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Algebraic K-theory of generalized 
free products, Part 2 

111. Decomposition theorems for K-theory 

10. A Jibration. This section gives the main step towards relating the 
K-theory of a ring to that of its constituent rings, in any of the situations 
of Sections 1-3. The result is Proposition 10.1 below which relates the 
K-theory of the ring to the K-theories of the auxiliary categories of 'Mayer 
Vietoris splittings' and 'split modules', respectively. 

We denote R F+ 9, the functor which to the ring R associates a suitable 
small category equivalent to the category of finitely generated projective 
right R-modules, cf. 6.2. In either of the three cases of Sections 1-3 
(generalized free products, Laurent extensions, polynomial extensions) we 
let %TI be the category of admissible Mayer Vietoris presentations, that 
is, the full subcategory of those Mayer Vietoris presentations (cf. Sections 
1-3) which satisfy the fact that any of the modules involved is in the 
appropriate category 9?. For example, in the free product case, the Mayer 
Vietoris presentation 

is in 91x3 if and only if ,Me 9,, MA e 9,, etc.; %TI is an exact category in an 
evident way: a sequence is exact if and only if the induced sequences in 9,, 
9.,, etc., are exact. We have an exact forgetful map 

f:%TI-9, 

(and more such maps fA: 91lTI -+ 9,, etc.). 

Notation. 9: is the full subcategory of those modules that are in the 
image of the forgetful map f: 9KTI -+ 9,. 

9: is a cofinal subcategory of 9, as, for example, i t  contains the free 
modules. In fact, i t  is a strongly cofinal subcategory, cf. Proposition 7.4, 
hence the sequence Q9; -+ Q9, + 9 is a fibration up to homotopy, where 
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G = coker(Ko(9:) -, Ko(R)), and 8 is G considered as a category. 
We let 3 be the exact category of admissible split modules, a certain 

subcategory of the category of split modules (cf. Sections 1-3). We can 
identify "(1 to the subcategory fw1(O) of 9112, where 0 is the distinguished 
zero object of 9,. 

PROPOSITION 10.1. The sequence &TI-. Q9113 -, Q9: is a j ib~at ion up  
to homotopy. 

The proof will be given after the statement of the next lemma. Let LF, 
denote the full subcategory of free modules in 9,, and 9~~73' the subcategory 
f -'(YE) of 9123. 

LEMMA 10.2. The sequence Q 3  -. Q%"(1' -. QF, i s  a j ib~at ion up  to 
homotopy . 

The proof will be given a t  the end of this section. 

P ~ o o f  of Proposition 10.1. If U E  % a ,  and 5 f (u) is a surjection from 
an object of F,, i t  follows from Propositions i.1 and i.2, 1 6 i 6 3, which- 

ever applies, that there is a surjection 5 U in 9123 with f (u) = G. Then 
U@ ker (u) e Waf. From this and the fact that ff, is strongly cofinal in 9;, 
one sees that 9113' is strongly cofinal in 9113; also that 

coker (K0(911"(1') - Ko(92"(1)) - coker (Ko(F,) - KO($?:)) 

is an isomorphism. Consequently by Proposition 7.4, the right hand square 
in the diagram 

is homotopy cartesian. The upper row is a fibration up to homotopy, by 
Lemma 10.2, therefore so is the lower row, as asserted. 

Notation. S is the full subcategory of those objects in %3 that are 
'standard,' i.e., isomorphic to a direct sum of Mayer Vietoris presentations 
of the type (N, n, A) as defined in Sections 1-3. From Propositions (1-3).1 
we have 

Fact 10.3. If U E  S, and 5 U: are morphisms in 9113, then v is the 
zero map if and only if f (v) is; consequently u is surjective if and only if 
f (u) is. 

Dejinition. 53, the category of 'semi-standard' Mayer Vietoris presen- 
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tations, has Ob(S"(3) = Ob(S) x Ob(3), and if Wi = (U,, V,) E 5 3 ,  i = 1, 2, 
then a morphism from W, to W, is a morphism in 9KTJ from U, @ V1 to 
U, @ V,. So W I-- U @ V gives an equivalence with a full subcategory of 
91"(3. On the other hand, the component U, --, V, of the morphism above, is 
necessarily the zero map, by fact 10.3. Hence 

Fact 10.4. S"(3 is equivalent to the category of short exact sequences 
in 9K2, 

U - U @ V - - + v ,  U € S ,  V€"(3,  

Also, the map U, @ Vl -, U, @ V, is surjective if and only if both U, - U, 
and Vl- V, are, by fact 10.3 again. 

Following the notation of Section 8, we denote G ( 5 ,  "(3) the category of 
epimorphisms in S with kernel in "(3. Letting Is(Y,) be the groupoid of 
isomorphisms in F,, we have a map f': G(5, "(3) --t Is (Y,), induced from the 
forgetful map f. 

LEMMA 10.5. The map f ': G(5, "(3) --t Is (YE) i s  a lzomotopy equivalence. 

Proof. I t  suffices to show that the left fibre f ' /M is contractible for 
any M s Is (Y,). An object X of f '/M consists of an object S of 5 together 
with an isomorphism x: ft(S) -, M. A morphism in f t / M  from X to X' is a 
morphism s: S -, St in %"(3 so that x = x' 0 f '(s); by 10.3, the extra condition 
that s be a surjection with kernel in "(3 is then automatically satisfied. 

In the language of Propositions (1-3).1, the object X of f ' /M is equi- 
valent to a basis (n,, . . ., n,) of M together with a tuple of Mayer Vietoris 
presentations (N,, n,, A,), j = 1, . . ., m, and by the above, a morphism 
from X to X '  is equivalent to a morphism in 91r"(3, 

inducing the identity map on M. By Propositions (1-3).1, such a morphism 
exists if and only if, for any j = 1, . ., m, the tree A, contains a certain 
finite tree A(nj, X'), and if i t  exists, the morphism is unique. I t  follows 
that  f '/M is equivalent to the opposite category of an ordered set; con- 
sequently i t  is contractible, as asserted. 

Again in the notation of Section 8, we have a category G(%"(3', "(3) and 
a subcategory G(S"(3, "(3) (actually, i t  is only equivalent to a subcategory). 

LEMMA 10.6. The inclusion j :  G ( S 3 ,  "(3) --, G(9K"O', 3) i s  a homotopy 
equivalence. 

Proof. I t  suffices to show that, for any U E G(9lV3', TI), the category 
j / U  is contractible. For this in turn i t  is enough that any finite diagram in 
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j /U  be contractible in j/U. Let C be such a finite diagram and let v,: V, -. U 
be its objects. By Propositions (1-3).1, there exists U, € 5  and a map 
u,: U, -, U so that f (u,) is an isomorphism, and so that u, factors through 
any of the v,. Finally by Propositions (1-3).2, we can find U2 e"(3 and 
u,: U, -. U so that U, $ U2 -, U is surjective. Pullback with U, $ U2 -, U 
now defines a functor on j / U  whose restriction to C takes values in j / U  as 
one easily checks. This functor from C to j / U  admits two natural trans- 
formations, one to the embedding functor, and one to the constant functor 
with value U, @ U, -t U. Therefore C is nullhomotopic in j/U, as asserted. 

From the inclusion of exact categories, "(3 -+ '9KT9', we have a bicategory 
QeP(91r"(3', TI), cf. Section 7. Similarly there is a bicategory Qep(FR, O), and 
the forgetful map f induces a map Qep(912', 2) -, Qw(FR, 0). 

LEMMA 10.7. The map Qep(9K2', "(3) -.Qep(FR, 0) i s  a homotopy equi- 
valence. 

P~oof.  This map is in a natural way the induced map of underlying 
objects, of a map of I?-objects. By Proposition 6.3 and its addendum, i t  is 
sufficient to show that the 'de-loop' of the map in question, the map of 
simplicial bicategories 

is a homotopy equivalence. 
Let N[')(%3', "(3) denote the simplicial category obtained by taking 

the nerve in the Q-direction of the bicategory QeP(91"(3', TI), and N[')(YR, 0) 
similarly. In order to establish the homotopy equivalence i t  is sufficient, by 
Lemma 5.1, to show that, for each m, the map of simplicial categories 

is a homotopy equivalence. 
Following the terminology of Lemma 8.4, we introduce the short hand 

notation G(9, C),,, for the category G(9 , ,  9,; C,, ..., C,) in the case 
when 9 ,  = . = 9, = 9 and C, = . . = t', = C. 

An object of the category N'"'(FR, 0) is a sequence of morphisms of 
length m in QF,; i t  is thus equivalent to a filtered object of length 2m + 1 
in F .  Indeed the category N!"'(FR, 0) is equivalent to the category 
&(YE, O),,,,,,. By Lemma 8.4, the subquotient map induces a homotopy 
equivalence 

Nr(G(FR, 0) !,,,,,) - (Nr(G(FR, 0)))'" +' . 
The analogous result for N[")(%%', 3) requires a bit more work since 

exact sequences in 9nQ' need not split. We define z ( 9 ,  C)(,, to be a category 
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of epimorphisms of filtered objects, like G(9, C),,,, except that  the filtrations 
involved in the objects need not split. Then N'")(%"(3', TI) is equivalent to 
&JXTIt, "(3),,,+,,. Furthermore we define 2 ( 9 ,  C)!,, to be the category in 
which an object is an object of g (9 ,  C),,, together with an admissible splitting 
of the l a s t  admissible monomorphism of the filtration involved in the object. 
Morphisms in 2 ( 9 ,  C),,, are n o t  required to respect the splitting. The obvious 
forgetful map is therefore an equivalence with a full subcategory of 

&9 ,  C),m,. 

SUBLEMMA. T h e  m a p  g'(9K"(3', a),,, - &RTI', a),,, i s  a homotopy  
equivalence.  

P r o o f .  It suffices to show that  for  any M s g(973', TI),,,, the left fibre 
j / M  is contractible, where j denotes the map in question. Let the object M 
be given by the filtration MI >-, . . . >-, M,-, w M,. By Propositions (1-3).1 
and (1-3).2, there exist N e  5% and a map N- M, so that  the composite 
map N-. M,/IM,-, is an epimorphism with kernel in TI. On replacing M, by 
ML = Ma-, @ N, we obtain an object M' of g'(%"(3', TI),,, together with an  
obvious map j(M') + M in g(%"(3', TI)),,,. Pullback with this map gives a 
functor j /M+ j/M. There are two natural transformations of this functor, 
one to the identity functor, and one to the constant functor with value 
(M', j (Mt)  - M). The category j / M  is thus contractible, and the proof of 
the sublemma is complete. 

In view of Lemma 8.1 and the sublemma we have that  

Nr(~(%TI', a) , , , )  - Nr(k%IK"(3', 91),,-,: x G(9~"(3',  TI)) 

is a homotopy equivalence and hence, by induction, that  the subquotient 
map induces a homotopy equivalence N,(~(%v', Q),,,) -, (N,(G(91ZVt, "(3)))". 

To sum up, we have now verified that  the map 

~ r ( N ( " ) ( % 2 ' ,  a)) ---) N I - ( N ' " ' ( ~ ~ ,  0)) 

is homotopy equivalent to the map 

and consequently, that  i t  is enough to show that  Nr(G(9~ZTIt, 3))- 
N,(G(F,, 0)) is a homotopy equivalence. 

In view of Lemmas 10.5 and 10.6 and the commutative diagram 

G(5, "(3) - &(ST), TI) - &(911"(3', "(3) 

\ 1 / 
/ 

\ 
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we may show instead that Nr(&(S, "I?)) -, Nr(G(S"I?, "I?)) is a homotopy equiva- 
lence. But by 10.4, S"(3 is equivalent to a category of filtered objects, and 
G(S3, "I?) is equivalent to the category G(S, "(3; "(3, 3) (cf. Section 8). So by 
Lemma 8.1, the subquotient map on the latter category induces a homotopy 
equivalence Nr(&(S3, 3)) -+ Nr(E(S, 3)) x Nr(G("(3, 3)). Disregarding 
Nr(G("(3, "(3)) which is contractible since &(TI, "(3) is, we see that the map 
Nr(G(S, "(3)) -+ Nr(G(Sb, "(3)) is a section of this homotopy equivalence, and 
so is a homotopy equivalence itself, completing the proof. 

P r o o f  o f  l e m m a  10.2. The left hand square in the diagram 

Q9K"(3' ---i Qep(91'1"(3', "I?) - Qep(3R, 0) 

is homotopy cartesian by Proposition 7.3, and in the right hand square both 
horizontal maps are homotopy equivalences, the upper one by a remark 
preceding Proposition 7.3, and the lower one by Lemma 10.7. Hence the 
large square is homotopy cartesian. This means that the lower row in the 
following diagram is a fibration up to homotopy 

The right hand vertical map in this diagram is a homotopy equivalence by 
another remark preceding Proposition 7.3. Hence the upper row is a fibra- 
tion up to homotopy, as asserted. 

11. Decompos i t ion  theorems  in the  general ized free  produc t  case. Let 
R be given as the free product of a: C--. A and p: C--. B where a and are 
both pure and their complements are free from the left, as in Section 1. 
These data will be assumed throughout this section. The rings and maps 
involved can be collected in a commutative diagram " 

B - R .  

