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0. Introduction

In this paper we are interested in the triangulation problem for manifolds : when is
a topological manifold M homeomorphic to a polyhedron. If such a polyhedron
happens to be a combinatorial manifold we say that M admits a PL structure;
otherwise M admits a TRI structure. A precise notion of a TRI structure will be
introduced shortly.

Here is an informal short review of what is known at this time about the
triangulation problem. Each m-manifold, m <3, does admit a unique PL structure.
The existence for 2-manifolds was proven in 1925 by T. Radé, and uniqueness in
1943 by C. D.Papakyriakopoulos. In 1952 E. E. Moise showed the existence of PL
structures on all 3-manifolds, and in 1954 the uniqueness was proven indepen-
dently by R. H. Bing and E. E. Moise. R. C. Kirby and L. C. Siebenmann showed
in 1969 that in each dimension greater than four there exist closed topological
manifolds that do not admit a PL structure. They also discovered that the PL
structures are not always unique. In 1974 R. D. Edwards found noncombinatorial
triangulations of R", n=5. D. E. Galewski and R.J. Stern investigated the question
about noncombinatorial triangulations in greater detail in [2]. They obtained
Theorems 0.1-0.3. T. Matumoto proved Theorem 0.1 independently in [7].

The first step in [2] is to prove a TRI product structure theorem which
constructs from a given TRI manifold structure on M x R? a related TRI manifold
structure on M. In the second step an appropriate bundle theory technique is
developed. It turns out that the work of Kirby and Siebenmann [4] provides
enough material to avoid the bundle theory in [2], and the object of this paper is
to provide more geometric proofs of Theorems (0.1)+0.3).

In particular, we construct simplicial triangulations of arbitrary manifolds of
sufficiently large dimensions by using the TRI product structure theorem, the
handle structure of topological manifolds, and the existence of a homology
3-sphere H? as in (0.1). By using the Kirby-Siebenmann obstruction [3] to PL
triangulating a topological manifold and the Cohen-Sullivan obstruction [6] to
PL resolving a polyhedral homology manifold we define an obstruction cochain to
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the existence of a TRI manifold structure on a topological manifold M. Its
cohomology class turns out to be the same as the Galewski-Stern obstruction. We
also construct a difference cocycle for any pair of TRI manifold structures on M.
The cohomology classes of all these difference cocycles form H*(M ;Ker(«)), and
they are in one-to-one correspondence with TRI manifold structures on M. We
also obtain a product formula for the Galewski-Stern obstruction.

This paper is a slightly generalized version of my dissertation written under the
guidance of David E. Galewski. To him I would like to express my sincerest
thanks.

We now introduce some definitions. By a manifold we always mean a
metrizable topological manifold. A locally finite polyhedron M is a TRI manifold if
it is also a topological manifold. A TRI manifold structure ¥ (TRI structure, for
short) on a topological manifold M is a maximal covering family of piecewise-
linearly related embeddings of compact polyhedra. If there is a TRI manifold
structure X on M, then there exists a locally finite complex K such that |K|is a TRI
manifold, and a homeomorphism h :|K|—M which is piecewise-linearly related to
every element of X. Moreover, such a homeomorphism h determines a TRI
manifold structure on M, and also provides M with a simplicial triangulation.
Thus, we will use “TRI manifold structure” and “simplicial triangulation” as
synonyms. Note that if 2 is a TRI manifold structure on M and U is an open
subset of M, then X restricts to a TRI manifold structure on U. Let N be a
codimension zero clean (see [4, p. 12] for “clean”) submanifold of dM. We say that
2 is a TRI manifold structure on M near N if ¥ is a TRI manifold structure on a
neighborhood U of N in M which restricts to a TRI manifold structure on N. Let
2, and X, be TRI manifold structures on M, and ¥ a TRI manifold structure on
M near N. We say that X, and X, are TRI concordant rel ¥ provided there exists a
TRI manifold structure @ on M x I whose restriction to M x {i} is 2, i=0, 1, and
@ equals to ¥ xI on a neighborhood of NxI in MxI. & is called a TRI
concordance between X, and X,. TRI concordance is obviously an equivalence
relation which determines TRI concordance classes of TRI manifold structures on
a given manifold M.

We denote by 0 the abelian group of oriented PL H-cobordism classes of
oriented homology 3-spheres modulo those which bound PL acyclic 4-manifolds.
The group operation in 6 is induced by taking connected sums. Let «:60—Z, be
the Kervaire-Milnor-Rohlin epimorphism a(H?)= o(W*)/(mod?2), where o(W*) is
the signature of any parallelizable PL 4-manifold W* that H* bounds.

Theorem 0.1 [2, 7]. Every topological m-manifold, m=7 (m=6 if M compact, or
mz5 if M is closed) can be triangulated as a simplicial complex iff there exists a
homology 3-sphere H? such that

() a(H*=1, and

(i) H®# H? bounds an acyclic PL 4-manifold.

Theorem 0.2 [2]. (a) Let M be a topological m-manifold with N a codimension zero
clean submanifold of OM such that a neighborhood of N in M is simplicially
triangulated. Let m27 (m26 if cl(0M — N) is compact, or mZ5 if M is closed).
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Then there exists a well-defined V(M, N)e H>(M, N ; Ker(a)) such that V(M,N)=0
iff there exists a simplicial triangulation of M compatible with the given one near N.

(b) V(M)=p(A(M)), where A(M) is the Kirby-Siebenmann obstruction to the
existence of a PL structure on M, and B is the Bockstein homomorphism associated
with the short exact coefficient sequence 0—Ker(a)—60-%Z,—0.

Theorem 0.3 [2]. Let M and N be as in (0.2). Then the TRI concordance classes of
simplicial triangulations of M compatible with a given triangulation of N are in one-
to-one correspondence with the elements of H*(M, N ; Ker(x)).

