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Annals of Mathematics, 108 (1978), 135-204 

Algebraic K-theory of generalized 
free products, Part 1 

(Part  2 will appear in Volume 108, Number 2) 

This paper gives a contribution to the computation of algebraic K-theory 
in certain cases. The main application is of a geometric nature, a vanishing 
theorem for Whitehead groups. I t  was par t  of the latter result that  origi- 
nally motivated the present work. So i t  may be appropriate to sketch how 
one arrives a t  considering it. 

There is a result in 3-dimensional topology which says that  any boundary 
preserving homotopy equivalence between compact 3-manifolds of a certain 
kind is induced by a homeomorphism [25]; for example the result applies to 
manifolds obtained from the 3-sphere by removing an open tubular neigh- 
borhood of a tame knot. There is no mention of Whitehead torsion in this 
result. But one should certainly expect Whitehead torsion to enter rather 
crucially, in view of experience with high-dimensional h-cobordisms on the 
one hand, and 3-dimensional lens spaces on the other hand. The dilemma 
suggests: 

Conjecture. The Whitehead group of a classical knot group is trivial. 

The aforementioned geometric result involves two main steps: 

First ly,  by decomposing a t  a 2-manifold of a certain kind, and repeating 
this procedure sufficiently often (a finite number of times), certain 3-manifolds 
can be reduced to 'nothing,' that  is, to simply connected pieces. This is a 
deep result [8]. 

On the level of fundamental groups, such a decomposition corresponds 
to a generalized free product structure ( that  is, either a free product with 
amalgamation, or i ts  companion construction, HNN extension), and the 
'reduction to nothing' corresponds to the fact  that  conversely the funda- 
mental group can be built up out of nothing (the trivial group) by iterated 
generalized free product. This is how attention is drawn to such groups. 

Secondlg, the homotopy equivalence under consideration can be spli t  a t  
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136 FRIEDHELM WALDHAUSEN 

the decomposing 2-manifold in the image space, meaning that the restriction 
of the homotopy equivalence to the pre-image of the 2-manifold, is also a 
homotopy equivalence. 

The analogue of the latter should be the following, from which one may 
hope to deduce the conjecture above: 

C o n  jec tu re .  For certain amalgamated free products G = Gl*G,G2 there 
is an exact sequence 

Wh,(Go) - Whl(G1) €9 Whl(Gz) - Wh1(G) - Who(Go) - Who(G1) €9 Who(Gz) - Who(G) 

where Wh, denotes the Whitehead group, and Who(G) = I?,(zG), the reduced 
projective class group of the integral group algebra; similarly for certain 
HNN extensions. 

In a sense, the purpose of this paper is to prove these conjectures in 
their proper setting. 

Firstly, the latter conjecture should be reformulated in terms of alge- 
braic K-theory; that is, 

Kl(R0) - Kl(R1) €9 Kl(R2) - Kl(R) - KO(R0) - KO(R1) €9 KO(R2) - K,(R) 
is exact for group algebras of certain free products with amalgamation. 

Secondly, the property that the rings involved are group algebras 
should be dispensed with. Thus one should use: 

(i) a notion of genera l i zed  f ree  p r o d u c t  of rings which in particular 
captures the amalgamated free product of groups on the level of group 
algebras, 

(ii) a notion of genera l i zed  L a u r e n t  e x t e n s i o n  of rings which in parti- 
cular captures the HNN extension of groups on the level of group algebras. 

Thirdly, the exact sequence envisaged should be the exact sequence in 
low degrees of the long exact sequence of a fibration. Thus one should con- 
sider the functor from rings to spaces, due to Quillen, Rt+ K(R), whose 
homotopy groups give the K-groups of R, riK(R) = K,(R), i = 0,1, . . . . 

I t  turns out that all this can be done. 
Going into more detail now, we suppose r i n g s  always have an identity 

element which is to be respected by maps. An embedding of rings a: C + A 
will be called p u r e  if there exists a splitting of C-bimodules, A = a(C) €9 A'. 
The actual splitting is not part of the data, just its existence. I t  is convenient 
though to refer to a fixed complement A' of a(C) in A. We will always have 
to assume that A' is free as a left C-module (actually, by a little trick the 
results below can be extended to the case when A' is left projective only, 
but we will not need this). 
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We say R is a generalixed free product if i t  is the pushout in the category 
of rings, of pure embeddings a: C -. A, P: C --t B, cf. [5]. Let 

(K(a), - K(P)): K(C) - K(A) x K(B) 

be the map in the homotopy category whose second component is the composi- 
tion of the induced map K(P) with a homotopy inverse on the (homotopy 
everything) H-space K(B). We assume the complements A' and B' of a(C) 
and P(C), respectively, are free from the left. 

THEOREM 1. In t h i s  s i t u a t i o n  there ex i s t s  a space I?%il(~;  A', B') whose 
homotopy t y p e  depends o n l y  o n  the  r i n g  C a n d  the C-bimodules A' a n d  B'. 
T h e  loop space QK(R) i s  the  d i rec t  product ,  u p  to  homotopy,  o f  t h i s  space 
z % i l ( ~ ;  A', B') a n d  o f  the  homotopy  theoretic fibre o f  the  m a p  (K(a), - K(@)). 

Alternatively if a ,  @: C +  A are pure embeddings, the generalized 
L a u r e n t  ex tens ion  o f  A w i t h  respect to  (a,  p) is a ring R which contains A 
as a subring, and contains an invertible element t so that  

a(c)t = tP(c) , c s c ,  
and which is universal with respect to these properties. We denote 

( m a )  - K(P)): K(C) - K(A) 

the map in the homotopy category which is the sum (with respect to the 
H-space structure of K(A)) of the maps K(a) and -K(P). We assume the 
complements A' and A" of a(C)  and P(C), respectively, are free from the left. 

THEOREM 2. In t h i s  s i t u a t i o n  there ex i s t s  a space I?lllil(~; A', A", nA,s, 
,A,) whose homotopy  t y p e  o n l y  depends o n  the r i n g  C a n d  the  C-bimodules 
ind ica ted .  T h e  loop space QK(R) i s  the  d i rec t  product ,  u p  to  homotopy ,  o f  
t h i s  space z % i l ( ~ ;  At, A", ,A,, ,A,) a n d  of  the  homotopy  theoretic fibre of  
the  m a p  (K(a) - K(P)). 

I t  turns out that  a third case, generalizing polynomial extensions, can 
be included a t  no extra  cost. Let S be a C-bimodule. We assume S is left 
free. In addition we have to assume that  S is finitely generated projective 
from the right. Let R be the tensor algebra of S. 

THEOREM 3. In t h i s  s i t u a t i o n  there ex i s t s  a space I?%il(~;  S).  T h e  loop 
space QK(R) i s  the  di?-ect product ,  u p  to  homotopy ,  o f  I?%il(~;  S) a n d  the  
loop space QK(C). 

I t  is for simplicity of exposition only that  the theorems have been 
formulated to apply to the loop space of K(R). A more unpleasant feature 
is the appearance of the exotic term I?%il. Fortunately there is a vanishing 
theorem. I t  involves a condition on the ring C. 
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We say the ring C is coherent if its finitely presented right modules 
form an abelian category (or equivalently, if any finitely generated submodule 
of a free module is finitely presented). We say C is regular cohe~ent if it is 
coherent and if in addition any finitely presented right module has finite 
projective dimension. Equivalently, C is regular coherent if any finitely 
presented right C-module has a finite resolution by finitely generated pro- 
jective modules. 

THEOREM 4. I n  any of the situations of Theorems 1, 2, 3, a suficient 
condition for the space I ?%i l (~ ;  . .) to be contractible, is that the r ing C be 
regular cohe~ent. 

From Theorems 1,2, and 4, a rather striking computation of the K-theory 
of certain group algebras can be obtained. I t  is remarkable that to derive 
and formulate i t  properly, one is almost forced to re-introduce Whitehead 
groups-as a computational tool. Some machinery is required. The space 
K(R) is in a natural way the underlying space of a r-space in the sense of 
Sega1[22]. I t  is therefore the 'coefficients' of a homology theory as described 
by Anderson [2]. For our purposes this means that there is a functor from 
spaces to spaces, X t. K(X; R) so that K(pt. ; R) 5 K(R), and X w TC, K(X;  R) 
is a (generalized) homology theory, meaning that it satisfies the Eilenberg- 
Steenrod axioms except for the dimension axiom. 

There is a natural transformation 

K(BG; R) - K(RG) 

when BG is the classifying space of a group G, and RG its group algebra 
over R. 

There is a functor from pairs (R, G) to spaces 

(R, G) + WhR(G) 

which we refer to as the Whitehead space of G, relative to R, and there is 
a sequence of the homotopy type of a fibration 

K(BG; R) - K(RG) - WhR(G) 

which is natural in (R, G). Thus one could say that the Whitehead space 
measures to what extent K(RG) differs from a homology theory when R is 
fixed and G varies (actually, the existence of this fibration is merely a 
rephrasing of the definition of WhR(G)). 

We define the Whitehead groups of G to be the groups 

Wh,(G) = xi WhZ(G) 

where Z is the ring of integers. This definition is justified by the fact that 
it leads to the usual Whitehead groups when the latter are defined (the cases 
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i = 0,1, 2). Further justification is that  all of these groups are related to  
certain phenomena in geometric topology [27]. 

THEOREM 5. The7.e i s  a class C1 o f  groups  w h i c h  con ta ins :  free groups ,  
free abel ian groups ,  tors ion  free one-relator groups ,  f u n d a m e n t a l  groups  
z,M where  M i s  a n y  submani fo ld  o f  the  3-sphere. F o r  a n y  group  G in t h i s  
class,  a n d  a n y  regu lar  noe ther ian  r i n g  R, the  space WhR(G) i s  contractible.  

Formulated in terms of K-theory, Theorem 5 says tha t  K(BG; R)+K(RG) 
is a homotopy equivalence if G e C1 and R is regular noetherian. This can 
be applied in two ways. First, in view of the spectral sequence of a 
generalized homology theory, if a homomorphism of groups g: G, 4 G, 
induces an isomorphism on integral homology then i t  induces an isomorphism 
on any homology theory. For example if G, is a classical knot group, and 
G, the free cyclic group, the abelianization homomorphism GI -, G, is an 
integral homology equivalence; as GI, G, e C1, their K-groups are thus 
canonically isomorphic. 

Secondly, one may work out the spectral sequence when i t  nearly 
collapses. This way one obtains the following which in particular applies to 
all the groups listed in Theorem 5 except for the free abelian groups. Let 
H,  denote ordinary homology and I?, reduced K-theory; that  is, I?,(RG) is 
the summand in the canonical splitting K,(RG) = K,(R) ($3 R%(RG). 

COROLLARY. L e t  G E C1 a n d  suppose t h a t  H,(BG, A) = 0 for  al l  i 2 3 
a ~ z d  al l  abel ian groups  A. L e t  R be r e g u l a r  noe ther ian .  T h e n  

a ~ z d  jbr  i 2 2 t h e m  i s  a s h o ~ t  exact sequence 

From the close connection between 'splitting theorems' for Whitehead 
groups on the one hand and Siebenmann's treatment of 'infinite simple 
homotopy types' [23] on the other hand, i t  is clear, more or less, that  the 
latter theory has an analogue for algebraic K-theory which could be treated 
with the methods of this paper. There is a corresponding generalization of 
Karoubi's theory of 'exact sequences of categories' [ l l ]  as this theory is a 
close relative, on the KO and K, levels, to the analogue of 'infinite simple 
homotopy theory.' 
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I. Structure theor>- in generalized free product situations 

1. F ~ e e  p ~ o d u c t s .  As mentioned in the introduction, we say an inclusion 
of rings a: C + A is puye  if there exists a splitting of C-bimodules 

I t  is convenient to fix such a splitting once and for all. 
Let a: C -  + A and p: C-, B both be pure. Then the f ~ e e  p ~ o d u c t  of A 

a n d  B, a m a l g a m a t e d  at C (with ~ e s p e c t  t o  a, P, to be precise), exists; by 
definition, i t  is the colimit in the category of rings (with 1, as always) in 
the diagram 

B-R. 

Our choice of complements A' and B' of a(C) c A and P(C) c B, respectively, 
determines a decomposition of R as C-bimodule which on identification of 
C, A, B with subrings of R, and other abuse of language, can be described 
thus, cf. [4], 

Denoting A& the term in this decomposition which involves n factors 
and h a s  A' o n  t h e  l e f t  (and Bk similarly) and putting A" = @A&, B" = @ Bk, 
we have R = C@ A" @ B". Collecting differently, we obtain in obvious 
fashion 
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R =  A@A@,BU and R =  B @ B @ , A U .  

The point of these lat ter  decompositions is that  they are compatible with 
the left A- (respectively B-) structure on R. I t  is in facts like these that  
we use the multiplicative structure of R. 

From now on we assume A' and B' are free as left C-modules, and we 
choose bases. The basis of A' is denoted (A'). Our choice determines bases 
for the other terms in the decomposition of R, e.g., with a convenient abuse 
of notation we can write (A'@, B') = (A' )  . (B'). Naturally, as the element 
of (C) we choose the identity. 

There are still more bases around. The canonical A-isomorphism 
R = A @ A @, B" determines a left A-basis of R that  we denote TA. 
Considered as a subset of R, TA is the same as (C) U (B"). We may define 
TB similarly. 

We will have to work a lot with all these bases. This work is facilitated 
(and indeed made possible) by the fact  that  we can put on more structure. 
We claim the?,e i s  a tree T whose set of vertices, To, i s  the disjoint  u?zio?z 

To = TAU TB 

n?zd whose set of segments is  

T'  = (R) . 
To justify the claim, we have to define incidence and do some checking. 

Now bases were defined in such a way that  we have an isomorphism 
(A) :i T., -> (R) which we abbreviate as (A) T, = (R), and similarly 
(B) TB = (R). So we declare if x s T,, say, then T1(x) (the set  of segments 
incident to z) shall be given by (the values of) (A).  x. Incidence has thus 
been defined. We choose 1 s TA to be the basepoint of T. The following rule 
puts orientations on the segments: For every vertex x, except the basepoint, 
there is precisely one segment so(x) whose terminal vertex is x, namely 1.x. 
One should think of so(x) as the unique segment incident to x that  is contained 
in the shortest path from the basepoint to x. This interpretation of so(x) 
gives a t  once a length function on To  (distance from the basepoint), and by 
induction on length one sees that  T is indeed a tree (one uses that  for every 
r s R,  r = 1, if r = a .  x = b . y where a s A, b E B, x s T,, y s TB, then 
precisely one of a and b is 1). 

After these preparatory remarks about the structure of R, we come to 
the definition of the diagram categories, which we will use constantly. 

Definition. A splitting diagram consists of right modules 

MA, MB, Mc 
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over the rings, A, B, C, respectively, and a map over R 

M ~ B ~ R C D M ~ O ~ R - ~ M ~ O ~ R  
satisfying 

K(M,) c Mc @,A and K(M,) c Me @, B . 
It is often convenient to write K as the difference of canonical components, 
K = K, - K ~ ,  K,(M~) = 0, tcg(Ma) = 0. A map of splitting diagrams is a 
triple of maps, over A, B, C, respectively, satisfying the obvious condition. 
The resulting category is abelian since (?) @,R, etc., are exact functors. 
An exact sequence 

0 - M A  M ~ @ , R ~ M ~ @ , R $ M , @ , R ,  
part of which is a splitting diagram, is called a completed splitting diagram; 
the map 

K , O C  = K , O C :  M- M,@,R 

will be referred to as the cross-term. A map of completed splitting diagrams 
is a certain quadruple of maps. A completed splitting diagram is called a 
Mayer Vietoris presentation (of the R-module M)  if the sequence 

0- M - - ~ , M ~ @ ~ R ~ M ~ @ ~ R $  M~@,R-O 

is exact. The category of Mayer Vietoris presentations is not itself abelian. 
However, if we relax 'exact' to 'order two sequence,' we do get an abelian 
category. In the latter category, the category of Mayer Vietoris presen- 
tations sits as a full subcategory which, by the 3 x 3 lemma, is closed under 
extensions. 

A split module is a splitting diagram 

@ A R  @ MB @BR MC @ C R  

where the map K happens to be an R-isomorphism. The category of split 
modules is, by definition, a full subcategory of the category of splitting 
diagrams, and it is itself an abelian category. Eventually i t  will be useful 
to consider split modules as Mayer Vietoris presentations of the zero 
R-module. 

Our first result asserts, among other things, that the category of Mayer 
Vietoris presentations has enough maps. 

PROPOSITION 1.1. Let N be the free right R-module on the basis element 
n. Let A be a jinite subtree of T, containing the basepoint. There exists a 
canonical Mayer Vietoris presentation {N, n,  A) of N. Also given m E lVl, 

there exists a map of {N, n, A) into the completed splitting diagram 
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0-M---i---, M ~ o ~ R ~ M ~ ~ ~ R L  M ~ O ~ R  

inducing n -+ m, if and only if A contains a certain finite tree A(m). The 
entire map is uniquely determined by m. 

