co) + 1)1/1 generate one and the same element in 

U"(X)/df /\ gn-l(X), 

where UP(X) is the holomorphic p-forms on X. Therefore the formulae (6) and 
(8) show an analogy between the action in cohomologies of the logarithm of the 
unipotent part of the monodromy and the action in 

of the operation of multiplication by f For further details see § 14.3.5 and [363]. 

Let us now formulate a theorem about the mixed Hodge structure. Chapter 14 
will be devoted to a discussion of the results of this theorem and also its 
corollaries. For a detailed definition of the mixed Hodge structure see § 14.1. 

Theorem 13.3. (About the mixed Hodge structure, see [361,362,364]). The 
weight and Hodge filtrations form a mixed Hodge structure in the fibres of the 
cohomological Milnor fibration of a critical point, that is for any k, IE Z, IE S' 

(9) 

where EB is the direct sum and the bar denotes conjugation. 

Remark. The mixed Hodge structure in vanishing cohomologies was defined by 
Steenbrink in [343]. The weight filtration, defined in § 13.2.3, is the same as the 
weight filtration of Steen brink. The Hodge filtration, defined in § 13.2.1, differs, 
generally speaking, from the Hodge filtration of Steenbrink. The Hodge 
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filtration of § 13.2.1 and the Hodge filtration of Steenbrink coincide on the 
quotient fibration of the weight filtration. The Hodge filtration of § 13.2.1 and 
the Hodge filtration of Steen brink can be expressed simply in terms of each 
other: the Hodge subfibration F"(f*) of § 13.2.1 is generated by the principal 
parts of forms of orders belonging to the half-open interval 

(n-k-2, n-k-i]; 

if smax[w] is one such principal part, then 

is a section of the Hodge subfibration Ft,(f*) of Steen brink. The definition of the 
Hodge filtration of Steen brink uses the resolution of the singularity of the critical 
point of the germ f and does not use the asymptotics of integrals of hoi om orphic 
forms. For further details see [343,362,364,365]. 

For the proof of the theorem see [362,364] (the scheme of the proof is laid out 
in [362], for the missing details and for a different prooffor the case n=2 see 
[365)). The proof is derived from deep and non-trivial theory of deformations of 
Hodge structures ofthe cohomology of compact non-singular Kahler manifolds. 
This theory was hammered out by Griffiths, Schmidt and Deligne (see 
[140, 142,320,92)). In the cohomologies of compact non-singular Kahler 
manifolds there exists a natural filtration - a Hodge structure (see [71,405)). 
Each manifold corresponds to a point in the classification space of all Hodge 
structures. If the manifold depends holomorphically on parameters, then there is 
a holomorphic mapping of the parameter space into the classification space of 
Hodge structures (see [140, 142, 320)). This mapping is called the period map. 
The period map possesses very special properties, connected with the negative 
curvature of the classification space of Hodge structures. If the parameter space 
of a family of manifolds is a punctured disc, then by studying the asymptotics of 
the period map as the parameter of the family tends to a distinguished point of 
the disc we can obtain information about how the non-singular manifolds of the 
family become degenerate at it (see [142, 320]). In the local situation, indicated in 
Theorem 13.3, this theory is applied in the following way. As a representative of 
the germ f we take a polynomial P for which the point 0 is a unique critical point 
with zero as the critical value. We consider the compactification 1'; in f:p8 of the 
level hypersurface of the polynomial (I is the level value). The polynomial can be 
chosen so that for small 1 #0 the hypersurface 1'; is non-singular, but the 
hypersurface Yo has a unique singular point at O. The fibre X

t 
of the Milnor 

fibration of the critical point 0 of the polynomial P is a part of the hypersur­
face 1';. We can choose the polynomial so that the inclusion X t c; Y, induces an 
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epimorphism 

(for this we need the degree of the polynomial to be sufficiently high, see [317]). 
There is a natural map (defined modulo homotopy) 

for which the fibre X t of the Milnor fibration is mapped to the singiuar point, see 
figure 80. According to the exact sequence of the pair X t C 1'; there is an 
isomorphism 

From the theory of deformations of Hodge structures it follows that on 

there are two natural filtrations, called the weight and the Hodge, which possess 
the properties indicated in formula (9) (see [320, 78, 317)).It can be proved that 
the isomorphism 1t maps these filtrations into our weighted and Hodge 
filtrations (more precisely the Hodge filtration maps into the Hodge filtration of 
Steenbrink, see [362)). This proves Theorem 13.3. 

Fig. 80. 

Remark. Let us clarify why in the definition of the weight filtration in § 13.2 the 
central index depends on the eigenvalue of the monodromy operator. 

On the space 
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there acts the monodromy operator induced by the parameter 1 going round the 
point 1=0. For obvious reasons p* H n

- 1 (Yo) is contained in the subspace of 
eigenvectors associated with the eigenvalue 1. It can be proved that p* H n -1 (yo) 
coincides with this subspace. The proof can be derived from a theorem on 
invariant cycles (see [78,342]). It is not hard also to derive this result directly 
from the fundamental theorem of Schmid in [320] with the help of Theorem 12.1 
on determinants (compare with the proof of Lemma 2 in [362]). 

We mentioned earlier that the weight filtration on 

is induced by the defined filtration on H"- 1 (Y,) (see [317]). This filtration on 
Hn-l(y,) is the weight filtration of the logarithm of the unipotent part of the 
monodromy operator with central index n -1 (it is defined on all the root 
subspaces in the same way). Since the kernel of the epimorphism 

is a subspace of invariant vectors, the projection into H"-l(X,) of the indi­
cated weight filtration on Hn-l(y,) coincides with the weighted filtration 
from § 13.2.3. 

13.2.5 First corollaries 

For any k, JeZ, teS', the Hodge subspace 

Pgrlw, 

can be decomposed into the direct sum of its intersections with the root 
subspaces of the action of the monodromy operator on grl w,: 

where A are the eigenvalues of the monodromy operator. The monodromy 
operator preserves the integral structure of the space grl w" since conjugation 
interchanges the root subspaces corresponding to the eigenvalues A and :t. In this 
way from (9) we obtain Corollary 1. 
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Corollary 1. For any eigenvalue A 

(10) 

Corollary 2 (see [343]). The dimension of an arbitrary Jordan block of the 
monodromy operator is not greater than n. In addition, the dimension is not 
greater than n -1 if the eigenvalue of the block is equal to 1. 

Example. If n = 1 then all the eigenvalues of the monodromy operator are not 
equal to 1, and in the space of vanishing cohomologies there exists a basis of 
eigenvectors of the monodromy operator (see the example on page 370). 

Proof of Corollary 2. According to Lemma 13.7 for k~n the space 

Pgrlw, 

is zero-dimensional. According to formula (10) the space grlW,.A is zero­
dimensional for J~ 2 n -1, which is what we were trying to prove (see 
§ 13.2.3). 

Corollary 3. For any k, JeZ, teS', the operator N induces isomorphisms 

(11) 

if A# 1, and 

(12) 

if A= 1. 

Proof of Corollary 3. According to Lemma 13.12 the image of the left-hand side 
is contained in the right-hand side. According to Section 4 of Lemma 13.9 and 
formula (10) the image of the left-hand side cannot be smaller than the right­
hand side. 
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13.3 The spectnun of a critical point 

13.3.1 The spectral pairs of a critical point 

We shall define an unordered set of J.L pairs of numbers which characterise the 
reciprocal arrangement of the weight and Hodge fIltrations. 

For any k, IEZ let us consider the quotient fibration 

According to Lemma 13.7 there is induced on this fibration an action of the 
semisimple part of the monodromy operator. Let us fix a fibre of this fibration 
and put in correspondence with each eigenvalue 1 of the action in the fibre of the 
semisimple part the pair 

(n -1-lt(1), I), if 1~ 1, 

(n-1-lt(1),1-1), if 1=1; 

here the number It(1) is determined by the conditions: 

(13) 

The unordered set of J.L pairs of numbers, constructed in this way (for all k, I, 1) 
is called the set of spectral pairs of the critical point of the germ f. The unordered 
set of the J.L first elements of the pairs is called the set of spectral numbers (or 
spectrum) of the critical point. It is clear that these sets do not depend on the 
choice of fibre of the fibration 

Let us make clear why the eigenvalue 1 is put in correspondence with the 
number n -1-lt(1), which is one of the values of the logarithm of the number 
1/1 divided by 2 xi. According to the definition of the Hodge fIltration, the 
quotient fibration 

is generated by the values of the principal parts of forms of degree not greater 
than n -1 -k. Let w be a form, the order of which belongs to 

(n-2-k, n-1-k] 
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and the principal part of which generates a non-zero section in 

According to Lemma 13.1 this non-zero section is contained in the root subspace 
of the eigenvalue l=exp( -2xiex(w» of the action of the semisimple part of the 
monodromyoperator. Expressing the order of the form w in terms of 1 we obtain 

n-1-/t (1)=n-1-k-/o(1)=ex(w). 

In this way, n -1 -It (l) is the smallest number ex for which there exist forms of 
order ex, the principal parts of which generate in 

the root subspace of the eigenvalue 1 of the action of the semisimple part of the 
monodromyoperator. Moreover the number ex enters into the spectrum exactly 
as often as the difference of the dimensions of the spaces of the principal parts of 
the forms of order ex and of the forms of order ex -1. The second number of the 
spectral pair indicates on which levels of the weight fIltration the new principal 
parts arise. For example, for k=n-1 

F"-1 (f*)/F"(f*) =F"-t (f*), 

the numbers n -1 -1"-1 (1) belong to the half-open interval (-1,0]. If 
W1,· •. ,w. are holomorphic differential n-forms of non-positive order, the 
principal parts of which form a basis of the sections of the fibration F" -1 (f*), 
then the orders of these forms form the part of the spectrum belonging to 
( -1,0). 

We tum out attention to the dependence on the eigenvalue 1 of the second 
number in the characteristic pair, see (13). In the definition of the weight 
fIltration the index on the root subspace associated with the eigenValue 1 was 
increased by 1, in order to agree with the result of Theorem 13.3. Now in (13) this 
index has been decreased by 1. This decrease is motivated by simple formulations 
of results about such numoers. For example see the symmetries (iii), (iv), 
indicated below, of the spectral pairs. 

In conclusion we introduce one more definition of spectrum. 

Lemma 13.13 (see [365,364]). Let Wt, ••• , wIl be holomorphic differential 
n-forms on X. Let us suppose that 
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1. the sum of the orders of these forms is equal to p.(n/2 -1). 
2. the function 

det2:t~det2 (J Wildf), j, /=1, .. . ,p., 
.sl~) 

where 151" .. ,!5p is a basis of the covariantly constant sections of the homo­
logical Milnor fibration, has for t = 0 a zero of order p.(n - 2). Then the orders 

of these forms are the spectrum of the critical point 0 of the germ /. 

The proof follows easily from Lemma 13.4, Theorem 12.1 on determinants 
and the definitions of the Hodge mtration and the spectrum. 

Corollary. The sum of the spectral numbers of the critical point of the germ / is 
equal to p.(n/2 -1)~ 

Note that the proof of this result does not use the theorem on mixed Hodge 
structures. 

Remark. From the definition of spectral pairs it follows easily that the sum of all 
the second elements of the spectral pairs is equal to p.(n -1). 

13.3.2 Hoelge numbers 

Analogous to the spectral pairs, we shall define the Hodge numbers 

We shall denote by Jz1 ... the dimension of the root subspace of the eigenvalue A of 
the action in the fibre of the fibration 

of the semisimple part of the monodromy operator. We shall denote by Jrl ... the 
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rank: of the fibration 

gr1'Fgrl + III W(j*). 

By definition, 

The spectral pairs and the Hodge numbers Jz1.111 mutually determine each other. 

Example 1. Let /=xP +1. Then hO.o=p.; h~·o=1 for A=exp(27tik/(p.+l», 
k = 1, ... , p.; the spectral pairs are 

( -kl(p.+l),O), 

where k = 1, ... , p.. 

Example 2. Let 

/=xf+···+~· 

Then 

h[ft/21.[1I/21 = h[ft/21.[ft/21 = 1 . 
(-1)" , 

the spectral pair is (n/2 -1, n -1). 

13.3.3 Symmetries 

Lemma 13.14 (see [343, 364]). For any k, m we have the symmetries 

(i) Il;·"-h'!·l .t - .t' 

(ii) ~""=hl-1-"'.ft-1-l, if A~ 1, 

(iii) Ift .... =~- .. ·ft-l. 

For the derivation of Lemma 13.14 from Theorem 13.3 see § 14.2. 

" \ 
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Let us formulate these symmetries in terms of the spectral pairs. 
(i) The number of pairs equal to (oc, l) is the same as the number of pairs equal 
to 

(2n -3 -I-oc, l) 

(compare with the examples). 

(ii), (iii) The number of pairs equal to (oc, l) is the same as the number of pairs 
equal to 

(oc+l-n+1,2n-2-l). 

The relations (i)-(iii) describe the symmetries of the dimensions of the spaces 
of the principal parts of the forms of fixed order, which are sections of a fixed 
fibration of the weight filtration (more precisely they describe the symmetries of 
increments of dimensions). 

Combining (i) with (ii) and (iii) we obtain 

Corollary. 

1. The spectrum of the critical point is arranged symmetrically relative to the 
point nl2 -1. The set of spectral pairs, as a subset of.R2, is centrally symmetric 
relative to the point (n12 -1, n -1). 

2. The complex singular index (see § 13.1.5) is non-negative. 
Indeed the complex singular index is equal to nl2 - (1 + a...iJ, where a...ln is the 

smallest spectral number. 

Note the following property of the spectrum. If the spectrum of the critical 
point is concentrated at the point nl2 -1, that is if it consists of several numbers 
nl2 -1, then the critical point is non-degenerate and the spectrum consists of one 
number nl2 -1. This property is a direct corollary of Theorem 3.7 on the trace of 
the monodromy operator. 

13.3.4 1be spectnun and the Newton polyhedron 

The spectrum can be expressed in terms of the geometry of the Newton 
polyhedron of the Taylor series of the critical point, if the principal part of the 
Taylor series is CC-nondegenerate, see [314,380] and also [343,17,89]. 

Let us express the spectrum in terms of the Newton polyhedron for n = 2. For 
n = 2 the spectrum is symmetrical relative to the point 0 and lies in the interval 
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( -1, 1), therefore it is sufficient to describe that part of the spectrum belonging 
to the interval (-1,0]. According to § 13.3.1, it is sufficient for a description of 
this part of the spectrum to indicate forms of non-negative orders, the principal 
parts of which generate a basis of the sections of the fibration Fl (f.), and to 
calculate the orders of the indicated forms. 

Let us consider the Newton polyhedron of the Taylor series of the critical 
point of the germ f: (CCn

, O)-+(CC, 0). Let us call the monomial x'" subdiagram­
malic if the vector 

m+(1, ... ,1) 

does not belong to the interior of the Newton polyhedron. 

Example. Let 

We have depicted in figure 81 the vectors m+(1, 1) for the subdiagrammatic 
monomials x"'. 

Fig. 81. 

With each subdiagrammatic monomial we put in correspondence the form 

x"'dx1 A ••• A dx., 

which we shall call subdiagrammatic. Let us suppose that the principal part of the 
Taylor series of the critical point of the germ f is CC-nondegenerate. Then the 
order of each subdiagrammatic form is non-positive and can be calculated from 
the degrees of the monomials with the help of Theorem 13.2 (the order is equal to 
the remoteness of the polygons of the germ f and the form). 
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In the example the orders of the sUbdiagrammatic forms are equal to 

-3/5, -5/12, -3/12, -1/12, -2/5, -1/5, -1/5,0,0, O. 

Theorem 13.4 (see [364]). If the principal part of the Taylor series of the critical 
point of the germ f: (<<::n, O)-+(G::, 0) is G::-nondegenerate then the principal parts 
of the subdiagrammatic forms form a basis of the sections of the fibration 
p-l(j*). 

Corollary. The orders of sUbdiagrammatic forms constitute the part of the 
spectrum of the critical point of the germ f belonging to the interval ( -1, 0]. 
In particular for n = 2 the orders of the subdiagrammatic forms completely 
determine the spectrum. 

Remark 1. For n = 2 it is convenient in describing the spectrum to mark, not only 
the indices of subdiagrammatic monomials, but also the indices of symmetric 
superdiagrammatic monomials. The remoteness of pairs of polyhedra of the 
germ f (with G::-nondegenerate principal part) and distinguished monomials 
make up the spectrum of the critical point ofthe germ f. See figure 82 where we 

Fig. 82. 

have depicted the indices, moved to (1,1), of the subdiagrammatic and 
distinguished superdiagrammatic monomials for 
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Remark. 1. The corollary of Theorem 13.4 is sufficient for a description of the 
spectrum also for n = 3. The part of the spectrum belonging to the half-open 
interval ( -1, 0] is given by the corollary. The part of the spectrum belonging to 
the half-open interval [1,2) is determined by the symmetry of the spectrum 
relative to the number 1/2. The remaining part of the spectrum belongs to the 
interval (0, 1). Each spectral number is the logarithm of an eigenvalue of the 
monodromy operator divided by 2 xi. In order to describe the part of the 
spectrum in (0, 1) we need to calculate on the Newton polyhedron all the 
eigenvalues of the monodromy operator (see Theorem 3.13 from Chapter 3, and 
[359]), to mark ofT the eigenvalues for which the corresponding spectral numbers 
belong to the union 

( -1,0]u[1,2), 

to take the branches of the logarithms of the remaining eigenvalues which after 
division by 21ti lie in (0, 1). These logarithms, divided by 2xi form the remaining 
part of the spectrum. 

