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CHAPTER I

DEFINITIONS AND FUNDAMENTAL OPERATIONS
OF MATRICES

{. Introductory

TaE notation of ordinary algebra is a convenient system of
shorthand, a compact and well-adapted code for expressing
the logical rclations of numbers. The notation of matrices
is merely a later development of this shorthand, by which
certain operations and results of the earlier system can be
expressed at still shorter hand. The rules of operation are
so few and so simple, so like those of ordinary algebra, the
notation of matrices is so concise yet so flexible, that it
has seemed profitable to begin this book with a brief
account of matrices and matrix algebra, and to derive the
theory of determinants by the aid of matrix notation, in
an order suggested by a naturally alternating development
of both subjects. This first chapter is devoted to explain-
ing the code. The reader is invited to take it with due
deliberation, to invent at all times and verify examples for
himself, especially in regard to the transposition of matrix
products and to the multiplication of partitioned matrices,
and, at first, to write out results both in ordinary and
in matrix notation for comparison. The confidence and
facility acquired by such practice will prove to be of
constant service during the study of the later chapters.

2. Linear Equations and Transformations

The theory of matrices and determinants originates in
the nceessity of solving simultancous linear equations and
of dealing in a compact notation with linear transformations
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from one set of variables to a sccond set. In the very
early stages of elementary algebra we meet simple equations
of the first degree, of the form

ax = h. . . . @

At later stages we meet simultancous equations in two

unknowns, alx..{_bly = h]_, (2)

a®+boy = hy,
in three unknowns,
a2 -+byy-+c2 = hy,
@ +byytez=hy, . . . (3)
Oy +bgy 45z = hg,

and so on. The method of solving by successive elimina-
tions, and conditions under whlch unigue solutxon% exist,
may perhaps be known to the reader.

At a still later stage, in co-ordinate geometry of two
dimensions, we encounter various linear transformations,

such as 2 = 2’ cos @—y' sin 0,

Yy =2 sin 84y cos B, : - @)

representing a change of rectangular axes by rotation
about the origin through an angle 0, and in the three-
dimensional analogue of this we meet with
z =Lz +Ly -+l7,
Y = myx' +myy +mgz’, . . (5
2z = nyx’ +ngy +ngz,
where the I;, m;, n; are direction cosines. Indeed every-
where in mathematics we are confronted with equations of
linear transformation ; and this in itself is enough to justify
the search for a code and a calculus.
The general set of m simultaneous equations in =
unknowns is
A%y gy oA, = Ry,
A%y +gpTy .. +pn, = by,

. . (6)

D%y +amax2 +... +“mnxn = km:
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and the general linear transformation expressing m vari-
ables ¥y, ¥s, ---» Y a8 linear functions of # variables z;, %,,
..., %, 18 the same as this in form, but with the variables y
replacing the constants % on the right of the equations (6).

The number m of variables y has been taken as possibly
different from the number n of variables 2. Such trans-
formations of unequal numbers of variables can easily
arise in practice, for example in questions involving
perspective drawing, where a three-dimensional object
may have to be represented on, a two-dimensional sheet of
paper. Assigned points in the object have three co-
ordinates, the representative points on the paper have
two coordinates only, and the representation is given
algebraically by a set of equations in, which m = 2, n = 3.

-«

3. The Notation of Matrices

It would be intolerably tedious if, whenever we had
occasion to manipulate sets of equations or to refer to
properties of the coefficients, we had to write either the
equations or the scheme of coefficients in full. The need
for an abbreviated notation was early felt, and in the last
century Cayley and other algebraists of the time made use
of contracted notations such as

Gy Qyg « = - - - @yn 51 Y
Qoy Qo + = = o - Aon Zy Yo

e e e A (1)
aml “mz A amn xﬂ- ym

for a set of linear equations, detaching the rectangular
scheme of cocfficients a;; from the variables x; to which
they referred. Later Cayley, by regarding such a scheme
of ordered coefficients as an operator acting upon the
variables z;, @, ..., Z, in much the same way as ¢ acts
upon z to produce ax, and by investigating the rules of
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such operations, formulated the algebra of matrices,
meaning by matrices those schemes of detached co-
efficients considered as operators. The theory was at
first confined to square matrices, but the inclusion of
general rectangular matrices increases greatly the scope
and convenience of application.

Definition. A scheme of detached coefficients a,,
set out in m rows and n columns as on the left of (1), will
be called a mairiz of order m by n, or mXn. The numbers
a;; are called elements (by some writers constituents, by
others coordinafes) of the matrix, a,; being the element
in the i** row and j% column. The row-suffix ¢ ranges over
the values 1, 2, ..., m, the column-suffix j over the values
1,2, ..., n. The matrix as a whole will be denoted by 4
or by [a;]; or on occasion will be written out in full array.
The element a;; will often be called the (¢, §)* element of 4.

When once the rules are found by which matrices 4
and B can be added, subtracted, multiplied and divided, a
proper sense being given to these operations through study
of the laws obeyed by linear transformations, the materials
requisite for an algebra will be available. This algebra, the
algebra of matrices, has a very close resemblance to the
algebra of ordinary numbers; but it is a more general
algebra, and the reader must be on guard, at first, against
carrying over into it some of the more facile habits acquired
in ordinary algebra.

4, Matrices, Row Vectors, Column Vectors,
Scalars

A matrix may possibly consist of a single row, or of a
single column, of elements. For example in 3 (1) we sece
on the left a column of elements z;, %,, ..., %,, in fact
a matrix of order nx1, and on the right a column of
elements ¥y, Y5, .-s Ym, & matrix of order mx 1. Matrices
of single row or single column type are of very common
occurrence, and the general matrix itsclf may be viewed
(11, Ex. 2) as an array of juxtaposed rows, or of juxtaposed
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columns. It is therefore convenient to distinguish row
and column matrices by a special name and notation. We
shall call them wectors, or more precisely row wvectors and
column vectors, and we shall denote them by small italie
letters, the order, such as mx1 or nx1, being always
understood from the context. For example, the two
column, vectors in 3 (1) will be written as x and y; and
a device will be given later (8) for distinguishing a row
vector from the column vector having the same elements.
On occasion vectors may be written in full in row or
column form with square brackets; but often, to
economize in vertical space on the page, it will be con-
venient to write the elements of a column vector in hori-
zontal alignment and to indicate, by the use of curled
instead of square brackets, that a vertical alignment is
intended. For example, we shall write column vectors as

T= {2 Ty T}y Y={Y1Y2-- Ym} - - 1)
and row vectors as
U= [y Uy ..o Uy, v =1[v30y...0,] . . (2)

In every situation in which vectors are being used it is
essential to keep in mind, to visualize as it were, what
kind of vector, whether row or column, is in question, and
on no account to confuse the two kinds.

The matrix of order 1x1, that is, of one row and one
column, is a single clement. It will be found, as might
have been anticipated, that the laws of operation of such
matrices do not differ from those of ordinary numbers
used as multipliers. We shall thercfore identify such
matrices with ordinary numbers or scalars.

To sum up, the matrix A = [a,] is the scheme of
detached coefficients in some actual or possible linear
transformation. It is not inert, but is to be imagined as
an operator. It is also to be regarded as a complete entity,
like a position in chess. If, for example, we interchange
any of its rows, or its colurnns, what we obtain by so doing
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is in general a different matrix. Two matrices 4 and B are
considered to be equal only when they are of the same
order mxn, and when all corresponding elements agree,

that is to say when a; = b;; for all 4, j.

" We proceed to develop the algebra of matrices; but
we shall find, when we come to consider what can be
meant by the division of one matrix by another, that we
are forced to turn aside and to study, define and evaluate
a related set of numbers, namely the determinants corre-
sponding to square matrices.

5. The Operations of Matrix Algebra

Addition. Consider for illustration the trans-
formations
Yo == Gy %y g oy -y 5%, . .M
Yg = Qgyy+ Qoo ApsTs,

2y = b2y D125 +-b15%;, ) )
2y == by +-byyty -bysy,

and

and suppose that new variables w; and w, are introduced
by adding the corresponding ¥, and z;, thus :

wy = Y1 +2, Wy = Yat2. - . (3)
Then we have at once

(@ +b11)21 (@10 +byg)2s 4 (g5 +b15) 75, @
(@21 Fb31)21 - (@gn Do) (g -+-byg )25 '

The process of obtaining (4) from (1) and (2) may
logically be regarded as the addition of linear trans-
formations, and may evidently be extended to the case of
two sets of m equations, having the same % variables z,
on the right. The rule of Matriz Addition is thus suggested :

Addition of Matrices. 7o add together two matrices
A and B of the same order mXn, we add their corresponding
elements, and take the sums as the corresponding elements of
the sum matriz, which is denoted by A-1-B. In symbols,

A+B = [a]+[by] = [0+b:. . . (B

wy
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The rule can now be extended step by step (or could
have been postulated at once) to give the sum, in the
sense just described, of any finite number of matrices of
the same order m X n, thus :

A+B+ ... +K = [@;+by+ ... k. . . (6)

For example,
3 —4 2 2 6 —1 5 21
-1 05 4 —3 2 3 -3 17|
Scalar Multiplication. Taking again equations (1),
let us suppose that the scale of measure of y, and y, is
altered in the ratio 1:A, by the introduction of new

variables z; = Myy, 2, = Ay, It follows that

2y == A3y + Atysy+ Ay,
2y == Mg Ty -+ AgyZp Ay,

- M

This operation of multiplying variables by a constant
scale-factor may properly be called Scalar Multiplication,
and the rule for it is evidently this :

To multiply a matrix 4 by a scalar number A, we
multiply all elements a;; by A. In symbols,

A = ANay] = [Aayl. . - (8

Linear Combination of Matrices. Now combining
the rule of addition with that of scalar multiplication we
hawve the rule for linear combination, with scalar coefficients,
of any finite number of matrices 4, B, ..., K of the same
order mxmn :

ad BB+ ... +kK = [at;;+Bby+ ... +ckyl, . (9)
where a, f3, ..., « are scalar numbers.

Null or Zero Matrix. At this stage we can introduce
the null or zero matrix, defined by the particular linear
combination 4—A4 and denoted by 0. Whether rect-
angular or square, vector or scalar, it i scen to have all

ity elements zero.  If it is of the same order as 4, we have
A0 = A.
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6. Matrix Multiplication. Pre- and
Postmultiplication

The simplest homogencous linear transformation is of
the form y = az, an ordinary multiplication, and when in
elementary algebra we have two of these such as y = ax,
2z = by to perform in succession, the result may be written
as the single transformation z = bax, the coefficients b
and a-of the separate transformations being combined in
product to give the coefficient ba of the resultant trans-
formation. When we perform successive linear trans-
formations like this not on one but on many variables
at a time we shall indulge in a mnatural extension of
langnage and we shall say that the transformations are
multiplied together in a certain order; we shall further
call the matrix of the single resultant transformation the
product matrix BA, by analogy with ba. To discover the
appropriate rule for the elements of B4, let us consider
the two transformations, 2 = byyys+buga,

Yy = Cp @y +0yaTa+ A% 2y = byl +Dusls (1)
Yg = Qg1 +0gaTa+ag¥s, 23 = by -+ byofn, -
24 = bg¥1+basla-
These, as may be seen at once by substituting for the
y; in terms of the x, yield the single resultant trans-
formation

% = (511“11+b12“21)951+(bualz‘l‘b@a2

2y = (Doy@1 09 )y + (Buytlys bt P (byytag i, “””ﬂ‘.;:

23 = (bgy 1 +bgoa) )@y + (D310 + Dgaftn)vo -1+ (Dygrtyg -t Dgurtug )iy, (

2y = (Dg13+b4s091)21 + (bg1dya +bgattn )iy A (Dgaltya~i-b gt ug)ry.
It is natural, therefore, to regard the matrix of the

transformation (2), namely,

Lo (b“rzl.,—} b 1aftoy )iy,

2
2"

o)
o)
o)

b1a@y +-b1otyy  byytyp-i-Distipy  biyitig +b12’1 2

bortlyy +Dogllsy  BuyyntUasian  byytyg-t-buyttng 3)
bayy +baglar  byylynDgstng  byyyg -ty i
baatiy+bae; Danlystbaslns Buattizt bagttu
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as the product; in the sense just de?oﬁrl

b11 blZ :

B= |baba] g4 {andlz%g
b31 b32 Qzl 42 a23
by bee

taken in the order B4A. The principle dictating the choice
of order is this: a transformation is an operation or
operator, acting on certain variables: the symbol of
operation will always immediately precede the variables
it affects, the operand. Thus when the variables = are
transformed by A, the resulting variables are naturally
symbolized by Az ; and when these new variables are
in turn transformed by B, it is natural to write B(4x)
for the outcome, and therefore natural to write B4 for
the matrix resulting from the two transformations in
order.}

__ By inspection we infer the general rule of

Matrix Multiplication. The element in the % row
and the j% column of the product matrix BA is obtained
by multiplying the elements in the ¢** row of B into the
corresponding elements in the j* column of 4, and summing
the products so obtained. In symbols, if B is of order
mxn and 4 is of order nXp then B4 = C, where C is
of order mx p, and

n
Csy =;c Z?ikﬂkr . . - (9

It is important to note that multiplication is possible
only if the number of columns in B is the same as the
number of rows in 4.

The reader should pause here to satisfy himself that
he has grasped this fundamental rule. He should write out,
in their literal fullness, a few products B4 and 4B for
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small values of m, n and p, and should construct and work
out for himself some numerical examples also, such as

][R

It is to be observed that the typical element ¢;; of B4
i itself a matrix product ; in fact (5) is the same as

where the first matrix on the right is a row vector, namely,
the it* row of B, let us say by, and the sccond matrix is a
column vector, the j** column of 4, let us say ey Thus
1
( ExamrrEs
(These will be not so much exercises as interspersed
illugtrations. For reference they will be numbered con-
secutively within each section, and will be distinguished
by smaller print, without further title.)
1. The 4** row of BA is the vector-matrix product bE‘A
2. The jt» column of B4 is Ba,.

We now come upon an important distinetion between
matrix algebra and ordinary scalar algebra; namely,
matrix multiplication is non-commutative. Consider for
example

by
AB = [an ax:z] [bu briuf [aub11+“1zbzl aubn"‘““ubn], n
@yy Qgol LDay By @031t Caobay Bypdig-ttigahay
BA = [bn bm] [“n 6‘12] - [’)n“u“{‘buan bn“xa‘f“bn‘xn]_ 8)
bpr byailyy @y boytyy +-baslay Ban@iat Dagfte
Scrutiny discloses, in this as in the general case, that every
element in B4 differs in form from the corresponding
element in 4B. Thus in general B4 3¢ AB. Indeed if 4
and B are not square but rectangular, then the only case
in which B4 and AB can coexist is when 4 is of order
mXn and B is of order nxXm ; and in such a case 4B and
BA are necessarily different, since the former is of order
m Xm while the latter is of order nXn.
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We must therefore always distinguish between pre-
multiplication and postmultiplication of matrices; in BA

for example A is premultiplied by B, but in 4B it is post-
multiplied by B.

3. Since multiplication is non-commutative, the ex-
pended form of (4+4B)2, defined as (A4B)A4A-+B), is
A?+AB--B4 + B2, where A2 is defined as 4(4).

4. Expand (4--B)(4—B). Note that the expansion is of
four, not of two terms.

7. Product of Three or More Matrices

Though not commutative, multiplication, when ex-
tended step by step to three or more factor matrices, is
associative. For let C, B, A be matrices of order mXxn,
nXp, pXq respectively, and let us form C(Bd4), where
the brackets indicate that B4 is first formed and is then
premultiplied by C. We shall show that C(BA4) is identical
with (CB)4. ¥or since the (%, j)** element in BA is

2
2 b h kak,, . . . N (1)
k=1
the (3, j)** element in C(BA4) is, by the law of multiplication,

n »
Zey 200 . . . (2
h=1 k=1

But the double summation indicated here can be equally
well carried out in the order indicated by

n P
Zogbn, 2ays, c . (3)
h=1 k=1

which yields, though by a different order of operations,
exactly the same final aggregate of np terms. Indeed it
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is customary to denote both of these equivalent double
summations indiscriminately by

n P
2 Z'Gihbhkaki‘ . . . (4-)
he=1ke=1
The matrices O(BA) and (CB)4 are thus element for
element identical, and may therefore each he denoted
without ambiguity by CBA4. The reasoning may be
extended step by step to the case of the product of any
number of matrices. We conclude that matrix multi-
plication is associative.

1. Deduce from 6, Ex. 1, that the (4, 7)** element of UAX
is w425, where wuy is the 4'* row of U, and z(; is the j**
column of z. Deduce also that the i** row of UdX is u4X
and that the j** column is UAdz,.

2. In virtue of the associative nature of matrix multiplica-
tion the powers 432, A%, A4 .. . of a matrix 4 (nocessarily
square) are defined without ambiguity, and identitivs such as
AA) = A(A?) = A® and the like are valid.

3. Write down a few matrices of orders 2X2 and 3x3
with numerical elements. Find first their squares, thoen their
cubes, checking the latter by using tho two processes A(A32)
and A2(A4).

The Unit Matrix. The transformation illustrated
here by the case n = 3,

Y1 =%y,
Yo = Xy - . - . (D)
Ys = Z3,

leaves the variables unchanged except in name. It is
called the identical transformation, and the matrix corre-
sponding to it, 1
1. (6)
1

is called the wnit matriz. (Here and elsewhere we shall
usce full stops to denote zero elements.) In the gencral
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case the unit matrix is a square matrix, of order mXxn,
with unit elements in the principal diagonal (that is, the
diagonal running from top left corner to the bottom right
corner) and zero elements everywhere else; or, more
briefly, such that a; =1, a;=0, 1 3£ 4. It is denoted
by 1.

The reader is asked to verify for himself that 12 = I,
whence I3 =1, and so on; also that J4 = Al = A for
any matrix A4, though it calls for remark that if A be
rectangular, of order m Xmn, then the premultiplying I in
the above relation is of order m xXm, while the postmultiply-
ing I is of order nxXn. With this proviso we can introduce
or suppress an I at pleasure anywhere among the factors
of a product matrix, as convenience may dictate.

Scalar Matrix. A matrix of the form A, as for
example in the case n = 3

AL
A

is called a scalar matrix. Scalar multiplication, as defined
in 5, is equivalent to matrix multiplication (pre- or post-)
by a scalar matrix. In symbols,

A = MA = AM = 4. . . (8)

Diagonal or Quasi-Scalar Matrix. A square matrix
with its non-diagonal elements zero is called a diagonal,
by some writers a guasi-scalar, matrix. It is thus defined
bvaw=0. 0]

4. A ay
A - . Ugg

A3 . . - 44
are diagonal matrices.

5. The unit matrix I and the zoro matrix 0 of order
n Xn are diagonal matrices.
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6. If 4 is a diagonal matrix of order m Xm and B is any
matrix of order m X n, prove that AR is obtained from B by
multiplying the rows of B rospectively by dyy, dgg; ...,
@nn- In particular if z is a colurnn vector,

Az = {@y %) ¥y .. TpnZm}-

7. If 4 is a diagonal matrix of order n Xn, prove that B4
is obtained from B by multiplying the columnas of B respectively
by a3, Bags - « - Gng. In particular, if w is & row vector,

8. Hence if 4 is a diagonal matrix, 4B is not in general
equal to BA. In order to have AB = B4 in general, B must
be square and A must be not merely diagonal but scalar.

9. Diagonal matrices of the same order are commutative in
multiplication with each other.

10. If the diagonal elements of a diagonal matrix D are d,,
prove that the matrix ¢yl +¢. D¢ D2 +... +¢,D¥ is diagonal,
and that its diagonal elements are ¢y +cyd;+c5d} +...+c ,‘df.

8. Transposition : Interchange of Rows
with Columns

The code has now been described, and the formal rules
of operation are almost complete. It has appearcd that
matrices, under suitable restrictions upon their orders,
obey the following laws,

A+B=B+d4,  A+(B+0) = (A+B)+C,
A(B+C)= AB+AC, (B+O)A = BA-pC4, N

which are the ordinary laws of elementary algebra, except
for the omission of the commutative law of multiplica-
tion. Hence, with due vigilance regarding the order of
factors in product terms, we may manipulate matrices in
addition, subtraction and multiplication by the familiar
rules.

1. Expand in full (44+B)2 and (4—B)2. Note that the
expansions are of eight terms, which must be left sopurate.
2. Expand in full (4 —B)*(4+B), (4+B)(4—B)%,
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3. Write down a number of simple products like the above,
expand them in full and contrast the results with those of
ordinary algebra, where the commutative law of mult1phcatlon
is valid.

Transposition. There remains, however, an opera-
tion which has no analogue in ordinary algebra. From a
matrix 4 we may construct a new matrix the rows of
which are the columns of 4, and consequently the columns
of which are the rows of 4. This operation -is called
transposition, and the resulting matrix is called the
transpose of 4 and is denoted by A4’. (In the less recent
literature the word conjugate is used, but this word is
already heavily overtaxed in other domains of mathe-
matics.) In symbols, 4" = [a;] = [a;).

4. A matrix of order 1X1, that is, a scalar number, is
unaltered by transposition.

5. The transpose of the column vector

T = {T; Ty... Ty}
is the row vector
& = [x, Zg...2,].

6. a b @y Gy
IfA=[1 101],thenA’=[5162 .

ag by Cy Gy

7. Form the products 44" and 4’4, where A is the matrix
of Ex. 6, and remark on the nature of their diagonal elements.
Consider the case of a general matrix 4.

8. If C = AA’, observe that ¢;; = ¢z, or C = C".

9. If = is a column vector, form z’z and obsoerve that it is
an ordinary number, a matrix of order 1x1, and that it is
the sum of squaros of the elements of z.

10. Examine in the same way xz’, and show that it is a
square metrix possessing the property ¢7 = C.

11. Two operations of transposition restore the original
matrix ; in symbols (C') = C. The operation is thus
reflexive.

Symmetric and Skew Symmetric Matrices. This
new operation enables us to give simple and compact
definitions of important special types of matrices. For
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example, if & matrix 4 is unaltered by transposition, it
must be square and symmetrical about its principal diagonal,
so that a;; = a;. We therefore characterize a symmetric
(or azisymmelric) matrix by 4’ = A.

If A’ = —A4, so that a;; = —a;;, the matrix 4 is called
skew symmetric or antisymmetric. A skew symmetric matrix
must necessarily have zero clements in the principal
diagonal, since a;; = —ay;.

a 'h ¢
12. A =|h b [f]issymmetric.
g f ¢

0 a b
13. 4 =|-—a 0 ¢ is skow symretric.
To—¢ 0

14. A symmotric matrix of order nXn has in general
n(n—+1)/2 distinet elements.

15. A skew symmotrie matrix of order n X7 has in goneral
n(n—1)/2 distinct elements.

9, The Transpose of a Product : Reversal Rule

Matrix multiplication is row-into-column ; in BA the
rows of B are multiplied, element for element, into the
columns of 4. This being so, the transpose of B4 cannot
be B’A4’, for that would imply columns of B multiplied
into rows of 4. To correct this we must proceed by not
only transposing the factors, but also reversing their order,
thus obtaining 4'B’. This reversal ensurcs that the rows
of B are duly multiplied into the columns of 4, while
transposition has also been effected. Thus (B4) = A’B'.

The reader, before going further, is asked to satisfy
himself concerning this by constructing and inspeeting
actual examples, for this reversal rule in the transposition
of products is of the greatest importance. We deduce from
it step by step the general reversal rule :

(CB4) = (BA)C" = 4'B'C", ]
(DCBA) = (CBAYD' = A'B'C'D', and soon. (1)
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The Complex Conjugate of a Matrix. If the
elements of 4 are complex numbers a,, we denote their
complex conjugates by &;; The matrix [d,] is then
called the complex conjugate of 4, and is denoted by A.

1. (A)y = A. Also (d) = (4’), denoted by A". -
2. Ifa, b, ¢, d, e, f, g, h are all real numbers, and 4 = /1,

and if
_ a—ib e—if
, then 47 = .

l'a, +ib c+id
= c—id g—ih

e+if g-+ih

Hermitian and Skew Hermitian Matrices. If
A" = A the matrix 4 is square and is unchanged by the
operations of transposition and taking complex con-
jugates. Such a matrix is called Hermaitian. On the other
hand, if 4’ = —A the matrix 4, which is necessarily
square, is called skew Hermitian, or anti-Hermitian.

3. a- biic et wa —b4ic —e-if
b—ic d h+tk| and |b-+ic id —h+ik
e—if h—ik g et+if h-ik g

are respectively Hermitian and skew Hermitian (¢ == \/:).

4. A Hermitian matriz which is real, that is, has exclusively
real elements, s a real symmetric matriz. A skew Hermitian
matriz with real elements is a real skew symmetric matriz.
Hence all theorems on Hermitian matrices include theorems
on symmetric matrices as special cases.

5. If A is Hermitian, then 74 is skew Hermitian. If
A is skew Hermitian, then 74 is Hermitian.

6. If A is Hermitian, it can be written as R--4S, where R
is a real symmetric and § is a real skew symmetric matrix.

7. If A is a square matrix prove, by transposing, that
A’4A is symmetric and that A’—A4 is skew symmetric.
Also that 4’+A is Hermitian, 4’—4 skew Hermitian.

8. Hence any square matrix 4 can be expressed as the
sum of a symmetric and a skew symmetric matrix, since
A = }A+4")4+%(4—A"); or as the sum of a Hermitian and
a skew Hermitian matrix, since 4 = $(4 +4")+3(4 —4").

B :
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9. If A is uny matrix, not necessarily square, then A’4
und AA’ are both symmetric; for by the roversal rule
(A4°4) = A'(4’) = A’A, and similarly for 44",

10. Prove in similar fashion that if A 78 any matriz with
complex elements then A’A and A4’ are both Hermition.

11. Prove that matrices of tho form [ Zf:], [ flﬂ
are commutative, and that thoir laws of addition and multi-
plication are congrucnt with those of ordinary complex
numbers a-+ib, ¢-+id, where i=1/—1. Hore we have a
special matrix algebra in perfect correspondence, or iso-
morphism, with a familiar algebra.