The categories 9? are as in 6.2. In particular if Mc ~9',, the modules 
(Mc @,A) @, R and Me @, R are not just canonically isomorphic, they are 
identical. 

f: 3 5PE is the forgetful map of the preceding section; f,: 9x'D + g8, 
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is the forgetful map which to the Mayer Vietoris presentation 

0- M-M,@,R@MBOBR---t MCOcR-O 

associates the A-module MA, and f,, fc are similar. 

P~opos i t ion  11.1. The fo~getful  map Q 9 l 2  -+ Q9, x Q9, x Q9, i s  a 
homotopy equivalence. 

P ~ o o f .  We will use sections of the above forgetful maps. s,: 9, -+ 

associates to MA the Mayer Vietoris presentation 
- - 

0-(M,@,R)- MAOAR-0-0 

and s,: 9,3 9nQ is similar; sc: 9, + a2 associates to MC the Mayer Vietoris 
presentation 

where A is the diagonal and the skew codiagonal. 
There is a natural transformation from the identity functor on E m 2  to 

any of the functors s, 0 f,, s, 0 f,, sc 0 f,. The latter  natural transformation 
is given by the diagram 

where K, and K, are the terms in the canonical decomposition K = K, - K,; 
note that  the A-map inducing K, is unique, similarly with K,, so the natural 
transformation is well defined. The two former natural transformations 
are obvious. 

We denote 9112" the full subcategory of 9l2 whose objects satisfy the 
fact that  the natural transformation from the identity to sco fc is surjective. 
It is closed under extensions in 9 t 2 ,  and the sections s,, s,, sc can all be 
considered as  maps to 9 K 2 " .  By definition of 9l2" there is an exact sequence 
of endofunctors 

0- g- Id9t-c,, - sco fc- 0 

defining g, and g is isomorphic to s, og, @s,og, for certain functors 
g.,: 9t2" + 9, and g,: 912'' -+ 9,. By the (3 x 3)-lemma, g and hence also g, 
and g, are  exact functors. These satisfy the fact  that  g, 0 s, is the identity 
on 9,, that  g, 0 s, is the zero map, and the like. So the map 

&(gA? g,!?? fC): Qa"(3" - Q9A Q 9 B  Q g C  

is a left inverse of 
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But i t  is also a right inverse up to homotopy, for the additivity theorem 
applied to the above sequence of endofunctors shows that  the endofunctor 
on Q%3" induced from s, 0 g, $ s, 0 gB @ s, 0 f, is homotopic to the identity. 
Consequently, Q(s, @ s, $ s,) is a homotopy equivalence when we consider 
its target  to be %Q". 

On the other hand, the exact subcategory %Q" is closed in %Q under 
extensions and admissible quotients; and the natural transformation in %Q 
from the identity functor to the endofunctor s, 0 f, @ s, 0 fB  @ s, 0 f, is an 
admissible monomorphism with target  and quotient in %Q". So by the 
resolution theorem [20] applied to the inclusion of the dual categories (or 
even by the additivity theorem) i t  follows that  the inclusion Q%Q" -. Q%Q 
is a homotopy equivalence. Consequently, Q(s, $ s, $ s,) is a homotopy 
equivalence when we consider its target  to be Q9tQ. 

The composed map (f,, fB, f,) 0 (s, $ s, $ s,) can be described by the 
matrix 

Since the H-space BQg,, being connected, has a homotopy inverse, the 
induced map on Q9, x Q9, x Q9, is a homotopy equivalence. Consequently 
Q(f,, fB, fc) is a homotopy equivalence, as asserted. 

We denote y,, gI: 9, -tQ the two maps which take M, to 

respectively. Combining them we have a map g, = (9, $9)): 9, x 9, -, 3. 
Under the equivalence of Q with a category of nilpotent objects, cf. Propo- 
sitions 1.3 and 1.4, the map 9 corresponds to the section i described just 
before the statement of Lemma 1.5. From this equivalence of categories 
we therefore obtain a map 

+:Q-9, x 9, 

such that  the composed map + 0 g, is isomorphic to the identity functor on 
9, x 9,. 

THEOREM 11.2. Suppose the ~ i n g  C i s  ~ e g u l a r  coherent. Then the map  

Q9, x Q9, - Qa 
i s  a homotopg equivalence. 

Proof. Let %$P. be the category of finitely presented C-modules. By 
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assumption about C this is an abelian category in which every object has 
finite projective dimension. Hence the inclusion Q9, -+ Q%kP. is a homotopy 
equivalence by the resolution theorem [20]. 

Denote "(3 f .p .  the category of those split modules for which the C-module 
involved is in %2P.. Then "(3f .P.  is also an abelian category. (Note if " ( 3 f . P .  is 
made into an exact category by analogy with the procedure for Mayer 
Vietoris presentations then the same exact structure results.) Further 
every object of " ( 3 f , p .  may be resolved by objects of "(3. In fact, Proposition 
1.2 says such a resolution can be built up; and the process can terminate 
because objects of % k P ,  have finite projective dimension. Hence by another 
application of the resolution theorem, the inclusion Q"(3 + Q"(3f.P. is also a 
homotopy equivalence. 

Every object of " ( 3 f . p .  has a finite filtration with subquotients in the 
image of 9 l E . P .  x % $ p . .  In fact, Lemma 1.5 provides such a filtration where 
the C-modules involved are finitely generated; but a finitely generated 
submodule of a finitely presented C-module is necessarily itself finitely 
presented as C is coherent. So 

Q g X ; p .  X Q$)X$P.  __t QVf.P. 

is a homotopy equivalence by the devissage theorem [20]. We have esta- 
lished now that three of the maps in the diagram 

are homotopy equivalences. If follows that the remaining map is also a 
homotopy equivalence, as asserted. 

I t  is an interesting question if the conclusion of the theorem can be 
established with weaker hypotheses on the ring C. The results below show 
that any deviation of Qe, from a homotopy equivalence must contribute in a 
very direct way to the K-theory of the ring R. 

Let 9: be as defined in the preceding section (the modules which are in 
the image of f: %"(3 -t 9,). 

THEOREM 11.3. In the diagram 

the two composed maps from Q"(3 to Q9; difer by the functor isomorphism 
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w h i c h  t o  a n y  object of QQ associates i t s  s t r u c t u r e  m a p .  T h e  square i s  
homotopy car tes ian  w i t h  respect to  the  homotopy of the  composed m a p s  
g iven  by t h i s  f u n c t o ~  i s o m o r p h i s m .  

Proof .  Let 9 be the exact category in which an object is a short exact 
sequence 

O-Ml----tM2-Mc@cR+0 

with MI, M, e Ob(9;) and Mc e Ob(9,). Let s ,  t: 9 - 9: denote the functors 
'subobject' and 'total object', and f,: 9 +9, the forgetful map. The 
(unnamed) map 9, - 9 associates to Mc the exact sequence 

- - 
O - - - t O - ( M c @ c R ) ~ M c @ c R ~ O ~  

There is a natural map 91'I"I1-+9. The resulting square 

Q a  - Q n t a  

is not commutative. But the two composed maps from Q"(3 to Q9  differ on 
the total objects of objects of Q 9  only, and here the distinction is just as 
described in the theorem. We assert the square is homotopy cartesian with 
respect to this homotopy. To see this we consider the diagram 

&a ---- Q m a  -- ~ 9 ;  

Discarding the middle row, we obtain a commutative diagram in which the 
upper row is the fibration of Proposition 10.1, and the lower row is trivially 
a fibration. Hence the large left hand square is homotopy cartesian. The 
lower lef t hand square is commutative, one of its vertical maps is an identity, 
and the other one is a homotopy equivalence by the additivity theorem. 
Furthermore the functor isomorphism that measures non-commutativity of 
the upper left hand square, is not felt by the large left hand square. 
Consequently, the upper left hand square is homotopy cartesian in the way 
asserted. 

This being established, consider the diagram 
& ( f C  f~ f ~ )  QQ - Q91Q --- Q9, x (Q9, x Q9,) - Q9, x Q9, 

I Q ( f c ,  tt) 
Idx &(a* @ 81;) 

Q9, - Q 9  
I 

Q9, x Q9; -- 
I - Q9; 
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in which the left hand square is the one just considered. The middle and 
right hand squares commute. In the middle square, the horizontal maps are 
homotopy equivalences, the upper map by Proposition 11.1, and the lower 
map by the additivity theorem, by the fact that BQ9, has a homotopy 
inverse and that therefore the map 

Q g c  x QPE - Q 9 c  x Q9; , (Mc, M) (Mc, M e  Mc OcR) 

is a homotopy equivalence. In the right hand square, the horizontal maps 
are projections away from Q9,. I t  follows that the large square is homotopy 
cartesian in the way asserted by the theorem. 

There is a technical variant of Theorem 11.3 that we will need later on. 
Let "(3. be the simplicial exact category which in degree n is V,, the category 
equivalent to "(3 in which an object is a sequence of n composable isomor- 
phisms in "(1; similarly with 9,., 9;., etc. 

P ~ o p o s i t i o n  11.4. T h e  non-commuta t ive  square of  s impl ic ia l  c a t e g o ~ i e s  

i s  homotopy c a ~ t e s i a n  w i t h  ~ e s p e c t  to  the  s impl ic ia l  homotopy w h i c h  t o  a n y  
object of  "23 associates i t s  s t ~ u c t u r e  m a p .  

P ~ o o f .  An object of "(3, determines a commutative diagram in 9; 
-.-;.-;......._.;. 

where each row has n arrows, and the vertical arrows are the structure 
maps of the objects of 3 involved. One can obtain from this diagram a 
sequence of n + 1 objects in 9E, ,+ , ,  as indicated by the broken arrows in 
one case. By definition, this sequence gives the value of the simplicial 
homotopy on the object of "(3, in question. I t  is clear that the homotopy 
described is indeed a simplicial homotopy between the two composed maps 
from &TI. to Q9Z.; we have to verify that  the square is homotopy cartesian 
with respect to this homotopy. 

Considering Q"(3 as a simplicial category in a trivial way, we can consider 
it as a simplicial subcategory of Qq., and the inclusion is a homotopy 
equivalence. It is thus sufficient to compare the homotopy of Theorem 11.3 
to the restriction to QV of the present homotopy. The two homotopies are 
not the same exactly, as one is simplicial and the other one is in the category 



216 FRIEDHELM WALDHAUSEN 

direction. But the two homotopies will indeed become identical when we 
pass to nerves and take the diagonal simplicia1 sets of these. This establishes 
the proposition. 

Combining Theorems 11.2 and 11.3 we have 

COROLLARY 11.5. If C i s  regular coherent, there i s  a commutative 
homotopy cartesian square 

Remark. The appearance of Q9; rather than Q9, in this corollary is a 
bit unsatisfying. I t s  significance is the following. In view of the connected- 
ness of the bottom terms in the square, the square is homotopy cartesian 
if and only if the map of homotopy theoretic fibres of the vertical maps 
is a homotopy equivalence. Hence the homotopy fibration associated to  
the right vertical map gives the following long exact sequence of homotopy 
groups 

. . - K,(R) - Ko(C) - Ko(A) 63 Ko(B) - KO@) 

in view of Proposition 7.4. Replacing Q9; by Q9, in the corollary would 
amount to the additional assertion tha t  Ko(A) @ Ko(B) -+ K,(R) is surjective. 
One can achieve this a t  the expense of a stronger hypothesis in the corollary. 
Namely assume that  not just C bu t  also the (ordinary) polynomial and 
Laurent polynomial ring on C are  regular coherent. The contracted functor 
device of Bass [3] gives a continuation of the above sequence to the right, 
keeping i t  exact, - KO@) 63 Ko(B) - KO@) - K-l(C) - . 
Furthermore one has a vanishing theorem for K-,(C) under suitable hypo- 
theses, or stronger still, a theorem that  

Ko(C) - Ko(C[t, t-'I) 

is surjective. Two proofs of such a theorem are given in [3] under the 
assumption that  C be regular noetherian. One checks tha t  the first of these 
proofs can be modified to apply in our present situation when C[t] and 
C[t, t-'1 are  assumed to be regular coherent: one just works with finitely 
presented modules instead of finitely generated ones. So under this stronger 
assumption, Q9; can indeed be replaced by Q9, in the corollary. 

On the level of geometric realizations, Theorem 11.3 can be given a 
more explicit form. 
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Nota t ion .  B~"73 is the homotopy theoretic fibre of the retraction 

BQ+: BQ"73 ---t BQ(gc x 9,) ; 

(-Id): BQ9, --+ BQ9, is a homotopy inverse on the H-space BQ9,. Similarly, 
- BQP,: BQ9, --+ BQ9, is the composition of BQP,: BQ9, --+ BQ9, with a 
homotopy inverse (on either BQ9, or BQ9,; this does not matter). 

THEOREM 11.6. T h e r e  i s  a n a t u r a l  s p l i t t i n g ,  u p  to  homotopy,  

BQQ 5 B Q ~  x BQ(9, x 9,) . 
T h e  sequence 

has  the  homotopy t y p e  of  a Jibration. T h e  m a p  QBQ9; -. BQQ has  a 
canonical section, u p  t o  homotopy.  