Proof of the theorem. The principal parts of the subdiagrammatic forms are 
linearly independent since by Theorem 13.2 the order of a linear combination of 
subdiagrammatic forms is equal to the minimum of the orders of the terms. The 
principal parts of the subdiagrammatic forms form a basis of the sections of the 
fibration p-l(j*), since by Theorem 13.2 the order of a superdiagrammatic 
form is positive. 

Let us describe the spectrum of the finite-multiplicity critical point of the germ 
f: (G::n, O)-+(G::, 0) of a quasihomogeneous function. Let f have type (1X1,· .. ,1Xn) 
and weight 1. Let {x"'lm e I} be a set of monomials, projecting to a basis over G:: of 
the local algebra 

G::{x}/(o//ox). 

For the index mel put 

.. 
l(m) = (ml +1)1X1 + ... +(mn+1)lXn-1. 

Theorem 13.5 ([341], see also [364]). The numbers 

l(m), mel, 
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make up the spectrum of the critical point of the germ I of the quasihomo­
geneous function. 

According to [364] the spectrum of the critical point of the germ of a 
semiquasihomogeneous function is the same as the spectrum of the critical point 
of the germ of the corresponding quasihomogeneous function. 

For semiquasihomogeneous germs it is easy to indicate the spectral pairs: all 
the second elements of the spectral pairs are equal to n -1 (see the example on 
page 371). 

For any Hodge subfibration F"if·) we can indicate forms, the principal parts 
of which generate a basis of the sections of this subfibration. Namely we put the 
monomial x'" in correspondence with the form 

Theorem 13.6 (see [341, 364]). Let I: «::n, 0)-+«::, 0) be the germ ofa semiquasi­
homogeneous function. Then 

1. For any mel the order of the form w'" is equal to I(m). 
2. For any keZ the principal parts of the forms 

{w",lmeI, l(m)~n-l-k} 

make up a basis of the sections of the Hodge fibration F"if.). 

We shall give a table, compiled by V. V. Goryunov [131], of the spectra of 
simple, uni- and bimodal critical points for n=3. In this table (see page 389) 
there is indicated for each point the numbers N, 4; the spectrum {ex.} is given by 
the formula 

ex. = (Lr/ N) -1. 

In view of the symmetry relative to the number 1/2 all the spectra, except the 
spectra of the points A,., D,., 1'"",1 are written out up to the half-way mark, that is 
for r~Jl/2. For the notation of the critical point see Volume 1. 
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Qass N (4) Qass N (4) 

p+l 
2p-2 

p+l+k l"k"p ~ 12 
3p-3 2p-l +2k E, 18 

13 16 17 
19 23 25 

31 37 41 43 

3 
4 
6 

24 
18 
15 
16 
13 
12 
30 

0"k"p-2 Ea 30 

3 4 4 4 Zu 22 
4 5 5 6 Z13 18 

21 25 27 29 31 33 
17 20 22 23 25 26 
19 23 24 27 28 29 
15 18 19 21 22 23 
41 47 53 ~5 59 61 
29 33 37 39 41 43 

6788 9Wu 20 
23 29 31 32 35 W13 16 
17 21 23 24 25 Eu 42 
14 17 19 20 20 22 E13 30 
15 19 20 21 23 E14 24 23 26 29 31 32 34 35 

pqt 2pqt (p+k1)qt 
(q+k1)pt (t+k3)pq 

0<k1 <p 0<k1<q 0<k3<t 

12 15 16 17 18 19 T,.... pqt 
11 14 15 15 17 18 
29 35 37 41 45 

18 (p+9) 

14(p+7) 

12 (p+6) 

12 (P+12) 
12 (p+6) 

10 (p+5) 

10 (p+l0) 
9 (P+9) 

21 
30 
48 
17 
24 
15 
20 
28 
24 
34 
54 
30 
42 
66 

17 (p+9) 23 (p+9) 25 (P+9) 9 (2p+I7+2k) 
1 "k,,(p+ 10)/2 
13(P+7) 17(P+7) 19(P+7) 21(p+7) 7 (2p+I3+2k) 
1 "k,,(p+ 7)/2 
11 (p+6) 14 (P+6) 16 (p+6) 17 (p+6) 6 (2p+1t +2k) 
1 "k,,(p+ 7)/2 
11 (p+12) 17 (p+12) 12 (P+12+k) 1 "k"(p+I1)/2 
11 (p+6) 15 (p+6) 16 (P+6) 17 (p+6) 6 (2p+1t +2k) 

1 "k"(p+6)/2 
9 (P+5) 12 (P+5) 13 (p+5) 14 (p+5) 5 (2p+9+2k) 

1 "k"(p+6)/2 
9 (p+l0) 13 (p+l0) 10 (p+l0+k) 1 "k"(p+tO)/2 
8 (P+9) 11 (p+9) 13 (p+9) 9 (p+9+k) l"k"(p+8)/2 

19 22 25 26 28 28 29 31 
27 31 35 37 39 40 41 43 
43 49 55 59 61 64 65 67 71 
15 18 20 21 22 23 24 25 
21 25 28 29 31 32 33 35 
13 16 18 18 19 21 21 22 
18 21 23 24 26 27 28 29 
25 29 3~ 33 36 37 39 40 41 
22 25 28 29 31 32 34 35 
31 35 39 41 43 45 47 49 51 
49 55 61 65 67 71 73 77 79 
28 31 34 37 38 40 41 43 44 
39 43 47 51 53 55 57 59 61 
61 67 73 79 83 85 89 91 95 97 
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13.3.5 The spectrum of a direct sum of critical points is equal to tbe swn 
of the spectra plus 1 

Let I: «([II, 0)-+«([, 0), g: «([', O)-+(C£:, 0) be germs of holotnorphic functions at 
critical points of (finite) multiplicities, respectively, p., ". Let us consider the 
direct sum of these germs: 

I +g: «([II x ([',Ox 0)-+«([,0). 

The germ I +g has at 0 x 0 a critical point of multiplicity It·". 

1'heorem 13.7 (see [215]). If {~} is the spectrum ofthe critical point ofthe germ I 
and {Pj} is the spectrum of the critical point of the germ" then {a, + Pj+ 1} is the 
spectrum of the critical point of the germ I + 9 (here j = 1, ... , It, j = 1, ... , ,,). 

Corollary 1. If {lXi} is the spectrum of the critical point of the germ 
I: «([II, 0)-+«([, 0), then {lXi+ t/2} is the spectrum of the critical point of the germ 

Corollary 2. The complex singular indices are equal for stably equivalent critical 
points. 

The proof of the theorem uses complex oscillatory integrals with phases 

l,g,l+g 

and Fubini's theorem for such integrals. We shall use the notation of § 11.3. 
In § 11.3 we indicated a mapping from the tensor product of the groups of 

admissible chains for the critical points of the germs I and 9 to the group of 
admissible chains for the critical point of the germ I +g 

Lemma 13.15. This map is an isomorphism. 
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Proof. Let us denote the map by h. Let 

be bases. It is sufficient to produce on X l +g p.'" holomorphic differential 
(n + I)-forms 

1/11>' . . ,1/1,.'1' 

for which 

By the theorem on determinants there exist n-forms WI, • .• ,W,. on Xl, for which 

(see Lemma 11.2). Analogously there exist I-forms <PI, . .. , <P,. on X g
, for which 

det (~ etg<Pe)¥:O. 

We can take as the forms {I/I.} the forms {Wi /\ <Pi}, see Fubini's Theorem 11.4. 
The lemma is proved. 

In § 11.1 we constructed the isomorphism 

for each IE S-. According to Lemma 13.15 this isomorphism induces an 
isomorphism 

for each IE S-. It is easy to see that this isomorphism can be extended to an 
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isomorphism of the homologies of the fibration 

(14) 

(here • denotes the homological Milnor fibration). For this we need to consider 
not the pair (X',X-") but the pairs 

(X,, X nf-l ({tES/Re (ei<l>t) < O}»; 

analogous changes must be made to the pairs 

Under the indicated isomorphism of fibrations, the tensor product of co­
variantly constant sections is covariantly constant, that is the Gauss-Manin 
connection in the fibration U +g). isomorphic to 

is the tensor product of the Gauss-Manin connections of the fibrations ! .' g •. 

If W is a holomorphic differential n-form on X,, cP is a holomorphic differential 
I-form on X', then W A c/J is a holomorphic differential (n + I)-form in a 
neighbourhood of the point 

Ox OE{;" X {;'. 

Lemma 13.15 allows us to express the geometric sections of the form W A c/J in 
terms of the geometric sections of the forms w, cP. 

Lemma 13.16 (see [364]). If 

then 

S[W] = I tCl(ln t)"Ar,..Jk!, 

S[I/I] = I t/l(lnt)'Af./l/s!, 

where B is the beta function. 
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Remark. The section 

should be considered as a section of the fibration (f+g). in view of the isomor­
phism (14). 

Lemma 13.16 follows from Lemma 11.2 and Fubini's theorem. 

Corollary. The order of the form W A " is equal to the sum of the orders of the 
forms w, " plus 1. 

Now for the proof of Theorem 13.7 it is sufficient to take advantage of 
Lemma 13.13. Namely, let WI,' •• , WI' be holomorphic n-forms on X,, which 
together with ! satisfy the conditions of Lemma 13.13. Let c/Jl,"" c/J~ be 
holomorphic I-forms on X' which together with g satisfy the conditions of 
Lemma 13.13. It is not hard to convince oneself that the forms 

together with! +g also satisfy the conditions of Lemma 13.13. Consequently the 
orders of these forms (the numbers OC(Wi) + oc(c/Jj) + 1) make up the spectrum of 
the critical point of the germ! +g. 

By carrying out the reasoning accurately we can prove the following 
strengthening of Theorem 13.7: if {(OC;, Vi)} are the spectral pairs of the germ!, 
and {(Pi> Uj)} are the spectral pairs of the germ g, then 

are the spectral pairs of the germ! +g. 
In [364] there are given explicit formulae, relating, with the help of the 

operations of tensor product and sum, the weight and Hodge filtrations of the 
cohomological Milnor fibration of the critical points of the germs 

!, g, !+g. 



Chapter 14 

The mixed Hodge structure 
of an isolated critical point 
of a holomorphic function 

A mixed Hodge structure in a vector space is two fIltrations of the space, 
satisfying the axioms indicated below. In the space of cohomologies, ~anishing at 
the critical point of the holomorphic function, there is a natural mIXe~ Hodge 
structure. The role ofthe above-mentioned fIltrations is played by the weIght and 
Hodge fIltrations, introduced in Chapter 13. The weight fIltration is const~ted 
from the Jordan structure of the monodromy operator and reflects the ~havlour 
of integrals over vanishing cycles under analytic continuation of the Integrals 
round critical values of the parameter. The Hodge fIltration is constructed by 
starting from a comparison of the rates of convergence to zero of in~e~als over 
vanishing cycles as the parameter ofthe integrals converges to the cntIc~ va!ue. 
As is well-known, there are in geometry two theories which study a functIon In a 
neighbourhood of a critical point: Morse theory and Picard-Lefschetz t~eory. 
Morse theory studies the reconstruction of a level hypersurface of the fun~tIon as 
the level tends to the critical value. Picard-Lefschetz theory studIes the 
transformation of a level hypersurface of a function as the level goes round the 
critical value in the complex plane. In this sense the theory of mixed Hodge 
structures of critical points is a synthesis of Morse theory and Picard-Lefschetz 
theory. The mixed Hodge structure in the vanishing cohomology plays an 
outstanding role in the local theory of singularities. . 

In this chapter we shall discuss the interactions of the mIxed Hodge structure 
with other characteristics of the critical point. 

14.1 The definition of a mixed Hodge structure 

A mixed Hodge structure is an additional structure, existing in the cohomol~gies 
of complex manifolds and induced by the complex structure of the mamfold. 

Example. Let us consider a complex non-singular projective curve 
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of genus 1, in an affine chart given by the equation 

where P3 is a polynomial of degree three without multiple roots. Let us consider 
its cohomology with complex coefficients. The dimensions of the spaces 

fiO(X,£), H1(X,£), H 2 (X,£) 

are equal, respectively, to 1, 2, 1. In each of these spaces there is given a real 
subspace - the image of the natural inclusion of cohomology with real 
coefficients. Furthermore in the real subspace there can be chosen an integer 
lattice - the image of the natural inclusion of cohomology with integer 
coefficients. The real subspace with the lattice is always present in cohomologies 
with complex coefficients. The following object is a manifestation of the complex 
structure on X. Let us consider on X the differential 1-form 

w=dx/y. 

It is easy to convince oneself that, everywhere on X, w is a regular holomorphic 
I-form. The form w is closed and, consequently, defines a cohomology class 

[w] E HI (X, £). 

Any other holomorphic 1-form w' is proportional to w (indeed, w' /w is a 
bounded holomorphic function and, consequently, is a constant). The complex 
structure gives an orientation of the curve. For this orientation 

; f W/\ £0>0. 
x 

In particular this means that the class [w] is different from zero. In this way the 
holomorphic differential 1-forms on X generate in HI (X, £) a one-dimensional 
subspace F, and this subspace possesses the property 

H1(X,£)=F$£, 

where the bar denotes conjugation relative to the real subspace. 
Standard theorems from the theory of elliptic curves assert (see [259, 328]): 

the vector space HI together with the indicated structures (the real subspace with 
the integral lattice and the subspace F) determine the curve X. 
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Let us suppose that we have two curves X, X' of genus 1 and a holomorphic 
map f: X -+ X'. Let us consider the induced map 

It is clear that under this map the real subspace and the integer lattice map, 
respectively, into the real subspace and the integer lattice. Furthermore, since the 
preimage of a holomorphic form is holomorphic, 

f*FcF. 

This remark shows that the structure described above in the cohomologies is 
functorial and carries non-trivial information about holomorphic maps. For 
example, if there is no non-zero linear map 

(HI (X', cr), F)-+(HI (X, cr), F), 

preserving the real subspace and the integer lattice, then any holomorphic map 
X -+ X' is a map onto a point. 

The construction of the subspace F in the first cohomologies of a curve of 
genus 1 can be generalised to a complex non-singular projective manifold X of 
arbitrary dimension [71, 405]. For any non-negative integer I we can distinguish 
in the cohomology space HI(X, cr), besides the real subspace with the integer 
lattice, subspaces 

where H""-" is the subspace of allith cohomology classes, represented by closed 
differential forms which, when written down in terms of local coordinates 

have in each term exactly k holomorphic differentials and exactly l-k 
antiholomorphic differentials, that is in each term r=k. Hodge's theorem (see 
[71, 405]) asserts that 

HI(X, cr)= Ea HIt,'-It, HIt,I-it =HI-It.l. 
It 

(1) 

As in the case of curves, the subspaces H",I-I: carry valuable information about 
the various characteristics of the manifold (see [71, 405, 140,92, 187]). It is clear 
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that the subspace Hk,l-k is preserved by holomorphiCi: maps of manifolds: if 
f:X-+X' is a holomorphic map, then for any k 

To study the dependence ofthe expansion (1) on the complex structure on X 
and also to generalise the construction to manifolds with singularities, it turns 
out that the right object of study is not the sequence of subspaces 

but rather the sequence of subspaces 

where 

P. Deligne [92] distinguished in the cohomology of a quasiprojective algebraic 
variety (with any singularities) two natural filtrations: the Hodge {F"} and the 
weight {JJl}, and proved that these filtrations possess a property generalising 
property (1) and are functorial relative to algebraic maps of varieties. These 
filtrations are called by Deligne mixed Hodge structure in the cohomologies. The 
properties of these filtrations are taken as a basis of the formal definitions cited 
below. 

Remark. In the examples cited above the manifold was non-singular and 
compact. For non-singular compact manifolds the weight filtration is trivial: 

{OJ = JJl-I C JJl=H'(X, cr). 

The mixed Hodge structure in vanishing cohomologies was defined by 
J. Steenbrink in [343]. 

14.1.1 Hodge structures (see [142]) 

Let H. be a finite-dimensional vector space over R., containing a lattice Hz, 
and let H = H. ®. cr be its complexification. 
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Definition. A Hodge structure of weight Ion H consists of a decomposition of H 
into a direct sum 

H= ED H"'''', 
"+",=/ 

such that H"''''=H'''''' (the bar denotes conjugation). The numbers 

h"''''= dima::H"'''' 

are called the Hodge numbers. 

For any two Hodge structures H, H' of weight I the direct sum H Ea H' carries 
an obvious Hodge structure of weight I. Analogously if Hand H' have possibly 

. distinct weights I and I', then 

H®H', Hom (H,H'), A'H, H* 

inherit Hodge structures of weights, respectively 1+ 1', I-I', pi, _I. 
Namely, A. E Hom (H, H') has type (k, m) if, for all r, s 

A.(Hr'~e(H')"+r,,,,+ •. 

