
Annals of Mathematics

On Types of Knotted Curves
Author(s): J. W. Alexander and G. B. Briggs
Reviewed work(s):
Source: The Annals of Mathematics, Second Series, Vol. 28, No. 1/4 (1926 - 1927), pp. 562-586
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1968399 .
Accessed: 10/06/2012 10:55

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of
Mathematics.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=annals
http://www.jstor.org/stable/1968399?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp


ON TYPES OF KNOTTED CURVES.* 

BY J. NV. ALEXANDER AND G. B. BRIGGS. 

1. The problem of determining the various possible types of closed, 
knotted curves in 3-space was originally studied by Gauss, and has since 
received the attention of a number of other mathematicians.t Very little 
progress seems to have been made, however, toward finding definite, cal- 
culable invariants with which to distinguish one type of knot from another, 
though classified tables of the more elementary knots have been arrived 
at by somewhat empirical methods.+ 

A number of years ago,? one of the authors of the present paper pointed 
out that if thie space of a knotted curve be covered by an n-sheeted 
"Riemann 3-spread" (the three dimensional analogue of a Riemann surface) 
with a branch curve of order n - 1 covering the knot itself, then, the 
topological invariants of the covering spread will also be invariants of the 
knot. He further calculated the Betti numbers and coefficients of torsionli 
of the covering spreads determined by some of the simpler knots and found 
these invariants sufficient, in the cases actually examined, to distinguish 
one type of knot from another. The torsion numbers to which we have 
just referred have recently been rediscovered by K. Reidemeister? who 
derives them from a study of the group of the space complementary to 
the knot and then identifies them with the invariants of the Riemann 
covering spreads. 

In this paper, we propose, first of all, to obtain the torsion numbers 
of a knot by direct, elementary considerations, without appealing to the 
idea of a Riemann covering spread. Next, we shall prove, with the aid 
of these invariants alone, that all types of knots of eight or less crossings 
listed as distinct in the knot tables of Tait and Kirkman actually are 

* Received April 28, 1927. 
t For a list of references on the subject of knots, the reader is referred to the article on 

Analysis Situs, by Dehn and Heegaard, Encyclop. der Math. Wiss., m A B 3, pp. 207-213. 
References to the knot tables of Tait, Kirkman, and Little will be found in the Dehn- 

Heegaard article, loc. cit., p. 207. 
? In a paper read before the National Academy, Nov., 1920, cf. Veblen's Cambridge 

Colloquium Lectures on Analysis Situs (1922), last page. 
I For the definition of these numbers cf., for example, Veblen's Colloquium Lectures, 

pp. 109, et. seq. 
? K. Reidemeister. Knoten und Gruppen. Abh. aus d. Math. Semin. iler Hamburgischen 

UTniversitit, 1926, pp. 7-23. See also Elementare Begrindung der Knotentheorie, pp. 24-32. 
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distinct. We shall also prove that among the eighty-two listed types of 
knots of nine or less crossings three cases arise where knots of presumably 
distinct types have the same torsion numbers, but that, in all other cases, 
the torsion numbers are sufficient to distinguish one type of knot from 
another. Finally, we shall describe, briefly, the method of obtaining the 
torsion numbers of a knot from its associated Riemann covering spreads, 
after the manner in which the invariant.s were originally discovered. 

2. To simplify the exposition as much as possible, we shall approach 
the knot problem from the elementary, combinatorial point of view. Thus. 
for our purposes, a knot will be nothing more than a simple, closed, sensed* 
polygon in the space of three real variables x, y, z. The knot will be 
composed of a finite number of straight segments, or edges, together wnth 
their end points, or vertices. 

A knot will be subject to certain simple transformations. On any edge 
AB we may construct a triangle ABC, so drawn that neither the vertex C, 
the edge A C, the edge CB, nor the plane triangular region bounded by A B C 
has a point in common with the knot. WVe may then transform the knot 
bv removing the edge AB and substituting in its place the edges AC and CB, 
along with the vertex C. 'We may also perform the reverse operation which 
consists in replacing a pair of consecutive edges AC and CB, together 
with their conmuon vertex C, by a single edge AB, provided neither the 
edge AB nor the plane triangular region bounded by ABC has a point 
in common with the knot. Each of the transformations here described 
will be called an elemnentary deformation. 

The operation of subdividing an edge AB into two edges AC and CB 
along which a vertex C may be regarded as a degenerate case of an 
elementary deformation; so also may the inverse operation: the amalgam- 
ation of two consecutive collinear edges and their comnion vertex into 
a single edge. By an extension of terminology, these degenerate operations 
will also be described as elementary deformations. Evidently, a degenerate 
elementary deformation is the resultant of three suitably chosen non- 
degenerate ones. 

Two knots will be said to be of the same type if, and only if, the 
one is transformable into the other by a finite succession of elementary 
deformations. A knot will be said to be uwnknotted if, and only if, it is 
of the same type as a sensed triangle. Any two sensed triangles are, (if 
course, of the same type, 

Let K be any knot. Then the knot K-' obtained by reserving the 
sense of the polygon K will be called the inverse of the knot K. More- 

* It is, perhaps. more customary not to impose the condition that the polygon be sensed. 
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over, the knot K' obtained by reflecting the knot K about the xy-plane 
will be called the reflection of the knot K. In general, no two of the 
three knots K, K-', and K' need be of the same type. 

3. If we project a knot orthogonally upon the xy-plane, we shall, in 
general, obtain, a singular polygon 1 with at most a finite number of 
crossing points, where each crossing point corresponds to two distinct 
points on different edges of the knot. In certain exceptional cases, the 
polygon H will have singularities of a more complicated sort, but we shall 
agree to leave such cases aside, once and for all. It will evidently be 
legitimate to do this, because a knot with an exceptional projection may 
always be transformed into a neighboring one with a projection of the 
ordinary sort by making a slight shift in the position of one or more 
vertices. Moreover, the transformed knot will be of the same type as the 
original one, since the shifting of a vertex may always be accomplished 
by means of two properly chosen elementary deformations. 