10. Algebraic Expressions and Relations in
Matrix Notation

The rules of matrix algebra being now established, we
are able to write many commonly occurring expressions and
relations with extreme conciseness. The following examples
may serve as an indication. Those which introduce the
matrix notation for bilinear, quadratic and Hermitian forms
deserve close attention.

1. The sum of products, a,b,+asby,+4-...4a,b,, which is
the typical element of a product matrix and which occurs
also in questions of perpendicularity in coordinate geometry, in
the differential of a function of several variables, and in a great
variety of other situations in muthematics, may bo written
as a matrix of order 1X1, namely a’b, & product of a row
vector o’ and a column veector b, or equally well b'a. (The
name inner product of vectors a and b is often used for the
above sum. but the notation a’b is precise, and calls for no
gpecial adjective.)

2. The sum of squares x%+x§+...+xﬁ is therefore x'z.
For example the square of the distance, in Euclidean space,
from the origin to a point having rectangular Cartesian co-
ordinates {x; ,...2,} is #’sz. The positive value of tho square
root of =’z is sometimes called the norm of the vector z.

3. The rcader will verify for himself that an expression

such as aua:%—{—anx%—}-,,,-]-am,xﬁ is the same as 2’4z, whero



BILINEAR FORM 19

A is the diagonal matrix having elements @, Also that
Gy 12y Yy F AosolYo+ oo F Ay I8 x’Ay, or y'Ax. See also
Ex. 5 below.

4. A set of equations of linear transformation may be written
as the equality of two column vectors, thus :

@112 + 2202 + oo +a1”mn Y1
Oy %y + Qoo+t ... +Cgny, Y2 :

= : . (1)
U@+ syt + By Ym

Now the column vector on the right is simply y, and the
column vector on. the left is .4z, where 4 is of order m Xn
and z is of order n X 1. Hence the set of equations is Az = y.
In the same way & set of simultaneous equations can be
written Ao = h, where % is the colurmn vector of constants on
the right of the equations. From now on we adopt such
abbreviated notations.
5. An expression such as

1=12,...,m,
=1

2,.
ﬁza{ixw!’ s 2, ey Ny

of the first degree in each of two sets of variables x; and y,,
is called a bilinear form in those variables. We may write
it in the shape

2(@31Yy + Y+ F 10 ) F2a(@aryy FCasYa+ - FQnYn)
F oo F 2 (@) FmeYa o FOmaln)e - - (2)

But this is just x’dy written in extenso, since the bracketed
expressions are the respective elements of the column vector
Ay. This, then, is the matrix notation for a bilinear form ;
and A is said to be the matrix of the form. Further, since a
matrix of order 1X1 is unaltered by transposition, we may
transpose the product x’Ay and write the bilinear form
alternatively as y'4’z. Xf 4 =1 the bilinear form is
z' Iy = z'y, or y'z.

6. If the above bilinear form be denoted by ¢, the partial
derivatives 0¢/dx,, 9¢/0x,y, ..., 9$/0%, are the respective
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bracketed expressions in (2), and these are the elements of
the column vector Ay. Thus we may write

' dy)jox’ = Ay. (3)

Here ¢/0x’ denotes an operation which may suitably be
called vector differentiation ; its formal resemblance to ordinary
scedar differentiation is evident. In the swine way we may
write

Ax'Ay)joy = 2’4, . . . . (4)

the vector of partial derivatives being now a row vector.
7. In the bilinear form z’dy, let x =y and lot 4 be
symmetric, 4’ = A. The bilinear form then becomes
anm% 420 51Ty + 2005 5385 o oo+ 20 2 Xy
+ GosE  +2ap5%50s . 200025,
R - (8)

+aﬂﬁx:7

or 2Xa; e, where agy = Gy.
a4

Such a form is called a quadratic form, of matrix 4. Thus
the matrix notation for a quadratic form is z’dwx, with the
understanding that 4" = 4. If 4 = I, the quadratic form
is 'lw = z'z.

8. The equation of a central quadric with respect to the
centre as origin, usually written

ax24-by?+4-cz? +2fyz + 2guz~42hay == 1, . - (8)
will appear in matrix notation as z’dw == 1. Written in full

this would be
[y 2] Jah g] [
ro fllyl=1 . - A7)

a fe z
which reproduces almost exactly a descriptive notation used
by certain writers of the last century.
9. The tangent plane to the quadric z’dx = 1 at a point
y (that is, column vector y of coordinates) upon it, or the
polar plane with respect to a point ¥ in the 3-dimonsional
.Euclidean space, will be given by z’4y = 1 or equally woll
y’Ax = 1. The notation is the same for the analogue of
this in any number of dimensions.
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10. The reader will verify for himself that the row vector
&z’ Ax) [0z of partial derivatives of a quadratic form is 22°4,
and that the column vector o(x’Ax)/éx” is 24x. Compare
Ex. 6.

11. Let a set of variables or vector z be given linearly in
terms of other variables w by the linear equations x = Hu,
and in the same way let y = Kv. Then substituting in the
bilinear form xz’Ay we obtain «'H’4AKv, a new bilinear form
of matrix H’AK. In the same way the transformation
# = Hu causes the quadratic form a’4x to become w'H’'AHwu,
a quadratic form with matrix H’AH. The reader will easily
show, by transposition, that H’4AH is symmetric.

12. A form #'Ax, where 4 is Hermitian, so that 4" = 4,
is called a Hermitian form. Clearly if x = Hu then & Az
becomes W H'AHu, and by transposing and taking the
complex conjugate of H’AH we observe that H'AH is
Hermitian. Three types of transformation of 4, namely,
H'AK, H'AH and H'AH, have thus been induced by the
linear transformation of the variables occurring in bilinear,
quadratic and Hermitian forms. These are called the
equivalent, the congruent and the conjunctive transformations
of 4.

13. A Hermitian form ds real. For by transposing and
taking the complex conjugate we have

(@A) = TA@) = ¥ Az.

Thus the form, a matrix of order 1 X1 and therefore a scalar
number, is equal to its complex conjugate; hence it must
be real.

11. Partitioned Matrices : Partitioned
Multiplication

Submatrices. The array of elements belonging to
(not necessarily consecutive) rows 14y, %,, ..., 4, and columns
1> Jo» ---» Jg constitutes a submatriz of A of order rxs.
In particular the elements of 4 are submatrices of order
1x1, the rows of A are submatrices of order 1xn, and
the columns of 4 arc submatrices of order m x 1.
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It is a simple observation from the product rule

Ty = ?”ik‘?lm . . 1)

where C = B4, that ¢;; derives exclusively from the ¢t
row of B and the j* column of 4. It follows at once that
the submatrix consisting of rows i, %, ..., %, and columns
1> Jas eevs s Of € will be the product of the submatrix
consisting of these particular rows of B and the submatrix
consisting of these particular columns of A. Thus every
submatriz in a product matriz is ilself the product of two
submatrices, one from cach of the factor matrices, in
ptoper order.

If therefore we partition B by groups of rows into
submatrices By, By, ..., By, ... in vertical array, and 4 by
groups of columns into submatrices 4y, 4, ..., 44, ... in
horizontal array, then the (7, j)t* submatrix in BA when
B4 is partitioned in row-groups exactly as B and in
column-groups exactly as 4, will be B;4,. The following
is a simple illustration, the partitioning heing indicated by

dotted lines :
bu bn
g1 baa au o 91, “l‘] =
.......... a,, Ung Qgy Rgg
1)31 bxﬂ

b8y +B1a@a1  Byyityy bl ytta u"u‘* bx.".x byt~ H’:z”u
bnl“11+bzzazx bzm“xz‘}“b-_”p bzl“n Flugety o "‘-‘”“ Baattyg

bal“n“‘f”bazan baysa+baatay b:n”xs"f Dostt 2y b, x"u‘* ”u:"n

We shall use a notation in which this result would
appear as

B, Byd, B, BiA,
[Bz] (4 4, 4s] = [3241 By, B, @

submatrices being disposed like elements, the cs

letters indicating that they arc submatrices. The left
side of (3) may also be written as {I3, /3,} [4, d, A, the
intention of the curled brackets heing the same as in the
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notation of 4 (1) for column vectors. The analogy of (3)
with the column-into-row product

{b1 bz} [al Qg as] — {5101 b1a2 bla':;]

by byas byay

(4)

and the general result of like kind is evident.

A still more general law of multiplication of partitioned
matrices is possible. In the result (1) we may break up
the range of summation of % into sub-ranges, writing for
example '

n Ny Ng 7
Zbyay; = Zbyty;+ Zbydyst .o + Zbptxy, . (B)
E=1 k=1 p— k=ny+1

or even using partial ranges which do mnot involre
consecutive values of k; for example if n = 6 using 1, 3,
then 2, 5, then 4, 6 for three partial ranges. Now k is
both a column suffix of B and a row suffix of 4, and so
this division into partial ranges corresponds to partitioning
the columns of B into groups in a certain way, and the
rows of 4 into groups in exucily the same way. This will
be called conformable partitioning of B and A. We may
interpret each partial sum of terms on the right of (5)
as the typical element of a product of two submajrices,
the first .being constituted by-a certain group of columns
of B, the second by the corresponding rows of 4. Now
combining this with the result typified by (3) we have such
a result as
All Axa A13
B = [‘B’] = [ﬁj: e ﬁ] A = [4;4,4,) =[A21 A A]
Ay Agy Ay
BIIAII"’":BIZAL’I-F‘BISASI BIIA 12'1'1312‘4 22+BISA32 (6)
BZIA11+322A21‘*—B23A31 BZLA12"I'B£!2A22—]"‘823A32
Bu-‘l13+B12A23+B13A33]
BziAln+BzzA23'+'BzaA3:z ’

BA=[

where B and 4 have been conformably partitioned, and
where the partitioning of the prodnct B4 agrees with the
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row-partitioning of B and the column-partitioning of 4.
The general result of this kind is proved in the same way,
and its analogy with the ordinary rule of multiplication of
matrices according to elements cannot fail to be observed.
Formally we may enunciate it thus :

Theorem of Multiplication of Partitioned Matrices.
Let B and 4 be two conformably partitioned matrices,
Further, let the rows of B be partitioned arbitrarily into
groups, and the columns of 4 also arbitrarily. Denote the
submatrices of B and A so arising by B, Ay, where i
denotes the order of occurrence in row groups, j in c¢olumn
groups. Finally let the product B4, or C, he partitioned
according to the row-partitioning of B and the column.
partitioning of 4. Then the (i, §)t* submatrix of ¢' is

Cy= ‘fB{IcA i+ . . - (7

In the case where all the submatrices are elements of
B and A4 this result becomes the ordinary multiplication
theorem for matrices.

The reader is again desired not to proceed until he has
grasped, by examples both literal and numerical, and by
examining the steps of a general proof along the lines we
have indicated, the full implication of the multiplication
theorem of partitioned matrices.

1. Consider the partitioned product

BA = [B, B,...B,] {4, 4,...4,}
= Bid,+Bydyt... +B,A,,

where the submatrices of B are its n columns, and of 4 its »
rows. Examine the products B,4, Observe that they are
all matrices of order m xp, and that by superimposing thermn
in matrix addition we have B4 in its usual form.

2. In Ex. 1 we have, as it wore, regarded 2 45 o row
vector having column vectors for its clements, ad 4 as o
column vector having row veetors for its elements.  But Wi
may cqually well partition B according to its rows, r warding
it, as it were, as o column vector having row veetors for its
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elements, while partitioning A by its eolumns. We then
have the product

B4, B,d,... B4,
Byd; Byd,...By4,
BA = {B, B,...B,;} [4,4,...4,] =

BnAy Bnd,..B,A,

[b:1 Bis---bys] {a“ ag,...an,}
by +bigla s+ .. +binn ;.

This way of partitioning draws attention once again to the
fact that the elements of BA are row-into-column vector
products. Exs. 1 and 2 of 6 now appear as simple examples
of partitioning ; also Ex. 1 of 7.

where for example
B4 ;

The algebra of matrices still lacks one important
operation. Division, or the operation that plays the part
of division, has yet to be defined. We should like to
discover matrices reciprocal to A, that is, matrices R
and S such that RA =TI, AS = I. If these can be found
it will be possible to solve a set of equations Az = A by
simply premultiplying by R, for this would give R4z = Rk
or x = Rk, since RA = I. The key to the definition of a
reciprocal matrix is therefore to be sought in the solution
of simultaneous equations, and is found in that form of
the solution which makes use of determinants. This will
be the subject of the next chapter.

3. Lot J be defined as a matrix of order n Xn in which the
non-zero elemonts aro units in the diagonal at right angles to
the principal diagonal, that is, the secondary diagonal. Thus
Ay gy = 1, @g5 = 0, 2+j 5% n+1. For example, if n = 3

A |
J=1. 1 .[].
)

Write out in full some products .JJ 4, where 4 is a rectangular
matrix, and describe in words the offoct on 4. Do the samo
with products of the type 4J. Noto that J’ = J, J2 = I.
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4. Examine and describe in words the effect on a
rectangular matrix 4 of the operation J;4Jy, where J, and
Jg are of the type J.

5. Let I7 be defined as a matrix of order n X n in which all
elomonts are zero except those in the diagonal of n—1 places
immediatoly above the principal diagonal (that is, the super.
diagonal), these boing units. Thus ag41 =1, a; =0,
j—i 5% 1. For example, if n = 3

.1
U=1]. . 1}.

Examine some products of type Ud, U3d4, U324, ..;
AU, AU, ...; U'A4, (U4, ...; AU’, A(U’)%, ...; and so
on. Note the effect on 4 of theso various operations.

6. Do the same with UAU, UAU, UAU/, UAU’,
where .4 is square ; and with the corresponding casoes where
A is rectangular and pre- and postmultiplying matrices are
of different orders.

7. Examine the powers of U, proving that U" = 0. Also
evaluate UU’, U'U.

8. Prove that polynomials in 4, such as

agl +a A+ ... +ard®,
are commutative in multiplication.

9. The sum of all elements in a general matrix 4 is equal
to udz, where all the elements of w and z are units.

10. Prove that if 4 and B are such that AB and BA
coexist, then 4B and B4 have the same sum of diagonal
elements. Establish a similar property for ABC, BCA,
CAB, and conjecture and prove a general theorem.

11. Let H be a matrix derived by permuting in any way
the rows of the unit matrix I. Then H” will be dorived from
I by the same permutation upon columns. Form H’H and
HH’, Inspect examples and establish a genoral theorern.



CHAPTER II
DEFINITION AND PROPERTIES OF DETERMINANTS

12. The Solution of Simultaneous Equations

LeT us consider the elementary solution of simultaneous
equations in 1, 2 and 3 unknowns.

(1) The solution of ay,2; =k, . . S
is 2, = hy/a,,, provided that a,, # 0. . . @
(ii) The solution of a;,2, +a,,%, = A4,

. .3
A%y 0oy = by, @)

found by elimination first of @,, then of z,, is
@y = (Py0pg—hotsp) /(@100 — 1 20s), i . @)

Ty = (ha@y; —1185,) /(11000 — ¥ 9001),

provided that the denominator ay;@e,—a4505, Which is the
same for both z; and z,, does not vanish.

The expressions in the numerator and denominator of
both solutions arise from the familiar procedure of cross-
multiplication to bring about elimination, for example

1 @9
yielding @350 —1509. . (8

551 @gg
The general determinant, we shall find, is simply the
extension of such a cross-product as the above from a
2% 2 matrix to an »Xn matrix.

27
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(iif) Solving in the same way the equalions

Q3% -+ Ty + s = Ry,

Ay ~+ gy +0ayTs == Ry, (6)

Oy 21+ Uags - Uagy == By
by elimination of z, and x;, we obtain @, in the form of
a quotient the denominator of which is the six-termed
expression

2= G190y, (T)

the numerator being another six-termed expression obtained
from the above by substituting A,, ks, &y respectively for
@yy, Oy, Ggy. Again z, and z; are quotients of similar
nature with the same denominator as =z,, and this
denominator must not vanish.

The solution of four simultaneous equations may he
carried out in the same way by the various necessary
eliminations ; the denominator of the expressions for
%y, T, X3 . i8 then found to be the same in each case,
namely an expression of 24 terms, 12 prefixed by positive
and 12 by negative sign, each term being a product of
four elements a;, no two of which in any term have the
same first suffix or the same second suffix. The numerators
are also found to be expressions of 24 terms.

It is natural to pause here, and instead of proceeding
to the further heavy eliminations necessary for solving
simultaneous equations in 5 or more unknowns, to study
the properties of these numerators and denominators and |
thus by induction to define them generally, in the hope
of solving the set of n equations in 7 unknowns and
incidentally of finding the reciprocal matrix of a given
matrix. .The expressions constructed by this synthetic
method are in fact determinants. The old name for them,
eliminants, faithfully reflects thcir%historiml origin.

-
13. Salient Properties of Eliminants

The properties likely to be uscful for purposes of
definition emerge already in the examples we have given.
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The respective denominators Were a,;, Gy de—0,3f, dand
the longer expression (12, (7A. f B.terms, presumably of-
n! terms in general. For n>w. half ~f 121}
terms are positive and half are neg,aﬁ& BRr. .terp
consists of a product of n factors a;;, and ifi~these omuucts
all the first suffixes, 1, 2, ..., » and all the second suffixes
1, 2, ..., » appear once and once only. Hence if we order
the factors in a term so that the first suffixes, which are
really row suffixes of elements in the related square
matrix A4, are in natural order 123...n, then the second
guffixes will be some pérmutation oBy...v of that natural
order.

We are therefore led to define a determinant of order »
as the following function of the elements a,; of a square

. Ztiatag e Guys - - - (1)

the summation being extended over all the possible n!
permutations of natural order of second suffixes a, 3, ..., v.

It remains, however, to discover the rule by which the
sign + or — is prefixed to any given term. This rule
depends on the nature or class of the permutation (af...v)
of (12...n) ; and this requires a study of the classification
of permutations into even and odd classes.

14. Inversions, Transposiﬁons, Even and
0Odd Permutations

When two indices in a permutation are out of natural

order, the greater index preceding the lesser, like the 3

and the 2 in (1324) or the 5 and the 1 in (52341), such
a derangement is called an inwversion.

The interchange of two indices in a permutamon without
alteration of the rest, as when (13425) becomes (13524)
by interchange of 4 with 5, is called a transposition.

The number of inversions of natural order in any
permutation (af...v) can be counted systematically and is
unique. A permutation is said to be even. or of even class,
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when the number of inversions in it is even, and odd,
or of odd class, when the number of inversions is odd.

15. Deflnition of Determinant

We are now ablo to define the determinant [4] or |ay)|
of a square matrix 4 of order nxn thus:

IA[E]a,,{EZj:amazﬁ S S . (D

the summation, of n! terms, being extended over all
permutations (af...») of second or column suffixes of the
elements a;;, and the sign -+ or — being prefixed to any
term according as the permutation is even or odd.
Permanent. The corresponding sum with terms all
prefixed by the positive sign is called the permanent of 4 ;
its properties are neither so simple nor so rich in application
as those of determinants, but it has an importance in the
theory of symmetric functions and in abstract algebra.

We shall denote it by |A].

Notation of Determinants. The early writers,
Cauchy, Jacobi and others, denoted |4| as we have done
above, by

Zj:amazﬁ e By

or some similar notation. Cayley in 1841 introduced what
has remained, for nearly a century, the standard notation

Qg dyg -« A1pn
Agy Ugg -v. Uyp

....... )

.......

Other notations are |@,;d9...Us,|, the determinant being
indicated by its diagonal clements; or the single suflix
notation [a,b,...k,|, distinet letters being used to denote
column order. Vandermonde, Sylvester and other writers
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used a so-called umbral notation, in which the letter a is
discarded and the suffixes themselves are made pre-
dominant. In this notation

1234 2134 2134

(1234), (1234), (4231) 3)
would represent respectively the general determinant of
the 4th order, the same with first and second rows inter-
changed, and the same with first and second rows and

first and fourth columns interchanged.
The practice in the present book will be for the most
part to use |4] or |a,l, leaving the order to be understood
from the context; and we shall also indicate the

determinant of a partitioned matrix by using the typical
vertical bars of Cayley’s notation ; thus,

4, i 4, A, 4,

B, i B, B, B,

Other notations, in particular the one by diagonal
elements (which however fails to distinguish between the
determinant of 4 and that of 4’) will be used as occasion
may require.

A few easy examples will serve to illustrate the classing
of permutations by counting inversions, and the formation
of determinants according to the definition.

1. To count the number of inversions in a permutation.
Take for example (43521). The inversions are 43, 42, 41;
32, 31; 52, 51; and 21. In all, 8 inversions. Theo clags of
(43521) is therefore even, and the term y ¢.gtgsdts in a
determinant |A| = |y tatayitytss] of the 5th order would
receive the positive sign.

2. The nurhber of inversions may be counted by the aid
of a diagram thus. Let the indices be written in an upper
line, spaced out and in natural order, for example 1 2 3 4 5.
Directly below them write in the same way the permutation
in question, and then join each index in the upper line to the
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same index in the lower line, curving the joins if necessary so
that all intersections are of two joining lines and not more.

For example :
1 2 3 4 5

4 3 5 2 1
Here, since 4 and 3 are out of natural order in the lower
line, the joins of 4 with 4 and 3 with 3 must intersect. The
same is true for each inversion that is present in the lower
line ; hence the number, as here eight, of intersections of
the joining lines is equal to the number of inversions.

The reader ig invited to try further examples. The
diagram is merely a convenient device for giving visual form
to the other method of counting inversions.

3. In the ways just indicated we may class the orders
(128), (182), (231), (213), (312) and (321) as even and odd
alternately. Hence the determinant |[4| of the 3rd order is

Gy Ggphag — 011 XgsPan Ay oBaslay — Q1 o%01 Xy —+ Ay 3Un1 Tgr — Ay 3991, 4

as has appeared already (12, (7)) in the denominator of the
solution of three simultaneous equations.

Effect of Transposition. A4 single transposition of
order changes the class of a permutation.

Consider (o,0,05050506). Suppose o, and ag are inter-
changed. This may be done by passing a, over each of
ag, 04, a5 In turn, let us say in general over m indices, and
then passing a; back over a,, a,, in general over m—1
indices. Now each passing over a single index cither
introduces an inversion or removes one, according as the
two indices concerned were or were not previously in
natural order ; and in either case the class must be changed.
Hence we have in all an odd number, 2m—1, of changes of
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class; so that a transposition changes the class of a
permutation.

It follows that the difference between the number
of inversions introduced and the number removed by a
transposition must be an odd number.

Conjugate Permutations. Let us consider (3241) and
(4213), and let us distinguish index, and place occupied,
as follows. In (3241) the index 3 occupies the first place,
place 1; in (4213) the index 1 occupies the third place,
place 3. If the reader will examine the other indices in
these two permutations, and the places they occupy in
each, he will note that the numbers expressing index, and
place occupied, in (3241) are exactly the numbers expressing
place occupied, and index, in (4213). Two permutations
in which the réles played by index, and place occupied, are
interchanged in this way are called conjugate permutations.

It is clear that a second interchange restores the original

position ; in other words the conjugate of a conjugate
.permutation is the original permutation. It is possible,
too, for a permutation to be its own conjugate, or sclf-
conjugate ; the reader will verify, for example, that (13254)
is self-conjugate.

4. Consider the diagram used in classing permutations.
The upper line of numbers in natural order is simply what we
have called place occupied; the lower line is what we have
called index. Hence if we write the natural order such as
1 2 3 4 below the diagram of crossed lines and then complete
the top line, the top line will give the conjugate permutation.
1 2 3 4 4 2 1 3

(1)

w
M
'S
f—
—
o
o
»
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5. It follows at once that the diagram of a self-conjugat
permutation must be symmetrical about its horizontal bisector,

S KRR VA (8)

1

6. If any term of & determinant such as a, 28 .. ay
has its factors reordered so that column suffixey af...r cume
into natural order, the term then becoming G,y agry .- 4,7,
then the resulting permutation of row suffixes (a’f’...7") is
the conjugate of the former permutation (af...y) of column
suffixes.

The reason is that such a reordering is precisely the
interchange of index with place occupied.

16. Identity of Class of Conjugate Permutations

There is a simple but important theorem, namely,
that conjugate permutations have the same number of inver-
sions of natural order.

Consider the diagrams used for counting inversions by
the number of intersections, as exemplified in 15 (7). The
diagrams are the same. Hence the number of inter-
sections, and so of inversions, is the same ; and so conjugale '
permutations are of the same class. ‘

Now to rearrange factors in each. term of a determinant °
so that column suffixes, not row suffixes, are in natural .
order, is the same as to define the determinant in the old
way but with respect to a matrix obtained from 4 by inter- |
changing rows and columns, and this matrix is of course ‘
A4’. Since, by 15, Ex. 6 and the theorem just proved, all T
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terms in such an interchange retain the same sign as
before, we have the fundamental theorem :
The determinants of A and A’ are the same.

Examere
Write out in full the six terms of the determinant |4|
of the 3rd order. Rearrange the factors in each term so that
column suffixes are always in the order (123). Then put
B = A’, expand |B| according to vhe original rule and compare
the results.

Relative Class of Two Permutations. To decide
whether two permutations of (12...n) are of the same or
opposite class we need not count the inversions of each
with respect to (12...m); it is sufficient to count their
relative inversions with respect to each other.” For example
(3142) and (4213).

3 1 4 2

4 2 1 3

"Here there are five intersections, so that five transpositions
of contiguous indices are required to remove the relative
inversions. (The moves are 3 with 1, 3 with 4, 3 with 2;
1 with 4, 1 with 2; theso make 3142 become 4213.)
Hence the permutations are of opposite class.

It follows that the sign of a term in the expansion of a
determinant can be decided, not only by the number of
inversions of column suffixes when row suffixes are in
natural order, or by the number of inversions of row suffixes

“when column suffixes are in natural order, but also by the
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relative inversions of row with respect to column suffixes
when the factors of the term are in any order.