Proof. Writing ~ ( m )  in terms of its components, say c(m) = c,(m) + c,(m), 
we can express c,(m) in terms of the left A-basis of R, 

c,(m) = C z E r A m z  . X 9 

where m, s MA, the m, are uniquely determined by c,(m), and only finitely 
many are non-zero. Now tc, is a right R-map, so 

fL(c,(m)) = Ex h-a(mz) . x 
and 

~cz(mx) = Cae,A>mx,a. a 

by assumption about a. Therefore 

tcm(c,(m)) = ~ X e T A C a e ( A ) m Z i a  ' a ' 

Similarly 

~,(c,(m)) = E,ETBCbe(B)mv.a ' b .  u . 
On the other hand, a,(c,(m)) = tc,(c,(m)) can be expressed in terms of the 
left C-basis of R, say tc,(c,(m)) = C S e T l m S .  S, and there are for each s s T' 
precisely one product a .  x, and precisely one product b . y, that on evaluation 
yields (note that x and y are just the vertices incident to s). Therefore we 
must have 

mz,a = ms = ? n v , b  

for those particular indices. 
We define A(m) to be the smallest subtree of T which contains all those 

x E TA and y s TB for which m,, respectively m,, is non-zero. 
Let AO and A' denote, respectively, the sets of vertices and segments of 

the given based finite tree A. We let 

A\ = AO n TA , A; = AO n TB . 
(N, n, A) is defined thus. NA is the free right A-module on the basis elements 

n,, x E A1 , 
and N, similarly. Nc is the free C-module on the basis 

n,, s s A' . 
In order to define a, + tc, (notice 'plus' instead of 'minus'), i t  is enough to 
describe its components, a component being the restriction to a summand 
in the source, projected to a summand in the target. Let s E A'. Then one 



144 FRIEDHELM WALDHAUSEN 

of i ts  endpoints, say x, is in A;, and the other one, y, is in A:. Also there 
are unique elements a s (A) and b s (B) so that  a .  x = s = b . y as elements 
of R (notice if y, say, is the terminal vertex of s ,  then necessarily b = 1). 
By definition, there are precisely two non-zero components of K, + K, going 
into 12,. C@,R, and they are given by 

?a, ~----t ns . a and n, t--- n, b . 
The map c in the sequence 

n .  R-NL N , @ , ~ R @ N ~ @ , R ~ N ~ @ ~ R  
is defined by 

c(n) = C,. , in , .  x + Cu, , ;n , .  Y . 
The cross-term becomes 

a,(c(n)) = C ,  , ,I%, . s . 
If A' is another tree containing the base point, and A' c A, there is a 

canonical projection (N, n ,  A) -+ (N, n,  A'), characterized by n -- n. 
Applying this remark inductively in the situation where A" is A0 minus an 
extreme vertex, and checking what the kernel is, one verifies that  indeed 
(N, n,  A) is a Mayer Vietoris presentation. The proof of the proposition is 
now easily completed by comparing the definition of (N, n,  A) to the 
analysis of ~ , ( l ( n ) )  given before. 

Our next result asserts that  there exist many maps from split modules 
to Mayer Vietoris presentations. To s ta te  i t ,  we need some more language. 

An augmented tree in T, denoted by +A or some similar symbol, shall 
consist of subsets +A0 c T o  and +A1 c T1 so that  +A0 and all but  one, say s, 
of the elements of +A1 form a tree, and the extra  element s, called the 
augmentation segment, is incident to some element of +A0. Or, what is the 
same, an augmented tree is a subtree of T together with an extra  segment 
stuck on. I t  is convenient to admit the empty set  as an augmented tree. 
A non-empty augmented tree is called based if the augmentation segment 
is given by 1 s (R). We use the notation ,A for a based augmented tree if 
the vertex incident to the augmentation segment is in T,. 

PROPOSITION 1.2. To any  finite based augmented t ~ e e  +A, there i s  
canonically associated a spli t  module ('A). And if 

1 ~ . 4 ~ A ~ ~ ~ B ~ R ~ ~ ~ c ~ c ~  

i s  any  spli t t ing d i a g ~ a m ,  and  

m' E Mc n I ~ ( K )  
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then there exist Jinite based augmented trees .A and .A and a map from 
(,A) @ (,A) whose image contains m'. 

Proof. As m' s I ~ ( K ) ,  there are finite sums so that 

m' = /i-a(C, ,Tl mz . x) - K,(C~, ,, m, V) . 
Putting n,(m,) = C,,(,,m,,, . a ,  where m,,, E Mc, and similarly for rc,(m,), 
we have 

m' = C z , ~ , A C a ~ < . ~ ) m Z ~ ~ . a . x  - C y e ~ B C , E , , , m , , ~ . b . ~  . 
On evaluating the double sums, and adding, we express m' in terms of the 
left C-basis of R, 

mr = Z s e T l m s  - 8  

where m, = m,,, - m,,, for the unique terms a x and b . y that on evaluation 
yield s. Now m' s Me, i.e., m, = 0 unless s = 1. Therefore 

m,,, - m,,, = m' if a - x  = b .  y = 1 ,  

and m,,, = m,,, otherwise, i.e., if a x = b .  y f 1. 
We now define the split module (+A) where +A is any finite based 

augmented tree. The construction is closely related to the construction of 
those 'standard' Mayer Vietoris presentations above. We let +AA = +A0 n T,, 
and +AB = +A" TB. Then N, will be the free right A-module on the basis 
elements 

n,, x E +Aa , 
and ,VB similarly. ,VC is the free C-module on the basis 

n,, s E +A1 . 
The components of the map a, + a, ('plus' instead of 'minus') are these. If 
s E +A1 is different from the basic segment, the summand n, . C @,R receives 
two components of the map. Also if x and y are the vertices incident to s, 

and, say, a x = s = b . y as elements of R (where a s (A), b E (B), and one 
of a and b must be 1) then these components are given by 

n, t--t n, . a and n, t-. n, . b . 
If s is the basic segment, there is just one component. We have 

K ( E , ,  - L A B  nZ  . X + EYE +PBn, . Y) 

= n,, 1 E (R), if +A is of type .A and 
- - -n,, if 'A is of type .A. 

On comparison, i t  is now clear that the required map can be defined on 
(,A) @ (,A) as soon as all the vertices x and y, for which m, and m, above 



146 FRIEDHELM WALDHAUSEN 

are non-zero, are contained in the union of .A and .A. (Obviously, there 
cannot be a uniqueness assertion in the proposition.) 

The remainder of the section is devoted to an analysis of split modules. 
If 

is a split module, we can display some of its structure in the diagram 

In this diagram, all maps and tensor products are over C. The lower row 
is the decomposition of Me @, R induced from the C-bimodule decomposition 
of R. Likewise, the upper row assembles to MA @, R @ MB @, R; the proof 
of this uses the fact that R = A Q,(C@ B'@ B ' Q  A'@. - )  as left A-module, 
etc. The tensor products appearing to the left hand side of Me all have B' 
as their right-most factor, likewise those to the right have A' as their 
right-most factor. The point of the diagram is that i t  depicts K in terms of 
component maps, and that the arrows show all component maps that can 
possibly be non-zero. 

Let Mu' be the sum of the terms in the upper row that are to the right 
hand side of Me, 

Mu' = MA@ MB@A'@.MA@ B1@A'@ 

and M1', Mu', MZ1 similarly. With 

P = Me n Im(Mu' ---t Me@ M1') 
m ker (Mu' - MI') 

and Q similarly, we must have 

M c = P @ Q ,  

and in particular K-'(P) c Mu' and K-'(Q) c Mul. 
In the above diagram, any two terms that are situated symmetrically 

with respect to MA, add up to an A-module. Hence there are two folded 
versions of the diagram. The B-folded diagram is obtained from the above 
by folding a t  the place of MB and adding up corresponding terms. The 
resulting diagram of B-modules is 

The point of folding is that the terms to the right hand side of MB are 
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precisely the same as before, except that B has been tensored on from the 
right. The same is true of the maps, except again the first one. In more 
condensed notation, the B-folded diagram thus becomes 

and we see that K induces an isomorphism ker (Mur  --t M1') @ B-, P @  B. 
Consequently, the restriction K 1 MB must be the sum of an isomorphism 

j,: M,=Q@B 
and some map 

k B : M B - P @ B .  

Similarly, K-' 1 Q @ B is the sum of j i l  and some map 

l , : Q @ B - M n ' @ B ,  

and these decompositions are related by the fact that 

K o K - I  1 Q @ B = j, 0 j,' + k ,  0 ji' + K 0 1, 
and hence 

k B o j i l  = ( - l ) K o ~ , .  

The point of considering the decomposition of K-' 1 Q @ B is that its restric- 
tion to Q can be located in the original diagram. From this one sees that 
I,(&) is contained already in the part Mu'@ B' of Mnl .  But the map 
Mu' @ B -, P @ B is of type (?) @ B ,  therefore li(l,(Q)) c P @ B'. Con- 
sequently we have proved that the composition 

j i  ' 
Q - Q @ B - M , ~ P @ B  

has image in P @ B'. Factoring off the inclusion P @ B' --+ P @ B,  we thus 
have a map which we denote 

q : Q - P @ B f .  
Likewise we have a map 

p : P - & @ A '  . 
Identifying MB to Q @ B by means of j,, and MA to P @  A by means of j,, 
we have proved 

PROPOSITION 1.3. There exists a n  exact equivalence of the category of 
split modules wi th  a full subcategory of the category whose objects are the 
quadruples (P,  Q, p, q )  where P and Q are C-modules, and p and q are 
C-maps 

p : P - & @ A f ,  q : Q - P @ B f .  
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Given such an object as in the proposition, we define a pair of filtrations 

o =  P o c P , c . - - c P ,  
0 = Q o c Q , c  ... c Q  

inductively by the rule 

p,+, = P-'(Q, @ A') , &,+I = q-'(P, @3 B') , 
and we call the object (P, Q, p, q) nilpotent if these filtrations converge to 
P and Q, respectively. We let %iI(C; A', B') denote the full subcategory of 
nilpotent objects. 

PROPOSITION 1.4. I n  P?*oposition 1.3, the subcatego~y i n  question i s  
8i l  (C; A', B'). 

In order to verify the assertion, we consider once more the diagram 
displaying the components on K. Squeezing in the information we gathered 
in the meantime, we can rewrite the diagram thus: 

The meaning of the different sorts of arrows is this. The solid arrows 
denote identity maps. The broken ones are p and q, and maps obtained 
from these by tensoring on an identity. About the remaining maps we 
cannot say very much (the ring structures of A and B enter) except that  
we know where they go; they are the dotted arrows; e.g., no dotted arrow 
s tar ts  from P. 

Conversely, if we have an object (P, Q, p, q) in the above sense, we can 
construct such a diagram. Let us look a t  i t  and figure out the properties 
of K. 

The basic observation is this. If m E MA @, R @ iWB @,  R is such that  
its image ~ ( m )  happens to be in P @ Q, then the decomposition of m cannot 
involve an element of the summand P @ A' or of any other summand from 
which a dotted arrow starts .  Indeed, if there were a contribution from 
PO A', say, there had to be a contribution from Q @ B' @ A', and so on, 
and we could never stop. 

So K-'(P @ Q) and Im ( K )  n (P @ Q) are  unchanged if we discard all 
those summands in the source from which a dotted arrow starts. So K is 
automatically injective. Also K is surjective if and only if P @ Q  c Im(n) 
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which visibly is the case if and only if (P, Q, p, q) is nilpotent. 
One aspect of the category 8iI(C; A', B') is that i t  visibly depends only 

on the bimodules A' and B', and so it has a pr ior i  a much better functorial 
behavior than the original category of split modules. We are interested 
here in another aspect, a kind of devissage that becomes indeed very easy 
once the translation into nilpotent objects has been made. 

The rule (P, Q)'+ (P, Q, 0, 0), (P, Q, p, q) H (P, Q) defines maps 
i f Mod, x Mod, - %iI(C; A', B') - Mod, x Modc 

whose composition is the identity. We call (P, Q, p, q) finitely ge?ze?.ated if 
(P, Q )  is. 

LEMMA 1.5. If (P, Q, p, q) is finitely gene~ated, i t  lzns a finite fifilt?.ntion 
by finitely genemted subobjects, whose quotients are  i n  Im(i). 

The proof is by more definitions. Call a pair of filtrations 

0 = PocP ,c  ... C P ,  
0 = Q o c Q , c  ... C Q  

an assailable filtration on (P, Q, p, q) if firstly these filtrations converge, 
and secondly 

p(P ,+ , )cQ,OA'  and q (Q ,~ l , ) cQ ,OB ' .  

The existence of an assailable filtration is equivalent to nilpotence. CalI an 
assailable filtration fifilzitely assailable if firstly the submodules involved are 
finitely generated and secondly, the filtrations are of essentially finite length. 
The existence of a finitely assailable filtration is equivalent to the assertion 
of the lemma. But if (P, Q) is finitely generated, one can construct by 
downward induction a finitely assailable filtration subordinate to a given 
assailable filtration. 

2. Laurent extensions. Let a, p: C -) A be inclusions of rings both of 
which are pure. The Laurent extension with ~espec t  to a and P is a ring 
R that contains A, and an invertible element t, and satisfies 

and is universal with respect to these properties. 
The existence of R can be seen from arguing with free products. Let 

Ax be the direct limit of the free products with amalgamation constructed 
inductively from the diagram 
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A* has an obvious automorphism (shifting), and we let R be the usual 
twisted Laurent extension with respect to this automorphism. Then R 
satisfies the above conditions. However, this is not yet the description that 
we want. 

We fix, once and for all, splittings of C-bimodules 

There are four C-bimodules of interest to us, 

.A&, )A;, aA) 

e.g., ,A& is just A', and )Aa is A with the left and right C-structure 
induced, respectively, from P and a. We define 8 to be the direct sum of 
C and all finite tensor products of these C-bimodules in which the following 
successions of factors are allowed: 

i.e., adjacent indices must be different. In the cases not listed, e.g., 
.A: @,.Aa is one of them, the cancellation involved in forming the tensor 
product, is compatible with the multiplication in A. Therefore there is a 
map a 0, 8 -4 8 which can be seen to induce an associative multiplication 
on 8. 

Fixing an embedding A c R, and sending C to a(C) c A, we obtain a 
map of C-bimodules a --+ R by the rule 

,A& - A', ,Aa - tA, )A; - tA"t-', .A, - At-' . 
Inspection shows this map is multiplicative. So by the universal property 
of R, i t  is an isomorphism. 

This description of R was suggested by S. Cappell. Still following 
Cappell, we find it convenient to collect the summands of R, other than C, 
into four families. These are defined inductively in two ways. The equival- 
ence of the two definitions can be seen by a straightforward inductive 
argument. 

DEFINITION AND LEMMA 2.0. 
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I t  is convenient to let Vo = 0 = X, and W, = C = Yo. 
From now on we assume A' and A" are free as left C-modules, and we 

choose left bases. This choice determines bases (C), (V,), etc., of the left 
C-modules C, V,, W,, X,, Y,, R. We will construct a tree T whose set of 
segments is T' = (R). Its set of vertices, TO, will be given by a left A-basis 
of R that we can construct in more or less canonical fashion. Namely, from 
the first variant of the definition above, we have isomorphisms of 
C-bimodules, valid for .n 1 0, 

v,,, @ w, = .A, O W,@ .A, O v, 
y,,, @ X, = .Aa O X, G3 .A, O Y, , 

and hence a left A-basis of R, isomorphic to the disjoint union 

US(( W,) u ( V,) u (X,) u ( Yn)) . 
We let the element in ( W,) be the basepoint in To. 

The definition of incidence in T is facilitated by orienting the segments 
in such a way that each vertex x, except for the basepoint, is the terminal 
vertex of precisely one segment, so(x). Incidence is then fully described by 
giving the functions so: (T" *)+ T' and v,: T1-, T h h e r e  the latter 
associates to any segment its initial vertex. 

We let so be the 'identity' in obvious fashion. The function vo is given 
by the first variant of Definition 2.0, interpreted to be valid for n 2 0. For 
example, the image of (Vn c T' is ( W,) U (Vn) c T" again in obvious 
fashion. 

As in the free product case, the functions so and vo combine to give a 
length function m T, and by induction on length, one can check that T is 
indeed a tree. 

Up to now, our treatment of bases has been 'additive' in the sense that 
we decomposed R as a module, and used the bases of the pieces. We need 
information about the multiplicative behavior also. To obtain it, we first 
have to embed the pieces in R and check what happens to the bases when 
we identify A to a subring of R, and C to the subring a(C) of A. 

By the definition of a, and the isomorphism i? -, R, any C-basis element 
corresponds to a unique element of R. It is convenient not to distinguish 
between the two interpretations of such an element. 

On the other hand, the left A-structure on R (or rather its pieces) came 
from the isomorphism 

R = a A a O S 1 @ a A ~ O S ,  
where 

S ,=@Wm@@Xm? s z = @ V n @ @ Y n .  
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Denoting T,O and T," the A-bases of A, @ S, and Ag @ S,, respectively, we 
had identified T: to (ST'), and T," to (8,). Now .Aa goes to A in R, and ,Aa 
goes to At-'. Therefore under the identification .A, @ S, @ ,A, @ S, -+ R, 
the image of an A-basis element is given by 

j(x) = x if x e T: and j(x) = t-'x if x E Tj . 
I t  is now straightforward to verify that the multiplication in R induces 
isomorphisms 

(A) x j(To) - TT' - (tA) x j (TO) , 
and on checking the definition of incidence in T, one finds if x e To then 
T1(x), the set of segments incident to x, is given by 

T1(x) = ((A) U (tA)) Ax).  

Definition. A splitting diagram consists of right modules 

MA, Mc 

over the rings A and C, respectively, and a map over R 

MA OAR 5 Mc @cR 

satisfying K(M,) c Mc @,(A @ tA). We will write K = K, - lip with 

~a(M.4) c Mc @c A , K,~(M,A c Mc @c tA . 
A map of splitting diagrams is a pair of maps over A and C, respectively, 
satisfying the obvious condition. The resulting category is abelian since 
(?) @A R and (?) @, R are exact functors. 

From the notion of 'splitting diagram' one has the analogous derived 
notions as in the free product case: completed splitting diagram, ma ye^ 
Vietoris presentation, and split module. 

Also the results, when formulated in terms of the tree T, are almost 
verbatim the same as in the free product case. 