We call V(M, N) the Galewski-Stern obstruction.

1. Some Basic Theorems

In this section we recall from [2] some basic facts about the relationship between
homology manifolds and topological manifolds. We will also find a simple relation
between the Cohen-Sullivan obstruction to resolving a homology manifold into a
PL manifold and the Kirby-Siebenmann obstruction to putting a PL manifold
structure on a topological manifold (see [8] for homology manifolds, and [6] for
resolutions of homology manifolds).

Proposition 1.1 [2]. If M is a simplicially triangulated m-manifold, then M is a
homology m-manifold.

Theorem 1.2 [2]. A homology m-manifold M with a collared boundary, m=5 (m=6
if OM#0) is a topological m-manifold if and only if for each vertex v of any
triangulation K of M both 1k(v, K) and 1k (v,0K) are simply connected.

Theorem 1.3 [2]. Let H™ be a compact homology m-manifold without boundary
having the integral homology of the m-sphere. If m =4, then H™ bounds a contactible
homology (m+ 1)-manifold V such that V—0V (0V=H™) is a topological (m+1)-
manifold.

With the help of (1.2) and (1.3) we will be able to replace homological manifolds
with simple homotopy equivalent topological manifolds.

We will construct triangulations using the notion of a handlebody decom-
position [4]. A topological manifold of a sufficiently large dimension always has a
handlebody structure. More precisely

Theorem 1.4 [4]. Let M be an m-manifold and N a (possibly empty) clean
m-submanifold. Then M is a handlebody on N provided m=6.

Let f:B*x B" *—M™ be the homeomorphism that determines the k-handle
h*= f(B*x B™~%). We will use the following notation :

S, (h%)= f(0B* x {0}) — the attaching sphere of h¥,

T, (h*)= f(0B*x B™~¥) — the attaching tube of h¥,

S,(h*)= f({0} x 8B™~¥) — the belt sphere of k¥, and

T,(h*) = f(B* x dB™*) — the belt tube of h*.
We will reduce the general triangulation problem to the problem of extending TRI
structures on T,(h*) to TRI structures on the whole k-handle h*.
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Theorem 1.5 [2]. (Product Structure Theorem.) Let M™ be a connected topological
m-manifold and let ® be a TRI manifold structure on M xR%. Let N be a
codimension zero submanifold of 0M and X, a TRI manifold on M near N such that
2o X R agrees with @ near N xR If m=7 (m=6 if cl(OM— N) is compact or
mz5if M is closed), then there exists a TRI manifold structure I on M coinciding
with 2, near N, unique up to concordance relX, with I' x(—1,1)? concordant
relX, x(—1,1) to O|M x(—1,1)~

Rather than Theorem 1.5 we will use time and again the following

Corollary 1.6. Let N be a bicollared codimension one proper submanifold of a
topological m-manifold M, m=7. Let @ be a TRI manifold structure on M. Then
there exists a TRI concordance @ on M x I such that ®|M x {0} =0 and ®|M x {1}
restricts to a TRI manifold structure I on N x {1}. Moreover, if O restricts toa TRI
manifold structure X, on OM near ON =0NNOM, then @ can be chosen relX,. In
other words, N can be made into a TRI submanifold of M within the TRI
concordance class of ©.

Proof. First assume 0N =#. Since N is bicollared in M we have that N xR is an
open subset of M. Thus @|N x R provides a TRI structure on N x R. Let I be the
TRI structure on N and ¥ the TRI concordance on N x(—1,1) x [0, 1] between
@|N x(—1,1) and I' x(—1,1) provided by Theorem 1.5 for g=1. Let E be the
TRI structure on X =M x[—5,0] UNX(—I,l)X(O}NX(—l 1) x [0,4] such that

EIMx[—5,0]=0 x[-5,0],

E|N x(—1,1)x[0,1]=Y, and

E|N x(—=1,1)x[1,4]=Tx(—1,1)x[1,4].
Let f:X—X be a homeomorphism which pushes N x(—1,1)x[0,4] into
M x[—5,0]. More precisely, we can and do choose f such that

J)=y, ye M x {5},

f(x,a,b)=(x,a,b—4), (x,a,b)e N x [ — 4,11 x[0,4], and

fX)=Mx[-5,0]1-Nx([1,2)u(—=2, —1]) x {0}.
Let Q= f(E)|M x [—5,0) be a TRI structure on M x [ —5,0). Note that Q has the
following properties:

QIM x {—5}=06, and

QIN x[-3,31x[-3, -1]=I'x[-3,3Ix[-3,-1].
Let D={(x,y)|(x+2)2+y251}c[ 5,00xR. It is easy to find a PL ambient
isotopy G of [—5,0)x R which keeps [—5,0) x R—intD fixed and such that G,
rotates 3 D {(x,n)|(x+2)*+ y*< 1} around its center by 90°. Let id,, X G, be an
ambient isotopy of M x[—5,0)x R, and let Q —(1dM><G1)(Q><R) be a TRI
structure on M x [ —5,0) x R. Properties of Q and G, show that Q, restricts to a
TRI structure Q, on M x[—5, —2] x(— 4 1). We have

2,IM x {5} X(—z,z) @X(—z";) and

Q,IN x[=5,31x {0} x (= 5 D=Tx[- 5,31 x (= %.
We now apply Theorem 1.5 to €, to obtain a TRI structure @, on M x [ -5, —2].
Let g:[—5, —2]—[0,1] be the linear map. Then ¢=(id,, x g)(®,) is the desired
TRI structure on M x [0, 1].

Now assume dN ##, and that © already restricts to a TRI structure X, on dM
near ON. Let 2, denote the resulting TRI structure on dN. We repeat the argument
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as for ON =0. However, we have to make sure that the isotopy G, preserves the
structure X,. To do so we only need to replace @ by a TRI concordant structure
@, such that @,|0N x R=2, x R. This can be done easily since N is bicollared in
oM. O

The following proposition can be proved using the PL Product Structure
Theorem (Theorem 5.1, [4]) exactly in the same way as (1.6) was proved using
(1.5).