Our example thus shows that the term ag,0,,040,3,
as likewise the term a@,,0,,0,,03 in a determinant |A4]|
of the 4th order, would receive the negative sign.

Permutations have many other properties, but those
we have just given are sufficient for developing various
simple properties of determinants, which are of use in
evaluating them by expansion in various ways.

17. Elementary Properties of Determinants

1. As we have seen, an immediate consequence of the
fact that conjugate permutations have the same class is
that IA,I = IA»‘.

2. Let columns j and %k of A be interchanged. The
natural order of row suffixes is not altered, but in all the
terms of the determinant of the matrix B obtained in this
way from A4 the column suffixes receive one transposition,
namely, 5 with k. Hence, as compared with the same
terms in |4], the terms have undergone one change of

sign. It follows that |B] = —|4].
1. 2 - -5 2
‘3 7':29, ; 3|__-29.
3. Since |4’| = |4], it follows at once that interchange
of two rows in |4| produces & determinant [B| = —|4].
2. 2 —b 3 7
|3 7| =29, l2 _5I=_.29.

4. If two rows, or two columns of 4 are identical, then
[4] is unaltered by their interchange; yet, as we have
just seen, the 'mew determinant is —|4|. Hence
|[4] = —|4]|, so that |4A|=0. Thus a deferminant with
two rows or two columns identical vanishes.

5. For n>1, a determinant |4 | possesses n!/2 positively
signed terms and n!/2 negatively signed terms. (Deter-
minantal sign due to permutation is meant, not the
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adventitious sign that a term may have because a;; happens,
for instance, in one case to be 7 and in another to be —35.)

For let us put every a; = 1. Since all rows, or
columns, are now identical we have |[4| = 0. Also every
term in the expansion of |4} must be numerically equal
to 1. Hence half of the terms are positive, half negative.

The following proof is also instructive. Of the nl
permutations, »>1, suppose m are of even class. Sub-
jecting these to a given transposition, such as the inter-
change of the index in the first place with that in the
last, we obtain m permutations all different, as is readily
geen, and all of odd class. Hence the number of permuta-
tions of odd class must be equal to or greater than the
number of even class. By exactly similar reasoning the
number of even class must be equal to or greater than the
number of odd class. Hence even and odd permutations,
for n>1, are equinumerous.

6. The determinant of a diagonal matrix, since all
non-diagonal elements are zero, reduces to a single term,
namely, the product a;,0ss...6,, of the diagonal elements.

In particular the determinant of the unit matrix I is
equal to 1, the determinant of a square zero matrix is
equal to zero, and the determinant of AI is equal to A”.

7. If every a;; be changed to Aa,;, every term in the
determinant |4 | is multiplied by A%. Hence|Ad|= A"|4].
In particular |—4| = (—)*|4|, |=I| = (=1)".

——~ 18. Primeness of a Determinant

A determinant, regarded as a multilinear polynomial
in its elements a; (that is, linear in any one element),
cannot be factorized into factors rational for all values
of the a,. In other words it is a prime polynomial in its
elements.

For let us assume on the contrary that it can be
factorized into two polynomials 6, ¢. Suppose that 6
contains a certain element a@;;; then from the definition
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of |4] it is clear that ¢ can contain no elements with row
suffix i or column suffix j. Suppose again that ¢ contains
a certain element a,, ; then in the same way 6 can contain
no element with row suffix r or column suffix s. But this
means that the elements @, and a,; can occur in neither
factor, which is absurd, since they certainly occur in [4].
Hence the assumption is false, and |4 | is irreducible into
polynomial factors.

19. Various Modes of Expansion of a Determinant

Expansion of |4| by Elements of a Row or Column.
What is the coefficient in |4| of the leading element a;, ¢
Evidently it consists of all the terms

Z‘J:azﬁ“ay'" Ay » . . . (1)

and since the row and column suffixes 1, 1 in a;; are in
correct natural order they make no contribution to the
sign of any term in (1). This sign is therefore given by the
permutation (By...v) of the natural order (23...7).
For example, the coefficient of a;; in |a),@pas] is
Woan =1 ~nl1.-
Now the aggregate of terms in (1) above, (n—1)! in
nuinber, constitutes by definition the determinant of order
n—1,
Ggy (og ... Ogy
U3y 3z -+ Ugy
. . . @

obtained by deleting from |4] its first row and first column,
We shall denote this determinant by |4,].

What is the coefficient of a,; in the expansion of |4|?
In |4] let us pass the i** row upwards over the others
until it becomes the first row, and then let us pass the j*
column to the left over the others until it becomes the
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first column. The effect of this is to make a;; become the
leading element in a determinant derived from |[4] by
(#—1)+(j—1) changes of sign; and the coefficient of ay
in the expansion of this determinant is the determinant
of order n—1 obtained by deleting the row and column
containing a;;. It follows that the coefficient or cofactor
of a; in |A| is the determinant obtained by suppressing
the #** row and the j* column of |4| and giving the
gign (—)#2, that is, (—)* or equally well (—)¥*
or (—).

We shall denote this cofactor of a;; in [4] by |4y
It could also be denoted by 0|4|/éa;;. The determinant
obtained from |4| by simply suppressing the it* row and
4% column, without giving sign (—)*, is called a minor
of |4]|; and so we shall sometimes call a cofactor a
signed minor. The determinant obtained by suppressing
m rows and m columns of |4]| is called a minor of
order n—m.

Now in the expression

AR PR P RO S P P )

there are altogether (n—1)!»n terms, that is, n! terms,
all different and all occurring with correct sign in |4].
But the expansion of 4] itself has only n! terms. Hence
the expansion, (3) is & complete expansion of |4]. It will
according to elements of

the first row and thclr cofactors.

In exactly the same way, since we can bring any row
into first place with no more than a change of sign in [4],
we see that there is an expansion of |4| according to
elements of any row, namely,

4] = an|dn| +am|dp| -+ Fam|d ], - 4)

and further, since |4’ = |4, according to elements of any
column, and their cofactors.
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The following examples give useful reductions and
transformations of determinants, depending on the
properties thus far derived.

1. a; by ¢y b
Cy Qy Cy @y by
Qy bz Cy| = Oy 2 R —0; +61
ay by C b Gy O3 Cg @3 by
by € b & b e
=0 N % by cs T by o3 [
and four other similar expansions.
2| 1-3 1 )
e e PR e T P B
3 1-1

= —9+43 (—13)+7 (—14)
= —1486.

The reader should evaluate this determinant according to
elements of rows and of columns and cofactors in all the other
possible ways, and should invent and work through many
other numerical examples of the same kind.

3. a . . . by ¢, dy
@y by ¢ dy| _
ag by o5 dg| ay | bs 5 dy . - (5)
ay by ¢ dy by ¢q dyg

by expanding the determinant on the left in terms of its
first row.

4. I“1+'\“-1 by A8y o1+ Ay, ay b ¢ a; P17
ay b, Cy =|a, by ¢;| +A|a, by ¢ 6
2 by Cy )

' 223 by Cg a3 by ¢y as by cy

again by expanding in terms of the first row.

5. In the above, put [a; By 1] = [a3 b, ¢,] or = [a; b, c,).
Then the second term on the right involves a determinant
with two rows identical and so vanishes. Hence the important
result :

A determinant is unaltered in value when to any row, or
column, is added a constant multiple of amy other row,
or column.
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6. Evaluate the determinant of Ex. 2 by using this fact.

One way is as follows. Perform on the determinant the
operations row,+-2 row,, and then row;—38 row;, the row
to be modified being always written first in these operations.
Then expand in terms of the first column. This gives

1 -3 7
0 -2 19/=|72 _;g,= —146.
0 10 —22

7. Perform on the same determinant of Ex. 2 the operations
coly+3 col;, colg—7 col;, and then evaluate as before.

8. [day Aby ey Awy pby ve, oy, @y ag
plg pby pcy| = |Aay pb, vea| = Auv|by by bgl. (7)
vag vby veg Aag ubs vey C1 Co Co :

9. By means of the results (i) [A4d]| = A"|4| and
(i) |[4’| = |4] prove that the determinant of a skew symmetric
matrix 8 of odd order vanishes identically, and that the
determinant of a skew Hermitian matrix of odd order is a
purely imaginary complex number.

(In the first case [S| = —|S|, in the second [8] = —[S].)
10. 111 :
a b ¢ |=(c—b)c—a)b—a).. . (8)

a? b? c?

(By expansion in terms of any column, the determinant is
seen to be a polynomial in @, or b, or ¢. Further, if b = a,
or ¢ = a, or b = ¢, the determinant has two columns equal
and so vanishes. Hence by the Remainder Theorem it con-
tains (b—a), (c—a) and (¢c—b) as factors. But the term arising
from the principal diagonal, the leading term, is bc2. Hence
the remaining factor is purely numerical and is equal to unity.)

11. The determinant of Ex. 10 is a case of an alternant,
so called because to interchange any two of a, b, ¢ is to inter-
change two columns and therefore to alter the sign of the
polynomial. If we write this alternant as |a® b* ¢2|, the reader
will prove similarly that the general alternant |a®lc2...%n-1|
is equal to the continued product of all the differences that
can be formed from the 4n(n—1) pairs of letters taken from
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a, b, ..., k, the alphabetical order being reversed in each
pair. The polynomial so derived is called the difference-
product of a, b, ..., k and will be denoted by 4(a, b, ..., k).

12. |atb?...k"| = ab...k4(a, b, ... k) = 4(0, a, b, ..., k).

18. |aybs...k,| is the alternant |a®?..k"|, with indices
lowered into suffixes. In fact a determinant may be regarded
as the result of a symbolic operation of difference-product
type, in the sense that if F, is an operator defined by
Eo; = 044 and By, ..., B, are similar independent operators,
then

A0, B,y By, ..oy By) aghy.. kg = |ay0g.. . Foy)-

14. If we write the general alternant as

[ § n—1
|a1 @y ... oy |
we may note that the element in the ¢*# row and j** column is

a;“l. Henco an alternant matrix is briefly characterized by

a®71], and its transpose by [a?7].
J %

15. Uy Qyg --r Oyp
Qgg +vr Qop
= Q102+« Anny . . (9)
P

where a;; = 0, i>7. (All elements below diagonal are zero.)
To prove this, expand in terms of the first column, and repeat
the operation on the determinants of lower order so obtained.
Alternatively, note that any term involving elements from
above the diagonal must necessarily also involve eclements
from below the diagonal, and these are all zero. Thus only
the diagonal or leading term survives.

Length, Area, Volume and Hypervolume as
Determinants. In the following examples we develop
in determinantal form the length of a straight line segment,
the area of a plane triangle, the volume of a tetrahedron
and the hypervolumes of the successive analogues of these
figures in space of higher dimensions,



AREA AS DETERMINANT 43

16. The line segment. If A is on a straight axis OX at
distance z; from the origin O, and B is at distance z,, the
signed length BA is z, —z,, and this is equal to

Ly
z, 1

z —a
=
the second of these expressing the fact that the length is
invariant under change of origin from 2 = 0 to x = a. If B
is the origin, z, = 0 and the length is merely =z,.

17. The triangle. Let the reader draw a triangle ABC in
the first quadrant XOY of ordinary rectangular axes, and
perpendiculars from A = (1, %), B = (g, ¥,), C = (%, ¥3) to
OX to meet OX in A’, B/, C’. Then, with due regard for
sign, as given by direction of base segments, the area ABC
is seen to be the sum of the areas of trapezia on bases B’A’,
A’C’, C'B’, the first trapezium for example being B’A’AB.
Since the area of a trapezium is the length of the base multi-
plied by the mean of the extreme ordinates, the area ABC
is by (10)

s 1
ir{ (¥1+92) , T tus) |, ’ + ?/s‘f"!/x) °1 '}
z 1y +ys 2 9 1
=3z lys+y | =% |T 92 1|, - . - (11)
23 1y +ye s Y3 1

the last determinant being obtained from the one on the left
of it by the operations (y,-+¥,-+%s)col,, coly—col,, cancel
Yy +Y,+9y; from col, again and rearrange columns.

The determinant (11) is easily seen to be unaltered if each
x,; is replaced by 2;—a, each y, by y,—b, the invariance of area
under change of origin being thus expressed. Note also that
if C is the origin (z;, ¥3) = (0, 0) and the last row and column
of the determinant in (11) may then be deleted.

18. The tetrahodron. With a similar naming of points,
let the reader draw a tetrahedron in the first octant OXYZ,
and perpendiculars from A, B, C, D to the plane XOY to
meet it in A’, B’, ¢/, D’. (In a first drawing he may lot A’
fall within the triangle B’C'D’. In later drawings he should
consider varied orientations.) Then the volume of the
tetrahedron is seen to be the sum of signed volumes of prisins
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on triangular bases B’C’A’, C’'A’D’, A’D’B’, D'B’C’. Since
the volume of a right prism is the base area multiplied by
the mean of the vertical edges, the volume of ABCD is by (11)

2y Y1 1 23+25+24 %y Y12, 1

Ty Ys 1 2gt24+2y | _ Zy Yp 2y 1 12
& T3 Ys 1 24+2,+2, % X3 Ys 25 1|” - (12)

%y Ys 1 2y +2,+25 %y Yo 24 1

the last determinant being obtained from the one on the left
of it by the operations (2, +2z,+2%5-+2,) col,, col,—colg, cancel
2z, +2,+25+2, from col; and rearrange columns.

The form of the general result is now plain. The
determinant occurring in it is of order n-1 and of the type of
(12), and the outer factor is 1/n!. If the last corner is the
origin, all elements of the last row except the final unit are
zero, and the determinant reduces to one of the nt? order, like
that obtained by deleting the last row and column of (12).
It is also clearly invariant under a change of origin from
0, 0, ..., 0)to (a, b, ..., k).

In the corresponding figures of completed type, the line
segment, the parallelogram (sum of two equal triangles), the
parallelehedron (sum of six equal tetrahedra) and so on, the
length, area, volume and hypervolumes are expressed by the
samoe determinant, but without the factor 1/n!. These
determinantal forms are valuable in the discussion of
differential elements of volume in space of 2, 3 or more
dimensions.

Elementary Operations on Determinants. The
following examples are important as showing that
certain commonly occurring elementary operations on
determinants, such as interchanging or permuting their
rows or columns, replacing a row (or column) by linear
combinations of rows (or columns) and the like, can be
effected by pre- or postmultiplication of the matrix 4
of the determinant by suitable matrices.

19. Interchanging two rows. Consider

e @y by Cy
1. .lagbyey| = {a, b;¢. . . (13)
.« 1jlasgbseg ag by ¢y
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Premultiplication of A by a matrix obtained by interchanging
the first two rows of I has effected the interchange of the first .
two rows of 4. The reader will prove that in general any
permutation of the rows of a matrix 4 can be effected by
premultiplying 4 by a matrix derived from I by the same
permutation of rows. Compare 11, Ex. 3.

20. Any permutation of the columns of A can be effected
by postmultiplying 4 by a matrix derived from I by the
same permutation of columns. This is simply the result of
Ex. 19 transposed.

21. J1A.7Jay 0,0 ay +2Aay by +Ab, ¢; - Ac,
[. 1 ] [az b, cz] = [ a, b, Cq ] (14)
.o 1] lagbses ag b, c3 .

Thus operations such as row,-+Arow, are effected by a
premultiplication by I with a A inserted in the (7, k)** position.
The reader will at once see the suitable premultiplication for
row; -+ A rowy, -+ u rowy, and so on.

22. By transposing Ex. 21 we see the suitable postmulti-
plications that will effect col;~+A col,+ w col,, and the like.

23. Observe that

1. 1..971. p—=v 1Ap :
[. 1 :l [ 1 v] [ 1 . ] = [ 1 v] . (15)
R 5 I PO I S | .. 1

and show in general that any matrix with units in the principal
diagonal and all elements zero on one side of the diagonal
can be expressed as a product of matrices representing
elementary operations on rows or columns.

24. From expansion by a row it follows at once that if all
elements in a row of 4| are changed in sign the resulting
determinant is equal to —|4|. A useful consequence is
that if the 2nd, 4th, 6th, ... rows and the 2nd, 4th, 6th,...
columns of |4| are changed in sign the determinant is un-
altered in value. In a brief notation |(—)ay| = |ay|-

20. Practical Evaluation of Determinants
by Condensation

The method of expanding a determinant according to
elements of a row or column is in general of practical
service only when the determinant is of no higher than the
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3rd order. For higher orders the process has to be repeated,
and the number of terms soon becomes very large. For
this reason less cumbrous methods based on condensation,
that is, on the systematic reduction of a determinant to one
of lower order, are much superior in practice. Most of them
are variants of a method ascribed to Chié (1853), but
virtually used by Gauss more than forty years earlier in
evaluating symmetric determinants.
Let us consider the case of the 4th order,
a, by ¢y dy

4] = ladienda = (2 22 L)
. a, by ey dy
and let us suppose meanwhile that @, %4 0. No generality
is lost, because if a, were zero we could bring some non-
zero element to leading position by an interchange of rows
and of columns, altering at most the sign of [4|. Next
let us multiply all the rows of |4| except the first by a,.
Finally, let us perform the operations

TOWy—@,LOW,, TOWg— @, LOW;, TOW ;—a LOW;.
The result is

a, b ¢ d a, b ¢y dy
ad |4| = 00y ayby aic, ayd, _ |0 @by lasey| laydy|
1 a5 a0y ;03 ayd, 0 |abs| laycs| |aydy)
@y by a0y ayd, 0 layby] |ageyl I“1d4|

|aybs| |ayca| |asd,]
|a104] !“1031 |aydy|
laybyl laseq| la,d,]

)

=a,1

A rule of condensation is thus derived, which may be
formulated in the general case as follows :

Let a, be called the pivotal element or pivot. Then the
determinant |4| of order » is equal to 1/e?~2 multiplied
by a determinant of order n—1, the elements of which are
the minors of |4| of order 2 having a, as leading element,
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placed in proper priority of rows and columns. Thus the
minor belonging to the lst and (14+1)* rows, lst and
(j4+1)" colamns of |4| will be the (i, j)* element of the
condensed determinant.

— g1 | @b |ascal |
1. lasbacs| = a2 lasba] lagcs| | ° . . (3)

2, If A is symmetric and the pivot is the leading element
a,y, the condensed determinant is also symmetric.

The pivot need not be the leading element, which may
be zero. Any convenient non-zero element a; in |4]
may be taken as pivot. The condensed determinant then
has for elements all the minors of order 2 containing a,;,
each taken as if a;; were its leading element and given sign
accordingly. In other words, the diagonal of these minors
which contains the pivot @;;, no matter how it is situated
in |4], is counted as the leading diagonal of the minor.
Then |4] is evaluated as before, except that the sign
(—)* must be imposed.

3. —4 3 5
2 —4 -3
5 —2 —7

1
= —>(33) = —11.
5 (33)

— . )1+2
= (=j"z 7 —11

1 |~10 lll

The pivot is italicized. The reader should work this
through for himself, checking the result by choosing other
pivots, as well as by expanding in terms of a row or column.
He should also do 19, Ex. 2 by pivotal condensation.

A determinant of order n being reduced by a first
pivotal condensation to one of order n—1, the latter in its
turn can be reduced by a second pivotal condensation to
one of order »—2, and so on until finally we have a
determinant of order 2, a simple cross-product. Naturally
the case where the pivot is 1 or —1 will give the least
arithmetical work. It is always possible, by a preliminary
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division of the row or column containing any non-zero
element, to turn that element into a unit pivot. This may
introduce decimal fractions and approximations into the
computation ; in practical applications, however, in which
the elements are in any case approximate, rounded off to
a certain number of digits, no disadvantage ensues from this.

4. -2 3 2 -5

3 —4 —5 6 1| -7 -2

— 1l 9 4 gl
4 —7 —6 9 32 1 2 —5
—3 5 4 —10

The pivot is again italicized. The reader should complete
the evaluation, and should repeat the work with different
pivots. The value of the determinant is —18.

Leading pivots are the most advantageous. Next to
them in convenience come diagonal pivots.

Some Important Identities. It may be observed
that pivotal condensation corresponds exactly to the pro-
cess of successive elimination by which simultaneous linear
equations are solved. Thus if we have a set of equations
Azx = b from which we eliminate x;, using the i** equation
for this purpose, the matrix of the equations so derived is
obtained by condensing A with respect to the pivot a,.
The reader should verify this.

The method of condensation gives rise to a hierarchy of
useful identities. We have in the first place

@by |ascy]

|@sbocs| = ai la,bg| ayca)

1

, #‘O. . 4

Next we have

|@1bs| lages| layd,|
laybs| |aycs]| |aydy)
lasbgl |aycql laidy|

|asbocsdy| = a2 » &y # 0. (5)

Carrying out the condensation one stage further, with
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leading pivot (assumed non-zero) |a,b,|, and using (4) in
the evaluation of every minor, we derive at once

[a105C3| @195 ]
[a1bscal |@1bady|

In exactly the same way, at the second stage of
condensation of |a,byc,d,e5| We arrive at

|@1bscsds| = |a;bg| 2 . . (6)

1 @1bocs| |aibads| |aybaes]
|a1bacsdses| = @by 2] asbacy| [@1bads| |ayboey]
|@1boes| |aidads| |aibees

- (7)

Now condensing once again, with leading pivot (assumed
non-zero) |a,b,c;|, and using (6) repeatedly, we obtain

|a1bacsdy| |@1baCs8,]

— -1
loxbacsdaes] = |asbyca] laibacsds| |aibacqes|

.8

The derivation of further identities of the kind can be
continued step by step. Clearing of fractions we obtain

|ay| [abacs]| = | |aba| |ases| |,
laiby| |aibgeads| = | |@1bacs| |@1bedy] | - (9
|aibaca| |ardycadses| = | |asbocsda| |@ibacqes| s

and so on. Here the determinants of the 2nd order on the
right have been indicated by their diagonal elements, which
themselves are determinants. (Determinants having deter-
minant elements are called compound determinants.) The
identities are now polynomial identities, valid whether the
determinants and minors concerned vanish or not. They
are cases of more general identities (45) called extensional
identities.

5. Expansion of a skew symmetric determinant of even
order yields a polynomial which is a perfect square. For the
identity (9) applied to the determinant gives on the left the
product of the determinant and its leading minor, also skew
symmetrie, of order n—2, and on the right, as is easily seen
(19, Ex. 9), a skew symmetric determinant of order 2. Hence,

D
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since a skew symmetric determinant of order 2 is by inspection
a square, the original determinant will be a square provided
that its leading minor of order n—2 is a square. By the same
reasoning this minor will be a square provided that the
leading minor of order n—4 is a square. Proceeding in this
way, we see that the result depends on the particular case,
that a skew symmetric minor of order 2 is a square ; and the
truth of this is evident.

In this proof we have assumed that the leading minors of
even order do not vanish. No generality is really lost by this
assumption.

The reader should go through the steps of the above
proof, taking a skew symmetric determinant of the 4th
or 6th order.

The square root of a skew symmetric determinant of
even order is a polynomial in the {n(n—1) elements, called
a Pfaffian. Pfaffians have properties in some respects
resembling those of. determinants, but they lack a simple
multiplication theorem, such as is derived for determinants
in 34%.

6. The Pfaffian of order 2 is ;0834 —@150ps +G14es-

7. Prove that the terms in a Pfaffian are composed of
factors ayy, ¢<<j, without repetition of suffixes. By enumera-
tion of all such terms show that the number of terms in a
Pfaffian of order nis 1.3 .5... (2n—1).

Note on History of Determinants.—The standard
works of reference, which the reader should consult for
detailed information, are Muir’s History of the Theory of
Determinants (Macmillan), in four volumes, and Contribu-
tions to the History of Determinants, 1900-1920 (Blackie).

Vandermonde may be regarded as the founder (1771) of
a notation and calculus of determinants. Of writers prior
to 1850 Cauchy (1812), Schweins (1825) and Jacobi (1841)
made specially important contributions in papers of these
dates.

Matrices were introduced by Cayley in 1857,



CHAPTER IIIX

THE ADIJUGATE AND THE RECIPROCAL MATRIX :
SOLUTION OF SIMULTANEOUS EQUATIONS :
RANK AND LINEAR DEPENDENCE

21. The Adjugate Matrix of a Square Matrix

LEr us substitute for the i**» row of a determinant |4]| a
new row of elements b;. The cofactors of the b;; in the
new determinant are evidently the same as those of the
corresponding a;; in |4|, and so an expansion of the new
determinant is

by | s | +bialdia] + oo Fbin|4iml. - - (1)

A similar result holds when a new j** column is substituted
in 4.

Let us consider the case when the b;; are elements of
any row of A other than the ¢**. The expansion (1) is
then the expansion of a determinant with two rows
identical, and so gives zero. Thus we have the important
result :

[ A |Fora|dig|+... FOpn|dip| =0, k%14, . (2)

and a similar result is again true for expansions in terms
of a column.

With respect to the element of a given row (or column)
of 4 we shall refer to the cofactors of elements in a different
row (or column) as alien cofactors. Hence by (2) :

Bxpansions in terms of alien cofactors vamnish identically.

" The Adjugate Matrix. Let a matrix M be con-
structed, the elements of which are the cofactors |4
51
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of elements a; of 4, but placed in transposed position.
Thus
M =T[4, =[44]. . . . (3)

This matrix is called the adjugate or adjoint of 4, and will
be noted by adj 4. Its determinant [adj 4] will be
called the adjugate determinant of A, or the adjugate of
A4|.

| I(In most books on determinants an untransposed
adjugate is used, but for consistency and unification of
theory it is preferable to transpose.)

1. ay by ¢y ) Bacs| —[b1ca|  [Brca|

If 4 = |ay by ooy udj A =| —lases|  |ases| ~|ascy

. a3 b3 c:sJ |agba| —|anbs| @by
2,

1 2 3 11 -9 1
IfA=|1 3 5|,adjd=|-—7 9 —2].
3. BEvaluate |4| for the mdtrix of Ex. 2, Also form the

product matrices A(adj 4) and (adj 4)4. Try some other
examples of the 3rd order.

