On the Classification of Fiber Spaces

GUY ALLAUD*

Received July 26, 1965

I. Introduction

Let \mathscr{C} be the category of CW complexes and let [X, Y] be the set of free homotopy classes of maps from X into Y. If F is a finite CW complex, denote by LF(X) the set of fiber homotopy equivalence classes of Hurewicz fibrations (E, p, X) with fibers the homotopy type of F. In [15] STASHEFF showed that there exists a CW complex B_H such that the functors $[, B_H]$ and LF()are naturally equivalent, the equivalence being obtained by taking induced fibrations from a universal one over B_H .

The objective here is to prove a classification theorem similar to STASHEFF's, assuming only that F has the homotopy type of a CW complex. Similar, in this case, means that a somewhat different functor than LF() is used (see Definition 2.4). This is due to the fact that we work in the category of based spaces and based maps, whereas in [15] non-based spaces and free maps are used. Restricting F to have the homotopy type of a CW complex is more or less forced by the fact that, in general, the transfer from a quasi fibration to the associated Hurewicz fibration only preserves the weak homotopy type of the fibers. Originally results of [2] were used, but [1] seems preferable.

In any case, to a space X, in the category \mathscr{C}_0 of CW complexes with base point, we associate a set of equivalence classes of fiber spaces $\mathscr{H}(X, F)$ and show that $\mathscr{H}(\ , F)$ is a homotopy functor from \mathscr{C}_0 into the category S_0 of sets with base points¹. By BROWN's main result, this means that there exists a B_{∞} in \mathscr{C}_0 such that $\mathscr{H}(\ , F)$ and $[\ , B_{\infty}]_0$ are naturally equivalent. Here $[X, B_{\infty}]_0$ denotes homotopy classes of maps preserving base points, and as before the equivalence is obtained by taking induced fibrations from a universal one. The $\mathscr{H}(X, F)$ we use differs from LF(X) in that a fiber space over X is required to carry a homotopy equivalence $g: F \to p^{-1}(x_0), x_0$ being the base point, and if \mathscr{E} denotes a fiber space over X, it may be that two pairs (\mathscr{E}_1, g_1) and (\mathscr{E}_2, g_2) are not equivalent even if $\mathscr{E}_1 = \mathscr{E}_2$.

The paper is organized as follows: in Section II the needed definitions are given, including that of a homotopy functor, and the main result is stated, i.e., Theorem 2.1. This is then proven in Section III. Section IV considers

^{*} Supported in part by the National Science Foundation under Grant NSF GP 2615.

¹ The morphisms in \mathscr{C}_0 are homotopy classes of maps preserving base points, those of S_0 maps preserving base points.

the principal fiber space associated to the universal one over B_{∞} , and we show that its total space is aspherical. Section V gives one application, namely a theorem of HILTON and GANEA on induced principal fibrations.

It might be mentioned that if B_{∞}^n denotes the classifying space for $\mathscr{H}(\ , F^n)$ where F^n is the join of F with itself n times, there are canonical maps $B_{\infty}^n \to B_{\infty}^{n+1}$. In fact using the join operations between fiber spaces we get maps $B_{\infty}^n \to B_{\infty}^{n+m} \to B_{\infty}^{n+m}$. This leads to stable classes of fiber spaces and the study of $B = \bigcup B_{\infty}^n$. This will be considered elsewhere.

Remark. Unless stated all fiber spaces are Hurewicz fiber spaces. $\mathscr{E}_1 \sim_f \mathscr{E}_2$ will mean that \mathscr{E}_1 and \mathscr{E}_2 are fiber homotopy equivalent.

II. Preliminaries and Definitions

Definition 2.1. Let F be a topological space and let X be a space with base point x_0 . A fiber space over X with fiber F consists of a sequence of spaces and maps

 $F \xrightarrow{g} E \xrightarrow{p} X$

such that:

a) The triple $\mathscr{E} = (E, p, X)$ is a fiber space.

b) g: $F \rightarrow p^{-1}(x_0)$ is a homotopy equivalence.

Remark. If X is not assumed to be arcwise connected, we have to restrict ourselves to fiber spaces whose fibers are of the same homotopy type.

A fiber space will be written as a pair (\mathcal{E}, g) or simply as \mathcal{E} in cases where g has no role.