PROPOSITION 2.1. Let N be the free right R-module on the basis element 
n. Let A be a finite subtree of T, containing the basepoint. There exists a 
canonical Mayer Vieto?.is presentation (N, n, A) of N. Also given m E M, 
there exists a map of (N, n, A) into the completed splitting diagram 

0- M A  M A @ , R - L  MC@,R 

inducing n --+ m, if and only if A contains a c e ~ t a i n  finite t?*ee A(m). The 
entire map is uniquely determined by rn. 

Proof. In terms of the left A-basis To of R, we have a unique expres- 
sion 
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c(m> = C,, To m, . Ax) 

where m, E MA, and only finitely many m, are non-zero. Then 

Ka(c(m)) = Ex TO K,(mx) . j(x) = EZE e ( A )  mz,, . a . j(x) 

with m,,, E Mc, because K,(M,) c Mc &A. Similarly 

~ , ( l (m))  = CUE ~ ~ ( m , )  . j(y) = Cy TO ChE(tA>m,,, b j(y) . 
On the other hand, in terms of the left C-basis of R, we have 

K , ( c ( ~ ) )  = K,(c(~) )  = C8 , ms ' S ? 

and there is for each s precisely one (a, x) E (A) x To, and precisely one 
(b, y) E (tA) x To, so that, on evaluation, a .  j(x) = s = b j(y). Consequently 

mz,a = ms = mr,b 

for these particular indices. 
We define A(m) to be the smallest subtree of T which contains all those 

x E To for which m, is non-zero. 
On inspection of the analogous argument in Proposition 1.1, i t  is clear 

that (N, n, A) has the required properties if i t  is defined as follows. 
N, is the free right A-module on the basis n,, x e AO; N, is the free 

C-module on the basis n,, s e A'; and 

c(n) = E,, n, . j(x> . 
In order to define K, + K, ('plus' instead of 'minus') we use the fact that 
for each s e A', and incident x e A', there is a unique a E (A) U (tA) so that 

s = a *  j(x) ; 

the corresponding component of K, + K, is then given by 

n,t---,n;a, 

and i t  follows that 

~,(l(.n)) = ~ ~ ( c ( n ) )  = C,, ,, n, . s . 
There is a notion of based augmented tree in T, similar to that in Section 

1, and by a straightforward variation on the argument, one obtains 

PROPOSITION 2.2. To any finite based augmented tree +A, theye is 
canonically associated a split module (+A). And if 

M A g A R  5 M C ~ C R  

is  any splitting diagram, and 
m' E Mc n Im (K) 

then there exist finite based augmented trees .A and $A and  a map from 
(,A) @ (,9A) whose image contains m'. 
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The remainder of this section is devoted to an analysis of split modules. 
If MA is an A-module, we can consider i t  as a C-module in two ways which 
we indicate by the notation Ma and Mg, respectively. 

In terms of the C-bimodules introduced in Definition 2.0, the following 
is a C-bimodule decomposition of R: 

On re-bracketing, we obtain a decomposition with a left A-structure, namely, 

The point of these particular decompositions is that if we decompose the 
split module 

accordingly, then all the components of K that can possibly be non-zero are 
as depicted in the diagram 

. .  @ ( W a g  Wl@M,@ Vi) 63 iK @ Mp @ ( M , @ x l @ M g @  y~)@(Mu@xz@IMg@ Yz) 
\ / \ / \  / \  / \ / \ 
L K' Lk' LK' L K '  L I( L 

M ~ @ ( w ~ @  V 2 ) @ M c @ ( W ~ @ V ~ ) $ M c @ M c @ ( X ~ @ Y ~ ) $ M c @ ( X z $ Y 2 )  $ - - . .  
One checks this from Definition 2.0 (first variant) and its relation to multipli- 
cation in R. We note a fact which really is a by-product of this checking, 
namely that the map 

is, in obvious notation, the same as 

Because of the identities (second variant of Definition 2.0) 

we can fold the diagram a t  the place of Ma, and add up corresponding terms 
to obtain the diagram of A-modules 

Abbreviating 

Mu' = M , @ ( M a @ X 1  @ M, @ Y,) ..- etc., 

we can write the first diagram as 
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Comparing the two diagrams, and using again that K is an R-map, one sees 
the folded diagram is of the form 

and i t  is a consequence of the fact noted above that the map g satisfies 

g = g l @ ~ A @ g r @ a A .  
Letting 

P = Im(g l )  w ker ( M U 1  - M L E )  , 
Q = Im(g,) M k e r ( M U r  - ML') , 

we have M, = P @  Q, and we can conclude that K 1 MA is the sum of an 
isomorphism 

= 
j:iV,--4 P @ a A @ Q @ j A  

and some map 
l;:i%!,l-Q@aA@P@BA. 

Similarly, K-' / P @ ,  A @ Q @, A is the sum of j-' and some map 

I :  P O a A @  Q a 8 A -  M U 1 @ , A @  M U ' @ 8 A  

satisfying the relation k  0 j-' f K 0 1 = 0. We would like to assert that the 
map I is more special than it appears. We use the fact (from the second 
variant of Definition 2.0) that 

Mu' M U 1 @ a A a @  MU' @,Ah@ M a .  

Now the restriction I I P can be located in the unfolded diagram, and by 
definition of the sum decomposition involving I ,  i t  has i ts target in the 
component M U 1  @ $ A a  @ MU' @,A: of MUG. By our control on the map g 
above, we can thus assert that 

k ( j P 1 ( P ) )  = n( l (P))  c P @ a  A, @ Q @, A,' . 
But the roles of a and in the definition of splitting diagrams can be 
interchanged by what is essentially conjugation by t. Therefore by sym- 
metry we can also assert that 

k( j - ' (Q))  c Q @a A8 @ P @B -4; . 
Identifying M., to P @, A @ Q @ , A  by means of the isomorphism j ,  we have 
thus proved 
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PROPOSITION 2.3. The?.e exists a n  exact equivalence of the catego~y of 
split modules with a full subcatego~y o f  the catego9.y whose objects aye the 
quad~uples (P,  Q, p, q )  w h e ~ e  P and Q aTe C-modules, and p and q aye 
C-maps 

p :P-QO.A&@POpA, ,  
q : Q - P O p A ~ @ Q O . A g .  

Given such an object as in the proposition, we define a pair of filtrations 
by induction from Po = 0 and Q, = 0, 

pn+l p-'(Qn Om A& @ Pn OF A,) , 
Qn,, = 9-'(Pn O, A; @ Qn O.A,J , 

and we call the object (P,  Q, p, q) nilpotent if these filtrations converge to 
P and Q ,  respectively. We let %iI(C; ,Ah, ,A;'; ,3A,, .A,) denote the full 
subcategory of nilpotent objects. 

PROPOSITION 2.4. I n  Proposition 2.3, the subcatego~y in question is 

%iI(C; .A&, ,A;; ,A,, ,A,) . 
To star t  the proof, we must do some rewriting. By virtue of Definition 

2.0, the isomorphism 

j :  M , - P @ , A @ Q @ , A  

induces isomorphisms 

1u.@X,@MbO Y , - -+POX,@&@ Y , @ P @  Yn,-1CBQOx,., 
M.0  W , @ M , O  V,---tPO W,CBQO V , @ P O  V n l 1 @ Q O  W ,  

If we substitute accordingly, the diagram displaying the components of K 

becomes 
jiU,,k TVl @ MM,%Trl) 1'1<, 
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The solid arrows in the diagram are identities. The broken ones are p and 
q and their induced maps. In the remaining component maps, denoted by 
dotted arrows, the multiplicative structure of A enters. The point is we 
need not know anything about the dotted arrows. Even the fact that there 
is no dotted arrow from Q @ XI @ PO Y,  to Q, and its generalizations, is 
somewhat redundant information. All that matters for us, is the fact that 
either 

( P O X , @ Q O  Y,) or (PO W,@QO V,) 
is the source of only one non-identity map, and that this map is the broken 
arrow with target 

( P O  Xm+, @ Q O Y,+d or (PO W%+, 63 Q O Vm+J 

respectively, as claimed in the diagram. 
The argument proceeds now as in the free product case. Namely, the 

diagram as depicted can already be constructed from an object (P, Q, p, q) 
in the above sense, and in the corresponding map K one checks i t  is auto- 
matically injective, and it is surjective if and only if P @  Q c Im ( K )  which 
is the case if and only if (P, Q, p, q) is nilpotent. 

By studying the functorial behavior, one sees from the maps OZ,Aa 
and Ot ,A ,  that %iI(C; ,A&, ,A;; ,A,, ,A,) has as a retract the category 
%il(C; ,A:, ,A;) of the previous section. And the maps OZ,A& and O=,A; 
show that another retract is the product of the categories %iI(C; ,Aa) and 
%il(C; ,A,) considered in the next section. In the case when a, 6: C+A 
are both isomorphisms, %il(C; .A&, ,A;; ,A,, ,A,) actually reduces to that 
product. 

The rule (P, Q) ti (P, Q, 0, 0), (P, Q, p, q) :+(P, Q) defines maps 
i f 

Mod, :/ Mod, - %iI (C; ,Ah, ,A;; ,A,, ,A,) - Mod, x Mod, 

and as in the previous section we have 

LEMMA 2.5. If (P, Q, p, q) is finitely gene~ated, i t  has a finite filt?.ation 
by finitely geqze?.ated subob jects whose quotients aye i n  Im (i). 

3. Polynomial extensions. Let S be a bimodule on the ring C, and R 
the tensor algebra of S, so as a C-bimodule 

R = C @ S @ S @ , S @ S @ , S @ , S @ - - - .  

We assume S is free as a left C-module, and we fix a left basis that we 
denote (S). This induces the left C-basis 

(R) = (C) U (S) U (SOS) U ... . 
We define an augmented tree ' T  as follows. Both +To and +T1 are isomor- 
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phic to the set (R). For every vertex x  E +To,  the set + T 1 ( x )  of segments 
incident to x ,  is given by evaluating 

b - x ,  bs (C)  U (8). 

We orient the segments in such a way that each vertex x  is the terminal 
vertex of precisely one segment so(x) ,  and by definition, the function so is 
given by the 'identity.' So if b  E (S) then x  is the initial vertex of the 
segment b  . x .  

From +T we obtain T by omitting the extra segment 1 E ( C ) .  It is 
clear that T is indeed a tree. The vertex I s (C) is the basepoint in T. 

D e f i n i t i o n .  A s p l i t t i n g  d i a g ~ a m  consists of right C-modules 

Mc, MA 
and an R-map 

lwc @,R -5 MA @,R 
satisfying 

K ( M ~ )  c Md @c(C GI S )  . 
There is a canonical way of writing K as a difference K = K ,  - K1 with 

K,(M,) c MA and K,(M,) c M ;  @, S . 
A m a p  of splitting diagrams is a certain pair of maps over C: the resulting 
category is abelian since (?) @, R is an exact functor. 

We have the analogous derived notions as in the preceding cases: 
completed s p l i t t i n g  d i a g ~ a m ,  ma ye^ V i e t o y i s  p ~ e s e n t a t i o n ,  and s p l i t  
modu le .  

PROPOSITION 3.1. L e t  N be t h e  f ~ e e  r i g h t  R - m o d u l e  o n  t h e  basis  e l emen t  
n. L e t  A be a  f inite subtyee o f  T ,  c o n t a i n i n g  t h e  basepoint .  Theye  ex i s t s  a  
canon ica l  M a y e y  f i e toy i s  p ~ e s e n t a t i o n  (N, n, A )  o f  N. A n d  g i v e n  m E M ,  
theye  ex i s t s  a  m a p  of  ( N ,  n, A) i n t o  t h e  completed s p l i t t i n g  d i a g y a m  

o- M L  M,@,R& M;@,R 
i n d u c i n g  n-+m, i f  a n d  o n l y  i f  A c o n t a i n s  a  c e r t a i n  f inite t ~ e e  A(m). T h e  
e n t i y e  m a p  i s  u n i q u e l y  de teymined  b y  m. 

Pyoo f .  In terms of the left C-basis T o  of R, we have a unique expres- 
sion 

c(m) = CzeT0mz ' x 
where m, s M,. Then 

lil(c(m)) = C, , ro~l (m, )  . X  = C,,ToCb,(s)mz,b be x  

with m,,, s MA, and similarly 
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~,(c(m)) = EVE TO~O(mt/j Y = Cy y 
with mb E Md. On the other hand we have, in terms of the C-basis T' of R, 

~1(c(m)) = ~o(c(m)) = C,, m, . s 

with ma E Mh, and the multiplication in R induces an isomorphism 

(S) x To- T I .  
Therefore 

m,,, = ma = m; 

for those (x, b), y, and s such that b e  x = y = s, as elements of R, and in 
particular 

m : = O .  

We let A(m) be the smallest subtree of T which contains those x with m, f 0. 
The definition of (N, n, A) follows the same pattern as in the other 

cases. Nc is the free C-module on the basis n,, x E AO, and Nh is the free 
C-module on the basis n,, s E A'. In order to define K, + K, ('plus' instead of 
'minus') we use that for each s E A', and incident x E AO, there is a unique 
b E (C) U (S) so that s = b x as elements of R. The corresponding com- 
ponent of K, + K, is then given by n,-+n,. b. By definition, 

c(n) = C,, ,0 n, . x 
and i t  follows that 

~o(c(n)) = ~l(c(n)) = C ? , , I ~ ,  . s . 
This completes the proof. 

By a based augmented t ~ e e  in +T, we will mean a based subtree of T 
together with the extra segment in +T. As in the other cases, one obtains 

PROPOSITION 3.2. To any finite based augmented t ~ e e  +A, them is 
canonically associated a split module (+A). And if 

M , O , R ~  M L O ~ R  
is any splitting d i a g ~ a m ,  and 

m' E Md, n I ~ ( K )  

then theye exists a finite based augmented tree +A and a map f ~ o m  (+A) 
whose image contains m'. 

The analysis of split modules in this section reduces to almost a triviality. 
Yet we keep formulating the results in the same way in order to stress the 
inherent similarity in the different cases. Let 

M c @ c R A  MAOcR 

be a split module. As the ring R is graded on the non-negative integers, 
the isomorphism K must induce an isomorphism of the degree zero parts of 
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these modules. We identify Mc and Mi by means of this isomorphism. In 
terms of the canonical decomposition of R, the map K can then be displayed 
in the following diagram which shows all components tha t  can possibly be 
non-zero: 

The solid arrows are  identities, and the broken ones are p, p @ S, p @ S @ S,  
etc. We have thus proved 

PROPOSITION 3.3. The7.e exists a n  exact equivalence of the catego~y of 
spli t  modules with a full subcatego~y of the catego~y whose objects aye the 
p a i ~ s  (P,  p) w h e ~ e  P is  a C-module, a n d  p i s  a C-map 

p : P - P @ S .  

We define a filtration 0 = Po c P, c . . c P inductively by the  rule 

pa.,, = p-'(Pa 0 S )  
and call the object nilpotent if this filtration converges to  P. We let 
%il(C; S )  denote the full subcategory of nilpotent objects. 

PROPOSITION 3.4. I n  P~opos i t ion  3.3, the subcatego~y i n  question i s  
%iI (C; S). 

Indeed, given an object (P, p), we can se t  up a diagram as above. Then 
K Mc is trivially injective, hence K is injective. Furthermore K is surjective 
if and only if MC. c I ~ ( K )  which visibly is the case if and only if (P, p) is 
nilpotent. 

Finally, the rule P + ( P ,  0), (P, p) + P defines maps 
i f 

Mod, d %iI (C; S )  d Mod, 

and as in the preceding sections we have 

LEMMA 3.5. If (P, p )  i s  finitel y gefie~ated, i t  has a finite filt~'ation by 
finitely gene~ated subob jects, whose quotients aye i n  Im (i). 

4. Dimefision, c o h e ~ e ~ c e ,  ~ e g u l a ~ i t y .  Let M be a r ight R-module. M 
is called coheyent if i t  has a resolution by finitely generated projective 
R-modules, and ~ e g u l a ~  cohe~en t  if this resolution can be taken as finite 
dimensional. 

The ring R is called cohe~ent,  respectively ~ e g u l a ~ .  cohe~ent ,  if all i ts  
finitely presented right modules are, e.g., R is regular coherent if i t  is 
coherent and has finite r ight global dimension. One can verify by a little 
diagram chasing tha t  R is coherent if and only if i ts  finitely presented 
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modules form an abelian category. 

PROPOSITION 4.1. L e t  the  ~ i n g  R be e i t h e ~  
( 1 ) t h e  f ~ e e  p ~ o d u c t  in t h e  s i t u a t i o n  a: C -  A, ,B: C+ B OY 

( 2 ) t h e  L a u ~ e n t  e x t e n s i o n  w i t h  ~ ' e s p e c t  to  a, ,B: C - A  OY 

( 3 ) t h e  tensoy a l g e b ~ a  o f  the  C-bimodule  S. 
A s s u m e  t h a t  t h e  c o n d i t i o n s  o f  t h e  p ~ e c e d i n g  sections hold ,  i.e., a a n d  ,B aye  
p u y e  embedd ings ,  a n d  t h e i ~  complements  aye  fyee f ~ o m  t h e  l e f t ;  l i kewise ,  S 
i s  f ~ e e  f ~ o m  t h e  l e f t .  L e t  M be a n  R-module .  

T h e n  theye  e x i s t  a  C-module  M e ,  a n  A-module  M A ,  etc., a n d  a  s h o ~ t  
exact sequence o f  R-modules  

( 1 )  O - M c @ c R - M A @ A R $ M ~ @ , R + M - t O ~ ~  
( 2 )  O - t M c @ c R + M A @ A R * M + O ~ ~  
( 3 )  O + M c @ c R + M ~ @ c R + M - O  

9.espectivel y.  
I f  f u ~ t h e y m o ~ e  C i s  n o e t h e ~ i a n ,  a n d  M f i n i t e l y  p ~ e s e n t e d ,  a n d  i f  in 

case ( 3 )  S i s  f i n i t e l y  p?.esented f ~ o m  the  ~ i g h t ,  t h e n  a l l  t h e  o t h e ~  modules  
c a n  be t a k e n  a s  f i n i t e l y  p ~ e s e n t e d  a s  wel l .  