In particular, this definition conforms with H* = Hom (H, (;) where (; carries 
the trivial structure of weight 0, H ® H' can be considered as 

Hom(H*,H,), 

and ®' H induces a Hodge structure on its subspace A' H. 

Definition. A linear map lj): H -+ H' of vector space with Hodge structures is 
called a morphism of type (r, r) if it is defined over CQ relative to the lattices 
Hz, Hz and if 

lj)(H"'''') e (H,),,+r, .. +r 

for all k, m. 

Remark. A map lj) is said to be defined over CQ relative to the lattices Hz, Hz ifthe 
elements of its matrix, with respect to bases consisting of vectors of the lattices, 
are rationaL 
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With each Hodge structure 

H= U H"'''' 
"+",=1 

of weight I there is connected a Hodge filtration 

{O} e ... eF"+! eF"eFlt+l e ... eH, 

where 

F"= ED Hi,l-i, 
i2!:l 

(see figure 83). 

,. r t-. +1 

----......" ( 
a 

(1I.I,m-1) (1r./fI) (H,m+l) (II-Z,m+2) 

Fig. 83. 

A Hodge filtration defines a Hodge structure: 

399 

(2) 

Conversely, a decreasing filtration {F"} on H arises from some Hodge 
structure of weight I if and only if 

for all k. 
In terms of the new description, a linear map lj): H-+H', defined over CQ, is a 

morphism of type (r, r) if and only if it preserves the Hodge filtration with 
displacement of the indices by r: 

for all k. 
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Let us consider a Hodge structure 

H= E9 H"'''' "+",=, 

and a bilinear form Son H. Let us suppose that the values of the form on pairs of 
vectors of the lattice Hz are rational. Let us suppose also that the form is 
symmetric if I is even and antisymmetric if I is odd. 

Definition. The Hodge structure is polarised by the form S if 

S(H"· ... , H"'·",') =0, 

for (k,m)#(m',k'), and 

for veHk .... , v#O. 

An example of the polarisation of a Hodge structure is the Hodge bilinear 
form on the primitive cohomologies of a smooth projective variety (see [405, 
Chapter Y]). 

14.1.2 The mixed Hodge structure (see [142]) 

Let H, HR , Hz be as in § 14.1.1. 

Definition. A mixed Hodge structure on H consists of two filtrations: 

{O}e ... e W,-l eW,e W,+l e ... eH 

is the weight filtration, defined over CQ relative to the lattice Hz, and 

{O}e ... eFH1ePeF"-le .. . eH 

is the Hodge filtration. It is required that for any I the filtration on 

gr,W= W,/W,-l, 
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induced by the Hodge filtration makes up on gr, W a pure Hodge structure of 
weight I (the induced filtration is the filtration 

In other words it is required that for any k, Ie Z 

gr, W=F"gr, W $ F'-lc+19r, W. 

Compare with the result of Theorem 13.3. 

The concept of mixed Hodge structure contains the concept of Hodge 
structure as a particular case: if(H, {pt}) is a Hodge structure of weight I, we can 
take as the weight fibration 

{O}= W,-l e W,=H, 

then (H, {F"}, {W ... }) is a mixed Hodge structure. 

Definition. A morphism of type (r, r) of mixed Hodge structures 

(H, {F"}, {w,}), (H', {F,k}, {w,'}) 

is a linear map 

i/J:H--+H', 

defined over CQ relative to the lattices Hz, Hz and possessing the properties: 

for any I, k. 
A morphism of type (r, r) induces a map 

i/J: gr, W--+gr,+2r W', 

which is a morphism of type (r, r) of pure Hodge structures of weights I, 1+ 2r, 
respectively. 

We can extend to the mixed Hodge structure in a natural way the operations of 
direct sum, tensor product and conjugation. 
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Example. If 

(H, {Fl}, {wI}) 

is a mixed Hodge structure, we can define a mixed Hodge structure on the 
conjugate space H*. Put 

Hl.= Hom (Hz, Z), 

where ann is the annihilator. 

14.2 Discussion of Theorem 13.3 about mixed Hodge structures 

14.2.1 Examples 

The critical point of the germ f: (CC, 0) -+ (CC, 0) of a holomorpbic function of one 
variable 

After a suitable change of variables, 

/=X Il +1, 

where Jl is the mUltiplicity of the critical point. Letf: X -+S be a specialisation of 
the germ, f*: ][O ..... S' be the corresponding cohomological Milnor fibration 
(page 347). According to the examples on pages 366, 370, we have for any t e S' 

{O}= W- 1 ,t C Wo,t=JiO(Xt, (;), 

{O} =l;t cF;<' = JiO(Xt, CC). 

Now gro W, = JiO(Xt , CC) is the unique non-trivial quotient sp~ of the weight 
filtration. On JiO(Xt , CC) the Hodge filtration induces a pure Hodge structure of 
weight 0: 

where JP"o=F;<'"F;<' (see formula (1)). Theorem 13.3 for / is proved. 
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The non-degenerate critical point of the germ f = xf + ... + x~ 

According to the example on pages 366, 370 we have for any teS' 

Now gr2[n/21W,=Hn- 1 (Xt ,CC) is the unique non-trivial quotient space of the 
weight filtration. On H n

-
1 (Xt , CC) the Hodge filtration induces a pure Hodge 

structure of weight 2 [nJ2] : 

where H,I"/2),[n/2) =£,[n/2)" £,[n/2) (see formula (2)). Theorem 13.3 for / is proved. 

The fmite-multiplicity critical point of a germ f: (CC2
, 0) -+ (CC, 0) of a holomorpbic 

function of two variables 

This is the first non-trivial case. Let us reformulate for this case the result of the 
theorem on mixed Hodge structures. 

Letf:X-+S be a specialisation of the germ /, and let teS'. According to 
Lemma 13.7 the Hodge filtration has the form 

According to Corollary 2 in § 13.2.5, the dimensions of the Jordan blocks of 
the monodromy operator are not greater than 2, and the root subspace of the 
eigenvalue 1 of the monodromy operator consists of eigenvectors. Therefore the 
weight filtration has the forn'1 

where ~,' is generated by all the eigenvectors of the monodromy operator with 
eigenvalues not equal to 1, and Wo,t is generated by the eigenvectors of the Jordan 
blocks of dimension 2. 

The theorem on mixed Hodge structures asserts that the Hodge filtration 
induces on the quotient spaces of the weight filtration pure Hodge structures, 
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that is in the given case 

where 

grlW,=H,I'O a1H?I, 

groW,=H,I·-l a1H?'o a1H
t
- 1 .1, 

According to Corollary 3 in § 13.2.5, H t
1 .-1 and H t-

1 .l are empty and 

(3) 

(4) 

(5) 

Corollary. We have F,J=Hl(X" t£). In other words an arbitrary class of 
vanishing cohomologies, belonging to one of the root subspaces of the 
monodromy operator is the value of the principal part of a holomorphic 2-form 
on X, the order of which is less than 1. 

Remark. For germs of functions in n variables F,' = H" -1 (Xt' t£). The proof is 
analogous. 

The results (3)-(5) can also be reformulated in the language of principal parts 
of holomorphic 2-forms on X. 

(i) Each eigenvector in Wo.t is the value of the principal part of some form whose 
order belongs to the interval (0, 1). 

(ii) If the degree of the form is not greater than 0, then the value at t of the 
principal part of the form does not belong to Wo.t. 
(iii) Each eigenvector associated with the eigenvalue 1 is the value of the 
principal part of some form of degree O. 

(iv) Each eigenvector from Wo.t is the value of a coefficient Af,Il(CD)' where 00 
is some holomorphic 2-form on X, the order «(00) of which belongs to the inter­
val (-1,0). 

(v) Let us denote by ,,1 the projection into grl W, of the subspace in '¥t.t 
generated by the values at t of the principal parts of forms of degree less than O. 
Then 
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From (i)-(v), in particular, it is easy to deduce that any elementary section of 
non-negative order is a geometric section of some 2-form. For example, if 

A:t~A(t) 

is a covariantly constant single-valued section of the cohomological Milnor 
fibration, then there exists a 2-form co, for which 

[oo/dflx,]=A(t) for all t. 

14.2.2 The symmetry of the Hodge munbers 

Let us deduce Lemma 13.14 from Theorem 13.3. According to Theorem 13.3 we 
have for any I 

W. m Hk m H k •m - n m•k gr, t = Q7 t', - t . 
k+m:' (6) 

The monodromy operator on gr, W, preserves the real structure and the induced 
Hodge ftltration. Therefqre the monodromy operator preserves the decompo­
sition (6). Let us denote by H!·m the root subspace of the eigenvalue A. of the 
action of the monodromy on Hk.m. 

By construction 

Therefore 

Now assertion (i) of Lemma .13.14 follows from (6). 
According to corollary 2 in § 13.2.5 we have for any k, I 

if .1.# 1, and 

This establishes assertions (ii) and (iii) of Lemma 13.14. 
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14.2.3 Functoriality of the mixed Hodge structure in vanishing cobomologies 

Let /: (C£:", O)~(C£:, 0) be the germ of a holomorphic function with a critical point 
of finite mUltiplicity. Let g: (C£:", O)~(C£:", 0) be the germ of a holomorphic map 
of finite multiplicity. Let us suppose that the germ 

/ og: (C£:", O)~(C£:, 0) 

also has a critical point of finite multiplicity. The germ 9 induces a map from a 
level hypersurface of the germ /0 9 to a hypersurface of the same level of the 
germ /. It is not hard to convince oneself that this map gives a linear map g* from 
the cohomologies, vanishing at the critical point of the germ /, into the 

. cohomologies, vanishing at the critical point of the germ /og, or more precisely 
gives a morphism from the cohomological Milnor fibration of the critical point 
of the germ / to the cohomological Milnor fibration of the critical point of the 
germ /og. According to Theorem 13.3, in the fibres of these cohomological 
fibrations the weight and Hodge filtrations form a mixed Hodge structure. 

Theorem 14.1 (see (364)). The map g* is a morphism of type (0, 0) of mixed Hodge 
structures. Namely, g* has zero kernel and for any k, I 

g*(F*(f*»cFIc«(f og)*), 

g*(w,(f*»c W,«(fog)*). 

Proof. Let xf, Xf' be the fibres of the Milnor fibrations of the germs/, log, 
respectively. Let us suppose that the specialisations of the germs and the 
representation 9 of the germ 9 are chosen so that 

g(Xf')cXf. 

The map 

is an epimorphism. Indeed if [0'] E H"-1 (Xf, C£:), 0' is a representative of the class 
[0'], and {g-1(0')} is the full preimage of the cycle 0' in xf', then 

where k is the multiplicity of the germ g. 
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Let us prove the weight filtration is functorial. It is clear that the map g* maps 
covariantly constant sections into covariantly constant sections. In addition the 
map g* commutes with the monodromy operator. According to the second 
definition of the weighted filtration in § 13.2.2, this implies the second inclusion 
of the theorem. 

Let us prove that the Hodge filtration is functorial. Let Q) be a holomorphic 
differential n-form on Xl. It is clear that the order of the formg*(w) is equ I to the 
order of Q). Furthermore the principal part of the form g*( Q) is equal to the image 
of the principal part of the form relative to the monomorphism g*. This proves 
the first inclusion theorem. 

Remark. Other manifestations of the functoriality of the mixed Hodge structure 
in vanishing cohomologies are formulae relating the spectra of the critical points 
of the germs/(x), g(y),f(x)+g(y). See § 13.3.5 and also (364). 

14.2.4 Refonnulation of the theorem on mixed Hodge structures 
in the language of complex oscillatory integrals 

Let/: (C£:", O)~(C£:, 0) be the germ of a holomorphic function at a critical point of 
finite multiplicity. Let us consider complex oscillatory integrals with phase / on 
admissible chains, concentrated in a neighbourhood of the critical point of the 
germ /, that is integrals of the form 

J efl Q), 

[T) 

where [F) E H,,(X, X-), and Q) is a holomorphic differential n-form on X 
(see § 11.1). . 

For fixed amplitude Q) integration of the expression efl Q) over admissible 
chains defines a linear function on admissible chains depending on the param­
eter or. As or ~ + OCJ such a linear function can be expanded in an asymptotic series 
(Theorem 11.1). The principal part of this asymptotic series is called the prin­
cipal part of the amplitude co. Below, using all the principal parts of all the ampli­
tudes we shall construct a filtration on the space conjugate to H.(X, X- ; C['). This 
filtration is called the Hodge filtration. Further, on the same space, with the help 
of the monodromy operator, we shall construct another filtration, called the 
weight filtration. 
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Theorem 14.2. The weight and Hodge fIltrations constructed below form a mixed 
Hodge structure on the space conjugate to 

Further, it will be easy to see that Theorem 14.2 is a reformulation of 
Theorem 13.3 in view of Lemma 11.2. 

Remark. The Hodge fIltration constructed below depends on the parameter 'r. 

Theorem 14.2 is true for any positive value of the parameter of the Hodge 
filtration. 

Let us denote by H* the space conjugate to H"-l (X, X- ; CC). In H* there is a 
natural real subspace H, and an integer lattice HI. (for example, HI. consists of 
linear functions taking integer values on the natural image in H"-l (X, X- ; CC) of 
the group H"-l (X, X-; Z». Let us define a Hodge filtration in H*. 

Let w be a holomorphic n-form on X. According to Theorem 11.1 

J eTf w~.E'r"(ln'r)"B:',,[], 
II 

where B;:" e H*. Let us call the weight of the form w the largest number or: for 
which the coefficient BO',,, is different from zero (compare with the definition of 
the order of a form in § 13.1.3). Let us denote the weight by P(w). 

Remark. According to formula (6) on page 303 the sum of the order of a form and 
its weight is equal to -1. 

The main part of a form w is the expression 

The main part is a vector of the space H* depending on the parameter 'r. 

Let us fix a positive number 'r. We define the subspace p'cH* by the 
property: F: is the linear span of the main parts of all the forms of weight not less 
than k - n (in the principal parts the parameter 'r is fixed). If a main part of such a 
weight does not exist then we put 
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Let us call the filtration {F:}, k e Z, the Hodge filtration. 
Let us define the weight filtration in H*. As shown in § 11.1, 

H,,(X, X-; CC) ~H"-l (Xt, CC), 

where teS-. Therefore H* ~H"-I(Xt, CC). The weight filtration in H"-I(X,, CC) 
was defined in § 13.2. Let us take as the weight filtration in H* the filtration 
induced from the weight filtration in H,,-l(Xt, CC). 

14.3 Survey of results on the mixed Hodge structure 

14.3.1 Mixed Hodge structure and intersection form 

Letf : (CC", O) ..... (CC, 0) be the germ of a holomorphic function at a critical point of 
multiplicity Jl.. Let us consider the intersection form S on the (n -1 )st homology 
H"-1 (X" JR.), vanishing at the critical point. Let us denote by Jl.o the dimension of 
the kernel ofthe form S. If n is even, then the form Sis antisymmetric and Jl.o is the 
unique real invariant of the form S. If n is odd then the form S is symmetric and 
by a real linear transformation the form S can be diagonalised. Let Jl. + and Jl. _ be 
the numbers of positive and negative coefficients of the diagonalisation. The 
numbers Jl.o, Jl.+, Jl.- form a complete set of real invariants of the form S. 

Let us denote by h~'''' the Hodge numbers of the mixed Hodge structure in the 
cohomologies vanishing at the critical point of the germ f. 

Theorem 14.3 (see [343]). Using the above notation 

Jl.o =-' L ht,,,, - L h",,,, 
1 . 

l+.~n t+m~n+2 

If n is odd, then 

Jl.+= L ht,"+i L 
k+m=n+l k+m~n+2 

mevcn mcven 

Jl.-= L ht''''+2 L 
k+m=,,+l 

mood 
k+m~n+2 

mood 

ht,,,,+ L L 
.... 1 meven 

ht,,,,+ L r 
.... 1 mood 

h"'" .. , 

h"'''' ... 

Corollary 1. The form Sis non-degenerate if and only if the number 1 is not an 
eigenvalue of the monodromy operator. 
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CoroUary 2 (see [343]). 

If n is even then Jl- Po is even. 
If n:; 3 mod 4 then Jl-Jl- is even. 
If n:; 1 mod 4 then Jl-Jl+ is even. 

If J is the germ of a quasihomogeneous function, then the Hodge numbers h~'''' 
can be expressed in terms of the quasihomogeneous structure of the local algebra 
of the critical point (see Theorems 13.4, 13.5). Let us formulate Theorem 14.3 in 
this case. 

Let J : (CC", O)-+(CC, 0) be the germ of a quasihomogeneous function of type 
(at, ... ,a.,) and weight 1. Let us suppose that 0 is a critical point of finite 
multiplicity of the germ J. Let {x'" 1m e l} be a set of monomials, projecting into a 
basis over CC of the local algebra CC{x}/(o.l7ox). For mel put 

/(m) = (mt +1)at + ... +(m,,+f)a.,-1. 

Theorem 14.4 (see [341]). Using the above notation, 

JJo= # {mell/(m)eZ}. 

If n is odd, then 

Jl+ = # {mell/(m);Z, [/(m)] is odd}, 

Jl- = # {mell/(m);Z, [/(m)] is even}. 

