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Branched Covers of Surfaces in 4-Manifolds 

Selman Akbulut* and Robion Kirby 
Department of Mathematics, University of California, Berkeley, CA 94720, USA 

We give an algorithm for describing, as a framed link, the p-fold branched cover of 
(i) B 4 branched along the Seifert surface F of a link with int F pushed into 

int/34 (see Sect. 2); 
(ii) /34 union handles branched along F C B 4 (see Sect. 3); 

(iii) S 4 branched along a surface which, except for a trivial 2-ball, lies in S 3 (see 
Sect. 4); 

(iv) C P  2 branched along a nice surface such as a non-singular complex curve 
(see Sect. 5). 

Along the way we show how to describe the p-fold branched cover of B 4 along 
the ribbon disk of a ribbon link (Sect. 3), prove that the p-fold branched cover of 
B 4 along a Seifert surface for the unknot is trivial (Theorem 4.1, Sect. 4), show that 
the Mitnor fiber and various other complex surfaces can be built without 1 and 
3-handles (Theorem 5.1 and corollaries), and draw the framed links for the 
complex surfaces, the cubic, quintic and Kummer  (see Sect. 5). In Sect. I we fix 
conventions and notations. 

. 

All manifolds and maps are orientable and CO°; when corners occur in con- 
structions, they are rounded in the usual way. A smooth 4-manifold is a 
handlebody, and it is described by drawing the attaching maps of the handles. Our  
4-manifolds will have a 0-handle, some 2-handles, a 4-handle when the manifold is 
closed, perhaps some 1-handles, and no 3-handles. 

A one handle is described by drawing the S O x B 3 to which it is attached in 
S a = 0 (0-handle). S ° x B a appears as two 2-spheres, S O x ~gB 3, a o and a t, drawn 
close together; a point S o ~ a  o is joined by the 1-handle to s t e a  1 iff s 1 is the 
reflection of s o across the 2-sphere equidistant to a o and ~r 1 and orthogonal to the 
great circle through the centers of a o and al.  
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Fig. I 

Fig. 2 

A 2-handle is described (as in [K2]) by drawing the circle to which it is 
attached and assigning an integer (the framing) which determines the trivialization 
of the normal bundles, S 1 x B 2, of the circle. If the circle lies in S 3, then it has a 
Seifert surface, and a normal vector field to S 1 x 0 which is tangent to the Seifert 
surface defines the 0-framing. The other trivializations are determined by the 
framing E ~z~(SO(2))= Z. The 2-handle defines a 2-dimensional homology class in 
the 4-manifold, whose self-intersection is the framing. The intersection of two such 
homology classes equals the linking number of their attaching circles. Thus the 
intersection matrix corresponds to the linking matrix. If we slide one 2-handle over 
another, described by band connected summing the first circle with a pushoff 
of the second, then the framing changes in the same way that the intersection 
matrix changes under a change of basis. 

I fa  2-handle goes over a 1-handle, then we see the attaching circle enter a B 3 at 
so~ o- o, proceed invisibly over the 1-handle, and reappear symmetrically at s 1 ~ ~ r  
However there is a difficulty with framings for 2-handles which go algebraically 
non-zero over a 1-handle; there is no Seifert surface to determine the 0-framing. 
Still we need to specify the framing by an integer. The most convenient method is 
to draw a dotted arc on the shortest geodesic connecting o- o to a r  Then the 
0-framing of an attaching circle of a 2-handle is computed by assuming the circle 
goes parallel to the dotted arc, rather than over the 1-handle, and using the Seifert 
surface of the new circle. See Fig. 1 for the 0-push off of some attaching circles. 
Then k-framing is defined as above and it transforms as above under handle 
sliding. It is not changed under isotopy unless an attaching circle is isotoped 
through a dotted arc. Then the framing changes exactly as it does when an over 
crossing is changed to an under crossing in a knot. Figure 2 gives an example. 

F 2 usually denotes a (Seifert) surface along which branched covers are taken. 
CP 2 is the complex projective plane and - C P  2 is CP 2 with the opposite 
orientation; they are described by a 0-handle, a 2-handle attached to the unknot 
with framing + 1, and a 4-handle; the 0 and 2-handles give the Hopf or antiHopf 
disk bundle with boundary S 3. S 2 7< S 2 denotes the nontrivial S 2 bundle over S 2, 
described by a 0-handle, two 2-handles, and a 4-handle; the 2-handles are attached 

-I +1 

to the framed link °001 or to 0 O- 



Branched Covers of Surfaces 113 

o 

We begin by constructing the p-fold branched cover M4(F, p) of a Seifert surface F 
of a knot (or link) K, with int F pushed into int B 4 and OF = K C S 3. First we c u t / ~  
along the track of the isotopy which pushed int F into int B 4; the result is again B 4 
with a thickened copy of F, namely 

P = {(x, t)e F x [ -  1, t]l(x, t )~ (x, t') for x~ ~F, t, t'~ [ -  1,1] } 

in OB 4. To construct the p-fold cyclic branched cover, we glue together p copies of 
B 4, namely B~, i=  1 ... . .  p, by the homeomorphisms h i :F+ ~ffT+ 1, i=  1 ... . .  p - 1  
where 

P? = {(x, t)e Pfl _+ t 20}  

and hi(x, t ) = ( x , -  t) (see Fig. 3). Note that it is not necessary to glue P ;  to ff~- 
because this does not change the manifold (for the same reason that cutting B 4 
along the track of the isotopy above does not change B 4 up to homeomorphism). 

