
[ 223 ]

BOTT PERIODICITY AND THE PARALLELIZABILITY
OF THE SPHERES

BY M. F. ATIYAH AND F. HIRZEBRUCH

Received 12 April 1960

Inti-eduction. The theorems of Bott (4), (5) on the stable homotopy of the classical
groups imply that the sphere Sn is not parallelizable for n 4= 1,3,7. This was shown
independently by Kervaire(8) and Milnor(7), (9). Another proof can be found in
(3), § 26-11. The work of J. F. Adams (on the non-existence of elements of Hopf
invariant one) implies more strongly that Sn with any (perhaps extraordinary) differ -
entiable structure is not parallelizable if n 4= 1,3, 7. Thus there exist already four
proofs for the non-parallelizability of the spheres, the first three mentioned relying on
the Bott theory, as given in (4), (5). The purpose of this note is to show how the refined
form of Bott's results given in (6) leads to a very simple proof of the non-paralleliz-
ability (only for the usual differentiable structures of the spheres). We shall prove
in fact the following theorem due to Milnor (9) which implies the non-parallelizability.

THEOREM 1. There exists a real vector bundle E, over the sphere 8n with wn(£) =)= 0 only
forn = 1, 2, 4 or 8.

Wiig) e Ji\Bg, Z2) denotes the ith Stiefel-Whitney class of the real vector bundle £

with base Bv We put w{£,) = £ wf(g).

Theorem 1 is a consequence of

THEOREM 2. Let Y be a finite CW-complex, not necessarily connected. The (total)
Stiefel-Whitney class w(n) of any real vector bundle i] over the 9-fold suspension of Y
equals 1, i.e. W^TJ) = Ofor i > 0.

Theorem 2 takes care of the sphere Sn for n ^ 9. Since the homotopy group
7Tr(Bo) of the classifying space Bo of the infinite orthogonal group vanishes for
r = 3, 5, 6, 7 (see (5)), Theorem 1 is proved in these dimensions. We recall that
ni(Bo) = Z2, n2(B0) = Z2, 77-4(5o) = Z and ns(Bo) = Z. The generators of these
groups correspond to the Hopf bundles over S1 (Mobius), S2, S4 and 8s. For the Hopf
bundle over 8r (r = 1,2,4, 8), the Stiefel-Whitney class wr e Hr(Sr, Z2) is not zero.

By the Bott periodicity we shall calculate the Stiefel-Whitney classes of the real
vector bundles over the eightfold suspension of a space X by means of the Stiefel-
Whitney classes of the real vector bundles over X (see § 4, Proposition). For this
calculation (which has Theorem 2 as an immediate consequence) we use the tensor
product description of the Bott periodicity (6) and the formula for the Stiefel-Whitney
classes of the tensor product of two real vector bundles (§3).

In this paper, we work in the class of finite CW-complexes. This is much too strong
a restriction, but is made for convenience.
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1. The spaces X, Y,... will be connected finite CW-complexes except where other-
wise mentioned. Let KO(X) be the Grothendieck ring obtained from real vector
bundles (l). The trivial vector bundle with fibre dimension 1 represents the unit of this
ring. If X has a base point x0, then KO(X) is by definition the kernel of the ring

homomorphism PYI/V\ rrr\i< i\ r,
r e: KO(X) -* KO({x0}) = Z.

Since e attaches to each vector bundle its fibre dimension, the homomorphism e does
not depend on the choice of x0 (X being connected). There is a direct sum decom-

P ° s i t i 0 n KO(X) = Z®KO{X),

where the direct summand Z represents the integral multiples of the unit 1.
For spaces X, Y with base points x0, y0, the spaces Xw Y and XAY are defined.

Z v F is obtained from the (disjoint) topological sum of X and Y by identifying x0

and y0 to one point which becomes the base point o f l v F . The space I v 7 may be
regarded as the subspace X x y0 u x0 x Y of X x Y, and X*Y is X x Y with Xw Y
collapsed to a point which becomes the base point of X A Y. We have the natural maps

, (1)

and the corresponding split exact sequence (compare (2))

0 -> KO(Xh Y) -^ KO(X x 7 ) i KO(Xw Y) -> 0, (2)

with K0{XwY)^K0{X)@K0(Y). (3)

For a e K0(X) and b e K0(Y), the tensor product a® 6 e K0{X x Y) is defined. If

a € K0(X) and b e K0(Y), then a®b is in K0(X x Y) and lies in the kernel of p.

Therefore, by (2), the tensor product of a e K0(X) and b e K0(Y) gives an element of

K0(X A Y), also denoted by a®b. (We consider K0(X A 7) as a subring of K0(X x Y).)
All this is analogous to ordinary cohomology theory. Let H* be the cohomology

ring with coefficients in some ring with unit. Let S* be the ideal of H* consisting of the
direct sum of the positive dimensional cohomology groups. Then for a € B*(X) and
b e B*(Y), we have the tensor product a®6 e 3*(X\ Y). We regard H*(X\ Y) as
a subring of H*(X x Y).