. Example t. The singularity A,.:f=xr+1+xi+~, 

a=(1/(Jl+ 1), t, !), 

l= {(m}, O,O)lm l =0, ... ,Jl-l}, 

l(m)=(m1 + 1)/(Jl+ 1). 

For any melwe have l(m)e(0,1). The intersection form is negative definite. 
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Example 2. Letj=xt' + ... +x:". The intersection form is non-degenerate if the 
numbers 

al, ... ,a" 

are pairwise coprime. 

Let J be the germ of a quasihomogeneous function. Let us formulate a 
theorem relating the intersection form in this case with the operation of 
multiplication in the local algebra of the critical point of the germ. 

Let x. be a fibre of the Milnor fibration of the critical point of the germ J of a 
quasiho~ogeneous function. Let us consider the Poincare homomorphism 

It is not hard to convince oneself that the image of the homomorphism is 

where the index A. denotes the root subspace of the eigenvalue A. of the 
monodromy operator. Let us define on the image of the homomorphism the 
form S· by the formula 

For any mel put 

W", = x"'dx1 1\ •.. 1\ dx". 

According to Theorem 13.6 the geometric sections of the forms w"" mel, make 
up a basis of the sections of the cohomological Milnor fibration. If I~m); Z, then 
the values of the geometric section of the form w'" belong to t.he Image of the 
Poincare homomorphism. The form W is said to be primitive If l(m);Z. 

Let us denote by J the class of the Hessian det (Olf/oX/OXj) in the local algebra 

Q=CC{X}/(oj/OX). 

A linear functional a:Q-+CC is said to be admissible if a(J)#O and a is 
quasihomogeneous (that is equal to zero on elements of the algebra Q, the 
quasihomogeneous degrees of which are different from the degree of the 
element J). 



412 
Integrals of holomorphic forms over vanishing cycles 

For me/put 

R(m)=I(m)(l(m)-1) ... (I(m)-[(n-2)/2]), if n~2, 

R(m)=1, if n=1. 

1beon:m .1~.S (see [126] and also [377]). The values of the geometric sections of 
two pmrutIVe forms Wm, Wm' are orthogonal relative to the form S* if the sum of 
the o~ders of the forms (that is the number l(m)+l(m'» is not an integer or if this 
s~ IS less than n - 2. There exis~s ~ ~inear functional a on the local algebra Q, 
WIt~ th~ property: for any two pnmItIVe forms Wm, Wm', the sum ofthe orders of 
WhICh IS n - 2, 

S*(S[Wm], S[W~]) =const . a(x"'· x"')t,,-2 I(R(m)· R(m'», 

where c?nst=.1 if n is odd, and const=l(m)-l(m') if n is even; sew] is a 
geom~tnc sectIOn of the form w; t is a coordinate in the base of the Milnor 
fibratIOn. For an explicit formula for the functional a see [377]. 

Example. AI' :f=xr+ 1 +x~ +~. The forms 

are primitive, and 

S*(S[Wm], S[Wm,])={-4n2t{Jl+ 1)/
o
(m+1){Jl-m) of m+m'=p-1 

otherwise. 

. The relation between the local residue and the intersection form is discussed 
ID [377]. ( 

14.3.2 The mixed Hodge structure and deformatiom 

Let us s~ppose that a. critical point of a holomorphic function can, by 
deformatIon of the functIOn, be decomposed into several simpler critical points. 

Problem. How ~s. the mi~ed Hodge structure of the initial critical point related to 
those of the cnbcal POIDtS obtained by the decomposition? 

The mixed Hodge structure of an isolated critical point of a holomorphic function 413 

Certainly, there are "conservation laws", formulated in terms of the mixed 
Hodge structures, for decompositions of critical points. Numerous examples 
prompt the following conjecture. 

Let us order the spectrum of the critical point: 

Conjecture (V. I. Arnold [19]). The spectrum is semicontinuous in the following 
sense: if a critical point P adjoins a (simpler) critical point P' (with p' < p), then 

Remarks. 

(1) Even in simple and explicitly calculated cases, such as the quasihomo­
geneous case or the case of the critical point of a function of two variables whose 
Taylor series has non-degenerate principal part, this conjecture is a non-trivial 
arithmetical result about integer points inside convex polyhedra. 
(2) V. V. Goryunov [131] verified the conjecture for simple critical points 
adjoining simple, for unimodal critical points adjoining unimodal, and for 
bimodal critical points of corank 2 adjoining each other, see [131] and the table 
of spectra on page 389. 
(3) The symmetry of the spectrum about the point nl2 -1 proves the conjecture 
for the case in which the critical point P' is non-degenerate. 
(4) From the symmetry of the spectrum about to the point nl2 -1 and the 
conjecture, there follow the two-sided inequalities 

For example if we split off from a compound critical point one non-degenerate 
point (p= p' + 1) then the spectrum of the point P' alternates with the spectrum 
of the point P. . 

The relation between the spectra of the points P, P' are the same as between 
the semi axes of ellipsoids in RI' and the semiaxes of its sections by subspaces R"'. 
(5) The conjecture involves the semicontinuity of the dimensions of the spaces of 
the Hodge filtration, namely the semicontinuity of the numbers 



414 
Integrals of holomorphic forms over vanishing cycles 

(6) In particular, for critical points of functions of two variables, these 
semicontinuities lead to the semicontinuity of the genus 9 of a fibre of the Milnor 
fibration and the semicontinuity of the "cogenus" p-g (in this case the fibre 
is a Riemann surface of Euler characteristic 1 - p with p + 1 _ 2g "holes"). The 
semicontinuity of both numbers is obvious (the semicontinuity of the "cogenus" 
follows from the fact that the inclusion of the homologies, vanishing at the 
simpler point, into the homologies, vanishing at the more complicated critical 
point, is a monomorphism). 

(7) The conjecture as formulated here is an amendment and generalisation of a 
conjecture about the semicontinuity ofthe oscillation index of a critical point of a 
real analytic function (see §§ 6.6, 9.2, 13.1.4, 13.3.3, [12,13, 14]). 

Let us consider a deformation of the initial critical point P. Let us SUppose that 
in the process of deformation the critical point does not decompose, that is for 
each value of the parameter of the deformation there is exactly one critical point 
of multiplicity p. 

\, 

Theorem 14~ (see [361, 365]). For such deformations the spectrum is constant. 

Remarks. 

(1) The statement of the theorem is a variant of the statement of Arnold's 
conjecture for the case p = p'. 

(2) In [365] it was proved that the subspaces of the weighted and Hodge 
filtrations change holomorphically as the parameter of the deformation changes. 
(3) From Theorem 14.6 it follows that the smallest possible order for the integral 
of a holomorphic form over the classes of a covariantly constant family of 
homologies, vanishing at the critical point (that is the first spectral number) does 
not change under the indicated deformations. It means that if for some 
deformation of the critical point the smallest possible order changes, then the 
multiplicity of the critical point is not preserved under the deformation (that is 
the critical point decomposes). From this reasoning we extract Theorem 14.7, 
formulated below. 

Let us consider the germ of a holomorphic function I : (C', 0)-+«(:, 0) at a 
critical point of multiplicity p and a deformation 

F: (CO x (:1:, 0 X 0)-+«(:, 0) 

of it. The p=const stratum of the deformation is the germ of the set 

(A, O)c(C\ 0) 
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consisting of all values of the parameter A for which the function F(·, A) has a 
critical point of multiplicity J1. with critical value zero. 

Theorem 14.7 (see [368], see also [381]). The codimension of the J1.=con~t 
stratum in the base of a versal deformation of the germ of a holomorphlc 
function at a critical point of finite multiplicity is not less th~~ the n~mber of 
those spectral numbers of the mixed Hodge structure of the cntlcal pomt of the 
germ which are less than (Xl + 1 (where (Xl is the first spectral number). 

Remark In the case of a critical point of a semiquasihomogeneous f~nc~ion the 
codime~sion of the J1. = const stratum in the b~se of a versal deformat~on IS equal 
to the number of spectral numbers, indicated m Theorem 14.7. An estimate from 
above follows from [196], an estimate from below is given in Theor~m 14.7, and 
the numbers, estimating the codimensions are equal. Furtherm.ore, III th~ case ~f 

·f I oint of a quasihomogeneous function, the reaso~mg mentIOned III 

a cn Icat. p .th Theorem 147 allows us explicitly to indIcate the J1.=const connec Ion WI . 
stratum. 

Theorem 14.8 (see [368]). Letf: (ern, 0)-+«(:, 0) be a quasihomog~neous g~~ of 
) and wei ht 1. Let {x"'lmEI} be a set of monomIals, proJ.ectmg ~ype«(Xlb'··:'(Xn .... ofgthe local algebra er{x}/(oJ7ox). Let us consIder a mto a aSlS over "-' 

representative 

F(x, A)=/(X) + L A.",Xftl 

ftlel 

of a versal deformatIOn 0 . . f the germ f Then the J1. = const stratum is given by 
the equations 

{A.",=OlmEI, «(X,m)~1}. 

For homogeneous germs Theorem 14.8 was proved in [120]. 
n I Arnold's conjecture has been proved. . . 

Rece t y ( .... 0) be the germ of a hoI om orphic functIOn at an Isolated Let f : (er",O)-+ "-', 
critical point, and 

F: «(:" x (:',0 x 0)-+«(:, 0) 

be a deformation of it. 
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Dermiti~ [371 J: ~ subset U c It is called a set of semicontinuity for the given 
deformatIon F If It possesses the following property: for any sufficiently small 
A.:, ~'let Xl, .•. , x' e {:" be critical points of the function F ( . , A.), with a common 
cntIcal value, then the number of spectral numbers of the initial critical point of 
the germ f f~lli~g in U is not less than the sum of the numbers of spectral 
numbers, falllOg 10 U, of the critical points Xl, .•. , x'. 

Con~ on the. semicontinuity of the density of spectra (see [372]). For any 
deformatIOn any lOterval (IX, IX + 1), where a e IR is a set of semicontinuity. 

R~k. It is possible that in the formulation of the conjecture we need to change 
the IDterval (a,a+1) to the half-open interval (a,a+1]. 

It is clear that Arnold's conjecture follows from this conjecture. 

Results about semicontinuity. 

(I) The conjecture on the semicontinuity of the density of spectra is true for 
deformat~ons of germs of functions of one or two variables (see [374, 375]). 
(II) Any lOter:al (~, a:+- 1) for ae( -2, -1) and the half-open interval ( -1, OJ 
are sets of semlcontlOUlty for deformations of germs off unctions of any number 
of variables (see [374, 375]). 
(III) For any irrational IX e It the set 

U (a+2k,a+2k+1) 
I:eZ 

is a set of semicontinuity for deformations of germs of functions of any number 
of variables (see [371]). 

(IV) r.t:t f(xi , .... ,x,,) be a quasihomogeneous polynomial of type (al, ... , a,,) 
and weIght 1, WIth an isolated critical point at the origin. Let us call a lower 
deformation of it any polynomial 

where {l/JJ} are monomials of quasihomogeneous weight less than 1. Then for 
lower deformations of a polynomial the conjecture on the semicontinuity of the 
density of spectra is true (see [372]). 
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Corollaries. 

(1) The complex oscillation index of a critical point of a germ of a function of 
one, two or three variables is upper semicontinuous for deformations (see [373)). 
(2) Let us call the critical point of the germ of a function of any number of 
variables sufficiently degenerate if its complex oscillation index belongs to 
( -1, OJ. Then the complex oscillation inde,. of a sufficiently degenerate critical 
point is upper semicontinuous for deformations of the germ (see [373)). 

For criteria for sufficient degeneracy see [373] and in § 13.1.7. 
Finally Arnold's conjecture was proved in [345]. 

(V) Any interval (a, a + 1] is a set of semicontinuity (see [345]). 
Section (IV) of the results gives a new result in the following question. Let 

y c {:P" be an algebraic hypersurface of degree d, with only non-degenerate 
(simple, double) singular points. 

What is the maximum number N,,(d) of non-degenerate critical points which a 
hypersurface of degree d can have? 

The complete answer to this question is known only for n= 1,2: for n= 1 
NI(d) = [d/2], for n=2 N2(d)=d(d-1)/2. The maximum is attained on a curve 
wich is a union of lines in general position. The first non-trivial case is n = 3. 

Estimates from above. 

The first result is the result of A. Basset (1906, [42)): 

N3(d)~(d(d-1)2 -5 -Vd(d-l)(3d-14)+25)/2, 

with the right hand side asymptotic to d3/2, as d-+oo. In subsequent works 
(see [43, 59, 127, 340)) the estimate was improved and generalised to the case 
n > 3, but in all these works the estimating number had asymptotic d"/2 as d-+ 00. 

An estimate with a new asymptotic is given in section (IV) of the previous result. 
Let us call the Arnold number Aid) the number of integer points strictly inside 

the cube (0, d)", for which 

For example, for n = 3, 

A3(d) = 23d3/48 + (terms of lesser degree in d). 
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Result about estimate from above (see [372]). 

Let Y c ~P" be an algebraic hypersurface of degree d, with only isolated 
singular points. Then the number of its nondegenerate singular points is not 
greater than the number A,,(d). If n = 3, then the number of all the singular points 
is not greater than A3(d). 

For fixed n the number A,,(d) has the form 

a"d" + (terms of lower degree in d). 

It is not hard to prove that a,,-V(6/1tn) as n~oo~ 

In the case of a surface in ~IP3, Miyaoka has recently proved the best known 
upper bound on the number of non-degenerate singular point. The estimate is 
asymptotically 4d3/9. 

Theorem (see [257]). Let Y c ~IP3 be a surface of degree d having only ordinary 
double points (that is, only points of type A", D", E6 , E

7
, E

8
), then the number of 

singularities is not greater than ~ d(d -1 f. 
9 

We give a table of bounds for small dand n =3; the list is basically from [257]. 

d N3 (fi) A3 (d) Miyaoka Basset Stagnaro Bruce 

4 16 16 16 16 16 17 6 31 31 36 34 32 32 6 ~64 68 66 66 64 73 7 ~90 104 tt2 114 ttl 108 8 ~160 180 174 224 178 193 9 ~192 246 256 270 267 256 10 ~325 375 360 384 380 401 tt ~375 480 488 535 521 SOO 12 ~576 676 64S 696 693 721 

In Stagnaro's bound there is a hypothesis of general position of the singular 
points on the surface. Thus the equality N3(6) = 64 is not proved. Recently an 
announcement of Stagnaro has appeared stating that N3(6)=66. The equality 
N3(4) = 16 is due to Kummer (1864), the equality N 3(5)=31 to Beauville (1980, 
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[43]). The inequality N3(6);?;64 is due to Catanese and Ceresa [68] and Stagnaro 
[340]; N3 (7);?; 90 to Stagnaro [340]; N3 (8);?; 160 to Kreiss [197] and Gallarati 
[121]; N3(9);?; 192, N 3 (11);?;375 to Chmutov; N3(10);?;325, N3(12)~576 to 
Kreiss [197]. 

Fstimates from below. 

S. V. Chmutov suggested a method which gives, apparently, the best possible 
estimate from below of the number N,,(d} for large d. Chmutov suggested that as 
a hypersurface with a large number of singular points we should consider the 
hypersurface with affine equation 

" L T,,(Xj) =0, 
j=1 

if n is even, and 

" L Td(Xj) = 1, 
j=1 

if n is odd, where Td is the Chebyshev polynomial of degree ~, with two critical 
values + 1. The number C,,(d) of singular points of Chmutov s hypersurface has 
the form 

c"d"+(terms of lower degree in d). 

For example c3=3/8. As n~oo, c.-V(2/xn). 

}be case d=3. As n-+ 00, A" (3) - 2" V8/mt (A. B. Givental). Using ~he idea of 
Chmutov, Givental constructed examples of cubic hypersurfaces haVln~ a large 

be of Singularities. Let G(x, y) be a polynomial of degree 3 havmg two num r .. I . 
. . al I + 1 such that for one critical value there are three cntlca pomts cntlc va ues _ , .. 

and at the other there is only one. Then the number of singular pomts of the cubiC 
hypersurface in n variables (n even) with affine equation 

,,/2 

L (-l)jG(xJ,Yj)=O 
J=l 

has asymptotically g,,-2"VI6/3xn as n~oo. 
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For d = 3 and small values of n, the upper bounds and Givental's examples are 
given in the following table. 

n 2 3 4 5 6 7 8 9 

A.(3) 3 4 10 15 35 56 126 196 

Givental 3 4 10 15 33 54 118 189 

The equality Ns (3) = 15 is due to Togliatti (1936, [354]). 
In conclusion we note another consequence of the result on the upper bound. 

~rti~ (see [~?5]). Let Y cCCp2 be an algebraic curve of degree d, with only 
Isolated smgulantIes. Let nl be the number of non-degenerate singularities, n2 the 
number of cusps, and B(d) the number of integral points (kl , k2) strictly inside 
the square (0, d)2 for which 

[d/6] + 1 <kl +k2~7d/6. 

Then nl +2n2~B(d). 
Note that B(d)-23d2/36 as d-+oo. 

In conclusion we note the work of Chmutov [76], which gives an upper bound 
on the number of singularities on a pair of level sets of a function. 