Fig. 3 

F~O 

Suppose for simplicty that F is connected and oriented so that it has one 
0-handle and some 1-handles. First glue the B~'s together (via hi) only along the 
0-handles in ff~ ; this gives B 4 again. To glue the rest of P~ to P~ via h l, we can 
attach a 2-handle to B 4 for each 1-handle of F, with the attaching circle of the 
2-handle equal to the core of the 1-handle in P~- union the core in ff~-, and the 
framing equal to twice the number of full twists in the 1-handle. This is done for each 
1-handle and for i = 1,..., p -  t, and gives a handlebody decomposition of the p-fold 
branched cover having only a 0-handle and some 2-handles with even framing. 

It is easy to draw the framed link for p =2. Figure 4 gives several examples 
which should make the procedure dear. Suppose there is a knot 7 in a one-handle 
of F, e.g. the first example of Fig. 4 contains a left handed trefoil knot. The one- 
handle is said to have 0-twists if it lies in a Seifert surface for 7. Thus the left handed 
trefoil knot in Fig. 4 gives - 3 full twists to that 1-handle; hence the - 6 framing in 
the double cover. 

Note that if F is non-orientable, then Hx(B 4 -  F ; Z ) = Z / 2  so that only 2-fold 
covers exist. The double branched cover of a MSbius band is Q)± 1, where the sign 
corresponds to a left or right twist in the MSbius band. It follows that the double 
branched cover of S 4 along RP 2 is +__ CP 2, for the two natural imbeddings of RP 2 
in S 4 [K3]. 
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When p >  2, the framed link is harder to draw. Each 1-handle in F gives a 
sequence of 2-handles which connect this 1-handle in B7 to its counterpart in B 4 t+1' 
i = 1, 2,..., p -  1. These 2-handles could be drawn as in Fig. 5. 

However it is easier to think of these 2-handles as "tunnels", and then to slide 
the left half of the ( p -  1) th handle back over all the previous tunnels until it is at the 
left and;  then do the same with the (p -2 )  th handle, and so on. We get Fig. 6. 

Doing the same steps we get the more complicated examples in Fig. 8. Note 
that in each case, the top half of the framed link looks like F, and is the place where 
all the left halves of the handles have been slid to. The bottom half is the result of 
folding down the right half of the handles as when passing from Figs. 6 to 7. The 
rule of thumb is to draw first the 2-handles gluing together B~ and B~, next (and 
underneath) the 2-handles gluing together B a and B 3, and so on, (in particular 
examine the first example in Fig. 8. It is the 5-fold branched cover of the trefoil 
knot along its fibered Seifert surface. This is known to give plumbing on the E 8 
graph and to have boundary equal to the Poincar~ homology sphere [KS]). 

Now consider the case when F is disconnected. Suppose F is k disjoint 
unknotted 2-balls in B 4. Then HI(B 4 -  F;Z)= Z k and we assume that our p-fold 
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Fig. 9 
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cover is determined by the homomorphism Zk~Z/p which takes each generator of 
Z k to the same generator of Z/p. When we glue B~ to B 4 along P~ and if2, we get 
B 4 with k -  1 1-handles attached. Each new B7 adds k -  1 more 1-handles so that 

0 
the p-fold cover is # ( p -  1)(k-  1)S 1 x B 3. If the homomorphism zk~Z/p  does not 
take generators of Z k to the same generator of Z/p, then Fi + is glued to ff~-÷ 1 by a 
homeomorphism which permutes the components of F;  we leave the details to the 
reader. 

If F consists of k disjoint surfaces in S 3, then to form the p-fold cover, we glue 
together the B~, i=  1 . . . .  ,p along the 0-handles of the surface as in the last 
paragraph, and follow by adding 2-handles to glue together the 1-handles of the 
surfaces as in the earlier paragraphs. Figure 9 shows some examples. 

Remarks. We have constructed a commutative diagram 

{surfaces in S 3} so,  {4-manifolds} 

{links in S 3} o,, {3-manifolds} 

where the surfaces in S 3 have boundary, Op takes the p-fold branched cover after 
pushing the interior into B ~, 4 i.e. ~gp(F)=M (F,p), and 0p is Op restricted to the 
boundary. We can ask to what extent Op and 0v fail to be monic or epic. Assume F 
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connected for the rest of Sect. 2. (Some of the following remarks can be better 
understood after reading Sect. 4.) 

First consider the case p = 2. Let z be the generator of the Z/2-action on S a 
given by 180 ° rotation about the y-axis union ~.  Let M 4 be described by adding 
handles to a framed link L which can be drawn so that each component y of L is 
invariant under z and ~ has two fixed points equal to 7c~xy-plane, (see for example, 
Figs. 4 or 23). Then a 4-manifold with boundary is in the image of O 2 iff it can be 
built from such a z-invariant framed link. Such 4-manifolds are rare; if the 
boundary is S 3, then it follows from Corollary 4.2 that such a 4-manifold is either a 
punctured connected sum of (S 2 x S2)'s or ( _  CPZ)'s. 