COROLLARY 4.2. Unde?. the  hypotheses  o f  the  p ~ o p o s i t i o n  

r. gl. dim. (R) -< max(r. gl. dim. (A),  r. gl. dim. (B) ,  r. gl. dim. ( C )  -t- 1) 

( ignoYe B in case ( 2 ) ,  a n d  A, B in case (3 ) ) .  
I f  in a d d i t i o n  A, B aye c o h e ~ e n t  a n d  C n o e t h e ~ i a n ,  t h e n  R i s  c o h e ~ e n t .  
A n d  i f  A, B aye ~ ' e g u l a ~  c o h e ~ e n t  a n d  C ~ e g u l a ~  n o e t h e ~ i a n ,  t h e n  R i s  

Indeed, the corollary requires us to construct a certain resolution of an 
R-module. But the proposition tells us that such a resolution can be con- 
structed by splicing, i.e., by taking the mapping cone of a certain map of 
resolutions. 

The proposition is a rather formal consequence of the results in the 
preceding sections. As the differences in the three cases are almost in 
notation only, we describe the argument in just one of the cases. We treat 
the Laurent extension case. 

Let M ' d l ~ ' +  M - ~ O  be a free presentation of the given R-module M. 
There exists a map of Mayer Vietoris presentations 

Indeed, we can choose an isomorphism M" M.: @, R to begin with, and 
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H,(X)  has an obvious reduction to A, so we will have proved the proposition 
once we prove that H,(X') + H,(X) is a monomorphism. Inspection of the 
diagram shows H,(X') -t H,(X) is a monomorphism if and only if for any 
m E ker (da) @ , R, ~ ( m )  E Im (di) @, R implies ~ , ( m )  E Im (di) 8, R; i.e., if we 
define 

M = {m E ker (dl) @ , R 1 ~ , ( m )  - ~ , ( m )  E Im(d2,) 8, R) 
then 

(*I K ~ ( M )  c Im (d:) BC R . 
We prove first 

LEMMA 4.3. Let 04 N-f-. N ,  @, R: N, @, R be any completed splitting 
d i ag~am.  Then 

~ ~ ( 0 9 )  c (Im (h-1 n Nc) O, R . 
Proof. In the special case of a Mayer Vietoris presentation, No c Im (K), 

so the lemma is trivial. In general, if n*  = n,(c(n)), say, Proposition 2.1 
says there exists a 'standard' Mayer Vietoris presentation (N', n', A) and 
a map with Im(n') = n. So the general case follows from the special case. 

Consider the diagram 
;= 

Mf@,,R------- +,%l:@,R 

;re18 R d:I@ R 

ker (dl) -2 ker (d',) @ ,  R - -----t M: @, R 

id I 
ker (dl) - coker (2,) coker (dl) 0, R 

where 2; is the sam.e as di  except for the restriction of the target, and q is 
the quotient map. The module i@ can be identified to the kernel of the map 
from the middle entry to the lower right one, hence q ( ~ )  c ker(Z). But the 
lower row is exact a t  the middle, hence from the lemma, and the definition 
of d:, we obtain i,(q(M)) = 0, which is equivalent to (x:). 

(In [26] I described a short cut to the proof of the proposition; i t  is a 
bit too short as i t  relies on the erroneous statement given as the second 
part of the lemma in Section 3 of [26].) 

11. General theorq- 

3. Notions of homotopy theo7.y. Let A be the category of ordered sets 

[n] = (0 < 1 < < n ) ,  n = 0,1, ... 
and weakly order preserving maps, and AoP its opposite category. A 
simplicia1 object in a category CJ is a functor X. AoP+C; if C is the category 
of things we refer to X as a simplicial thing and to X, = X[n] as the 
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t h i n g  in degree n. 
If X is a simplicial set we denote BX its geometric realization. To be 

precise, we refer to that version of geometric realization which is formed 
in the category of compactly generated spaces, and which does use the 
degeneracies. So the functor B commutes with finite products as well as 
with colimits. A map f: X + X '  of simplicial sets is called a weak  homotopy  
equivalence if Bf: BX+ BX' is a homotopy equivalence. 

A bis irnpl ic ial  object  in C is a functor X. AoP x AoP +C; via the diagonal 
map A+A x A one can associate to i t  a d iagona l  s i m p l i c i a l  object  with 
(diag (X..)), = X,,; similarly, a t r i s i m p l i c i a l  object  can be diagonalized (in 
several ways) to a bisimplicial object, etc. There is another obvious way 
of associating a simplicial set to a bisimplicial set, c o n d e n s a t i o n  [I]; i t  
gives the same result as diagonalization (to be precise, there is a natural 
map cond (X. .) + diag (X. .) and one checks that this map is an isomorphism). 
Since cond(X..) is a colimit by definition, since geometric realization com- 
mutes with colimits, and since furthermore B(Am x Am)+ BA" x BAm is a 
homeomorphism, where A" denotes the simplicial set 'standard n-simplex,' 
this means that Bdiag(X..) can also be constructed in the following way. 
Consider X.. as a simplicial object in the category of simplicial sets, apply 
the geometric realization functor to obtain a simplicial space, and apply 
geometric realization again to obtain a space. By the above remarks this 
space will be naturally homeomorphic to B diag (X. .). We say X.. + Y.. is a 
weak  homotopy  equivalence whenever diag (X. .) + diag ( Y. .) is. 

Multi-simplicia1 sets will arise naturally in our work. I t  will be important 
that we can work with them directly, without diagonalizing away all the 
structure. Such work depends on a few basic lemmas which we now collect. 
I t  is sufficient to formulate these lemmas for bisimplicial sets as the corres- 
ponding lemmas for multi-simplicia1 sets are immediate consequences, by 
taking suitable diagonals. 

LEMMA 5.1. L e t  X..+ Y.. be a m a p  o f  b i s i m p l i c i a l  sets.  S u p p o s e  t h a t  
f o ~  eveyy  n, t h e  m a p  X.,+ Y., i s  a weak  homotopy  equivalence.  T h e n  
X . .  . Y.. i s  a weak  homotopy  equivalence.  

Proofs of this lemma are given in [22] and [28]. This lemma will often 
be used without further comment. A special case is that a simplicial object 
in the category of contractible simplicial sets is itself contractible (here 
coqzt~,actible means (weak) homotopy type of a point). 

We say a map is c o n s t a n t  if i t  factors through a terminal object. A 
sequence of maps of topological spaces A+ B+ C is called a f ibration u p  to  
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homotopy if the composed map A --, C is constant, and the resulting map 
from A to the homotopy theoretic fibre of B-t C is a homotopy equivalence. 
A sequence of maps of (multi-) simplicial sets will be called a fibration up 
to homotopy if the sequence of geometric realizations is. 

LEMMA 5.2. Let X..+ Y.. +Z.. be a sequence of bisimplicial sets so 
that X.. --t 2.. is constant. Suppose that X.,+ Y.,+ Z., is a jibration up 
to homotopy, for every n. Suppose further that Z., is  connected, for every 
n. Then X.. 4 Y.. + 2.. is a jibration up  to homotopy. 

This lemma appears to be well known. The following argument goes 
back to a one line proof, modulo technicalities, by D. Puppe in the case 
when the Y., are contractible ("2 3: B(QZ); geometric realizations commute 
among themselves"). 

Proof. We consider first a special case. Suppose the sequence of the 
lemma arises in the following way: We are given a simplicial object which 
in degree n is a pair (X.,, G.,) consisting of a simplicial set X., and a simpli- 
cia1 group G., acting on X., from the right. To such a pair is canonically 
associated a simplicial fibre bundle (or 'twisted cartesian product' [15]) 

X.,- X., , x  NG,--+ NG, 

where by definition NG, is the diagonal simplicial set of (G.,)'. If we omit 
diagonalizing the bisimplicial sets involved, and assemble for varying n ,  
we obtain a sequence of trisimplicial sets which in tridegree (m, n, k) is 

Clearly then the assertion of the lemma for the sequence above, amounts to 
the claim that when we diagonalize the latter sequence to a sequence of 
simplicial sets, and we diagonalize in two steps, then it does not matter 
which way we do this, which is certainly true. 

The general case will be reduced to this special case. Let G be the loop 
group functor of Kan which to a connected pointed simplicial set L associates 
a free simplicial group G(L); notice that G(L) is well defined even if L is 
not reduced [12]. There is a twisted cartesian product G(L) -, L x , G(L) -, L 
so that L x ,  G(L) is contractible; this is also functorial for connected pointed 
L [12]. 

In the case a t  hand, we abbreviate G, = G(Z.,), and NG, = diag(G(2.J'). 
Using the right action of G, on itself we form the double twisted cartesian 
product Z., x , G, , x NG, from which we obtain Y., x , G, , x  NG, by pull- 
back. Since X..-+Z.. is a constant map, and G, and NG, are naturally 
pointed, we have a map X.,-+ Y., x , G, , x NG, and a commutative diagram 
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- 
X., --- X., --- - Y., x , G ,  

1 ,  
Y., - 

and the maps denoted 'z' are weak homotopy equivalences since they are 
bundle projections with contractible fibre. I t  follows tha t  X.,+ Y., x , G, 
must also be a weak homotopy equivalence. 

In view of the naturality of this diagram we can now apply Lemma 5.1 
twice to replace the original simplicial object (given by the left column) by 
a new one (given by the right column). But this is of the special type 
considered before, and the proof of the lemma is complete. 

N e w e s .  Associated to a small category e is a simplicial set NC, i ts  
? % e w e ,  where (NC), is the set  of functors [n] +C; in other words, an element 
of (NC), is a sequence of 7% composable morphisms in C. Adhering to the 
principle of giving up a structure only when we are forced to do so, we will 
refer to a map of categories F: C+C' as a homotopy  equivalence whenever 
the induced map NF: NC--t NC' is a weak homotopy equivalence. 

A fact to recall is that  a natural transformation of a functor F. C+C' 
induces a simplicial homotopy of the simplicial map NF. For a natural 
transformation of F is just a functor C x [I] +C', so i t  induces NC x A'+ NC', 
using that  N[1] = A'. In particular, if F is an equivalence of categories, 
or if i t  admits an adjoint, i t  is a homotopy equivalence. These remarks, 
due to Segal, and the following two theorems due to Quillen, are basic for 
doing homotopy theory with categories. We will have to use them again 
and again, so we will often do so without explicit reference. 

Let F: C->C' be a map of small categories, and X '  E Ob(Ct). The l e f t  
fibye of  F oveT X ' ,  denoted FIX', is the category whose objects are the pairs 
(X, x) where X E Ob (C) and x: F ( X )  + X'  is a morphism in C', and where a 
morphism from (X, le) to (Y, y )  is a map f: X +  Y in C so that  le = y 0 F ( f )  
([7], [20]). A morphism m: X'+  Y' in C' induces an obvious functor 
Flnz: F IX '+  Fly'. Dually, the T i g h t  fibre of  F ovey X'  is the category 
X'IF whose objects are the pairs (X, x), X E  Ob(C), and x: X '  + F(X). 

THEOREM A [20]. L e t  F. C + C' be a m a p  o f  s m a l l  c a t e g o ~ i e s .  Suppose  
t h a t  for  eveyy  X'  E Ob(Ct) t h e  catego9-y FIX'  i s  contract ib le .  T h e n  F i s  a 
homotopy  equivalence.  

THEOREM B [20]. L e t  F :  C + C' be a m a p  o f  s m a l l  catego?-ies. S u p p o s e  
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that f o ~  every morphism m: X' + Y' i n  C', the map F/m: FIX' + Fly' is a 
lzomotopy equivalence. Then f o ~  every X '  s Ob (C'), the squa7.e 

is lzomotopy ca~tesian.  

Dually, one can replace left fibres by right fibres in these theorems. 
That a commutative diagram of topological spaces 

A-B 

is lzomotopy Cartesian means that the map from A to the homotopy theoretic 
fibre product C x. Dr x. B is a homotopy equivalence, where D' denotes 
the space of maps from the unit interval to D. If the spaces involved are 
reasonable (e.g., geometric realizations of simplicial sets) this is equivalent 
to the property that for every c E C, the map of homotopy theoretic fibres 
A x C' :.: c + B x Dr x a(c) is a homotopy equivalence; one sees this easily 
from the fact that a map such as A+ C is a homotopy equivalence if and 
only if A icC C' :<, c is contractible for any c E C. 

Since the category Id,-,/X' above has a terminal object it is contractible 
and there is a canonical nullhomotopy of the map FIX' + C'. If C' is con- 
nected, Theorem B thus says that the resulting map from B(F/X') to the 
homotopy theoretic fibre of the map BC - Be' is a homotopy equivalence. 

Bicategories. Any small category can be reconstructed from its nerve, 
or put otherwise, a small category can be considered as a simplicial set of a 
special kind. The preceding material shows it is useful to be aware of such 
special structure. Some of the bisimplicial sets we have to work with will 
also be of a special kind, and i t  will be useful to recognize the way in which 
they are special. The relevant notion here is that of a small bicategory. A 
bicategory ('catggorie double' [5]) is a structure which is a category in two 
compatible ways, that is, there are two partially defined composition laws 
which in particular satisfy the interchange law (a . b) + (c . d) = (a + c) . (b + d). 
A few examples will now be given, partly for illustration and partly for 
later reference. These examples will also clarify the way in which we refer 
to the data involved in a bicategory as objects, ho~ixontal morphisms, 
vevtical morphisms, and bimorphisms, respectively. A bicategory will be 
called small if the bimorphisms form a set. 
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Examples 5.3. ( 1 ) Associated to a category C is a bicategory bi(C) 
with 

E= 

Ob (bi (C)) = Ob (C), h o r ~ o r  (bi (c)) - Mor (C), vert Mor (bi ((2)) 5 Mor (C) 

and ~ i m o r  (bi(C)) is the class of commutative squares in C, 

One can identify horMor (bi (C)) to a subclass of Bimor (bi (C)), namely those 
squares in which the vertical arrows are identities. This is analogous to 
identifying the objects in a category to the identity morphisms. The two 
composition laws are given by horizontal, or vertical, juxtaposition of 
squares, respectively. 

( 2 ) The bicategory C1"s the subbicategory of bi (C) above with 

Ob (C1" = Ob (C), horMor (C1" - Mor (C) , 
vertMor(C1" = isomorphisms in C , 

and Bimor(C1" is the class of commutative squares in C, 

in which the vertical arrows are isomorphisms. 

( 3 ) A category C can be considered as a bicategory in a trivial way, - 
vert Mor (C) - Ob (C), Bimor (C) -3 horMor (C) 5 Mor (C) . 

This is the subbicategory of C19uch that in the squares representing the 
bimorphisms, the vertical arrows are identities. 

( 4 )  To a pair of categories C,, C,, there is associated a bicategory 
C, @ C, with 

Ob (C, @ C,) = Ob (C,) x Ob (C,) , horMor (C, x C,) = Mor (C,) x Ob (C,) , 
verMor (C, @ C,) = Ob (C,) x Mor (C,) , Bimor (C, x C,) = Mor (C,) x Mor (C,) . 

( 5 ) To an exact category in the sense of Quillen (cf. Section 7), one 
can associate a bicategory qQ with Ob (qQ) = Ob (a),  

horMor (qa) = class of admissible monomorphisms in Q, 
vertMor (qQ) = class of admissible epimorphisms in a, 

and Bimor(qQ) is the class of bicartesian squares in (3 
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in which the horizontal (resp., vertical) arrows are admissible monomor- 
phisms (resp., admissible epimorphisms). 

( 6 ) The functor from categories to bicategories described in example 
(1) above, when restricted to small categories, has a left adjoint, defined 
on small bicategories, which may be called diagonalization. When one 
applies diagonalization to C, @C, of example (4) one obtains the usual product 
of C, and C,. When one applies i t  to qQ of the preceding example one obtains 
Quillen's category QQ. The latter fact is implicit in the characterization of 
QQ by a universal property [20, p. 181. Indeed an adaption of this universal 
property describes the diagonalization functor. I t  appears though that the 
diagonalization functor is not, in general, suitable for doing homotopy 
theory with bicategories. We will not use it a t  all. 

Nerves of bicategories. These are best discussed in a more general 
framework. One can think of a category as a kind of algebraic structure. 
Specifically, if 58 is a category with finite inverse limits, then a category 
object in 93 will consist of objects C,, C, in 58 ('objects,' 'morphisms') and 
structure maps s, t: C1+Co ('source,' 'target'), i: C,+C1 ('identity morphism'), 
and c: C, x ,, C, + C, ('composition') where the fibre product is constructed 
from the diagram 

and where the structure maps must satisfy the usual conditions. 
For example, a category object in the category of sets is just a small 

category. A simplicial category is, by definition, a simplicial object in the 
category of categories, but a small simplicial category can also be considered 
as a category object in the category of simplicial sets. 

There are two ways of considering a bicategory as a category object 
in the category of categories. The associated vertical category object of a 
bicategory 9 has 

Ob (C,) = Ob (9)  , Mor (C,) = horMor (9)  

Ob (C,) = vertMor (9) , Mor(C,) = Bimor(9) 

and the composition law C, x ,, C, + C, is given by the vertical composition 
law in 9. 

A category object in 9 determines a simplicial object in 58, its nerve, 



170 FRIEDHELM WALDHAUSEN 

which is well defined up to unique isomorphism. The object in degree n of 
this simplicial object is given by an iterated fibre product, the inverse limit 
of the diagram 

with n entries in the upper row (and we agree that in degrees 1 and 0, we 
obtain C, and C,, respectively). 