Proposition 1.7. Corollary 1.6 remains true if we use PL manifold structures and PL
concordances. []

Let ¥ be a TRI structure on T,(h¥). It follows from (1.1) that T (k") is a
homology manifold.

Theorem 1.8. Let X be a TRI structure on 0B*x B™™¥ m>10. Then X can be
extended to a TRI structure on B*x B™* iff the Cohen-Sullivan obstruction
[O(8B* x B™~¥%);1e H*(0B* x B™~*; 0) vanishes.

Before we start a proof of (1.8) we need to gather some supportive information.

Proposition 1.9. Let M be a homology m-manifold that admits an acyclic PL
resolution f:P—M as constructed in [6]. If m=5 then f is a simple homotopy
equivalence.

Proof. From the construction of f in [6] and Van Kampen’s theorem it follows
easily that f induces an isomorphism f, :7,(P)—n,(M). It then follows from [3]
that f is a simple homotopy equivalence.

Lemma 1.10. Let M be a simplicially triangulated m-manifold, m=5 (m=6 if
OM %0) with OM being a PL manifold. Let o, : H*(M,0M ;0)—H*(M,0M ; Z,) be
induced by the homomorphism o.:0—Z,. Then o, [O(M,0M)]=A(M,oM).

Here and in the rest of the paper O will denote the Cohen-Sullivan obstruction.

Proof. This lemma is only a paraphrased version of the Assertion that follows
Theorem C in [9]. Let C (M, M) denote the chain complex based on dual cells of
M. Let 4,: C*M,0M)— Z, be the cochain defined by 4,(D*)=a[0D*]€ Z,, where
D* is any dual 4-cell. The Assertion says that [4,]= A(M,0M). Recall that the
Cohen-Sullivan obstruction cochain O(M,0M):C,(M,0M)—0 is defined by
O(M,0M)(D*)=[8D*]€¥. It then follows immediately that, on the cochain level,
2, (0(M,0M) =4, [

We will use (1.10) in the following situation. Consider S3 x S™, m=5. Since
H3*S*xS™;Z,)=Z, it follows from [4] that S3x S™ admits exactly two PL
structures which are not PL concordant. The structure that factors to the PL
structures on S and S™ is called the standard PL structure.

Lemma 1.11. The two PL structures on S x S™, m=4, are TRI concordant.

Proof. We will construct a simplicial triangulation of §* x S™ x I that will restrict
to different PL structures on §3x S™ x {0} and §3 x S™ x {1}.

Let @ be a PL structure on S3x S™ Then the Cohen-Sullivan obstruction
cocycle O(S® x S™)g is trivial. According to [5] we can realize every element [d] of
H3(S3 x S™;60)~60 with a PL resolution f:P—(S>x S™), as follows. Construct f
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using the cocycle d. By techniques from [1] we have that the mapping cylinder W
of f is an H-cobordism, and by (1.9) we have that the inclusions P—W and
S3x S™"—W are simple homotopy equivalences. Let h denote the following
composite of isomorphisms, with coefficients in 0:

H4(W, PUS? x S")-2"55 H4(S? x 8" x ([0, 1, {0, 1}))—>

2oH, (S xS [0, 1]) 2 H,,_5(S3 x S™)—2—5 H3(S3 x §™),

where g is the acyclic resolution induced by f, D is the Poincaré duality
isomorphism, and p, is the projection to the first factor. We then have
h[OW,PuS? x S™))=[d].

Next we change W into a simple homotopy equivalent topological manifold,
keeping OW fixed (CW is already a topological manifold). According to (1.2) we
need to make sure that each top dimensional link is simply connected. We may
assume that W is collared in W (if not we add an exterior collar). Thus, let v be a
vertex from int W such that lk (v, W) is not simply connected. Here, W’ denotes the
first barycentric subdivision of W. lk(v, W’) is a homology sphere, which bounds,
by (1.3), a homology manifold, say V,, such that intV, is a topological manifold.
Remove st(v, W') and glue V, in its place. Denote the resulting homology manifold
by W,. There is a contractible resolution k : W,— W that identifies V , to ve W, and
is an identity on the complement of st(v, W'). k obviously induces an isomorphism
of fundamental groups and is therefore a simple homotopy equivalence [3]. Let W
denote the resulting topological manifold after alteration has been done for all
non-simply connected top dimensional links. Then W is an s-cobordism between P
and S$3®xS™ and by the s-cobordism theorem [9] it is homeomorphic to
$3 x §™ x I. Therefore P~ S® x S™. It then follows from [6] that [O(W, PUS? x §™)]
corresponds to [O(W, PUS®x S™)] under the simple homotopy equivalence
W-Ww.

Now assume that [d]¢Ker(«). Then (1.10) shows that W has two different PL
structures on its ends. [ .

We say that the TRI structure on S*xS"xI~W from (1.11) has been
constructed from [d]e0, and conclude that

(1.12) PL structures X and X, on S® x $™ are PL concordant iff the TRI structure
on §% x S™ x I between them is constructed with an element from Ker(a). [

Proof of (1.8). Let £ be a TRI structure on dB*x B™ ¥ such that its Cohen-
Sullivan obstruction vanishes. Then we can construct an acyclic resolution
f:P—>3B*x BT ¥ where P is a PL m-manifold. As in the proof of (1.11) we change
the mapping cylinder of f into a trivial s-cobordism W between P and 6B* x B™ ¥,
The trivialization of W provides us with a TRI structure ¥ on dB*x B™ *x I
which extends ~ on 0B*x B™ ¥*x {0} and restricts to a PL structure @ on
OB*x B™ *x {1}.