Forming the product 4(adj 4), and keeping before us
the case n = 3 for illustration,

ayy A1z ag |41 |dn| |45] 4] . .
Qo1 Apy Qgg |[As] 14ge| |4g] |= - 4] . ) (4)
Q3 A3a Os3 |A13| |4 5] lAsal . . IAI

we observe that by (2) all non-diagonal elements in the
product vanish, being expansions in terms of alien cofactors,
while the diagonal elements are expansions of |4 | in terms
of elements of a row and true cofactors. The reasoning is
general for any order, and so we have

Afdj 4) = |4]| 1. . . . (5):
In the same way let us form (adj 4)4. The reader

will assure himself that the diagonal elements are |4, this
time by expansion according to elements of a column



RECIPROCAL MATRIX 53

and cofactors, and that all non-diagonal elements vanish
as before. Hence
A (adj 4) = (adj 4)4 = |[A[I. . . (6)

Singular and Nonsingular Matrices.—A square
matrix 4 for which the determinant |4| = 0 is said to be
singular. If |A| 5 0, then 4 is said to be nonsingular.

By (6) if 4 is singular, A(adj 4) = (adj 4)4 = 0.
On the other hand if A is nonsingular we may divide the
identity (6) through by |4|, obtaining AR = RA =1,
where

R = |47 adj 4 = [|4s]/ [A1=[l4s]/ [A]Y. (T)

The matrix B thus disclosed may appropriately be
named the reciprocal mairiz of A, and may be denoted
without ambiguity by A-l. It may be noted that it is
both a pre-reciprocal and a post-reciprocal, a circumstance
which depends, ultimately, on the fact that |4’'| = |4|. We
note also that it exists only when A is square and non-
singular. Singular matrices have an adjugate, but no
reciprocal. '

At this stage the long-deferred operation of division for
matrices may be introduced. If 4 is nonsingular we may
operate with it in predivision, as in A-1B, or in posi-.
division, as in BA-1, and just as in the case of multiplication
these operations will in general produce different results.

4. If A is nonsingular and 4B = BA, then A—'B = BA-1.

5. Evaluate 4-1B and AB-!, where

1 2 3 1 11
A= 1 3 5],B=[1 2 3
1 6 12 1 4 9

6. Given only that the pre- and post-reciprocals of a
matrix 4 exist, we may prove as follows that they are unique,
and moreover identical. For suppose R and S are two pre-
reciprocals, and T' a post-reciprocal. Then we shall have
(R—8)AT = (R—8)I = R—S8, while (R—S)AT = T —T = 0.
Hence R =S. In the same way the post-reciprocal 7' is
unique.
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Again, from R4 = I we have (4R—I+4+R)4 = 1. But
since R is unique, AR—I+R = R. Hence AR = I, so that
R is also the unique post-reciprocal of 4.

7. The reciprocal of a nonsingular diagonal mbtrix is a
diagonal matrix. TFor example:

A . ]t A, .
) ] =]. pr L |, Auv # 0.
. .V . . y—1

8. Let A be a matrix obtained by subjecting the rows of I
to a certain permutation of order, and let B be the matrix
obtained by subjecting the columns of I to the conjugate
permutation. Prove that B and 4 are reciprocals. For
example, corresponding to the conjugate permutations (2431)
and (4132), the matrices below are reciprocal :

1 |
P | 1
3 ,K= * : -
H . 1 .1
1 1

Note that H' = K, H- = H’.

I A p] [1 —2 —pu
9. The matrices | . 1 .|, |. 1 .

1 1

are reciprocal. They each represent (19, Ex. 23) elementary
operations.

Principal Minors. In a matrix 4 those minors
which have elements situated symmetrically with respect
to the principal diagonal of A4 are called principal minors.
For example the diagonal elements a; are principal
minors of order 1, their cofactors |4, in a determinant
A are principal minors of order n—1, and |4] itself may
be regarded as the one principal minor of order .

The principal minors of a Hermitian matrix are
Hermitian. All principal minors in I are equal to 1, and
all minors unsymmetrically placed are equal to 2,
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22. Solution of Linear Equations in
Nonsingular Case

The discovery of 4-! enables us to give the general
solution of n linear equations in # unknowns when the
matrix 4 of the equations is nonsingular. In fact, if the
equations in matrix notation are

Az = h, where |4] 5 0, 1)
we have at once, premultiplying by 41,
x=A"1h, (2)

which gives the vector of solutions. Further, since 4-1
is unique, these are the only solutions.

To see how the set of solutions appears in ordinary
notation and in terms of determinants and cofactors, let

us keep again before us the case n = 3. |

y ‘Aul |A21[ |A31l 1
zy | = 4] llAlzl lAzzl ]Aszl Py,

T3 Ay |4 Agg| 3

>

(3)

ol

Carrying out the multiplication on the right, and
observing that every element of the vector obtained is
by 21 (1) the expansion of a determinant according to
elements &, of a substituted column, we obtain

hy agy g Gy by s @1 Wap Py

by Qoo Gog oy P oy (o1 Ao

hy gy t3q gy Py gy Qg1 gy Py
=, Ly= Ty = (4)

@31 @12 (V14 gy Qg Gy (y3 Qg g

gy Ay Hog | B21 Tp Qo3 (g Qog Gag

Ugy Qgo Ugg | | gy (gg gy 3y U3 g3

This result, which can clearly be extended to the general

case, gives the rule of Cramer (1750), namely :

each z;

is a quotient, the denominator of which is the determinant
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|[4] of the system of equations, the numerator being a
determinant obtained from |4| by substituting the column
vector {h, h, ... h,} for the j*» column of |4].

We may note at this point three equivalent methods of
solving in practice a set of simultaneous equations. The
first is the method of successive elimination followed by
resubstitution ; the second is by evaluating the reciprocal
matrix A-1 and operating with it upon the vector of
constants on the right ; the third is by Cramer’s rule, to
evaluate the n-41 determinants of (4) and to form the n

~.quotients. It will depend entirely on circumstances and
on the means of computation available which method is
used in & particular case.

1. Solve the equations

-+ y+ 2= 6,
z+2y+43z = 14,
z+4y+92 = 36

by the various methods.

The reader should also construct various equations for
himself, substitute numerical values of , y, z to find the
right-hand constants, and then solve, both by Cramer’s
rule and by forming the reciprocal matrix. The latter
is & very simple procedure for a matrix of the 3rd order.

2. Premultiply by 4’ the set of equations Az = h. The
result is the set A’Ax = A’h, a set of equations with symmetric
matrix A’4. Treat the set of equations of Ex. 1 in this
way, and solve.

3. Practise finding the adjugate and reciprocal of various
matrices of order 3 x 3 invented for the purpose. Notice that
when the adjugate is found the determinant |4| can be
found in six different ways, by evaluating the diagonal
elements of A(adj A) and of (adj 4)4. To use at least two
such evaluations is to provide a useful check.
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23. Reversal Rule for the Reciprocal of a
Product Matrix

Reciprocal of Product Matrix. The reciprocal of a
product matrix is the product of the reciprocals of the
separate matrices in reversed order. For we have

AB .B34-1 =4 .1 . A1 = AA-1 =1,
B-14-1 AB=PB"1.1.B =B'B=1.
Hence
(ABC)l = (AB .C) 1 =C-YAB)t = (C-1B-14-1, (1)

and in the same way (4BCD)~! = D-10-1B-14-1, and so on.
All matrices concerned are of course nonsingular.

It is also easy to prove that the adjugate of a product
matrix is the product of the separate adjugates in reversed
order. Thus

adj (ABO)=adjC .adj B.adj 4. . . @

This is only to be expected, since the adjugate has been
defined in the first place as a fransposed matrix, and so the
reversal law for the transpose of a product (9) is operative.

Reciprocal Transformation. If Az =y, |4]| #0,
then z = A-ly. Fach of the linear transformations
indicated by these equations is said to be the reciprocal
of the other. ’

24. Orthogonal and Unitary Matrices

A square matrix 4 such that 4’4 = 44’ = I, that is,
A’ = A7, is said to be orthogonal, for the following reason.
Consider the distance from the origin to any point in
n-space in rectangular Cartesian coordinates. The origin
being denoted by the column vector {0 O ... 0} and the
point by z = {x; %, ... 2,}, the square of the distance is
witat4...+a2 = z’z. This is unchanged by any
rotation of axes about the fixed origin, provided that the
axes remain rectangular, that is, orthogonal. Now the
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rotation is expressed by a linear transformation 4, and its
effect upon z is to produce the new coordinates Ax. The
square of the distance from the origin is now 2'4’'Adez.
Bust this is unchanged for @il points z in the space. Hence
we have 2’ A’ Az = 'z identically in #, in other words the
quadratic form 2z'(4’A—I)x is identically zero. Hence
A’A—I =0, so that 4’4 = I.

Unitary Matrices. The extension of the concept of
orthogonality to matrices with complex elements is effected
by defining a wunitary matrix A by the condition that
A"l =A', or /A = AA’ =1. A real unitary matrix is
evidently an orthogonal matrix, so that all the properties
of orthogonal matrices will be contained as special cases of
properties of unitary matrices.

1. Prove that A’A = AA’ = I, where

A=[ cosé sine]'

—sinf cosf

This orthogonal matrix represents the change of rectangular
axes in two dimensions by rotation through an angle 6.

- 2. Prove that the product of any number of unitary
(and so of orthogonal) matrices is a unitary (or orthogonal)
matrix.

For orthogonal matrices the geometrical interpretation is
that a succession of rotations about a fixed origin has the
same resultant effect as a single rotation.

3. Prove that the adjugate and the reciprocal of a
Hermitian matrix are Hermitian.

4. Prove that the product of two Hermitian matrices is
not in general Hermitian. Write down a few numerical
symmetric matrices of the 3rd order, form their products in
pairs and examine the results.

5. Prove that the matrix

|’1/«/3 (1+i)/\/3]
(1—i)V/3  —1/3

is unitary, where ¢ = 4/ —1,
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6. Let L be the matrix of order 8 X 3 with rows

[l ma ], [lp mg M), [I5 mg mg),
these being respectively the direction cosines of the new
rectangular axes produced by a rotation in 3 dimensions of
rectangular axes with fixed origin. Then L is orthogonal.

Write down in full the 12 relations given by the equalities
LL' =1 and L’L =1I, and observe that these are the
““ relations between direction cosines of three mutually per-
pendicular straight lines,” as given in treatises on coordinate
geometry of 3 dimensions.

In n dimensions there are n(n-+1) corresponding relations,
all included in the matrix equality LL’ = L'L = I.

7. Let the coordinates of = arbitrary points in
n-dimensional Cartesian space be taken as the columns
z; of a matrix X. Then if 4 is orthogonal we have
X'A’'AX = X'X, since A’A = I. The diagonal elements
'@y of X’X are the squares of distances from the origin
and are preserved invariant under the rotation 4. But in
virtue of X’4’4AX = X’X the non-diagonal elements x' .z,
are also preserved invariant. Their geometrical interpretation
is the product of the distances of the points z; and z; from
the origin, multiplied by the cosine of the angle between the
lines joining those points to the origin; in other words, the
product of either line and its projection on the other. In
two dimensions, for example, we have

2y = {reosl 7ysinf}, B, = {r,cosd 7sing}
and the relation in question is

[ricos0 7sin0){r,cosd r,8ing} = ryr,co8 (6—d).

25. The Solution of Homogeneous Linear
Equations

In the equations Ax = h all the elements of Az are of
the first degree in the elements of x, but the constants
on the right, the elements of %, are of zero degree in the
elements of x. For this reason the equations Az =5h
are described as non-homogeneous. On the other hand, the
equations Az = 0 are homogeneous. We now inquire what
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conditions must be satisfied by 4 in order that the equations
Az = 0 may have a non-trivial solution x £ 0; for we
reject as trivial the obvious solution » = 0. It is clear that
the vector z, if it exists, will be arbitrary o the extent at
least of a scalar constant factor, for if Az = 0 then certainly
Ay = 0, where y = Az. For this investigation, as well as
for the later discussion of m non-homogeneous equations in
»n unknowns, we require the important concepts of rank
and linear dependence.

26. Rank and Nullity of a Matrix

Rank. If 4 is a matrix, rectangular or square, and if
all minors of order r-41 contained in it are zero while at
least one minor of order r is not zero, then 4 is said to be
of rank r.

Nullity. If 4 is square of order »xn, then n—r, the
complement of the rank with respect to the order, is called
the nullity of 4. If 4 isrectangular of order 7 X n there are
two nullities, a row-nullity m—r and a column-nullity n—r.

1. A row or column vector with at least one nonzero
element is of rank 1.

2. The unit matrix of order n X7 has rank n and nullity 0.

3. The null matrix of order mXn has rank 0, row-nullity
m, column-nullity ».

4. The matrix of order mXn in which overy element is
unity has rank 1, row-nullity m —1, column-nullity n—1.

5. If v and x are nonzero row and column wvectors of
orders 1 X7 and n X 1, show that the scalar ux and the matrix
ay are of rank 1 or 0. Examine some numerical oxamples.

6. The matrix U of order nXn has units (11, Ex. 5) in
the first superdiagonal and zeros elsewhere. Show that the
rank of Uk is n—k, k<<n.

Elementary operations on rows or columns of 4,
involving permutations of order or linear combinations,
the modified row or column receiving a unit or at lcast
nonzero cocfficient in any such operation, leave the rank
of 4 invariant. For under any permutation of rows or
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columns the minors of 4 will receive at most a change of
sign, but not of numerical value ; and under an operation

TOW;+ A LOW; -+ AT0W,y ... A row,, . L@
any minor |4,| containing elements of row; will become
0 P P B D Y 7 [ e o o Y T . (2

where [4,], |4s], ..., |4)]| are minors obtained from |4,]
by substituting in row; the corresponding elements of row,,
TOW,, ..., Towy, respectively. This follows at once from (1)
by expanding the modified minor in terms of row;. Similar
remarks apply to operations of linear combination on
columns. It follows that if all minors of order -1 in 4
are zero, then all minors of order r+1 in PAQ, where P
and @ are the nonsingular matrices (19, Ex. 19, 20, 21, 22,
23) effecting these elementary operations, are also zero.
In other words, if B = PAQ then B cannot have higher rank
than 4. But P- and @' are also (21, Ex. 9) elementary
operations of the same kind ; and so since 4 = P-1BQ-1,
A cannot have higher rank than B.
Hence 4 and B must have the same rank r.

27. Linear Dependence of Functions, Vectors
and Matrices

Linear Dependence. If a set of functions fi, fp, ..., fn
or of vectors fiy, fig> ---r fin OF Of matrices F,, Fy, ..., I,
satisfies identically a linear relation

afitefot toafn=0 . . Y

or the like with f(; or F; for f;, where the scalar constants
¢; are not all zero, then the functions or vectors or matrices
are said to be linearly dependent. More precisely any f
affected by a nonzero coefficient ¢; in (1) is said to be
linearly dependent on the remaining f’s. If no relation
such as (1) is possible the f; are said to be linearly
independent.
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1. The linear dependence of the functions in (1) can be
expressed concisely in the form ¢f = 0, ¢’ = 0, where ¢’ is
the row vector of scalars ¢;, f the column vector of functions.

2. The linear dependence of vectors may be expressed in
matrix notation. For example, if @, (s, a5 are column vectors,
linearly dependent in virtue of a relation

Ty F Ty H 33 =0 . . - (2)
this relation is exactly the same as

Az = [anae o] {#, 2y 25} = 0, . . (3)

where A is a partitioned matrix of which the vectors a, are
columns, and x 5% 0. In the same way, to assert that certain
row vectors a’; are linearly dependent is to assert that the
homogeneous equations ud = 0, where the row vectors a’(,
are the rows of 4, have a non-trivial solution u % 0.

3. If a matrix 4 is partitioned by rows into {4, 4,}, and
every row of the submatrix 4, is linearly dependent on the
rows of A,, then A4, = C4,;, where the elements in the
successive rows of C are the respective coefficients in the
successive relations of dependence. (The reader should write
out in full some examples of low order.)

4. If the rows of a square matrix 4 are linearly dependent
then |4] = 0; for there exists an operation on rows, namely,
that given by the relation of dependence, which will replace
all the elements of some row by zeros without altering the
value of |4|. Naturally the coefficient of this particular row
in the relation of dependence must be unity.

For example, if the rows of a matrix 4 of order 3x3
satisfy the relation row;—2 row,—3 rowz = 0, then the
operation row;—2 row,—3 row, applied to |4| reduces all
elements of the first row to zero; hence |4] = 0.

5. For the same reason if the columns of 4 are linearly
dependent then [4] = 0.

Let us insist that we are not yet entitled to assert the
converse theorems, namely, that if |4| = 0 the rows and
the columns of 4 are linearly dependent.

6. If every set of r rows of a rectangular matrix 4 is linearly
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dependent then A4 is of rank r—1 or less, since by Ex. 4 all
minors of order 7 in 4 must vanish. Similarly for columns.

28. Conditions for Solution of Homogeneous
Equations

Let the equations be in » unknowns z, and m in
number. In fact we consider 4x = 0, where 4 is of
order mxn and of rank 7.

Necessary Condition. The necessary condition for
Ax = 0, x 5~ 0 is that r shall be less than », the number of
unknowns.

For suppose r = n, which can happen only if m>n.
Then by a rearrangement, if necessary, of the equations,
that is, of the rows of 4, we can make the submatrix 4,
constituted by the first » rows nonsingular. Partitioning it
from the submatrix B, constituted by the remaining m—n
rows, we have the equations in partitioned form

4 0
[B:] x = [O]’ so that 4,2 =0,Bz=0. . (1)

Now since 4, is nonsingular 4, exists ; and so 4,2 =0
leads to A dp=a=0,

contrary to the hypothesis that x £ 0. Hence the
condition r<» is necessary.

Sufficient Condition. The same condition is also
sufficient. For suppose r<n, and let the equations and
also the unknowns be arranged, as is always possible, so
that the leading submatrix 4, of order # X r is nonsingular.
The leading submatrix of order (r-1) X (r+1) will of course
be singular. Let the cofactors of elements of the last row,
the (r-1)%, of this singular submatrix be taken as the
first 41 elements of a column vector z, and let the last
n—r—1 elements of z be zeros. Then = 7 0, since its
(r+1)t clement is |4,] 0. We shall proceed to prove
that z, so constructed, satisfies 4z = 0.
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It may be helpful to the reader to have an illustration
under view, in which m =4, n = 5, r = 2.

a by ¢ dy e 6162
A by cpidy e — a1, |
Az =\ a5 by ¢3;d; ¢ lasdy| | = =0. (2)

ag by ¢y Ay &4

All elements in Az are zero, either because they are
expansions by alien cofactors (21, (2)) or because they are
expansions of minors of order 741 taken from the first »
rows and some later row of 4 ; and all such minors vanish.
(The reader should verify this for every element of the
product in the illustration.) Hence a solution x £ 0 has
been constructed ; and so the condition r<<n is sufficient.

1. If 4 is of order nXn and |4| = 0, then r must be
<n. Hence Az = 0, z 7% 0 is possible. In other words
(27, Ex. 2) the columns of 4 are linearly dependent. In the
same way, since |4’| = |4] = 0, the rows of 4 are linearly
dependent.

The determinant |4] is often called the eliminant of the
equations 4z = 0.

Thus we have the important converse of 27, Ex. 4, 5,
namely : the vanishing of a determinant both implies,
and is implied by, the linear dependence of its rows and
of its columns.

This converse theorem enables us to discuss rank by
means of linear dependence. For if B is a rectangular
matrix of rank 7, it contains a non-vanishing minor |4]
of order ». Hence the 7 rows (or columns) of B which
contain |A4| are lihearly independent. On the other hand,
any r+1 rows (or columns) of B are linearly dependent,
since otherwise they would contain some non-vanishing
minor of order -1, contrary to hypothesis. The important
conclusion is that the statements (i) B is of rank 7, (ii) the
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maximum number of linearly independent rows or columns
in B is r, are equivalent.

2. A symmetric matrix of rank 7 contains at least one
non-vanishing principal minor of order r. For since the
maitrix is of rank r, a certain r rows must be linearly in-
dependent. Hence elementary operations exist which annul
the remaining rows and, by symmetry, the corresponding
columns. Hence the minor contained by the » rows and
columns is nonzero ; and it is evidently a principal minor.

The extension to the case of a Hermitian matrix is evident.

3. If m>n, any set of m vectors of n elements is linearly
dependent. For suppose them to be column vectors of a
matrix, and annex m—n rows of zero elements to make a
larger matrix A of order mXm. Then |4| = 0. Hence the
columns of 4 are linearly dependent; and so the original
column vectors (namely, the columns of 4, each stripped of
its last m —n zeros) are linearly dependent.

4. If 2, @y, ..., z, are scalar numbers all different, the n
vectors [1 z, 2 ... 2%1] are linearly independent.

5. Let A be of order n X (n+1) and of rank n, the leading
submatrix 4, of order nXn being nonsingular. Then the
(n-1)t* column of 4 is either itself null, or is linearly dependent
on the preceding n columns, as follows :

Let 4 be written in partitioned form [4; a], where a is the
last column, and consider

[4, a] [fl] = 0, that is, 4,2 = a.

Since |4,| # 0 the equations A4,z = @ have a unique
solution z = Ar'a. The relation 4,2 = a is then (27 (3))
the desired relation of dependence of columns. The reader
should try some numerical examples, such as

1 21 -1
4 = [1 3 3 2].
1 4 6 -3

6. It follows from Ex. 5 that any nonzero column vector
of n elements can be expressed as a linear combination of the
columns of a nonsingular matrix 4 of order nXn; with a
corresponding result for any nonzero row vector.

E
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7. The vectors of the nonsingular matrix are said to
constitute a basts, or vector basis, in terms of which an arbitrary
vector of the same order can be linearly expressed. The
simplest basis is provided by the rows

e=[100...0], eg=[010...0] ..., 6,=[00...01]

of the unit matrix I, and in the same way the columns of I.
For example

w = [u; Uy ug] = w1 0 0]4u,[0 1 0]+ug[0 0 1]. . (3)

The solution which we constructed at (2) for 4z = 0,
r<n is in general not unique, since any column later
than the 7% could have been moved into the (r-+1)%
position, thus producing in general a different leading
submatrix of order (r-+1)x (r+1) and therefore different
cofactors as the elements of x; for example, elements d,
or ¢; instead of ¢; in the solving vector of (2). The solution
is therefore arbitrary to an extent which now calls for
consideration.

29. Reduction of a Matrix to Equivalent Form

Let 4 be a matrix of order mXxn and of rank ». By
elementary operations, rearrangements of rows and
columns if necessary, we may bring a nonsingular sub-
matrix 4; of order rxr into leading position. The
operations being equivalent to nonsingular pre- and
postmultiplications (19, Ex. 19 to 23) which do not
alter rank (26), we have

PAQ = [jl gl], L

2 2

where P and @ are nonsingular matrices of order m«<m
and n X7, and PAQ is of rank ». Since 4, has a reciprocal
A7l the following further reductions are possible, as the
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reader should verify by carrying out the partitioned
multiplications indicated :

I ][4, B]_[4: B @)
—A4,471 I| |4, B, . By—4,471B, |
[Al BI] [I —Al—lBl] _ [Al . ] @)
4, B, |. I |17 L4, B,—4,47%B |

I T4, B [1 —A;lBI]

—A4,A7 1| |4, By| |. I

J— Al .
__[_‘ Bz,—AzA;IBl]' L@

Now B,—A,A7B; must be null, because if it contained
any nonzero element c;; then the submatrix, on the right
of (2) or (3) or (4), consisting of"4; bordered by the row
and column containing ¢;; would be nonsingular, having
a determinant ¢;;|4,| £ 0. But then the rank would be
r<41 or more, infringing the theorem that the rank of 4
is invariant under the elementary operations (19, Ex. 23)
which have been used.

Hence we have the important results, that if 4 is of
rank » it can be reduced by equivalent nonsingular
transformations PA, AQ, PAQ to respective forms

4, B [4,.] T[4, .
42 [ 5 T wive o
where |4,| is of order r.
We may call the first two of these semi-reduced forms.
By removing a further nonsingular factor

[“’flj]. .. ®

and absorbing it into either P or @ we have the still simpler
equivalent reductions

) L L[] o

where the leading submatrix I is of ovder #Xr.
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It is also to be noted that the elements of the matrices
P and @ which effect these reductions PAQ are all rational
functions of the elements of 4. This follows from
inspection of (2), (3), (4) and (6).

1. If A4 is symmetric it contains (28, Ex. 2) a non-vanishing
principal minor. By a rearrangement of rows, and exactly
the same rearrangement of columns, this minor may be brought
into leading position. The transformation effecting this is of
congruent type P’AP. The transformation of 29 (4) may
then be applied; but we may observe that because of the
symmetry of 4 we must have 4’y = 4,, B; =4/, and so
(A71B) = 4,471 Tt follows that in this case the trans-
formation (4) is again congruent, and so for symmetric matrices
we derive the fully reduced form in (6) by a congruent trans-
formation of type P’AP.

2. The reader should go through the same steps for a
Hermitian matrix A, deriving the fully reduced form (5)
by a conjunctive transformation of type PAP.

The first semi-reduction in (5) enables us to discuss
the extent of the arbitrariness in the solution of a system
of homogeneous equations. We may suppose the equations
and the unknowns rearranged so that the leading submatrix
4, of the system is of order r X7 and nonsingular. Applying
the semi-reduction, we may write the equations A« = 0 in
the partitioned shape /

e A H T

where z has been partitioned into its first r and last n—r
elements. Hence

A, B 0
[ 2] [ze]= 0] o aeum—me 0

80 that Zq = —A71B.x . . . . (10)

This form of the solution shows that the n—r elements
of 2, can be assigned quite arbitrarily, and that when this
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is done the r elements of z; are uniquely determined.
Hence the important result :

If A is of rank 7 less than %, the number of unknowns,
and if the columns of A4 corresponding to a certain r
unknowns constitute a matrix of rank r, then the remaining
n—r unknowns can be assigned arbitrarily, and may be
regarded as parameters in terms of which the other r
unknowns can be linearly and uniquely expressed.