Definition 2.2. Let (\mathscr{E}, g) be a fiber space over X with fiber F and let f: $Y \to X$ be a base point preserving map. Let $f^{-1}(\mathscr{E})$ be the usual fiber space over Y induced by f. Let $g': F \to f^{-1}(E)$ be given by $g'(x) = (g(x), y_0)$. Then $f^{-1}(\mathscr{E}, g)$ is defined to be $(f^{-1}(\mathscr{E}), g')$.

Definition 2.3. Let $(\mathscr{E}_1 g_1)$ and $(\mathscr{E}_2 g_2)$ be fiber spaces. A map $(\mathscr{E}_1, g_1) \rightarrow (\mathscr{E}_2, g_2)$ is a triple $g: F_1 \rightarrow F_2, \overline{f}: E_1 \rightarrow E_2, f: X_1 \rightarrow X_2$ such that:

$F_1 \xrightarrow{g_1} E$	$E_1 \xrightarrow{p_1} X$	1
g (I)	\overline{f} (II)	f
$F_2 \xrightarrow{g_2} E$	$L_2 \xrightarrow{p_2} X$	2

(I) is homotopy commutative and (II) is commutative.

Remark. There is no lost generality in requiring (II) to be commutative rather than homotopy commutative since the triple $(E_2 p_2 X_2)$ is a fiber space and using a lifting function we can replace \bar{f} by a fiber map over f.

Definition 2.4. Let (\mathscr{E}_1, g_1) and (\mathscr{E}_2, g_2) be fiber spaces over X with fiber F. We say that they are equivalent if there exists a map $(\mathscr{E}_1, g_1) \rightarrow (\mathscr{E}_2, g_2)$ of the form $(1, \alpha, 1)$, and we write $(\mathscr{E}_1, g_1) \sim (\mathscr{E}_2, g_2)$.

Math. Z., Bd. 92

Lemma 2.1. \sim is an equivalence relation.

Proof. By Theorem 6.3 of [3] α must be a fiber homotopy equivalence and hence has an inverse $\beta: E_2 \rightarrow E_1$. This shows that \sim is symmetric. That it is reflexive and transitive is clear.

We will denote the set of equivalence classes of fiber spaces by $\mathscr{H}(X, F)$. In $\mathscr{H}(X, F)$ there is a natural base point, namely the class of the trivial fibration

$$F \xrightarrow{i} X \times F \xrightarrow{\pi} X$$

which is also the class of any (\mathcal{E}, g) for which \mathcal{E} is fiber homotopy equivalent to a product.

Given $[f] \in [X, Y]_0$ define:

$$\mathscr{H}[f]: \mathscr{H}(Y,F) \to \mathscr{H}(X,F)$$

by

$$\mathscr{H}[f]\{(\mathscr{E},g)\} = \{f^{-1}(\mathscr{E},g)\}.$$

{} denoting equivalence class. It is easy to see that $\mathscr{H}[f]$ is well defined and that \mathscr{H} is a contravariant functor from the category \mathscr{C}_0 to the category S_0 .

Example 2.1. Let X be a space such that for some $n \ge 2$, $\pi_n(X, x_0)$ contains an element which is not of order 2. Let $P(X, x_0)$ be the space of paths starting at x_0 , and let $\Omega(X, x_0)$ be the corresponding loop space. Consider the map $\mu: \Omega(X, x_0) \to P(X, x_0)$ given by $\mu(w) = w^{-1}$, where $w^{-1}(t) = w(1-t)$, $0 \le t \le 1$. If $i: \Omega(X, x_0) \to P(X, x_0)$ is the inclusion we obtain two fiber spaces

$$\Omega(X, x_0) \xrightarrow{i} P(X, x_0) \xrightarrow{p} X$$

$$\Omega(X, x_0) \xrightarrow{\mu} P(X, x_0) \xrightarrow{p} X,$$

where as usual p is given by $p w = w(1) w \in P(X, x_0)$. Now (\mathscr{E}, i) and (\mathscr{E}, g) cannot be equivalent. To see this, suppose there did exist a fiber map α : $P(X, x_0) \rightarrow P(X, x_0)$ such that $\alpha(w)(1) = w(1)$ and $\alpha \mu \sim i$. Let $w_s(t) = w(s t)$, $0 \le s \le 1, 0 \le t \le 1$, and consider the map

