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NOTE ON TWO THREE-DIMENSIONAL MANIFOLDS WITH THE
SAME GROUP*

BY
J. W. ALEXANDER

1. Poincaré has proved that there exist 3-dimensional manifolds with
identical Betti numbers and coefficients of torsion but which are nevertheless
distinguishable in the sense of Analysis Situs by the fact that they have
different groups.t It is proposed to set up an example of two 3-dimensional
manifolds which are by no means equivalent but which cannot even be
differentiated by their groups. Since the manjfolds have the same group,
they also have the same Betti numbers and coefficients of torsion, for in the
2-sided ‘3-dimensional case, these other invariants are functions of the group
alone.

. 2. To clarify certain points that will arise later on in the discussion, we
shall begin by recalling explicitly several well-known and quite obvious
properties of an anchor ring, 4, lying in ordinary 3-dimensional space.

(@) The ring 4 may be made simply connected by means of two cuts, one
along a generating circle, the other along a circle which intersects the first in
one and only one point. If, therefore, we denote by a and b respectively the
operations of describing these two curves in preassigned senses, the group of
the surface will be the group generated by the operations a and b connected
hy the single relation aba 4 = 1. In the discussion that follows, the two
circles determining ¢ and b will also he referred to by the symbols for the
corresponding group operations, when this can be done without confusion.

(b) The circle @ bounds a 2-cell that reduces the interior of the anchor ring
to a simply connected piece. Any other simple closed curve with this property
may be deformed continuously on the surface of the ring into coincidence
with .

(¢) A surface which in its initial position coincides with the anchor ring 4

* Presented to the Saciety, September 4, 1919,

tRendiconti di Palermo, vol. 18 (1904), p. 45. fee also Dehn, Mathe-
matiseche Annalen, vol. 69 (1910).

1 Every curve on the anchor ring which bounds in the interior region corresponds to a

group operation ¢f | and if the curve is to be 4 simple curve, we must have &k = £ 1, cf.
Poincaré, loc. cit., pp. 26 et seq.

339
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may be deformed continuously within the ring unti} it reduces to an arbitrarily
thin tube bounding as small a neighborhood as we please of some suitably
chasen closed curve interior to the ring.

3. With these facts in mind, let us consider a manifold, M, made up of
two 3-dimensional pieces separated by a common surface of genus 1 and such
that either of the pieces may be mapped with its boundary on the interior
and surface of an anchor ring 4 in ordinary 3-space. We cannot expect to
crowd the entire manifold into the 3-space without cutting it up or forcing
it to overlap itself, but we can represent it conveniently in schematic form
by a diegram made by mapping one of the regions in the manner indicated
ahove and tracing on the surface 4 of the ring the boundary [ of a 2-cell that
reduces the omitted region to a simply connected piece.” The curve I, which
is unique except for continuous deformations of itself (§2b), determines with-
out ambiguity the way in which the missing elements must be attached to
the diagram in order to completely reconstruct the manifold. Starting with
any non-bounding curve { on the anchor ring, we may at once build up a
manifold of the type M .- ‘

The invariants of the manifold can at once be read from the diagram. Let
the operation of describing the curve I in a properly chosen sense he a” b
(7 = 0) in terms of the fundamental operations ¢ and &, defined in Section
2¢. The group of the manifold is then the group of the surface 4 modified
by the addition of the two identical relations @ = 1, and a° 5" = 1, corre-
sponding to the houndaries of the cells that reduce the two regions of the
manifold to simply connected pieces. In other words, leaving out the case
7 = 0 with which we shall not be concerned, it is the group generated by a
single operation & such that 8 = 1. The Betti numbers (as defined by
Poincaré) are P; = P, = 1, since every curve bounds when counted r times,
and there is one coefficient of torsion, 7, whenever 7 is greater than one.

4, From now on, the discussion will be restrieted to two particular diagrams,
obtainable as follows: :

Trace on the anchor ring 4 five non-intersecting circles, each equivalent to
the cirele b and so spaced that their points of intersection with the circle «
divide the latter into five equal arcs. Then, cut the anchor ring along the
circle @, and make a continuous deformation of the cut surface into itself
such that the edge of the cut containing the initial points of the b curves remains
fixed, while the edge containing the terminal points rotates through an angle
2. Lastly, re-join the two edges of the cut. The diagram D thus obtained
consists of the anchor ring 4 and a curve l = ab’.