14.3.3 Real singularities 

Let us discuss the application of the mixed Hodge structure in vanishing 
cohomologies to the estimation of real characteristics of real functions. Such an 
application is connected with the study in algebraic geometry of the topology of 
real algebraic varieties. 

Let us consider a non-singular real algebraic curve of degree m, lying in the real 
projective plane. The connected components of the curve (one-dimensional 
manifolds, diffeomorphic to circles) are called ova/s~ The question about the 
mutual arrangement of the ovals of a real algebraic curve is one of the classical 
questions of geometry (see Hilbert's 16th problem)~ Plane curves of degree two 
were studied already in ancient Greece, curves of degree three and four by 
Descartes and Newton. The study of the topology of curves of higher degree has 
proved to be a considerably more difficult problem: the topology of non-
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singular curves of degree 6 was fully studied only in 1969 and all possible 
arrangements of ovals of curves of degree 8 are not known even today (see 
[20,143,395)). 

Side by side with the description of the arrangements of ovals of curves of 
small degree, results are known about the ranges within which various numerical 
characteristics of algebraic curves of given degree can vary (see [20)). Among 
results of this type is the inequality of I. G. Petrovskii, formulated below. We 
shall survey its generalisations. 

Each oval of a curve of even degree divides the projective plane into two parts, 
one of which is diffeomorphic to a disc and called the interior of the oval, and the 
other is diffeomorphic to a Mobius band. An oval is called positive (or even) ifit 
lies inside an even number of others, and negative (or odd) if it lies inside an odd 
number of ovals. Notation: p is the number of positive, k is the number of 
negative ovals. 

In 1938 I. G. Petrovskii proved [281] for curves of even degree d=21 the 
inequality 

12(P -k)-11~3/2 -3/+ 1; 

in the same place is given a generalisation of this inequality for curves of odd 
degree. In 1949 I. G. Petrovskii and o. A. Oleinik proved [282] analogous 
inequalities for smooth real algebraic hypersurfaces in a space of any number of 
dimensions. 

Namely, let us consider a real non-singular projective hypersurface 
A c R.P" -1 of degree d, given by a homogeneous polynomial/in n variables. If d 
is even, let us denote by B + and B _ the parts of UN - 1 given by the conditions 

~0,f~0, respectively. ... .. 
The Petrovskii number is the number of mteger pomts, stnctly mSlde the cube 

(0, d)" lying in a hyperplane passing through the ~ntre of the cube and 
perpendicular to a body diagonal of the cube. NotatIon: 

n,,(d) = { #k=(kt>.,. ,kN)IO<k.<d, Ik.=dn/2}. 

The inequalities of Petrovskii-Oleinik consist of the following: 

Il(A) -11 ~nll(d), 

if n is even; and 
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~f n is o~d, but d is even, where X is the Euler characteristic. In particular, the first 
mequahty for n=4 estimates the Euler characteristic of algebraic surfaces in 
three-dimensional projective space, the second inequality for n = 3 is just 
Petrovskii's inequality. 

V. 1 Arnold offered the following unified form of the Petrovskii-Oleinik 
inequalities. 

Theorem 14.98 (see [17]). The number on the left-hand side of the Petrovskii­
Oleinik inequalities, in the cases of both even and odd numbers of variables n is 
equal to lindl, where ind is the index of the singular point 0 E lR" of the gradien; in 
IR" of the polynomial/ giving the hypersurface under consideration. 

Theorem 14.9b (see [17]). The number on the right-hand side of the Petrovskii­
Oleinik inequality for a hypersurface given by a homogeneous polynomial/is 
equal to the Hodge number 

h"/2,,,/2 
A=l 

of the mixed Hodge structure in cohomologies vanishing at the critical point 
OEC' of the polynomial/(considered as a function on (::,,), if the number of 
variables n is even, and equal to the Hodge number 

of the mixed Hodge structure in cohomologies vanishing at the critical point 
OE(::,,+l of the polynomial /(x)+y, if the number of variables n of the 
polynomial / is odd, and the degree d of the polynomial / is even. 

In this way the Petrovskii-Oleinik inequality acquires a unified form: the 
m.odulus of the index of a singular point in IR" of the gradient of a polynomial 
WIth real coefficients is estimated from above by the corresponding Hodge 
nu~ber of the mixed Hodge structure in cohomologies vanishing at the critical 
pomt of the polynomial, considered as a function on complex space. 

In this form the Petrovskii-Oleinik inequality was generalised to the case of a 
critical point of finite multiplicity of a smooth function. 

Letl : «::", 0)-+«::, 0) be the germ of a holomorphic function at a critical point 
of finite multiplicity. Let us suppose that the germ I. restricted to the real 
subspace R"c(::", takes only real values~ Let us consider the vector field 

grad II .. " 
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on lR" in a neighbourhood of the origin. Let us denote by ind the index of its 
singular point O. 

Theorem 14.10 (see [17]cf. [377]). If n = 2k is even, then 

where h~'! 1 is the Hodge number of the mixed Hodge structure in cohomologies 
vanishing at the critical point of the germ I. If n = 2k -1 is odd, then 

where h~'!l is the Hodge number of the mixed Hodge structure in cohomo­
logies vanishing at the critical point OE(:,,+l of the germ l(x)+z2 of the 
function of n + 1 variables. 

Remarks. 

(1) For n = 2 it follows from the theorem that the modulus of the index of a 
finite-multiplicity singular point 0 of the gradient of a real function of two 
variables with fixed Newton polygon does not exceed the number of interior 
integral points on the Newton diagram (see [17], and also § 13.3.4). 
(2) As in the case of the Petrovskii-Oleinik inequality the index can be expressed 
in terms of the Euler characteristics of local level manifolds of the germ 

II .. ·. 

Namely let X. be the fibre of the Milnor fibra.tion of the critical point of the , r 

germ I. Let us denote its real part Xrf'lR" by RXr· Let us denote by x+ 
(respectively x-) the reduced (decreased by 1) Euler characteristic of the 
manifold RXr for positive t (tespectively, for negative I). The following lemma is 

. easy to prove (see, for example, [17]). 

Lemma 14.1. The index of the singular point 0 of the vector field 

grad I I .. " 

is related to the reduced Euler characteristics of the real local level manifolds of 
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the germ! lit" by the relations 
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In = -X = . d - { - i +, if n is even, 
- i +, if n is odd. 

(3) There is a unified expression for the numbers h1'! 1, appearing in the theorem, 
which does not depend on the parity of the number n, in terms of the spectrum of 
the critical point of the germ!: this number is equal to the number of spectral 
pairs equal to (n12 -1, n -1 )~ For n = 2k this result is obvious, for n = 2k -1 we 
need to use the corollary of Theorem 13.7. Note that (n12 -1,n -1) is the centre 
of symmetry of the set of spectral pairs. 

(4) A prototype of the inequalities in the theorem is, side by side with the 
Petrovskii-Oleinik inequality, the following inequality of V. M. Kharlamov 
[187J 

where A is an arbitrary non-singular real projective manifold of dimension 2k, 
and h"·k is the Hodge number of the pure Hodge structure in cohomologies of the 
complexification of the manifold A. 

For other restrictions on the arrangement of a real algebraic variety see the 
works ofV. I. Arnold, O. Ya. Viro, D. A. Gudkov, V. I. Zvonilov, V. V. NikuIin, 
O. A. Oleinik, I. G. Petrovskii, G. M. Polotovskii, V. A. Rokhlin, R. Thom, V. 
M. Kharlamov, cited at the end of the book. 

(5) The estimates, indicated in the theorem serve as examples of the follOwing 
general scheme of reasoning in real geometry (see V. I. Arnold [17]). For an 
estimate of any invariant of a real topological type there is sought a suitable 
invariant of a complex object, majorising the first. Invariants of complex objects 
are constant for almost all fibers of a complex irreducible family (since the 
degenerate cases correspond to a complex hypersurface in the space of 
parameters of the family, and the complement of such a hypersurface is 
connected). Therefore invariants of a complex object can be calculated in terms 
of discrete data of the problem (degree, Newton polyhedron, etc.). In this way the 
estimation of invariants of a real topological type is broken down into two 
problems: finding a majorising invariant of a complex object and its calculation 
in terms of discrete data. 

(6) Let us formulate an unsolved problem [17J: give the best possible estimates 
(in terms of Hodge numbers (?)) for the individual Betti numbers of the local 
level manifold of a real smooth function in a neighbourhood of a degenerate 
critical point, in particular for the number bo. Possibly it is easier to estimate the 
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numbers 

and also combinations of local Morse numbers 

Mo, Mo-Mlo Mo-Ml +M2 ,···, 

h M ·s the number of non-degenerate critical points of index i, m~rging into 
were ·1 ... I 'f I 0 nt 
the initi;l critical point for a morsification of the ImtIa cn Ica pl. 

In the concluding ~ctlio~ let us .in:!~~::~~~~:t~::l~ t!; !:~~~~:a:t~!a~ 
function of three vanab es m a nelg 

point. ., hb urhood of a non-degenerate critical point the 
It i~ well known t~att~:::~sui~ble variables, is a quadratic form. Therefore, 

functIOn, expressed m f h d fc form there are two possibilities. In 
depending on the signature 0 t e q~a ra ~d emp~y sets (depending on the value 
the first case the level surfaces are sp eres a ne-sheeted and two-sheeted 

I I) d in the second case are 0 
of the eve , an ., b rhood of a simple or unimodal b I'd It t ns out that m a neIgh ou h~~r 0 ~I S. fiur. fthree variables the structure of the level surfaces can cntIcal pomt of a unctIOn 0 

change in the ten ways indica~e~ be~owrlace in a neighbourhood of the critical 
The change of structu~e. of t e ev: su air of surfaces of small positive and 

point with ~ero as the. cn~lcal v~~~f ~~~~ ~adius with centre at the critical point. 
small negatIve level, lymg ~n a ba I I rface to break the sphere of small 
Suc.h a p~ir is given by usmg. t~e ~er~in~V~nt~ two parts: the set on which the 
radIUS WIth centre ~t. the cntlca. p diffeomorphic to the small-positive-Ievel 
function takes pOSItIVe values filS . t kes negative values is diffeomorphic 

•• ..c-. d th t on which the unctIon a . . 
sWlace, an e se. The set on which the value of the functIon IS 
to the small-negatlve-level surface. . ( . f "ovals" see [256]). 

-d' . I mamfold a umon 0 , 
zero ~s a smooth one . ImenslOnadecom osition of the sphere by a graph, the 

It IS useful to descnbe su~h a. p If we are aiven a decomposition 
. f hi h assigned the sIgn + or -. 0- • 

vertIces 0 w care. . fthe graph (taken with the sIgn of the 
then its connected regtons are the ~ertlbece~ 0 . . ned by an edge if the regions are 

. . h .) two vertIces 109 JOI . 
functIon 10 t at regton, . . I connected it follows that this graph IS a tree. 
adjacent. Since the sphere ~s SI~P~.2 -r this graph has three vertices,joined by 
For example, for the functIon A + Y . 

d of which have the sIgn -. 
two arcs, the outer en s . bl (respectively one variable) then its 

fi . d pends on two VarIa es , . . f 
If the unctIon e . . al . nt is aiven by a decompoSItion 0 . 'ghb urhood of the cntIc pOl 0- . • d 

structure m a nel o. II d'us into two regions _ the poSitIve an the circle (resp. pair of pomts) of sma ra I 
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negative values of the function. Such a decomposition is determined by the 
number of connected components of these regions - the pair of numbers 

(bt, bo), 

called then the type of the structure. 

In the theorem formulated below we shall use the letter notation for the 
critical points of functions introduced in Chapter 17 of Volume 1. The letters 
have indices +, -, ±. There are as many of these ± signs as in the 
corresponding formulae in Chapter 17 of Volume 1, or 1 more. In this case the 
extra sign is the sign of the parameter a in the corresponding formula. Moreover 
the order of the indices in the notation is the same as the order of the signs in the 
formulae. We assume also that they satisfy the restrictions indicated in Chapter 
17 and in addition we require for T".,r that p, q, r > 2. 

Theorem (S. Yu. Orevkov, see [273]). 

1. Critical points of functions of one variable have structures of three types; 

Ai~+l have type (2,0) - a minimum, 

Aii+l have type (0,2) - a maximum, 

A21: have type (1,1)~ 

2. Simple and unimodal critical points with zero 2-jet of functions of two 
variables have level line structure of the follOwing types: 

Type (1,0) 

X9++ for a> -2, 

X9++it, 
Yi~,i: , 
Y,+ have type (1,0); 

Type (1,1) 

Type (0,1) 

X9-- .fQr 

X9+U • 
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Jii>"t21:, 

Jio+2I:, 
X9++ii+1o 
X9-+-2i+l, 

Y2~,i;+1' 
Y2-;,2;+1 have type (1,1); 

Type (3,3) 

D2k , 

Jio, 
No for tr>4, 

Jii>+2I:, 
Jio"t21: , 
X9++"2i+l , 
X9-+ii+l, 

J1=t + 21: + 10 

X9\'1i, 
X9-+'11, 
Yi~,i; , 
Yi~,2: , 
y2=;n2s+1 have type (2,2); 

Type (4,4) 

X9++ for a< -2, 

X9-- for a>2, 

X9-+ii, 
x9\"21, 
Y2~,2; , 

of three variables have level surface 
indicated in figure 84. 

(4,1) 

-,.r 
~ 

(1,4) 
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R21~I,2"'+t , 
Ril+l,2"'+I, 

R':+ , 
R/"'""+I, 
Ti~:;~,2r+ 1 , 

r..±±±± 
2p+ 1,2'1+ 1,2r+ 1 

12~+1, ... , 
E12 , 

E14 , 

»-12, 
QlO, 

Q12, 

S12, 

(even number 

of plusses), 

Ul~± have type (1,1); 

Type (1,2) 

PS++21+1, 
PS-/il+ 1 , 

R2H"'+I, 
r..++-2p,2q,2r, 
r..+±± 

2p,2q+ 1,2r+ 1 , 

12-", ... , 
El~' 
Zi~+ , 

Wt3+ , 
Qil, 
Sii, 

Zii have type (1, 2); 

Type (3,1) 

R2I,2 ... , 
R/ ... -- , 
R2-..+- , 

Integrals of holomorphic forms over vanishing cycles 

12~,,,,, 
Ei"j, 
Zlj- , 

»-13 - , 
QiL 
Sil, 
Zil have type (2,1); 

Type (2,2) 

Ps+ for a2>4, 

PS++21 , 
Ps-/21 , 

R 21+1,2"'+I, 

R£i~I,2"'+1 , 
R2-..-+:rl, 
R';- , 
r..±±±± (odd be 2p+l,2q+l,2r+l num r 

of plusses), 

12-"+1,... have type (2,2); 

Type (1,3) 

RA~ .. , 
Rt .. -+ , 

R2-..++ , 
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1i-":;!,2r+t , 

Z12, 
U12 - have type (3, 1); 

Type (4, 1) 

1i-":;;,2r have type (4,1); 

T2~:i!,2r+l , 
Z12, 
U12+ have type (1,3); 

Type (1,4) 

T2~:i:,2r have type (1,4). 
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CoroUary. For the critical points of Section 3 of the theorem the graph of the 
structure is determined by the type of the structure. 

Remarks. 

1. (S. Yu. Oryevkov, see [274]) The theorem allows one to describe the 
structure of the level hypersurfaces in the neighbourhoods of critical points 
which are direct sums of the critical points enumerated in the theorem. Indeed if 
the direct summands depend the one on m and the other on k variables, then the 
region of positive (negative) values of the sum on the sphere S ... H-t will 
correspond to the set 

under the homomorphism 

where M ± is the region of positive (negative) values ofthe direct summand on the 
corresponding sphere. In particular, under the addition of a square of a new 
variable (that is under the ~hange to a stably equivalent critical point) the new 
region of negative values on the sphere is obtained from the old by mUltiplication 
by an interval and the new region of positive values on the sphere is obtained by 
gluing two copies of a ball along the old region of positive values on the sphere, 
taken as the boundary of the ball. 

2. There are ten possible reconstructions of a level surface for a function of 
three variables in a neighbourhood of a simple or unimodal critical point: eight 
of these are shown in figure 84, the other two are (1,0) - the minimum and (0, 1) -
the maximum. This result follows easily from the theorem and the above remark. 
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14.3.4 Bernstein polynomials 

Let Q(X)=xi + ... +.x; be a quadratic form. There is an identity 

This identity was used by I. M. Gelfand and G. E. Shilovin [123J to determine the 
complex degree of a quadratic form as a generalised function. This identity 
served as motivation for the theorem of I. N. Bernstein, which is formulated 
below. 

Let f : (C', O)~(cr, 0) be the germ of a holomorphic function. Let A be an 
independent variable. Let us consider the set of finite sums of the form 

I a",,(x)A'f(x)A-l, 
".';'0 

where al,,: (C', O)~(cr, 0) are germs of holomorphic functions and f A-l is a 
formal symbol. Let us furnish this set with the obvious relation 

Let us consider the differential operator P(x, A, a/ax) with coefficients which are 
holomorphic in x and polynomial in A: 

P(x, A, ajax) = I bl ,. (x) A" (ajaxY'. 
i:,«;l:O 

These operators will act on the previous set if we put 

a/ax;j A-l=(A-k)aJ/ax;j A-i-I. 