In particular, from a small bicategory 9 we obtain a small simplicial 
category N,9, its vert ical  nerve ,  by first passing to the associated vertical 
category object and then taking the nerve as indicated. Similarly we can 
construct N,9, its horizontal  nerve.  The two bisimplicial sets N(N,9) and 
N(N,9) are canonically isomorphic since the only difference involved is to 
compute an iterate inverse limit in two different ways. 

For later use we record 

LEMMA. L e t  the  category C be considered a s  a bicategor?~ in a t r i v i a l  
w a y ,  a s  in example  (3). T h e n  N,C i s  C, considered a s  a s impl ic ia l  category 
in a t r i v i a l  w a y  (a l l  face a n d  degeneracy m a p s  a r e  iden t i t i e s ) .  

LEMMA. L e t  C1"e the  bicategory associated t o  the  category C, a s  
described in example (2). T h e n  N,C i s  the  s impl ic ia l  category w h i c h  in 
degree n i s  C,, the  category equ iva len t  t o  C in w h i c h  a n  object i s  a sequence 
of n composable i s o m o r p h i s m s  in C. 

LEMMA. L e t  C, @ C, be a s  desc?.ibed in example  (4) .  T h e n  N(N,(C, @ C,)) 
i s  canonical ly  i somorphic  t o  the  product  of  NC, a n d  NC,, provided we  
consider t h i s  product a s  a b i s impl ic ia l  set ,  r a t h e r  t h a n  a s impl ic ia l  set. 

The proofs of these lemmas are trivial. 

6. r-categories a n d  l'-spaces. The reference for these is 1221, also [I] 
and 121. To avoid repetition we speak of r-objects  in a category C. Certain 
properties are required of C which we will not spell out. The examples to 
be kept in mind are the categories of sets, categories (eventually small), 
simplicial sets, and topological spaces, respectively. 

Nota t ion .  5, is the category of finite pointed sets. The basepoint of 
any object is denoted *. 

Def in i t ion .  A r-object in the category C is a (covariant) functor 
F: S, --t C satisfying 

(i) F{*)  is a terminal object of C; 
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(ii) For any two pointed sets (X, r), (Y, *), the natural map 

F((X, h-.) V (Yf *)) - F(X, *I X F(Y, *) 

is a weak equivalence, where the dictionary for weak  equivalence is 

C = (sets), isomorphism 
(categories), equivalence of categories 

(simplicia1 sets), weak homotopy equivalence 

(topological spaces), homotopy equivalence. 

Sometimes i t  may be appropriate to replace (i) by 
(i') F{*} is weakly equivalent to a terminal object of C. 
Denoting j l  U *) the object of S, with one non-basepoint element, 1, 

we refer to F{1 U *} as the u n d e r l y i n g  object  of the I?-object F. 

E x a m p l e .  New I?-objects can be obtained from old ones by composition 
with a functor that preserves products and the notion of weak equivalence. 
Examples of such functors are 

( 1 ) Q-construction: (small exact categories) + (small categories), 
( 2 ) nerve: (small categories) + (simplicial sets), 
( 3 ) geometric realization: (simplicia1 sets) + (topological spaces). 
The main reason for considering I?-spaces is that they provide a con- 

venient way of dealing with 'homotopy everything' H-spaces. In fact [22], 
giving a I?-space is equivalent to giving a homotopy everything H-space 
structure on the underlying space, a t  least when one considers both notions 
modulo a suitable notion of equivalence. 

As Segal points out in introducing I?-objects, a I?-set is just an abelian 
monoid structure on the underlying set, described very wastefully. 
Following the same recipe for an action of an abelian monoid on a set, we 
arrive a t  what should be thought of as an action of the underlying object 
of a I?-object, on some object of C. We codify this as follows. 

Notatioqz. S,, is the category whose objects are the pairs ( X c  Y) in S, 
where X contains a t  most one non-basepoint element, and where a map 
from (X z Y) to (X' c Y') must satisfy that X + X' is surjective. 

I t  may be convenient to think of an object of S,, as an object of S, 
together with a distinguished element, possibly absent. Denoting the 
distinguished element by 0, an object of S,, can then be described by listing 
the elements of Y, and the nature of X can be inferred from the occurrence, 
respectively non-occurrence, of 0 among the elements of Y. 

There are maps p, q:  S,, --. S,, p(X c Y) = Y, q ( X  c Y) = Y/X; and q 
has a unique ' 'V '-preserving section s: S, --t S,,. 
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Definition. A I?,-object in C is a functor G: S,, -1 C satisfying 
(i) GI*} is a terminal object; 
(ii) G((X c Y) V (X' c Y')) -- G(X c Y) x G(X' c Y') is a weak equiv- 

alence whenever the left hand term is defined. 
We refer to the underlying object (G 0 s) {l U *}  of the I?-object G 0 s as 

the object that acts, and to G{O U * }  as the object that is being acted on. 

Construction of I?-categories and I?,-categories; cf. [22]. Let Q be a 
category with 'associative and commutative composition law.' For con- 
venience we assume the composition law is induced from a coproduct on an 
ambient category 9 ;  this covers all the cases we need. In detail, the 
assumptions are these. 9 is a category with coproduct. Q is a subcategory 
of 9. We assume that the embedding is full on isomorphisms, and closed 
under the coproduct in the sense that with any two morphisms a,: A, + A: 
and a,: A, + A:, 6' also contains a representative of a,iia,: A,vA,. + A:ilAi. 
In addition we assume that Q contains an initial object of 9 ,  in fact we will 
usually ask that Q be pointed by such an object. In this situation we have 
a I?-category that we denote re, dropping mention of 9 and the other data. 
as follows. 

If (X, *) is a finite pointed set, we denote S(X, *) the category whose 
objects are the subsets of X not containing the basepoint and whose 
morphisms are the inclusions. A map (X, *) - (Y, *) is equivalent, via the 
inverse image, to a functor S(Y, *) + S(X, *) that preserves disjoint unions. 

Letting 6' and 9 be as above, we define rb(X,  *) as the category whose 
objects are the functors S(X, *) - 9 which send 

(a) disjoint unions into coproducts, 
(b) the empty subset of X to the chosen initial object, 
(c) objects into Q. 

The morphisms in I?,,(X, *) are the natural transformations of functors 
satisfying that all the (extra) maps involved in the natural transformation 
are maps in Q. Clearly I?@ is indeed a I?-category. Its underlying object 
r,{l U *) is naturally isomorphic to 6'. 

In case 6' is not equipped with a distinguished initial object of 9 ,  con- 
dition (b) must be dropped. In that case, the defining property (i) of a 
I?-category must be replaced by the weaker property (i'), and the natural 
map r,{l U *) - Q is only an equivalence of categories, in general. 

I?,-categories arise similarly. In the above situation, let 9 be a subcate- 
gory of 9 (not pointed) such that the embedding is full on isomorphisms, 
and closed under coproduct with Q in the following sense. If d: D + D' is 
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a morphism of 9 ,  and a: A + A' a morphism of Q, then 9 must contain a 
representative of d II a: D li A + D' II A'. From these data we obtain a 
l?,-category, l?,9,0,, describing an action of Q on 9 by a recipe entirely 
analogous to the above; that is, letting S(Y, *) have the same meaning as 
before, we define l ' ,g7,0,(Xc Y) to be the category of functors S ( Y ,  *) + 9 
which send disjoint unions to coproducts, and the empty set to the chosen 
initial object in Q, and so that the value taken on a particular subset Z of 
Y -  * i s a n o b j e c t o f Q i f  Z n X =  @ , r e s p e c t i v e l y o f 9 i f Z n X + @ .  As 
before, we define a morphism to be a natural transformation of functors 
satisfying the fact that any of the (extra) maps involved in the natural 
transformation is a map of Q, respectively 9. 

Somewhat more generally, if 9' and Q' are as 53 and Q above, and 
3' --t 53 is a coproduct preserving map inducing a pointed map from 6'' to Q, 
we can obtain a l?,-category I?,,.,fl,, by pullback from the diagrams of 
categories 

Generally speaking, the notion of l'-category allows one to deal with a 
composition law without using an actual composition map. Though when 
a composition map is needed, one can be obtained by choosing an adjoint to 
the equivalence 

l',f{*: u 1 u 2) - re{* u 1) x re{* u 2) 

and composing with the map re{* U 1 U 2) + re{* U 1) induced from {l U 2)- 
{I}. The resulting map _L : Q x Q + Q is only well defined up to isomorphism, 
and in general i t  is neither associative nor commutative. Still i t  has a 
certain naturality property which we record for later use. 

LEMMA. 6.1. The map _L : Q x Q -. Q extends to a map l',, x I?,, + I?,,. 

P ~ o o f .  Following the earlier notation, i : Q x Q - Q can be induced 
from some coproduct preserving map 9 x !3 -+ 9, so we have an induced 
map of l'-categories l' ,, , -I?(?. But l',,,,,, is canonically isomorphic to 
I?,, x I?,,. 

As a somewhat untypical example we record a particular model of a 
small category equivalent to the category of finitely generated projective 
(right) modules over a ring R (with unit, as always) which we will find 
useful later on. 

Definition 6.2. qE is the category whose objects are the pairs (m, p) 
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where p is a projection operator on the free R-module generated by the 
elements of the standard ordered set  with ?n elements, 0 5 m < - -. A 
morphism from (m, p) to (m', p') is a map from Im(p) to Im(pr). 

Obvious properties of 9, are 
(i) R b 9, is a functor. 
(ii) The direct sum on 9, is represented by a map 9, x 9, --t 9, which 

is associative and has a unit, namely the distinguished zero object of 9,. 

Simplicia1 objects associated to r-ob jects and  ro-ob jects. There is a 
functor 9: AoP + S,, which to the ordered set [n] = {0 < 1 < . . . < 9%) 

associates the basepointed set, with distinguished element 0, 

(0, (0 < I), (1 < 2), . . ., ( n  - 1 < n), *} 

and if f: [m] + [n] is a non-decreasing map, q(f) is defined as  follows 

By composition with the functor q: 5,, + S,, ( X  c Y) I- (Y/X),  we obtain 
- 

a functor +: AoP - f B*. Note that  the pointed simplicial set given by li., is 
the standard simplicial circle, coker (A0 = A'). 

Notation. If F is a r-object in e with underlying object V = F(1 U *}, 
the simplicial object F o +  will be denoted N,V. Similarly, if G is a r,-object, 
the simplicial object Go9 will be denoted N,( W, V) when V is the underlying 
object of the I?-object G 0 s (recall s: 5 ,  + 8 , 0  is a certain section of q: 5,,,--&,), 
and W = G{O U * }  is the object that  is being acted on. 

Let a ro-object be given, describing an action of V on W. The natural 
transformation in S,, from the identity to s 0 q, given by 0 i-. *, induces a 
map of simplicial objects, N,( W, V) + N,(V). Also there is a natural map 
W -, Nr( W, V) when W is considered as a simplicial object in a trivial way, 
and the composition of these two maps is a constant map. 

Proposition 6.3. Let the sequence W- N,(W, V) -, N,(V) arise from 
a I?,-(multi-)simplicia1 set, i n  the way described. Suppose that  V i s  con- 
nected. Them this sequence i s  a jibration u p  to homotopy. 

Addendum. If in particular this ro-object is obtained from a I?-object 
by means of p: S,, + S, ('forget 0 is distinguished'), the action of V on W 
is equivalent to (or better, is) the 'translation action' of V on itself, and in 
this case Nr(V, V)  is contractible; so the sequence of the proposition is 
de-looping of V. 
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Proof. The special case of the addendum is essentially Proposition 1.4 
of;[22]. The general case is a straightforward generalization of this special 
case. (As a technical point, note that  a different kind of geometric realiza- 
tion is used in 1221, but as pointed out in the appendix to [22], the two 
notions give the same result, up to homotopy, when they are applied to 
simplicial spaces that  are partial geometric realizations of multi-simplicia1 
sets, as is here the case.) Here is a review of the argument. 

When we compose with the geometric realization functor, weak equiva- 
lences become honest homotopy equivalences, so, as noted before in another 
context, we can choose a composition map B V  x B V  - BV, and similarly 
an action map B W x B V +  B W. The H-space BV, being connected by 
assumption, has a homotopy inverse. So any action of i t  is invertible. In 
the case a t  hand this means that  the diagram 

is homotopy cartesian, where the non-trivial maps are the action, and the 
projection, respectively. I t  is this fact  that  is used in the proof. 

The space in degree n of the simplicial space N,(BW, B V )  is homotopy 
equivalent to B W  x (BV)". In terms of this homotopy equivalence, the jZh 
face map d j :  Nr(BW, B V ) , +  N,(BW, BV),_, is homotopic, for 15 j 5 n - 1, 
to the map induced from the composition B V  x B V +  B V  of the j t"  and 
( j  + 1)" factor BV. The face maps numbered 0 and n correspond, respec- 
tively, to the action B W  x B V +  BW, and to the projection away from the 
nth factor BV. The map N,(BW, BV), + N,(BV), corresponds to the pro- 
jection away from B W, and B W + Nr(B W, BV), corresponds to the inclu- 
sion B W +  B W  x (BV)" (note that  B V  is naturally pointed). So, in view 
of the fact  noted above, for any face map d j ,  the diagram 

is homotopy cartesian, the interesting case being j = 0. The assertion of 
the proposition now follows from Proposition 1.6 of [22]; alternatively, i t  
follows from Lemma 5.2. As to the addendum, our N,(BV, BV)  corresponds 
to the PA (a 'simplicial path space') for which a simplicial nullhomotopy is 
described in the proof of Proposition 1.5 of 1221. 
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Remarks. I t  may be useful to give an alternative description, in a 
special case, of the simplicial category N,(Q) associated to a I?-category F 
with underlying category Q = F{1 U *}. That is, suppose the composition 
law on Q is represented by a map i : Q x Q +  Q which is associative and 
has a unit 0, for example the category 9, of 6.2. Then we can define a 
monoid category QL. This is a special case of a bicategory, and QL is given 

by 
Ob (aL) = horMor (QL) = {0} , 

vertMor (aL) = Ob (Q), Bimor (aL) = Mor(Q) , 
the vertical composition law being i. This bicategory has the same homo- 
topy type as N,(Q). In fact, taking the vertical nerve, we have a map of 
simplicial categories 

Nu(QL) - NdQ) 

whose degree n part is the splitting given by I of the equivalence 

This homotopy equivalence illustrates the fact that the isomorphism 
commutativity of the composition law is not used a t  all in the definition of 
Nr . 

Though i t  is true in general that a category with a coherently isomor- 
phism-associative composition law with unit, can be replaced by an 
equivalent one of the special type, this does not mean that we can dispose 
of r-categories altogether. There are two applications in which we do use 
the isomorphism commutativity of the composition law. One is in Section 
14, the other one is in the following remark. 

The construction Nr can be iterated. To see this one notes 1221 that 
from a r-category one can obtain a (r x r)-category, i.e., a functor 
S, x S, 3 (categories) with certain properties, simply by composing with 
the map S:, x S, - S:, given by the smash product of pointed sets, 

(X, * ) A  (Y, *) = X x  Y /  ( X ,  * ) V ( Y ,  * ) .  

Similarly, let a To-category giving an action of Q on 93 arise in the way 
described before. Suppose in particular that i t  arises from a coproduct 
preserving map inducing Q +  93, and assume in addition that 9 itself is also 
closed under the coproduct. Then inspection of the construction shows that 
we may as well define a (r x I?,)-category, that is a functor S, x S,,+ 
(categories) with certain properties. So in this situation we can not only 
form Nr(93, a) but also its 'de-loop' N,(N,(%, a)). This ends the remarks. 

Below we give a version of Quillen's Theorem A for r,-categories. This 
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requires some preparation. 
Any category C can be considered as a r,-category in a trivial way. 

Namely, letting (*) denote the category with one object and one morphism, 
we can define a I?,-category G, by 

Let G be a r,-category, with associated r-category F = G O s ,  and 
$3 = G{O U *} the category that  is being acted on. With Gc as above, let 
f: G -t G, be a map of r,-categories, inducing f,: 9 + C, and let M be an 
object of C. 

LEMMA 6.4. I n  this situation there i s  a canonical r,-category f/M, 
with associated r-catego?*y F, and (f/M){O U * }  = f,/M. 

Proof. We define 

If X = {0 U *}, an object of (f 1 G ( X c  Y))/M is a pair (A, a) where A is an 
object of G ( X c  Y) and a: f (A) + M is a morphism in C. If x: ( X c  Y) -. 
(X'  c Y') is a map in S,,, the induced map (f /M)(x) takes (A, a) to (G(x)(A), a) 
if X '  = {0 U *}, respectively to  G(x)(A) if X '  = {*}. 

I t  is trivial tha t  F is the associated r-category, as asserted, and in 
particular that  the defining property (i) of a I?,-category is satisfied, and 
that  (ii) is satisfied in some of the cases. Property (ii) says that  whenever 
we express ( X c  Y) as a coproduct (XI c Y,) V (X, c Y,), and x,, x, are the 
two obvious retractions, then 

is an equivalence of categories or, what is the same, this map is full and 
faithful, and surjective on isomorphism classes. We are left to verify (ii) 
in the case when, say, X, = {0 U *} and hence X, = {*}. 