Proo f .  By Corollary 7.2 the diagram of simplicia1 categories 

is homotopy cartesian, and QF.(+ 0 9) is contractible since + 0 9 is isomorphic 

to the identity functor. Hence BQ3 5 BQF.(q) x BQ9, x BQ9, and 

BQF. (9) 2 ~ 3 ,  which is the first assertion. 
I t  was seen in the proof of Proposition 1.3 tha t  for any object V of "(1 

there are  canonical  isomorphisms MA + MI @,A, MB -t M, @, B where 
(MI, M,) = +(V) E 9, x 9,. Let "(3' be the full subcategory of those objects 
in "(1 for which these canonical isomorphisms are identities. Then "73' is 
equivalent to "73 by the inclusion. By definition of "(3' the diagram 

BQT)' - BQ9, x BQ9, 

i I 
BQgC ---- BQ9: 

induced by the diagram of Theorem 11.3 is commutative. By 11.3 this 
diagram is homotopy cartesian, though not as  a commutative diagram but  
with respect to the homotopy described in 11.3. 

Homotopy cartesianness of the diagram gives a map between the 
homotopy fibrations associated to the vertical maps, inducing a homotopy 
equivalence between the homotopy theoretic fibres. The homotopy fibration 
associated to the left vertical map is, by the first assertion, homotopy 
equivalent to the sequence 
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So one obtains the asserted homotopy fibration. 
But there is another map between these homotopy fibrations, because 

of the commutativity of the diagram. The two maps agree on the base, on 
the total space, and on the par t  BQP, of the fibre. Using tha t  the map 
Id + (-Id) on a homotopy everything H-space is nullhomotopic by a 
homotopy that  itself is unique up to homotopy, one can therefore take the 
'difference' of the two maps, and one obtains this way the required map 
BQ=U ---t QBQ9;. 

12. Decomposition theorems i n  the Laurent extension case. Let the 
ring R be given as  the Laurent extension of A with respect to a ,  P: C -+ A 
where a and are  both pure and their complements are free from the left, 
as in Section 2. By definition of the Laurent extension, there exists an  
embedding a: A -, R and a unit t of R so tha t  

commutes, where i? denotes conjugation by t ,  F: R -, R,  $(r)  = trt-l. 
~f we let 9, be as  in 6.2 (so ? t- Py is a functor), F induces an automor- 

phism of 9,. This automorphism is inner; in tensor product notation, an 
isomorphism j ,  from the identity functor to t̂, is given by 

In agreement with the convention in Section 2, we consider R as a left 
A-module via a: A -+ R and as  a left C-module via a 0 a: C -. R. Thus the 
natural transformation 

is the identity, and a natural transformation 

is given by the isomorphism j ,  described before. Note that  j ,  is nowhere 
the identity, except on zero. 

An object of 917-2, the category of admissible Mayer Vietoris presenta- 
tions, is an exact sequence 
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with M c  E 9,) etc. We have the obvious forgetful maps fa: 9nTI-t 9,) 
fc: 9tQ -+ 9,) the obvious section s,  of f,, and the obvious natural trans- 
formation from the identity on %Q to s,  0 f,. The section s,  of f ,  associates 
to M c  the Mayer Vietoris presentation 

and the natural transformation from the identity on 9nQ to s,  0 f ,  is given 
by the diagram 

where s = s, - s, is the canonical decomposition, cf. Section 2, the point 
being that j;' 0 tc, is indeed induced from an A-map. 

There are maps q,, 9,:  9, + 9 which send M e  E Ob (9,) to 

respectively. These combine to 9 = (F, $ 9,): 9, x 9, -+ '3. From Section 
2 we have a map +: 3 -+ 9, x 9,) and the composed map + 0 9 is isomorphic 
to the identity functor on 9, x 9,. 

The arguments of the preceding section now carry over to the present 
situation, with trivial alteration. We obtain corresponding results. 

PROPOSITION 12.1. T h e  m a p  Q( f,, f,): Q91)1'1'71) -+ Q 9 ,  x Q 9 ,  i s  a homotopy 
equivalence. 

THEOREM 12.2. Suppose  the  r i n g  C i s  ? . e g u l a ~  coherent.  T h e n  
Q 9 ,  x Q 9 ,  --+ Q Q  i s  a homotopy equivalence. 

THEOREM 12.3. In the square 

QQ Bf" Q 9 ,  

~f.1 I 
Q 9 c  - Q9E 

the t w o  composed m a p s  f r o m  QQ t o  Q 9 ;  d i f e ~  by the  f u n c t o r  i s o m o ~ p h i s m  
w h i c h  t o  a n y  object of  QQ associates i t s  s t r u c t u r e  m a p .  T h e  square i s  
homotopy car tes ian  w i t h  respect t o  the  homotopy of the  composed m a p s  g iven  
b y  t h i s  func tor  i s o m o r p h i s m .  
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PROPOSITION 12.4. T h e  non-commuta t ive  square of s impl ic ia1 categories 

i s  homotopy car tes ian  w i t h  respect t o  the  s impl ic ia1 homotopy w h i c h  t o  a n y  
object of "(3 associates i t s  s t r u c t u r e  m a p .  

COROLLARY 12.5. In the  square 

the  t w o  composed m a p s  f r o m  Q9, x Q9, t o  Q9; d i f e r  by the  func tor  
i s o m o r p h i s m  w h i c h  i s  the  i d e n t i t y  o n  Q9, x 0 ,  a n d  i s  g i v e n  by the  i somor-  
p h i s m  j ,  o n  0 x Q9,. I f  C i s  regu lar  coherent t h e n  the square i s  homotopy 
car tes ian  w i t h  respect t o  the  homotopy of the  composed m a p s  g iven  by t h i s  
func tor  i s o m o r p h i s m .  I 

No ta t ion .  BQQ is the homotopy fibre of the retraction 

BQ+: B Q 3  - BQ(9, x 9,) . 
The map BQa, $. (-  BQP,): BQ9, -, BQ9, is the sum (with respect to the 
H-space structure on BQ9,) of the maps BQa, and - BQP,, the composition 
of BQP* with a homotopy inverse. 

THEOREM 12.6. T h e r e  i s  a n a t u r a l  s p l i t t i n g ,  u p  t o  homotopy,  

BQP 5 BQP X BQ9, X BQ9, 

T h e  sequence 

pt. i ( B Q ~ *  +(-BQBC BQ9, BQQ x BQ9, - BQ9; 

has  the  homotopy t y p e  of a j ibration. T h e  m a p  RBQ9; -, BQV has  a canoni-  
cal section, u p  t o  homotopy.  

13. Decomposi t ion theorems in the polynomial  ex tens ion  case. Let the 
ring R be given as the tensor algebra of the C-bimodule S where S is free 
as left C-module and finitely generated projective as right C-module, as in 
Section 3. 

An object of 4)12"(3 is a short exact sequence 

0-M-M,@,R-M,@,R-0  

with M I ,  M ,  E 9,, etc. The two forgetful maps f,, f,: 9ltT -, 9, and the 
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section s, of f, are the obvious ones. The value of the section s, o f f ,  on the 
module Me is, by definition, the short exact sequence associated to the 
commutative diagram 

in which the horizontal map is induced from the inclusion S c  R; we are 
using here the condition that S be finitely generated projective from the 
right (actually, the generality could be pushed a bit). There are natural 
transformations from the identity functor on 9l2 to s, of, and to s, of,. 
The latter natural transformation is given by the diagram 

' As in the two preceding sections, one now deduces 

PROPOSITION 13.1. T h e  m a p  Q(f,, f,): Q9l79 -+ Q9, x Q9, i s  a homotopy 
equivalence. 

THEOREM 13.2. Suppose  the  r i n g  C i s  r e g u l a r  coherent. T h e n  Q9, -, 
Q3 i s  a homotopy equivalence. 

THEOREM 13.3. In the square 
Qf i  Qa - ~ 9 ,  

~ f l i  1 
Q9, - Q9r;: 

the  t w o  composed m a p s  f r o m  Q3 t o  Q9; d i f e r  b y  the  func tor  i s o m o r p h i s m  
w h i c h  t o  a n y  object of  Q3 associates i t s  s t ruc ture  m a p .  T h e  square i s  
homotopy car tes ian  w i t h  respect t o  the  homotopy of the  composed m a p s  
g iven  by t h i s  func tor  i s o m o r p h i s m .  

The composition of 9, + 3 with either f ,  or f, is the identity. Thus 
instead of just a commutative homotopy cartesian square, one obtains by 
combining Theorems 13.2 and 13.3, 

COROLLARY 13.4. Suppose  t h a t  C i s  r e g u l a r  coherent.  Then. Q9, -t 
Q9; i s  a homotopy equivalence. 

As in the remark after Corollary 11.5, one can sharpen this to a 
homotopy equivalence Q9, -, Q9, when one assumes C [ t ]  and C [ t ,  t-'1 are 
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regular coherent. 
The analogue of Theorems 11.6 and 12.6 also takes a sharpened form 

here. 

THEOREM 13.5. T h e  loop space QBQ9; i s  n a t u r a l l y  homotopy equivale?zt 
t o  the  product of  BQV (the homotopy theoretic fibre of BQV --+ BQ9,) a ~ d  
the  homotopy theoretic fibre of  

(Id, -BQS ) 
BQ9, -- 2 BQ9, x BQ9, 

where S*(Mc) = MCBCS. T h u s  it i s  homotopy equivalent  to  BQV x QBQ9,. 

IV. K-theory and homology 

14. T h e  homology theory  associated t o  a r-category. In Section 6 ,  a 
smal l  r -category was defined as a covariant functor F: 5, -+ (small cate- 
gories) satisfying 

(i) F{*} is the category with one object and one morphism, 
(ii) For any two pointed sets (X, *), (Y, *), the natural map 

F((X, *) V (Y, *)) - F(X, *) x F(Y, *) 

is an equivalence of categories. 
Using direct limit one can extend F to a functor on the category of 

pointed sets, not necessarily finite. Then (i) and (ii) continue to hold. We 
keep the notation F for the extended functor. 

One can further extend to a functor 

(pointed sets)A0p - (categories)A0p , 
tha t  is, to a functor from pointed simplicial sets to simplicial categories 
(which actually are also pointed). We continue to denote this functor F. 
Then F satisfies 

(ii') For any two pointed simplicial sets (X, *), (Y, *), the natural map 

F((X, *) V (Y, *)) - F(X, *) x F(Y, *) 

is a weak equivalence of simplicial categories, that  is, i t  is an equivalence 
of categories in each degree. 

The following is essentially a translation of a result by Anderson [2]. 
One should note that Segal's de-looping of F{1 U *}, cf. Proposition 6.3, 
corresponds to the special case of the cofibration 

(So, *) - (A1, *) - coker (So - A') . 
LEMMA 14.1. L e t  F be a smal l  r -category.  Suppose  the  u n d e r l y i n g  

category F{1 U *} i s  connected. T h e n  F sends cofibrations t o  f ibrations u p  
t o  homotopy.  
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Proof. The assertion means, if (A, *) is a simplicial subset of (X, *), 
and (X/A, *) the quotient simplicial set, then F(A, *) + F(X,  a )  -+ F(X/A, *) 
is a fibration up to homotopy. To see this, one notes that  in each degree n,  
the sequence 

F(A', *) - F(X", *) - F((X/A)", *) 
is trivially a fibration up to homotopy, by (ii) above. By hypothesis, and 
again by (ii), F((X/A),, *) is connected. So the assertion follows from 
Lemma 5.2. 

LEMMA 14.2. Let F be a small I?-category, with connected underlying 
category. 

( 1 ) Let f, g: (X, *) + (Y, *) be maps of pointed simplicial sets. Suppose 
the geometric realizations o f f  and  g a re  homotopic. Then the geometric 
realizations of F( f )  and  F(g) a re  homotopic. 

( 2 ) Let h: (V, *) -+ ( W, *) be a map of pointed simplicial sets. Suppose 
h i s  a weak homotopy equivalence. Then F(h)  i s  a weak homotopy equi- 
valence. 

Proof. If in (1)) f and g are  simplicially homotopic, we know the 
assertion (1) to be t rue  because the functor F ,  being extended from the 
category of basepointed sets, preserves simplicial homotopies between maps 
of simplicial objects. Consequently, we know (2) to be true if both V and 
W satisfy the Kan condition. To prove the lemma, i t  suffices thus to show 
tha t  F(j) is a weak homotopy equivalence when j is the natural transfor- 
mation j: (X, *) -, (ExmX, *) of Kan. Since F commutes with direct limit, 
up to homotopy, the lat ter  follows if we show F(e) is a weak homotopy 
equivalence when e is an  elementary anodyne extension, that  is, an  inclusion 

e: (X, *)-(XU A (A'; *) 

where A" is the simplicial se t  n-simplex, and hi the ith horn of A", the 
union of all the (n  - 1)-faces of A" except the it" one. By the preceding 
lemma, the sequence 

F (X ,  *) 3 F ( X  U A A', *) - F(Ax/A" *) 

is a fibration up to homotopy. But (A"/Ai, *) is contractible by simplicial 
homotopy. So F(An/Ai, *) is contractible, and F(e) is a weak homotopy 
equivalence, as asserted. 