A 3-manifold is in the image of 05 iff its discription as surgery on a framed link 
can be changed by the calculus [K2] to a z-invariant framed link. It is difficult to 
decide, especially in terms of properties of the framed link, when this is possible. 
For example, the Borromean rings with zero framings give T 3 = S 1 × S 1 X S 1 which 
is not a 2-fold branched cover [F]. 

02 is not monic. Examples are given in [BGM]. Examples can also be 
constructed by the following procedure: start with a z-invariant framed link L 1 
with even framings (it determines a 3-manifold which is 02 of an oriented surface, 
say F1). Change L 1 by the calculus of framed links to a framed link which is not 
z-invariant. Then change back to an even framed link L2, corresponding to an 
oriented surface F 2. Possibly, 0F~ ~: OF 2. Such a construction was made by the first 
author in showing that the Brieskorn homology sphere Z(2,3,11) is the 2-fold 
branched cover of the (3,11)-torus knot, J~, and the knot J2 in Fig. 10. 

2~(2, 3, 11) lies in the Kummer surface with one component equal to the 2-fold 
branched cover of the usual Seifert surface F~ of J1 and having index-t6 and 
second Betti number 20, and the other component obtained by adding 2-handles 
to the framed link in Fig. 11. It is not hard by the calculus to make this link 
z-invariant, getting 02(J2). 

Recall that the 2-signature of a knot K, tr2(K), is index (02(F)) for any 
orientable Seifert surface of K; a s is a concordance invariant [KT]. Then Jl  4= J2 
because tr2(J1)=index O2(F1)=-16  and a2(J2)=index O(F2)=0, for F 2 an 
orientable Seifert surface for J2. 

To get an example where 0 2 is not monic, we can add enough copies of +_ RP 2 
to F 1 and F 2 ; then 02(F 1 ~ 11(+_ RP 2) --- ~92(F 2 ~= 12(_+ R p 2 ) )  because 02(F1) and 
O2(F2)  become diffeomorphic after connected summing copies of _+ CP 2. We are 
using here the fact that two simply connected 4-manifolds with the same boundary 



118 S. Akbulut and R. Kirby 

become diffeomorphic after connected summing with enough copies of + Cp2; if 
the two 4-manifolds have even intersection forms and the same index then it is 
enough to connect sum with enough copies of S 2 × S 2 [K2, p. 37]. 

To get an orientable example where O 2 is not monic, consider the boundary 
connected sum of F l and - F 1 ,  F ~ I j F  1, and also F 2 I _ I - F  2. Note that 

0(F~ l l -  Fi) = Ji ~ - Ji 

for i = t, 2 gives two distinct knots because of the unique factorization of knots into 
prime knots. But 

a2(J1 # - J1) = 02(J2 ~ - Jz) = O, 

so 

02(F~ a - F ,  # 11T a) = 02(F a H -  F2 :~ 12 T2 ) 

since 

0 2 ( T  2 - int B 2 ) = S 2 x S 2 - int B 4. 
Lens spaces occur in a unique way as 2-fold branched covers of 2-bridge knots 

or links [$2]. Birman and Montesinos conjecture that a lens space occurs as a 
2-fold branched cover of some other knot or link ~ rob lem 3.26 of [K1]). If true, 
then it can be found by the above procedure, but this seems hard to do. 

Given a framed link L (determining a 4-manifold ML) which is z-invariant so 
that ML=O2(.F k we can change it by adding (or subtracting) C)  ±1. Then F 
changes by connected summing (or cutting off) + RP: ,  i.e. a trivial band with a 
right or left half twist. If we change L by a z-invariant handle slide (i.e. by band 
connected summing one circle with the pushoff of another along a ~-invariant 
band) then that corresponds to a handle slide on F. Thus there is a "z-invariant 
calculus" on L, fixing 0ML, which corresponds under O z to a calculus on F fixing 
OF. 

This z-invariant calculus is related to a graph calculus of Bonahon and 
Siebenmann [BS] : To a weighted tree-like graph, F, they assign a surface F r in S 3 
made up of bands with n half-twists which correspond to vertices of weight n 
which are plumbed together whenever two vertices are joined by a 1-simplex. Then 
OF is a knot  called algebraic and they give a "canonical graph" associated with a 
given algebraic knot and a "calculus" of moves which relate any two graphs giving 
the same knot. 

A graph defines a plumbing which determines a framed link L in the usual way 
(e.g. [K2]). L is z-invariant and the corresponding 4-manifold M L is the 2-fotd 
branched cover of F. OM L is a graph-manifold. Then the "graph calculus" of 
Bonahon and Siebenmann corresponds under 2-folds branched covers to a 
z-invariant calculus for those T-invariant links that arise from graphs. 