The projection of a knot upon the xy-plane will serve as a schematical 
picture, or diagram, of the knot itself, provided we indicate by some suitable 
notation which of the two segments at each crossing point is to represent 
the "upper" branch of the knot and which the "lower". The device 
ordinarily used is to indicate the upper branch by a solid line and the lower 
one by a line from which a small segment has been removed in the neighbor- 
hood of the crossing point (cf. Fig. 1 a). A better notation for our present 
purposes will be the following. We imagine an observer standing on the 
xy-plane and describing the polygon of the diagram once in the positive 
sense (as determined by the positive sense on the knot), thereby passing 
twice through each crossing point. Then, as the observer passes through 
a crossing point on the segment representing an upper branch of the knot, 
we mark with dots the two corners on his right; as he passes through 
a crossing point on the segment representing a lower branch, we make 
no notation of any sort. The resulting system of dots will enable us, at 
a glance, to distinguish between the segments corresponding to upper and 
to lower branches of the knot respectively; (cf. Fig. lb which represents 
the same knot as Fig. la, but in the new notation). 

If a figure like a diagram be formed without reference to any particular 
knot in space, by merely drawing a sensed polygon H in the xy-plane, 
deciding on the segments to represent the upper and lower branches at 
each crossing point, and dotting the corners accordingly, there will always 
be a family of knots in space having the figure in question as their common 
diagram, provided any point of the polygon Ii except a crossing point is 
allowed to represent a knot vertex. If only the vertices of the polygon 
I7 are allowed to represent knot vertices, it may happen, in certain cases, 
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that there exists no knot with sufficient flexibility to weave over and 
under itself in the manner precribed by the diagram. To make matters 
definite. we shall agree that only the vertices of a diagram are to correspond 
to the vertices of a knot, but we shall not prohibit diagrams with three 
or more collinear vertices. Thus, every figure of the type described above 
may be made into a true diagram, if it is not one already, by intoducing 
a certain number of new vertices at suitable points on the edges of the 
polygon 17, thereby subdividing the edges in question into sub-edges. 

Since the knots corresponding to any giving diagram are all of the same 
type, as may readily be proved. the problem of classifying knots reduces 
to that of classifying diagrams. WVe shall say that two diagrams are of the 
same type if they correspond to knots of the same type; that a diagram D, 
is transformable into a diagram D2 by an elementary deformation if some 
knot K1 with the diagram D, is transformable into some knot Ks with the 
diagram D2 by an elementary deformation. A necessary and sufficient condition 
that two diagrams D, and D2 be of the same type is, thus, that one be trans- 
formable into the other by a finite succession of elementary deformations. 

If a knot K is the inverse of a knot L, the diagram of K will be called 
the increse of the diagram of L. Similarly, if a knot K is the reflection 
of a knot L, the diagram of K will be called the reJfection of the diagram of L. 

4. An elementary deformation d transforms a diagram D into a diagram D' 
which may be very different in appearance from D. We shall l)rove. 
however, that it is always possible to perform the deformation 6 inl a 
stepwise manner, in such a way,. that, at each step, the change undergone 
by the diagram on which we operate is comparatively slight. Since the 
diagram D is transformable into the diagram D' by an elementary deformation, 
the polygons of the two diagrams must be relate to one another in the 
following simple manner: A certain edge AB of one polygon corresponds 
to a vertex C and a pair of edges AC and CB of the other, but the 
remaining parts of the two polygons are identical. To fix matters, we shall 
so assign our notation that D is the diagram with the edge AB and D' 
the diagram with the edges AC and CB. The triangle ABC will be called 
the characteristic triangle both of the deformation 6 and of the inverse 
deformation 6-1 transforming the diagram D' into the diagram D. In 
certain trivial cases which will not require further analysis. the Vertex C 
will lie on the edge A B and the characteristic triangle will be degenerate. 
We shall measure the degree of simplicity of anl elementary deformation 6 
by the degree of simplicity of the figure formed by that part of the 
diagram D which is enclosed by the characteristic triangle ABC of 6. 

Now, suppose we divide up the triangle A BC into a pair of triangles A1 
and ds by joining one of the vertices A, B, or C to a point K of the 
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edge opposite the vertex chosen. Suppose, moreover, that we select the 
point K in general position, so that K is not at a crossing point of either 
of the diagrams D or D', and so that the new edge connecting the point K 
to the opposite vertex of the triangle ABC passes through no vertex or 
crossing point of the diagram D.. Then, it is obvious that the deformation 6 
with the characteristic triangle ABC may be thought of as the resultant 
of two smaller deformations J, and 62 with the characteristic triangles 4, 
and Al respectively. Moreover, each of these last may, in turn, be thought 
of as the resultant of two still smaller deformations obtained by a similar 
process of factorization, and so on, as often as we please. In other 
words, the deformation 6 may always be regarded as the resultant of a 
finite succession of deformations with characteristic triangles of arbitrarily 
small linear dimensions. It is, therefore, possible to carry the factorization 
of the deformation J to such a point that each factor 6* of 6 has the 
following degree of simplicity: If any portion of the diagram D* on which 
the deformation 6* operates is interior to the characteristic triangle A* 
of the deformation, that portion is connected and includes not more than 
one point from among the vertices and crossing points of the diagram D*; 
(here, we make use of the fact that since the triangles 4* corresponding 
to the different factors 6* of 6 are non-overlapping any portion of a 
diagram D* interior to a triangle 4* must also be a portion of the original 
diagram D). When the above state of affairs is realized, we see, by in- 
spection, that each of the factors 6* must be an elementary deformation of one 
of four simple categories determined resectively by the following conditions: 

(i) No part of the diagram D* is interior to the triangle A*. 
(ii) The part of D* interior to 4* consists of one sub-edge of D*. 
(iii) The part of D* interior to 4* consists of one vertex and two 

sub-edges meeting at the vertex. 
(iv) The part of D* interior to A* consists of one crossing point and 

two sub-edges passing through the crossing point. 
The analysis may be carried somewhat further in the last three cases. 