In view of Lemmas 14.1 and 14.2, the functor (X, + ) w  F(X ,  *) is a 
homology theory on the category of pointed simplicial sets; that  is, its 
homotopy groups satisfy the Eilenberg-Steenrod axioms except for the 
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dimension axiom. We will also need the corresponding unreduced homology 
theory. 

Nota t ion .  If F is a I?-category, we denote F+ the functor on unbased 
simplicial sets which is the composition of F with the functor that  adds a 
basepoint. 

There is the following formulation of excis ion for FS .  

LEMMA 14.3. L e t  
A-B 

I I 
C - D  

be a cocartesian square of  s impl ic ia1 sets so t h a t  a t  least one of  the  m a p s  
o r i g i n a t i n g  a t  A i s  a m o n o m o r p h i s m .  T h e n  the square 

F + ( A )  ----+ F + ( B )  

I I 
F + ( C )  - F+ ( D )  

i s  homotopy car tes ian .  

Proof .  For the sake of argument we assume the horizontal maps are  
monomorphisms. Then in the diagram 

the rows are  fibrations up to homotopy, by Lemma 14.1, and the right 
vertical map is an isomorphism. Hence the left  hand square is homotopy 
cartesian, as asserted. 

Amalgamated  free products  of groups.  Let a: Go -+ G ,  and P: Go -, G,  
be monomorphisms of groups and G = G, * ,,G2 the resulting amalgamated 
free product (the pushout of a and P). Let N denote the functor nerve.  

LEMMA 14.4. L e t  F be a s m a l l  F-category w i t h  connected u n d e r l y i n g  
category. T h e n  the c o m m u t a t i v e  d i a g r a m  of  s impl ic ia l  categories 

F + ( N G o  U NG,) - F + ( N G ,  U NG,) 

i s  homotopy car tes ian .  

P ~ o o f .  In view of Lemmas 14.2 and 14.3, i t  suffices to verify that  the 
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map NG, U .,.,, NG, -t NG induces a homotopy equivalence of geometric 
realizations. To see this one notes first that the functor fundamentaL 
groupoid commutes with colimits. So the map induces an isomorphism of 
fundamental groups in view of the very definition of the amalgamated free 
product. Since NG is an Eilenberg-MacLane space, i t  is thus sufficient to 
show that NG, U is an Eilenberg-MacLane space, too. But this is easily 
seen from the Mayer Vietoris sequence of homology in the universal covering. 

HNN extensions of groups. Let a, 6 :  Go -+ G, be monomorphisms of 
groups. The HNN extension of G, with respect to (a, 6) can be defined as 
the pushout in the category of groupoids in the diagram 

where U is the coproduct in the category of groupoids (disjoint union) and 
I is the connected groupoid with two vertices and trivial vertex groups. 

LEMMA 14.5. Let F be a smalL F-category with connected underlying 
category. Then the commutative square of simpLicial categories 

F + (NG, U NG,) - Ff (NG,) 

I I 
F+(NG, x N I )  - F+(NG) 

i s  homotopy cartesian. 

Proof. AS in the preceding lemma one verifies that the map 

induces a homotopy equivalence of geometric realizations. 

15. Whitehead groups. Let R denote a ring, and G a group. A functor 
from pairs (R, G) to spaces will be constructed, 

(R, G) :- WhR (G) 

whose homotopy groups give the Whitehead groups of G, taken relative to 
the ring R. 

Notation. The F-category Fcp, of Section 6 will be denoted F, hence- 
forth. 

By direct limit, we can assume that F, is defined on pointed sets which 
are not necessarily finite. F, can be considered in a natural way as a functor 
with values in the category of exact categories, so we can compose with 
the Q-construction. 
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Proof. The Q-construction commutes with products and filtering direct 
limits, up to equivalence, and i t  preserves equivalences. So the assertion 
is immediate from the definition of a F-category. 

Notation. F i  is the composition of I?, with the functor that adds a 
basepoint. 

If X is a set without basepoint, an object of FA thus consists of (an 
equivalence class of) the following data: 

(i) An object P = P,, of 9, where X' is some non-empty finite subset 
of X (resp., P = Pxt = 0, the distinguished zero, if X' = a), 
(ii) The data required to express P as a direct sum 

(iii) A choice, for any Y c X' not mentioned so far, of an object P, in 
the isomorphism class of e,,, P ,,,. 

The equivalence relation on these data is generated by allowing X' to be 
replaced by a larger finite subset X" of X, but insisting that if Y" c X" 
one have P,,, = P,yt,,l,,, (equality, not just isomorphism). Note in particular 
that equivalent data involve the same P. 

We will now consider F, as a functor from simplicial sets (without 
basepoint) to simplicial categories. As before, we let 9,. be the simplicial 
category which in degree n is g,!,,, the category equivalent to 8, in which 
an object is a sequence of n composable isomorphisms in 9,. Let G be a 
group, NG its nerve, and RG the group algebra over R. 

PROPOSITION 15.2. There i s  a natural transformation of func to~s  f ~ o m  
pairs  (R, G) to simplicia1 exact categories 

W ( R  G). 
((R, G) w Ffn(NG)) --- ((R, G) :- gRG.) . 

If G is  the t?.ivial g ~ o u p ,  W(R, G). i s  a weak equivalence, that is, i t  i s  i n  
each deg~ee a n  equivalence of categories. 

Proof. In view of the description of r",X) above, we see that in par- 
ticular for X = (NG), = G", an object of FA((NG),) consists of 

(i) an object P of 9,, 
(ii) a direct sum decomposition indexed by the n-tuples in G, 

= @tg l,...,BnlEGnP!gl,llllBn~ 9 

(iii) certain other data. 
The proposition requires us to associate to this object a sequence of 

isomorphisms in 9,, . But if P E 9, and i, : 9, -, 9,,, i,(P) = P Q, RG, the 
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left action of G on RG extends to an action 

A canonical choice of the natural transformation W(R, G), is then made by 
associating to the object in question, the sequence of isomorphisms on i,(P) 
which on the summand indexed by (g,, . . ., g,) is given by 

I t  is clear that W(R, G), has the asserted properties. 
Applying Corollary 7.2 in the case when f = Id, is the identity map on 

I'i((NG),), and g = W(R, G),, we obtain the homotopy cartesian square of 
simplicial categories 

and QF.(Id,) is contractible. Assembling these squares for varying n, we 
obtain a commutative square of bisimplicial categories. 

PROPOSITION 15.3. The squaye of bisimplicial catego?.ies 

i s  homotopy cartesian. The bisimplicial category QF.(Id.) i s  cont~actible. 
The square i s  natural i n  (R, G). 

Proof. Naturality is clear. QF.(Id.) is a simplicial object of contrac- 
tible things (the QF.(Id,)) hence is itself contractible. The square is 
homotopy cartesian by Lemma 5.2. To see this, let X, (resp. Y,) denote 
the homotopy theoretic fibre a t  * of the left (resp. right) vertical map in 
the square preceding the proposition. Then X, -+ Y, is a homotopy equiva- 
lence since this square is homotopy cartesian. Similarly let X and Y denote 
the homotopy theoretic fibres of the vertical maps in the square of the 
proposition. Then the natural map B(X.) -+ X is a homotopy equivalence 
by Lemma 5.2 since Q!?,,',, is connected, for every n. Similarly B(Y.) + Y 
is a homotopy equivalence. B(X.) + B(Y.) is a homotopy equivalence by 
Lemma 5.1. Hence X +  Y is a homotopy equivalence, and the square is 
homotopy cartesian, as asserted. 

Definition 5.4. The Whitehead space of G ~e la t ive  to R, denoted 
WhB(G), is given by QBQF.(W(R, G).), the loop space of the geometric 
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realization of the bisimplicial category QF.( W(R, G).) . I ts  homotopy groups 
are the Whitehead groups  of  G re la t i ve  t o  R. 

Notice that the Whitehead groups of the trivial group are always 
trivial (essentially by definition). Letting, for short, K(R) = QBQ9, and 
K(X; R) = QBQrf(X) for a simplicia1 set X, we can restate Proposition 15.3 
to say 

COROLLARY 15.5. T h e r e  i s  a canonical homotopy equivalence of 
K(NG; R) w i t h  the  homotopy theoretic fibre of  the  m a p  K(RG) + WhR(G). 

Or put otherwise, the  f u n c t o r  WhR(G) i s  so defined t h a t  it measures  to  
w h a t  ex ten t  the  func tor  G H  K(RG) deviates  f r o m  a homology theory  
evaluated o n  NG. 

R e m a r k .  I t  can be shown that the bisimplicial set Ob(QF.(W(R, G).)) 
or what is the same by definition, the bisimplicial set Ob(F.(W(R, G).)), is 
naturally homotopy equivalent to WhR(G). The fundamental group of this 
bisimplicial set can easily be computed by hand. In the case when R is the 
ring of integers, i t  is amusing to see how not just the usual Whitehead 
group appears, but almost its definition in terms of elementary expansions. 

D e f i n i t i o n  15.6. The Whi tehead  groups  of a group G are given by 

Wh,(G) = n, WhZ(G) 

where Z is the ring of integers. 

Here are a few comments on this definition. Below we verify that for 
i = 0,1, 2, this definition is the correct one in the sense that i t  recovers 
the Whitehead groups hitherto considered which have been used in relating 
algebraic K-theory to problems of geometric topology (finiteness obstruc- 
tions, h-cobordisms, concordances). In higher dimensions, the geometric 
theory branches into two cases corresponding to whether one considers 
smooth manifolds or piecewise linear manifolds (resp. topological manifolds 
-for the matter a t  hand this amounts to the same thing as considering 
piecewise linear manifolds). The theory of [27] shows that for application 
to higher concordance groups in the piecewise linear case, the present 
definition of Wh,(G) appears to be the correct one. I t  should be noted 
though that the natural transformation from concordance groups to 
Whitehead groups is very far from being an isomorphism in general (as 
opposed to the situation for i = 0 or 1). That so much information is thrown 
away is due to two facts: Firstly, the Whitehead groups here defined depend 
only on groups (that is, the fundamental groups of any spaces considered, 
not the higher homotopy groups). Secondly, K-theory (from which after 
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all the Whitehead groups are  derived) is really concerned with l i n e a r  

phenomena, but the geometry involves non-linear phenomena as well. 
The first defect can be rectified by extending the definition of Wh,(G) 

to simplicial groups. It would be tempting here to just use the degreewise 
extension (that is, evaluate the functor G w WhZ(G) in each degree of the 
simplicial group and then pass to the geometric realization of the resulting 
simplicial space). This does n o t  give the correct result however (for instance 
the functor so constructed does not take a weak homotopy equivalence of 
simplicial groups to an isomorphism of the Whitehead groups-as i t  should 
do if i t  were the correct one). The correct procedure is to use a suitable 
definition of K-theory for simplicial rings (not the degreewise extension) 
[27]. This K-theory coincides with Quillen's for a ring considered as  a 
simplicial ring in a trivial way (as of course does the degreewise extension), 
and i t  preserves weak homotopy equivalences. The second defect, that of 
ignoring non-linear phenomena, can also be rectified 1271. 

PROPOSITION 15.7. ( 0 ) Wh,(G) = &(zG), the  reduced project ive  class 
group.  

( 1 ) Wh,(G) i s  the  u s u a l  Whi tehead  group.  
( 2 ) Wh,(G) coincides w i t h  the  quo t ien t  of  K,(ZG) considered in [13]; 

hence it coincides w i t h  t h e  second Whi tehead  group  of [9]. 

Proof .  From Corollary 15.5, one has the long exact sequence of homo- 
topy groups 

. + Kl(RG) . n, WhX(G) + n,K(NG; R) -+ K,(RG) + x,,WhE(G) + 0 .  

Let H, denote ordinary homology. Since n,K(?; R) is a generalized homology 
theory one has 

- - - - - - 
n,K(NG; R) -+ H,(NG, K,(R))--+ H,(pt-, K,(R)) + K,(R) 

from which part  (0) of the proposition is immediate. Furthermore one sees 
easily from the spectral sequence of a generalized homology theory that 

- - - 
n,K(NG; R) - H,(NG, K,(R))@ H,(NG, K,(R)) - Kl(R)@ Hl(NG, KdR)). 

Asser t ion  15.8. n,K(NG; Z)  + Kl(ZG) i s  the  u s u a l  m a p .  

I t  is immediate from this assertion that 

Whl(G) = coker (K,(z) @ H,(NG, Z)  - K,(zG)) 

is the usual Whitehead group. 
The usual map Kl(Z) @ H,(NG, Z)  -> K,(ZG) is injective. For abelian 

G, this is clear from the existence of the determinant homomorphism and 
the ensuing diagram 
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units (ZG) - K,(ZG) . 
For non-abelian G one reduces to this case by abelianization and the diagram 

Thus by the preceding assertion, K,(ZG) + Wh,(G) is surjective, and 

Wh,(G) = coker (n ,~(NG;  Z )  - K,(ZG)) . 
A s s e r t i o n  15.9. n, K(NG; Z)+K,(ZG) co inc ides  with t h e  c o r r e s p o n d i n g  

m a p  in [13]. 