Suppose now that p is not necessarily 2. Again the same 3-manifold can occur 
as the p-fold branched cover of different links. Gordon and Litherland [GL]  give a 
general construction of such a 3-manifold: start with a link of two, unknotted 
components, el and az, whose linking number is relatively prime to p. Let fll be 
the lift of a 1 under the p-fold branched cover of S 3 along a 2 ; similarly with f12. 
Then fll and fl: are knots in S 3 whose p-fold branched covers are the same 
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b = 2 k -  ~ 4 

Fig. 12 Fig, 13 2 2 2 

manifold M 3 (since M is the pZ-branched cover of S 3 branched over cq uct2). If ct 1 
and ez are chosen carefully, then fll and ~2 are different knots; Fig. 12 gives such a 
link (discovered by Gilter, [G]). 

If OFI=aF2=K, genus F l=genus  F z and are both orientable or both 
nonorientable, does it follow that Ma(FI, p)=M4(F2,P)? Yes, when K is the 
unknot (Theorem 4.1). Yes if we add enough copies of T2=S 1 x S 1 to F 1 and F 2, 
for this adds copies of S~x S z to M4(F~,p). Otherwise, there exist knots with 
inequivalent minimal Seifert surfaces (e.g. IT]) and we don't know in this case that 
M(F~,p)=M(F2,p), even for p=2.  It might be easier to show that 
M(F1, P) U - M(F2, P) decomposes as a connected sum of (S 2 x S2)'s or (_+ Cp2)'S. 

id 

. 

We extend the constructions of the last section to the cases where we add one and 
two handles to B 4, but F remains in B 4. 

One-handles are uninteresting. The attaching map for each 1-handle can be 
isotoped into a small 3-ball disjoint from F, so each 1-handle lifts to p 1-handles 
attached in the trivial way to the branched cover of B 4 along F. 

For 2-handles, we consider first the case where each 2-handle is attached to a 
framed circle which is disjoint from F. Then each 2-handle 2 lifts to p 2-handles 2 i 
in the p-fold cover, one attached to each B~, i=  1 ..... p. Consider the elementary 
case in Fig. 13, and recall Figs. 5-7. 

The 2i, i = 1, 2, 3, 4, are going to link the F~ in the obvious way. When the gluing 
2-handles are slid left over the "tunnels" as in passing from Figs. 5 to 6, we find 21 
linking all the gluing 2-handles. When we fold down the gluing handles, as in 
Fig. 7, and carry along the 2 i, we get Fig. 13. Note that in folding down the gluing 
handles, the )~i gets rotated 180 °, so that their orientations appear to change; this 
makes no difference here, but is important later in Sect. 5. 

The reader can deduce more complicated examples from Fig. 13, because any 
attaching circles, (disjoint from F), can be slid up near the 1-handles ofF,  and then 
the figures corresponding to Figs. 5-7 can be drawn. 

Now consider the case of a 2-handle 2 which is attached to a circle C whose 
algebraic intersection with F is a multiple ofp. Then 2 lifts to p 2-handles, 21 .. . . .  2p, 
which are attached to the p circles CI,. . . ,  Cp obtained by cutting C along F, lifting 
the components of C to each B~, and gluing end points together as each B~ is glued 
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Fig. 14 

M {F,31 

to B~i + i- Figure 14 gives an elementary example for p = 3. The framing of C~ is 
computed from the equation (2~2i).(2~2i)=p2-2, or, by symmetry 2i(2~2i)=2-2 
where 2~ also represents the 2-dimensional homology class represented by the 
handle 2 i. The equation follows from the fact that each intersection point lifts to p 
intersection points. 

Finally, suppose that we have several 1-handles ~1 . . . .  ,~r  and several 
2-handles 21, ..., 2 s attached to B 4 and we wish to construct the p-fold branched 
cover along the surface F. We are assuming that the p-fold cover of (B 4 minus the 
pushed in copy of F) extends over the 1 and 2-handles. 

Proposition. This assumption is equivalent to the existence of handle slides and 
isotopies so that the attaching circle of each 2-handle passes algebraically through F 
a multiple o fp  times. 

Proof. Let a2 i • F =f~ and let 2 i over toj algebraically ai~ times. I f#  is the meridian of 
OF in S a, generating H I ( S a - F ; Z ) = H I ( B 4 - F ; Z ) ,  then the homomorphism 
taking ~t to the generator of Z/p must extend over the handles. Each 2i can be 
viewed as a homology between fi/~ and ~ aijtoj. First we slide the 2-handles over 

J 
each other so that ~,~. F = f and ~2~. F = 0, i ~ 2, where f = l.c.d.(fl . . . .  ,fr). Then by 
shding 1-handles over each other, we can arrange that 21 go over ~o I algebraically 
a times, and zero times over the other coj, j ~ 2 ,  where a=l.c.d.(al~ .. . . .  al~ ). If we 
isotope one component of the attaching map of o~ through F m times, then we 
change ~2~. F to f + ma. Then f + ma = np for some m, n, or equivalently 1.c.d.(a, p) 
divides f,  exactly when we can extend the homomorphism taking # to 1 ~ Zip by 
sending each coj, j > 2  to O~Z/p and sending o t to meZ/p. But any extension can 
be changed to one of this type so we are done. 