Assume k#4. Then H*0B*xB™" *;Z,)=0, and it follows from [4] that
0B*x B™""* can have only one PL structure which therefore extends to a PL
structure  on  B*xB™ *x{1}. The resulting triangulation  of
O0B*x B" ¥ x JUOB* x B" ¥ x {1} is then a desired extension of X.
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Now let k=4. If the PL structure @ is the standard one we can extend it
trivially. Otherwise @ restricts to the non-standard PL structure £ on
dB*x 0B *x {1}. Let I' be a TRI structure on dB* x B™~* x[1,2] between &
and the standard PL structure on dB* x 0B™~* x {2} as provided by (1.11). Recall
from (1.12) that I must be constructed from an element from 6 which is not in
Ker(«). Let © denote the PL structure on B* x 0B™~*x {2} extending the one on
0B*x 0B™ * x {2}. Then Yucone(PUI'UO) is a desired extension of Z.

For the converse let us assume that a TRI structure X on dB*x B" ¥ has an
extension to a TRI structure ¥ on B¥x B™ ¥ Since H*(B*x B""*;0)=0 we have
that [O(B* x B" %), ]=0. Thus, there exists an acyclic resolution of B*x B™ ¥;in
particular, there is an acyclic resolution of o(B*x B""¥), so that
[O(&(B* x B"%),)]1=0. Let j : 0B* x B"~*—d(B* x B"~¥) be the inclusion and recall
that [O(@B*x B" %)]=j*[0(@(B*x B""¥))] (cf. Proposition 1.2 of [5]). Thus
[0(0B*x B"%]=0. [

2. Simplicial Triangulations of Topological Manifolds

In this section we show how to triangulate topological manifolds of sufficiently
large dimension m provided there is an element ge with a(g)=1, and 2g=0.
Inductively, a triangulation of manifold’s (k— 1)-handle skeleton will, with the help
of (1.6) or (1.7), provide a triangulation of the attaching tubes of the k-handles

(which are homeomorphic to dB* x B™¥). This triangulation will then be extend-

ed, using (1.8), to a triangulation of the k-handles. Details that follow are
essentially a computation of the Cohen-Sullivan obstruction needed for appli-

cations of (1.8).

Let M™ be a topological m-manifold and N a clean m-submanifold. By (1.4) M
is a handlebody on N. It follows from [4] that we can arrange handles so that they
are attached in order of increasing index. Also, handles of the same index can be
made disjoint. M® =N | J; ., {all i-handles from M} is called the k-handle skeleton
of M. The homology groups C,=H(M®, M*~ ) are free with one generator for
each k-handle. We will use the same symbol for the handle and corresponding
preferred generator. Let C(M,N)={C,} be the chain complex with
0:C,—~Cy_, being the composite homomorphism H (MY,
M*D)SH,_ (M*DYH, (M* Y, M*?). Then H (C(M, N))=H (M, N) (cf.
[11]). Let h and u be the homomorphisms entering in the universal coefficient
theorems for cohomology as in [10, (5.5.3), (5.5.10)]]. Then
h: H{(M®, M*~Y)»Hom(H (M®,M*~1)),Z) is an isomorphism showing
HYM® M% V) to be free with one generator for each k-handle. Similarly,
p: H{(M®, M*~ V)®0— H(M®, M*~1;6) is an isomorphism. In the rest of the
paper we will use h and p in the sense just described. We also reserve the letter v for
the isomorphisms in the following situations: Let X be a space with H(X)=Z for
some i. Then v: H{(X)—Z will denote that isomorphism that maps the preferred
generator of H'(X) to 1€ Z.

The expression “a TRI structure ¥ on a submanifold N of M can be extended
to a TRI structure on M” will mean that @ is TRI concordant to a TRI structure
that restricts to V.
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Theorem 2.1. Let M™ be a topological m-manifold, m=10, and N a clean
m-submanifold with a given TRI structure X. If there exists an element ge 8 such that
a(g)=1, and 2g =0, then X can be extended to a TRI structure on M.

Proof. Assume that M*~ 1) k>1, already has a TRI structure X, _, that extends Z
on N=M'9, Let h* be any k-handle (since k-handles are disjoint we can carry out
our construction for all handles simultaneously). First we replace X, _; by a TRI
concordant structure %,_, in such a way that T (k) becomes a TRI submanifold
of Z . Recall that 6T (W% is a codimension one bicollared submanifold of
éM(" ” Using (1.6) we can find a TRI structure @ on dM*~ P x T such that
dilaM”““x {0}=2,_,|0M*™V and ®|0M®* ! x {1} has 0T,(h*) and therefore
also T,(h*)x {1} as a TRI submanifold. Then X,_, =X, _,u® is a desired TRI
structure on M*~ 1,

If k=5, HYT,(h*);0)=0. Thus [O(T,(h*))]=0, and by (1.8) we can extend the
TRI structure on T,(k*) to a TRI structure on h*.

When k=35 we will use ge 0 to construct a TRI structure on M in such a way
that the Cohen-Sullivan obstruction will vanish for the attaching tube of every
5-handle. As before, (1.8) will then provide triangulations of 5-handles, and the
proof will be completed. In analyzing the attaching tubes of 5-handles we will use
the following

Proposition 2.2. Every TRI structure on M is TRI concordant to a TRI structure,
say X ,, which restricts to a TRI structure on M®. Moreover, in X, each T,(h{) has a
PL structure, and each T/h*) is a TRI submanifold in OM" with cl(T(h%)
— {J; Ty(h) being a PL submanifold.