In view of this assertion, our Wh,(G) is the same quotient of K,(ZG) as 
the one in [13] which Loday has shown to coincide with the second Whitehead 
group of Hatcher and Wagoner [lo]. Modulo the two assertions above, the 
proof of the proposition is thus complete. The assertions will be dealt with 
in the next section. 

R e m a r k  15.10. The natural transformation of 15.2 can be put into a 
more general framework, as follows. Suppose (3 x 58 -+C is a bi-exact 
pairing in the sense of 9.2. Let G be a group. To the pair (G, 9) one can 
associate an exact category R ~ P , ~ ( G ) ,  the category of G-representations in 
9; i t  may be defined as the category of functors 9 --+ 53 where 9 is G con- 
sidered as a category. 

The map of 15.2 then has an analogue which is a bi-exact pairing of 
simplicia1 exact categories, 'evaluation', 

from which other pairings may be deduced as in 9.2. The map of 15.2 itself 
can be recovered as the induced map 

r,(NGU *) x o-9,, . 
where o E Reps,, is the standard representation of G on ZG. 

16. C o m p a r i s o n  o f  h o m o l o g y  theor ies .  The purpose of this section is 
to prove assertions 15.8 and 15.9. The proof involves showing that certain 
a p r i o r i  different ways of manufacturing a homology theory from K-theory 
lead in fact to the same result. Also, one must chase analogues of the 
natural transformation W(R, G). of 15.2, through comparison theorems for 
K-theory. 
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If X. and Y. are simplicial sets we denote X. @ Y. the bisimplicial set 
which in bidegree (m, n)  is X, x Y,. If X. and Y. are  pointed we can form 
an analogue of the usual smash product from X. @ Y. by collapsing 
X. @ x U * @ Y.; we denote this X. A Y.; a similar notation will be used 
for multi-simplicia1 sets. 

LEMMA 16.1. Let X and Y be pointed simplicial sets. Let Q be a small 
exact category, pointed by a zero object 0. There i s  a natural transforma- 
tion of trisimplicial sets 

NQrCt(X) A Y -  NQrfi(X A Y )  . 
If Y = So this i s  a homotopy equivalence. If Y = S1 (any pointed simpli- 
cia1 circle) the associated map 

is a homotopy equivalence. 

Proof. This has been described by Anderson 121 in a more general 
context. Suffice i t  to point out here the following. An element f 0 in 
bidegree (m, n) of the bisimplicial set Ob(Qr8(X)) A Y is represented by 

(i) ( U c  X, - *, y cz Y, - *) where U is finite, 
(ii) certain data indexed by the category of subsets of U. 

Similarly, an element + 0 in bidegree (m, n)  of Ob (Qra(X A Y)) is repre- 
sented by 

(i) V c  (X, - x )  >: (Y, - *) where V is finite and non-empty, 
(ii) certain data indexed by the category of subsets of V. 

The asserted natural transformation is simply given by (U, y) I-+ U x {y}. 

I t  is clear that NQF,,(X) A So -, NQrll(X A So) is an isomorphism. The 
third assertion need be proved only for a particular simplicial circle, in 
view of Lemma 14.2. Applying the natural transformation to the cofibration 
sequence So -, A' -, S ' ,  we obtain a diagram 

in which the bottom row is a fibration up to homotopy by Lemma 14.1. The 
simplicial nullhomotopy of X A A' induces a nullhomotopy of NQr,(X A A'), 
hence a map NQr,(X) A S' + NQF,(X A St). On the one hand, this map is 
the same as the right vertical map in the diagram; on the other hand, its 
adjoint is the homotopy equivalence from BQr,(X) to QBQr,(X A S') given 
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by the bottom row. 
As pointed out by Anderson [2] the lemma signifies in particular that  

NQrU(SIt) A S1 - NQre(SIt A S1) 

gives an Q-spectrum, and that  the two reduced homology theories 

ir, lim RItB(NQra(S") A X )  and ir,BQI'(,(X) 
-+ 
It 

are the same in view of the natural transformation 

and the fact  that  this natural transformation is an isomorphism on the 
'coefficients', the case X = So. 

As in 9.2, let Q x 9 -+ C be a bi-exact functor of small exact categories, 
each pointed by 0. So there is a map of bicategories 

inducing an embedding of bisimplicial sets 

NQQ A N Is (93) - NQcr'. 

where C, is the category equivalent to t' in which an  object is a sequence 
of n composable isomorphisms in C . 

LEMMA 16.2. In this situation there i s  a natural transformation o f  
simplicia1 exact categories 

l?(,(N IS (9)) - C. 
satisfying that the following diagrain of  bisimplicial sets, involving the 
natural transformation 16.1, commutes (the source trisimplicial se t  is 
diagonalized along the So and N I s  (9) directions, to ge t  a bisimplicial set): 

diag,,,,,(NQr,.(SO) A N Is (93)) - NQrU(NIs  (9)) 

i 
NQQ A N IS (3) -- 

! 
+ NQC. 

I f  in  pai.ticular 9, x 9,, -. 9,, i s  induced fieom RG = R @,ZG, a?zd 
G c Is (ZG) c Is (9,,), the following diagram also commutes 

Proof. The construction of the natural transformation is entirely 
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analogous to that of the natural transformation W(R, G) in 15.2. The 
asserted properties are immediate from the definitions. 

The bi-exact pairing Ct x 93 -+ t' induces, for every pointed simplicia1 
set X, a bi-exact pairing 

r c r (x )  x 9 - rc(x) 
- 

as well as an embedding of trisimplicial sets (using that rc(X).  re.(X)): 

NQrcf(X) A NIs  (93) - NQrc.(X) . 
LEMMA 16.3. There i s  a natural travtsformatiovt of bisimplicial exact 

categories 

rcr(X A N I s  (9)) rc.(X) 
satisfgivtg that 

commutes. 

P ~ o o f .  For pointed sets U, V, there is an equivalence of categories 

rcr( U A V) - r , r , ,u, , (  V )  

which forgets some of the choices. Taking this map in each degree gives 
the vertical arrow in the following diagram; 

NQre(X A N Is (93)) 

/ 
/' 1 '.%.,,, 

NQr,(X) A NIs(93) - - - - -  I - - - - >  N Q ~ ~ . ( x )  . 

The solid arrow from bottom to right is the natural transformation of 16.2, 
taken in each degree in X, and the other solid arrow comes from 16.1. The 
broken arrows are filled in to make the diagram commutative. 

The asserted natural transformation is defined as the broken arrow 
from top to right. The upper triangle in the diagram looks like the one 
whose commutativity has been asserted, but we are left to identify the 
horizontal arrow. That this arrow is as asserted is seen by applying the 
preceding lemma, in each degree in X, to the lower triangle. 

Pvoof of asse7ation 15.8, that n,K(NG; 2) -+ Kl(ZG) i s  the usual map. 
The summand Kl(Z) of 7clK(NG; 2) w Kl(Z)@ Hl(NG, K,(z)) is mapped 
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correctly because of functoriality. To see how the other summand is 
mapped, we consider the diagram 

- - 
B((NId, U *) A (NG U *)) - BG U * 

I I 
.1 -1 

B(N1s (9,) A (NG U *)) - B 1s (9RG.) 
I I \ 

The subdiagram of the solid arrows is commutative in view of Lemmas 16.2 
and 9.2.4 and the inclusion NG U * c N I s  (ZG) U * c NIs(9,,) . The broken 
arrow is a homotopy equivalence and the triangle containing i t  is homotopy 
commutative, by Lemma 9.3.3. Assume now that  R = Z. The composed 
vertical map on the left is a kind of Hurewicz map. It sends n,BG into the 
summand Hl(NG, Ko(Z)) of n,K(NG; 2) because this summand can be 
identified with the kernel of n,K(NG; Z) -3 n,K(pt.; 2). We claim that  the 
map 

is surjective; in fact  i t  ought to  be abelianization. Granting this, the 
assertion is now immediate from the commutativity of the diagram and 
the fact  pointed out in the preceding section, tha t  the induced map on the 
right, Gab -, K,(ZG), is injective. 

To justify the claim one could check more details about the Hurewicz 
map. A quicker way is this. By the vanishing theorem for Whitehead 
groups, in Section 19, we know if F is a free group, n,K(NF; 2) + K,(ZF)  
is an  isomorphism. Hence by the commutative diagram above, F-, 
H,(NF, K,(Z)) is surjective. Let F + G be a surjection from a free group. 
Then H l ( N F ,  Ko(Z)) -, Hl(NG, K,(Z)) is the induced surjection of the 
abelianized groups, and the diagram 

establishes the claim. 

Proof of asse~t ion 15.9, that n*K(NG; 2) + K*(ZG) coincides with the 
map in [13]. In  the diagram 
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the subdiagram of the solid arrows is commutative up to basepoint pre- 
serving homotopy, in view of 9.2.6 and 9.3.3, and there is a unique way, up 
to homotopy, to fill in the broken arrow so that  the diagram stays homotopy 
commutative. Because of the homotopy commutativity of the upper square, 
the pairing given by the broken arrow coincides with the pairing in [13] in 
view of the very definition of the lat ter  (actually, the pairing in [13] is well 
defined up to 'weak homotopy' only). 

Let C: (rings) -, (rings) denote the functor suspension of Karoubi and 
C" i ts  n-fold iteration. The only things we have to know about C are  that  
i t  has been used by Loday in a way described below, and that  there is a 
homotopy equivalence, due to Wagoner [24] 

K,(R) x BGLf (R) - QBGLf (CR) 

which is functorial in R ,  further,  tha t  the resulting R-spectrum is connected 
if R is regular noetherian, especially if R = Z [24] (due to the vanishing of 
the K-, of Bass [3]). 

In  view of 9.3.3 and 9.2.5, and the inclusion BG U * c BIs(ZG) U * c 
BIs(PZG), we have a homotopy commutative diagram 

lirn Qm((Ko(CmR) x BGLt(CmR)) A (BG U *)) 
+ 

N - lirn ~ ~ ( ~ B & p z r n R  A (BG U *)) - lim Qm+'(BQ9zmR A (BG U *)) 
+ I 

+ 
m m I 

N 4 4. 
---t lirn Qm(RBQ9mmR A QBQgzG) ---+ lirn Qmi'(BQ9zmR A RBQPZG) 

m + 
m - lirn Qm+'BQPzmRG. 

+ 
m IN - lirn Qm+%QQ9zmRG. . 
+ 

m 
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The homotopy equivalences are those of Quillen's comparison theorem, cf. 
9.3.3, and the de-looping of 9.1.2, respectively. As pointed out above, the 
pairing involved coincides with the one in [13]; therefore the composed map 
in the diagram, from the upper left to the right, gives the transformation 
of [13] in question, by definition of the latter (actually, only the induced 
map of homotopy groups is defined in [13]). 

The map 

is a weak homotopy equivalence for any pointed simplicia1 set X because 
i t  is a transformation of homology theories inducing an isomorphism of the 
coefficients. Therefore the transformation of [13] can also be given by the 

lim Q"''B(N&$?~~~ A (NG U *)) ---f lim Qm+'B&g2m~~. I 

-+ --Z 
m m 

Because of 16.1 and 16.3 we have the following commutative diagram 
whose bottom row is the de-loop of the map just given: I 

BQI'R(NG U *) -- -+ BQgRG. 

I= 1- 
limQItB(N&r,(SIt) (NG U * ) ) ~ l i m Q I t ~ ~ I ' , ( ~ " A  (NG U *))-+limQItBQr~RG.(Sn) 
---f 

It 1 
4 
It " 1- 

lirn Q"+"B(NQI',~R(~') A (NG U *)) --- - lirn Q"+"BQI'2mRG.(S') 
--Z 

T 
-+ 

m,w m,n. i- 
I I 

lim QmB(NQgrmR A (NG U *)) ---------- + lim QmB&gxmRG. 
-+ -+ 
m m 

The claim is that the two vertical maps on the left are homotopy equivalences 
if R = Z; assertion 15.9 follows immediately from this. These maps are  
transformations of homology theories, evaluated on (NG U *). If R = Z 
both homology theories are connected, so i t  suffices to show the transfor- 
mations are homotopy equivalences when evaluated a t  So; that is, the maps 

are homotopy equivalences. By induction on Lemma 16.1, and direct limit, 
this diagram is homotopy equivalent to 

BQrR(SO) - lim QmBQI'zmR(SO) + lirn QmBQ9,mR . 
-+ -+ 
m m 

By induction on Wagoner's homotopy equivalence BQ9, + QBQg,,, and 
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direct limit, i t  follows that the first one of the latter maps is a homotopy 
equivalence. The second map is a homeomorphism. This completes the 
proof. 

Remark. The argument shows in particular that generally the homology 
theory X-  n,BQrR(X) coincides with the homology theory obtainable from 

X +-+ n, lim RmB(NQgrmR A X )  
-+ 
m 

by making the latter connected. 

17. Decomposition theorems for Whitehead groups. 

17.1. The case o f  free products with amalgamation. Let a: Go -+ G,, 
P: Go + G, be monomorphisms of groups and G = G, *,, G, the associated 
free product with amalgamation. Let R be a fixed ring. We follow the 
notation of Section 15, r$(NG) = rR(NG U *) = rgR(NG U *). 