Having moved the handles around so as to achieve the conclusion of the 
Proposition, we draw the branched cover as in the previous case. As an example, 
consider Fig. 15 [and remember what framing means when there are 1-handles 
present (see Sect. 1)]. It  is necessary to slide one foot of the one handle through F 
and then to branch. The framings are calculated as though there were no 1-handles 
present. Some handle slides and cancellation give Lo(3 , 2) x 1, where Lo(3, 2) is the 
punctured lens space. 

This example was chosen because it is the 2-fotd branched cover of B a, 
branched along the standard ribbon for the square knot. In general, let D be a 
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Fig. 15 
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ribbon disk in B 4. Then (B 4, D) is pairwise diffeomorphic to (B 4 union 1 and 
2-handles, B2). In other words, by choosing a non-standard handlebody for B 4, D 
can be seen as an unknotted B 2 in this picture. (This can be visualized by 
generalizing the following physical example in one lower dimension. Imagine a 
thick wire in a bathtub; as the water level rises, a water 1-handle is added 
whenever a wire 0-handle is passed, and a water 2-handle is added on passing a 
wire 1-handle.) In the case of the square knot, we first see (by letting water out and 
passing a saddle in D) that the square knot splits into the unlink with a 2-handle 
appearing (Fig. 16). An isotopy, followed by passing a minimum of D (giving a 
1-handle) gives the first picture in Fig. 15. 

. 

Let F be a surface with s o 0-handles, s 1 1-handles and s 2 2-handles, where we 
assume handles have been cancelled if possible. The intersection form on 
HI(F; Z/2) has rank r and nullity n, so we can divide the sl 1-handles into r (resp. 
n) 1-handles which form a basis for the non-singular (resp. singular) part  of the 
form. Note that s o is the number of components of F, the number of components 
of aF is s o + n -  s 2, and the rank r is even in the orientable case. 

If the number of components of an orientable surface F is greater than one, i.e. 
s o = rank Ha(B'*-F;Z)> 1, then throughout this section we will wish to assume: 

(*) the p-fold cover is determined by the homomorphism which takes each 
generator of HI(B 4-  F;Z) to the same generator of Zip. 
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Theorem 4.1A (The orientable case). Let  F be an orientabIe surface ~n aB 4 and 
suppose that dF is the unlink (o f  s o + n - s  2 components). Then (assuming ( ,))  the 
p-fold branched cover o f  B 4 along F (with int F pushed into int B 4) is 

~ [ ~ ½ , ~ -  ~)s ~ x s22. 

Remarks.  It should be evident that the 4 kinds of summands of Q come from the 4 
kinds of  handles in F. In the simple case of a connected Seifert surface of genus 
g =½r for the unknot, Q is just a punctured connected sum of g ( p -  1) copies of 
S z x SL 

Proof  The case where F is s o 0-handles has been covered in Sect. 2. Now suppose 
that F = S  2. We cut B "~ open along S 2 x [0, 1], which is the track of the isotopy 
pushing S 2 into B 4. We glue together p copies of B 4 along thickened S2"s. There is 

only one way to glue, up to isotopy and the result is ~ ( p -  t)S 3 x B 1. It helps later 
to understand the gluing as follows : to glue two B4's together along thickened SZ's, 
we first use a 1-handle to glue the 0-handles of the S2's together and then a 
3-handle to glue the 2-handles of the SZ's together. The 1-handle cancels one of the 
B4's so we are teft with B 4 and a 3-handle which is S 3 x B 1. With this interpretation 
it should become clear that the theorem holds when F is a disjoint union of 2-balls 
and 2-spheres, i.e. for r = n = 0. 

Next, we span each component o fdF  with a 2-ball D~, i = 1, ..., s 0, in S 3. We can 
assume that F intersects each D t transversely in circles. Let fli be an innermost 
circle and observe that it bounds a 2-ball B 1 in D t whose interior is disjoint from F. 
Surger F along fll using B 1 and call the result F r Note that we can obtain F from 
F1 by surgering F 1 along a 0-sphere 21 using the arc it bounds which is just a 
normal fiber to B 1. We continue to surger innermost circles in this way, obtaining 
a sequence F t and "~i, i=  1 ..... I. 

F = F t u D  1 u ... wDso is a closed surface in S 3, so by the loop theorem, there is a 
non-trivial circle fl;+l in /~ which bounds an imbedded 2-ball Bl+ 1 in the 
complement of ft. We surger along fit+ 1 to get Ft+ 1. We continue applying the 
loop theorem and surgering until/~ is a union of 2-spheres. Thus we have reduced F 
to Fro, a collection of punctured 2-spheres, and we can regain F by surgering, in 
reverse order, a collection of 0-spheres 2 i (using the arc normal to Bi), for 
i=1,  ..., m. 

Because F m lies in/~m, a collection of disjoint imbedded 2-spheres, it is easy to 
see that the 1-handles of F,, are untwisted, unknotted and unlinked; each 
contributes # ( p -  1)S 2 x B 2 to the branched cover. Assuming the theorem for Fi, 
we shall prove it for Fi_ r To get F t_ ~, we surger Ft along the 0-sphere 2~ using an 
arc ~ with endpoints {0tou~l}=2 ~. The proof now breaks into several cases, 
depending on whether or not ~t 0 and ~1 belong to different components of F~ and 
whether or not these components are closed. 