Let (A, a) and (A', a') be objects of (f /M)(X c Y). Since G is a 
r,-category there is a one-one correspondence of morphisms a: A + A' in 
G ( X c  Y) and morphisms 

(a,, a,): (G(x,)(A), G(x,)(A)) (G(x,)(A'), G(x,)(A')) 

in G(Xl c Y,) x G(X, c Y,), given by (a,, a,) = (G(x,)(a), G(x,)(a)). But 
f (G(x,)(a)) = f (a) by assumption, hence a = a'f (a) if and only if a = 

a'f (G(x,)(a)). Thus (f /M)(x,) x (f /M)(x,) is full and faithful. 
Similarly if ((B, b), B') is an object of (f /M)(X, c Y,) x (f /M)(X, c Y,) 
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there is, by  assumption about G, an object A of G(X c Y) so that  (G(x,)(A), 
G(x,)(A)) is isomorphic to (B, B') by an isomorphism (a,, a,), say. Then 
(A, a), a = b f (a,), is an object of (f /M)(X c Y), and its image under 
(f /M)(z,) x (f /M)(z,) is isomorphic to ((B, b), B') by the isomorphism (a,, a,). 
This completes the proof of the lemma. 

Let Q be the underlying category of the I?-category F = G 0 s. We 
follow earlier notation in denoting Nr(3,  Q) the simplicial category associ- 
ated to the I?,-category G. Notice that  Nr(C, (*)), the simplicial category 
associated to  the l?,-category G,, is just C considered as a simplicial category 
in a trivial way. Assume all the categories involved are small. 

PROPOSITION 6.5. Suppose that  for every object M of C, the simplicia1 
category Nr(fo/M, Q) i s  contractible. Then Nr(9,  Q) - C i s  a hornotopy 
equivalence. 

Proof. This follows the argument used to prove Theorem A in [20]. 
Suppose we wanted to write out this argument for the mapf,: 3 --t C. Then 
(with a technical variation to suit the present purposes) we should construct 
the simplicial category S( f,) which in degree n is the category 

where the coproduct is taken over all sequences of n morphisms in C', that  
is, the set (Ne),. There are two natural forgetful maps on the simplicial 
category S(f,), one to the category 3 (always a homotopy equivalence), and 
one to the simplicial set  Nc3 (a homotopy equivalence if the hypothesis of 
Theorem A is satisfied). 

In the case a t  hand, the category @ acts on any of the categories fo/M 
(as codified in the preceding lemma). Hence Q also acts on the categories 
S( f,),, for any n; we may codify this by explicitly writing out a I?,-category 
S(f),. Let ( X  c Y) e S,,. Then with the usual distinction between the two 
cases X = {*  U 0}, resp. = {*}, we have 

s ( f  )Ax c Y) = (f : G ( X c  Y ) ) / M o  
."Io-. . .-Ma 

if X = {* U 01, resp. S ( f ) , (Xc  Y) = G ( X c  Y) if X = I*}. 
Let the simplicial category associated to the I?,-category S(f), be 

denoted 

Nr(S(fo),, Q) ; 

this maps to the set (NC),, and the pre-image of (M, -+ . . . - M,) E (NC), is 

Nr(f,/.Mo, Q )  

which is contractible by hypothesis. 



GENERALIZED FREE PRODUCTS 17 9 

The simplicial categories N,(S(f,),, Q) assemble to a bisimplicial category 
Nr(S( f,), Q), and the maps N,(S( f,),, Q) --t (NC), assemble to a map 

N,(S(~) ,  a) ---+ NC . 
By what was pointed out just before, this map satisfies the hypothesis of 
Lemma 5.1, hence it is a homotopy equivalence. 

Consider the other natural map p,: N,(S(~,),, a) + N,(%, Q) which 
forgets the data relating to (NC),. Take its nerve. A bisimplex of bidegree 
(k, 1) in the bisimplicial set associated to N,(%, Q) is a sequence of morphisms 

N0-...-N, 

in the category G{O U (0 < 1) U . . . U (1 - 1 < 1) U :::I, and the pre-image of 
(No -. . . . + N,) under the map nerve(p,) is the set of sequences 

f(Nk) -3 Mo - ... - M, 

in C. Considering Nr(%, Q) as a simplicial object in a trivial way, we may 
assemble the maps p, to a map 

P: Nr(S(f61, Q) --+ Nr(%, Q) 

The pre-image of (No + . -. N,) under the map nerve(p) now turns out to 
be the nerve of the category f (Nk)/Ide; which is contractible. By Lemma 
5.1 therefore, p is a homotopy equivalence. 

Let g denote the identity map on the Fa-category G?. Putting together 
the above data for f and for g, we obtain a commutative diagram 

in which all the horizontal maps are homotopy equivalences. Consequently 
the left vertical map is a homotopy equivalence, as asserted. 

7 .  Exact categories. According to Quillen [20] a suitable framework 
for doing algebraic K-theory is the notion of exact category. This is an 
additive category Q equipped with a family of 'exact sequences' 

(*I O-M'-M-M"-O 

satisfying the fact that, roughly speaking, the usual calculus applies. A 
morphism in Q is called an admissible monomo~phism if i t  occurs as the 
arrow M' + M in some exact sequence (*); the notation M' >-, M will be used 
for admissible monomorphisms, and for these only. Similarly we speak of 
admissible epimorphisms, notation M + Mu. An exact functor is a functor 
between exact categories which is additive and which takes each exact 
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sequence to an exact sequence. 
We will have to extend this framework slightly to simplicia1 exact 

categories (simplicial categories in which the face and degeneracy maps 
are exact functors). Such will in particular arise from the consideration of 
certain kinds of diagrams in exact categories. Naturally we will want to 
know that the exact categories constructed in this context are indeed exact. 
Though this is essentially obvious in all the particular cases considered in 
this paper, i t  may be appropriate to say a few words about the general case 
which is not so obvious. I t  depends on the fact that the category of exact 
categories is closed under the formation of 'fibre products' in the following 
sense. 

If F: Q - C and G: !3 --t C are any functors with common range, their 
fibre product II(F, G) is defined as the category of triples 

(A, B; c),  A E Q, B E  3, c: F(A) 5 G(B) . 
This is equivalent to the pullback category in special cases, for example if 
one of F and G is a retraction, but not in general. When the two notions 
disagree, the fibre product is the correct notion. The assertion is that i f  F 
and G are exact functors  t hen  ZT(F, G) i s  a n  exact category in a natural  
w a y ,  and the projections to Q and 9 are exact fu?zctors. 

Indeed, firstly if F and G are actually exact functors of abelian 
categories then n (F ,  G) is an abelian category and the assertion is certainly 
true. 

Secondly, that 6' is an exact category means [20] that there is an 
equivalence of Q with a full subcategory Q' of some abelian category Q", 
where Q' contains 0 and is closed under extensions in Q", and where fur- 
thermore the notion of exact sequence in Q is precisely the one induced 
from the equivalence Q--tQt. In the situation a t  hand suppose (for 
convenience) that each of 0, 93, C itself is so embedded in an abelian category 
al', 3"' C", respectively, and assume that  F and G extend to exact f u n c t o ~ s  
F": A" -, C" and G": B" --t C", respectively. Then II(F, G) comes equipped 
with an embedding in n(F",  G") and is hence an exact category. Furthermore 
the notion of exact sequence in ZI(F, G) has an obvious intrinsic meaning 
which depends only on F: Q --t C and G: 9 -+ e, not on the embeddings. 

I t  is this special situation which can easily be seen to hold in any of our 
concrete applications. As an example which is almost typical for the 
embeddings that can be used, let Q be the category of short exact sequences 
in an abelian category 9. Then Q embeds in the abelian category Q" given 
by the chain complexes in 9 ,  and the embedding is extension closed in view 
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of the 3 x 3 lemma. 
Finally, to extend the argument to the general case, one must clearly 

get rid of the random nature of the ambient abelian categories employed. 
One way to do this is as follows. Quillen has given an intrinsic characteri- 
zation of exact categories, in terms of axioms on the family of exact 
sequences, and has pointed out [20] that the axioms imply a particular map 
on the exact category is a full extension closed embedding into an abelian 
category, namely the Yoneda embedding which takes each object to the left 
exact functor it represents. But the Yoneda embedding can be functorial 
[6], taking an exact functor of exact categories to an exact functor of 
abelian categories. Thus the above argument may be extended. 

We will now introduce certain diagram categories, and fix some nota- 
tion. Let 9 be an exact category. We define Mn% to be the additive 
category in which an object is a sequence of n admissible monomorphisms 
in 9 ,  

B o w  B,- ... t--f B,. 

Suppose 93 is pointed by a zero object 0. Then we can define the category 
F,93 equivalent to 1Vs9 in which an object consists of an object of M,9 
together with the choice of an object B,/B, in the isomorphism class of 
coker(B, -> B,) in 9 ,  for each pair i < j ,  and Bj/B, = 0, the basepoint, if 
i = j. There is a subquotient map 

qj: Fn9 ---, 9 ; 

on the object above, q, takes the value Bj/Bj-, if j > 0, and B, if j = 0. 
The additive category Fn9 is an exact category in an evident way: the 
notion of exactness is such that the qj are exact functors. For example, 
F19 is exactly equivalent to the exact category of short sequences in $3. 
By means of the equivalence Fn9 -, Mn9, the latter category can now also 
be considered as an exact category. 

More generally, if Q is a full exact subcategory of 9 which contains 
zero and is closed under extension in 9 ,  we can define &!,(a, Q) (respectively, 
F,(%, Q)) to be the full exact subcategory of M,9 (respectively, F,9) whose 
objects satisfy the condition that for every pair i I j ,  the object Bj/Bi is 
isomorphic to (respectively, is) an object of Q. 

I t  will be convenient to describe the categories F-93 in a novel way, 
following Segal (unpublished). Letting (92) denote the partially ordered set 
of pairs (i, j), 0 $ i $ j $ n, we define Sn93 to be the exact category of 
functors B: (n) -t 9 satisfying that B,i,j, is the distinguished zero object 0 
if i = j ,  and that for any triple i =( j 5 k, the sequence 
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B(<,j) ----t B(<,ki -3 B ( j , k )  

is short exact. There is an exact isomorphism Sn3 + Fn-,a. More interes- 
tingly, there is an exact functor F-93 ---t Sn93 which to the object 

B, - B, - . . . - B" ; {B,/B2)i,-j 

associates the functor B: (n)  -, 9 ,  B,,,j, = Bj/B,. And finally there is an 
evident inclusion B-t Fn9 whose composition with Fn3 --t Sn3 is the con- 
stant map with value 0. 

There is a simplicial exact category F.3 which in degree n is Fn3; the 
it" face map will just drop B,. Similarly there is a simplicial exact category 
S.3 which in degree n is S n 9 ,  and where the i th face map is induced by 
dropping the number i. The maps F,3 + S-3 above assemble to a map of 
simplicial exact categories F.9 --t 8.9. 

Let f: Q -t 9 be an exact functor of small exact categories. We assume 
both Q and 9 are pointed by a zero object, and the point is respected by f. 
Generalizing the definition of Fn (9 ,  Q) above, we define Fn(f) to be the 
pullback in the diagram of categories 

Fn(f) is again an exact category. Indeed one may take as the definition of 
an exact sequence in F,(f) tha t  the associated sequence in 3 x (Q)", associated 
via the subquotient maps, should be exact. 

There is a canonical embedding 3 -t F,(f ); its composition with Fn( f )  -t 
SnO is the constant map. Assembling for varying 92, we obtain a sequence 
of simplicial exact categories, with constant composition, 

3 - F.(f) - s.0 
when we consider 3 as a simplicial category in a trivial way. 

The Q - c o n s t ~ u c t i o n .  To an exact category Q, Quillen [20] has associated 
a category &a ,  with the same objects as a ,  in which a morphism from M to 

M' is an isomorphism class of diagrams in Q, 
P M + + - N ~ + M '  

where, as the notation implies, p: N+,kf is an admissible epimorphism, and 
i :  M H M' an admissible monomorphism; and where the composite of mor- 
phisms iV+ N H  M' and M ' c c  N' H Mu is represented by the diagonal in 
the diagram 
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in which the square is Cartesian (bicartesian, in fact). 
Qi. QQ is a functor from exact catego~ies to categories. I t  takes an 

exact equivalence to an equivalence, and i t  commutes with products and 
filtering direct limits, up to equivalence. Also i t  preserves small categories. 

If Q is small, its (exact-sequence-) K-theory is, by definition, the loop 
space of the geometric realization of QQ (this is well defined up to homotopy 
since BQQ is 'pointed' by the contractible subspace which arises a t  the 
geometric realization of the category formed by the zero objects in Q), and 
the K-groups of Q are the groups n,QBQQ = n,,.,BQQ. In practice i t  is usu- 
ally preferable though to work with the category QQ directly. 

One of the basic tools in handling Q-construction is the following ad- 
ditivity theorem due to Quillen. Let Q be a small exact category, and Q,, @, 
exact subcategories of Q. We denote 

G(Q1; a ;  a,) 
or 6 for short, the exact category whose objects are the exact sequences 
in 8, 

O+A,-A-A,--+O, A,€@, , A,€Q, .  

ADDITIVITY THEOREM. The n a t u ~ a l  map  induced by 'subobject' and  
'quotient object, ' ~espectively, 

Q& ---, QQ, x Q@, , 
is  a homotopy equivalence. 

The theorem is formulated in [20] only for the special case Q, = Q, = Q, 
bu t  the proof carries over without change to the general case. 

Here are two immediate applications of the additivity theorem. For 
the first, cf. [ZO], suppose the direct sum in Q is represented by a map 
Q x Q- Q. Then the split exact sequences in Q give a section of the map 
QG-, QQ, x QQ,. Therefore the induced map BQG- BQQ, x BQQ, is actually 
the retraction part  of a deformation retraction. A consequence is that  the 
two maps BQG -, BQQ given by 

( O - A l + A - - + A , - - + 0 ) i 3 A ,  resp. A ,@A, ,  

are homotopic, a homotopy being induced by the deformation retraction 
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(and if, e.g., we are working with a distinguished zero object contained in 
both a, and Q, then the homotopy will preserve the basepoint). 

The second application concerns categories which can be identified to 
categories of the type of G above. For example if (k + 1) + (1 + 1) = (n + 1) 
there is an equivalence 

F,9 - G(Fk%; F,9; FL9) 

which takes (Bo H B, H . . >-, B,) to the short exact sequence with subobject 

and quotient object 

(0 . . . ---t 0 ---t Bk,,/Bk >--- . . . >--- B,/Bk) . 
Hence 

by the additivity theorem. Using this inductively, it follows that the 
subquotient map induces a homotopy equivalence 

Similarly, the exact category F,(f) associated to an exact functor 
f: Q -t 9 is equivalent to 

G ( 9 ;  F,(f 1; s,Q) 
and hence there are homotopy equivalences - - 

QF,(f) - Q9 x QS,Q - Q% x (QQY . 
This kind of observation will be put to use in the following material. 

Relative versions of the Q-construction. As the Q-construction is func- 
torial i t  extends to a functor from simplicial exact categories to simplicial 
categories. In particular we may apply i t  to the simplicial exact categories 
F.(f) and S.Q defined above. 

PROPOSITION 7.1. Let Q and 9 be snzall exact categories, both pointed 
by a zero object. Let f: Q -+ % be a n  exact functor preserving the point. 
Then the sequence of simplicia1 categories 

Q%- QF.(f) - QS.0 

i s  a fibration up  to hornotopy. Iff is  a n  equivalence, QF.(f) i s  contractible. 

Proof. By the preceding remarks there is for each n a commutative 
diagram 
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in which the vertical maps are homotopy equivalences and where the lower 
row is (trivially) a fibration up to  homotopy. As QQ, and hence (QQ)", is 
connected, we may apply Lemma 5.2 to conclude that  Q 9  + QF.(f) + QS.Q 
is a fibration up to homotopy, as asserted. 

For the sake of relating related things i t  is instructive to present a 
variation on the argument. The map f: Q -+ 9 ,  being additive, gives rise to 
a I?,-category as  described in the preceding section. Applying the Q-construe- 
tion we obtain another r,-category from which by Proposition 6.3 we obtain 
a sequence of simplicial categories 

Q9 --+ Nr(Q9, QQ) -+ NJQQ) 

which is a fibration up to homotopy. There is a commutative diagram of 
simplicial categories 

in which the vertical maps may be interpreted as the forgetful map which 
takes a split exact sequence (or more generally, split filtration) to an exact 
sequence (resp., filtration) by forgetting the splitting. By the additivity 
theorem, the vertical maps are homotopy equivalences in each degree (cf. 
the first proof above), and therefore homotopy equivalences by Lemma 5.1. 
Thus the diagram establishes a homotopy equivalence between two fibrations 
up to homotopy. 

To obtain the second assertion of the proposition one may, e.g., appeal 
to the addendum to Proposition 6.3. 

COROLLARY 7.2. Let f: Q - 9 ,  g: 9 - e be exact functors of small exact 
categories, al l  pointed, and  the points preserved by the maps. Then the 
cornnzutative square of simplicial categories 

i s  homotopy Cartesian. 

Proof. In the diagram 
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both rows are fibrations up to homotopy, by the proposition, and the right 
vertical map is a homotopy equivalence. Therefore the left hand square 
must be homotopy cartesian. 

Two special cases of interest occur when either the map f or the map 
g 0 f in the corollary is an identity (or an equivalence). The first case can 
be considered as a more precise version of a 'fibration up to  homotopy' in 
which the composed map is not constant. The second case says if g: $3 - t C 
is a retraction with section f then Q 9  is homotopy equivalent to QC x QF.( f )  
in an explicit way. 

Let 9 be a small exact category, and Q a full subcategory of 9 that  
contains zero and is closed under extensions in $8, up to isomorphism. Let 
MI(%, a) be the exact category, defined in the preceding section, whose 
objects are the admissible monomorphisms in 93 with cokernel isomorphic 
to an object of Q. 