Theorem 14.11. There exist polynomials B(A) and a differential operator 
P(x, A, ajax), for which 

P(x, A, a/ax) f A=B(A) fA-I. 
(7) 

This theorem was proved by I. N. Bernstein [46J for the case in which f is a 
polynOmial, and extended by Bjork [52J to the general case. 

It is easy to see that the set of polynomials B(A), for which there exists an 
identity (7), generates an ideal in cr [A J. The monic generator of this ideal is called 
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the Bernstein polynomial of the germ f. It is clear that b(O)=O (for this it is 
sufficient to put A=O in the identity (7». Let us write 

b(A)=;}j(A). 

The polynomial b(A) is called the reduced Bernstein polynom.ial. . . 
One of the motives for proving Theorem 14.11 is the foll.owmg applIcation of 

it. Let us suppose that the germ f takes only real values on the real subs~ace 
R II c: cr". Let us fix a representative f of the germ f and let us define two functIOns 
f ± on a neighbourhood of the origin in R,": 

_{f(X) for f(x)~O 
f+(x)- 0 for f(x)<O 

{ 
0 for f(x)~O 

f-(x)= -f(x) for f(x)<O. 

Let cp: R"-+ R be a smooth function with support concentrated in a sufficiently 
small neighbourhood of the origin. Put 

I ± (A, cp) = J (J± (x»Acp(x)dx, 
R" 

where A E (; is a complex parameter, Re 1 > O. The integrals I ± can be considered 
as generalised functions, depending on the parameter A on the space of such 
functions {cpl. The integrals l± are well-defined for ReA.>O and depend 
holomorp'hically on A. 

11aeorem 14 12. The integrals I ± can be analytically continued t~ (; ~s 
meromorphi~ functions of the parameter A, and their poles lie on the anthmetlc 
progressions 

.1.;, .1.;-1, Aj-2, ... , 

h 1 1 are the roots of the Bernstein polynomial of the germ f. were 11.1, 11.2, ••• 

Proof. We have 

b(1) J f~-lqJdx= J [Pf~JqJdx= !/HP*qJ]x; 
R" R" 
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where b is the Bernstein polynomial, P is a differential operator satisfying with b 
the identity (7), and 

is the conjugate operator. These equations allow us to continue analytically the 
integrals I± from the half-plane ReA>O to the half-plane ReA> -1, etc. 

In [237, 238] B. Malgrange related the roots of the Bernstein polynomial with 
the eigenvalues of the monodromy operator in the cohomologies vanishing at the 
critical point of the germ f. 

Let us suppose that the germ f : (CC", O)-+(CC, 0) has a critical point of finite 
multiplicity /l. We place each eigenvalue A of the monodromy operator in 
correspondence with the arithmetic progression L(A) of all numbers cx for which 

exp (2 nicx) = A.. 

Theorem 14.13 (see [238]). The roots of the Bernstein polynomial ofthe germ f 
belong to the union of all the arithmetic progressions constructed above. Each of 
its roots is less than 1. 

CoroUary. The roots are rational numbers. 

The rationality of the roots of the Bernstein polynomial of a germ with a 
critical point whose mUltiplicity is not necessarily finite was proved by 
Kashiwara in [180]. 

In [360] there is defined a filtration in the fibres of the cohomological Milnor 
fibration of a critical point of finite multiplicity, and the roots of the Bernstein 
polynomial are expressed in terms of the action of the monodromy operator on 
the spaces of this filtration. Obvious correspondences between this filtration and 
the Hodge filtration point to new inequalities, relating the roots of the Bernstein 
polynomial. 

Let us define the above-mentioned filtration, which we shall call the third 
(after the weight and Hodge filtrations). The third filtration in the cohomologies 
H,,-l(X(t» of the fibre of the Milnor fibration we shall denote by {Gn 

For an arbitrary holomorphic differential n-form co on X let us expand its 
geometric section in a series of covariantly constant sections: 

s[co] = L t"(ln t)PA;: .. /p!; 
P." 
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see § 13.1. We put the subspace Gtkequal to the linear span of all the values at the 
point t of the sections A;: .. with 

cx=s;;n-1-k, p=0,1, ... ,n-1, 

of all the forms w. 
From the definition it easily follows th:tt the third filtf,!'ltion is decreasing: 

the terms of the third filtration are invariant relative to the monodromy 
operator, and for any k the subspace G: contains the subspace r, of the Hodge 
filtration~ 

Theorem 14.14 (see [360)). For any k let us denote by Qk the minimum 
polynomial of the action of the monodromy operator on G:lG:+ 1

• Each root A 
of the polynomial Qk we place in correspondence with the number 

where iA;(A) is defined by the conditions: 

Let us consider the union of all the numbers constructed for all k. Let us denote 

them by CXl' CX2, • • • • Then 

is the reduced Bernstein polynomial. 

CoroUary. If f is the germ of a quasihomogeneous polynomial, then the ro~t~ of 
the reduced Bernstein polynomial of the germ are the spectrum of the cntlcal 
point of the germ multiplied by -1 (proof: in this case the third filtration is the 

same as the Hodge filtration). 
The following theorem follows from the inclusion of the terms of the Hodge 

filtration in the terms of the third filtration: 
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Theorem 14.15 (see [361, 364]). 

1. Any k-fold root of the reduced Bernstein polynomial is greater than k -no 
2. If ex e [p, p + 1) (where p is an integer) is a k-fold root of the reduced 

Bernstein polynomial, then in the interval ( -n + k -p, 1) among the terms of the 
arithmetic progressions 

L(exp( -21tia» 

there are not less than k roots (counted with multiplicities) of the reduced 
Bernstein polynomial. 

3~ The reduced Bernstein polynomiaI5(s) is divisible by (s -a)" if and only if 
ex> 0 and the monodromy operator has a Jordan block of dimension n associated 
with the eigenvalue exp (27tia). The polynomiaI5(s) is divisible by (s -ex),,-l for 
integral ex if and only if a = 0 and the monodromy operator has a Jordan block of 
dimension n -1 associated with the eigenvalue 1. 

The theorem asserts that a large part of the roots of the reduced Bernstein 
polynomial lie to the right of the point s = 1 -nj2 (compare with the symmetry of 
the spectrum in § 13.3). 

The roots of the Bernstein polynomial can change under a deformation of the 
critical point of the germ in the It=const stratum. 

Example [316J. Let 

f(x,y)=ar +.t+.x4y, 

where aeCC is a parameter. For a=O the roots of the reduced Bernstein 
polynomial are equal to {lj24}, where 

1= -15, -11, -10, -7, -6, -5, -2, -1,0, 

1, 2, 3, 5, 6, 7, to, 11, 15. 

For a~O the roots of the reduced Bernstein polynomial are equal to {lj24}, 
where 

1= -7, -6, -5, -3, -2, -1,0,1,2,3,5, 

6, 7, 9, 10, 11, 13, 14, 15. 
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In the example the roots jump down as a-+O. In [211J a theorem is proved, 
which asserts that this phenomenon is typical, and explains in terms of the third 
filtration how the roots of the Bernstein polynomial can change under 
deformations of the critical point along the It = const stratum. 

We indicate the works which are related to Bernstein polynomials: [38-40, 
65-67, 203, 221-228, 286, 287, 382, 406-408J. 

14.3.5 The mixed Hodge structure and the local algebra of a critical point 

Letl : (ce", O)-+(CC, 0) be the germ of a holomorphic function at a cri~ical P?int of 
multiplicity It and letf:X -+S be a specialisation of the germ. In thiS ~~t~on we 
shall consider holomorphic differential n-forms on X modulo forms d!vlslble by 
df, that is equivalence classes in 

where QP(X) is the space of holomorphic differe~tial p-fo~s on X. .Each 
equivalence class can be put in correspondence With a ~ctlon of a SUitable 
fibration, constructed from the weight and Hodge filtra~IOn 0: th.e cohomo­
logical Milnor fibration of the critical point of the germ. This section IS ca~led the 
original coefficient of the equivalence class. The ~orresponde~ce r:latmg the 
equivalence class and the original coefficient establishes a relatIOnship between 

the space 

Q"(X)/df /\ Qn-l(X) 

and the cohomology, vanishing at the critical point of the germ. We shall give an 
example of the use of this relationship. 

Remark. Forms in Qn(X) have the form 

hdx1 /\ ••• /\ dx", 

forms in df /\ Qn-l(x) have the form 
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Therefore if X is sufficiently small (and this is always assumed), then 

is a p-dimensional vector space over cr (as is the local algebra (;{x}/(aJ7ax». 
Let us indicate the construction of the original coefficient. Let us fix an 

equivalence class and consider the upper bound of the orders of the forms 
belonging to the class. We shall call the upper bound the Hodge number of the 
equivalence class. 

Theorem 14.16 (see [364, § 9]). The Hodge number of a class is equal to + 00 if 
and only if the class is the class of the zero form (that is the class is just 
df 1\ U"-l(X». 

Let us suppose that the chosen class does not contain the zero form. Among 
the forms of the class with the largest order let us consider only those forms for 
which the principal part is a section of the subfibration of the weight filtration 
with the smallest number. Let us call this smallest number the weight number of 
the class. 

Let ex, I be the Hodge and weight numbers of the class, respectively. The 
principal part of each differential form of the class satisfying the above two 
conditions projects to a section of the fibration 

g,.k F gr, W(f*), 

where k = n + 1 + [ - ex] (for the definition of gr" F gr, W(f*) see page 380). 

Theorem 14.17 (see [364, § 9]). This section does not depend on the form ofthe 
class satisfying the two above conditions, and is a non-zero section. 

The indicated section of the fibration 

g,.k F gr, W(f*) 

is called the original coefficient of the equivalence class. Forms of the class with 
order equal to the Hodge number of the class and for which the principal part is a 
section of the subfibration of the weight filtration with number equal to the 
weight number of the class are called originalforms (compare with [363, 364]). 

Let we U"(X) be a form of order ex. Let us suppose that the principal part of 
the form is a section of a weight subfibration with number I and is not a section of 
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a weight subfibration with number /-1. Then the principal part of the form w 
projects into a section of the fibration 

g,.k F gr, W(f*), 

where k=n+1 +[ -ex]. 

Theorem 14.18 (see [364, § 9]). If a section of the subfibration 

g,.k F gr, W(f*), 

induced by the principal part ofthe form w, is not the zero section, then the form 
W is an original form in its equivalence class. 

The Hodge and weight numbers of the equivalence classes define on 

additional structures. 

Definition. The spectral vector of the class 

[w]eU"(X)ldf 1\ U .. - 1(X) 

is the ordered pair 

V[w] = (ex [w], I[w]), 

where ex [w], I[w] are the Hodge and weight numbers of the class [w]. If [w] is the 

class of the zero form we put 

V[w]=(+oo, -(0). 

Let us order the spectral vectors lexicographically. Namely, put v> V' if (X> ex' 

orifex=ex' and 1<1'. 

For example, 

(1/3,0) < (1/2,1) < (1/2, 0). 
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It is c~ear that multiplying an equivalence class by a non-zero number does not 
change Its spectral vector; the spectral vector of a sum of classes is not less than 
the minimum of the spectral vectors of the summands. 

For any vector V E JR
2 let us denote by FWy (respectively by FW> y) the set of 

all classes from 

th~ spectral vectors of which are not less than V (respectively, are greater than V). 
It IS clear that FWy ::> FW> yand each of these subsets is a complex vector space. 

Let us call the filtration 

{FWy }yeIl2 

the Hodge-weight filtration of the space 

Put 

gryFW=FWy/FW>y. 

Let us call the Jl-dimensional complex vector space 

grFW= $Yell2gryFW 

the graded space of the Hodge-weight filtration. 

~h~ore~s 14.16-14.18 establish an isomorphism between the space gr FW and 
a. dlstmgUlshed Jl-dimensional space of sections (the space of original coeffi­
cients) of the Jl-dimensional fibration 

gr F gr W(f*) = $1" gr1 F gr, W(f*). 

This isomorphism maps an element of gryFW into its original coefficient. 
To s~m uJ> the ~bove construction informally: after factoring by the Hodge 

an~ weight filtrations, the space of cohomologies vanishing at the critical 
~mt oft~e g~rm /, and Q"(X)/dj /"1,,-1 (X) are canonically isomorphic~ The 
Isomorphism IS established by a mapping from an equivalence class of forms to 
the original coefficient of the class~ 
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Remarks. 

1. Using the indicated isomorphism, we can determine the spectral pairs of the 
mixed Hodge structure in the vanishing cohomologies in terms of the 
Hodge-weight filtration on Q"(X)/df Idln

-
1(X). Namely we choose the pair 

(ex, I) E JR2 exactly the same number of times as the dimension of the space 
gr(<<,,)FW, if ex ¢ 'I., and of the space gr(<<,' + l)FW, if ex E Z. The union of all the 
chosen pairs is exactly the set of all spectral pairs. 

2. In each fibration 

gr1 F gr, W(f*) 

there is a Gauss-Manin connection. The monodromy operator of the connection 
does not have Jordan blocks. An arbitrary original coefficient, generally 
speaking, is not a covariantly constant section of this connection; however, the 
directions, determined by its values, are invariants relative to the connection. 

3. On the space gr FW we can introduce a mixed Hodge structure with the help 
of the original coefficients. 

Now let us cite an example of a result, the proof of which is based on the 
isomorphism indicated above. 

lbeorem 14.19 (see [363]. Let 

be the logarithm of the unipotent part of the monodromy operator. Let 

{J} : £ {x}/(oJ7ox)--+£{x}/(oflox) 

be the operation of multiplication by /. Then for any j~O, 

dim (ker ({J }i» ~ diD). (ker (N i», 
where dim (ker ( . » is the dimension of the kernel of the operator. 

CoroDary (see [317]). If the operator {J} does not have Jordan blocks of 
dimension ~ j, then the monodromy operator does not have such blocks. 

For example, in the quasihomogeneous case {J} is the zero operator, therefore 
the monodromy operator is diagonalisable. 
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Sketch of the proof. The Jordan structure of the operator {f} is the same as the 
Jordan structure of the operation of multiplication by f in 

It can be proved that the operation of multiplication by f maps FW(II,I) into 
FW(II+l,1-2) for any (a, I) (see the proof of Lemma 13.12)~ Therefore {J} induces 
an operator 

gr{J} :grFW-+grFW, 

mapping gr(II,I)FW into gr(lI+l,I-2)FW for any (a, I). It is clear that the Jordan 
structures of the operator {J} and the operator gr{J} are connected by the 
relation 

dim (ker ({J}i» ~dim (ker «gr{J})'» 

for any j~O. 

By using Theorem 13.3 on mixed Hodge structures it can be further proved 
that under the isomorphism between the space gr FW and the space of original 
coefficients the operator gr {J} maps into the operator N, multiplied in each term 
of the space grFWby a corresponding non-zero number. The theorem is proved. 

Remark. In [364] the following result was proved. Let us call the length of the 
spectrum of the critical point of a germ f the difference between the largest and 
sma~lest spectral numbers. If j is greater than the length of the spectrum, then 
{J}1=O, in other wordsji e (of/ox). Since the spectrum belongs to the interval 
(-l,n-l), we always havej"e(of/ox) (see [54,219]). 

Chapter 15 

The period map and the 
intersection form 

Let us be given a smooth fibration and a differential form on the space of 
fibration which is closed on the fibres. In such a situation there arises the period 
map of the form - a many-valued map from the base of the fibration to the 
cohomology of the fibre. A point of the base is mapped to the cohomology class 
of the form in the fibre over the point translated to the cohomology of a 
distinguished fibre. The fact that it is many-valued arises from the fact that there 
is not a unique choice of path for the translation. 

Let us denote the form by w. Let us choose a basis hf, ... , h~ of the integral 
homology of the distinguished fibre in the dimension equal to the dimension of 
the form. Let us extend the basis by continuity to neighbouring fibres and 
construct a many-valued family hI' ... , h", continuously depending on the point 
of the base of bases of the homologies of the fibres of the fibration. The basis 
~o ~o 'determines coordinates in the co homologies of the distinguished Ul , •• • ,u" 
fibre. With respect to these coordinates the period map has the form 

A. 1-+ (J w, ... , J w), 
"to.) " .. (l) 

where A. is a point of the base of the fibration. 
The period map allows us to transfer to the base of the fibration structures 

existing in the space of cohomologies. For example, the intersection number of 
cohomology classes of the middle dimension in the cohomol?gy oft~e fibre ~aps 
to a bilinear form on the tangent bundle of the base (if the dIfferential form Itself 
has a middle dimension). . 

In this chapter we shall consider the period map in the Milno~ fibratio~, 
associated with a versal deformation of the critical point of the function. In thiS 
case the dimension of the base is equal to the dimension of the middle 
cohomology ofthe fibre. It can be shown that for almost all differential forms the 
period map is non-degenerate and in a natural sense does. not depend on ~he 
differential form used to define it. This means that constructions connected With 
the period map are determined by the fibration and, in the end, by the critical 

point. 
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In this chapter we shall consider a bilinear form arising on the base of the 
fibration (that is on the complement of the discriminant) from the intersection 
form. It can be proved that under several conditions the bilinear form can be 
analytically continued to the whole base of the versal deformation~ 

In a series of cases this bilinear form is a symplectic structure. It can be shown 
that the strata of the base of the versal deformation have in this symplectic 
structure special Lagrange properties, reflecting the types of decomposition of 
the critical point into simpler ones. Several of the strata provide us with 
important examples of Lagrangean manifolds with singularities. 