We recall that either the deformation 6* or its inverse-for our present 
purposes it makes no difference which-carries an edge A* B* of the 
characteristic triangle A* into the figure consisting of the vertex C* op- 
posite A*B* and the other two edges A*C* and B*C*. Then, under 
cases (ii), and (iv), there are several essentially distinct sub-cases to be 
distinguished according to the location of the points in which the polygon 
of the diagram D* crosses the triangle 4*. Let us first examine case (ii), 
where the portion of the polygon D* interior to the triangle d* consists 
of a single sub-edge z xo'. There are then three sub-cases to be considered, 
to which all others may be reduced by a mere change of notation: 
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(iia) One end of the edge x xo' is at the vertex A4, the other on the 
side B C. (Fig. 2 II.) 

(iib) One end of the edge xS x0' is on the side AB, the other on the 
side BC. 

(lic) One end of the edge x"Oxt is on the side AC, the other on the 
side BC. (Fig. 2 III a.) 

However, sub-case (fib) may be eliminated from the discussion since it 
reduces by factorization to sub-case (iic). To prove this, we join the 
vertex C of the triangle z* to a point D of the edge AB in such a manner 
that the new edge CD crosses the segment xo xo'. Then, we regard the 
deformation J* with the triangle ABC as the resultant of two elementary 
deformations with the triangles DBC and ACD respectively. Each of 
the latter is of the sub-category (iic). 

Under case (iii), where the portion of the polygon of D* interior to 
the triangle A* consists of two sub-edges xo z and z xwo meeting in a common 
vertex z, we may dispose of all sub-cases, except the one where the point xo 
lies on the side A C and the point x:' on the side B C (Fig. 2 III b). 
Any other deformation of the third category reduces, by an obvious process 
of factorization, to one of the types just described together with a certain 
number of deformations of the first and second categories. 

Under case (iv), when the portion of the polygon D* interior to the 
triangle 4* consists of two sub-edges xi 41 and X2 x2 crossing in a point Zo 
we may dispose of all sub-cases except the one where the points x1 
and T, both lie on the side AB while the points xl and x1 lie on the 
sides AC and BC respectively (Fig. 2IV). Any other deformation of 
the fourth category may be factored into one of the types just described 
together with a certain number of deformations of the first and second 
categories. 

To sum up, the most general type preserving transformation of one 
diagram into another may be factored into a finite succession of elementary 
deformations each of which is one of the four types pictured schematically 
in Fig. 2. Of course, the dotting of the corners in Fig. 2 merely corresponds 
to one possible type of dotting that may actually arise. The letters R in 
the figure refer to a matter that we have not yet taken up, hence, they 
have no significance at the present stage of the discussion. Deformations III a 
and HIb, in Fig. 2, are going to play essentially the same role throughout 
the discussion; this is why we have classified them together. 

5. At this point, we shall make a slight digression to remind the reader 
of certain arithmetical theorems about linear systems. A set of m linearly 
independent marks 
(5. 1) xi ( 1. 21 ...m.4 
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is the base of a linear system X consisting of all linear combinations of 
the marks xi with integer coefficients, where the ordering of the terms 
in a linear combination is immaterial. Moreover, a set of k arbitrary marks 

rn 

(0.2) G u s 9 Eqi Xi . (s 1 . 2 . *k ) . 

belonging to the linear system XY is the base of a linear sub-system Y 
of X. If a mark x of the system X is also a mark of the system Y. 
we shall indicate the fact by writing the homology 

x O (mod Y). 

Furthermore, we shall say that two marks x and x' of the system X are 
homologous, and write 

xr x' (mod Y). 

if their difference x-x' is a mark of the system 1'. From the way in 
which homologies are defined it follows that any linear combination with 
integer coefficients of a given set of homologies is itself an homology 
also, that the most general homology that can be written is a linear com- 
bination with integer coefficients of the fundamental homologies 

(5.3) ya8O (s = 1. 2. .Mk). 

determined by the base (5.2) of the system Y. In operating with homo- 
logies, it must be borne in mind that if the coefficients of an homology 
possess a common factor it is not, in general, permissible to simplify the 
homology by cancelling out the common factor, for if a multiple of a 
mark x of the system X belongs to the system 1t it does not necessarily 
follow that the mark x itself belongs to Y. 

Now, let the marks of the system X be arranged in sets zi such that 
two marks belong to the same set if, and only if, they are homologous. 
Then, if we define the neqative of a set zi containing a mark x8 as the 
set containing the mark a-X, and the sum of the sets zi and zj containing 
the marks xs and xt respectively as the set containing the mark x,+xt, 
we may regard the sets zi as the elements of a linear domain Z, in which 
the ordinary linear operations with integer coefficients may be performed. 
We shall designate an element zi of the domain Z by means of any one 
of the marks x, in the set zi. 

Now, by a well known theorem, if the bases (5.1) and (5.2) of the linear 
systems Y and X are properly chosen, the fundamental homologies (5.3) 
will assume the form of monomials in the x's, 



ON TYPES OF KNOTTED CURVES. 569 

(5.4) as I^'0. (s - 1, 2. 2.k' < k), 

where the coefficients a,, a2. *.., are positive integers with the property 
that each one after the first is exactly divisible by its immediate prede- 
decessor. The coefficients a,, are, in fact, the elementary divisors of the 
matrix of coefficients ei in (5.2), which divisors remain invariant when 
the bases of the systems X and Y undergo a transformation. Moreover. 
when the fundamental homologies are in the normal form (5.4) the linear 
domain Z is also in a normal form. For it is easy to see that the 
elements of Z are now representable, respectively, by the symbols 

k'n 

(5.5) Zax8x + 2: ans.s 
. 1 As=k'+l 

where each coefficient a. of the first sum is a non-negative integer less 
than the corresponding elementary divisor a. in (5.4), and where each 
coefficient as of the second sum is wholly arbitrary integer. Thus, 
the internal structure of the domain Z is completely characterized by 
the number of terms in the second sum of (5.5) together with the 
values of all the elementary divisors a, that are greater than unity. If a 
divisor a, is equal to unity, the corresponding term ax, of the first 
sum of (5.5) must have the coefficient zero; therefore, the presence or 
absence of this term has no effect upon the internal structure of the 
domain Z. It will be convenient to characterize the domain Z by a 
sequence of integers consisting of as many zeros as there are terms in 
the second sum in (5.5) followed by as many of the elementary divisors 
a, as are different from unity. The terms of this sequence will be called 
the characteristic invariants of the system X with reference to its sub- 
-system Y. Among the characteristic invariants, repetitions are, of course, 
to be expected, since there may be more than one term in the second 
sum in (5.5), and since two or more of the elementary divisors as 
(cc > 1), may be equal to one another. 