3. If 2, +22, 1305 +-4x, = 0
2y + 32y +525 -+ Txy = 0,

express #; and z, in terms of x; and z,; also express z, and
g in terms of x, and z,.

We further observe (28, Ex. 6) that the number of
linearly - independent vectors =z, cannot exceed n—r.
Hence from the form of the solutions of Az = 0, namely

2z = [—ATIBI“W], .. .an
Z(g

it is equally clear that the number of linearly independent
solutions z also cannot exceed n—r..

30. Consistency and Solution of Non-
Homogeneous Equations

The non-homogeneous equations Ax = % can be treated
in a similar manner by the semi-reduction of 29 (5), which

ives
o0 el e - L
=p |Pa| = [%a], . . ()
[ S L2 bug ke
let us say. Carrying out the multiplication on the left
we observe that k, must be zero. If k, # 0 the equa-

tions Az = h cannot be solved ; they are then said to be
incompatible or inconsistent.
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The condition for consistency, ki = 0, can be expressed
in a more direct way. If we compare the partitioned
maitrices

[ 3] [0 31 ),

(2

2)

we may note that if &, = 0 they are of the same rank r,
whereas if %, 7 0 the second matrix is of rank r4-1, since
at least one submatrix of order (r+1)X (r4-1), containing
A; and some nonzero element k; of kg, is nonsingular,
its determinant being k,;|4,| £ 0. Hence for compatibility
of the equations 4z = h the two matrices in (2) must have
the same rank 7. Premultiplying by P-1, which does not
alter the rank, we have the condition that 4 and [4 k] must
have the same rank r. It is customary to call [4 %], con-
structed as it is by adjoining to 4 the column of constants
on the right of the equations, the augmented matriz of the
system. Hence the criterion :

The necessary condition for the consistency of a set of
non-homogeneous linear’equations is that both the matrix
of the system and the augmented matrix should have the
same rank.

1. Investigate the consistoncy of the equatiohs

2+ Xy = 4,
2, +22y = 1,
20, +5xs = 15

by the above test of rank, and also from first principles.

If the condition of consistency is satisfied we have

4y By| [2a] _ [k ‘
o 1 S A
go that Axy+Byrg = ky, . . . (4)

yielding xy = =AW, AT k. . . )
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Here again, just as in the case of homogeneous equations,
the values of the n—7 unknowns in z, can be assigned
arbitrarily, and when this is done the 7 elements of z, are
uniquely determined. Hence we have another important
result :

If a set of non-homogeneous equations in n unknowns is
consistent, the rank of the matrix and of the augmented
matrix being r, then the values of n—r of the unknowns
may be assigned arbitrarily, provided that the set of
columns corresponding to the remaining 7 unknowns
forms a submatrix of rank .

2. Test for consistency and solve :

B+ X+ 23 = 6,
@y +2%5 4325 = 14,
@y 4z, +Try = 30,

Criteria for Rank. The following examples embody
results which serve as criteria for the rank of a
matrix.

3. If all the rows (or columns) of a matrix 4 are linearly
dependent on & certain » rows (or columns) which are them-
selves linearly independent, then 4 is of rank r.

Partition 4 into {4, 4.}, where 4, contains the linearly
independent 7 rows, 4, the remainder. Then (27, Ex. 3) we
must have 4, = C4,. Accordingly

[0 L&) =1"]
—0 Iild, 0 L.F
that is, an elementary nonsingular operation has reduced
A to a matrix which is evidently ofsrank . Hence (26) 4
is of rank r.

4. If a certain minor |4,| of order rin A4 is nonzero, while
all minors of order 741 containing |A1] are zero, then 4 is
of rank 7.

Without loss of generality, we may take |4,] as leading
minor. Then (28, Ex. 1) the first r rows of 4 are linearly
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independent. Let any other row of 4 be adjoined as (r41)¢
row. Wae shall prove that it is linearly dependent on the
first r rows.

For since by hypothesis the leading minor of order r4-1
is zero, its (r+1)** row must be linearly dependent on its
first » rows by a relation

TOW g +CTOWy +Cyrowa+ ... +crow,= 0. . (6)

If we substitute for the (r-+1)!» column of this leading minor
the corresponding elements of some lator column, we obtain
another minor of order 741 which contains |4;| and so
vanishes. Evaluating this minor by applying the operation
on the left of (6) we reduce the first r elements of its (r--1)
row to zero; but the (r+41)!* eloment must also be zcro,
because if it were ¢ 7% 0 then the value of the minor would
be ¢|4,| # 0, contrary to hypothesis. (Cf. 29 (4).)

It follows that the operatien on the left of (68) reduces all
elements of the {r--1)!* row of 4 to zero; in other words,
the (r+1)*» row of A is linearly dependent on the first »
rows, (6) being the relatian. of dependence.

Hence every row of 4 is linearly dependent on the first
r rows, which are themselves linearly independent. Hence,
by Ex. 3, 4 is of rank r.

The practical consequence is that rank may be ascortained
by pivotal condensation, for by the condensation process
(20) applied to .4 each pivot is contained in its successors,
and the pivots involve minors of 4 of successively highor
orders. It follows from this and from Ex. 4 that if wo regard
the setting up of 4 as stage 1, the first condensation with
respect to a pivot in 4 as stage 2, tho socond condensation
as stage 3, and so on, then the last stage possossing non-
vanishing elements is stage r. This is perhaps the most
expeditious way of ascertaining the rank of a matrix.

5. If A4 is symmetric and possesses a non-vanishing
principal minor |4,| of order 7, such that all principal minors
of orders 7+1 and r+42 containing |4,| vanish, then 4 is of
rank r.

Without disturbing symmetry we may take [4,] as lading
minor, and we may bring any two principal minors of orders
r+1 and r+42 containing |4;| into leading position also.
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Lot us exemplify the three minors by |a,b.cs, |aibscqdy],
|@rbacadyes|. By 20, (8)

|@1bocady| |a1bacsey]

[@1bacadses| |arbocs] = lasbacads| |azbacees| |

that is, 0 = — |aybycsey|? .

since |@bacadses| = 0, |ajby03d,| = 0 and by symmetry

|@ybocads] = |aibacses|- Hence |aybycqey], a non-diagonal minor
of order r+1 containing [4,|, vanishes; and so it follows that
all such non-diagonal minors, as well as the principal ones,
vanish. Hence, by Ex. 4, 4 is of rank r.

The reader will 8ee that the same theorem holds for
Hermitian matrices.

* Latent Vectors, Latent Roots. The vectors and
scalars introduced below gre fundamental in matrix theory.

6. If A is of order nXp,-row Vectors « and column vectors
g exist such that wd's= Xu, dg ="Ng. For w(d—A) =0
and (4 —Al)q = 0, if ]A M| =.0. . This is ' the characteristic
equation of A, of degree n in-X. Tts n taots A; are the latent
roots of A ; and 80 to each ); correspo.ds a pair of latent
vectors Uy 95 determined but for a scalar factor.

7. Prove: that |B—M| = |A—2AI|, where B = KAK-1.
Thus B and 4 have the same characteristic equation and
latent roots. The matrix K is nonsingular but arbitrary.

8. If A is Hermitian Ag =g gives §’4 =1g’. Thus
each 7’ is a latent row vector u.

9. The latent roots of a Hermitian matrix are real. For
Ag = dg gives f’Aq = Ag’q. The Hermitian forms (10, Ex. 13)
G’ Aq, §'q are real, and §’q is not zero. Hence A is real.

10. The latent roots of a un]ta,ry matrix have unit modulus.
For Ag =g gives §’A’Adgq = Wg’q. But §g'Ad’Aq = ¢’q, since

A’dA =I. Cancelling the nonzero §’q we obtain A\ = 1.

The reader should find the latent roots in 24, Ex. 1, 5.

11. Establish step by step A2q =A%, ..., A¥g = MNg.
Algo A-1q = X'¢ for nonsingular 4. Deduce that if §(A)
is a rational function, (4) nonsingular, then ¥(A4)q = (A)q.

* In a first reading this section may be omittod.



CHAPTER IV

FURTHER EXPANSIONS : CAUCHY AND LAPLACE
EXPANSIONS : MULTIPLICATION THEOREMS

31. Expansion of Determinant by Elements
of a Row and a Column

Tue expansion of a determinant |4| according to elements

of a row and their cofactors, or elements of a column and

their cofactors, is only one of many possible expansions.
Consider for example the evident identity

Q11 Q12 O3 0 ap ay
Aoy Gop Qg3 | = aulAuH‘ Qg1 Qg Qog (1)
Qgy Ggp Qgg Qg1 Q32 Agy

in which the second determinant on the right is what is
called a bordered determinant, if we regard it as being
formed by bordering |a,, @3] Wwith a prefixed row
[0 a5 ;5] and column {0 @y a5}, It is evident that such
an identity holds for a determinant |4| of any order.

Now let us expand the second term on the right of
(1), the bordered determinant, according to elements of
its first Tow ayp, @y, ..., Gy, Every cofactor |4,,], |4],

, |41y| contains the elements ayy, asy, ..., @,; of the first
column. Let us then expand all these cofactors in their
turn according to these elements ayy, dgy, ..., @y, denoting
the cofactor of a; in |4, by |4y, 41|, that is, —]|44q. 4]
The aggregate of terms so obtained is

4] = ay|dy|—ZZasay;| Ay, 5, 6,5 # L - (2)
i j

This is an expansion of |4[, due to Cauchy, in terms
of elements of a row and of a column and the joint cofactors,
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which apart from the first term will be signed minors of
order n—2. Clearly the expansion need not be restricted
to elements of the first row and first column; a corre-
sponding expansion in terms of the A* row and X
column could have been established, namely,

4| = “hklAhkl—'Z_'Z_'“-ikah:' |[Ape; 5, t#h,j#k . (3)
ig

The reader may easily construct another proof of this
important expansion by an enumeration of terms thus:
first show that all the terms in the expansion are different
and are also terms of |4|, then show that the number of
terms arising is (r—1)!4+(n—1)2(x —2)!, which reduces to n!.

1. Let a matrix 4 of order nxn be bordered by a first
row {0 @; %, ... x,} and a first column [0 ¥, ¥3... ¥,]. Then
the expansion of its determinant in terms of the elements of
the first row and column will be

_:_ZwiyiiA jils . . )
i

a bilinear form which in matrix notation would be written
as —z’(adj 4A)y. Thus if z’'(adj 4)y is called tho adjoint or
adjugate bilinear form of 2’Ady, we have it in the form of a
bordered determinant

.o

y 4

2. If A is symmetric and y = x the above bilinear form
becomes the adjoint or adjugate quadratic form of x’Aa,
namely, z’(adj A)x. If 4 is Hermitian and y = &, we obtain
the adjoint Hermitian form of #’4zx.

The reader should try some numerical examples of low order.

3. If A = I, the quadratic form and the adjoint quadratic
form are the same, namely, the sum of squares z'a.

4. If A is symmetric and nonsingular, express the
reciprocal quadratic form z’A-lz as a bordered determinant.

5. Bvaluate several determinants of the 4th order with
numerical elements by Cauchy’s expansion in terms of
elements of a row and of a column. -Observe carefully the
signs of the terms, and check by alternative evaluations.

L. . . (5)
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32. Complementary Minors : Algebraic
Complements or Cofactors

Let us take the general determinant 4| of order » and
partition off its first m rows and first m columns. The
remaining n—m rows and columns constitute a submatrix
of order (n—m)X (n—m) which would provide a minor of
order »—m, namely,

Iam+1’m+1 Cm+asmtg «»+ annl’ . . (1)

as represented by its diagonal elements. Now the co-
efficient of @y,0yp. ..y in |4 | is evidently

Z'j:am_l_l’gam_*_zﬂ- weo Ony, . . ) (2)

where, since the row suffixes 1, 2, ..., m and column
suffixes 1, 2, ..., m are in natural order, the sign of any
term depends on the permutation (o r...v) of the natural
order (m-41, m4-2, ..., n). But the aggregate of such
terms is merely the minor (1), which is said to be the
complementary minor of |ajGy...0n,]. In gencral two
minors of orders 7 and n—m formed from complementary
sets of rows and columns in 4 are said to be complementary
with respect to 4.

Next, while leaving unaltered the last n—m columns
of 4, we may systematically permute the first m columns
in such a way as to bring ajaamg ve @my into the
diagonal, where (o S...p) is any assigned permutation of
(123...m). Such operations merely affect |4| with the
sign proper to this permutation. It follows that the
complementary minor @iy, mis@mis mo---Uny| 18 N0L
merely the coefficient of @y,ag,...0n, in |4]; it is the

coefficient of
Z':j:alaazﬂ v Oy . . . (3)

that is, of |ayas...Gpy|, ibs own complementary minor.
In the same way, as we can see at once by bringing any
minor of order m into leading position, the product of any
two corplementary minors, affected with the sign produced
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by bringing either of them into leading position, yields
terms occurring in |4].

To discover this sign, consider the minor taken from
TOWS 4y, %y, ..., Gy, and columns jj, o, ..., jm Of 4, both of
these sets being in the usual ascending order. By

(1) +(=2)+ oo +lm—m) . . (&)
interchanges of rows, and
(=D +(jo—2)+ .. +(n—m) . )]

interchanges of columns such a minor can be brought into
leading position. Hence in the expansion of |4| the cor-
responding product of complementary minors must take on
the sign factor due to

ty i+ Hiet o Fipt+im—m(m 1)

sign changes, and since m(m—+1) is even it can be discarded.
Hence the desired sign factor is

(—)iutistintivkotimtin . . (6)

An alternative way of finding the sign is by inspection
of diagonal suffixes. For example |ay,05,045 and its
complement |a,a5| show row suffixes (12435), column
suffixes (24513). The relative class (16) is even, and so
the desired sign is positive.

The complementary minor of a given minor, with the
above sign prefixed, is often called the algebraic complement
of the given minor in |[4|. There is no reason why it
should not be called its cofactor in |4|, and we shall adopt
this name. Any minor, with its sign qué cofactor prefixed,
may also be called a signed minor, as in 19.

Leaving a minor in its original position in |4, obliterate
the remaining elements of |[4|. The rows and colurons thus
rendered blank constitute a submatrix. Insert unit elements
successively in the vacated rows so that this submatrix now
becomes a unit submatrix. Prove, by bringing the sub-
matrix of units into leading position, that the determinant
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80 obtained is equal to the signed minor corresponding to the
original minor. For example

1
’ Qg1 Ggg
G5y Qsg

1 . |=—

-

33. The Laplacian Exp;nsion of a Determinant

Let us take any m rows of [4|; no generality will be
lost by taking the first m rows. From these we may form
Ny Minors of order m, where n(,y = n(n—1)...(n—m-1)/m!.
Multiplying each minor by its cofactor, a signed minor of
order n—m, we obtain terms of [4|. None of these terms
duplicates any other, for they involve different selections
of rows and columns, and so each term has a different
arrangement of suffixes from every other term. Counting
up all the terms of |4|, so arising, we have altogether

n!

N(mym ! (’Yl« —m) | = m

min—m)! =n! . (1)
terms. Hence we have all the terms of |4]| without
omission or repetition.

This type of expansion of |4|, according to minors from
& certain m rows and their cofactors from the remaining
n—m rows, was first given by Laplace in 1772. Since
|[4’'| = |4], it is evident that expansion by minors and
cofactors from complementary sets of columns is equally
possible.

L. |agbacsdy| = |ayba| |cady| —|ayca| [bsda] +|ayds] |Bacs]
+|bical |aads] —|bidy) |@scs] +|cyds] |aghy),

by a Laplacian expansion according to the first two and the
last two rows of the determinant.

The reader is invited to write down. other expansions with
various choices of two rows or columns and their
complementaries.
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2. Construct wvarious determinants of order 4 with
numerical elements and evaluate them by Laplacian
expansion, checking the results by Cauchy’s expansion.

A quasi-Laplacian expansion, according to minors
from a certain set of rows (the same applies to columns)
and the cofactors of corresponding minors not from that
set of m rows but from -another set of m rows, vanishes
identically. This is the expansion by alien cofactors. The
reason is that in any such expansion the elements of at
least one row of |4| must occur twice, once in the minors
of order m and once in the cofactors of other minors by
which these are multiplied. Therefore the expansion is
that of a determinant derived from |4| in which at least
two rows are identical ; and such a determinant vanishes.

This result is the natural extension of our earlier one,
namely that an expansion according to elements of a row
of |4] and alien cofactors (21) vanishes identically.

3. In the determinant |a,b,cydyesfs] put [m by g dgl,
[as b5 o5 ds), [ae bs Cq dg] equal to [ay by ¢y dy], [as by C, ds],
[as b cg d3] respectively ; also put {e; e; es} and {fy f5 fe}
equal to zero. The determinant then vanishes. Expanding
it in terms of its first three and last three rows, we derive the
identity

|aybacsl|dieq f3| — |@1byds| 16 fa| +|a10ads|[b1€s fa| —[bicads||@1es fof
= 0,

4. By modifying a determinant |a;bycedsesfegshs] In a
similar way, so that the last four rows repeat the first four
except for the fact that {g;g6979s} and {hs kg hy hg} are null,
and by expanding the resulting determinant in terms of its
first four and last four rows, we obtain an identity not unlike
the above, but of 15 terms, each being a product of two
determinants of the 4th order. The reader should obtain
this identity.

This method of Laplacian expansion applied to vanishing
determinants may be made to yield many such. identities in
sums of products of determinants. The identities are of
importance in the theory of algebraic invariants.
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Before we pass to more general expansions of Laplace
and Cauchy type, we may prove by the ordinary Laplacian
expansion the fundamental theorem of multiplication of
two determinants.

34. Multiplication of Determinants

The multiplication theorem for determinants can be
expressed in relation to matrix. theory as follows :

The determinant of the product of two square matrices
is equal to the product of the determinants of those
matrices ; and similarly for the product of any number
of square matrices. Insymbols, |[4B...K| = |4] |B]... |K|.

Proof. Co.sider two square matrices 4 and B of
order nXn, and take them as diagonal submatrices of a
partitioned matrix of order 2nXx2n; of the remaining
non-diagonal submatrices let the one above the diagonal
be null and the one below the diagonal be —I. The follow-
ing identity is then readily verified, all matrices being
conformably partitioned :

I 4 4 . . AB
[. 1] [—I B]=[—I B ] - - @

(The reader is invited to write this identity in full
non-partitioned form, taking for 4 and B square matrices
of the 3rd order, and to refer to this illustration at the
various stages of the proof.)

Now the operation of premultiplication on the left of
(1) is of a kind already encountered (19, Ex. 23) and is
equivalent to row operations which do not change the
value of a determinant. Hence, taking determinants, we

have ] 4 '“l . 4B .
—I B|=|-I B’ - @

and expanding each side by a Laplacian expansion
according to the first # rows, we have the desired result

|4 [Bl=]4B], . . . @
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the positive sign of |4B| being assured by an inspection
of leading terms in 4|, |B|, and |4B]|. We deduce at once

|[4BO| = |4] |BC| = |4[ |B] [C],. . (@
and so on for any number of matrices of order n X n.

Not only so, but since |4’| = [4| we have the equally
possible equivalents [4B’|, |4’B|, [4’B’| for [4||B|; in
other words, determinant multiplication can be carried
out row into row, column into column, and column into

row, as well as by the customary row into column way of
maitrices.

1. The reader should here take various determinants of
the 3rd and 4th order which he has already evaluated for
practice, should multiply their matrices in the four ways
just mentioned and should wverify that the determinants
of the results are indeed the products of the separate
determinants.

2. Since A(adj 4) = |4|I we obtain, taking deter-
minants, |4]||adj 4] = |4|". Hence if A is mnonsingular
ladj A| = |4|"*%, a theorem due to Cauchy. The theorem
expresses a polynomial relation which persists even when it
is singular. In that case |[4| =0, |adj 4| = 0.

3. Prove that sums and products of matrices of order
2 X 2 of the type

A = [ 11 ?12]

—0yz a1y
are matrices of the same type. By taking the determinant
of a product AB of such matrices, prove that the product

of two sums of four squares can be expressed rationally in
certain ways as the sum of four squares, and find those ways.

35. Extensions of the Laplace and Cauchy
Expansions

In the terms of a Laplacian expansion the minors of
order m, or their cofactors of order »—m, can themselves be
further expanded in Laplacian fashion, as a result of which
we have an aggregate of terms, each of which is a product
of three non-overlapping minors ; and these in their turn

F



82 EXPANSION OF DETERMINANT

can be further expanded. We arrive in this way at the
following generalization of the Laplacian expansion :

Suppose that the n rows of 4 are partitioned into a
certain n, rows, then another n, rows, ... and finally
the #n; rows left over, where

N+ e 1y = 0.

The rows in any set need not be consecutive rows in 4.
Let minors, of respective orders n,, ng, ... 7y, be taken in
all possible ways from the respective sets of rows ; and let
products be formed containing one minor from each set
in such a way that no column of 4 enters twice, in other
words, all columns are. used, sign being given by con-
sideration of the diagonal elements of minors in each
product. Then the sum of all possible such signed products
of k& minors is an expansion of |4].

If this were not otherwise evident from the description
of the way in which this expansion is derived by repeated
Laplacian expansion, it could be made evident by enumera-
tion of terms ; for the number of terms of |4 | arising from
expanding all these products, which themselves number

n(n;) (n—nl)(n,) (n“nl—'n2)(n') e (n_n’l‘—' oo —nk“l)(nk)’ (1)
will be

n! (n—n,)! (n—n—...—m)!
nl(n—ny)! nl(n—ng—ny)!t "’ ny! ‘!_n“!"' ng!=nl, (2)

and this is the number of terms in |4].

In particular, if k=n and n, =n,= ... = n;, = 1,
the expansion is merely the sum of n! signed products
of single elements, the defining expansion of |4 |.

1. Construct some determinants of the 5th order with
numerical elements. Partition the rows or columns in various
ways according to the partition 2, 2, 1 of 5 and evaluate the
determinants by the extended Laplacian expansion, checking
the results by alternative evaluations.
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2. Every expansion of [4| that we have so far used is
equally applicable to the permanent of A4, the sole difference
being that all terms and all permanent minors receive positive
sign. The reason is that the argument used to demonstrate
the expansions is an enumerative one, which applies equally
well to permanents. For example

+ +
a by oo
ay by ¢y
ag by cq

+ +
= a; | byes l +8, ] GoCy | +¢; l abs| . (3)

and other similar expansions.

Extended Cauchy Expansion. Cauchy’s expansion
of |4]| in terms of the elements of a row and of a column,
which is in essence the expansion of a bordered determinant,
can be extended to the case where m rows and m columns
are used in bordering. The bordered determinant is then
of the form

X Zy1 Xyp Y13 T1g
l ¥ Al ,where X = | @y %oy Xog %oy |, . (4)
Ty Tgo Tgz Ty

for example, and Y resembles X. In the general case 4 is
of order nXn, X of order mXn and so Y’ of order nXxXm.

It is evident by Laplacian expansion according to the
first m rows of (4) tha.t if m = n the value of the bordered
determinant is (—)*|X| |Y|, and that if m>n the deter-
minant va.nishes.

When m<n a Laplacian expansion of n(,, terms is
possible, by minors of order m in X each multiplied by its
cofactor of order » in the bordered determinant. Further,
every cofactor contains all the elements of ¥Y'. Let us
expand in turn all of these cofactors according to the
first m columns containing ¥’. When this is done the
previous Laplacian expansion yields an expansion in which
every term has three factors, the first being a minor of
order m taken from X, the second a minor of order m
taken from Y’, and the third a minor of order n—m taken
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from A and involving those rows and columns of 4 not
included in the other two minors. The sum of all possible
products, (n(m)? in number, which can be formed in this
way, correct sign being given by reference to diagonal
elements in the factors, constitutes an expansion of the
bordered determinant which generalizes the ordinary
Cauchy expansion according to one row and one column.

A further extension of similar nature concerns a
bordered determinant resembling that in (4), but with 4
of order nxXp, X of order mXp, m<p, ¥ of order
nX (m-+n—op).

1. Show that the number of terms in the final expansion
in products of elements of the bordered determinant is
(n!)2/(n—m)!, and show that the number of torms given by
the extended Cauchy expansion is the same as this.

2. The extended Cauchy expansion applies equally well
to a permanent, all products receiving positive sign.

3. Bxpand by the extended Cauchy expansion

.. ® Ty %

. X S Uy Uy Uy
|Yr A| =1 v @ bl C1|»

Y2 va @y by ¢

Ys Vs a3 by ¢y

paying careful attention to the sign of the nine terms.

4. In Ex. 3 put 4 = —I and observe the form of the
result. Also put 4 = —I and ¥ = X and again observe the
form of the result. Generalize these results.

5. In Ex. 3 give nwmnerical values to the elements in
various ways, and evaluate the bordered determinants thus
constructed.

6. Write out completely the expansion the first term of
which is given below, paying careful attention to the sign of
terms.

® Ty X3 X,
C Uy Uy Uy Uy
vy Gy Gy ay| = |egp|vifbsey + ... .
v, by by, by b,
Vg € Cy C3 €
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36. Determinant of a Product of
Rectangular Matrices

Consider 4B, where A is of order mXxXn and B is of
order nXm. The determinant |4B| is of order m. We
can evaluate it by making partitioned matrices exactly as
in our proof of the multiplication theorem of determinants
(34 (1)), and using the same identity

[IA][A.]__[.AB 1
.1 |-t BT |-1 B]- - O
We have therefore
4 .| _ . 4B 9
!—IB_I—IB' ¢
exactly as before, but since 4 and B are no longer square
but rectangular the expansions of these determinants need
more attention.

The Laplacian expansion of the determinant on the
right is |AB], with sign factor. The determinant on the
left can be expanded by the extended Cauchy expansion,
4 and B being regarded as bordering —I. It may help
to keep under view the particular examples given below.

