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METABOLIC AND HYPERBOLIC FORMS

J.P. ALEXANDER, P.E. CONNER AND G.C. HAMRICK

Introduction. In our research we have made many detailed computations concern-
ing W(Z, C), Cacyclic group [1], [2], [3]. Several ideals and subgroups of this ring
have always intrigued us, particularly the ideal generated by Witt classes repre-
sented by forms on projective Z[C]-modules and the image of the Wall groups. This
note begins with the question of the relationship between metabolic and hyperbolic
forms. This is suggested by the different ways of defining zero elements: in Witt
groups metabolics are zero and in the L-groups hyperbolics are zero. Theorem 3
recovers in a very special case results of Bak [S], Pardon [8], Wall [9] and others,
but we feel an inclusion of the straightforward argument is justified.

Our proofs are not detailed. In fact we only outline the results for the symmetric
case. Most of the computations involving group cohomology, while tedious, are
elementary.

Metabolic and hyperbolic forms. Let (7, V') denote a right integral representation
of a finite group = on a free abelian group V. If there is a z-invariant Z-nonsingular
(skew) symmetric inner product b: V' x ¥V — Z then we say (z, V) is an integral
orthogonal (symplectic) representation and denote this by (z, V, b).

For some lime we have been concerned with relationships between the following
concepts.

DeriNITION. (1) (7, V, b) is metabolic if and only if there is a z-invariant sub-
module N = V for which N = N- = {ve V|b(v, n) = O for all ne N}.

(i1) (=, V. b) is hyperbolic if and only if there is an integral representation (z, N)
for which (z, V) is equivalent by a z-equivariant isometry to the natural form on
(m, N @ N¥*) given by

bu((n, @), (W' ")) = (') + ¢'(n)
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where N* = Homg,(N, Z) with the usual right z-module action. We denote this
hyperbolic form simply by H(N).

Let Wy(Z, ) (Wy(Z, o)) denote the Witt group of orthogonal (symplectic)
representations of 7 where (z, V, b) is zero if it is metabolic. We say that (z, V, b) is
an even form if for each element g € 7 such that g2 = e then b(v, vg) is even for all
veV.

THeoreM 1. If & = C,, the cyclic group of order p, p a prime and (z, V, b) is an
even, metabolic form, then (z, V, b) is hyperbolic.

To prove this theorem we introduce several new groups. Given (7, N) consider
all Z[z]-embeddings 0 — (z, N) —=¢(x, V, b) so that (im(p))- = im(p) and b is
even, Two embeddings 0 — (z, N) —°(x, V,b) and 0 — (&, N) =* (z, V', b') are
Baer equivalent if and only if there is a commutative diagram

0 (753 Vsb)
e
(m, N) ~_ l]
o (7[, V’, b/)

where J is a Z[z]-module isometry. The sum, p + o, of two embeddings is de-
scribed as follows. Consider L < ¥ L ¥’ where L = {(o(x), — 0'(x))| xe N}.
(V L V' is the orthogonal direct sum of (z, V, b) and (z’, V', b’). The associ-
ated bilinear form is denoted b L b".) Clearly L is summand and L. = L-. Let
b" denote the natural form induced on L*/Lby b L b’. Then p + p' is defined by
the natural embedding

(7, N) 22 (z, L|L, b").

The hyperbolic form H(N) plays the role of the identity and the inverse of (z, N)
—=(z, V, b) is given by (. N} —»*?(x, V, —b). The group of embeddings (z. N)
— (%, V. b) is denoted Met(N). This is a covariant functor with respect to Z[z]-
module homomorphisms. A natural transformation Met(N) — Ext, . (N* N)
is given by associating to each embedding o: (z, N) — (z, V. b) the resulting short
exact sequence0— N — V — N* — 0. [f Nis projective as a Z[z]-module then this
map is a monomorphism' Furthermore if 7 has odd order then this is a mono-
morphism for any integral representation .

There are two important constructions involving Met_(N).