6. We are now ready to derive the torsion invariants of a knot. These 
invariants occur in sets, such that there is one set corresponding to each 
choice of an integer n greater than unity. We shall determine the set 
corresponding to a definite, though arbitrary choice of the integer n. 

Let v be the number of crossing points of the knot diagram. Then, by 
Euler's theorem on polyhedra, the number of connected regions into which 
the polygon U of the diagram subdivides the xy-plane must be v + 2. We 
shall denote the v crossing points of the diagram by the symbols 
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respectively, the v + 2 connected regions of the plane of the diagram by 
the symbols 

Ray l-1 2, ** v +2), 

respectively. A crossing point xa and a region .,, will be said to be 
incident to one another if, and only if, the point xa is on the boundary of 
the region .1. If the point xe and region B,, are incident, they will 
be said to be incident with, or without a dot according as the corner of 
the region .14 contiguous to the crossing point xa is or is not one of the 
dotted corners of the diagram. In certain exceptional cases, it may happen 
that a point xa and a region RB are doubly incident in the sense that two 
different corners of the region Ba are contiguous to the point xA. 'When- 
ever this occurs, the two corners of RB, at xa must, of course, be opposite 
corners, so that one of them is dotted, the other one not. 

To each crossing point of the diagram we shall now assign n marks, 
thereby obtaining, in all, a set of n v marks 

la - 1, 2,*, 
zaaf \a 1,l 2. * ,n' 

These marks will be regarded as the base marks of a linear system x 
similar to the one described in the last section. For reasons of symmetry, 
we shall make use of a recursion formula 

Xaa = X(c&+n) 

and do away with the requirement that the second index a of the mark xm 
lie between 0 and n + 1. The next step will be to assign to each region BR 
of the diagram a set of n homologies of the form 

(6.1) Yes-$p?+Xr(X+l)?^ (s= 1, 2,. ,n), 
p Y 

where the marks x:z in the first sum of the sth homology correspond to 
the crossing points xp that are incident without dot to the region R, and 
the marks xy(,+,) in the second sum correspond to the crossing points x:, that 
are incident with dot to B,. The marks y,. will be the base marks of 
a certain sub-system Y of X. By definition, the torsion numbers of the 
knot corresponding to the given determination of the integer n will be the 
characteristic invariants of the system X with reference to its sub-system Y. 
In ? 9, we shall prove that the torsion numbers, as here defined, have 
a genuine topological significance. 

7. We shall now illustrate by an example the actual process of com- 
puting the torsion numbers of a knot. Consider the knot pictured in Fig. 1 b. 
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Its diagram D has four crossing points Xa determining 4 n marks X., and 
six regions RB determining 6 n homologies. However, by a general theorem 
which we shall prove at the very end of the next section, the homologies 
determined by the outer region R6d and by the region 15 adjacent to' the 
outer region are all expressible in terms of the homologies determined by 
the remaining four regions. Thus, the fundamental homologies reduce to 

X2a Xia , (by R1), 
X~a - X2a - XI(a+l) (by R,), 

(7.1) x1a -X(a+l); 

X4-X1a-X2(ca&+, (by RB), 
- Xla + Xi (a?l); 

and 
(7.2) X(a+l)+ X&a + X2(a+l) 0. (by. R4). 

Moreover, by means of (7.1) we may eliminate the marks X2U, x&,, and x4 
in (7.2) and thereby reduce the fundamental homologies to a set of n only, 

(7.3) XI(a2) 3Xi(a+l)+Xia 'O, (a = 1, 2, .n) 

in the n marks Xia. 
For n = 2, xi(a+2) and Xia are equal, hence the homologies (7.3) become 

(7.4) 2x12R-3xr1O.1,-0 -3XI+ 2xgi ?- 

Therefore, since the matrix of the coefficients in (7.4) is of rank 2 and 
has the elementary divisors 1 and 5, there is a single torsion number 
equal to 5. 

For n = 3, the homologies (7.3) become 

x1s -3X12 + xi, J 0 

x13s+ x12- 3x11 ma0 
-3x,3+ xl,+ x11, %0. 

This time, the rank of the matrix is 3, and the elementary divisors are 
1, 4, 4. Therefore, the torsion numbers are 4, 4. 

A table of knots with their invariants for n = 2 and n = 3 will be 
given in ? 11 at the end of the paper. 

8. We shall now derive a few general theorems about knot diagrams. 
In the notation of ? 6, let Xwa be the marks determined by the crossing 
points Xa of a. diagram D and let 
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(8.1) 3X#8 + X;,(s+I) 0 

be the fundamental homologies determined by the regions Ra of D. Then, 
if we make the change of marks 

= ( =1, 2 .., \ 
Xcs iX(t8+1). 1, = 1; 2, ' ,x1 

which has the effect of reversing the normal cyclical order of the second 
subscripts s, the homologies (8.1) go over into the homologies 

I I 
Xz+T # F1 0? 

(t = n-s). 

But these last are precisely the homologies corresponding to the inverse 
diagram D-' of D, for to every dotted corner of the diagram D there 
corresponds an undotted corner of the inverse diagram D-1 and to every 
undotted corner of D, a dotted corner of D-1. We, therefore, have the 
following theorem. 