15.1 The conmuction 
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Remark. This fibration is different from the Milnor fibration of the deformation 
F (see § 10.3). In order to obtain this fibration from the Milnor fibration of the 
deformation F it is necessary to restrict the Milnor fibration to the set of zero 
values of the deformation F. 

The fibration over A"E we shall call the central Milnor fibration. 
Let us denote by ap the space of holomorphic p-forms on B x A. Let us 

consider an arbitrary (n -1 )-form OJ E an -I. Its restriction to .an arbitrary fibre of 
the central Milnor fibration is a closed form. The period map of the form OJ is the 
section 

of the fibration of (n -1 )st cohomologies, associated with the central Milnor 
15.1.1 fibration (more briefly: of the central cohomological Milnor fibration). For each 

Definition. Let f: (C', 0)-+«;, 0) be the germ of a holomorphic function at a 
critical point of multiplicity Jl. Let us define the fibration in which we shall study 
the period map. This fibration is a fibration of zero level hypersurfaces of 
functions constituting a minimal versal deformation of the germ. 

Namely let us fix a representation of a versal deformation of the germ f in the 
form 

where the functions c/JI == 1, c/J2, ••. , c/J" generate a basis over (; of the local algebra 
(;{x}/(iJ.I7iJx). Let us choose a sufficiently small ball 

Depending on l! let us choose a sufficiently small ball 

A = {AE(;"//A/ < 15}. 

Let us denote by I the hypersurface of all such A E A, for which the local zero 
level set 

X). = {xEB/F(x, A)=O} 

is singular. The hypersurface I is called the discriminant. 

Over the complement A"I of the discriminant the manifolds {X A} form a 
locally trivial fibration. 

integer k ~ 0 the kth associated period map of the form OJ is the section 

of the same fibration (here Vil/il)., is differentiation in the Gauss-Manin 
connection along the vector field iJ/iJ).1 ; remember that A.l is the constant term of 
the versal deformation). 

Remark. Let 151 ().), ••• , 15,,().) be a basis in H.- 1(X)., Z), depending continuously 
on A. With respect to this basis 

We say that the map p! is non-degenerate if the vectors 

v,().) = (ViJ/iJA,P!)/)., i=1, ... ,p, 

are linearly independent for all A. E A "E, sufficiently near the ori~n in A (that is 
if the map p!, written down in coordinates with respect ~o a covanantly constant 
basis, gives a many-valued map in (;" with Jacobian different from zero for a~l 
A. E A"E, sufficiently near to the origin); and is infmitesima~ly non-degenerat~ If 
on the ).1-axis, passing through the origin in A, the. determmant of the m.atnx, 
consisting of the coordinates of the vectors {VI} WIth respect to a covanantly 
constant basis, has as Al -+0 a zero of order p(n - 2k - 2)/2. 
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Remark. Th~ coordinates of the vectors {VI} with respect to a covariantly 
cons~ant ba~ls .are many-valued, however the square of the determinant of the 
matnx, conslst1Og of the coordinates, is a single-valued holomorphic function in 
A"'.E, meromorphic in A (see Theorem 12.2). 

We can ~how tha~ the property of the map p! being infinitesimally non­
degenerate IS determ10ed by a finite jet of the form 00 at the point 0 x 0 E B x A 
(see formulae (3) and (4) on page 284-285 and Lemma 12.3). 

W~ shall sa~ that the ~roperty of infinitesimal non-degeneracy of the kth 
~ss~lat~d penod maps IS generic for given k, if the jets determining the 
l~mtesImally non-degenerate maps constitute in the space of jets of sufficiently 
high order the complement of a proper analytic subset. 

15.1.2 Noo-degeneracy and stability 

1beorem 15.~ (see [22?], [215, § 10]). For any form ooeD,,-l and any k~O, if 
the ~h .assOCIated penod map of the form 00 is infinitesimally non-degenerate, 
then It IS non-degenerate. 

Proof. ~s in the proof of Theorem 12.2 we can prove that the square of the 
determ10ant of th~ matrix consisting of the coordinates of the vectors {VI} with 
r~s~ct .to a covanantly constant basis at an arbitrary non-singular point of the 
dIscnm10ant has a zero of order not less than (n - 2k - 2). As in Corollary 1 of 
Theorem 12.2 we ~an concl~de that the square of the determinant does not map 
to zero on 1"'.E ~n a suffiCIently small neighbourhood of the origin in A. This 
m:~ns that 10 a neIghbourhood of the origin in A the Jacobian matrix of the map 
Pm IS non-degenerate. 

1beorem 15-:2 (see [3.69], [364, § 10]). For k = 0 the property of infinitesimal non­
degeneracy IS genenc. If the intersection form in 

is non-degenerate then the property of infinitesimal non-degeneracy is generic 
for any k~O. 
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Remarks. 

(1) In [369] there is proved a more general result: if among the spectral 
numbers of the critical point of a germ f there is not an integer less than k, then 
the property of infinitesimal non-degeneracy is generic for this k. Theorem 15.2 
follows from this result and Theorem 14.3. 

(2) Note the following corollary of Lemma 12.3: if for a given k ~ 0 there 
exists an infinitesimally non-degenerate period map p!, then the property of 
infinitesimal non-degeneracy for this k is generic. 

Let us define the concept of equivalent period maps. An informal definition is: 
two period maps are said to be equivalent if there exists a diffeomorphism of the 
pair A, E, possessing the property: the first map is equal to the composite of the 
diffeomorphism and the second map. This definition requires to be stated more 
precisely in view ofthe fact that the period map is not single-valued. In addition 
we shall consider diffeomorphism not of all of A but only of a neighbourhood of 

the origin. 

DefiDition. Two maps p!, P: are said to be equivalent if there exists a 
neighbourhood U of the origin in A and a continuous map 

H: Ux [0, l]-+U, 

possessing the propertIes: 
(i) H(·, 0) is the identity map; 
(ii) H(·, s) for any s E [0, 1] is a holomorphic map with non-zero Jacobian; 
(iii) for any S E [0, 1] the point H (A., s) belongs to E if and only if A. E E; 
(iv) U r'I H (U, 1) contains the origin; 
(v) for any A. E U"", (U r'I E) the vector p!(A.), parallel translated in the Gauss­
Manin connection along the curve H(A., .) to the point H(A., 1), is equal to the 

value at this point of the section P:. 

TIteorem 15.3 (see [369]) .. 
1. Any infinitesimally non-degenerate kth associated period m~p P!.is stable, 
that is a kth associated period map P:, for any form" near to 00, IS eqUIvalent to 

p!. 
2. If f is a quasihomogeneous germ, then all infinitesimally non-degenerate 

kth associated period maps are equivalent. 

Proof. Let us suppose that the form 00 depends on a para~eter and .for the zer~ 
value of the parameter the corresponding kth assOCIated penod map IS 
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infinitesimally non-degenerate. Let us prove that for all small values of the 
parameter the corresponding kth associated period maps are equivalent. To do 
this, let us construct a vector field, depending on the parameter, in a 
neighbourhood of the origin in A, which for each value of the parameter is 
tangent to I and the flow of which establishes simultaneously the required 
equivalence of all the maps with small value of the parameter. The vector field 
is constructed initially on A",I and then it is proved that the field can be 
holomorphically extended to I and that this holomorphic extension is tangent 
to I. 

It is easy to see that the required field on A"'I exists and is unique. Indeed, let 
us consider the kth associated period map as a many-valued map in the 
cohomology of the distinguished fibre. Each orbit of the required field must 
connect points with equal image relative to the kth associated period maps ofthe 
one-parameter family under consideration. Since for all small values of the 
parameter these maps in a neighbourhood of each point are diffeomorphisms 
into the cohomology of the distinguished fibre, it is possible to draw through 
each point of A"'I - in one and only one way - a parametrised curve of points 
with the same image. 

It is sufficient to verify the assertions that the field we have constructed can be 
holomorphically continued to I and that the holomorphic continuation is 
tangent to I near non-singular points of the discriminant. Then at an arbitrary 
point of the discriminant the result will follow from standard theorems about the 
removal of singularities in codimension 2. The verification of the result near non­
singular points of the discriminant can be carried out with the help of explicit 
formulae, analogous to the formulae of Lemma 12.2 (for k = 0 with the help of 
the formulae of Lemma 12.2) (see [369]). 

The second part of the theorem follows from the first part and a theorem ofV. 
M. Zakalyukin [412], asserting that for a quasihomogeneous germ f a vector 
field on A, tangent to the discriminant, is necessarily equal to zero at the origin. 

15.1.3 1be intersection fonn in the cotangent bundle 

To each non-degenerate period map p! there corresponds a natural isomor­
phism of fibrations 

and dual to it the isomorphism 
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Here T* and T* are, respectively, the tangent and cotangent bundles, Hn - 1 and 
Hn-l, respectively, the homological and cohomological central Milnor fibra­
tions. 

Remark. Here and later it is implied that isomorphisms are defined only on a 
neighbourhood of the origin in A (see the definition of non-degeneracy). 

In the fibres of the cohomological fibration there is a bilinear pairing - the 
intersection number of cycles of the middle dimension in Xl. In this way a non­
degenerate period map p! determines an intersection form cP!, on the cotangent 

bundle T*(A"'I). 

1beorem 15.4 (see [369]). The form cP!, is holomorphic in A",I. If p! is 
infinitesimally non-degenerate and k;;3: [(n -1 )/2], then the form cP!, can be 
holomorphically continued to T* A. 

Proof. The first assertion of the theorem is obvious, since the form cP!, is induced 
from a constant form by a holomorphic map. It is sufficient to verify the ~ond 
assertion near a non-singular point of the discriminant. Near such a pomt the 
Jacobian matrix of the kth associated period map can be written out explicitly 
with the help of the formulae of Lemma 12.2. The form .cP!, is induced fro~ a 
constant form with the help of a matrix, inverse to the conjugate o~the ~acobl~n 
matrix. Therefore the theorem can be verified if the expansl~ns m senes 
(analogous to the series indicated in Lemma 12.2) of the coordmates of the 
inverse matrix contain only non-negative powers of the parameters. It can be 
verified directly that this is so for the indicated values of k (see [369]). 

Theorem IS.s (see [369]): The intersection fo~ cP!" .corres~nding to an 
infinitesimally non-degenerate p!, is stable, that IS the mt~~tlon form~ ~ 
for all forms" near to ro map to cP!, under suitable holomorphic dlffeomorphlsms 

f h . A ~. t 'tself Iff is a quasihomogeneous germ, then the form cP!" oteparr,~mol . t· fid' . 1 
corresponding to an infinitesimally non~egenerate Pal, IS de me mvanant y up 
to diffeomorphism of the pair A, I to Itself. 

Theorem 15.5 is a direct corollary of Theorem 15.3. 
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15.1.4 The kernel map 

Let us make explicit which object in the tangent bundle T. (A"I) is induced by a 
non-degenerate associated period map from the intersecti~n form in vanishing 
homologies. 

Let A. E A"I. The intersection form Sin H.-1 (XA, f::) determines a linear map 

The kernel of the map 7t is the same as the kernel of the form S. On the image 1m 
of this map there is a well-defined non-degenerate bilinear form S.: 

Let p! be a non-degenerate associated period map. The isomorphism 

induces in the tangent bundle of A"I a distribution 

where Im~(A.)cT •. A(A"I) is a subspace isomorphic to the subspace 

1m (tcH·-1(XA,f::). 

The codimension of this distribution is equal to the dimension of the kernel of the 
intersection form in H.- 1 (XA, CC) . 

On the planes of the distribution Im~ there is a well-defined non-degenerate 
bilinear intersection form 'l'~, induced from the form S •. 

It can be shown that the distribution Im~ is integrable, and, furthermore, its 
~egral manifolds are fibres of a holomorphic map from A"I into a complex 
'vector space. This map can be given by the following geometrical construction. 

Let us consider the finite-dimensional complex vector space Ker of all single­
valued covariantly constant sections of the central homological Milnor fibra­
tion. It is not hard to convince oneself that an arbitrary section from Ker can be 
obtained in the following way. We need to choose in the fibre of the central 
homolOgical Milnor fibration a suitable homology class, belonging to the kernel 
of the intersection form, and extend it to a covariantly constant section. In 
particular, the dimension of the space Ker is equal to the dimension ofthe kernel 
of the intersection form in the fibres of the homological fibration. 
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With the space Ker we associate a complex vector space of functions 
{hY}l'eKer* on A"l', where the function hy is defined by the formula 

Let us define a holomorphic map 

K!:A"l' .... Ker· 

where Ker· is the space dual to Ker. For lEA"l'putthe value of K!(l) equal to 
the linear function on Ker which on the vector}, E Ker is equal to hy(l). We shall 
call the map K! the kernel map associated with the form w. 

Remark. Let us otTer an equivalent construction of the kernel map. In the ~ntral 
cohomological fibration H"-1 there is a. sub~b~atio~ 1m, the ~bres of which are 
h b {Im( ')} This subfibratlOn IS mvanant relative to the Gauss-t e su spaces A. • • 

Manin connection. Therefore the Gauss-Manin connec~lOn IS defined on the 
. fib t· H ft - l jlm It is not hard to conVince oneself that the quotient I ra Ion. . .. . 

monodromy of the connection on the quotient fibratio~ IS tnvlal. T~e penod 

P i:· t· n of the fibration H ft
-

1 • The section p! mduces a sectIOn of the map co IS a sec 10 • fib . 
quotient fibration. Mapping the value~ of the ~tion of the ~uotl~nt I ration 
into the distinguished fibre of the quotient fibration, we obtam a sl~gle-valued 
map of the base A"l' into the space of covariantly constant sections of the 
fibration H,,-1 lIm. This is also the kernel map. 

1beorem 15.6.1. For any k~O, WEUft
-

l the kernel map K! is holomorphic o~ 
A"l' and meromorphic on A. If k = 0, then the kernel map can be holomorphl-

cally continued to A. . I 
2. If the period map p! is non-degenerate then the kernel map has maXima 

ok A' ~. ·ghbourhood of the origin. Furthermore the tangent planes ra on ,~manel . .b . I i: 

to the fibres of the kernel map are the same as the planes of the dlstn utlOn mco. 

Proof. Section 1 is a direct corollary of Theorems 10.4, to. 7. ~he first part of 
Section 2 is a direct corollary of the non-degeneracy of the penod map. For a 
proof of the second part it is sufficient to remark that a vector ~ E T •. }.(A"l') 

belongs to Im!.(l) if and only if 

<dP!(~), IX) =0 
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for every homology class ex E H"-1 (X,to C£:), belonging to the kernel of the 
intersection form, that is if and only if (dhy , ~> = 0 for anyy E Ker. The theorem is 
proved. 

CoroUary of Theorem 15.3. The kernel map K! and the intersection form IJI! on 
its fibres corresponding to an infinitesimally non-degenerate p!, are stable, that 
is the pairs K:, IJI: for all forms rt near to w map to the pair K!, IJI: under a 
suitable holomorphic diffeomorphism of the pair A, E to itself. If / is a 
quasihomogeneous germ, then the pair K!, IJI!, corresponding to an in­
finitesimally non-degenerate p!, is defined invariantIy modulo diffeomorphisms 
of the pair A, E to itself. 

If the number n of arguments of the germ / is equal to 2, Theorem 13.3 on 
mixed Hodge structures allows us to prove the non-degeneracy of the 
continuation to A of the kernel map K!=o. 

Theorem IS.7. If n = 2, k = 0 and P eo is an infinitesimally non-degenerate period 
map, then the kernel map K2, can be holomorphically continued on E to a map 
with maximal rank. 

Proof. It is necessary to verify that the differentials of the functions {hy}yeKer at 
the origin in A form a space of dimension equal to the dimension of the kernel of 
the intersection form in homologies. For this it is sufficient to verify the same fact 
on the AI-axis, passing through the origin in A. Let YEKer, then 

Over the AI-axis the section ViJ/iJAJPOJ is a geometric section of a suitable 2-form 
(see formulae (3), (4) on page 284-285). Now the result ofthe theorem follows 
easily from the result (iii) in § 14.2.1 and the infinitesimal non-degeneracy of the 
map Peo (see also Lemma 2.4 in [364]). 

Let us consider outside the discriminant an arbitrary fibre of the kernel map 
K!, corresponding to a non-degenerate period map p!. In the tangent bundle to 
the fibre there is defined a non-degenerate intersection form IJI!. If the number n 
of arguments of the germ / is even, then the intersection form IJI! is a 
holomorphic symplectic structure on the fibre. Indeed this form is non­
degenerate, antisymmetric and induced by a holomorphic map from a constant 
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form, so in particular, is closed. For odd n the intersection fonn .IJI! is a (complex) 
holomo hic metric on the fibre with zero curvature (WIth. respect ~o a 

~ 'ng the metric and induced by the Gauss-Mamn connectIOn). connectIon, preservt 

15.1.5 The non-degenerate intersection fonn 

Let us consider at greater length the case when the. intersection fonn in 
H (X C£:) is non-degenerate. In this case the intersectIon fonn for the non­
de";e~er~;e map p! is defined on the whole tangent bundle T.(A"'-E). 