A morphism in QLVl(93, Q )  is an isomorphism class of diagrams in 9 ,  

satisfying certain conditions. But there are two composition laws on these 
diagrams: horizontally the composition law of the Q-construction, and verti- 
cally the composition of admissible monomorphisms. The two composition 
laws are compatible, so these diagrams (or rather their isomorphism classes) 
are the bimorphisms in a bicategory that  we denote Q(9, Q). The category 
of horizontal morphisms in Q(9, Q) is the category Q9,  and the category 
of vertical morphisms is the category of admissible monomorphisms in 93 
whose cokernel is isomorphic to  an object of Q. 

Example. ( 1) Let 0 be the exact category with one object and one 
morphism. Then Q(9, 0) is the same as the bicategory (Q9)'"f example 
5.3.2. Taking the nerve in the vertical direction we obtain the simplicia1 
category Q9, where 93, is the category equivalent to 9 whose objects are 
the sequences of isomorphisms of length n in 9. The face and degeneracy 
maps are equivalences of categories, so Q(9, 0) has the homotopy type of 
Q3. 

( 2 ) Considering Q9 as a bicategory in a trivial way, we have a natural 
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inclusion Q 9  -. Q(91, 0). This is a homotopy equivalence. In fact, passing to 
vertical nerves, we have in each degree an equivalence of categories. 

( 3 )  The bicategory Q(9, 9) is contractible. In fact  when we take the 
nerve horizontally, we obtain a simplicial category which in each degree 
has an initial element. 

The definition of the bicategory Q(3, Q) is not symmetric with respect 
to admissible monomorphisms and admissible epimorphisms. We may 
emphasize this by the more explicit notation Qmon(9, a). Dually, there is a 
bicategory QeP(9, a). 

PROPOSITION 7.3. T h e  c o m m u t a t i v e  s q u a y e s  o f  b i c a t e g o ~ i e s  

P?.oof. The assertion about &""educes to the assertion about Q"'"" by 
passing to the dual categories, so i t  suffices to t reat  the latter. Taking the 
nerve in the vertical direction of Q(9, 0) we obtain the simplicial category 
QM.(9, a) of the preceding section. Choosing a zero object in Q we can 
define both QF.(Q, Q) and QF.(%, Q) and we obtain a commutative diagram 
of simplicial categories 

The left hand square is homotopy cartesian by Corollary 7.2, and in the 
right hand square each horizontal map is a homotopy equivalence, being an 
equivalence of categories in each degree. Hence the big square is homotopy 
cartesian, as asserted. 

C o A n a l  s z ~ b c a t e g o ~ i e s .  Let as  usual KO(@) denote the class group of the 
small exact category Q, the abelian group with generators [A], A E Q, and 
relations [A] = [A'] + [A"] for each short exact sequence A' -+A -+A" in 
0; or what is the same [20], KO(@) = n,BQQ. Let 9 be a full additive sub- 
category of Q which contains zero and is closed under extensions in Q. 
Denote G the quotient group G = coker(K,(9) -KO(@), and 9 the associated 
category with one object *, whose set  of morphisms is G. 

There is a map f: QQ-9; by definition, f sends the morphism 

M +? N ;. X' in QQ to the element of G represented by ker (p). 
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Call 9 cofinal in A if given A E @ there exists A' so that  A @ A' E 9; 
call i t  strongly cofinal* if given any finite number A,, . . * ,  A, of objects of 
@, satisfying f(A,) = . . = f(A,), there exists A' so that  At @ A' E 9 for 
any i ,  i = 1, . . ., n. 

PROPOSITION 7.4. Suppose 9 i s  strongly cofinal i n  Q. Let 9 be the 
category associated to the group G = coker (Ko(!33) -. K,(Q)), and  fi Q@ - 9 
a s  described. Then the sequence Q 9  4 QQ --, S i s  a f i b~a t i on  u p  to homotopy. 

Proof. There is bu t  one object, *, in S, so there is bu t  one left fibre, 
f/*. The transition maps f/* -t f/* induced from morphisms of ej are  isomor- 
phisms since those morphisms are. By Quillen's Theorem B, the sequence 
jy* --t Q@ + 9 therefore is a fibration up to homotopy, and we are  left to 
show that  the natural map Q 9  + f/* is a homotopy equivalence, its composi- 
tion with fl* + QQ being the inclusion Q 9  + QQ. 

An object of f/* is a pair (M, g) where M E  Ob(Q) and g E G, and a 
morphism from (M7 g) to (MI, g') is a morphism M c t  N -  M' in Q@ subject 

P 
to the condition tha t  ker (p) represents g - g' in G. We denote t' the sub- 
category of f/* whose objects are  the ( M ,  0) and whose morphisms satisfy 
the fact  that  ker(p) is in 93. The map Q 9  + f/* is the composition of the 
two inclusion k: Q% --t C and j :  C + f/*, and we will show that  both k and j 
are homotopy equivalences. 

As to k, i t  is sufficient to show tha t  for any (M, 0) E C, the category 
k/(M7 0) is contractible, in view of Quillen's Theorem A. An object of 
k/(,U, 0) is equivalent to a morphism M'++ NH M in QQ subject to the 

P 
condition that  iV' and ker(p),  and hence also N, are objects of 93. Associating 
to this object just the injection part, NH M (and, to be precise, choosing 
an  object N in i ts  isomorphism class) gives a natural transformation into a 
subcategory which is contractible since i t  has the initial object 0 H M. This 
takes care of k. 

To prove j is a homotopy equivalence, we show tha t  for any (flf, g) E 

Ob(f/*), the category (M, g) / j  is contractible. An object of (M, g) / j  is 
equivalent to a morphism M N H M' in QQ satisfying tha t  ker (p) repre- 

r 

* In an earlier version of this paper, the following proposition had been formulated with 
'cofinal' instead of 'strongly cofinal.' Reproducing the proof [Comm. of Alg. 2 (197411, Gersten 
pointed out that  the argument actually presupposes the stronger condition. The two notions 
coincide if exact sequences always split in Q, but in general the situation is unclear. Note 
while the proposition says that  BQB+ BQQ is homotopy equivalent to  a covering map (a 
representative is B( f/*) -t BQQ, cf. the proof), BQB + BQQ is not a covering map itself (as 
for instance it  is injective). 

Added i n  proof. An argument of D. Grayson (Localization for flat modules in algebraic 
K-theory, preprint) shows the distinction between cofinal and strongly cofinal is unnecessary. 
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sents g in G. Associating to this object just the projection part, M t c  N, 
P 

gives a deformation retraction into a subcategory whose opposite category 
we will denote 9(M, g). A morphism in 9(M, g), from M % N to M + N', is 

P ' 
an admissible epimorphism N %  N' so tha t  the resulting triangle commutes, 
and ker (n) E 9. 

To prove 9(M, g) is contractible, i t  suffices to show two things: (i) 
9(M, g) is not empty, (ii) any finite diagram in 9(M, g) is contractible in 
9(M, g) (alternatively, any subcategory with finitely many objects is). As 
to (i), there exists P E  Cu' representing g in G since $3 is cofinal in Q ;  then 
M e  M e  P is an object of 9(M, g). As to  (ii), let p,: N, + M be the objects 
in a finite diagram in 9(M, g). Let P represent g in G. By hypothesis there 
exists P' so that  P @  P' E 93 and ker (p,) @ P' E 93, all a t  the same time. 
Direct sum with P @  P1+O defines an endofunctor of 9(M, g). This 
endofunctor admits a natural transformation to the identity functor because 
P @  P' is an object of 9. Similarly, its restriction to the finite diagram in 
question (or the subcategory of 9(M, g) i t  generates) admits a natural 
transformation to the constant functor with value M e  P + M. The two 
natural transformations combine to give the required nullhomotopy of the 
diagram. This takes care of j, and the proof of the proposition is complete. 

8. A splitting lemma. The purpose of this section is to describe a 
version of the additivity theorem (Lemma 8.1 below) which applies to the 
r-construction rather than to the Q-construction. For the lemma to be 
valid, the exact sequences involved must be splittable. The proof of the 
lemma is related to the proof of the + = Q theorem, in fact  a case of the 
lemma (Corollary 8.5) amounts to about half the lat ter ,  a I? = Q theorem 
(cf. the next section). 

Let Q be a small exact category, and 93,, 93,, C,, C, full subcategories of 
Cu' which contain zero and are closed under direct sum. We assume cach of 
C, and C, is closed under extensions in Q. By contrast, 9i is not assumed 
closed under extensions, nor need i t  contain C,. We let 

G, = G(9,, C,) , i = 1, 2 , 
be the category whose objects are those of 9, and whose morphisms are the 
admissible epimorphisms in @ with kernel in C,. And we let 

G = G(%,, 9 , ;  el, e,) 
be the category whose objects are the splittable short exact sequences in Cu', 

0-B,-A,___B,-0, BIG%,, B , € 9 , ,  

and in which a morphism is an admissible epimorphism of short exact 
sequences 
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subject to the condition that  

ker (B, - Bc) e Ci . 
As a technical point, notice that  one could include a splitting in the data of 
an object, and ignore the splittings in the definition of morphisms. This 
would merely replace G by a n  equivalent category. 

In view of the direct sum in Q, each of G, and G, is the underlying 
category of a I?-category; cf. Section 6. Similarly, so is &. 

LEMMA 8.1. The map  N,(G) -, Nr(G1 x 6,) i s  n homotopy equivalence. 

The proof will be given af ter  two lemmas. Choosing zero objects in 6, 
and G,, we may assume all our categories pointed; this will not affect any 
homotopy types. The projection G -+ G, has a section which can be induced 
by a coproduct preserving map of ambient categories, hence (cf. Section 6) 
there is a r-category describing an action of G, on 6, and a simplicial category 
N,(&, 6,) is defined. 

For any X e  6, let i; , denote the pre-image of X under the projection 
G .&,. Then 6, also acts on G , , and NI(G(ll, G2) is defined. 

LEMMA 8.2. Nl (G(, , 6,) i s  cont~nctible. 

P~oof .  We denote p: tg ,, - i;, the restriction of the projection G - + B,. 
It has a section s: G, 9 & , given by sum with X. The category G,,, has a 
composition law (we assume i t  is given by an  actual map I ) which is induced 
from a coproduct, 

(X-A) 1 ( X + - A r ) w ( X w A U , A ' )  

and both p and s are  induced by coproduct preserving maps. Hence p and 
s extend, respectively, to maps of simplicial categories 

p' : Nr(& I ), G,) + Ni-(&,, &) , s': Nr(L, 6 2 )  Nl (t; 11, Gz) . 
It will suffice to show these maps a re  homotopy equivalences as Nr(t;,, G,) 
is contractible (the addendum to Proposition 6.3). s' is a section of p', so 
we are  left to show tha t  s'p' is homotopic to the identity map. 

The functor sp: 6( , ,  -+& ,) cannot be directly related to the identity 
functor but  i t  can be so related indirectly by a trick of Quillen. The trick 
is a natural transformation of functors (an isomorphism, in fact) 

Id i Id -+ Id i sp 
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which takes ( X  w A) to the map 

(X-A) L (X-A)- (X- A) _L (X- X @ A / X )  

obtained by adding two maps, namely 

(i) the folding map ( X  w A) i ( X w  A) -+ ( X w  A) and 
(ii) the composition (XH A) I (XH A) -, 0 @ A/X-+ ( X H  X @  AIX). 

This natural transformation extends to a simplicial natural transformation 
(i.e., a simplicial object of natural transformations) on Nr(G!,,, G,), 

as follows. Using the fact  tha t  G,,, -It-', we may take the above rule to 
define a natural transformation 

Id l. Id - Id 1 Id 

on ti,. Now an  object in degree n on N,(G,,,, 6,) is just a sum diagram whose 
primitive entries are  in either G,,, or &, (namely one in the former, and ?z in 
the latter), so the two rules together uniquely define a natural transforma- 
tion on the category in this particular degree n.  But for varying n, the 
natural transformations are  mapped to each other by the face and degeneracy 
functors, assembling as  asserted. 

On passage to geometric realization, the simplicial natural transfor- 
mation becomes a homotopy 

B(Id A. Id) r: B(Id A. srpr)  

of maps on BN,(G,,,, G,), a homotopy associative (in fact, homotopy every- 
thing) H-space with multiplication given by B( I ) .  This is a connected space 
because any object of G,,, is isomorphic to  an  object of the form s(Y),  Y E  &, 
(it is here that  the splittability hypothesis is used). Hence i t  has a homotopy 
inverse, and the homotopy B(Id i Id) -- B(Id A. srp') implies a homotopy 
B(1d) r: B(s'pr). This completes the proof of the lemma. 

LEMMA 8.3. The map  Nr(&, 6,) -+ 6, i s  a homotopy equivalence. 

P ~ o o f .  According to  Proposition 6.5, i t  is sufficient to  show tha t  for 
any X E &,, N, (pr, /X, 6,) is contractible, where p ~ , :  & -+ t;, is the projection. 
N,(~Y,/X, &) contains N L ( 6  , , &,) which is contractible by the preceding 
lemma. So i t  suffices to show tha t  the inclusion of Nr(G!,,, 6,) into N~(PT, /X,  
G,) is a homotopy equivalence. By Lemma 5.1, i t  is enough to show this 
degree by degree. But in each degree a deformation retraction is given by 
the natural transformation from the identity functor to the functor which 
on an  object of p ~ , l X  is given by pushout with i ts  structure map. 
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P ~ o o f  of Lemma 8.1. By the preceding lemma, Nr(6, 6,) -t Nr(Gl x G,, G,) 
is a homotopy equivalence since Nr(G, x G,, 6,) is isomorphic to G, x Nr(G,, 6,) 
when we consider the lat ter  G, a s  a simplicial category in a trivial way, and 
since Nr(G,, 6,) is contractible. These simplicial categories are naturally 
underlying objects of r-objects, and the resulting map 

Nr(Nr (6, 6,)) --+ Nr(Nr (61 x 62, 6 2 ) )  

is also a homotopy equivalence, in view of Lemma 5.1. The bisimplicial 
category Nr(Nr(G, 6,)) is naturally isomorphic to a bisimplicial category 
Nr(Nr(G), Nr(G,)), and similarly with the other term. In the diagram 

the rows are  fibrations up to homotopy, by Proposition 6.3, since Nr(&,) is 
connected. The middle vertical map is a homotopy equivalence, as  estab- 
lished before, and the right vertical map is an  identity map. Consequently 
the left vertical map must be a homotopy equivalence, as asserted. 

As with the additivity theorem, Lemma 8.1 admits an  immediate 
generalization to filtered objects, that  is, to splittably filtered objects in the 
case a t  hand. Let Q be a small exact category, let 9 , ,  C,, 1 5 i 5 n, be full 
subcategories which contain zero and are  closed under direct sum and where 
each of the C, is closed under extensions in Q. Let as  before 6, = 6(9, ,  C,) be 
the category whose objects are  those of 9, and whose morphisms are the 
admissible epimorphisms with kernel in C,. We define 

G = G(%,, ..., B,;C,, ..., C,) 

to be the category whose objects are  the splittable filtrations (sequences of 
contractions) 

in Q where A,/A,-, is equipped with an  isomorphism to an object of 9 , ,  and 
whose morphisms are  the admissible epimorphisms of filtered objects 

satisfying that  for each i the induced map of it" subquotients, 

is a map in G,, that  is, has kernel in C,. 
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LEMMA 8.4. T h e  m a p  N,(G) -+ Nr(G, x . x 6,) i s  a homotopy  equi-  
m l e n c e .  

P r o o f .  This folIows by inductive application of Lemma 8.1. For 
example, one can consider an  object of G as a filtered object of length 2, 

In the special case 9, = . . = 9, = Q and el = . = e, = 0, the 
category G is equivalent to a full subcategory of Is(F,-,a), namely the 
category of isomorphisms of those filtered objects in Q which are  splittable. 

COROLLARY 8.5. S u p p o s e  al l  exact sequefices i?z  Q aye  spl i t table .  T h e n  
t h e  subquot ient  m a p  i n d u c e s  a homotopy  equivale?zce 

- 
Nr(1~ (Fmp1 Q)) (Nr (1s (a))), 

9. ,Viscella?zeous. In this section we collect some material relating to 
products, and to chasing them through the  t = Q theorem. This material 
will be needed for two (somewhat marginal) purposes only: An addendum 
(involving products) to the 'fundamental theorem,' and a comparison of the 
'Whitehead groups' of this paper to  the usual Whitehead groups when the 
lat ter  a re  defined (this comparison involves products in various settings of 
K-theory). 

The treatment of products in the framework of the Q-construction 
presupposes some additional machinery. To see this, suppose Q, 9, C are  
exact categories (equipped with a suitable pairing) and we want to  define 
a bilinear map 

KzQ x Kf9 ---t C . 
From the point of view of algebraic topology there is a standard way in 
which such pairings arise, namely the smash product of pointed spaces which 
induces 

[si ,  XI, x [ s j ,  Y]:, - [ s i  A sj, X A Y]* , 
that  is, 

jr,X x njY- n,+j(X A Y) . 
In  the case a t  hand this means we should seek for a map 

BQQ A B Q 9  - C 

where C represents the K-theory of C. But from the point of view of 
K-theory, BQQ is off by one dimension (KiQ = ;l.,+,BQQ). Similarly, B Q 9  
is off by one dimension. Therefore for the program to work, C must be off 
by t w o  dimensions, tha t  is, i t  must be a de-loop of BQC. One de-loop of 
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BQc' is provided by Proposition 7.1. Another one (actually homotopy 
equivalent to the former) will be described below. The latter  has the 
advantage that  the formula for the product can involve the Q-construction 
explicitly and still be very simple. 

9.2 .  De-looping oj' QQ (the double Q construction). Let Q be a small 
exact category. Define D to be a subset of the set  of commutative diagrams 
in Q of the type 

namely those diagrams which satisfy the condition that  each of the four 
little squares is admissible in the sense that  it can be embedded in a 3 x 3 
diagram with short exact rows and columns (the condition is vacuous for  
the two 'mixed' squares, but  non-vacuous for the 'pure' squares). 