ConstrUCTION 1. Given (7, N|) and (7, Ny) there is a homomorphism

ExtYN#, Ny) - Met (N, @ Ny)

given as follows. If 0 » N »¢K -7 N} — 01is an extension, then its dual is 0 — N,
—% K* > N¥ (0. Adding these sequences together we get

0> N ®N, Z5 K K* > NF @ Nf - 0.

K @ K* supports the hyperbolic form H(K) and im(a @ 5*): = im(a @ 3¥). This
gives us an clement of Met (N, @ N,).

ConstrUcTION 2, If (z, N) »/ (=, N') is an epimorphism then the induced
homomorphism Met (N) - MetN') can be described as follows, Given {(z,N) —
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{z, V, b)] e Met(N), ker f is a z-invariant subspace of ¥ and ker f < (ker f)-.
Clearly there is an embedding

(zy N') - (z, (ker f)- ket f, b').
This gives us an element of Met_(N').
LEMMA 2. The following is a split exact sequence
0 — Exti(N¥, Ny) — Met (N, @ Ny) » Met(N;) @ Met (N,) - 0. O

This reduces the problem of analyzing Met(N) to N an indecomposable 7z-re-
presentation. Except whenz = C,, p a prime, our ignorance herc is almost com-
plete. Theorem 1 is proved by first using the Reiner-Dietrichsen decomposition for
integral C,-representations to show that for an indecomposable representation that
Met, (V) = 0. This is followed by an application of Lemma 2 and the fact that the
eleménts in the image of Construction 1 are hyperbolic.

By restricting (z, V') we can extend this result in the following manner.

THEOREM 3. If @ = Cpn, p a prime, C . the cyclic group of order p», V is a projec-
tive Z[z]-module and b is a metabolic even form, then (z, V, b) is hyperbolic. [

This theorem is proved by induction on # and uses the following result about
group cohomology.

THEOREM 4 [4, pp. 112-113]. If = is a p-group, and A is a m-module without p-
torsion then the following are equivalent:
(1) A4 is cohomologically trivial,
(ii) Ho(z, A) = H Yz, A) = 0 for some geZ,
(iiiy A/pA is a free Z,[x]-module,
(iv) A is a projective w-module. [

Theorem 3 is well known forn = 0.

Consider (C,, ¥, B). First some notation. C, will be the subgroup of order p
in Cp,and Cpn 1= Cp/C,. C,is gencrated by 77" YLetd=1—T¢"and X =
I+ 707 4 T2 4 o+ T U971 Now U = {xe V| Xx = 0} is a projective
Z{(A,»)-module (Z(4,) are the cyclotomic integers, 4, = exp(2zi/k)). Since V is meta-
bolic, so is U @ Z(1,p) and hence there is a C-invariant summand W < U such
that W= W- 0 U. Wis clearly a Z(2,,) projective module.

LEMMA 5. W-[W is a projective Z[C y-1]-module.

ProoF. Recall that for a Cj-module N that H(C,; N) = ker X/im 4 and that
H*C,; N) = ker 4/im 3. Since Vis a projective Z[C ,J-module and W is a projec-
tive Z(4,)-module, we can use the exact sequence 0 —» W' — V —» W* - 0to
compute H*(C,; W-). Notice that sincc im J < U and W = W- {1 U that C, acts
trivially on W-/W. The six-term exact sequence for 0 - W - W' — W-/W - 0
reduces to

0 - H¥C,: W) — H¥C,; W-|W) > H(C,; W) - 0.

Now, HXC,: W - /W) ~ W-/W ® Z, and the first and last terms are free Z,,[C‘p,,_l]—
modules.
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By Theorem 4 this shows W< /W is a projective CM_I-module. d
By induction W*'/W is hyperbolic. f Ac W- /W let Y ={xe W-|x + We 4}
(i.e, 0> W —>Y — A — 0isexact).