Ay g - - - C @1 Q1 Q3 -
Aoy Gog « o« - Gy Ogo Aoy - -
(1) |ag @ - . - » Q)| =1 . . by bp|. (3)
- by b1z bis =1 . by by
—1 by by bza' . o =1 by by

In the case, m>n the expansion is identically zero,
as we have seen. Hence if m>n we have |[AB| = 0.
1. This could equally well be proved by adding m ~n zero

columns to 4 to make a square matrix [4 0], likewise m —n
zero rows to B, and observing that

40[%] - an

The ordinary multiplication theorem of determinants now
gives [AB| =0.
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On the other hand, if m<m, since the only nonzero
minors of any order in I, or —I, are its diagonal or principal
minors of that order, the Cauchy expansion (35, Ex. 4) in
question consists of these minors of order n—m multiplied
by their cofactors in 4 and B together. From the symmetry
of —1I, if the cofactor in 4 comes from a certain m columns,
the cofactor in B will come from the corresponding m rows.
For example, fixing sign by leading terms, we have in (ii)

| 4B |= |2110g5| [b11b20 |+ |@11a3] [b31030 |+ |@10205| [Dasbas]- (4)

The general result may be stated thus :

If 4 is of order mxn, m<n, and B is of order nxm,
the determinant |4B| is equal to the sum of all the n,,
products which can be made by taking a minor of order
m from a certain m columns of 4 and a minor of order m
from the corresponding rows of B. If m>n, |[AB| = 0.

The ordinary multiplication theorem of determinants,
already proved, is the special case m = n.

This fundamental theorem concerning the determinant
of a product of rectangular matrices was discovered
independently by Binet and Cauchy (1812) and is usually
called the theorem of muliiplication of determinantal
arrays. It can be extended step by step to the case of the
determinant of the product of any number of matrices,
provided that the product is square. The enunciation of
this very general theorem is as follows :

Let the determinant formed of elements common to
TOWS y, Oy, ..., 0, and columns f3;, B, ..., B, of a matrix

T be denoted by
(%0 - a,,>. . _ 5
(E5E ®

Then if 7' = 4B...RS, where 4, B, ..., B, 8 are of order
kxm,mxmn, ..., rXs, s Xk respectively, so that 7' is of order
kx k, then

3z = 12 ...k N\ g (BiBu--By cpp 0,030}
T="5".."4 e PE ) | g (PrPa--Pr ) g [9193--9k
By e (Bxﬁz---ﬁk)B (}’1'}’2--'7’]:) E (am---a,,) o (1 9.k ),(6)
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where the summations are over all sets of k& columns taken
independently from the columns of 4, B, ..., B ; or, alter-
natively, over all sets of k rows taken independently from
the rows of B, ..., B, S. The number of terms in the
expansion is therefore

M6y P(ky T (RS (k) . . - (7
and the expansion will vanish identically if any of the
following inequalities be true,

k>m, k>n, ..., k>r, k>s.
. X
X 4
where X is of order m Xn, m>n, and 4 is symmetric, is a
certain quadratic form, with the minors of X of order n as

variables. If m = 4, n = 2, write down the matrix of the
quadratic form. How is it formed from 4 ?

2. Show that

’

37. Expansion of Determinant by Diagonal Elements

Let us consider the determinant of 4A-+X, where X is a
diagonal matrix X == [x;]; for example, to take the case

n =4, — —
B+ Gy i3 @1q
a Qoo+ a a

A4+X = |2 22 t%ag g 24 Y
a3 A3z Us3+%33 Oy
Qg Qyo Qg3 Qgq 244

The determinant |4+X| is evidently a polynomial in
X1, Too, Tag, Tqy Expanding in terms of products of these
variables and their coefficients or cofactors, we have

|A+X| = 21;%95%33% 04 + Ty %29%55% 00+ Aoa%11%5% 4+ -
@102 [ X35 a0+ | 211055 [TasB s+« 2)
+ |1 00ntss [@s + (11002 aa st T )
+ 1130505524 4] -
In general the expansion consists of a sum of products
of x;; taken m at a time, each product to be multiplied by
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the complementary principal minor of order n—m in |4];
the sum being taken over such products for all values of
m from n to 0. Permanents admit a similar expansion.

1. Expand the determinant |4| of the 4th order in this
diagonal fashion by regarding its matrix as

Qia Qg Gyq Qg - . .
Oy - Qg3 Qg3 + - (g
Qg Qdgzy - Q34 . . Q33
Ay Qgg Qg - .o . Qg4

and expanding in terms of products of the ay.

2. Try this mode of expansion on some determinants
of the 3rd and 4th order with numecrical elements, checking
the result by evaluation in other ways.

Spur or Trace of Matrix. A specially interesting and
important case arises when X is not merely diagonal bug
scalar, X = Al. We then derive from (2) the expansion

[A+AT|=X"+5psd. X" L4sp,d. X724 .. + sp,_ 4. A+|4], (3)

where sp,4 means “ sum of all principal minors of [4] of
order 7. The first of these sums, sp,4, the sum of the
diagonal elements a;; themselves, is important in matrix
theory and is often called the spur or trace of 4. Woe shall
denote it by sp 4. (Some authors employ tr 4.)

3. Expand A —a —b
a A —c
b ¢ A

in powers of A

4. Lot ¢(A) = |[A—X| = (= A=2)A=2A) ... (A=2A,).
We may also expand 4(X) in powers of A, in the manner
of (3). Equating coefficients of powers of A, we deduce that
sprd is the sum of products (cf. 48) of A, tuken % ab a time.
In particular sp4 is the sum, and |4| the product, of the
latent roots. Hence if any ), is zero 4 is singular; and
conversely.
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* Normal or Canonical Form of a Matrix. In the
next few examples we assume the A; to be all distinct.
The case of repeated roots is important, but beyond
our scope.

5. The latent vectors 4 or g of A are linearly independent.

For if there were a relation with nonzero ¢;, such as
P = 9+t .- FCxgu =0,
then taking p, Ap, A%p, .. A"“lp we have by 30, Ex. 11,

e Mg+ 28q¢+ --- +°1:A7;Q(7c =0, s=0,1,..., k—1.
These are sets of homogeneous equations in corresponding
elements of the gy For them to have nonzero solutions
it is necessary (28) that ]/\(1)/\% /\I,g_ll = 0. But (19, Ex. 11)
such a difference-product of distinct A; cannot vanish. The
assumed relation is thus impossible.

6. The u;; and ¢¢; are thus rows and columns of non-
singular matrices U and @, and so the respective sets of
relations u;4 = A;u(‘, Agq; = Ajg(; can be written as U4 = AU,
AQ = QA, where 4 is the diagonal matrix [A,].

7. Hence UAU-1= A = Q-14Q, so that 4 has beenreduced
by the similar transformation (of type HAH-) to diagonal
canonical form A. (For multiple A; this may not be possible.)

8. We may prove that %, q9u%#0, %y =0, 45%j. For
wdg = Auug; = Auugy = 0, since A;5% ;. Hence the non-
diagonal elements of UQ are zero. Since UQ is nonsingular
the diagonal elements wg;#0. Fixing the arbitrary scalars
in u; and g(; so that uq; = 1, we have UQ = I.

9. If A4 is Hermitian each v = g’, by 30, Ex. 8. Hence
U = §’, and so UQ = I yields §’Q = I, whence Q is unitary.
It follows that Q'AQ = A, a unitary reduction to real
diagonal canonical form; real, since the latent roots (30,
Ex. 9) are real. In particular if 4 is real it is symmetrie, and
@ is orthogonal.

The quadratic form a’dxz thus becomes y'Ay, a form in-
volving squares only, if ¥ = @~ = @’z. (Orthogonal reduc-
tion of a contral quadric to principal axes.)

10. The relations (A4)q; = P(A;)q; of 30, Ex. 11 can beo
assembled, in view of 7, Ex. 10, into a single matrix relation
Y(A)Q = Q(A). Putting (1) = $(A) = |4 —AI|, we have
$(4)Q = 0. Since @ is nonsingular, $(4) = 0. This is the
Cayley-Hamilton theorem, valid also for multiple roots.

* In a first reading these examples may be omitted.



OCHAPTER V

COMPOUND MATRICES AND DETERMINANTS :
DUAL THEOREMS

. 38. Compounds and Adjugate Compounds
of a Matrix

THE elements of adj 4 are the cofactors. of elements a;,
in |4|; and the special properties of adj 4 are intimately
related to the expansion of |4| according to elements of
a row or of a column and their cofactors in |4|. The
more general Laplacian expansion, in terms of minors of
order % taken from a certain % rows or columns and their
cofactors of order n—Fk, suggests the following extension of
the adjugate relationship.

Compound Matrices. Let a matrix be formed the
elements of which are minors of |4]| of order k; let all
minors which come from the same group of %k rows (or
columns) of 4 be placed in the same row (or column) of
this derived matrix ; and let the priority of elements in
rows or columns of this matrix be decided on the principle
by which words are ordered in a dictionary or lexicon.
For example, minors from rows 1, 2, 4, of 4 will appear
in an earlier row than those from 1,2, 50r 1,3,40r2,3,4;
and similarly for columns. We shall call this order lexical
order. (The wusual name is “lexicographical”.) The
matrix with elements minors of order k constructed in
this way will be called the k* compound of 4 and will
be denoted by 4. It will be defined in the same way
even when 4 is rectangular of order mXxn, submatrices
of order kX% being extracted from A4 and their deter-
minants being taken as the elements of A®, lexical

90 :
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ordering being observed. The order of A® will then
be 7z X -

Adjugate Compound Matrices. When 4 is square
of order n X n, every minor of order kin |4 | is accompanied,
in a Laplacian expansion of |4|, by its cofactor or signed
minor of order n—k. Let us take the k** compound
A®, replace every element in it by its cofactor in [4],
and transpose the resulting matrix. We thus obtain a
matrix of the same order as 4™, which may be called the
k™ adjugate compound of A, and will be denoted by adj*)4.
We may notice in passing that A =-4, adjP4 = adj 4.

1. Take the general matrix of order 5x5 and write out
i extenso, indicating minors by diagonal elements, the 2nd
compound and 2nd adjugate compound, and the 3rd com-
pound and 3rd adjugate compound, comparing the 2nd
adjugate compound with the 3rd compound, and the 3rd
adjugate compound with the 2nd compound. The comparison
will reveal three features of difference.

2. The k**» compound of I is a unit matrix. The k?»
compound of a diagonal matrix D is a diagonal matrix, with
the k-ary products of the diagonal elements d,, in lexical
order, as diagonal elements of D).

3. The k** compound of 47 is (4(®)".

4. The kt* compound of a Hermitian matrix is Hermitian.

5. The kt* compound of a skew symmetric matrix is
symmetric if k is even, skew symmetric if % is odd. State and
prove the analogue for skew Hermitian matrices.

Next let us consider the products
A® (adj™4) and (adj®™4)4A®.

Every element in either product, in view of the way in
which adj® 4 has been defined, is a Laplacian expansion
according to minors of order % (in the one case from rows
of 4, in the other from columns) and their cofactors,
true or alien, in |4|. In the diagonal elements of the
products the cofactors are the true, in the non-diagonal~
elements they are the alien cofactors. Hence in each
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product all non-diagonal elements are zero and all diagonal
elements are equal to |4|, so that

AW adjW A4 = adi®A . A® = |4] 1, . (1)

all the matrices concerned being of order ng,. Taking
determinants we have a theorem due to Cauchy,

|[A®)| Jadj®A4| = |4]*®, | . . (2

Compound Determinants, Sylvester’s Theorem.
Now |A®]| and |adj® 4| are evidently both polynomials
in the elements of A, of degrees nyk and 7y (n—*k)
respectively ; and |4| is itself a prime polynomial. It
follows that both [4®| and |adj®4| are powers of |4,
the possible numerical factor being seen to be 1, either by
consideration of the term arising from the diagonal elements
or merely by putting 4 = AI. Further, since |4] is of
degree n and |A®| is of degree ngy)k, while |adj® 4| is of
degree n(;,)(n—k), we have

[A®] = |4["PED, fadj® 4] = [4]"H®, (3
using ngk/n = (n—1) -y, and ng)(n—k)n = (n—1)4.

The theorem in (3) on the value of the k** compound
determinant was given by Sylvester in 1853. An important
consequence is that if 4 is nonsingular so is 4®), while if
A is singular so is A®), !

6. If £ =1, we have from (3) that |adj 4| = [4]|",
which is Cauchy’s theorem on the value of the adjugdte
determinant. .

7. If, A is rectangular, of rank 7, the (r-+1)*» and highor
compounds of 4 are zero matrices, but A" =% 0.

8. A1) = 4] D) = |aditPA|.

This is not surprising, in view of the fact (¢f. 39, Ex. 3)
that the (n—k)** compound and the k** adjugate cornpound
have the same elements, namely, minors of |4| of order n—k,
but in the case of the adjugate compound they are transposed,
written in the complete reverse of lexical order, and have
cofactor sign imposed.
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39. Binet-Cauchy Theorem on Product of
Compound Matrices

We shall next prove a theorem of central importance,
first given, in special cases, by Binet and Cauchy in 1812:
the k™ compound of a product matrix 4B is identically
equal to the product of the k% compounds of 4 and B in
that order.

Let A and B be rectangular matrices of orders mXxn,
n X p, and let us consider 4®), B® and (4B)%*).

Any element in 4B is the product of a row vector of 4
into a column vector of B. More generally any submatrix
of order kxk in AB is the product A4,B; of the submatrix
4, consisting of a certain % rows of 4, of course not neces-
sarily consecutive, and the submatrix B, consisting of a
certain t columns in B. This is most readily seen by
supposing 4 partltloned into {4, 4,} according to those
k rows and the remaining m—¥%, and B into [B; B,] accord-
ing to those % columns and the remaining n—k%. For then

we have ‘ 4 4B AB
— |41 _ | 41b1 448y
4B “[AJ By Bal = [A281 AzBJ’

and 4,B, is the submatrix comprised by those %k rows and
k columns in 4B. (Cf. also 11.)

Now by the theorem on the determinant of a product
of two rectangular matrices (36 (4)) it follows that |4,B,],
which being a minor of AB of order k is an element of
(4B)%, ig the sum of products of minors of order % drawn
from % of the » columns of 4, in all possible ways and
minors of order k& drawn from corresponding sets of k& rows
of B,. But the minors from 4, are all elements of a row
of A®™ and the minors from B; are the corresponding
elements of a column of B™), and so the sum of products
in question is an element of A®*B™, by ordinary row-
into-column multiplication. This is true for every element
of AMB® and the priority of elements in rows and
columns is in strict accord with the lexical convention.

(1)
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The conclusion is that the matrices (4.B)"® and AW B
are element for element identical. Thus

ABY R =AW B (ABC) W = (AB)WC = 4O BICH (2
(48) » ( )M=(4B) » (2)

and so step by step we derive the general result for the
compound of the product of any finite number of matrices.

The elegance of this theorem is equalled only by the
wealth of its applications. Since it rests on the theorem
of Binet and Cauchy concerning the determinant of a
product of rectangular matrices, and gives an extended
matrix expression to that theorem, we shall call it the
Binet-Cauchy theorem.

1. The more special theorem concerning the determinant
of a product of rectangular matrices is that particular case
of the Binet-Cauchy theorem in which 4 has k rows and B
has k columns. Then (4B)® and A®B® each consist of a
single element.

The reader should take matrices of low order with literal
and with numerical elements, and should familiarize himself
with the import of these theorems.

2. Prove that (adj A)® = X adj( 4,

where A is a scalar, and show that A is a certain power of
l4|. (Premultiply both sides by 4(®.)
3. Prove that if 4 is square of order n Xn then

adj A = H(4')»VH=,

where H is a matrix with all elements zero except those in
the secondary diagonal at right angles to the principal diagonal,
these elements being 1 and —1 alternatoly.

4. By taking the k** compound of 4’4 = I and applying
the Binet-Cauchy theorem prove that the k** compound of a
unitary matrix (24%) is unitary.

Adjugate Binet-Cauchy Theorem. There is a
theorem of the same nature as the Binet-Cauchy theorem,
relating to the k** adjugate compound of & product. ¥rom

38 (1) AWB®(adj®B)(adj M 4) = IA”BII, )]
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and we have also

(AB)®adj®)(4B) = |AB|I. . - 2
Since |4B| = |4| |B| and (4B)® = A*B® we derive
adj(4B) = adj®B . adj®4, . - (3

and so step by step
adj®( 4BC)=adjP)C . adj®(4B)=adj®)C . adj®B. adj® 4, (4)

and so on. The reversed order is to be noticed. The
theorem expresses a set of polynomial identities in the
elements a;, b;; which persist when either or both of 4 and B
are singular.

We may call the theorem the adjugate Binet-Cauchy
theorem.

40. The Reciprocal of a Nonsingular
Compound Matrix

If 4 is of order nxn and |4|%#0, we have
AA-'=A4-'4=]. Applying the Binet-Cauchy theorem

we have A4 0 = (A1) Q0 =T, . . (1)

where I is of order ny. It follows that
(A(k))-—-l - (A—l)(k)’ . . . (2)

in other words the reciprocal of the % compound of A is
identical with the k* compound of the reciprocal of 4.

In the same way the adjugate Binet-Cauchy theorem
yields the result that the reciprocal of the k** adjugate
compound of 4 is identical with the £** adjugate compound
of 4-%. :

Add to these properties the almost intuitive ones that
the &kt compound of a Hermitian matrix is Hermitian, that
the k™ compound of 4’ is (4™)’, and that the k&** compound
of a unitary matrix is unitary (39, Ex. 4) and it becomes
clear that there is a far-reaching parallelism between the
properties of a matrix and those of its compound or
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adjugate compounds. In fact, from any identity or equa-
tion involving products of matrices or reciprocal matrices
we are able, by taking k** compounds of every factor, to
deduce a parallel identity or equation which is often more
profound than the original one.

41. Rank of Matrix Expressed by
Gompound Matrices

Let 4 be of order mxn and of rank . This implies
that all minors formed from submatrices of order
(r--1)X (r+1) vanish, while at least one minor of order »
does not vanish. But this statement can be expressed
more concisely in the form

A £0, A =0.. . . (1)

Rank of Product Matrices. The Binet-Cauchy
theorem now enables us to deduce at once certain important
theorems on rank.

(i) Rank is invariant under multiplication by a non-
singular matrix.

To prove this, consider 4 and H4 K, where A is of rank
rand |H|5#0, |K|70. Then AM5£0, A0+ = (0. Also

(HAK)T+) = HO+DAr+D K4 = 0, . . @
since 4™ = 0. On the other hand,
(HAR)D = HWADE® £ 0, . . 3

otherwise we could divide out by the nonsingular matrices
H" and K and obtain 4" = 0, contrary to hypothesis.

Hence HAK is of rank r, as was to be proved. By
putting K =1 we have the result for premultiplication
alone ; and with H = I for postmultiplication alone.

The following theorem concerning the rank of a product
matrix is proved with equal ease :

(ii) The rank of a product matrix 4B cannot exceed the
rank of either factor 4 or B.
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To prove this, suppose that the ranks of 4 and B are
respectively 7 and s, where r<s. Then by the Binet-
Cauchy theorem

(AB)r+) = Ar+DBu+) — . . (4)

since A+ = 0. Thus the rank of 4B cannot exceed 7,
and a similar proof holds if s<(r.

1. Take the matrices

L

form powers and products from them in various ways and
note the rank, comparing it with the ranks of the factors.
Make experiments with other examples, choosing
rectangular matrices of low order.
2. A matrix such as

U =

which satisfies an equation U? = 0 is said to be nilpotent.
A matrix M such that M? = M, and so M®* = M for all
positive integers s, is said to be idempotent.

Prove that the matrix M = n—1N, where N is of order
n Xn and has every element n,; = 1, is idempotent.

3. By the equivalent reduction HAK of 29 (7) prove that
if 4 is of rank 7, A® ig of rank 7(y).

42, Jacobi’s Theorem on Minors of the Adjugate

Any minor of order 7 in the adjugate determinant of a
square matrix 4 is, on expansion, a certain polynomial in
the elements of A4, fixed in form whether 4 is singular or
not. To find an expression for this polynomial we may
refer to the nonsingular case.

G
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The £** compound of
4.adjd=adj 4.4 =|4]I e (1)
A® (adj 4) = (adj 4)*) 400 [4x1. . (2

But by taking the product of compound and adjugate
compound we have also as in 38 (1)

APadj4 = adj®4 AW = 4[1. . | (3

Comparison of (2) and (3), 4 and so 4® being non-

singular, gives
(adj 4)® = |4|%-1 adj 4, . . @)

Expressing this in words, we have the celebrated
theorem of Jacobi (1834) concerning minors of the adj ugate :

Any minor of order % in adj 4 is equal to the com.
plementary signed minor in 4’ multiplied by |41,

The relation thus established between the respective
minors is the desired polynomial relation. It persists
when A4 is singular, subject to the proviso that if % = ]
we must interpret |4 [*-1 ag 1.

An alternative demonstration, the traditional one,
does not depend on the Binet-Cauchy theorem, but pro-
ceeds as follows :

yields

@y by 0y dy 1[4, [4,] . 4 - g
@y by ¢y d, . ’le ’Baf -l e l4] . Ca (5
Qs by cy dy oA Gyl 1| a; . lAl el )
@by, dy ) ID::' . L7 ¢ Cq

The columns containing the specified minor of the
adjugate, its elements denoted here by capital letters for
cofactors, are left in place ; the remaining columns are
deleted and a unit element is placed in cach in the rows
not containing the minor (as in 32, Ex.), so that the
complementary submatrix of the minor is g unit submatrix ;
and the matrix so constructed from adj 4 is premultiplicd
by 4. On taking determinants we derive

|4] % (minor of adj A)=|4[* (compl. signed minorin 4°), (6)
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from which Jacobi’s theorem follows. The reader should
examine the illustrative example, and should form other
examples with 4 of order 5x 5.

1. Construct adj A for a general matrix 4 of order 3x 3
or 4 X4 and verify Jacobi’s theorem. for various minors.

2. Construct several matrices of order 3 X3 with simple
numerical elements, and verify Jacobi’s theorem for selected
minors of the adjugate. Include some cases in which 4 is
singular, and note specially the results when 4 has rank 2.

. Minors of the Reciprocal Matrix. For nonsingular
matrices Jacobi’s theorem can be stated mmply in respect
of A4-*. TFor since A-1 = |4 | adj 4, any minor of order
k in 4~ is equal to the corresponding minor in adj 4
multiplied by [4|-*. Hence by (6) we have another
formulation :

Any minor of order k in A~ is equal to the comple-
mentary signed minor in 4’, multiplied by |4 |

The phrase any minor may be taken to include [A-|
itself, the complementary minor in A’ being then a minor
of zero order, which by convention we take to be equal
to unity.

The formulation just given might have been established
at once by comparison of the two identities

A®W(A-1HYE =T and A®adj®A4 = |4|I, . (7)
which yields the theorem in the form
(A8 = |4|~* adj® 4. . . (8

Theorem of Bellavitis. If the cofactor |4;| of
ay in |4| vanishes while the cofactor of |a;; a,;| does not,
then |4| may be factorized into two rational factors, one
linear in the elements of the 7t* row of 4, the other linear
in the elements of the j** column of 4.

For there is no loss of generality in bringing a;; and
|ass anz| into leading position. Then by H%cebx s‘th‘ea-x:em

| |41 [A] == }A] ]Am; 12h

|A12 I 22 o
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where |A;,, 15] is the cofactor of |a;; ag| in |A]. Hence
since |4y;| = 0 we have

IA] = —lAml !A21|/|A12, 12]- - . (10)

Now |4y,| can be expanded as a linear function of the
elements of the first row of 4, and |4, | as a linear function
of elements of the first column. The theorem is thus proved.

3. Deduce that the bordered determinant

’

.

'y 4
is the product of two linear functions, one linear in the
elements of the row z’, the other in tho eclements of the
column 4.

4. Deduce a sufficient condition that bilinear forms with
square matrix (31, Ex. 1) or quadratic forms should be
factorizable into rational linear factors. Construct some
examples in two or three variables by taking bordered
doterminants with |4| = 0, and carry out the factorizing.
For example :

, where |4| = 0

.oy
—|z 4 2 |=2F—dw@, a2l = (2,—2z,)%
zg 2 1

43. Franke’s Theorem on Minors of a
Compound Determinant

Jacobi’s theorem can be extended at once to the case
of any square matrices 4 and B satisfying a quasi-reciprocal
relation AB = M, A % 0. By the thcorem on the rank
of a product matrix both 4 and B must then be non-
gingular, so that B= A4-1. It follows from Jacohi’s
theorem that any minor of order k in B will be equal to the
complementary signed minor in 4’ multiplied by A*|4|-2.

For example, applying this to the identity

adj®d . AW = 4|1 . . . (1)

and using Sylvester’s theorem (38) on the value of the
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adjugate compound determinant we deduce at once
Franke’s theorem : 4 .

Any minor of order 4 in the k™ compound A® of a
matrix 4 of order nXn is equal to the complementary
signed minor in the k* adjugate compound transposed,
multiplied by |4 [F~®-1@) .

Sylvester’s theorem is itself a special case of Franke’s,
bearing to it the same relation that Cauchy’s theorem on
the value of the adjugate determinant (38, Ex. 6) does to
Jacobi’s.

44. The Hybrid Compounds of Bazin and Reiss

Bazin in 1851 considered a compound determinant
constructed as follows : Let 4 and B be two matrices each
of order nxn and let a new matrix be constructed by
replacing the j** row of 4 by the i** row of B in all possible
ways, the n2 determinants of the resulting matrices being
taken as (¢, j)'* elements of the matrix so derived. This
matrix is Bazin’s matrix. We shall call it the first Aybrid
compound of A and B taken in that order, and we shall
denote it by (4 ; B).