Proof. By the argument above we may assume that the TRI structure on M™ is
already such that the attaching tubes of 5-handles are TRI submanifolds. Fix a
5-handle h°. Let h} be a 4-handle such that hf ~h>+0. We can isotope (cf. [4])
S,(h%) by an arbitrary small topological ambient isotopy so that it meets S,(h})
transversally with respect to the normal microbundle £* of S,(hf) in OM. This
way, S,(h*)nS,(h{) consists of finitely many points p;, j=1, ..., n, Since &* is trivial
with the fiber R* we may assume that the total space E(ﬁ“) Tb(h;‘), and write

T, (W*)N(T,(h}), 0Ty (h})) = U (A A;)~(B* 0B*) x (BT *u...UBp" %),

U’
where 6A =A,;n0T, (h?). Since the isotopy of S,(h°) can be made arbitrary small
with the support near S(h}) we can do this process sxmultaneously for all
4-handles that meet h°, and consequently for all 5-handles, since they are disjoint.

We now change | J; T,(h}) into a TRI submanifold of 9M™ as follows. Using
(1.6) we first make (| J; (h5))r\(U 0T,)h})) into a TRI submanifold of { ), T (h3),
and then cl({),T,(h)—; ,,(h“)) into a TRI submanifold of cl(aM“‘)
~ U, T,(h}). Let C, denote a collar of 0T(h}) in Ty(h). Then X =[ ) T,(h)
- U T,,(h“)]u U JC is a TRI submanifold of oM™ havmg trivial 4th coho-
mology group with any coefficients, and therefore it can be resolved into a PL
manifold. We change, as in the proof of (1.11), the mapping cylinder of this
resolution into a trivial topological s-cobordism. This enables us to consider X as a
PL manifold. We now use (1.7) to make (J; T,(h})n(|J;0T,(h})) into a PL
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submanifold of X. Using (1.6) we now make ((J; T,(h{))(|J; T(h})) into a TRI
submanifold of | J; T,(h{), keeping the TRI structure on | ), 0Ty(h?) (which is PL at
this stage!) fixed. Since H*(T (h}), 0T (h{);0)=0 we can resolve the TRI structure
on T,(h{) into a PL structure, keeping the PL structure on 0T,=0T, fixed.
Alteration of the mapping cylinder of this resolution into a trivial s-cobordism
then gives the desired TRI structure £, on M. []

Let © be the TRI structure on M® to which ¥, from (2.2) restricts. We can
extend @ back to different TRI structures on M™® by constructing TRI structures
on Tb(h;') using different elements of 6 as shown in (1.11). Let q;€60 denote the
element used in triangulating T,,(h;.‘). Recall from (1.12) that

(2.3) q;eKer() iff BTb(h;.‘) has the standard PL structure in @.
Let A, be the coefficients such that for d: C5—C, we have d(h°)=ZA

[t 2 A

}:: If &,

denotes the intersection number of S,(h°) and S,(h{) at p,;, we have 4,= } &
j=1

Lemma 2.4. (v xidg)ox” Y([O(T,(h%)])=Z A4,

Proof. Tt follows from (2.2) that we can obtain from the TRI structure on IM™ a
dual cell complex in such a way that T,(h%), 4;;, T,(h{), t,(h{), and C, (t, and C; to be
introduced shortly) are all cell subcomplexes. Recall that dual cells are used to
define the Cohen-Sullivan obstruction cocycles. All the cells of cl(T(h°)— U,., ;A4
are PL cells [cf. (2.2)] so that we can write the Cohen-Sullivan obstruction cocycle
O(T (%)) as

2.5) O(T (W) =2, j8,0(4;;,04;).

To compute O(A,;,04,), let C; be a collar of 0T,(hf) in T,(h?). Write T,(h{)
=C,uty(h¥). Then 8C;=0,C;00,C; where 8,C;=0T,(h}), and 9,C;=C;nt,(h})
=0t (h}). Recalling how a TRI structure on T,(h}) was constructed with g,€6, we

have that t,(h}) has a PL structure, and
(2.6) (v®idg)on™ {([O(C,0C)]) =4;.
Consider the inclusions
iy :(C, 0C)~>(Ty(h}), t, () OT(hY))
iy ((Ty(hY), OTy () > (Ty(h}), 0T (k) uty(h)) ,

and

i (4, 94,) (T, 0T (4?)).

ij
It is easy to see that they induce isomorphisms of 4th cohomology groups with any

coefficients (i, and i, are excisions, and for i, use that m = 10). On the cochain level
we now have the following:

O(C;, 6C) =i} (O(T,h}), ty(h) 0T (h)), O(T,(h), 0T, (k)

=i (O(Ty(h}) t,(h})VOT,(h}))
and

O(A;04;) =13 (O(Ty(h), OT,(h{))).
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In the second equation we use the fact that t,(h}) has a PL structure so that the
Cohen-Sullivan obstruction vanishes on its dual cells. Thus [O(4,;, 04,)]=i%¢i}
i*~([0(C;,3C,)]), and (2.5) and (2.6) give (v®id,)on ' ([O(T(h*)) = ,hq, O

Now recall that T,(h®)~S* x B™~>. Since S* x B" > does have a PL structure,
it follows that the Kirby-Siebenmann obstruction A(T,(h%))=0, and (1.10) shows
that [O(T,(h”))]eKer (). From (2.4) we thus conclude

2.7 2. q.€Ker(a).

We reorder subscripts so that for some s, g, ¢Ker(a) if 1 <i<s, and g;e Ker(a)
for i=s+ 1. Now alter the existing TRI structure on M® as follows : with 0 0 we
triangulate all those 4-handles that were previously triangulated with elements
from Ker(«) [i.e., they receive the standard PL structure — see (1.12)], and with g6

all remaining 4-handles. For this new triangulation (2.7) becomes Z A,geKer(a).
i=1

Since a(g)=1 it follows that Y A, is an even integer. But 2g=0 implies

i=1

(Z A,.)g=0 so that [O(T,(h*))]=0 for every 5-handle h°. Now (1.8) provides

i=1

triangulation of all 5-handles, and the proof of Theorem 2.1 is completed. []
For the sufficiency part of Theorem 0.1 we need to lower the dimension m of

M. Let k be such that m+ k= 10. Then (2.1) provides a TRI structure on M x R¥,

and (1.5) a TRI structure on M. [

3. Obstruction to Existence of TRI Manifold Structures

Let X, be a TRI structure on a clean codimension zero submanifold N of a
topological manifold M. We will investigate when X, can be extended to a TRI
structure on M. In what follows, we restrict our attention only to those TRI
structures that extend X,. Let m=dim M = 10.