The second diagram D’ will be obtained in a similar way, the sole difference

* This is a simple example of Heegaard’s diagrams. Cf. Heegaard, [naugural dissertation,
Copenhagen, 1898, or the French translation of the same, Bulletin de la Sociéts -
Mathématique de France, vol. 44 (1918}, p. 161,
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being that the edge of the cut will be rotated through the angle £, so that
the curve finally obtained will be ¥ = ¢**. It may be well to observe that
all the diagrams obtained in the ahove manner except that the edge of the
cut is rotated through an angle (2rk + 27 ), where k is any integer or zero,
represent the same manifold as D, since any one of these diagrams (including
the interior of the anchor ring) can be mapped uniformly on . 1In a like
manner, the diagrams obtained by a rotation through an angle (27k + £7)
all represent the same manifold as D’. There is, however, the following
essential difference between diagrams of the two classes D and I which we
shall use later. In diagrams of the class D, the points of intersection of the
two curves o and [ are passed in the same cyclic order (12345), whether we
describe one of other of the curves in the positive sense. In diagrams of the
class D', if the points are passed in the order (12345) as we describe the
curve @, they are passed in the order (13524) as we describe the curve I’

5. Let M be the manifold determined by the diagram D. Then as an
immediate consequence of Section 2z, we can suppose that the points of the
diagram correspond to those of the entire manifold excepting the points of an
arbitrarily thin tube enclosing some curve ¢ of the omitted region. Further-
more, if A be any other diagram defining the same manifold, we can assume,
by again applying Section 2¢, that A represents only that portion of the
manifold within an arbitrarily thin tube about some curve 4 which can always
be so chosen as not to intersect the curve ¢. Therefore, we can suppose that
the surfaces of the two diagrams correspond to non-intersecting surfaces of
the manifold, and we can map the diagram A on the interior of the diagram I},
in the form of a thin tube T winding about in the portion of 3-space interior
to the anchor ring 4 bounding the diagram 1),

We are now ready to show that no diagram A defining the manifold M
can possibly be the diagram I}'.

6. We observe that the first Betti number of the portion of 3-space occupied
by the diagram D and bounded by the anchor ring 4 is 2, since all curves in
this region are homologous to zero or to the non-bounding curve 5. Suppose
we remove from this regioh the interior of the tube I'. Then, however the
tube T may wind about, the first Betti number of the remaining region Ris 3,
and to each curve in the region, there can he associated a symbol

ka' 4+ Ab,

where o’ corresponds to the curve on the tube T that bounds a 2-cell making
the interior of the tube simply connected. A necessary condition that a
curve of the region R bound a Z-cell is that

k@’ +Xb ~ 0
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in the notation of Poincaré, or, if we use an algebraic notation in which o’
and b are merely treated as linearly independent marks,

ke’ + A5 =0,
Now, the symbol for the curve I = ab® on the diagram D is
Ga’ + 56

where {8| denotes the number of times (algebraically), that the tube T winds
around the anchor ring A4, and where the sign of 8 depends on the determina-
tion of the positive direction on the curve a’. Therefore, a necessary condition
that a curve of the region R bound a 2-cell in the entire part of the manifold
M exterior to the tube T is that its symbol satisfy a relation

xe! + M6+ alfa’ + 5b) ~ 0
or, in the other notation,
(1) «’ + kb =0 mod (ba’ -+ 5b).

Suppose A were the diagram 1Y of Section 4. Then the curve I of the
diagram would have the symbhol

(5k + 2)a’ = 56b.

For, an describing the curve I’ in the positive sense, we would pass aover the
points where it met the curve a’ in the cyclic order (13524), so that each of
the five arcs of I would wind % + % times around the tube 7. Moreover,
since the curve I’ would bound in the part of the manifold exterior to the tube
T, we would be led, by (1}, to the congruence

{2) (bk +2)a" £ 560 =0 mod (8a’ + 5b).

. However, it is easy to see that the congruence (2) is false. For, if § = 0,
we are led to 5% + 2 = 0, which is false, while if 8 + 0, we are led to
# = + (5k + 2) which implies

8=+ 2 modS,

whereas #? is always congruent to 0 or % 1, modulo 5.
Therefore, the diagram D’ does not determine the same manifold as the
diagram ).

Paris,
December, 1918