LEMMA 6. There exists A =« W-|W so that

(i) W-W = H(4),

(i) 0: HYCps; A) » HYCn; W) is an isomorphism,
(i) Y is a Z[Cpl-projective module and ¥ = Y -,

(iv) ¥ = H(Y).

Proor. First consider the exact cohomology sequence 0 — H(C . W-) —?
HYCp: W-|W) —» HY(Cp; W) — 0. There is a nonsingular finite form on X =
H¥C . W*+/W) induced by cup products in cohomology and the bilinear form
on W-|W. Because H¥Cy; Z,[C)n1]) = Z, this form has values in Z,. W /W is
hyperbolic; therefore X is also hyperbolic. There are two ways of describing
X as a hyperbolic module. The first comes from choosing B =« W /W so that
W-/W = H(B).If ¢: HYC; B) = H¥C; W-/W)then X = H(im ¢). Also X =
H(im p). Notice that if im ¢ [} im p = {0} then the composition H¥C,.: B) —
H¥C o, W W) - HY(Cp; W) is an isomorphism. Take 4 = B and the lemma
would be proven. In general find B’, a projective submodule of B, so that
o(H¥Cp; B')): mg "y im p. Then B = B’ @ B” and

W |W=B8 @B ®(B)® (B = HB @ (B)*.

Now im(HXCp; B ® (B')*) 71 im o ={0}. Set 4 = B' @ (B)* and Y =
fweW |w+ Wedl. O

Witt groups and L-groups. If L%(z) is the Wall group for surgery to a homotopy
equivalence then there is an obvious homomorphism

Li(z) » W\ Z, 7).

One application of Theorem 3 is the following result, well known in much more
generality by Bak [5], Pardon [8], Wall [9], and Karoubi [6].

COROLLARY 7. For p a prime the following sequence is exact:
0 = HI(Cy, Ki(C,)) = LYCp) = W(Z, Cp).

Proor. The involution of KO(CP,,) is defined by sending a projective module V
to its dual ¥*. An element of H(C,; Ky(C))) is represented by a projective module
V such that V' @ V* is free. The homomorphism H(Cy; Ko(Cpn)) — LE(C}) sends
[V]+ [H(V)]. Theorem 3 says that if [U] € L{(C,) goes to zero in Wy(Z, C,)
then it is hyperbolic, that is U = H(V) where V is projective and V @ V* = U is
free. A careful analysis of the units in Z[C,,] prove the left-hand homomorphism is
a monomorphism. [J

In fact since W.(Z, Cy) is torsion free, p odd [1], we see that Ly(C ) is torsion
free up to projective kernels. Even though Wy(Z, Cy,.) is not torsion free, the invari-
ant f12(C,.; V') detects the torsion clements. For V projective, this invariant must
vanish so in all cases the image of Ly(C,) —» W((Z, C,) is torsion free.

It is obvious that the image of the Wall groups in the Witt groups is contained in



METABOLIC AND HYPERBOLIC FORMS 65

the idcal generated by elements with representatives (z, V, b) where Vis a projective
Z[z]-module. Let P, (Z, z) denote this ideal.

Given an arbitrary (Cps, V, b) € Wy(Z, C},) there is a symmetric finite form de-
fined on H¥Cy; V), | £ k < n, by the composition
HYCu; V) x H(Cyp; V) > H(Cp; V@ V) » H{(Cpu; Z) —» Z[p*Z
where the first map is induced by cup products in cohomology, the second by the
coefficient pairing v @ v + b(v, V'), and the last by the natural identification of
HYCy; Z) with Z/p*Z. Standard arguments involving finite forms [3, 1.7] show
that this form can be considered as an element of W(Z,). Consider the group homo-
morphisms ¢,: Wy(Z, Cp) — W(Z,), p odd, 1 £ k < n, given by

0x((Cprs V, B)) = HYCp3 V) + HYCpoosy V)€ W(Z,).

PROPOSITION 8. @ is a ring homomorphism, P(Z, =) = (). ket ¢, and

WiZ, Cp)lP(Z, Cp) ~ © W(Z,). D
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