Lemma 3.1. Let ® and ¥ be TRI structures on M®. Then they are TRI concordant.
Proof. Consider the TRI manifold
(MO X[~ 1,0 1. ;9N X [0, 11, 10,0 M X [1, 2]y 1.2y -
Assume inductively that this triangulation has been extended to one on
MP®x[—1,0JuMP x [0,1JUM® x[1,2],k<3.

Let h* be a k-handle of M. We can consider h* x [0, 1] as a (k+ 1)-handle. Using
(1.6), keeping the TRI structure on M® x {—1,2} fixed, we may assume that for
each h¥*, h* x {0} U T,(h*) x [0, 1JUR* x {1} = T,(h* x [0, 1]) is a TRI submanifold. It
then follows from (1.8) and (1.11) that we can extend the triangulation of
T,(h*x [0,1]) to one on h*x [0,1]. k=3 gives the desired TRI concordance. []

Corollary 3.2. Any TRI structure @ on M® is TRI concordant to a TRI structure
E that restricts to any given TRI structure ¥ on M®. [
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We will call £ from (3.2) a ¥-standardized structure on M. Let {4,;} be
integers such that for d:C;—C, we have d(h})=Z4;h}. Thus, the A,/’s are the
same coefficients as 4;’s in (2.4). Now that we have a hold on 4;;’s we will suppress
isomorphisms (v®idy)op~ ! to simplify notation. Using the last paragraph of the

proof of (2.4) we can rewrite (2.4) as
(3.3) [O(T, (k)] = Z ;4,,LO(T,(h3), OT,(h}))].

Let ¥ be a TRI structure on M. We may assume that X is as in (2.2) and
¥.-standardized for some Y. For extending X to a TRI structure on M (1.8)
suggests to define a cochain

(34)  F=V{M,N):Cs—Ker(@) by VM, N)(h)=[O(Th)].

Note that [O(T,(h}))]e Ker() (cf. 2.13).
From (1.8) and the proof of (2.1) it follows immediately that

(3.5) 2 can be extended to a TRI structure on M iff Vy;=0.
Proposition 3.6. V; is a cocycle.

Proof. We define a cohain 0;=04M,N):C,—0 by O0yh})=[0(T,(h}),
0T, (h#)]€6. Then (3.3) shows V;=060; so that du;=560,=0. Note that V; is
not necessarily a coboundary since O; has coefficients in 6 not in Ker(a).

Lemma 3.7. Let X and E be TRI structures on M™®. Then [Vy]=[Vy]e H}(M,N;
Ker(a)).

Proof. We may assume that > and = are ¥-standardized for some Y. Let d;
=[O(Ty(h}), 0T, (h) 1 — [O(T,(h}), dT,(h})) s]. Then d,e Ker(a) since both its sum-
mands belong simultaneously to Ker(a) or to its complement [see (1.12)]. We
define a cochain dyz:C,—Ker(x) by dyz(h})=d, Then (3.3) shows V;—V;
=ddsz;. O

Since the cohomology class [ ;] does not depend on a particular TRI structure
on M™, we denote it by (M, N).

Theorem 3.8. Let M be a topological m-manifold, m= 10, and N a clean submanifold
with a given TRI structure X,. Then X, extends to a TRI structure on M iff
V(M,N)=0.

Proof . First assume that X, extends to a TRI structure on M. Using (1.6), we can
find a concordant TRI structure on M that restricts to a TRI structure @ on M®,
Applying (1.6) to M® we exchange © for a concordant TRI structure which
restricts to a TRI structure Z on M. = provides us with a TRI structure on each
h®. Using (3.2) we replace Z by a concordant ¥-standardized TRI structure X. Let
I' be a TRI structure on M® x I between Z and X. Using (1.6), we may assume
that T (h{)xI is a TRI submanifold of (IM™ xI),. Therefore [O(T,(h}))z]
=[O(T,(h}));]1=0, and we have V;=0. Thus V(M, N)=0.

Now assume V(M,N)=0. Let X be a ¥-standardized TRI structure on M@
such that [Vy(M, N)]=V(M, N). Since V(M,N)=0, we have V;=0C; for some
cochain Cy : C,—Ker(a). We also have Vy=00; where Oy is as in the proof of (3.6).
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This shows that
3.9) O;|Imd=Cy|Ima,

where 0 : Cs— C,, is the boundary operator. We replace £ on M® by another TRI
structure Z which is constructed by triangulating each 4-handle 4} using element
O5(h})— Cx(h})€6. Then we have

Ve(h?)=[O0(T,(h})) ] =2 ;AL O(T,(h}), 0Ty (h}))<]
=Z4{(05(hh)— Cs(h})=0,

Jy

using (3.3), (2.5), and (3.9) for the second, third, and fourth equality, respectively. It
follows now from (3.2) that = has an extension to M and thus to M. [

Theorem 3.10. Let M be a topological m-manifold and N a clean submanifold. Let
m=T7 (m=6if cl(0M — N) is compact, n25 if M is closed and N =@) and let Z, be
a TRI structure on N. Then there is an element M, N)e H>(M, N ; Ker(x)) such that
2, extends to a TRI structure on M iff V(M,N)=0.