By definition of a r-category there is a canonical map 

and this map is a homotopy equivalence since i t  is a weak equivalence of 
simplicia1 categories. The direct sum map on the category 9, induces a 
section of this map which is also a homotopy equivalence. Hence Lemma 
14.4 may be reformulated thus; 

LEMMA 17.1.1. The commutative square o f  simplicia1 categories 

i s  homotopy cartesian. 

With the group algebras over R of the groups Go, G,, G,, G, we are  in 
a position to apply Proposition 11.4. Proposition 15.2 gives a natural 
transformation from the square 17.1.1 to the square 11.4 where by definition 
the transformation on the upper left term is the composed map 

The only non-commutativity in the resulting cubical diagram is in the 
square 11.4. Furthermore the homotopy between the two composed maps 
in this square restricts to the trivial homotopy on QI'$(NGo) x QI'+,(NGo). 
We can thus formulate 

THEOREM 17.1.2. The non-commutative squaye o f  bisimplicial cate- 
gories 
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i s  homotopy cartesian with respect to a specific homotopy of the composed 
maps (the simplicia1 homotopy which to any object of 13 associates i ts  
structure map). 

Proof. This is a formal consequence of other results. Technically, the 
proof is a special case of a generality on homotopy cartesian squares. The 
latter is most easily understood in a more general framework. So we give 
a little theory of 'homotopy cartesian cubes', and point out in the end how 
this implies the theorem. 

Let I be the ordered set (0 < 1) considered as a category, and I "  = 

I x . x I (n times). An wad of spaces is a functor 

X: In - (topological spaces) . 
Consider the n-cube as  an n-ad C, with 

C,(i,, ..-, i,) = [O,i,] x ... x [O,i,] 

where [0, i ]  is the closed interval from 0 to i for i = 0 or 1. The base bC, 
is the sub-n-ad of C, given by those points in the cube which have a t  least 
one coordinate equal to 1. Let 

f:bC,-X 
be a fixed map of n-ads. The homotopy fibre of X a t  f is the space Xf of 
maps 

C, - X 

which restrict to f a t  bC,. We say X is a homotopy cartesian n-cube if Xf 
is contractible for every f. 

Let S be a proper subset of {I, a ,  n}, of cardinality m say, and Sf its 
complement. Denote by X(S', 0) the (n - m)-ad given by restriction of X 
to 

IS' x (0, . . , 0) 
and let 

fo: bCn-, ---- X(S', 0) 

be a fixed map. Define the derived m-ad X' = X(S/f,) by letting X'(i, a ,  i,) 
be the homotopy fibre of the (n - m)-ad 

XI (IS' x (i,, -, i,)) 
a t  f, (resp. the image of fo in the (n - m)-ad under consideration). 



GENERALIZED FREE PRODUCTS 239 

Let f,: bC, + X(S/f,). Then f, and f, combine to give a map (which is 
stationary on the coordinates indexed by S'), 

f,, Uf,:bC,-X 
and 

X(foEf1, (X(S/f,,))f, 
by the exponential law for mappings. 

By the homotopy extension theorem, any f is homotopic to a map of 
the type f,, U fi, and again if f and f '  are  homotopic then Xf -- Xfr. Hence 

LEMMA. Let X be a n  n-ad, and S a proper subset of {I, . . a ,  n), of 
cardinality m. Then the following are equivalent: 

(i) X i s  a homotopy cartesian n-cube; 
(ii) For  any f,,: bC,-, + X(S', O), the derived m-ad X(S/fo) i s  a homotopy 

cartesian m-cube. 

Consequence 1. Let the (m + p)-ad X be given as  an m-ad of homotopy 
cartesian p-cubes. Then X is homotopy cartesian. 

Consequence 2. Let Y be a p-ad satisfying that there is only one 
homotopy class of maps bC, + Y. Suppose there is an m-ad of p-ads one of 
which is Y, and where the other ones are homotopy cartesian p-cubes. 
Suppose further the (m + p)-ad is homotopy cartesian. Then Y is homotopy 
cartesian. 

These observations extend to diagrams which are  not necessarily 
commutative, but which are  equipped with commuting homotopies in a 
suitable sense. 

As to the theorem, each of the terms involved embeds in a homotopy 
cartesian square obtainable from Corollary 7.2; for example, 

is one of these. Putting these squares together, we obtain a (2 + 2)-ad 
which is homotopy cartesian by consequence 1 above. The theorem results 
now by application of consequence 2 above to this (2 + 2)-ad considered as 
a 2-ad in the other way: One of the squares is that of the theorem, and the 
other three squares are homotopy cartesian. In fact, these are just the two 
squares of Proposition 11.4 and Lemma 17.1.1, respectively, and another 
square in which all terms are  contractible. 

Under an extra assumption we can replace Theorem 11.3 by Corollary 
11.5 in deriving the preceding theorem, and obtain a stronger result. We 
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use the notation 
W(R, G,). : I'+,(NG,) - 9,,; 

of 15.2; also 
W(R, G)P : I'+,(NG) - BE,. . 

Observe that 

COROLLARY 17.1.3. Suppose  the  g r o u p  algebra RG, i s  r e g u l a r  c o h e ~ e n t .  
T h e n  the c o m m u t a t i v e  square o f  b i s impl ic ia l  categories 

QF.(W(R, Go).) x QF.(W(R, Go).) - QF.(W(R, G,).) x QF.(W(R, G,).) 

I 
QF.( W(R, Go).) ---- 

I - QF.( W(R, G)P) 

i s  homotopy car tes ian .  

R e m a r k s  1. There is a fibration up to homotopy 

where 3 is the group coker(Ko(RG,) @ Ko(RG2) -+ K,(RG)) considered as a 
bisimplicial category in a trivial way. 

2. Taking geometric realization and passing to loop spaces, the corollary 
says that 

WhR(Go) x WhR(Go) - WhR(G,) x WhR(G2) 

is homotopy cartesian, where WhR(G)* is a certain union of components of 
WhR(G). 

3. The argument of Theorem 11.6 carries over to show that in general 
one has a sequence of the homotopy type of a fibration 

and that EQ"(3 is canonically a direct factor of WhR(G)*, up to homotopy. 

17.2. T h e  case of  HNN extensions.  Let a, P:  Go -+ G, be monomorphisms 
of groups, and G the associated HNN extension, the pushout in the diagram 
of groupoids 
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We identify G, with a subgroup of G by means of the right vertical map. 
The morphism in I from 0 to 1 maps to an element t of G. Let fdenote  
conjugation by t ,  f ( g )  = tgt- l .  Then a = fop. Let R be a ring. 

LEMMA 17.2.1. The non-commutative square of simplicial catego~ies 

i s  homotopy cartesian wi th  respect to the simplicial homotopy of the cow- 
posed maps from the upper left to the lower right,  which i s  trivial  on 
Ql?$(NGo) x 0, and on 0 x Qr$(NG,) i s  given by f. 

Proof. I n  the diagram 

.L -1 .L 
QrZ(NG0) -- -- QI'i(N(Go x I ) )  ---t Qr$(NG)  

the right hand square is the commutative homotopy cartesian square of 
Lemma 14.5. The upper left horizontal map is the section induced from the 
direct sum map on 9,, of the natural homotopy equivalence which goes the 
other way. The lower left horizontal map is induced from the inclusion 
{0} c O b ( I )  and is a homotopy equivalence by Lemma 14.2. The failure of 
commutativity of the left hand square is measured by the simplicial homo- 
topy of maps 

QrB(NGo) x Qr$(NG0) - Qr$(N(Go x I ) )  

induced from the simplicial homotopy of maps {0 U I }  -- N I  which is trivial 
on 0, and moves 1 along NI .  This gives precisely the asserted effect. 

With the group algebras over R of the groups Go, GI,  G, we are  in a 
position to apply Proposition 12.4. Proposition 15.2 gives a natural trans- 
formation from the square 17.2.1 to  the square 12.4 where by definition the 
transformation on the upper left term is the composed map 

Qr$(NG0) x QI'i(NGo) - Q9,,; x Q9,,; - 3. . 
The only non-commutativity in the resulting cubical diagram is in the 
squares 17.2.1 and 12.4 themselves. We can thus formulate 

THEOREM 17.2.2. The non-commutative square of bisimplicial catego~ies 
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i s  homotopy car tes ian  w i t h  respect t o  a speciJic homotopg of  the  composed 
m a p s  ( the  s impl ic ia1 homotopy w h i c h  to  a n y  object of  2 associates i t s  
s t ruc ture  m a p ) .  

Proof .  This is exactly the same as  the proof of Theorem 17.1.2 except 
for one more point; namely the homotopies involved in the squares 17.1.1 
and 12.4 must be compatible under the transformation. It suffices to check 
this on QrB(NG0) x 0 (where i t  is trivial) and on 0 x Ql?$(NG0). Let (P, . . .) 
be an object in degree n of 0 x Qrf(NG0). The homotopy of the square 17.2.1 
is given on (P, . . .) by the isomorphism 

j t:  P O R R G  - (PORRG) @RGtRG . 
The compatibility condition is that under the transformation, j ,  should go 
to the structure map of the object qB(P)  of "(3 which is 

0 - ((P ORRGo) O R G O  BRG,) O R , ,  RG - (P OR RGo) O R G O  RG --+ 0 . 
But the structure map of this object is j,, by definition. 

COROLLARY 17.2.3. Suppose  the  group  algebra RG, i s  r e g u l a r  coherent.  
T h e n  the non-commuta t ive  square of b i s impl ic ia l  categories 

QF.(W(R, Go).) x QF.(W(R, Go).) - QF.(W(R, GI).) 

I 
QF.( W(R, Go).) -- 

I - QF.( W(R, G)?) 

i s  homotopy car tes ian  w i t h  respect to  the  homotopy of  the  composed m a p s  
w h i c h  i s  t r i v i a l  o n  QF.(W(R, Go).) x 0, a n d  o n  0 x QF.(W(R, G,).) i s  g i v e n  
bg the i s o m o r p h i s m  j , ,  t h a t  i s ,  the  inne?. a u t o m o r p h i s m  induced by con- 
j u g a t i o n  by t. 

R e m a r k s  1. The isomorphism j ,  equals the identity only on zero 
objects. 

2. There is a fibration up to homotopy 

QF.(W(R, G)?) - QF.(W(R, G).) - 3 
where 3 is the group coker(Ko(RGl) --t Ko(RG)) considered as a bisimplicial 
category in a trivial way. 

3. In analogy to Theorem 12.6 one has a sequence of the homotopy type 
of a fibration 

pt . 
(Whb*) +(-Whl~*))) Q B Q ~  x w h R ( ~ , )  --- - WhR(Gl) - WhR(G)* 

and BQTI is canonically a direct factor of WhR(G)*, up to homotopy. 

18. T h e  f u n d a m e n t a l  theorem. This relates the K-theory of the 
ordinary Laurent extension of a ring to the K-theory of the polynomial 
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extension. The interesting feature is that mention of exotic terms can be 
avoided altogether. The most direct formulation of the result is Theorem 
18.1 below. On passage to geometric realization, or homotopy groups, the 
result can be given a more explicit formulation, especially if the product 
in K-theory is used. 

Let R be a ring. We use two polynomial rings on R whose indetermi- 
nates we denote t and t-l, respectively. Using the suggestive notation 
R[t, t-'1 for the Laurent polynomial ring, we have natural embeddings 

Let N Z  be the nerve of the infinite cyclic group (the standard simplicial 
circle). Identifying R[t, t-l] to the group algebra R Z  we have from 15.2 a 
map of simplicial exact categories 

where the star signifies that we are  considering a certain cofinal subcate- 
gory. On checking the definition, cf. Section 10, one sees that an object of 
9R[t,t-1] is in 9 f 2 [ t , , - l l  if and only if i t  is stably isomorphic to a projective that 
comes from 9,. 

From the natural embedding 9,-, r R ( N Z  U *) (one can think of i t  as  

the composition of the isomorphism 9,z r,(pt. U *) and the map induced 
from pt. U * -+ N Z  U *), used twice, we obtain the left vertical map in the 
following diagram in which the terms in the upper row are regarded as 
simplicial exact categories in a trivial way: 

The upper horizontal map goes component by component. The vertical 
maps involve the direct sum map. The diagram is commutative. 

THEOREM 18.1. The commutative diagram of simplicial categories 

i s  homotopy cartesian. 

P~oof.  This results from formally putting together previous results. 
By Corollary 7.2 applied to the rows of the diagram, we obtain two homo- 
topy cartesian squares 
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and 

together with a map from the former square to the latter. Hence (cf. the 
generalities in the proof of Theorem 17.1.2) the square formed by the upper 
rows will be homotopy cartesian if and only if the square formed by the 
lower rows is. The latter square involves two contractible terms, so i t  will 
be homotopy cartesian if and only if the map 

QF.(9, x 9, -+ 9 Z [ , ]  x %[t-1,) - QF.(I',(NZ U *) -+ 9i[t,t-l~.) 

is a homotopy equivalence. We will prove this. 
Applying Theorem 17.2.2 in the special case when Go = G, is the trivial 

group (and hence G the infinite cyclic group), and using that in this case 
I',(NG, U *) is just 9, considered as a simplicia1 category in a trivial way, 
we obtain a square of bisimplicial categories 

and this square is homotopy cartesian with respect to a specific homotopy 
of the composed maps from the upper left to the lower right (that is to any 
object of "(3 is associated its structure map). 