Let Sn be the w-sphere with base point. 8n A X = Sn~1 A S1 A X is the n-fold suspen-
sion of X (since A is associative). Let g be the non-zero element of Bn(Sn, Z2). The
suspension isomorphism

?»AX,Z2) (»>C

is given by Sn(x) = g®x, x e B*(X, Z2).

2. The (total) Stiefel-Whitney class satisfies the Whitney multiplication theorem
w(£®V) = w(£) w(v)> where £ and rj are real vector bundles over the same base space X.
This implies easily that we have a natural homomorphism

w: KO(X) -» 1 + S H\X, Z2) = G(X, Z2).
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'Homomorphism' is meant with respect to the additive structure of KO(X) and the
commutative group structure of G(X, Z2) given by the cup-product. For any
z e KO(X), the Stiefel-Whitney class w^x) e H^X, Z2) is well defined.

3. Given two real vector bundles £ and rj over X with fibres Rm and R™ respectively,
the (total) Stiefel-Whitney class of their tensor product can be calculated in terms of
w(E,) and w{->}), (see (3), § 11). If we write 'formally'

m
«>(£) = IT (l+asj and wfo) = II (1+2/,). (5)

then w(£®V) = Il(l + Zi + yj)- (6)

This formula has to be interpreted as follows. Consider for a moment the xi and yt as
indeterminates. Express the right-hand side of (6) as a polynomial in the elementary
symmetric functions aT of the xi and bs of the yi with integral coefficients. Then replace
ar by wr(£) and ba by ws(v) and reduce the coefficients mod 2.

4. Let p be the Hopf bundle over the sphere S8. This is a real vector bundle with
fibre R8. The Euler class of p is a generator of H8(S8,Z). The Stiefel-Whitney class
w(p) equals 1 + g where g is the non-zero element of HS(S8, Z2). The bundle p deter-
mines an element of KO(S8) which we also denote by p, the element p — 8 belongs to
KO(S8), and p — 8 is a generator of this infinite cyclic group.

Assume that S8 and X have been given base points. According to Bott (6) there is
an additive isomorphism

£b
which may be given as follows

P(x) = (p-S)®x, where xeKO(X). (7)

We wish to calculate the Stiefel—Whitney class w{[l(x)} in terms of w(x).

PROPOSITION. Let X be a connected finite CW -complex, and x e KO(X). Then

w{fi{x)} = l+g® 2 s8fc{Wl(z), ...,w8k(x)} eH*(S8AX,Z2), (8)
&i

where g is the non-zero element ofH8(S8, Z2) and where sr(Slt ...,Sr) is the polynomial with
integral coefficients which expresses x\ +... + xr

n (n > r) in terms of the elementary
symmetric functions 8} of the xt.

Let us first see how Theorem 2 of the introduction is derived from this proposition.
We put S1 A Y = X. Thus X is the suspension of Y. I t is connected. Any real vector
bundle v (fibre Rfc) over S8AX = S9AY represents an element y ofKO(S8AX). Then

TJ — JC€KO{S8AX) and w(y — k) = w(v). The element TJ — k is, by (1), of the form

p°(x), x e KO{X). We have to prove that w{0(x)} = 1. But in X = 81 A Y all products
of cohomology classes of positive dimension vanish. The polynomial sr is of the form
( — l)r~1rSr + composite terms. Therefore s^w^x), ...,wsle(x)} = — 8kw8k(x) = 0mod2.

5. Proof of the preceding proposition. By the classification theorem or by a more
direct argument it is known that for any real vector bundle £ over X we can find a real
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vector bundle £' such that £©£' is a trivial bundle. This implies (X being connected)
that any x e KO(X) can be written in the form f — n where £ is a real vector bundle
with fibre R" (or rather the corresponding element of KO(X)) and where n is the trivial
bundle with fibre Rn (i.e. n times the unit of KO(X)). We write 'formally'

We calculate from now on simply in the cohomology ring of Sa x X, i.e. we replace in
the usual way certain tensor products of cohomology classes by cup-products. In
H*(S8 x X, Z2) we have

wtf(x)} = w{(p-8)®(£-n)} = tv(p®£){w{p)}-~{w{£)}-*. (10)

By (9) above and § 3 we get, taking into account that the elementary symmetric func-
tions of the yj vanish in positive degrees less than 8,

i l

By (10) and (11) we get

ft (12)
Remembering that we are calculating mod 2 and that g2 = 0 we get

i = l

which proves the proposition because

&=o
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