Proof. We only need to consider the case m<10. Let k be an integer such that
m+k=10. Let p : M x R*— M be the projection. Then p induces an isomorphism of
cohomology groups with any coefficients. Define V(M, N)=p*~ V(M x R¥,
N x R¥). Then (3.8) and (1.5) complete the proof. []

Now we would like to examine the relation between V(M) and A(M). Let 2 be a
TRI structure on M@. Since HY(M®;Z,)=0, we have 4(M®)=0 so that M®
does admit a PL structure, say Y. We may assume that ¥ is ¥-standardized, so
that T (h}) is a PL submanifold of oM for each h{. Define a cochain

(3.11) 4;:C,—~Z, by

« |0 if T(h}) has the standard PL structure
Ag(h})= .
1 otherwise.
Then (2.3) shows that
(3.12) Ve=0,(0y).

It follows from Theorem 5.5.3 in [10] that [0;]=[0O(M“),]. Combining (1.1)
with (3.12) we obtain

(3.13) [45]1=AMD)e HMD; Z,).

The cochain 4 also represents an element [4,],,€ HY(M;Z,). Leti : M —>M
be the inclusion. Then i*:H*M;Z,)-»H*M®;Z,) is a monomorphism with
i*([45],) =[45]= A(M™). Using the naturality of the Kirby-Siebenmann obstruc-
tion we conclude

(3.14) ' [45]y=4(M).

Let G be an abelian group and denote C(G)=Hom(C,, G). With this notation,
the short exact sequence 0—Ker(a)— 60— Z,—0 gives a short exact sequence
0- Ci(Ker(a))—% CH(0)—5 C(Z ,)—0, all i. Let f:HM; Z,)—H** (M ;Ker(x))
denote the corresponding Bockstein homomorphism. Then we have the
following
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Theorem 3.15. S(4(M))=V(M).
Proof. Consider the commutative diagram

0— C*Ker (o) —2— C4(0)—22— CHZ ,)—0
L) 3 ']

0— C3(Ker () —*t— C5(6)—=*— C5(Z,)—0

which is used to define f: H*( ;Z,)—»H>( ;Ker(x)). Let X be a standardized TRI
structure on M so that A(M)=[4;],, From (3.12) we have 4;=a,(0;). Recall
also that i, (Vy) =6(0Oy). It now follows from the definition of # that f([4;],,)=[Vs]
=r(M). O

We have from (0.2)(b) and (3.15) that V(M) that we developed here is really the
Galewski-Stern obstruction.

We conclude this section with a product formula. Let M and N be topological
manifolds of appropriate dimensions so that V(M) and V(N) are defined. Let
p; :MXN—-M and p, : M x N—N be the projections.

Theorem 3.16. V(M x N)=p*(V(M))+ p%(V(N)).

Proof. Assume that the handles of M and N are already ordered in increasing
index. Let I, h},, and h}, denote the i-handles from M x N, M, and N, respectively.
We use the handlebody decomposition of M x N where each k-handle has the form
h*=hi, x h§™". It is easy to see that handles h* are also ordered in increasing index.

Let ¥ and Z be TRI structures on M® and N, respectively, such that the
attaching tubes of 5-handles are already TRI submanifolds. Observe that the TRI
structure £ xE on M™ x N® provides triangulation of all those 5-handles of
M x N that can be written as hj, x hy "%, i+0, 5. By repeated application of (1.6),
using (2.3), and the product formula for the Cohen-Sullivan obstruction [6] we can
obtain a TRI structure @ on (M x N)* x[—2,2] such that T,(h) x hy x[1,2])
(=S, x Th)s x [1,20), TylhSy x hg x [ =2, — 11) (= T,(3); x W x [ 2, ~ 1), and
T, (h, xhy 'x[—1,1]), i%0,5, are TRI submanifolds with

[O(T,(hyy x h3 x [1,21)e] =[O(T(h}))1,
(3.17) LO(T (k3 x hy x [ =2, — 1]))p] = [O(T (h}));],
[O(Ta(h;thi._ix [-1,1])p]1=0, i%0,5.
In order to determine
Vo:Hs(Mx N x[—2,2])®,(M x N x[—2,2])*)—>Ker(a)
observe that
(MXxNx[=22])P=(MxN)®x[=2,2]x(Mx N x[-2,2]
U(lJ gy x hy x [1,2D)u(| ke x hy x [=2, —1])
U(Uis0,5 hhyy x byt x[—1,1]).

Then (3.17) shows Vg(M x N x[—2,2])=p{(Vs)+p5 (Vg), which gives V(M x N)
=pI(V(M)+p3(F(N). O
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4. Classification of TRI Manifold Structures

Let N be a clean submanifold of a topological manifold M with a given TRI
structure 2. In this section we again agree that every TRI structure to be
considered is one extending ZX.

Proposition 4.1. Let 2j, and X', be TRI structures on M, dimM = 10. Then X\, and
2y are TRI concordant iff they are TRI concordant to TRI structures X and X, on
M which restrict to TRI concordant TRI structures E, and £, on M.

Proof. First assume that X and X' are TRI concordant so that there is a TRI
structure © on M x [0, 1] restricting to 2, on M x {i}, i=0, 1. Using (1.6) we find a
TRI structure @, (resp. ®,) on M x[—1,0] (resp. M x[1,2]) that extends X
(resp. 2)) on M x { —1} (resp. M x {2}) where Z; restricts to a TRI structure =; on
M@, i=0,1. Using (1.6) again we exchange the TRI structure ©®,UOuU®, on
M x[—1,2], keeping 2, and X, fixed, for a TRI structure on M x [—1,2] that
restricts to a TRI structure on M® x [ —1,2] thus providing a TRI concordance
between Z, and Z,.