The square (T) has an analogue (t) for the polynomial extension R[t] 
(which is the special case of Sections 3 and 13 in which the bimodule is the 
ground ring itself). That is there is a natural transformation from the 
square made up of 9, and identity maps, to the square of Theorem 13.3. 
By the argument of the proof of Theorem 17.2.2, this gives a square 

which is homotopy cartesian with respect to a specific homotopy of the 
composed maps. The notation qt is used to avoid confusion with the "(3 

above. 
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The obvious natural transformation from the square (t) to the square 
(T) is compatible with the homotopies of the composed maps involved. 

Interchanging the roles of t an t-' we obtain another homotopy cartesian 
square (t-l) and a natural transformation from (t-') to (T). 

I t  was pointed out a t  the end of Section 2 that the natural map 

"Ilt x "Ilt-' - "(3 

is an equivalence of categories. Hence the map "(1; x %".-'-+ "(1. is a weak 
equivalence of simplicia1 categories. Applying Proposition 7.1 to the rows 
of the diagram 

gives the fact that  

. )+QF.(9R x gR+"Il.) QF.(9, --, 2:) x QF.(9, -, "Ilt -' 

is a homotopy equivalence. 
Thus if we combine the squares (t)  and (t-') by taking the cartesian 

product of corresponding terms, the natural transformation from (t)  x (t-') 
to (T) is a homotopy equivalence on the upper left term. But i t  is a homo- 
topy equivalence on two more terms, for in any of the squares (t), (t-'), (T), 
the lower left and upper right terms are contractible, by Proposition 7.1. 
Hence the natural transformation is a homotopy equivalence on all four 
terms, and in particular we have proved that 

QF.(gR -) g2[tl.) X $F.(g7R -) gi[t-ll.) --) &F-(rR(NZ U *) * 9 i r t , t - 1 ] . )  

is a homotopy equivalence. In view of the natural homotopy equivalence 

QF.(9, x 9, -+ Y : 2 [ t j  x 9i[t.-ll) - QF.(98 -+ g7;[tl.) x QF.(98 + 9RlLt-l]-) 

this completes the proof of the theorem. 

COROLLARY 18.2. For  i 2_ 1, there i s  a natural exact sequence 

where A' and 2 denote the skew diagonal and the codiagonal of the natural 
maps, respectively, together with a natural splitting of the map 

K,(R[t, t-'1) - K,-,(R) . 
Proof. The cofibration sequence pt. U * -+ N Z  U * -+ (NZ, *) gives a 

fibration up to homotopy upon application of Qr,, by Lemma 14.1. Because 
of the retraction N Z  U * -, pt. U *, we can compare this fibration to a split 
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fibration and hence obtain the homotopy equivalence 

using the fact that Qr,(pt. U *) 3 Q9,. 
In view of this homotopy equivalence, the long exact sequence of 

homotopy groups of the homotopy theoretic fibration associated to the map 

Q 9 n  x Q 9 R  - Qr,(Nz U *) 

decomposes into exact sequences 
A' 

0 - n,BQ9, - n,(BQ9, x BQ9,) 

Furthermore one has a canonical splitting of the map 

n,BQr,(NZ U *) - n,BQr,(NZ, *) . 
Also B Q ~ ,  3 QBQI',(NZ, *) canonically, by 6.3 or 14.1. 

On the other hand, the map of homotopy fibrations associated to the 
transformation between the vertical maps of the square of Theorem 18.1 
induces a homotopy equivalence between the homotopy theoretic fibres since 
the square is homotopy Cartesian. Also if i 2 2 then 

E 

niBQgz[t~+ niBQg,[t~ 
etc., by Proposition 7.4. The assertion of the corollary therefore follows 
by comparison of the long exact sequences of homotopy groups of the two 
homotopy fibrations. 

Addendum 18.3. The splitting K,-,(R) -- Ki(R[t, t-'I) of the map 
K,(R[t, t-'1)- Ki-,(R) of 18.2, ca?z be i?zduced by the p~oduc t  with the 
element of Kl(Z[t, t-'1) ~ep~esen ted  by t e (Z[t, t-'I). 

P~oof.  In view of Remark 15.10 and associativity of the smash product 
one has a commutative square, for any group G, 

BQr,(NG U *) A B&gR - B&&rR(NG U *) 

I 
BQ9,,. A BQ9, -- 

I 
+ BQQ9RG. . 

Because of the homotopy equivalence similar to one of the preceding lemma 

BQQr,(NG U *) BQQ9, x BQQF,(NG, *) 

and the homotopy equivalence obtainable from Lemma 14.1, 

BQQ9R 5 QBQQr,(S1, *) , 
this gives in the case when G is the infinite cyclic group, a homotopy com- 
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mutative diagram 
BQ9, A BQ9R --+ BQQ9R 

C I I 

in which the right vertical map is (a de-loop of) the section.jused in the 
preceding lemma, by definition of this section. 

By 9.2.4 we have a commutative diagram 

in which the left hand vertical map is given by associating to B(Id,) the 
loop in BQ9, which is given by the pair of arrows (0 ++- 2 ;  0 -2) in Q9,. 

The assertion of the addendum is now immediate by combining this 
diagram with the one obtained from the preceding diagram by taking loop 
spaces. 

19. A v a n i s h i n g  t h e o r e m .  Recall a ring R is r e g u l a r  coheren t  if any 
finitely presented (right) R-module has a finite resolution by finitely 
generated projective R-moduIes, and ~ e g u l a r  n o e t h e r i a n  if, in addition, any 
finitely generated R-module is finitely presented. For example, a theorem 
of Hilbert says if R is regular noetherian then so are the polynomial ring 
and Laurent polynomial ring on R, cf. [3]. 

D e j i n i t i o n .  A group G is r e g u l a ~  c o h e r e n t  if, f o r  a n y  ~ e g u l a r  n o e t h e r i a n  
r i n g  R, the group algebra RG is regular coherent. Similarly, G is r e g u l a r  
q z o e t h e ~ i a n  if RG is, for any regular noetherian R. 

For example, a finitely generated free abelian group is regular noethe- 
rian, by the theorem of Hilbert above. More generally, poly-2-groups are 
regular noetherian (G is a poly-2-group if there is a sequence of subgroups 
1 = Go c G, c . . c G, = G, each normal in the next, so that each of the 
groups Gj/Gj-, is isomorphic to 2 ) .  

THEOREM 19.1. A n y  o f  t h e  f o l l o w i n g  c o n d i t i o n s  (i) t o  (iv) i s  s u s c i e n t  
f07- t h e  g r o u p  G t o  be ~ e g u l a ~ .  coheren t .  

(i) G = G, Gz w h e ~ e  G, a n d  G, a y e  regula? .  c o h e r e n t  a n d  Go i s  r e g u l a r  
n o e t h e r i a n .  

(ii) G i s  t h e  HNN e x t e n s i o n  c o n s t r u c t e d  f r o m  e m b e d d i n g s  Go = G, w h e ~ e  
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G, i s  Y e g u l a r  coherent  a n d  G, i s  r e g u l a r  n o e t h e ~ i a n .  
(iii) G i s  t he  u n i o n  o f  a n  i n c r e a s i n g  sequence o f  r e g u l a r  coherent  

subgroups .  
(iv) G c a n  be embedded in a r e g u l a r  coherent  group .  

For example, iterated HNN extension from G, = G, with Go trivial, and 
starting with G, trivial, gives precisely the finitely generated free groups. 
Thus free groups are regular coherent. As another example, let M be a 
connected 2-dimensional manifold. If M is not closed (i.e., compact without 
boundary), n,M is free. If M is closed, and different from the 2-sphere and 
projective plane, n,M is an HNN extension from Go Z G ,  where G, is finitely 
generated free, and G, is free cyclic. Thus with the exception only of the 
cyclic group of order 2, any such n,M is regular coherent. 

P r o o f  o f  T h e o r e m  19.1. A general fact to be noted is, if G, is a subgroup 
of G,, there is a canonical splitting of RGo-bimodules, 

i= 

RG, - RG, @ ~2 ,  
A 

where RG, is generated either as a left or as a right RG,-module, by the 
A 

elements of G, not in Go. The bimodule RG, is both left free and right free. 
In particular, tensor product with RG, over RG, is an exact functor. In 
view of this remark, case (iii) of the theorem is obvious, and cases (i) and 
(ii) are special cases of Corollary 4.2. 

To prove (iv), let R be a regular noetherian ring and suppose G is a 
subgroup of the regular coherent group G'. Let M be a finitely presented 
RG-module. Then M has a projective resolution over RG, 

which is i -good, for some i 2 1, in the sense that Pj is finitely generated 
for j 5 i. Then 

% 

ker (Pi -. Pi-,) @,, RG' - ker (P, @,, RG' -+ P,-, OR, RG') 

is finitely generated since RG' is coherent and P, BRGRGt is finitely gene- 
rated. Hence ker (P, + Pi-,) is finitely generated. By induction i t  follows 
that M has a resolution which is i-good for any i. There is some n so that 
ker (Pa + P,-,) @,, RG' is projective since RG' is regular coherent. In view 

A 

of the splitting RG' = RG @ RG', this implies ker (P, -t P,-,) is projective. 
It follows that M has the required kind of resolution, and the proof is 
complete. 

D e f i n i t i o n  19.2. C1 i s  the smal l e s t  c lass  o f  g ~ o u p s  s a t i s f y i n g :  
( 1 ) T h e  t r i v i a l  g r o u p  i s  in C1. 
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( 2 ) An HNN ex tens ion  f r o m  Go=G, i s  in C1 i f  Gl s C1 a n d  Go i s  r e g u l a r  
coherent. 

( 3 ) An amalgamated  free product  G, *,, G, i s  in C1 i f  GI, G, s C1 a n d  Go 
i s  r e g u l a r  coherent. 

( 4 ) C1 i s  closed u n d e r  f i l ter ing d i rec t  l i m i t .  

PROPOSITION 19.3. (1) T h e  class C1 i s  closed u n d e r  t a k i n g  subgroups. 
( 2 ) T h e  same class C1 i s  obtained i f  in cases (2) a n d  (3) of  DeJini t ion 

19.2, it i s  required in a d d i t i o n  t h a t  Go s Cl. 

Proof .  Let a s p l i t t i n g  of a group G consist of a pair of CW complexes 
(X, Y) satisfying 

(i) Y is bicollared in X ;  that is, there is an open embedding Y x R1 -+ X 
where R1 is the Euclidean line, so that Y x [-I, + I ]  is closed in X and 
Y x O =  Y. 

(ii) X is connected, nlX w G, and njX = 0 if j > 1. 
(iii) n jY  = 0 a t  any basepoint if j > 1. 
(iv) For any component Yo of Y, nl Yo + nlX is injective. 
If Y is assumed connected, and a basepoint in Y and a normal direction 

to Y in X are chosen, then a homotopy equivalence class of splittings 
(preserving basepoint and normal direction) is the same as an expression of 
nlX as  an HNN extension from n, Y = nl(X - Y) if X - Y is connected; 
respectively, the same as  an expression of n,X as  the free product with 
amalgamation from nlXl +- nlY -, nlX, if X - Y has components Xl and X,, 
and where the maps are the obvious ones. 

In general then, a splitting can be thought of as a number of HNN 
extensions and/or amalgamated free products constructed one after the 
other and enumerated by the components of Y; cf. [26] for a fuller discus- 
sion of this. Thus if we generalize Definition 19.2 by allowing splittings in 
general, instead of just HNN extensions and amalgamated free products, 
we still obtain the same class C1. 

On the other hand, splittings are more flexible than HNN extensions 
and amalgamated free products. Specifically, if (X, Y) is a splitting of G, 
and G' any subgroup of G, we can form the pair (X', Y') where X'  is the 
covering space of X with nlX' = G', and Y' is the induced covering space 
of Y. Thus splittings are inherited by subgroups. In view of part  (iv) of 
Theorem 19.1, this immediately implies the first assertion of the proposition. 
By tracking the construction of any particular group in Cl, i t  also implies 
the second assertion. 

THEOREM 19.4. If R i s  r e g u l a r  noe ther ian ,  a n d  G e C1, t h e n  WhR(G) i s  
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contractible. 

Proof. The definition of C1 can alternatively be interpreted as a cun- 
struction of any of i ts members by transfinite induction, and in view of 
the preceding proposition, only such groups are used in the process which 
have been constructed before. The proof of the theorem can therefore be 
given by checking the assertion in any of the particular constructions to be 
performed. Of these, (I), that WhR(trivial group) is contractible, is true 
essentially by definition of WhR(G), and (4) is true since WhR(G) commutes 
with filtering direct limit. 