Suppose first that ~o and ~ belong to the same component of F i and that this 
component has boundary. Then the picture for F~_ ~ looks like that for F~ except 
for a pair of 1-handles as drawn. One of the 1-handles follows ~, but the other is a 
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Fig. 17 Fi 
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trivial, linking 1-handle which can appear at either end of the first 1-handle ; it is 
trivial because it is essentially fli which bounds Bi (see Fig. 17). 

The p-fold branched cover Qi-1 for F i_ 1 looks like Qi for Fi, but with the 
addition of the framed link in Fig. 18 (drawn with p=4).  The inner unknotted 
circle can be used to unlink its pair from everything else, to unknot its companion, 
and to change the even framing to zero (see Proposition 3 in [K2]); this gives the 
pair o ( ~ o  which represents an S2x S 2 in Qi-1. We iterate this process, always 
using the innermost unknotted circle. Then Q~_ 1 differs from Q~ by the connected 
sum of p - 1 copies of S 2 x S 2. Since the number of handles in F~_ l is the same as in 
F~ except that the rank has increased by two, the theorem follows for F~_ 1. 

The case when o% and ct 1 belong to the same closed component is similar, for 
the 2-handle produces the same 3-handles in Qi-1 as in Qt. 

Now suppose that ~o and ctl belong to different components of F~, both of 
which have boundary. The picture for F~_ ~ is similar to Fig. 17 except that the 
long one-handle goes to another component. We can cancel this one-handle with 
the 0-handle of the other component, and redraw the surface as in Fig. 19. Then 
Q~- 1 differs from Qi in having p - 1 less copies of S 1 x B 3 and p -  1 more copies of 
S2x B 2 coming from the extra unknotted, untwisted, unlinking 1-handle. Since 
F~_ 1 differs from Fi by having one less 0-handle and one more 1-handle, the 
theorem again follows for F i_ 1. 

Finally, suppose that ~o and ~1 belong to different components of F~, at least 
one of which is closed. Then the two additional 1-handles in F~_ 1 that come from 
the surgery on F~ cancel one of the 0-handles as before, and also the 2-handle in 
one of the closed components. Thus Q~_ 1 differs from Q~ by having p - 1  less 
S 1 x B3's and p -  1 less S a x Bl's, and F i_ 1 has one less 0-handle and one less 
2-handle, so the theorem follows for Fz_ r By induction, we are done. 



124 S. Akbulut and R. Kirby 

Theorem 4.1B (The Non-Orientable Case). Let F be a non-orientable surface in 8B* 
and suppose that OF is the unlink (of 8 o + n - s  2 components). Then the 2-fold 
branched cover of B 4 along F is 

where u+v=r .  

Proof First we span each component  of OF with a 2-ball. We can assume that these 
2-balls meet F transversely in circles in int F and in arcs; these arcs are properly 
imbedded in F and the 2-balls, but are transverse intersections only on their 
interiors (see Fig. 20). For  each arc A in a 2-ball D, we remove from both F and D a 
strip of the form int A × ( -  1,1). The remainder of F, called Fo, is an oriented 
Seifert surface for its boundary which is still the unlink. Spanning 2-balls for 8F o 
can be constructed; e.g. to the remainder of D, sew in a square [ - -  1,1] x [ -  1, 1] 
as in Fig. 21, to get a new 2-ball D'. 

Now, as in the orientable case, we surger F o until it consists of 2-balls, 
2-spheres minus 2-balls; call this surface Foo. The 2-fold cover of Foo is known, so 
we add the non-orientable one-handles to Foo and then undo the surgeries. Each 
2-ball D may contain several arcs, Aa, ..., A k. So we add k one handles, each with a 
left or right half twist to 8D' as in Fig. 22. These one-handles undo the removal of 
int A x ( -  1, 1). Since these one-handles essentially lie next to D', they do not link 
each other, and may be slid over to the left (see Fig. 22). Then it is clear that they 
contribute 4# u C P  2 4# v ( - - C P  2) to the branched cover where u is the number of 
one-handles with a half right twist and v those with a half left twist. 

As in the orientable case, a surgery either connects components or adds on a 
torus to Foo; both cases are treated as before. We must only note that when a 
torus is connected summed to Foo, then the 2-fold cover changes by S 2 x S 2, and in 
the presence of a +_CP 2, this is the same as connected summing with 
CP 2 4e ( -  CP 2) (see [K2],  Proposition 2). 

Corollary 4.2. Let p# be the 4.manifold constructed by plumbing on a graph. Suppose 
8P 4 is a homotopy 3-sphere. Then p ,  is diffeomorphic to ( 4# kS  2 x S 2) - int B 4 or to 
(4# kCP 2 4# I ( -  C p 2 ) ) -  int B 4 ; the former occurs when the weights or framings on the 
graph are all even, the latter when some are odd. (For an independent proof, see 
[NW].) 