A kiwt and its inverse have the same torsion numbers. 
We notice, next, that to each region R, of the diagram D there corres- 

ponds a number, called the index of the region, which measures the number 
of times, algebraically speaking, that the sensed polygon H of the diagram 
winds around the region RB in a counter clockwise manner. The index 
of a region is, thus, a certain integer, which may be positive, negative, 
or zero. Obviously, if two regions meet along an edge, their indices differ 
by unity. Moreover, if four regions meet at a crossing point xa and if 
the one of lowest index is of index k-1, two of the others must be of 
index k and the remaining one of index k + 1 (cf. Fig. 3). At a crossing 
point such as xa the corner of the region of index k - 1 is always dotted 
and the corner of the region of index k +1 undotted. One, but not both 
of the corners belonging to the regions of index k is dotted. We shall 
say that the crossing point xa is of index k (where k is thus the average 
of the indices of the regions incident to xa). 

Now, if at each crossing point of index k (k = 1, 2, * * *), we remove the 
dot from the corner of one region of index k and place it in the corner 
of the other region of index k, the effect will be to interchange upper and 
lower branches at all the crossing points, and, therefore, to transform the 
diagram D into the reflection of D, (? 2). On the other hand, if at each 
crossing point of index k (k = 1, 2, * * .), we remove the dot from the corner 
of the region of index k-1 and place it in the comer of the region of 
index k +1, the effect will be not only to interchange upper and lower 
branches but, also, to reverse the positive sense of description of the 
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polygon r. Therefore, the diagram D will be transformed into the inverse 
of the reflection of D. Incidentally, also, the indices of all regions and 
crossing points will be changed in sign owing to the change of direction 
on the polygon r. In view of the above remarks, it will now be easy to 
prove the following theorem: 

A knot and its reflection have the same torsion numbers. 
For let k be the index of a region RB of D. Then, the corners of the 

region Ra may be divided into four classes: (i) Undotted corners xa at 
crossing points of index k+l; (ii) undotted corners xp at crossing points 
of index k; (iii) dotted corners xy at crossing points of index k; (iv) dotted 
corners xj at crossing points of index k-1. The n homologies determined 
by the region Ra are, therefore, of the form 

(8.2) z XC + Xa + Xy(s+l) +; ) O 
a p 

But, suppose we make the change of marks 

Xc~i = ;M(i+k.) 

where ka denotes the index of the crossing point xa. Then the homologies 
(8.2) go over into the homologies 

(8.3) zXcc(a )+ pXtt +X(t+l)+ X 't0, (t =s +k). 
a r a 

which are precisely the ones we should obtain if we were to remove the 
dots from the corners of the region R, at crossing points of index k-+ 1 
and dot the corners at crossing points of index k- 1. That is to say, 
the homologies (8.3) are precisely the ones determined by the region Rq in 
the inverse of the reflection of the diagram D. Hence, in view of the 
previous theorem, the homologies determined by a diagram are equivalent 
to the homologies determined by the reflection of the diagram, which 
completes the argument. 

The next theorem is intended, primarily, to shorten the labor involve(] 
in computing the torsion numbers of a knot: 

The homologies determined by any two regions uteah consecutive indices k 
and k+1 are consequences of the homologies determined by the remaining v 
regions of the diagram. 

The proof of the theorem reduces, essentially, to the determination of 
certain identical relations between the homologies 

(8.4) yew 0 
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corresponding to the different regions R, of the diagram. A. first set of 
identities wvill be the following: 

(8.5) Hs = y Yo 
--, ? 

where each coefficient e< is equal to + 1 or -1 according as the index 
of the corresponding region Ra is even or odd. To verify the identical 
character of these relations we observe that at each crossing point xa there 
are two dotted and two undotted corners, and that one corner of each 
sort belongs to a region of odd index the other to a region of even index. 
Because of this fact, the expressions H8 will be sums of groups of terms 
of the form 

Xas-A XC8 + t(S --1) - Xa (8+1) O.' 0 

and will, therefore, vanish identically. 
A second set of identical relations between the homologies (8.4) will 

next be determined. Corresponding to each region R, of non-negative 
index k, let us form the sums 

=~s !a + YO(.a+) + + Ys(+k-1) O 0 

and corresponding to each region RB of negative index -k, the sums 

Z =s !Y(k-k) + Y!/(a-k+1) + * * * + Ya(&-1) O. 

Then, in terms of the sums zoar we may write the identities 

(8.6) Gs,, Za ^O 

where the coefficients ea have the same meaning as in (8.5). To prove 
that the relations (8.6) are identities, let us calculate how the marks corTe- 
sponding to any crossing point xa enter into the expressions G.. We shall 
suppose, to fix matters, that the index of the crossing point XzE is positive 
and odd. Then, corresponding to the corner of the region of index k -1 
n cident at xa we shall have the set of marks 

Xa (8x+ 1) + XZM (9+2) + * - * + Xa (8+k-1) 

corresponding to the corners of the two regions of indices k the sets of 
marks 

- X - Xca (g+1) - ' Xa ks+kl) ' 
and 

- a (.s+1) - Xa (8+2) - a (.k) 
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respectively, corresponding to the corner of the region of index k + 1 the 
set of marks 

XcU + XCa (X1) + t Xcc($fk) 

But the sum of all these marks vanishes, therefore the expressions G, 
contain no marks corresponding to crossing points with positive, odd indices. 
By a similar argument, we may show that the expressions G, contain no 
marks corresponding to crossing points with indices that are not positive 
and odd. Therefore, the expressions GC must vanish identically. 

Now, by means of the identities (8.5) we may express the homologies 
determined by any region of index zero (or of index 1i, for that matter) 
in terms of the homologies determined by the remaining v + 1 regions of the 
diagram. Mlorever, by means of the identities (8.6), we may express the 
homologies determined by any region of index 1 in terms of the homologies 
determined by the remaining regions of the diagram of indices greater thatn 
zero. For the identities (8.6) involve none of the marks ye corresponding 
to the regions Ra of index 0, and each of them involves only one mark yu., 
with coefficient -1, corresponding to each region R, of index 1. 