Now (4;B) is in fact the same as Badj4. For
just as each element in 4 adj 4 is an expansion, namely,
by elements of the i** row of 4 and cofactors of correspond-
ing elements of the j** row, so, with B substituted for 4
in the first factor, each element in B adj 4 is an expansion,
by elements of the #** row of B and cofactors of
corresponding elements of the j* row of 4. But such
expansions (21 (1)) are those of determinants obtained by
substituting the ¢** row of B for the j* row of 4 ; and so
Bazin’s matrix is B adj 4, as stated.

Taking determinants we have |(4 ; B)| = |B| |[4|*,
Bazin’s theorem.

1. Put B = 1. Then (4 ;I) = adjd, and Bazin’s
theorem becomes Cauchy’s theorem on the adjugate.

2. What is the relation of (I ; B) to B? Write out an
example of order 3 % 3.
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Reiss in 1867 (and Picquet in 1878) considered from the
standpoint of determinants a more general matrix obtained
from 4 and B in a manner resembling Bazin’s, except that
not one but k rows of B were substituted for & rows of 4
in all possible ways, the determinants of the resulting
matrices being taken as elements of a matrix, arranged in
rows and columns according to lexical order of the sub-
stituted rows. It is easy to see that this Reissian matrix,
of order mg) X%y, is the same as B®adj®4. For just
as the elements of 4™®adj®* 4 are Laplacian expansions (33)
by minors from % rows of 4 and cofactors of corresponding
minors from either the same or a different set of & rows
of A, so the elements in B®adj*4 are Laplacian
expansions in which the first set of minors from %k rows of
A just mentioned is replaced by the corresponding set in B.
But these are all Laplacian expansions of determinants
obtained by substituting % rows of B for £ rows of 4 ; and
the principle of lexical order is observed. Hence the
matrix of Reiss is B®adj® 4, as stated.

Taking determinants we have a theorem of Reiss :

The determinant of Reiss is equal to

(B |4 R S

3. Bazin’s is the case t=1. The case B=1 gives
Sylvester’s theorem on the &% adjugate compound
determinant.

4. What is the relation of the &* Reissian of [ and B to B ?

5. Show that the cocfficient of A**u* in |[A.A+pB]| is the
trace of B adj .4, the L* Reissian hybrid.

From A and B another Bazin matrix ariscs, 4 adj B.
Now
4 adj B .Badj A=|4B|I, . .3

and so the two hybrid compounds are quasi-reciprocal.
It follows from Jacobi’s theorem that any minor of order
h in 4 adj B is equal to the complementary signed minor
in (B adj 4)’, multiplied by a certain factor, which will
evidently be a product of powers of |4| and |B]. We
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leave the reader to prove, by a consideration of dimensions,

or simply by putting 4 =1, B=1 in turn, that these

powers are respectively the (A—1)% and the (h—mn-}-1)%.
In exactly the same way, since :

AWadj®B . B®Wadi®A = [AB|I, . (4)

we see that any minor of order 4 in the k** Reissian hybrid
is equal to the complementary signed minor in the
transposed k™ dual Reissian, multiplied by certain powers
of |4| and |B|. Once again these powers can be found
easily, either by consideration of dimensions or by putting
A =1, B=1I in turn and referring to the special case,
namely, Franke’s theorem ; and so we find the multiplying
f&OtOI‘ to be IA |h-—(n—1)(k_1) IBIh—(ﬂ~1)(k). . A (5)

This last theorem, which is also due to Reiss, is the most
general of the theorems in this class; the other theorems
of Reiss himself, and those of Bazin, Franke, Sylvester,
Jacobi and Cauchy, are successive special cases of it.

6. Since (B adj )W = |4|-1BhadjM4,
the kt* Reissian hybrid matrix is simply, apart from & scalar
factor, the k!* compound of Bazin’s matrix; which suggests
alternative derivations for the theorems proved above.

45. Complementary Identities : Extensional
Identities

The reader will by now have realised that the appearance
of generality of several of the above theorems is deceptive,
and that the really useful theorems are the two on which
all the others rest, the Binet-Cauchy theorem and Jacobi’s
theorem. We shall now see how Jacobi’s theorem furnishes
the means of deriving valuable dual identities and extended
identities in determinants.

Let determinants and their minors be indicated by
diagonal elements in a single-suffix notation, and let
cofactors he denoted by corresponding Greek letters; so
that for example the transposed adjugate determinant of
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laybocad,| will be |a,Bsys8,]. Now consider any homo-
geneous polynomial identity involving minors of a
determinant, of any orders. Then such an identity, being
general, is true also for the transposced adjugate, and so
may be written with Greek letters. Next, by Jacobi’s
theorem we may replace every minor of the adjugate by
its complementary signed minor in 4’, multiplied by some
power of |4|. In such replacements |4| itself may be
regarded as the complementary minor of a minor of order
zero, the -latter being taken by convention to be equal
to 1. This substitution of minors will thus give us another
identity, which may or may not be different in form from
the first identity. Tn any case the original identity and
this derived one stand in a dual relation, and may be called
dual or complementary identities with respect to 4.

1. Consider the identity |a;b,cs| = [|ww1}|bo][cs||, where the
notation on the right indicates that we are to view the
elements as minors of the first order. Now the complementary
signed minor of @, for example, is |byc;|, and so on, and
applying Jacobi’s theorem we derive the dual identity

lawbscs|? = |adj A,
an exaraple of Cauchy’s thoorem on the adjugate. The roader
will easily extend this to the case of general order.

2. Consider a detorminant |4| = |a,byc,d,|; partition it
according to its lst row, its 2nd row and its last two rows,
and then expand it as a general Laplacian expansion

arbacad| = |as|[ballcsda| —layllea[bada] +. ..
of 12 terms. Taking complementary minors, and making
some sign changes in rows and columns, we ohtain

|a1bacads|? = |a1by||a1cads|[basada| —|a1Caarbads| [bocads| +. ..,
an identity far from obvious.

But the consequences of Jacobi’s theorem are wider
still. Any minor such as |a;b,| is not mercly a minor of
|a1bocad,|, it is also a minor of |abyeydsesfeg,|, where
(esfeg7), which we shall term an extension of |a,hyeed,|,
denotes the presence of added rows and columng. Now,
given any identity, we may as before write down ity
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complementary. We can then take the complementary
of this, not with respect to the original determinant, which
would merely give us back our first identity, but with
respect to the enlarged or extended determinant such as
|@3boca@sesfegs|- When this is done, every minor in the
original identity, including minors of order zero and the
determinant itself, reappears with a tail or extension added
to it. For example the complementary of

aby| = | |ay] |82] | is a8 _l 2| ~|a| 1
bl = |lea] Pl 133 el = | 52| 12|,
a very trivial result, but the eomplementary of ‘this with
respect to |a,b.cqd,|, for example, yields® . .
R AR
CANXARCE AR |@aCoda| [Botsda] | (2)

which is by no means trivial and is indeed one of the
identities on which (21 (6)) the method of evaluating
determinants by pivotal condensation was based. That
the identity is extensional in nature is seen by the extension
(cgd,) which is apparent in every indicated minor. The
reader will generalize the result.

The rule so derived for the existence or the construction
of extensional identities may be expressed as follows : -

If any homogeneous polynomial identity involving the
minors of a determinant be written in terms of the diagonal
elements of the minors concerned, then a new identity can
be obtained by extending or elong&ting all such diagonals
by further elements, such as (esfsg;), provided that
homogeneity be maintained by the insertion of powers
of the determinant of the extension, for example |e;fsg,].
Such a determinant is to be regarded as the extension of a
minor of order zero.

3. The extensional of

[a1baca] = |ay||bacs| —|aa||bis| +|as|[bica]
by the extension (d,e;) is
|@1bocodses||dses] = |adses||bacadses| —|tadaes||Drcadaes]

+|agdes|[bread el
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4. The extensional of Sylvester’s theorem
[|@1bs| [@10s||@rda][Bacs|[bada]leada|| = |arbacady|?,
where we indicate on the left the 2nd compound of |a;b,cqd,],
by the extension (egfe) yields
[lasbaesfellaicsesSel---lcadsesfs]| = |a1bacadaesse]®lesfsl,

a theorem which, stated for general orders, is often called
‘- Sylvester’s theorem. It is in fact, as wo see, a simplo oxten-

sional of Sylvester’s theorem on the k** compound determinant,

This extensional theorem has a deceptive resemblance to

Reiss’ theorem on a hybrid compound (44 (2)), which is not an

extensional theorem.

5. A theorem of D’Ovidio (1877) is to the effect that a
compound determinant having for elements all minors of
order & not entirely contained in the last 2 rows and % columns
of A, where A is of order n Xn, has the value

|4V -n |A|D -0y~ A=D1y

where 4, denotes the submatrix composed of the first n—p
rows and n—A columns of 4.

The matrix of D’Ovidio’s compound i8 a submatrix of
AR of order ng —hx. The complomentary submatrix in
the transposed kt* adjugate compound of 4 is easily perceived
to be the extensional of the transposed k** adjugate com-
pound of 4,, where 4, is complementary to 4, in 4, by the
extension (Ai). Thus the theorom is really an extensional
of Franke’s theorem (43) in a rather disguised enunciation,
and the exponents are easily found.

Let us take the opportunity of remarking that the
extensional nature of an identity may sometimes be
concealed by a permutation of rows or columns in a
minor, deranging its diagonal representation. For example,
if |abacedy| be written —|a,c,byd,|, the presence of the
extension (cqd,) may escape notice.

Double or Multiple Extensionals. Suppose that
we had a term such as [a;b,] [¢,d;] in some determinantal
identity. We might take complementaries with respect to
larbocsdy|, let us say, and so derive a complementary
identity. But then, on returning, we might take the



DETERMINANT QUOTIENTS 107

complementary of one factor in a term of the com-
plementary identity with respect to |a;bycad e;], let us say,
and of the other factor with respect to |a,b,¢sd,fsgy]
Provided that all terms are similar, and the procedure is
carried out uniformly over all, it is quite legitimate, in
virtue of Jacobi’s theorem. Thus one set of minors
receives one extension, such as (eg) above, while the other
set receives another extension, such as (fg,) above. We
may call the identity so derived a double extensional
identity, and the reader will at once see how, in homo-
geneous identities composed of similar terms consisting of
three or more factors each, friple and multiple extensional
identities may be derived. A few examples of classical
identities belonging to this type will serve as indications.

6. The identity
a1boes||erds fo] —|arCaes|b1ds Su] -+ |ardzes|[brca fa| = O
is a double extensional, by means of (ey) and (f,), of the simple
identity (Monge’s identity of 1809)
[a1bsl|C1da| —|@10s||b1d| +]a1dal[Byca| = 0.

The simple identity may be proved by Laplacian expansion
of a determinant of the 4th order with repeated rows.
7. What is the simplest identity of which

|@1C485||@sbses| — |@aCsds||a1bses| + |@sCad 5| |21Daes] = O

is an extensional? Prove the simple identity (Desnanot’s
of 1819) in the manner of Ex. 6.

46. Schweinsian Expansions of Determinant
Quotients

Quotients of determinants of the type |h;bycal 4|/ |a10o05d4)
and  |aybycad,|/|bycsdy| are common in applications of
determinants, the first of them occurring (22 (4)) in the
solution of simultaneous equations. In the first quotient
the numerator differs from the denominator in the first
column only. The second quotient is of the form [4|/|4]-
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In the general case the determinants in numerator and
denominator are of the n** or the n** and (n—1)*, order.

Such quotients may be expanded in series of a type
first given by Schweins in 1825. The procedure will be
sufficiently illustrated by quotients with numerators of
the 4th order.

(i) Let [hybycsdsl/lasbocsda] = g, [Pabacs]/lasbucs] = ¢
[hybocsda| |arbacsd,]
[hybacs|  |asbacs]

The numerator of (1) is clearly an extensional, by the
extension (bycs), of

[CEARCHA

1 &

[larbacs] lashocad,|. (1)

Then g,—g; =

= |hya,|d,,

and so is equal to
) [y gbacs] |dibacs| = |Byasbacy| [b16ads],

by an even numbcr of interchanges of columns. Henco

qa—Gs = |Ryaobacy| |b10ada| [larbacs| laibacsds]- . (2)
In the same way
Gs—9s = |hyashs| [b1al/|aiba] |asbacs|, - (3
9a—1 = |haaa|by Jay|asby|, . . )]
' = h,/a,. . . . . . (D)

Adding now the results (2), (3), (4), (5) we have the first
Schweinsian expansion
(hiboCody||ardocady| = hyfay gy by fay [ayby|
1 hyabs| [bico]/1a1ba] |a1bacs]
| Byobscy| [bicos|/lasbocy| arbocyls], - (8)
The general theorem of this kind, for which an exactly
similar proof may be constructed, follows the above pattern.
(i) Let |abocady|/|boCalds] = Pgs |aibacal/|bacs| = py.

a1boCody| |bocsd
Then po—ps = | ogel sldl g . @
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Here again the numerator is an extensional, by (bycs), of

laxdy| dy| _
ay 11~ —’a’Ldl’
and so is equal to
— |@gbaty| |d1bacs| = —|aghse| [Bicads),
again by an even number of interchanges of columns.
Hence py—ps= —|asbscy| [b1¢ads|/|bsCs] [boesdal, - (8)

and by adding this t0"the similar results for p;,—p,, p,—p1,
and p, = a,, we derive the second Schweinsian expansion

|a1b503d | /|BoCsda| = @1 —asby [by— |ashy| [bice| [balbats]|
—|asbscy] |bycads]/|bacs| |Bacads]. - . (9
The form of the general result, which is proved in the
same way, is clearly seen. The Schweinsian expansions
(6) and (9) have what may be called the ‘‘ extra shutter ”
property, namely, that if a term be added similar to the
last term but with every minor suitably extended, the
sum of the series then yields the next higher quotient in
the sequence. We have assumed throughout that all
minors in the denominators are non-vanishing.

L. If |ayb505dy| = O, |bycsdy| # 0, then

@y = Qb1 [by+[5D5|[D10s][Da[DoCs| +[a3D5Cal[D10ads]/[boCs||(DoCsd), (10)
and so in general. '

2. If u, is a cubic polynomial w, = ¢y+c2+cpz?+cyl,
and if

1 1 1 1
f Ouxdm = My, f Oxu,,dx = My, f Om“’uxdx = My, f omaumdw = Mg,

we may write down corresponding to these five conditions
five homogeneous linear equations in 1, ¢, ¢, ¢y ¢3. The
condition of consistency is that the determinant of the
system, namely,

u, 1 2 22 o®
my 1 % 3 %
m % 1 3 |=0
my ¥t 33
LT T T B
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If the reader now regards this determinant as [a;b,cqdye]
and applies (10), u, will be obtained in terms of polynomials

ll z 1 2z 2z 1 z 22 28
L1 %, |1 & % |1 & % %
¥ % P ¥t %

3 5 %

If these polynomials be denoted by py(z), pi(x), Pal), pslx),
the reader will easily prove that they satisfy the condition

f(l) 2, (z)dr = 0, 8<7T.

3. Let the polynomial f(z) = cy+c,x+cx? bo given by
three values f(a,), f(ay), f(ag), where @y, a,, a, aro distinct.
Then the comsistency of the four cquations for f(x), flu,),
f(@), f(ay) in terms of 1, cg, €4, €y 18 expressed by the vanishing
of a- determinant of the 4th order. Write it down and, by
applying (10) to it, obtain an expansion for f(z) in terms of
Fflag), f(ay), f(as). (The expansion is Newton’s interpolation
formula of divided differences.)

4. Expand the quadratic form

xl x2 $3
% 41 Qa Oy /
Ty Qg1 Qg gy
Ty Qg Ggp (g

Q1 Az gy
Qg1 (lag  Ugg
Agy (l3z Qgg

where the bordered matrix 4 in the numerator is symmetrie,
by the second Schwcinsian expansion. Note that the result
gives the quadratic form in terms of squares of certain lincar
forms in z,, 2,, 23.

5. Note that sp 4® = sp,d. (Sce 37, (3).)

6. The Binet-Cauchy theorem applied to Q-'4Q = 4
(37, Ex. 7) gives (QUO) =14 Q) = Ak,

This is clearly a reduction of A'¥) to canonical form AW,
a diagonal matrix (38, Ex. 2) with k-ary products of tho latent
roots of 4 in its diagonal. These k-ary products arc therefore
the latent roots of A%, The factor Q'® also shows that
the latent vectors of A are k* compounds of the ngy,
matrices formed by juxtaposing k latent column vectors of .
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OHAPTER VI

SPECIAL DETERMINANTS : ~ALTERNANT, PERSYM-
METRIC, BIGRADIENT AND CENTROSYMMETRIC,
JACOBIANS, HESSIANS, WRONSKIANS

In the present chapter we survey a number of special
types of determinant which occur persistently in the
solution of certain general mathematical problems.

47. Alternant Matrices and Determinants

A symmetric function is a function of several variables
which remains unaltered when any two of the variables
are interchanged. An alternating function is one which is
merely altered in sign by such an interchange. It is evident
at once that the reciprocal of a symmetric function, the
product of any number of symmetric functions and the
product of any even number of alternating functions are
symmetric functions ; while the reciprocal of an alternating
function, the product of a symmetric and an alternating
function and the product of any odd number of alternating
functions are alternating functions. Constants, being
independent of the variables, are to be regarded as
symmetric functions of zero degree.

1. Examples of symmetric functions: x4z, @-+2,-+xs,
109+ 2pTy+03%1, 1 %g%3, 93%4‘90%"}‘”%’ sin(@, +,), cos(@;+,),
cosh(z;+2,), (B —2p) 2+ (X —X5) 2+ (T3~ ) *.

2. Alternating functions : x;—xs, (2y—%,)(%s—3)(Xs—21),
(%, — %)%, sin(@; —,), sinh(z; —2y), (;+,) /(@ —2,).

A function f(x) is often expressed linearly in terms of a
111
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linearly independent set of basic functions py(x), p,(x),
ooy Dp_g(®) as follows :

J(x) = copo(x) +e1P1(%) + voo FCrqPra(x). . (1)
For example the functions p;(x) may be powers 2/, or may
be trigonometric functions cos jx or sin jr. KFach special
problem has its own appropriate basic functions p,(x).

When x takes the m values z,, @,, ..., Z,, let the matrix
of order m X n which has p,_;(x;) for its (¢, §)** element be
denoted by P. Then the set of m values f(x;) may be regarded
as a column vector and in view of (1) may be written

f=Pc, . . . . (2)
where ¢ is the column vector {¢; ¢; ... Cp_y}-

Such a matrix P = [p;_,(%;)] of functional values is
called an alternant matriz, and its determinant |P|, when P
is square, is called an alternant. Tt is 8o called because to
interchange two of the variables, such as z; and z;, is to
interchange the i*» and k® rows of |P|, and thercfore
to change its sign. Hence |P| is an alternating function
in @y, Ty, «.op Ty

1z xz . L oaf «f
3. |2) o3 2| =|1 wp o} | and |2} 2§ «f| = |1 2f 2}
1 zg Z3 1 Z‘g .’L‘g

are alternants, the basic functions p,(x) being the powers
1, z, 2% and 1, 24, z" respectively.

4. Write out in full the alternants bricfly denoted, after
the manner of Ex. 3, by lx‘l) cos z, sin 24, |2} cot z, Ti]

Polynomial Alternants. The Simple Alternant.
The alternant |20 2} 22 ... 22| is the product (49,
Ex. 11) of the $n(n—1) differences of z;, %, ..., x, taken
in pairs and written in reversed order. We shall denote
it by [A(012...n_—_-—1—)], leaving the arguments x; to be
understodd, and we shall call it the simple alternant.

5. Prove by operations on columns that if instead of the

powers 1, z, x%, ..., "1 we take as busic functions polynomials
of degree 0, 1, 2, ..., n—1 having 1, @, 22, ..., " rospectively
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as terms of highest degree, then the resulting alternant is
equal to the simple alternant |4(012...n—1)|.

Try some numerical examples of low order, taking poly-
nomials such as 1, z, 2(x—1), z(z—1)(x—2) for basic functions.

6. Prove that if the basic functions are polynomials of
degree, 0, 1, 2, ..., n—1 with respective terms of highest degree
dy, d, dyz?, ..., d,xz™), then the alternant is equal to
dodydy. . Qpq1|A(012...n—1)|. ‘

The more general polynomial alternant based on n
powers 1, af, a7, ..., ¢, 0<g¢<7<.:.<t, may be denoted
by |4(0gr...t)]. There is no loss of generality in taking
the first index to be 0, since if it were p we could cancel
2%, 2, ..., 25 from the respective rows of the alternant.

The alternants [4(Ogr...f)] and |4(012...n—1)| are
easily seen to be homogeneous alternating polynomials
in x;, %, ..., ®,. Further, |4(0gr...f)| vanishes when we
put any x; = x;, because the i** and k* rows then become
identical. Hence by the remainder theorem it must
contain the difference-product [4(012...n—1)| as a factor,
so that the quotient of alternants

[4(0gr...t)|/]4(012...n—1)| (3)
must be a homogeneous symmetric polynomial. It is
called a bialternant, and is fundamental in the theory of
symmetric polynomials, in algebraic invariants and in
more general domains of algebra. Determinantal expres-
sions for it will be given in 49.

7. Evaluate and examine the bialternants |4(024)/|4(012)],
14(014)|/]4(012)] and |A4(028)|/|4(012)] in 2y, s -

48. Elementary and Complete Homogeneous
Symmetric Functions

The sum of the n; products of zy, 2,, ..., z, taken j
at a time, without repetition of any z; in a product, is
called the elementary symmetric function of degree j in
the arguments x;, %, ..., &,, and is often denoted by a;,

H
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the arguments being tacit. We shall use a; in this sense
as far as 50. The sum of the (n-+j—1)(; products of the
Xy, %y, ..., T, taken j at a time and with unrestricted
repetition of any z; in a product (so that powers up to
the j™ may appear), is called the complete homogeneous
symmetric function of degree j, and will be denoted by h;.
It is sometimes called the aleph function of degree j, a
name used by Wronski in 1812. We note that a;=0, j>n.

1. The following are elementary symmetric functions in
the arguments concerned : @; 42,425, T125+21T5+%4%5, T1ToTy.

2. The following are the corresponding h;: @;+%,4,,
xf+x§+x§+x1xz+x1x3+xzx3, Z'a:.g -+ Z’xf T 3+ 2T

It is easily proved that a; is the coefficient of (—)i/
in the expanded form of the generating function

(I —zt) (L —z4) ... (1 —a,t), . .
while A, is the coefficient of # in the expansion of
(Aayttat? . ) (1 +agt +222+..0) (L2t +22 240, (2)

the terms in ¢2, 3, ... in the factors of (2) taking account
of the repetitions of the ;. Now the generating function
(2) is visibly the reciprocal of (1), and its expansion is a
series which converges if ~1is less in absolute value than
any of z;, %, ..., z,. Consequently by multiplication of
(1) and (2)
l=(1—a;Fa2—a,3+... 4+ (—)"a i) (1 +hit-+ht2+-...), (3)
from which by comparing coefficients of powers of £ we have
arho—aghy = 0,
@hy—a,hy +agh, = 0,

(4)

where by convention g, = hy = 1. These relations, which
are evidently unaltered when the rdles of the a; and h,
are interchanged, are called Wronski’s relations. Let us
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observe that they are expressed completely in matrix
notation by the statement that

PR —

Qg ko
—a; G hy o
A=| a, —a; ap [and H= hy hy By b))
ERREEEREEY B SR

are reciprocal matrices, as the reader should verify by
proving that AH = HA = 1. Indeed since the deter-
minants |4| and |H| are both equal to 1, the matrices 4
and H are mutually adjugate as well as reciprocal.

49. Bialternant Symmetric Functions of Jacobi

Let us take three arguments @y, %p, %3, OF, for greater
ease in printing, a, B, v and let us consider k., (o, B, ¥)-
The terms in this symmetric function may be divided into
two groups, those containing o and those not containing a.
The latter set clearly gives h,(8, v); and slight considera-
tion will show that the former set gives ah (s Bs Y)-

Hence Bo(a, Bs y) = Br(B, V) +ak (s By ) )
= h.(a, 'Y) +Bh —1(2s B, v) '
whence it follows, on subtraction, that the divided

difference
{h ) /ﬂD ..\ bkl VY /(R——a):h,._l(a, ﬁ; ')/)- . (2)

A corresponding identity can be proved in the same way
for any number of arguments. Now let us take the
alternant
1 o a® al
1 Br B¢ t
|Ars)| =| | ﬁ ﬁ 5, . 3)
1 8 & o

and subject it to the following operations: tuwg—ivwy
and remove the factor f—a; TIOW3—TOWy and remove
y—0; TOW,—IO0W; and remove d—a; then rowz—IOWj
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and remove y—f3, row,—row, and remove 8—f; and so
on. By repeated use of (2), with the evidént fact at the
first stage of &,(a)=0u" and so on, we thus arrive at

1 hyfa) ho(at) hy(a)

. hr-l(a: B) hs—l(a: ﬁ) by _4(a, B) (4)
. hr-2(a7 ﬁ: ')/) 7"3—2(“: B: 7) by —sfat, B: '}’)

. }b,_a(a, /3, VZ) 8) hs—:;(”': ﬁ, Vs 8) 7"&—3(‘1’ ﬁ’ Y 8)

Next let us perform row,--Brow,, row,--yrows,
rows+08row,; then row,<-yrow, row,--8rows; then
row, +8row,, using (1) each time. The factors previously
removed, f—a, y—a, 8—a, ..., form the difference-product
[4(0123)], so that writing Ay(a, B, y, 8) = h; we have now
hy by Ry My

hr—l hs-l ht—]

hr—z h’a-—z hz—z ’ ' (5)

hoeg hyg By
which, if the order of rows and columns be reversed, is
scen to be a minor belonging to consccutive rows of |H|
in 48. Let us observe that when the first row is given,
or the diagonal suffixes 0, r—1, s—2, t—3, the
bialternant (5) is completely determined ;. also that
the sum of the diagonal suffixes (r—1)4(8—2)-+(t—3),
where 07 —1<{s—2 <t —3, is the degree of the bialternant.
The diagonal suffixes thus constitute a partition of the degree.