Proof. Since 0P 4 is a homotopy  3-sphere, the graph can have no cycles, i.e. it is 
simply connected and is called a tree. Plumbing on a tree can always be described 
by a framed link which has an involution z (see end of Sect. 2) as indicated in 
Fig. 23. Such a 4-manifold is a double branched cover of B 4, branched over a 
surface F which "looks like" the top half of the framed link (again see Fig. 23}. 
Thus 0P is the double branched cover of S 3 over OF. Since 0P is a homotopy  
sphere, we know from [R]  and [S1] that OP=S 3. Also, 0F has only one 
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component, for otherwise HI(dP ) 4: 0. By [W] it follows that ~F is the unknot. The 
Corollary now follows from the theorem. 

Corollary 4.3. Suppose ff is a closed surface of k components imbedded in S 4 and 
consists of a surface F in S 3 with 3F the unlink and some trivial 2-balls in the 
4-handle of S 4. Then the p-fold branched cover of S 4 along P is 

# g (p -  1)S I x $2 ~ ( k -  1 ) ( p -  1)S 3 x Sl if ff is orientable of genus g 

or 

#uCp2 # v ( - C p 2 ) # ( k - 1 ) S a  x S 1 if  F is non-orientable, p =2 ,  and 
u + v = rank HI(P ;  Z2). 

. 

Now we consider the case of a connected surface F in CP 2, SUCh as complex curves 
of degree p. Recall that CP 2 is built from a 0-handle, a 2-handle B 2 x B 2 attached 
to the unknot with framing one by an attaching map qT:dB 2 x B2--,S 3 with 
tp(S 1 x0)=unknot=q~,  and a 4-handle. We will assume that F = F o u F  4 where 
Fo C~9(0-handle) and F 4 C O(4-handle). 
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Since O(0-handle)nO(4-handle) = S 3 - ~0(S 1 x B2), we can assume using transver- 
sality that the only part  of F not lying in O(0-handle) is some copies of B 2 lying in 
0(4-handle) of the form B 2 x q C B 2 x S 1 C B 2 x B 2 = 2-handle. So we could redefine 

k 
the decomposition of F as F 4 = i~1 B2 and F 0 = F -  int F,v 

Since F is connected, we can find in F 0 some smooth, disjoint arcs ill, 
i = 1,..., k -  1, such that fli joins B~ to Bi2+ a, and each fll lies in S 3 - ~o(S 1 × B3). We 
can thicken each fl/ to a band fli × [ - 1 , 1 ]  in F 0 so that d/~i x [ - 1 ,  i-] lies in 
OBiuOB~+ 1. Now we once again redefine the decomposition of F by transfering the 
bands fl~ x [ -  1, I] ,  i = 1 . . . . .  k -  1 to F 4 and letting F 0 = F -  int F 4. The point to 
this is that F 4 now consists of one 2-ball in t3(4-handle). 

Then the p-fold branched cover of CP 2 along F consists of the p-fold cover of 
the 0-handle branched over F o (with int F 0 pushed in), the 2-handle (unbranched), 
and the 4-handte branched over an unknotted 2-ball. The 2-handle lifts to p 
2-handles and the 4-handle to one 4-handle. The above argument works equally 
well for a surface F in a manifold M 4 built with more than one 2-handle, so we 
have proved the following theorem. 

Theorem5.1. Let M 4 be a smooth 4-manifold built with one O-handle, some 
2-handles, and one 4-handle. Let F be a closed, connected surface, smoothly inbedded 
in M so that F = F o wF 4 with F i C O(i-handle), i= 0,4. Then the p-fold branched cover 
of  M along F can be built with only one O-handle, some 2-handles, and a 4-handle. 

Corollary 5.2. The p-fold branched cover of CP 2 along any non-singular complex 
curve can be built without 1 and 3-handles. 

Proof The curve has some degree d, in which case it is equivalent, under ambient 
isotopy, to the curve ¢ given by x d + y d + z n = 0 .  The equation z = 0  defines a 
complex line in CP 2 which we take to be B 2 x 0wD where B z x 0 is the cocore of 
the 2-handle and D is the trivial 2-ball that S t × 0 bounds in the 4-handle. Then 
~ n { z = 0 }  is d points and ~c~(CP 2 -  {z=0}) is equivalent to the affine variety 
x d + y d = e  in C 2 = ( C P  2 -  {z=0}). We can assume that our 0-handle is the unit 
4-ball B 4 in C 2 and that e is relatively small. Then 

(C 2 - int B 4, S 3 , B4)~ {x a + yd = e} ~ (L × [1, ~ ) ,  L, F~) 

where L is the (d, d)-torus knot  ( =  d Hopf  circles) and F~ is the Milnor fiber. But 
Milnor constructs an isotopy of F~ onto F o, the fibered Seifert surface for L in S 3 
([M2], p. 53). Thus we see • represented by a surface F = F o u F  4 where F 4 is d 
2-baits. The corollary now follows from Theorem 5.1. 

Corol lary 5.3. An), non-sinoular complex surface of  degree d in CP a can be built 
without 1 and 3-handles. 

Proof Such a surface is the d-fold branched cover of the non-singular complex 
curve of degree d in CP z. 