Therefore, from the combined relations (8.5) and (8.6) we may express 
the homologies determined by any one region of index D together with 
the homologies determined by any one region of index k in terms of the 
homologies determined by the remaining v regions of the diagram. This 
proves the theorem for the special case k = 0. To prove it for a general 
value of k, we have only to redefine indices so as to lower all their values 
by the same constant k and proceed as before. 

As a consequence of the last theorem, if we wish to compute the torsion 
numbers of a knot we may disregard the homologies determined by any 
pair of regions of the knot diagram that are contiguous along an edge. 
For, as we have already remarked, the indices of two such regions differ 
by unity. Thus, we have proved the theorem assumed in ? 7. 

9. Our next objective will be to prove that the torsion numbers of a knot 
are topological invariants. To do this, it will be sufficient for us to show 
that the numbers are unchanged when the knot undergoes an elementary 
deformation of any one of the four classes pictured in Fig. 2, because we have 
already proved that the most general type preserving transformation of 
a knot may be factored into elementary deformations of precisely the four 
classes in question. 

A deformation of Class I obviously leaves the torsion numbers invariant, 
since it does not disturb the incidence relations between the regions and 
crossing points of the diagram. A deformation of Class HI creates a new 
crossing point x0 (Fig. 2 II), corresponding to which we shall have n new 



576 J. W. ALEXANDER AND G. B. BRIGGS. 

mark>; xoi, It also creates a new region B0 incident to the crossing point 
xO and to no other. corresponding to which we shall have n new homo- 
logies 
(9.1) xo i '. 

If we use the homologies (9.1) to eliminate the new marks xot wve find 
that the system of marks and homologies determined by the diagram after 
deformation reduces to the system of marks and homologies determined 
by it before deformation; therefore, the torsion numbers are invariant 
under the deformation. A deformation of Class IlI creates two new 
crossing points xo and xO'. (Fig. 2 E). We may assume that the branch 
A CB passes over the branch zo x', otherwise we could replace the dia- 
gram by its reflection, and that the corners are dotted as indicated in the 
figure, otherwise we could replace the diagram by its inverse. Now, it 
will be observed that two new regions 1? and V'" are created, (among 
others), such that the first is incident to the crossing point x:o but not 
to the crossing point X"', whereas the second is incident to *e' but not 
to x'. Let 
(9.2) a i 
and 
(9.3) i+ 

be the homologies determined by the regions IV and R" respectively, 
where it4 and It4' are linear combinations of marks determined by the 
original crossing points. Then, if we use the homologies (9.2) and (9.3) 
to eliminate the new marks XO' and xi, we may again verify that the 
system of marks and homologies after deformation reduces to the system 
of marks and homologies before deformation. Therefore, in this case also, 
the torsion numbers are invariant. A deformation of Class IV destroys 
two crossing points xi and x2, and creates two new ones x1 and x2, 

(Fig. 2 IV). Three cases can arise according as the branch A B passes 
over both, one, or neither of the branches xl xi and x2 x. However, 
the third case reduces to the first by a reflection of the diagram, leaving 
only the first two to be considered. If the branch A B passes over the 
two branches x1 xj and x2 x^ the branches A C and BC must pass over 
the branches xi xi and x2 x2 respectively. We may, therefore, assume 
that the comers at the crossing points x,, xi, xz2, and x2 are dotted in the 
manner indicated in the figure, otherwise we could replace the diagram 
by its inverse. There are, however, two essentially different ways in 
which the corners at the crossing point x0 may be dotted. If they are 
dotted in the manner indicated in Fig. 2 IV, the change of marks 
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X~i-X;(i 0+1)+2(6+1), 

(9.4) X= X01j+?1) +X21, 

X2f x-oi +-*iXi 

will transform the marks and homologies before deformation into the marks 
and homologies after deformation, as may easily be verified. It may happen, 
however, that the corner of the triangle x0 xi xt at the crossing point x0 
is not dotted but that the opposite corner at xo is. In this case, we must 
make the change of marks 

(9.5) xli= A(i+-1)+X2i, 

X2i X-yi + Xji 

instead of the change (9.4). There are two other possible ways in which 
the corners at the crossing point xo may be dotted, but each reduces to 
one of the cases already considered by a mere change of notation. 

If the branch AB passes over one, but not both, of the branches xi x1 and 
x2 x we may assume that it passes over the branch xi Aj, otherwise, we 
could replace the diagram by its reflection. We may also assume that the 
positive direction along the edge A B is the direction from B to A, other- 
wise we could replace the diagram by its inverse. The positive direction 
along the branch x2 x2 (which, in this case, passes over the branches AB, 
xi xj, and AC) may now be either the direction from x2 to x' or the 
direction from x2 to x2. If the positive direction is from x2 to x2, we 
make the change of marks 

x~i - xi (i+1) + Xh ! Xo 
X1%j+1)+XIzj (9.6) XEi 0(i+ 2 +1) 

X2i - X'i + Xlj, 

if the positive direction is from x to X2 we make the change of marks 

=0i - xli + X Xi 

(9.7) =1i = i + X2'i 

X2i =h + xi-1) 

The effect, in either case, will be to transform the system of marks and 
homologies before deformation into the system after deformation. Thus, 
a deformation of Class IV leaves the torsion numbers invariant. This 
completes the argument. 

10. Before bringing the discussion to a close, we shall indicate how the 
torsion numbers of a knot K, for any given determination of the integer n, 
may be interpreted in terms of the Betti numbers and coefficients of torsion 
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of an n-sheeted covering space J, with a branch curve of order n -1 
covering the knot. The covering space J,, will be thought of as spread 
out upon the closed space J obtained by adding a point at infinity to the 
space of the knot and treating the point at infinity as a limit point of every 
unbounded set of points in the space of the knot. 