Here is a possibly more familiar form of the condition. Up to questions 
of choices (which for the matter a t  hand are irrelevant) a morphism 

in QQ may be identified to a filtered object in Q, namely 

Now a diagram (2::) satisfies the condition above if and only if i t  can be 
similarly identified to a bij i l te~ed object (a 2-dimensional lattice of admissible 
monomorphisms in which the monos themselves form a lattice, that  is, the 
squares are admissible). 

The recipe for the composition law in the category QQ carries over to 
give a horizontal composition law on the set  D: two diagrams (+) can be 
composed horizontally if the last column of the first diagram coincides with 
the first column of the second diagram. 

There are two technical points involved here however. Firstly i t  has 
to be checked that  the admissibility condition on the diagrams (*) is pre- 
served under composition, indeed that  a diagram (*) is produced a t  all. 
These will be clear from an  alternative description below. 

Secondly the composition law is not quite well defined, due to the 
choices involved. To make the composition law well defined we proceed by 
analogy with the definition of morphisms in the category QQ. Namely we 



GENERALIZED FREE PRODUCTS 195 

pass from D to a quotient set  D* by means of the following equivalence 
relation: two diagrams (*) are equivalent if and only if they are isomorphic 
by an isomorphism which restricts to the identity on each of the four objects 
a t  the corners. 

A vertical composition law can be similarly defined on the set  D*, and 
the two composition laws are  compatible. Hence D* is the set  of bimorphisms 
in a bicategory that  will be denoted 

QQa. 
To relate QQQ to QQ, we identify the set  of morphisms of QQ to a set  

of (equivalence classes of) filtered objects. These are the objects in an  exact 
category F,'Q equivalent to F,Q. More generally, the set  of composable 
sequences of morphisms of length n in QQ can be identified to the set  of 
objects in an exact category FLQ equivalent to F,,Q. 

The category QFiQ can now be identified to the category formed by 
the se t  D* under the horizontal composition law. Note this explains the 
admissibility condition above and why i t  is preserved under composition: 
everything is due to the exact structure of F,Q. More generally when we 
take the nerve for the vertical direction of the bicategory QQQ we obtain 
a simplicia1 category QQ.Q of which the category in degree n can be identi- 
fied to QF;',Q. 

Define a category LQ. Its  objects are the admissible monomorphisms 
in Q, and a morphism in LQ from x to y is a commutative diagram of admis- 
sible monomorphisms in Q, 

We can define a functor 

LQ - QQ , (x: X - X') t---+ coker (x) . 
The definition requires us to choose objects in their isomorphism classes. 
Supposing Q is equipped with a distinguished zero object 0 we can arrange 
these choices so that  for every A E Q, 

coker (Id,) = 0 and coker (0 - A) = A . 
Considering the set  Ob(Q) as a category in a trivial way, we also have a 
functor 

Ob(Q)- LQ , A- Id, 

and the composition Ob (Q) + LQ + QQ is the constant functor with value 0. 
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By a process entirely analogous to the above, we can manufacture a 
bicategory QLQ, and the sequence just given extends to a sequence of 
bica tegories 

QQ - QLQ - QQQ 

where the category QQ is considered as a bicategory trivial in the vertical 
direction, and the composed map in the sequence is a constant map. 

PROPOSITION 9.1. The sequence QQ+ QLCi-+ QQQ is Jib?-ation up  to 
hornotopy, and QLQ i s  cont~actible. 

P~oof .  Taking vertical nerves we obtain a sequence of simplicial 
categories which in degree n is 

Qa - QL,a - . 
As pointed out before, QQ,Ci is equivalent to QF,,Q. Similarly QL,Ci is 
equivalent to QF,,,,Q, and the map QL,Q -+ QQ,Q is equivalent to the map 

QF,,+,Q - QFz,a , 
(A, - ... a A,,,,) - (AIA, - ... - A,,+,/A,) . 

In view of the additivity theorem the sequence in degree 12 is therefore 
homotopy equivalent to the (product) fibration 

Qa  - Q a  x (Qa)zm+l - (Qa)zm . 
As (QQ)"+' is connected, i t  results from Lemma 5.2 that  QQ + QL.Q + QQ.Q 
is a fibration up to homotopy, as asserted. 

To see that  QLCi is contractible note first that  LCi is contractible, a 
nullhomotopy being given by the pair of natural transformations in LQ, 

( X  - X f )  - ( (X  - X f )  - (0 - X f ) )  , 
( X  X f )  + ((0 0) - (0 - X')) . 

The same formula also works for Q,LQ, the degree n par t  of the simplicial 
category Q.LQ. Hence Q,LQ is contractible for any n ,  and therefore Q.LQ 
itself is also contractible. 

Addendum. The nullhomotopies of the Q,LQ just described are  compa- 
tible with the face and degeneracy maps, so they assemble to an explicit 
nullhomotopy on Q.LQ which in turn induces an explicit nullhomotopy on 
BQLQ (the geometric realization of the bisimplicial set  associated to QLQ). 
Evaluating this nullhomotopy on BQCi and projecting i t  to BQQQ gives a 

map 
BQQ - QBQQCi 

which is the homotopy equivalence implied by the proposition. In view of 
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the adjointness between loop space and (reduced) suspension this map is 
equivalent to a map (not a homotopy equivalence) 

2.BQQ - BQQQ . 
The latter  map has the advantage that  i t  can be described very directly on 
the level of nerves. Namely, let us represent suspension by smash product 
with a simplicia1 circle which has two l-simplices, oppositely oriented 

Then CBQQ -+ BQQQ may simply be described as  the map which takes the 
morphism M+ N H  M' in QQ to the pair of bimorphisms in QQa, 

9.2. Pairings.  Let a ,  9 ,  C be small exact categories. We want to pair 
the K-theories of the former two into the K-theory of the latter. The 
appropriate assumption to make is a pairing 

f : a x % - c  

which is a bi-exact functor in the sense that  for each A E Q and B c 9 the 
partial functors 

f ( ~ ,  ) : % - e ,  f( ,B):Q-c 

are  exact. We will think of f as a tensor product. For technical reasons 
we assume that  each of Q, 9, C is equipped with a distinguished zero object 
0 and that  f (A, 0) = 0 = f(0, B) always. 

Let QQ @ Q 9  denote the bicategory related to the product of QQ and 
Q9;  cf. 5.3.4. 

PROPOSITION 9.2. The bi-exact functor f induces a map  of bicategol.ies 

and a map  of topological spaces, BQQ A B Q 9  -+ BQQC. 

Proof. The map QQ @ Q 9  -+ QQC is defined simply by associating to a 
pair of morphisms, one from QQ and one from Q9,  their 'tensor product'. 
I t  must be checked tha t  the diagram produced is of the type (a )  above, i.e., 
that  the arrows are  admissible monomorphisms and epimorphisms as  
claimed, and further tha t  the admissibility conditions are  satisfied. But 
the bi-exactness hypothesis implies that  an exact sequence in Q and an exact 
sequence in 9 are  paired to a 3 x 3 diagram in C whose rows and columns 
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are all short exact. The required properties follow from this. 
The geometric realization of QQ @ Q 9  + QQC is a map BQQ x B Q 9  -. 

BQQC which takes BQQ V B Q 9  into the basepoint of BQQC because of the 
technical assumption we made. Hence i t  factors through the smash product 
as  required. 

We will now record a (very) few of the naturality properties of the 
pairing BQQ A B Q 9  + BQQC as  these will be needed later. They relate 
the pairing to two other pairings which are  even easier to define. In the 
notations of 5.3.2 and 5.3.4 these are maps of bicategories 

QQ @ Is (9) - QC1\ Is (Q) @ Is (9) - Is (C)'" 

inducing maps of topological spaces 

BQQ A B Is ( 9 )  - BQC'" , B Is (Q) A B Is ($3) - B Is (C)'? 

We use a certain embedding 

CB Is (Q) - BQQ . 
I t  is characterized by the fact  that  i t  takes an isomorphism A Z A '  to the 
pair of commutative triangles in QQ, 

(its adjoint B I s  (a) + QBQQ may be identified to the familiar map). We also 
use analogous embeddings 

CB Is (Q)'" --+ BQQ'" CBQQ'" BQQQ 

(mimic the preceding construction strictly within the horizontal, resp. 
vertical, direction). By definition of these embeddings we have 

Fact 9.2.1. The following diagrams are  commutative 

CB Is (Q) A B Is (9) - .ZB Is (C)IS BQQ r\ CB Is (9) - CBQC'" 

A special case of the pairing may be thought of as  a multiplicative 
action of one exact category on another, the case 

Let us suppose this action has a unit, that  is, there is Bo E 9 so that  the 
partial functor f ( , Bo) is the identity on Q. 
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There is a map S1 = CSO -, Q 9  which is given by the pair of morphisms 
0 .t B,, 0 M Bo in Q3.  Hence, in view of the preceding, 

Fact 9.2.2. The following diagrams are commutative: 

B Is (8) A .ZB(IdBo u 0) CB Is (Q) BQQ A ?;B(IdBo u 0) 5 CBQQ 

1 
B IS (0) A CB IS (9) ---- 

I I I 
, .ZB Is (@)Is  BQQ A CB Is (9) - CBQQT' 

B Is (Q) A B Q 9  B Is (Q)& , BQ@ A B Q 9  --- - BQQQ . 
Here Is (Q)& denotes the bicategory Q Q I W i t h  its horizontal and vertical 
directions interchanged. Note the composed map .ZB Is (Q) -+ B Is (Q)Q may 

be characterized by the fact  that  to A A' in Is (Q) i t  associates the pair of 
bimorphisms in Is (Q)Q, 

Similarly, the composed map ZBQQ-, BQQQ in the diagram on the right 
satisfies the fact  that  i t  takes a morphism M++ N- M' in QQ to the pair 
of bimorphisms in QQQ, 

M-N-M' M-N-M' 

Hence the latter map coincides with the map in the addendum to Proposition 
9.1, the adjoint of the homotopy equivalence BQQ -+ QBQQQ. 

LEMMA 9.2.3. The inclusion BQC-3 -, BQQ1%as a canonical left inve?'se. 

Proof. One defines this map on the level of simplicia1 sets as a map 

diag N(NVQQ1" - NQQ . 
The map is characterized as follows. One considers a bimorphism in QQ1%s 
a commutative square in QQ, and to this commutative square one associates 
the composed map from the lower left to the upper right. The map so 
obtained is a homotopy equivalence since i ts  section is. 

Passing to the adjoint situation, with loop spaces instead of suspensions, 
we may reformulate 9.2.2 thus, in view of 9.2.3, 

LEMMA 9.2.4. I n  tlze situation of 9.2.2, theye a9.e canonical commutative 
diagrams 
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BIs(Q) A B(Id,, U 0) 5 BIs(W) BQQ A B(Id,, U 0) 3 BQQ 

I I I I 
BIs(Q) /; BIs(93) BQQ /; B Is (9) 

I 

Similarly, using 9.2.3 and an analogous map B Is (C)'" B Is (C), 

LEMMA 9.2.5. In the  s i t u a t i o n  of  9.2.1, t h e w  a r e  canonical  d i a g r a m s  

1 ! 1 1 
QBQQ BIs(93) - QBQC , BQQ A Q B Q 3  ---+ QBQQC 

of  which,  t h e  f i rs t  one i s  c o m m u t a t i v e ,  a n d  t h e  second one c o m m u t a t i v e  u p  
t o  basepoiqzt preserv ing  homotopy .  

Putting the two diagrams of 9.2.5 together, we obtain 

LEMMA 9.2.6. I n  the  s i t u a t i o n  of 9.2.1, t he  jb2lowiny d i a g r a m  c o m m u t e s  
u p  to  basepoiqzt preseq.viny h o ~ n o t o p y  

B IS (8) A B IS (9) --I B IS (C) 

1 
QBQQ A QBQ9 

1 
QBQC 

I I 

9.3. C o m p a r i s o n  of  K- theories .  In order to chase a certain map, we 
have to go through a variant of Quillen's theorem that  QBQ9, and K,(R) x 
BGL+(R) have the same homotopy type. 

Let Q be a small exact category. We assume Q is pointed by a zero 
object 0. As in example 5.3.2, we form bicategories QQ1%nd LQIWhere  
the category LQ is as in 9.1. Considering Is (0) as a bicategory in a trivial 
way, degenerating to its category of vertical morphisms, and thinking of 
the 'Is-directions' of LQ1%nd QQ1"s vertical, we can extend the sequence 
Ob(Q) + LQ - QQ of 9.1, to a sequence of bicategories 

with constant composition. Taking horizontal nerves we obtain a sequence 
of simplical categories that  we denote 

For example, the objects of the category Is  Q,Q are the morphisms of QQ, 
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i.e., equivalence classes of certain diagrams in 0 ,  and i t s  morphisms are  the 
isomorphisms between such equivalence classes of diagrams. 

By the procedure described in Section 6, the direct sum in Q makes 
each of these simplicia1 categories naturally the underlying object of a 
r-object, for which we will not introduce extra  notation. Passing to the 
associated r,-objects, and applying Proposition 6.3, we obtain a commutative 
diagram of bisimplicial categories 

Nr(Is (a), Is (Q)) - Nr(Is L.U, Is  L.e) ---t Nr(Is Q.U, Is Q.6) 

in which the middle and right columns are  fibrations up to homotopy since 
Is L.U and Is Q.O are  connected. By the addendum to Proposition 6.3, the 
terms in the middle row are  contractible. Since Is  L.tf is contractible, all 
terms in the middle column are  contractible as well. 

P ~ o p o s i t i o ? ~  9.3.1. Supposc that  cxnct sequeilccs i.1~ U spli t  ( m n -  
~zaturally).  Then the bottom YOW i n  this d i a g ~ a m ,  i s  a f i b ~ a t i o n  u p  to 
homotopy. 

Proof. By Lemma 5.2 (or a t  the cost of some extra  considerations, cf. 
the proof of 6.3, by Proposition 1.6 of 1221) i t  is sufficient to prove that  

Nr(Is (Q)) - Nr(Is L,U) ---t Nr(Is Q,U) 

is a fibration up to homotopy, for each m, because N, (Is Q,e) is connected. 
The sequence of categories Is (Ct) -t Is  L,Ct - , Is  QmU is equivalent to the 
sequence 

Is (6) --f IS (FZmtl 6) -3 IS (Fzm 6) 

in which the first map is given by 
- - - - 

A t- (A ---, . --- A) . 
Hence the sequence Nr(Is (6)) -. Nr(Is (L,Q)) - + NI (Is ( Q J ~ ) )  is homotopy 
equivalent to the induced sequence 

Nr(Is (0)) - Nr(Is (Fsmtl 6)) ---t Nr(Is (F2,@)) 

to which Corollary 8.5 applies in view of the hypothesis that  exact sequences 
are splittable in U. The conclusion is that  the lat ter  sequence is homotopy 
equivalent to  the (product) fibration 

Nr(Is (Ct')) ---t N, (Is (a)) x (N,(Is (~ t ) ) ) '~+l  ---t (Nr(Is 
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and the proposition results. 

The isomorphism of Is(@) to the category in degree 1 of the simplicia1 
category Nr(Is (a)) gives an  embedding S B  Is (U) + BNr(Is (U)). The adjoint 
map B Is (U) --t QBN,(Is (U)) can be identified to the inclusion of B Is  (CO) into 
the homotopy theoretic fibre of the map BN,(1s (Ct), Is  (c?)) + BNr(Is(U)), 
induced from the left column in the diagram of the preceding proposition. 

Similar maps correspond to the right hand column of this diagram, and 
to i ts  upper and lower row, respectively. Putt ing these maps together, we 
obtain a commutative diagram 

in which the right vertical map is a homotopy equivalence. The lower 
horizontal map will be a homotopy equivalence whenever the proposition 
applies. In  view of the homotopy equivalence B Is Q.U = BQU'" BQU we 
have therefore 

COROLLARY 9.3.2. S u p p o s e  t h a t  exact s c q u c ~ ~ c e s  s p l i t  in A. T l ~ e ~ z  t1~c1.c 
i s  a bascpoint  p ~ e s c ~ v i ~ ~ g  C~omotopy cquivalcnce BN, (Is (Cu')) -. BQCy' so t h a t  

comnzutes u p  t o  basepoint  p ~ c s c ~ v i n g  lzonzotopy. 

LEMMA ([19], [22, § 41). L e t  R bc a ~ i l l g .  T h e m  ex i s t s  a m a p  

wlziclz i n d u c e s  a n  i s o n z o ~ . p l ~ i s m  o n  C~onzology, a n d  so t h a t  

B Is (0) 

c o m m u t e s  u p  t o  basepoiwt p ~ c s c ~ u i n g  C~o~notopy .  

The maps in this diagram are  the natural ones, tha t  is, the right hand 
map is the same as tha t  in the preceding corollary, and the left hand map, 
restricted to Is  (P) where P e $", has components 

P t-- [PI  , Is ( P )  - GL(R) , 
where the lat ter  map is induced from the identification of P with a projec- 
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tionoperator on a standard free module and any (say, the standard) stabili- 
zation of'the latter. 

Applying the 'plus'-construction of Quillen gives a factorization of the 
map of this lemma through a homotopy equivalence (unique up to  basepoint 
.preserving homotopy on compacta), 

Combining this homotopy equivalence with the one of Corollary 9.3.2, we 
obtain a homotopy equivalence K,(R) x BGL'+(R) -, BBQ8,. 

COROLLARY 9.3.3. T h i s  homot.opu cquivalcnce satisfies the  fact t h a t  

commutes u p  to  basepoint p ~ e s e ~ v i n g  homotopy. 
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