For the converse, let @, be a TRI structure on M x [ —1,0] between X; on
M x{—1} and X, on M x {0}. Similarly, let ¢, be a TRI structure on M x[1,2]
between X, on M x {1} and X on M x{2}. Let & be a TRI structure on
M™% [0,1] between Z, on M@ x {0} and E, on M® x {1}. Let ' =P ,uPUP, be
a TRI structure on the manifold X =M x [ —1,0]JuM® x [0,1JuM x [1,2]. Let
h? be any 5-handle of M®. Consider T,=h} x {0}UT,(h?) x [0, 1]Uh] x {1}. Note
that T, S° x B"~ . T/s are disjoint since h}’s are disjoint. They are submanifolds
in 0X, and using (1.6) we can exchange I', keeping X, and X', fixed, for another TRI
structure I on X such that they (7;s) become TRI submanifolds. We can regard
h} x [0, 1] as a 6-handle which is attached to X via its attaching tube T, Then the
proof of (2.1) shows that we can extend TRI structure I on X to a TRI structure
on X x(|J;h x[0,1))=M x[—1,0]uM® x [0,1]JUM x[1,2]. We continue in-
ductively with M™, k>5. Then k=m gives us a TRI concordance between 2y and
2 as desired. [

Let ¥ be any TRI structure on M®. We may and do assume that ¥ is as in
(2.2). Let [ 2] be a TRI concordance class on M represented by a TRI structure
Z. We will compare any other class [£] on M to [2]. Using (3.2) we may assume
that the representatives X and Z are ¥-standardized, so that they coincide on M®,
and in particular on T,(h{). We also assume that both X and Z have extensions to
TRI structures ¥ and 5 on M. We will again use the chain complex

Let s;=[O(h}, T(h}));]€b, and t,=[0(h}, T(h}))z]€6. Let Y and a TRI
structure I" on Y be defined by

Y =MP x[-1,00uMP x[0,1JuMP x[1,2].
Let
T,=h*x {0}UT,(h*) x [0,1]JUh* x {1}~ 0B x B"~*.
Then T;’s are already TRI submanifolds of Y.
Proposition 4.2. [O(T)]=s;,—t;eKer(x).
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Proof. [O(T,);]=s;—t; follows immediately from the fact that T(h#)x[0,1] is a
PL submanifold in dM® x [0,1] [since ¥ is as in (2.2)], and that h} x {0} and
h{ x {1} have opposite orientation in the boundary of h{ x [0,1]. [O(T));Je Ker(a)

by (1.10). O
We now define a cochain
(4.3) dz:C,—~Ker(x) by dzh)=[0(T)].

Obviously, dz=0;—0;. From (3.3) we have V;=60; and Vz=00;. Since X
and & have extensions X and &, (2.3) shows Vy=V;=0. Thus, ddz=0, ie., dzis a
cocycle and it represents an element [d;]e H*(M, N ; Ker(a)).

Proposition 4.4. [dz] does not depend on choice of representative Z of the TRI
concordance class [Z].

Proof. We need to show that if > and Z are TRI concordant, then  [dz]=0. We
consider an equivalent extension problem for the pair (M,N), where
M=M®x[—-1,2], and Ny=M® x[—1,0JuM™ x [1,2]. First we give (M, N)
the handle structure M*= M®*~ Dy(( J; h¥~* x [0, 1]), where the union is taken over
all (k— 1)-handles h¥~! of M. Let I be the TRI structure from (4.2). Consider
Ve Hy(M®, M“")—»Ker(oc) Let h? =h? x[0,1] be a 5-handle of M®. 1t follows
from (4 2) and (4.3) that Vy(h?)= d~{h4) The handle structure of (M, N) shows that

HM®,M*V~H, (M”‘ n , M®*~2) under the correspondence /7 —h¥, and that
the diagram

H(M™®, 5%~ 1) © L H,_ (M%), 5% )

:| : :|

H,_ 1(M"“ D M- 2))—6*Hk- Z(M"“z’, M&k- 3))

commutes for each k. Thus, d is a coboundary iff Vg, is a coboundary. But since we
are assuming that = and 3 (and thus = and X) are TRI concordant, we have from
(3.10) that [V;]1=0. O

We can now state the following classification

Theorem 4.5. Let N be a clean TRI submanifold of a topological m-manifold M. Let
m27 (m26if cl(0M— N) is compact, n= 5 if M is closed and N=@). Then there is
a one-to-one correspondence between TRI structures on M extending the given TRI
structure on N and the elements of H*(M, N ; Ker(a)).

Proof. Let 3.5 %, 8 &, and I be as in the proof of (4.4). Assume [dz]=0. We will
show that X and & are TRI concordant. Then (4.1) shows that 2 and 5 are TRI
concordant. From the proof of (4.4) we have that dz is a coboundary iff V. is a
coboundary, so that (M, N)=0. Thus, the TRI structure ¢ on N can be extended
to a TRI structure on M which is a TRI concordance between X and E.

It remains to show that each element in H*(M, N ; Ker(x)) can be realized by
some TRI structure = on M. Let s,=[O(h{, T,(h{);], and let [d]e H*(M, N ;Ker())
be any element represented, say, by a cocycle d: H (M, M‘”)—»Ker(cx) Now
triangulate each 4-handle h} with the element s, +d(h4), and denote by ZE the
resulting TRI structure on 'M®. We need to show that = extends to a TRI
structure on M. We have V;=0(0z)=0(0;+d)=V;+6d=V;. But V;=0 since ¥
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~

has extension £ on M. Thus V;=0. Let £ denote an extension of Z. Then
obviously [dz]=[d]. This completes the proof for m=10.

Now let k be such that dim(M x R¥)>10. Then (1.5) shows that two TRI
structures on M x R¥ extending the TRI structure £ x R¥ on N x R¥ are TRI
concordant rel¥ x R* iff they are TRI concordant to TRI structures whose
restrictions to M x {0} are TRI concordant. In other words, TRI concordance
classes on (M, N) are in one-to-one correspondence with those on (M, N) x R¥. The
proof is now complete since

H*M, N ;Ker())=H*(M,N)x R¥;Ker(x)). O
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