The first step in the argument will be to make a cellular subdivision v 

of the carrier space J with a view to determining, later on, a subdivision 
of the covering space Jo. To each crossing point xa of the knot diagram 
there correspond two points of the knot itself, a point Pa on an upper 
branch and a point Qa on a lower branch. We shall choose the combined 
points Pa and Qa as the 2 v vertices, or O-cells, of the subdivision .". 
The edges, or 1-cells, of the subdivision will consist, first, of the v linear 
segments P. Qa joining the points of corresponding upper and lower branches 
of the knot, secondly, of the 2 v arcs into which the points Pa and Qa 
subdivide the knot. There will, thus, be 3 v edges in all. The 2-cells of 
the subdivision will be a set of v + 1 properly selected simply connected, 
regular surfaces S&, (a' = 0, 1, . . *, i), one associated with each region RB 
of the diagram with the exception of the outer region of all. Each 
surface S? will be so chosen that (i) it projects orthogonally in a point- 
for-point manner upon the region RB with which it is associated and 
that (ii) its boundary is a simple polygon made up of the portions of the 
knot which project upon the boundary of the region RB together with the 
edges Pa Qa which project upon the crossing points xa on the boundary 
of Ra. The subdivision 2 will have a single 3-cell Cs consisting of all 
points of the space J that are not on any cell of lower dimensionality. 

To the subdivision 2 of the carrier space J there corresponds a sub- 
divisionn of the covering space J. such that each cell C of the sub- 
division Z is covered by n superimposed cells of the subdivision n unless 
it so happens that the cell C is made up of points of the knot K. In the 
latter case, the cell C is covered by a single cell of the subdivision Z,, 
for the knot K determines the branch curve of the space Jn along which 
the n sheets of J,, merge into one. By a straightforward calculation, we 
find that the subdivision Z& comprises 2 v vertices, vn +2 v edges, nv+ n 
2-cells, and n 3-cells. 

The indices kv assigned to the regions RB of the diagram (? 7) have 
a direct bearing on the incidence relations among the cells of the sub- 
division 2n. Let S9 be the 2-cell of the subdivision - determined by the 
region Ra, and let 

Sbo I (ite - 1e 2,o-r ,n), 

be the it 2-cells of the subdivision 2'n that cover the 2-cell So. M oreover, let 
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Ci (X =12. I el2a-n), 

be the n 3-cells of the subdivision .'. Then, we are to think of C, and Ci+kr; 
as the two 3-cells incident to the 2-cell Sai. (Here, of course, the index i + k.L 
is to be reduced, modulo n, to an integer between 0 and n + 1.) More 
precisely, we are to imagine that we pass from the cell Ci to the cell Ci+k., 
when we travel across the cell Sai on a path leading up to Set from below. 

In order to calculate the topological invariants of the covering space .h, 
with a minimum of effort, we shall replace the subdivision .,. by another 
composed of fewer cells. Suppose two distinct 3-cells of the subdivision .X 
are incident to the same 2-cell. Then, we obviously have the right to 
combine together the 2-cell and the two 3-cells so as to form a single 
3-cell. Suppose, moreover, that two distinct 0-cells are incident to the 
same 1-cell. Then, we also have the right to deform the elements of the 
subdivision in such a manner that the 1-cell and its two ends shrink up 
into a single 0-cell, or, what comes to the same thing, to treat the 1-cell 
and its two ends as a "generalized" 0-cell. The two simplifying operations 
described above are the duals of one another. 

With these facts in mind, let Ro be a region of the knot diagram which 
is adjacent along an edge to the very outer region of all and which, 
therefore, has the index 4-1. Then, corresponding to the region Bo there 
will be n 2-cells, 

SOS, (s - 1 , 2, . * *, 
of the subdivision n. As a first simplification, we shall merge the first 
n -1 2-cells So. with the n 3-cells Ci to form a single 3-cell C' with 
a singular boundary. This amalgamation will merely involve n-1 re- 
petitions of the firstt simplifying operation described above. On the boundary 
of the 3-cell C', the remaining 2-cell Soi will appear twice, once in positive 
relation to the boundary and once in negative. 

Now, let K' denote the circuit composed of the 0-cells and 1-cells of 
the subdivision 2, which cover the points of the knot K. There will then 
be one definite 1-cell x of the circuit K' which is on the boundary of 
the 2-cell So., but not on the boundary of any of the other 2-cells Jig. 

(cr = 1, 2, *.., n), namely, the 1-cell which projects on the arc separating 
the region Bo from the outer region of the diagram. As a second simplification 
of the subdivision we shall join together all the 0-cells and 1-cells of the 
circuit K' with the exception of the 1-cell x so as to form a single 
generalized 0-cell. This will involve 2 v-2 applications of the second 
simplification process. 

After the two simplifications described above, we shall be left with a 
subdivision Z2 consisting of one generalized vertex, v n + 1 edges, v n + 1 
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2-cells, and one 3-cell. Moreover, each of the edges. when we include 
its ends, will be in the nature of a closed curve, or 1-circuit, since its 
two ends coincide at the one vertex present. One of the edges will be 
the 1-cell x on the boundary of the 2-cell SoL, the others will be the 
1-cells covering the segments P,1 Q,,. We shall denote the latter by the 
marks xaa respectively. 