( 3 ) The assumption is that G = G1*,,G, where Go is regular coherent 
and WhR(G,) is contractible for i = 0, 1, 2, and any regular noetherian ring 
R. By Corollary 17.1.3 there is a homotopy cartesian square in which three 
of the terms are contractible in view of the assumption just stated. The 
fourth term is WhR(G)* which therefore is also contractible. Let R' be the 
group algebra over R of the infinite cyclic group. Then R' is regular 
noetherian since R is. So WhR'(G)* is contractible by what has been esta- 
blished. In particular nlWhR'(G)* = 0. But nlWhR'(G)* contains noWhR(G) 
as a direct summand, by Theorem 17.2.2 (cf. Remark 3 after Corollary 
17.2.3). So noWhR(G) = 0. Putting this together with the contractibility 
of WhR(G)* shows that WhR(G) is contractible (cf. Remark 1 after Corollary 
17.1.3). 

( 2 ) The argument of the preceding case carries over to this case. One 
just replaces Corollary 17.1.3 by Corollary 17.2.3 in the argument. 

THEOREM 17.5. The class C1 contains 
( 1 ) free groups, 
( 2 ) free abelian groups, 
( 3 ) poly-2-groups, 
( 4 ) torsion free one-relator groups, 
( 5 ) fufidamental groups nlM if M i s  a 2-ma?zifold diferent from the 

pro jective plane, 
( 6 ) fundamental groups nlM if M i s  a compact orientable 3-manifold 

a?zy irreducible summand of which either has non-emptg boundary, or i s  
simply connected, OT i s  'suficiently large' i?z the sease of [25], 

( 7 ) fufidamental groups nlM if M i s  ang submanifold of the 3-sphere, 
( 8 ) subgroups of the groups listed before. 

More curious examples are groups concocted 2 la [16] to illustrate 
unsolvability of certain decision problems in group theory. These have a 
marked tendency to be members of C1. Of course this need not mean that 
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C1 is a very large class, i t  can mean as well that the groups in C1 are 
particularly tractable. 

Proof of Theorem 19.5. (8) follows from the other assertions in view 
of Proposition 19.3. The cases (I), (2), (3) are clear. 

Case (4). One-relator groups. I t  is implicit in the analysis of one-relator 
groups in [14], and will be made explicit in the lemma below, that if G is 
a torsion free one-relator group then there exists a sequence of groups 

G = G,,G;,G,,G:, ..., G,,G:,G,+, = 1 

so that Gj is a subgroup of G; and G> is an HNN extension obtained from 
Hj+,=Gj+, where Hj+, is a free group. By case (2) of Definition 19.2, Gj+, e C1 
implies G: e C1 since a free group is regular coherent, and by Proposition 
19.3, G; e C1 implies Gj e C1. So G e C1, as asserted. 

LEMMA. Let G be presented as a one-relator group, with relator R. 
Suppose R i s  cyclically reduced and involves more than one generator. 
Then there exist one-relator groups G' and G,, with relators R', R, so that 

(i) G i s  a subgroup of G', 
(ii) G' i s  a n  HNN extension obtained from H Z G ,  where H i s  free and 

finitely generated, 
(iii) the relator R, of GI has smaller length than the relator R of G, 
(iv) R i s  a kth power if and only if R' is, if and only if R, is. 

Proof [14]. Let F be a free group on generators {t; a, b, c, . . a } .  To 
every element f of F one associates an integer e,( f ), the t-exponent sum; i t  
is the exponent of t in f after abelianizing and collecting. 

Case 1. The assumption is that R involves t, and e,(R) = 0. By defini- 
tion, G' = G in this case. There is a unique way of writing R as a reduced 
word of conjugates tkxt-k of generators x different from t. We let F, be the 
free group on free generators 

{ak, bk, ck, . ; n1 5 k 5 n2) 

corresponding to the generators {a, b, c, . . a }  of F different from t, where 
n, and n, are given, respectively, by the minimum and maximum numbers 
k occurring in the expression of R by the t k x f k  above. There is a unique 
cyclically reduced word R, in the generators of F, so that on substituting 

Xk tkxtPk 

we recover R. By definition, G, is the one-relator group with generators F, 
and relator R,. We can recover G from G, as the group with presentation 

(F,, t; R, = 1, tHt-' = H') 
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where H a n d  H' are the subgroups of F, with generators 

respectively. n, has been chosen so that there is a t  least one generator of 
F, which occurs in R, but is not contained in H. Therefore H-, G, is an 
embedding by the 'Freiheitssatz' [14, Theorem 4.101. Similarly H' -, G, is 
an embedding. Hence G is an HNN extension in the way asserted. 

Case 2. The assumption is that e,(R) + 0 for any generator x of F 
involved in R. Suppose that e,(R) = r,  e,(R) = a, both #O. We let F' be 
the free group on the same generators as  F ,  except that t is replaced by u, 
and we embed F i n  F' by sending t to u". We let R' be the relator obtained 
by replacing t in R by u", and by definition, G' in the one-relator group 
with generators F' and relator R'. The induced map G -+ G' is an embedding 
by [14, Corollary 4.10.21. Next we replace the generator a of F' by v = aur. , 

By substituting accordingly a = vu-' in R', the relator is changed to R", 
and e,(RU) = 0. We can apply case 1 now. To finish the argument we have 
to check that the relator R, finally obtained has smaller length than R. i 

Indeed, its length is equal to the length of R with all occurrences of t 
discarded. 

Case (5) of theorem: 2-manifold groups. Ignoring that the present case 
is a special case of (4), we will give a more geometric argument. The 
reason is that the same argument applies in the case of &manifolds where 
however the simplicity of the argument is obscured somewhat by the tools 
that must be used to justify its working. 

Let M be a compact connected 2-manifold and C a properly embedded 
circle in M which is 2-sided (that is, separates a neighborhood). Then we 
can cut M a t  C, to produce a manifold M' which (hopefully) is simpler. The 
cutting process can be made very concrete when one draws a picture and 
uses scissors. Mathematically i t  is easier to describe the reverse process 
of reconstructing M from M'. Namely, M' comes equipped with two em- 
beddings of S1 onto boundary curves C, and C,, and 

M = colim (S' M') 

and the common image of C, and C, in M is just C. 
The fundamental groupoid commutes with colimits, so 

n M  = colim (nS1 nM') . 
Choosing basepoints and connecting paths as  required, we may also talk of 
fundamental groups. The preceding formula implies if both nlCl -, n1M1 
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and nlC, -+ nlMf are injective then nlC -, nl,M is injective, and conversely. 
Hence provided that nlC -, nlM is injective, the cutting of M a t  C gives 

rise to the reverse process of building up nlM from simpler constituents by 
either amalgamated free product or HNN extension (depending on whether 
C does or does not separate M). 

If the boundary of M is not empty, there is a variant of the cutting 
process where we take C to be a properly embedded arc. The condition that 
nlC -, nlM be injective is trivially satisfied in this case. So the same con- 
clusion about n,M is valid. 

The assertion of case (5) is that, in general, nlM can be entirely built 
up from the trivial group by iterating the process of taking either an HNN 
extension or an amalgamated free product (with the extra condition that 
the amalgamation groups must be regular coherent). The assertion follows 
a t  once if we can show that, in general, the cutting process described can 
be performed on M, and can be iterated to reduce M to a disk (or a number 
of disks). 

A hypothesis is required to get the cutting process started, namely that 
M be sufficiently large to contain the C required, with nlC-+ nlM injective 
(there are two exceptional cases: the 2-sphere and the projective plane). 
But once the process has been started i t  can be continued. For after the 
first step we are left with a &manifold with non-empty boundary, and if 
this is not a disk already, we can find an appropriate embedded arc since 
a compact 2-manifold with boundary may be represented as a disk with 
bands. 

The amalgamation groups nlC that occur in the process are either trivial 
or free cyclic. So in addition to what case (5) asserts we can also conclude 
that nlM is regular coherent. 

Case (6) of theorem: 3-manifold groups. Let M be a compact connected 
3-manifold which for simplicity we assume is orientable. Suppose we can 
find a properly embedded connected 2-manifold F in M which is 2-sided and 
satisfies that n l F +  nlM is injective. Then as  in case (5) above we can draw 
the conclusion that nlM is either an amalgamated free product or an HNN 
extension, depending on whether F does or does not separate M. 

Further, if by iterated cutting of this kind we can reduce the given M 
to simply connected pieces then i t  follows that nlM can be built up from the 
trivial group by iterated HNN extension and/or amalgamated free product. 
This gives the conclusion of case (6). For the amalgamation groups are 
2-manifold groups nlF '  where any F' is a 2-sided submanifold in an orientable 
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manifold and hence itself orientable. In particular F' cannot be the pro- 
jective plane, so n,F'  is regular coherent. 

The fact is that  a surprisingly large number of 3-manifolds can be cut  
to pieces in the way required. This depends on a number of theorems in 
3-manifold theory (which, e.g., can be found in [lo]). Here are a few relevant 
notions and a review of the argument. Recall we are assuming M is compact 
(and connected) and orientable. 

M is called a connected sum of Ml and M, (notation M w M, i: M,) if i t  
can be obtained by removing the interior of a 3-ball from each of Ml and 
M,, and gluing the resulting 2-sphere boundary components. This is equi- 
valent to the possibility of cutt ing M a t  a properly embedded 2-sphere into 
two parts, obtainable by removing an open ball from each of Ml and M2, 
respectively. In particular, 

nl(M1 i: M2) ~ l M l *  n1Mz 

A classical result of H. Kneser says that  M has a (maximal) connected sum 
decomposition 

M W  M I # - - -  #M, 

where each of the summands is non-trivial (i.e., different from the 3-sphere) 
and prime for connected sum, that  is, i t  cannot itself be non-trivially 
obtained by connected sum. Note that  if the Poincark conjecture were 
known to be t rue  ( that  a closed M is necessarily S3 if i t  is simply connected) 
the existence of a maximal decomposition would follow from Grushko's 
theorem. Other facts in this context are that  connected sum is well defined 
if orientations are taken care of, and that  the maximal decomposition is 
essentially unique; bu t  we do not need these. 

One says M is i ~ r e d u c i b l e  if every properly embedded 2-sphere in M 
bounds a 3-ball in M. If M is irreducible then i t  is prime for connected sum, 
and the converse is almost true: S' x S2 is the only M which is prime but  
not irreducible. Hence we may (and will) restrict attention to irreducible 
manifolds. 

If M i s  i w e d u c i b l e  a n d  h a s  n o n - s m p t y  b o u n d a r y  t h e n  nlM s C1 . 
For if M has a 2-sphere boundary component i t  must be isomorphic to 

the 3-ball (why ?). If M has a boundary component different from the 
2-sphere, a beautiful application of Poincark duality (noted already in the 
classical book by Seifert and Threlfall) shows H L M  f 0. Hence there is a 
non-trivial map M-+ S' and consequently, by transversality, there is a 
properly embedded 2-manifold F in M which is dual to a non-trivial element 



GENERALIZED FREE PRODUCTS 255 

of HIM. Using the theorems of Papakyriakopoulos, one can modify F ,  if 
necessary, to satisfy tha t  n l F  + nlM is injective. So M can indeed be cu t  
in the way required. Denoting M' the manifold obtained by cutting, i t  may 
be shown tha t  M' is irreducible again, and of course M' has non-empty 
boundary. So we are  in the same position as before, bu t  with M replaced 
by M', and we may proceed inductively to  cu t  M', and so on. On the other 
hand, a theorem of Haken [8] says tha t  the cutt ing process cannot be 
continued indefinitely. But as  mentioned before, the only way for the 
cutt ing process to  stop is tha t  only a ball (or a number of balls) is left over. 
This completes the argument. 

Let M be a closed irreducible manifold and suppose i t  contains a pro- 
perly embedded 2-sided 2-manifold F (connected and #S2) SO tha t  nlF+ nlM 
is injective. Then we may cut  M a t  F to obtain M', say. The lat ter  is 
irreducible again and has non-empty boundary. And so the cutt ing process 
can be performed all the way, by the preceding argument applied to M'. 
But this means tha t  everything depends just on the existence of tha t  very 
first F. The manifold M is called suflciently large if such an  F exists. 

For example, F cannot exist if xlM is finite. If on the other hand n,M 
is not finite (and M irreducible) i t  appears tha t  'in general' M may be 
expected to be sufficiently large: Certainly i t  is very difficult to construzt 
M which are  not, and only a very few such are  known to  date; besides, each 
of the known examples has a finite covering space which i s  sufficiently 
large. 

Not very surprisingly, M is sufficiently large if and only if n,M is either 
non-trivially an amalgamated free product or an  HNN extension (or both). 
For example if nlM is an  HNN extension then HIM # 0 and this implies M 
is sufficiently large, as indicated before. 

Case (7) of theorem: Subrnalzifolds of t.ha 3-sphere. By a direct limit 
argument i t  suffices to  consider compact submanifolds. Let M be one. If 
M is not irreducible i t  must be non-prime since S1 x S q o e s  not embed in 
S3. SO suppose M w  M I #  M2. By the Schoenfliess theorem, any proper 
embedding of S V n  S3 is equivalent to the standard embedding (or what 
amounts to  the same thing, the S2 decomposes S3 into two 3-balls). This 
implies tha t  M, and M, also embed in S3. AS nlM w nlMl * x11V12 we can thus 
inductively reduce to the irreducible case. So assume M is irreducible, and 
embeds in S? Then either M = S3 and there is nothing to prove, or M has 
non-empty boundary and the preceding case applies. 
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