1. The partitions of the intoger 4, arranged in ascending
order, are 1-41-41-++1, 14142, 143, 242 and 4. There
are therefors five bialternants of the 4th degree, which the
reader should write out in full. The last two, for example, are

|A(Orst)| /|4 (0123)| =

ho hy hy
l. hy Ryl and 2 hls ,
[ hy Ryl 4

and since h, = 1 the first row and column in theso may be
doleted.

2. |A(012¢)]/]14(0123)] = hy_3, |A(0123¢)|/|A(01234) = hy_g,
and so on.



DUAL BIALTERNANT 1y

,  The determinantal form (5) for a bialternant is due to
Jacobi (1841) and can be derived for a general bialternant
by the method we have exemplified. We may notice two
features in the' bialternant: (i) the suffixes of the A; in
its first row are the indices of the alternant in the numerator
of the quotient of alternants; (ii) the sum of the suffixes
in every term of the expansion of a bialternant in its
determinantal form is equal to the degree, for example,
(r—1)+(s—2)+(@—3) in (5). The sum of the suffixes is
often called the weight, and a polynomial in which each
term is of the same weight is said to be isobaric.

Dual Form of a Bialternant. By the aid of Jacobi’s
theorem on minors of the adjugate we may obtain an
alternative form for the bialternant as an isobaric deter-
minant like (5), but with elements a, instead of k;. For
suppose the matrices 4 and H in 48 (5) to be of order
((+1)x (¢-+1). Then the lower left corner element of H
is Ry, and the upper right corner element of 4’ is (—)'a,.
Let rows be named by the highest suffixes of the A; or the
a; which they contain. The rows of H are therefore
named by 0, 1, 2, ..., £ and those of 4’ by the reversed
order ¢, t—1, t—2, ..., 2, 1, 0. Now the bialternant (5)
for example, when transposed, belongs to rows 0, r, s, ¢ of
H, columns 0, I, 2, 3. Hence, by Jacobi’s theorem, the
complementary bialternant in 4’ belongs to rows obtained
by removing 0, 7, s, ¢ from the sequence 0, 1, 2, ..., { and
taking the complements with respect to ¢ (because of the
reversed order of rows in 4’) of the numbers that remain.

For example, if 0, 7, s, ¢t were 0, 1, 3, 6 the numbers not
contained are 2, 4, 5 and their complements with respect
to 6 are, in ascending order, 1, 2, 4. Hence we have the

identity hy by hy by ay Gy Oy
bo By sl _ ‘ Gy Gy Ogly . (6)

}1/]_ h4 l a’O 228
0 h3 . )

where we have made all elements of the determinant on the



118 SPECIAL DETERMINANTS

right positive by altering the sign of the first row and
_second column in the corresponding signed minor of ’.
The proof which we have here sketched in outline from
an example is general, and establishes a dual or com-
plementary relationship between bialternants expressed in
elements &, or in elements a,.  Sets of integers like 0, 1, 3, 6
and 1, 2, 4 are said to be bicomplementary with respect to
the highest index, such as 6 here, and the theorem of duality
between bialternants may be succinctly expressed thus:
the suffixes of eclements in the first rows of dual bislternants
form bicomplementary sets.

3. Find the sets bxcomplnmentnry to (012.)), (0235), (025)
and (01245) with respect to 5. Write down tho corresponding
identities between dual bialternants. Interchange b with o
and note that all the identities remain true, bocause of the
symmetry of Wronski’s relations, 48 (4) and (5).

4. Prove that %, is equal to a bialternant of order » with
all diagonal elements equal to ¢;. Horo again b and ¢ may
be interchanged.

Reciprocal of Alternant Matrix. The reciprocal of

A(012) is L o -t
1 g8 | =
1y o2
By ya af 7
—Blla—y)  B=y)(B—a) (y—a)ly—B)
B+y yta atp
Tle—Pa—y ~ B=B—a) ~ r—ajiy—p) | ("
1 1 1

- @=B=y) pp—e y-aly—p)]
The numerators in the elements of the respective columns
are elementary symmetric functions in the arguments
a, B, y with one argument omitted each time. The nature
of the polynomials in the denominators of the elements is
clear from the example. The reader will be able to extend
the result to the casc of a general alternant of order 7 x n.
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50. Confluent or Differentiated Alternants

A polynomial f(x) of the n** degree is uniquely deter-
mined by the values which it assumes for 241 different
values of z. When two or more of these points coincide
the polynomial is no longer determinate; but if we are
provided with the values of a sufficient number of deriva-
tives of f(x) at the points of coincidence f(x) again becomes
determinate. For example a polynomial of the 4th degree
is fully determined by the values of f(a), f'(a), f"(a), f(B),
f'(B), provided that o and B are different. The condition
of consistency which underlies the five equations involved
is expressed by an alternant matrix in which the elements
of certain rows have been differentiated. We shall call
such a matrix a confluent alternant matriz, and its deter-
minant a confluent alternant.

For example, if f(x) = ¢y+civtcow?+cga®+ext . (1)
then the expressions for f(a), f'(a), f*(a)/2!, £(B), f'(B) give
five equations in the coefficients ¢; with matrix

laa?a® ot
. 1 20 3a? 403
.. 1 3a 6a2], . . . (2)
1pp2p p
. 128 332 483

an example of a confluent alternant matrix. The operations
on rows are of the type (d/dx)*[k!.

1. Construct the confluent alternant matrices corresponding
to f(a), f'(a), f(B), f/(B) and to f(a), f'(a), f*(a)[2}; f""(a)/3!;
where f(z) is a cubic polynomial.

Evaluation of Confluent Alternant Determinant.
Let us consider

1 a a? a® ot
1B g g g
[A(01234)[ = |1 y y® o® o (3)
16 82 8 ot
1 € ez‘ea et
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in which a, B, y are going to coalesce to the same value
a, and 8 and e to the same value 8. Let us apply to rows
1, 2, 3 and to rows 4, 5, separately, the first sct of operations
used on the alternant of 49 (3). We thus obtain

|4(01234)| {4 (a, B, y)4(8, €)}

1l aa? a’ at
o L y(a, B) Po(a, B) Pyla, B)

=|. .1 hi(a, B, y) hyla,B,y) |- .4
185 32 33 34

.1 By(8, €) Ry, €)  Ry(S, €)

Now since by 48 (2) thefunction{(1—at)(1-—Bt)(1—yt)} 1
gencrates the symmetric function kja, B, y) «s coeflicient
of ¥ in its expansion, the generating function when
a=B=y is (1—at)~3 which can be expanded by tho
binomial thecorem. In the same way when 8§ =:e¢ the
generating function of %3, €) is (1--38)"2  Expanding
these generating functions we see that when a, 8. y
coalesce to a and §, € coalesce to § the deteriminant on
the right of (4) becomes
’ 1 a a2 a® at |

1 2a 3a® 4a®
. . 1 Ba  6u2|. . . (5)
1 & 8% & 8¢

1 28 38% 48

But this is the confluent alternant. Hence its value ig

lim 4d(a, B,y 8, €){d(a, B,y)4(3, €)}
=lim(e—y)(e—=B) (e—a)(8—y) (8—P) (8 -a) == (6--a)s.. (B)
Bry->a €8+ ,

-This function may be called the conflucnt difference-
product. It may .be denoted by 4{(axa)(dd)}, bheing
regarded as constructed from differences of arguments taken
one from each set (a, a, a) and (3, 8) in reversed order, the
zero differences of elements from the same set being
excluded.
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Following the above lines the reader will show that the
value of the general confluent alternant in which n; elements
coalesce to ay, 7, to ay, ..., and finally 7, to a; is

d{(ay, ag,eees a) (g, Cgyee-s ag).--(ag, Qgaeees )} =H(ak—ai)"’l'«"‘7ﬂ, 1<k (7)

Reciprocal of Confluent Alternant Matrix. The
problem of finding the reciprocal of a confluent alternant
matrix may be approached by interpreting A4-1P-1 as
operations on columns of 4-1, where PA is the result of
elementary operations (19, Ex. 21) on the rows of 4.
In view of 21, Ex. 7 and 9, it is seen that if P in pre-
multiplication effects operations row;—Arow,, urow,, then
P-1 in postmultiplication effects col,+Acol;, p~icol,.
Now a confluent alternant is derived (50 (3), (4), (5))
from a simple alternant 4 by operations P4 like

\—row;, (B—a —r10W, y—PB)"row; and
so on. Hence the reciprocal confluent alternant 4-1P-1
may be determined from A-1 (for this see 49 (7)) by
operations like col;+4-col,, (8—a)col,, coly+col;, (y—B)colg
and so0 on, and then permitting coalescence of appropriate
arguments. ’

It will be found instructive to prove, both by this
method and by direct formation of the reciprocal, that

y(y—2a) ya a?
1 a o271 (@=y?  a—y (y—o)® | °
12| - 20 yke _2a | g
[1 v ,},2:| a=y?  a—y (y—a)?
1 1 1
T e—y)?  a—y (y—a)?

51. Persymmetric, Circulant and Centro~
symmetric Types ‘
A determinant in which all elements in any diagonal
at right angles to the principal diagonal are the same was
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formerly called orthosymmetric. Adopting a more modern
name we shall call both the determinant and its matrix
persymmetric. For example the matrix

a, @y Qg B4
ty Uy Gy G
g @, Ag g
@, Uy Tg g

(1)

is persymmetric. Evidently persymmetry of a matrix
4 = [a;] is completely characterized by the statement
[ay] = [4;15—1].  Also the number of indej:endent elements
in a persymmetric matrix of order nxn is 2n—1.

Persymmetric determinants |4| with special elements
can often be evaluated more easily by first forming DA,
DAD' or LA, LAL’, Where, taking n = 4 for 1llustra,’c10n
we have

—
»

17 A
o101 . —A 1 .
D=| 19 1 A2 a1

21 3 -3 —XB 32 —3)

the coefficients a,ppea,rmg in the rows being the hinomial
coefficients of successive order. Since da, = a,—a,,
A2, = az—2a,+a, and so on and [D| and |L]| =1, we
“find the following equivalents for the determinant |4 ],
ay Gy Qg a4 a;  duy A% 4%,
__|day da, day da, i | day A%ayA3a, 4%,
\DAL =1 f34, p2a,4%05a%, " P21 = | s20, s, At ittes, | 3)
A3a,A%a,4%,4%, A3y Aty By A8,

or the same with 4 x instead of 4%, whero 4, is the operation
of A-differencing defined by 4dya; = a,—Aa;. We may
express these results in concise form as

|@ats-1| = 45" 437 ay| = IAZH- - G
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1. Evaluate 1 3 6 10
3 6 10 15
6 10 15 21 .
10 15 21 28

after first constructing a table of successive differences of
1, 3, 6, 10, ..., 21, 28.

2. Evaluate 1 n mgy ng
7 Mg Mgy Mg
Mgy Mz Mgy s *

N3y Mgy N5 M)

whore 7, = n(n—1)(n—2) ... (n—r-+1)/r!, by repea.ted use
of the identity (n+1)(,—n(y = N(s-1- *

w4

Girculant Matrices and Determinants. ‘A mabg'fx

of order nxn of the type

@y Gy Ty By . .

= %O 05\ cs . (B)
A3 Gy Oy Gy o
o My (e G Oy .

illustrated by the casé n = 4, is called a eirculant matriz,
and its determinant is called a circulapt. There are only n
independent elements. They appear in the first row,sahd
the elements in successive rows are the successive .cyclic’
permutations of these. By mspectlon O is persymmetric
about the secondary diagonal.

If all later rows of C are a.dded to the first rowr, each
element in the resulting first row is equal to a, +ayt-... +a,.
This therefore is a factor of the circulant |[C|.  :-

This is only one of n factors, the typical factor being
ayFagwstagwi+ ... a0} where w; is an mf root
of 1. To see that this is so, let us construct Q-10C), where
(2 is & diagonal matrix of the type exemplified by
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the diagonal elements being the powers of a primitive nt
root of 1. The cffect, as the reader will verify, is to
produce a new circulant in which a, has been replaced by
a,w*L. At the same time |C] is unaltered in value, since
Qe Q] = |C|. Hence by adding as before the later
rows to the first row it is seen that a;--auw-f- ... w1
is a factor of |Q-1CQ| or |C]. Thus |C] contains the con-
tinued product of n such factors; and since the leading
term derived from the diagonal clements is a7 the only
remaining factor must be 1. The result in question is thus
established.

3. lay ay
= (. Qo )\ Uy — ).
a5 a (@y+as) (e —ay)
4. |ay a, ag e o 3
Qg Ay Ug| == (@ +ayag)(rt;+ Ayt — agg— By —ctgr14)
Qg Ay @y

== (@) +Og -+t ) (2 + 0ty + 03003 ) (10y -+ 0321y - wr24),
where o and w? are tho complex cube roots of 1.

5. Write down the corresponding factors of the cireulant
of order 4 and verify by actual construction of their product
that it is equal to the circulant.

6. The sum and the product of two circulant matrices,
and the reciprocal of a circulant matrix, are circulant.

Centrosymmetric Matrices and Determinants.
A matrix which is symmetric about the centre of its array
of elements is said to be centrosymmetric. Thus if
K is centrosymmetric of order nxn we must have
ki =Fn-1415 n-s+1-

Or again, if we make use of the matrix J which has
units in the secondary diagonal and zeros elsewhere, and
which in premultiplication reverses the rows of a matrix
and in postmultiplication reverses the-columns, we may
express a centrosymmetric matrix as a partitioned matrix

A «a B
4 B '
JBJ JAJ JBJ Jd JdJ
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according as K is of order 2mxX2m or 2m—1)x (2m—1).
In the seeond case ¢ is a column, vector, b’ is a row vector,

and a,,, is the central element.
In either case a centrosymmetric determinant can be
resolved into two determinant factors, for in the first

we have

IJ 4 B I —J| _|4+BJ . (8)
Iy | IBS J4T] [+ 1 JBJ JAJ—JB]|’
a8 the reader should verify, interpreting also the operations
as row and column operations upon K. Thus by Laplacian

expansion |K| = |4+BJ| |[JAJ—JIB|. . . (9)

In the second case we have

I.J -
1. 'am,,,b'J
C T JBJ Ja JAJ

A+BJ 2a .
= b Gmm . . (10
JBJ] Ja - JAJ JB
which by Laplacian expansion gives
K| =| 1B 2 JAT—JBl,. . (1

the second factor bemg of the same form as in (9). The
factors here are of orders m and m—1.
7. Construct controsymmetric doterminants of orders 2, 3,

4 and 5 with literal olements and factorize them.
52. Dialytic Elimination : Bigradient Matrix

Consider two algebraic equations, such as
aget a2 +a, = 0, . . (D
ber® b, 2% bz +by = 0, . . (@)

in the general case of degrees m and n. Let it be asked
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3

what condition the coefficients a; and b, must ‘satisfy.:
that the equations may have a root in’ comgmon. < Multi-
plying (1) by 1, =, 2% and (2) by 1, ih turn, we o!:tam
five homogeneous equations in 1, 2, 22, g3, %%, ~  condi-
tion for their consistency is that their d,.,.,_.,,,mu, R
Gy By Qy . . ° N
Gy Gy Oy .
ay 0y Qg | = 0» QB')
by by by by
bo by by by . .
Such a determinant, or such a ma.trlx, is said to be bz-
gradient. (We have conformed to custom in making the
persymmetry in the a; and b; run in two different slopes.)
In the general case the bigradient is of order m--n, with
n rows of elements a; sloping down persymmetrically; and
m rows of elements b; sloping up. The process of eliminating
2 in this way from two polynomials is due to Sylvester, and
is called dialytic elimination.

1. Express by means of a bigradient the condition that
the quadratic equation a?+axz+a, =0 should have a
double root. Evaluate the bigradient.

2. In the same way find the condition that the general
cubic equation should have a repeated root. (The second
polynomial in each of these examples will be the derivative
of the first.) o

53. Continuant Matrices and Continuants

A matrix C, of order X% which has zero elements
everywhere except in the principal diagonal, the super-
diagonal directly above it, and the subdiagonal directly
below, is called a contrnuant matriz, and its determinant a
continuant. For example

A N
161 @ - | - o 2 -
b2 62 da d:n(l . . Y cz da . (1)

b3 Cg " 0 -"—'1"63\,"



.CONTINUANTS 127

are continuant. matrices. In the second of these we have
divided -the subdiagonal. elements by suitable factors to
make them-all —1. This is the usual convention.

The name*contmuant is'due to the intimate relation which
the eontmua,nt matnx in the above standard form, bears
to the thegry of contmued fractions. Consider for example
& sﬁqu&hce of contmued;-fmctmns in the usual notation,

- |
o d oAy 4 B 5=0,1,2,.0m,. (2

~

) Grr vl-r Cot <4 E]
the ﬁtﬁtn of theso being convergents to the final one. It
s not difficult to show that the numerators p; satisfy the
set of ZTecurrence relations, .

f’o =1, Dy = gy +es D5 = CPjy+AyPsmg J>1, (3)
while the denominators satisfy the very similar relations

% = Cp» Oy = C1fot+dys oy G5 = 195-1 +dig5-0 J>1. (4)

Now the continuants |[C;| satisfy the same relations.
For expanding |C)| according to its last row and column,
and noting the initial values |Cy| and |C,|, we have

ICol = ¢os [C1] = &1|Co|+dy, |C)] = ¢5]Cs-1|+d4]Css], (B)

80 that the continuants |C;| are equal to g;, the denominators
of convergents of the associated continued fraction.

The numerators of the convergents are also continuants.
For the cofactor of the leading element ¢, in |Cy], let us say
Cl;.6), i8 & continuant. Expandingit by a similar Cauchy
expansion and noting initial values, we have
101 0l = ¢15 10y, ol =64|Cy
so that |C;. | = p;. Thus the numerator of any convergent
is the cofactor of bhe leading element in the continuant
representing the denominator.

Hence the continued fraction is equal to |C,,¢|/|Cyl,
which is the leading element in the reciprocal matrix
C,-1. This fundamental result connects the theory of
continuant matrices with the theory of continued fractions.
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1. A continuant in standard form and with elements
c¢ = 1, considerod as a polynomial, is prime to its leading
minor of order n, namely the cofactor of its last elemont ¢,.

2. A continuant in standard form, with unit elements in
the superdiagonal and integer elements in the diagonal, is
prime to the cofactor of its first element.

54. Jacobian, Hessian and Wronskian Matrices

There is an important class of matrices the elements of
which are functions and their derivatives.

Consider » functions %, of # independent variables oy,
the u; possessing first partial derivatives within a certain
region. Let us suppose first that the u; obey & relation

g, Uy o, ) =d =0, . . .M
where ¢ possesses first derivatives ¢ /Ou;.
Differentiating ¢ with respect to the x; we obtain

op op ouy O duy éd du,
ox; ou, ox; ' Ou, Oz, +"'+6‘u,, b, =0

(2)

These are n» homogencous equations in the éb/duy,
and for their consistency the determinant |ou;/@r,| must
vanish. This determinant is called the Jacobian of the
functions u, with respect to the variables x,, and is often

denoted by Blatgy gy -y )

@y, Xgy wvvy Ty)

)

It will be convenient to transpose the matrix of the
system (2) and to regard [0w,/0z;], or briefly [Su/ér), as
tho Jacobian matriz of the vector % with respect to the
vector x. We may also consider m functions of » variables,
with Jacobian matrix of order m X n.

1. If y = A=, then [8yéx) = 4. Thus [6z/dz] = I.

2. If v = Au, then [0v/¢x] = A[du/ox].

3. If = Ay tho column vectors {fu/éa,} and {Cujéy,)
are related according to {fu/Cy,} = A{Gufer). In fuct
[0u/dy] = [ou/éx] A.
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4. The reader should verify the above results for cases
of low order written in full, and for special functions.
Jacobiuns of chosen sets of functions should also be evaluated ;

Change of Variables. Consider now m functions u,
of n independent variables y;, these y; being functions of
n independent x,. We have then [du/oy] and [8y/ox],
of orders m X% and nxXn. It is fundamental that

[ouley] [oy/ox] = [ou)ox]. . . . (4)
In fact the (¢, j)** element of the product on the left is
Quy By, | Ou; Oy, uy Byn (5)

o ow,  dyy ;T By, o)

which, by the differential caleulus, is equal to du,/ox;.

It follows at once that [gy/0x] and [0x/oy] are reciprocal
matrices, since by (4) their product is 1.

The reason for the notation (3) for a Jacobian now
appears. For taking determinants of square Jacobian
matrices in (5) we have |du/dy| |9y/0x| = |ow/ox|, which
in the case n = 1 is the familiar formula for change of
variable in a derivative. In fact a Jacobian might be
described as a multiple first differential coefficient of =
functions with respect to » variables.

. This description is warranted by the fact (see for
example Gillespie, Inteyration, § 18) that when a multiple
differential  dx,dz,...dx, is transformed to mnew in-
dependent variables ; the new differential element is
|ox/6y| dy,dys...dy,. The proof of this fundamental result
is outside our scope, but the reader may consider the case
of two variables, the transformation from rectangular
coordinates z, i to other coordinates u, v, for example to
polar coordinates r, 8. Through a point P in the (x, y)
plane let curves 4 = const., » = const. be drawn, and on
them let neighbouring points @ and R be taken respectively.
Let the corresponding curves through Q and R intersect in
1
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S. Then apart from higher infinit esimals, the coordinates
of Q, R, S if P be taken as origin (0, 0), are

70 du 2 S ) Ry
dv, /Z mclu, Y du o -~ dv, ,J:Iu- -;"fda:
v , \ou du , \CU Y u (&) .

Then the area of the clementary triungle
(19, Ex. 17) is found to be

g &y
bu bu éx, )
dudy = dudw, . 7
3 ?f 3_1{ 3 — (u v) udv (7)
{ov  ov

and by taking S as origin we find the same value for
SQR. Thus taking both triangles we have the element
of arca PQSR.

Similar reasoning applies in three dimensions. The
element of volume enclosed by neighbouring contours
% == congt., v = const., w == const. may be digsected into
six equal elementary tetrahedra, the total volume being
thus dudvdw multiplied by the Jacobian.

Test of Functional Dependence. We have seen that
functional dependence implies the vanishing of & Jacobian.
The converse theorem is also true and is an important
test of dependence, but the accurate proof of it exceeds vur
limits of space and in any case belongs more to function
theory.

5. Test by the Jacobian the functional dependenco of

1+ 23+ 2, "’3 -2 z+v"a“‘9"13'z—4 "1y Tyl
.x, }.z.‘ }.r,--d:rl:z,.:a
Hessian Matrix and Hessian. The Jacobian matrix,
with respect to the x;, of the first derivatives éu/or; of a
function % is called the Hessian matriz of u, its determinant
the Hessian of w. The Hessian matrix is therefore

2
H = [oxm:éx—,] . . . (8)
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In a wide clasy of cuses it is immatexial in which order of
differentiation the second partial derivatives are formed,
aud for such functions u the Hessian matrix is symmetrie,
H. H.

If the variables z are transformed to new variables y
by z== Ay, the &u/ox, are transformed (Ex. 3) according
to {Cufey}==A'{¢cuf¢x;}. Hence, applying the second
part of Ex. 3, we obtain the Jacobian matrix of the ou/dy,
with respect to the y,, in fact the Hessian matrix of u
with respect to the y;, as 4’HA. The Hessian matrix thus
undergoes congruent transformation, and the Hessian |H|
is multiplied by |4|%. This is usually expressed by saying
that the Hessian is a covariant of u.

6. Let the x; be transformed to y, by a general trans-
formation of Jacobian matrix M = [¢z/0y]. Show that the
new [/ is AHAM AP, where P is a certain matrix product.

7. The Hessian mutrix of a quadratic form 2'dz is 24.

8. Evaluate the Hessian of axf+3bx?x,+3cxlxz+dw:, and
find also the Hossian of (ax; 4bx,)3.

9. In the Taylor expansion of u(zy, x4, ..., %,) about the
origin {0, 0 ...,0} the term involving second partisl derivatives
of u is the quadratic form z'Hz/2!.

Wronskian Matrix and Wronskian. Before con-
sidering the Wronskian we may note how to differentiate
a determinant |4| with respect to z, when each element
is o function of z. In virtue of the rule

d d, d d

2t =D+ Yop 1 Bop g,
ench term in the expansion of |4| gives rise, on being
differentiated, to n terms, obtained by differentiating each
factor a,;in turn.  Thus d|4|/dx contains n.n! terms. The
aguregate of n! of these terms having differentiated clements
belonging to the " row forms a determinant obtained
from |A4| by writing da,;/dz for a; in that row. Thus
dd|/dz is the sum of n determinants, obtained from |4|
by differentisting each row in turn.
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10. Write oubt and verify this result {or detorminants of
the second and third orders.

The Wronskinn matriz of = fanetious w; of an
independent variable x is defined by

ity
W et l';i;T‘Tiz\l. . - - <9)

For example, the Wronskian of u,, u,, uz is

;. Uy Ug
duy ey dy
W={| de¢ de dr | . . (L
Ly duy 2o
dx?  dx? de?

S~ —

The chief property of the Wronskian determinant or
Wronskian is that it vanishes when the functions satisty
a relation of linear dependence with nonzero constant
coefficients. For if we have

@yt gty +agus = 0
we have also two further equations of the same form in
the first and second derivatives of u,, u,, u,. The condition
of consistency of these equations in ay, a,, ay 8 |W] = O,
The converse theorem, that if the Wronskian is zero
the functions obey a non-trivial linear relation, is true
under certain restrictions.

11. The derivative of a Wronskian is obtained from the
Wronskian by differentiating its Liust row.

12, Prove that tho Wronskian of 1, », w2 ..., «™ 1t ix
confluent alternant multiplied by a certain constant fuctor.

13. Evaluate the Wronskians of 1, 2, «t wul of »2, o3, o4,
Construet other sets of simplu functions anmd cvaluwte ther
Wrongkians. )
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Wronski’s relations, 114-115
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