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ON THE CHAINS OF A COMPLEX AND THEIR DUALS
By J. W. ALEXANDER
INSTITUTE FOR ADVANCED StUDY, PRINCETON, N. J.

Communicated July 8, 1935

Let C be a finite or infinite topological complex. With each ¢-cell of C
we shall introduce a pair of symbols E® and Fj. An i-chain will be any
finite linear combination of symbols of the first kind,

K9 = 5a°ED, (1)
s .
where the coefficients o’ are elements of any preassigned additive group 4.

An i-function will be any linear combination, finite or infinite, of symbols
of the second kind,

Ly = 253331"(?), 2)

where the coefficients §; are elements of the character group B of 4 (the
group of all representations of 4 on the unit circle in the complex plane).
If we designate the points of the unit circle by a real parameter \, modulo 1,
we can construct a bilinear form

(ﬂsrat) = X\tw (mOd 1), (3)

such that M is the point on which the character 8; maps the group element
o', We can then form the expression

(L(i): K(l)) =2 (65: aS), (mOd 1): (4)

which will be called the integral of L over K.
The classical theory of connectivity may be summarized as follows. We
orient the cells of C and denote by

{E<§): F(tz —_ 1)}) (= Oy 1’ —1)y . (5)

the incidence number between the oriented i-cell associated with E® and
the oriented (7 — 1)-cell associated with F % — - We then define a linear
operator @8 transforming an i-chain K® into an (i — 1)-chain

BK® = 3 o {ED, FY_ ) Ef =V, a1l =2
s, ) t aS.O — 0 ’ (6)
called the boundary of K. The chain K? is said to be closed if its
boundary vanishes; it is said to be bounding if there existsany K * ¥ such
that BK¢ * 1 = K®. The incidence numbers (5) satisfy the well-known
relations
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z (EQ, Fu _ ) {EF ™0, Fi 5} =0, )

from which we obtain, at once,
BK? = 0. (8)

By (8), the group ¥ of all bounding i-cycles is a subgroup of the group &

of all closed i-cycles. The group &' mod V' is the i-th connectivity group of C.
We now propose to introduce a new linear operator § dual to 8. The

operator § will transform an s-function L, into an (¢ -+ 1)-function '

6L = Ex B, {EF TV FoY Fi 41y 9)

which will be called the derived of L;). We shall say that L is exact if
its derived vanishes and that it is derived if there existsany L _ ;) such that
6Ly — 1y = L. By (7), the operator § satisfies the relation

52L(,') = 0, (10)

dual to (8). Thus, we see that the group ; of all derived s-functions is a
subgroup of the group ®; of all exact s-functions. We call the group ®;
mod ¥; the dual of the i-th connectivity group of C. This group is easily
seen to be the character group of the i-th conmectivity group.

Let K, cf. (1), be an arbitrary i-chain and L; _ ) an arbitrary ( — 1)-
function,

Li_y = 283 vsFi - 1. (11)

Then, by a simple computation, we obtain the relation

(L — 1y, K?) = (Li— 1y, BK?) = 52«[ (EP, F; _ ) (vs.d), (12)
which says that the integral of the derived of L _ 1y over K® js equal to the
amlegral of L(; _ 1) itself over the boundary of K. By (8), (10) and (12), we
also have the corollary: the integral of a derived function 6L _ 1y over a
closed chain K? is always zero; likewise, the integral of an exact function
L — 1) over a bounding chain BK”. The integral of an exact L over a
closed K will be called the period of L over K. It will, in general, be
different from zero.

Formula (12) is analogous to the well-known theorem of Stokes on mul-
tiple integrals. The coefficients o’ and v, in (1) and (11) need not be
chosen in exactly the manner indicated above. If we take the coefficients
o’ to be arbitrary integers and the coefficients v, to be arbitrary real num-
bers, and if we write, in place of (3), the relation

(vsa!) = e, (not reduced mod 1), (13)
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then (12) becomes the exact analogue of the theorem on multiple integrals
and reduces to the latter by a passage to the limit.

ON THE RING OF A COMPACT METRIC SPACE

By J. W. ALEXANDER
INSTITUTE FOR ADVANCED STUDY, PRINCETON, N. J.
Communicated July 8, 1935
Let C be a compact metric space. We pick an arbitrary additive group

A and define an i-function of C to be any single-valued, skew symmetric
function,

F(popr ... i), : )

of 2 4+ 1 variable points of C, where the values of F are elements of 4.
(For the case ¢ = 0 the function F is an ordinary point function on C.)
The function F will be said to be locally zero,

F = 0 (locally), @)
if there exists an ¢ > 0 such that F vanishes whenever the distances between
the points p; (s = 0, 1, ..., ) are all less than e. Given any ¢-function F

we construct an (¢ 4+ 1)-function é F which we call the derived of F and which
we define by the formula

SF(popr. .. i 1) = —_i—.

i+ 1
We say that Fis exact if 6 F is locally zero. For the case ¢ > 0, we say that
F is derived if there exists any (¢ —1)-function G such that 6G = F. For the
case ¢ = 0, we say that F is derived if it is constant over C. By the skew
symmetry of F we have, at once,

82F = 0, “4)

Z;(—l)sF(PoPL cPs —1Ps 1D 1) 3)

from which we conclude that every derived fumction is exact. Now, the
exact ¢-functions on C form a group ®; with respect to addition and, by (4),
the derived ¢-functions form a subgroup ¥; of ®;. We form the group
®; mod ;. This group s a topological invariant analogous to the i-th con-
nectivity group of C, as defined by Vietoris. In fact, if the coefficients of the
Vietoris cycles are taken to be elements of the character group B of 4, then
the i-th conmectivity group of C may be identified with the character group of
the group ®; mod ¥;.

A more interesting invariant can be obtained when 4 is the group of a
ring, so that the elements of 4 can be both added and multiplied. We