Now, let us write the homologies (in the sense of analysis situs) which 
express the fact that the boundary of each 2-cell of the subdivision 2'. 
is a linear combination of the 1-circuits determined by the respective 
1-cells of 2,. Then. it is easy to verify that if the 1-cells xa are 
suitably sensed, the homology determined by the 2-cell So,, is 

(10.1) x +yon ..O 
and that the homologies determined by the vn 2-cells San. (a> 0), are 

(10.2) ye 0, 
where the symbols yo, and yens have precisely the meanings attached to 
them in ? 6. Moreover, since the relation 

Yrn 0 0 
follows as a consequence of the relations 

ya^,,O, (a .1,2, n) 
(by a theorem in ? 6), we may reduce the homology (10.1) to an homology 

(10.3) X e0. 
The geometrical significance of this last homology is that the branch 
curve of the space J,,, is always a bounding 1-circuit of Jn. For the 1-cell 
x and its "generalized" ends represent the entire branch curve. Finally, 
if we eliminate the mark x by means of the homology (10.3), we are left 
with the homologies (10.2) which determine the torsion numbers of the 
knot. The exact relation between the torsion numbers of the knot and 
the topological invariants of the covering space Jn may be expressed as 
follows: 

There are exactly as many vanishing torsion numbers as there are 
1-circuits of the space Jn linearly independent with respect to homologies. 
Moreover, the torsion numbers that are greater than zero are the coefficients 
Qf torsion of the space J4 

11. We give below a table of invariants for all types of knots of nine 
or less crossings listed as distinct by Tait and Kirkman. The symbols 
appearing in the first column are the distinguishing symbols of the various 
knots pictured. In each symbol, the large numeral denotes the minimal 
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number of crossings that the diagram of the knot can have, while the 
indices a or n indicate whether or not a knot is alternating. The numbers 
in the second and third columns are the torsion numbers for the cases 
n = 2 and n = 3 respectively. 

The two members of each of the three pairs of knots marked with the 
asterisks, crosses and zeros respectively have the same torsion numbers 
for n = 2 and also for n = 3. We have found, as a matter of fact, 
that they also have the same torsion numbers for each value of n so 
that it is impossible to distinguish them by their torsion numbers. In all 
other cases considered, two knots were distinguished by their torsion numbers. 

Type N= 2 N=3 Type N=2 Y=3 Type N=2 N=3 

3ia 3 2, 2 815a 33 16, 16 922a 43 14, 14 
41a 5 4, 4 81a 36 11, 11 923a 45 22, 92 
0Ma 5 none 817a 37 13, 13 924a 45 16, 16 
52a 7 5 5 8i8a 3,yr5 2,2 , 8, 8 925a 47 26,26 
61a 9 7, 7 8i9n 5 4, 4 926a 47 17 17 
62a 11 5, 5 82on 9 4, 4 927a 49 19, 19 
63a 13 7, 7 82n 15 8, 8 928a 51 20, 20 
71a 7 none 9ia 9 none 09a9 51 20,20 
72a 11 8, 8 *92a 15 11, 11 90oa 53 22. 22 
7aa 13 4, 4 93a 19 none 93ia 55 23 23 

*74a 15 11, 11 94a 21 7, 7 932a 59 23 23 
7sa 17 7 7 95a 23 17, 17 933a 61 25,25 
76a 19 11, 11 9Ga 27 4, 4 934a 69 31, 31 
77a 21 13, 13 97a 29 13 13 930a 3, 9 20,20 
81a 13 10, 10 X98a 31 17 17 936a 15 2 2 4, 4 
82a 17 none 99a 31 5, 5 937a 3, 15 28 28 
83a 17 13, 13 91oa 33 13, 13 938a 57 28, 28 
84a 19 8, 8 911a 33 7, 7 93c9a 55 32, 32 
85a 21 4, 4 912a 35 20,20 940a 5,15 4, 4, 8, 8 
8ea 23 11 11 913a 37 16 16 941a 7,7 28,28 
87a 23 5, 5 914a 37 22,22 942n 7 2, 2 
88a 25 13, 13 916a 39 23, 23 948n 13 2, 2 
89a 25 7, 7 91ia 39 8, 8 944n 17 10, 10 
8ia 27 8, 8 917a 39 11, 11 945n 23 14,14 
811a 27 14, 14 9I8a 41 19, 19 948n 3, 3 7,7 
812a 29 19 19 919a 41 25,25 947n 3, 9 5, 5 
8 ia 29 16, 16 920a 41 13, 13 948n 3, 9 17, 17 

X8i4a 31 17 17 921a 43 26,26 949n s, 5 10, 10 



582 T. W. ALEXANDER AND G. B. BRIGGS. 

**.x ~~~k+l k 

x_. x4 k k-i 

R,~~~~R 

Fig. 1. Fig. 3. 

C C 

R * x 

W~~~ CD C 

PRg.3xi z; 

1A B A B AB 

Fig. 2. 

Fig. 3ia. Fig.4 is. Fig. 5io.Fg52 



ON TYPES OF KNOTTED CURVES. 583 

Fig. 6 i& Fig. 62F 

Fig. 7,2a Fig. 73& Fig. 74,L Fig. 75sa. 

Fig. Tea Fig. 7,? Fig. 8ia. Fig. 8sa. 

Fig. 87a Fig. 8.s. Fig. 89.. Fig. So.. 

Fig. 87a. Fig. 8sc Fig. 8.94. Fig. 810a. 
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fig. 8 la. Fig. 8iqa. Fig. 8 is. Fig. 81 u. 

Fig. 815.. FIg. 8ia6. Fig. 817.. Fig. 8 8.. 

Fig. 8,s.. Fig. 820.. Fig. 821. Fig. 91a 

Fig. 9,2. Fig. 9sa. Fig. 94.. Fig. 9o.. 

Fig. 96s Fig. 97,. Fig. 98e. Fig. 99a. 
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Fig. 9n&. Fig. 912a. Fig. 9 as. 
'g.9 zoL 

Fig. 91z Fig. 9 is Fig. 916e. Fig. 9 a a 

Fig. 9ie. Fig. 9ra.. Fig. 920o. Fig. 9na. 

Fig. 922.. Fig. 9us. Fig. 924. Fig. 92sL 

Fig. 926.. Fig. 927. Fig. 928. Fig. 929c. 
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Fig. 9s0o. Fig. 9si. Fig. 932a. Fig. 9as. 

Fig. 9sa. Fig. 9B56. Fig. 986a. Fig. 957.. 

Fig. 9a88. Fig. 9a9a. Fig. 9-io. Fig. 94. 

Fig. 942o. Fig. 943X. Fig. 9ga. Fig. 9#s. 

Fig. 946s. Fig. 97vw. Fig. 94sm Fig. 9,dz. 
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