Theorem 15.8 (see [369]). . k d t n 
f' k = nl2 -1 and the intersectIOn fonn IJI OJ corres~on s 0 a 

1. I n IS even, . d pk then the isomorphIsm 
infinitesimally non-degenerate peno map eo, 

T·(A"'-E)-+ T.(A"'-E> 

. . hi of ([ {l }-modules of genns at the origin in A given by It defines an Isomorp sm 
of differential 1-fonns and vector fields, tangent to E. 

For the proof of the theorem it is sufficient to verify the corresponding results 

near non-singular points of the discriminant; see [369]. 

15.2 Examples 

15.2.1 

Let /:«[",0)-+«[,0) be a quasihomogeneous genn; 

q,1 == 1, q,2'· .. , q,,, 

'. .' b is over ([ of the local algebra be a set of monomials projectmg mto a as 

C£:{x}/(a/lax); 

F(x, l)=/(x) +ll + A.2q,2(X) + ... +l"q,,.(x); 

W=Xldx2/\ ... /\ dx". 

. od map. Indeed, according to Then P OJ is an infinitesimally non-degenerate pen 
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formul~e (3), (4) on page 284-285, over the AI-axis passing through the ori . 
the sectIOns gm, 

are represented by the forms 

Now the result follows from Theorem 13~6. 

15.2.2 (see [16, 369]). 

Let! =x"+I, Jl~ 1, and 

F(X,A)=X,,+1 +A2X,,-1 + + 1 ••• 11.,,+1' 

We have deliberatel~ changed the above-mentioned numbering of the param­
eters .ofthe deformatIon: here the suffix i of the parameter Ai is proportional to its 
quasIhomogeneous degree. Let us choose OJ = x. We cite below a formula for the 
components Ul," k,i=2"",Jl+1, of the intersection form 4>~ in the 
cotangent bundle. Put A.o = 1, Ai = 0 for i = 1, i < 0 or i> Jl + 1. Then 

gl,l= L (i-j )A.;AJ+[1-min(k,/)+ (k-1)(1-1)] A A 
.i~"""'(l,l) "+1 l-1 1-1' 
.+J=l+I-2 ,.. 

15.2.3 

In the case of simple germs offunctions of an odd number of variables, belonging 
to the classes D" an~ E6 , the formulae for the metrics 4>l;-I)/2 on the cotangent 
bundle, correspondmg to the quasihomogeneous form 

are cited in [125] on page 14. 
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15.2.4 

Let us give some examples of symplectic structures 'P:!2 -Ion bases of versal 
deformations. Such examples are known for germs offunctions of two variables 
with simple critical points. 

Among simple critical points of functions of an even number of variables there 
are non-degenerate intersection forms in the vanishing homologies of critical 
points of types A2l , k ~ 1, E6 , E8 ; the intersection forms of critical points oftypes 
D2l+ 1, k ~ 2, E7 have one-dimensional kernel; the intersection forms of critical 
points of types D2l , k~2, have two-dimensional kernel. 

We shall explain how to calculate the symplectic structure 'P~ for germs of 
functions of two variables with critical points of types 

and then we shall cite the results of the calculations for critical points of small 

multiplicities. 
Let 

be a quasihomogeneous versal deformation of the germ f: (£2,0)_(£,0) with 
critical point of one of the types A2l, E6 , E8 . Let w= ydx. According to example 
15.2.1, the form OJ generates an infinitesimally non-degenerate period map PUP 
According to Theorem 15.8 the intersection form 'P uu corresponding to the 
period map, is a symplectic structure on A. The form 'Pm has the form 

L gl,ldAl /\ dAb 
l<1 

where 

and < , > is the intersection form in HI (Xl' £). We shall represent each coefficient 
gl,I(A) as the residue of a suitable expression on the algebraic curve 

Yl = {(X,y)E £2IF(x,y, A)=O}. 

Lemma 15.i. For any AE A"'.l:" the natural inclusion of the fibre Xl of the Milnor 
fibration in the algebraic curve Yl induces an isomorphism of (co)homologies. 
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The proof follows from the fact that for a quasihomogeneous simple germ / 
the quasihomogeneous degrees of the functions {(Pi} are less than the quasi­
homogeneous degree of the germ / ~ 

According to Lemma 15.1 we can calculate the coefficient gt,,(A) as the 
intersection number of the cohomology classes on YA which are isomorphic to 
the classes 

According to the formulae (3), (4) on page 284-285, the indicated cohomo­
logy classes on Y;. can be represented by the forms 

respectively. In order to calculate the intersection number in Hl(YA' CC) of the 
cohomology classes of the forms Wl, W, we need to change one of these by 
addition of the differential of a function so that it becomes a form with compact 
support, and then we need to multiply the forms and integrate over YA : 

(the second equality is true since the forms Wt, W, are holomorphic). 
Using Stokes' formula we obtain a rule for calculating the coefficients gl,,(A): 

on the curve YA in a neighbourhood of its unique point at infinity we represent the 
form Wt in the form of the differential of a holomorphic function, namely 

then 

where Res"" is the residue at infinity. 
Now let us give the answers. 

(i) Let 

/=-r+.xl 
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be a germ of type A2 , 

then 

(ii) Let 

be a germ of type ~, 

then 

(iii) Let 

be a germ of type A6 , 

then 

'P CD = const [3 dAI A d~ - 9 Al dl1 A d4 + 6 A2dAI A dA3 + 

+ (A3 + Hf}d1i A dA2 + 5 dA2 A dAs + 5 Al dA2 A d13 + 15 dA3 A d4]· 

(iv) Let 

be a germ of type E6 , 

F= _r+x4+1Iry+A2xy+13y+4r+A.sx+~, 
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then 

'P ",=const [-3dA1 /\ d4, + [(5/9)Af -27 A.]dA1 /\ dA. +2A.fdA1 /\ dA3-

IS.2.S 

Let /: (CC", O)-(CC, 0) be the germ of a holomorphicfunction at a critical point of 
multiplicity jl, let F be a representative of a versal deformation, and let ro e 0,,-1 
be a form defining a non-degenerate period map p! for some k. Let us suppose 
that the intersection form in H,,-1 (X)., CC) is non-degenerate and, consequently, 
there is defined on T. (A",1:) a non-degenerate form 'P~. Let us suppose that /, 
F, ro are real on the real parts of their domains. Let us discuss to what degree the 
form 'P! is real on the real part of its domain, that is on T.(R"n(A"'1:). 

Theorem 15.9. Under the above assumptions the intersection form 'P! takes only 
real values on T. (It" n (A"'1:) if n is odd, and takes only pure imaginary values 
on that set if n is even. 

Proof. Let us suppose that fill", FI(Il"xll")n(BxA), roIT.«1l" X ll")n(Bx A» are real. 
Let A belong to It" n(A"'1:). The map dP! maps 1).R" into a Jl-dimensional real 
subspace Hil in H"-1(X)., CC). We need to make explicit what value the 
intersection form takes on pairs of vectors from H il. Let us describe H il . 

Let us consider H"-1(X)., R) as a subspace in H"-1(X)., CC). On each of these 
spaces there acts an involution, induced by complex conjugation: (x, A) 1-+ (x, X), 
where (x, A) eX).. Let us decompose the space H"-1(X).,R) into a direct sum of 
subspaces, consisting, respectively, of invariant and antiinvariant cohomology 
classes: 

Lemma 15.2. We have 

H Il =lffHA, 

where i 2 = -1. 
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The proof follows easily from the fact that the cohomology classes 

{ViJ/iJ).JP!} 

can be represented on X). by holomorphic forms, real on the real part of the 
manifold X).. 

Let us conclude the proof of the theorem. The involution q of complex 
conjugation changes the orientation on X). if n is even and does not change the 
orientation if n is odd. Therefore 

C·) = -(q., q -), if n is even, 

C·)= (q.,q.), if n is odd. 

From these formulae it easily follows that for even n the restriction of the 
intersection form to each of the subspaces I and A is equal to zero and for odd n 
the cohomology classes from different subspaces I, A do not intersect. The 

theorem is proved. 

15.2.6 

Let us give some examples of kernel maps K!,. 
(i) Let /= -y+X" be a germ of type A3, 

F= -y+X"+.A.1x2+A2X+A.3' 

ro=ytix. 

In this case the kernel of the intersection form in H1 (X)., CC) is one-dimensional: 

K2, = const . ;'2 . 

(ii) Let /= -y+x6 be a germ of type As, 

F= -y+~+.A.1x4+A2~+A3r+4x+;", 

ro=ytix. 
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The kernel of the intersection form is one-dimensional: 

J(2,=const· (..1'3 -lV4). 

(iii) Let / = - y +:xB be a germ of type A" and let Fand w be analogous to those 
above. Then 

(iv) Let /= -.r+.x3 be a germ of type D4 , 

w=ydx. 

In this case the kernel of the intersection form is two-dimensional. Modulo a 
linear transformation of the image the kernel map J(2, has the form 

15.2.7. 

We give some examples of images of period maps. 

Example. Consider the family of non-singular complex algebraic curves given by 
the equations 

depending on the parameters l. Consider on each curve a choice of base cycles 
Yl (l), . .. , Y,,(l) in the one-dimensional homology, depending continuously on 
the parameters. The period map of the form w = ydx takes a point l into the 
II-tuple of "areas" of the base cycles: 

ll-+( f w, ... , f w). 
11(.\) 1,,(l) 
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'Theorem (see [384)). The image of the period map is cr"" {O} (so, for example, it 
contains vectors with all coordinates real). Furthermore, if II > t each non-zero 
vector is realized as the vector of integrals for infinitely many values of the 
parameters. 

In [384] it is shown that the image of the period map of a form in general 
position is a punctured neighbourhood of 0 for the versal.deformation of any 
simple function germ in an even number of variables. In the case of any simple 
function germ in an odd number of variables, the closure of the image of the 
period map is a neighbourhood of O. It seems likely that the assertion holds for 
arbitrary germs. 

Example. Consider the family of non-singular curves 

and the period map of the form '1=y- 1dx: 

ll-+( J '1, J '1). 
n(l) nIl) 

This is the first adjoint map of the period map for the formydx. The image of this 

map is {(zl,zz)ecrzIIm(zl/zZ»O}. 

Problem: Describe the image of adjoint period maps. 

15.3 The restriction of the symplectic structure on tbe base o~ • 
yersal defonnation to tbe stratum of tbe discriminant contains 
infonnation on tbe degeneracy oyer tbe stratum 

Let us suppose that the number n of variables of the germ / is even and that the 
intersection form in H n- 1 (Xl' cr) is non-degenerate (in particular II is even). In 
this case the intersection form 'P:(2-1 (for an infinitesimally non-degenerate 
period map P;P -1) gives a symplectic structure on A. Let us break up the 
discriminant I into strata according to the types of degeneracy of the zero level 

X ... 
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Principle. The types of degeneracy of the zero level are reflected in the 
Lagrangean properties of the strata of the discriminant relative to the symplectic 
structure '1':/2-1 (see [369]). 

Let us illustrate the principle with examples. 
Let the point lEE correspond to a variety X .. with exactly p/2 non-degenerate 

critical points. Cycles which vanish at these points do not intersect, therefore the 
subspace generated by them in the space of homologies of the non-singular fibre 
is Lagrangean. It can be shown that such l form in A a Lagrangean submanifold 
relative to the symplectic structure '1':/2 -1. More precisely, let 

Eo = {l E EIX has p/2 singular points, 

all of them being non-degenerate}. 

Theorem 15.10 (see [369]). The space Eo is a Lagrangean submanifold of the 
symplectic space (A, '1':/2 -1). 

Examples. 

1. Among the critical points of germs of functions of two variables the critical 
points which have non-degenerate intersection form are those for which the 
germs of the critical level curves are irreducible. In this case, by deforming the 
critical level curve it is not hard to convince oneself that the variety Eo is not 
empty. 

2. For germs of type A2l the variety Eo is isomorphic to the subvariety in the 
space B2A:+ 1 of polynomials of the form 

consisting of polynomials with k roots of multiplicity 2. We can show that 
subvarieties of the same space, consisting of polynomials with roots of 
multiplicity k + 1, are Lagrangean with respect to some other symplectic 
structure (in the linear space of binary forms of odd degree there is exactly one 
(modulo multiples) non-zero SLz-invariant exterior 2-form; it is the other 
symplectic structure, see [124]). 

Theorem 15.11 (see [369]). Two affine algebraic varieties in B2A:+I 
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and 

are isomorphic. 
Theorem 15.11 can be proved by producing explicit formulae for the 

automorphism of the space B2l + I, mapping one variety into the other. 

Proof of Theorem 15.10. According to Tessier's theorem [348] Lo is a trans­
versal intersection of pl2 non-singular leaves of the discriminant Land, 
consequently, is a non-singular manifold of dimension p12. 

Let us denote by Wa neighbourhood of the point lO E Lo in the manifold Lo. 

Put R+ ={tERlt~O}, 

U=1R+ x W={A=AI+teIIA!eW,teR+,el 

is a basic vector of the AI-axis in A} 

(we fix a linear structure in A). 
Let Y Y be cycles vanishing as t-+O. Then the plane I"", 1'/2 , 

m 

is Lagrangean. We supplement {yi} with cycles {c5,} to make a symplectic basis in 

H.-l(X .. ,ct). According to Lemma 12.2 

J Q) = t N
/
2 ln t",i + ",j, 

I, 

where q,h q,;, q,j are analytic functions of the coordin~tes (t, AI) on U. Ther~fore 
the period map P:P -1 gives a family P, of hoi om orphic maps of the submamfold 

Win 

continuously depending on the parameter t E R+ ; moreover 

PO(W)kYI""'Y0i2)=O. 
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This last statement means that the restriction of the intersection form (', .) in 
H"-1(X)., C£:) to Po(W) is zero~ Since the form 'P;f-1 is analytic in A we have 

'P.:'2-1Iw=lim 'P.:/2- 1Iw+,el =limp~C ')=p3C ')=O~ 
1-0 1-0 

The theorem is prove& 

Let us formulate a theorem, generalising Theorem 15.10 and proved 
analogously. 

Let 110"', II:: (C£:'" O)-+(C£:, 0) be germs of holomorphic functions with 
critical points of finite multiplicity. In the base A of the versal deformation of the 
germ I: (cr", O)-+(C£:, 0) we choose a non-singular submanifold I fl ••••• f .. consist­
ing of all points AEI for which F(',A) has k critical points 

equivalent to the critical points of the germs 11,' .. ,I 1:, respectively~ 

Let us suppose that the point AEA""-I lies sufficiently close to Ao EI/I ..... j,.. 

Then the cycles in H.-1 (X)., C£:), vanishing at the point Xi (Ao), generate a 
subspace Li in H,,-1 (X.h C£:). The subspace {~} possesses the properties: 
(i) The restriction of the intersection form (".) in H.- 1 (X)., C£:) to Li is 
isomorphic to the intersection form in homologies, vanishing at the critical point 
of the germ Ii; 
(ii) The sum L of the subspaces 

{Li }, i=1, ... ,k, 

is a direct sum; 
(iii) (LhLJ)=O for i#=j; 
(iv) L, is invariant relative to the local monodromy of the point Ao. 

Let us suppose that n is even and that the spectral numbers of the germs 
11,' .. , I I: lie in the interval (nl2 - 2, n12) (this is so, for example, for germs, 
stably equivalent to germs of functions of two variables). 

Theorem 15.12. Let us suppose that n is even and that the form 'P:f2-1 
corresponds to an infinitesimally non-degenerate period map p.:'2 -1. Then 

1. (see [369]). The restriction of the symplectic structure 'P:f2 -1 to the subspace 

The period map and the intersection form 463 

can be induced from the intersection form in H,,-1 (Xl, C£:) by a suitable linear 
map in the annihilator of the subspace 

Lc.H,,-1 (Xl, C£:). 

2. If additionally it is known that the critical points of all the germs 11,· .. ,I I: 
are simple, then the restriction to 

of the symplectic structure '1'.:'2-1 is isomorphic to the restriction of the 
intersection form in H,,-1 (Xl, C£:) to the annihilator of the subspace 

Lc.H,,-1 (Xl, C£:). 

CoroUary of part 1. 

I: 

dime: Ker ('1'.:'2 -11 TJ.o(E It .... J.» ~ L dime: Ker « , >/,), 
i=1 

where ( .. ) is the intersection form in homologies, vanishing at the critical , /, 

point of the germ Ii' 

Postscript. During the time that this book was being prepared for publication, 
many new works have appeared. We note here only the proof of the conjecture 
on semicontinuous spectra ([345, 371, 372, 375]), the theory of open swallow­
tails, the discovery of a connection between Lagrangean and Legen~rean 
manifolds and singularities with simplectic and contact structures of mamfolds 
of binary forms and polynomials ([22, 128]), the inclusion in the theory of 
singularities of the groups of reflections H3 and H4 ([23~, 334, 378]),. ~he 
classification of the projections of two-dimensional surfaces In general p~sltlon 
from three-dimensional space to a plane ([25, 291, 292]) and the calculation of 
the ring of Legendrean cobordisms ([34-36]). You can learn about these new 
achievements from the survey articles [2, 3, 23, 25, 26]. 
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