Corollary 5.4. Let V~ = {w p -  Q(x, y)=e} be an affine variety in C 3 with an isolated 
sinoularity at the origin where Q(x, y) is a complex polynomial. Then for small 
enouoh ~>0,  V~caB 6 can be built with one O.handle and some 2-handles. 
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Fig. 24a-d 

a b 

J 

c d 

Proof V~ is the p-fold branched cover of the curve {Q(x, y )=  e}. But, once again, 
{Q(x,y)=e}c~B 4 can be isotoped onto the fibered Seifert surface F o of 
{Q(x , y )=e}nS  3. Thus V~nB 6 will be the p-fold branched cover of B 4 along F o. 

Corollaries 5.3 and 5.4 were independently proved in 1976 by Harer [H]  by 
different methods, and Mandelbaum [M1] has proved Corollary 5.3 for complete 
intersections. Corollary 5.4 partially answers affirmatively a conjecture of Milnor 
([MZ], p. 58). 

The arguments in the above proofs not only show the existence of handlebody 
decompositions without 1 and 3-handles, but indicate how to draw the framed 
links for the 2-handles. For example we do this for the complex surfaces V d of 
degree d in CP 3, d= 3, 4, 5. 

V 3 is the 3-fold branched cover of the cubic in CP 2. This cubic is represented by 
FowF 4 where F o is the fibered Seifert surface for 3 Hopf  circles, and F 4 is three 
2-balls in O(4-handle) (see Fig. 24a and recall that q~ is the attaching circle of the 
2-handle). We can choose our bands, Bx x [ -  1, t ]  and f12 x [ -  1,1] to be two of 
the half twisted bands in Fig. 24a, so that when the bands are shifted to F4, then F o 
becomes the fibered Seifert surface for the (2, 3)-torus knot (Fig. 24b), and F 4 is one 
2-ball. 

We redraw the Seifert surface F 0 as in Fig. 24c. When we cut B 4 along F o 
pushed into B 4, tp is cut at 3 points. Then we glue together 3 copies of B 4 and fold 
down (as in Fig. 8) to get Fig. 24d. The attaching circle tp lifts to 3 circles, 
q~a, tO2, q~3, which must be the attaching circles of the three lifts of the 2-handle of 
CP 2. Thinking of (pa, tP2 and q~3 as 2-dimensional homology classes, we get 
(~01 + q~2 + q~3) 2 = 3tO 2 = 3, since each self intersection poing in CP 2 lifts to three 
above. Or, by symmetry, tp~(~oa + ~o 2 + ~%) = 1. But we compute (via linking) that 
q~l" tP2 = tPl "tP3 = 1, so q~2= _ 1 =q~2 = q73 .2  2 

This complex manifold, 1/3, is in fact diffeomorphic to CP 2 ~ 6 ( -  Cp2), and it 
is instructive to slide handles so that Fig. 24d turns into seven unknotted, unlinked 
circles with one + 1 and six - 1  framings. 

The 4-fold branched cover of the quartic in C P  2 is the Kummer surface; a 
detailed description of it is given in [HKK] ,  and we describe it later as the 2-fold 
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Fig. 25 

Fig. 2,6 J 

branched cover over the sextic. We turn instead to the quintic which, in analogy 
with the cubic, is represented by a surface F which consists of the (4, 5)-torus knot 
in S a, bounding its usual Seifert surface F 0 in B 4, Fig. 25, and bounding a 2-ball F 4 
in O(4-handle). We redraw F 0, Fig. 26, and construct the 5-fold branched cover, 
Fig. 27. This manifold, the quintic surface, is obviously simply connected and has an 
odd, indefinite intersection form, so it is homotopy equivalent to 

9CP 2 #e 4 4 ( -  CP 2) (see [MH]). Unlike the case of the cubic, the quintic is not 
known to be diffeomorphic to this connected sum of (+  Cp2)'s. In fact, we are 
unable to decompose the quintic into any sort of connected sum, even 
M 4 ~ +_ CP 2. 

It is known [MM] that V 5 ~ CP 2 is diffeomorphic to ~ 10CP 2 @ 4 4 ( -  CP2). 
We have not figured out how to blow up a + 1 unknot in Fig. 27 so that by 
obvious handle sliding the framed link decomposes into the unlink, but a 
reasonable guess is to blow up the + 1 unknot around one or more of the bands 
with the - 1 full twist. This would immediately give some unlinked - 1 unknots. 

The quartic or Kummer surface (see [HKK])  is known to be the 2-fold 
branched cover of the sextic curve in CP 2. In analogy with the cubic and quintic, 
the sextic can be described as the usual Seifert surface F 0 of the (6, 5)-torus in S 3 
which is capped off in CP 2 by a 2-ball in a(4-handle). Figure 28 shows the Seifert 
surface with the attaching map of the 2-handle. Figure 29 shows the 2-fold 
branched cover. 
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A different handlebody decomposition for the Kummer surface along with the 
half-Kummer surface, and some logarithmic transforms (so far requiring 1 and 
3-handles) will appear in [HKK]. 

Note that the second Betti number of the p-fold branched cover of CP 2 over a 
non-singular curve of degree p is p -  1 times twice the genus of the (p ,p-  1)-torus 
knot plus p, i.e. (p -1 )Z(p-2)+p=p3-4p2+6p-2 .  The index is given by 
/7(/72--4)/3. 
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