$$H\colon \Omega(X, x_0) \times I \longrightarrow \Omega(X, x_0)$$

given by:

$$H(w, s) = w_s * [\alpha(w_s)]^{-1}$$

(* denotes the usual path multiplication). Then: $H(w, 0) = w_0 * [\alpha(w_0)]^{-1} = x_0^* = \text{constant loop. } H(w, 1) = w_1 * [\alpha(w_1)]^{-1} = w * [\alpha(w)]^{-1}$ and H(w, 1) is homotopic to the square map $w \to w^2$. But if the square map is homotopically trivial, every element of $\pi_n(X) \approx \pi_{n-1}(\Omega(X))$ will be of order 2 for all *n*'s. This contradicts the choice of X.

We now turn to the notion of homotopy functors.

Definition 2.5. According to BROWN [1], also [2], a contravariant functor $\mathscr{H}: \mathscr{C}_0 \to S_0$ is called a homotopy functor if the following conditions are satisfied:

Wedge Condition. If $\forall X_{\alpha}$ is a wedge of spaces and $h_{\alpha}: X_{\alpha} \rightarrow \forall X_{\alpha}$ are the injections then:

$$\Pi \mathcal{H}(h_{\alpha}): \quad \mathcal{H}(\forall X_{\alpha}) \approx \Pi \mathcal{H}(X_{\alpha}).$$

Equalizer Condition. Suppose given spaces $A, Z, X_i, i=1, 2$, and maps $f_i: A \to X_i, g_i: X_i \to Z$ such that $g_1 f_1 \sim g_2 f_2$. Suppose further that if Z' and $g'_i: X_i \to Z'$ are such that $g'_1 f_1 \sim g'_1 f_2$ then there exists an $h: Z \to Z'$ for which $g'_i \sim h g_i$. In \mathscr{C}_0 such a Z always exists given $f_i, A, X_i, i=1, 2$. Under these conditions if $u_i \in \mathscr{H}(X_i)$ satisfy $\mathscr{H}(f_1) u_1 = \mathscr{H}(f_2) u_2$ it is required that there be a $v \in \mathscr{H}(Z)$ such that $\mathscr{H}(g_i) v = u_i$.

In the next section it will be shown that $\mathscr{H}(X, F)$ is a homotopy functor if F has the homotopy type of a CW complex. Using the main result of BROWN on the realizibility of homotopy functors, Theorem 10, [1], we will have:

Theorem 2.1. There exists $B_{\infty} \in \mathscr{C}_0$ and a fiber space over B_{∞} with fiber F, $(\mathscr{E}_{\infty}, g_{\infty})$, such that the natural transformation T: $[X, B_{\infty}]_0 \to \mathscr{H}(X, F)$ given by

$$T[f] = f^{-1}(\mathscr{E}_{\infty}, g_{\infty})$$

is an isomorphism for all $X \in \mathscr{C}_0$.

III. Proof of Theorem 2.1.

1. The Equalizer Condition

We begin with a construction in the category \mathscr{C} , i.e. base points will be ignored, and consider the following situation:

Let $f_1: A \to X_1, f_2: A \to X_2$ be given maps. Let $\mathscr{E}_1 = (E_1, p_1, X_1)$ and $\mathscr{E}_2 = (E_2, p_2, X_2)$ be fiber spaces and suppose that $f_1^{-1}(\mathscr{E}_1) \underset{f}{\to} f_2^{-1}(\mathscr{E}_2)$. Consider the space $Z_{f_1f_2} = X_1 \cup_{f_1} A \times I \cup_{f_2} X_2$, i.e., $Z_{f_1f_2}$ is the quotient space obtained from $X_1 \cup A \times I \cup X_2$ by the identification

(1)
$$\begin{cases} (a,0) = f_1(a) & a \in A \\ (a,1) = f_2(a). \end{cases}$$

Let $k: X_1 \cup A \times I \cup X_2 \to Z_{f_1 f_2}$ be the quotient map and let $i_1: X_1 \to Z_{f_1 f_2}$, $i_2: X_2 \to Z_{f_1 f_2}$ be the canonical inclusions. Also let $m_i: f_i^{-1}(E_i) \to E_i$, i=1, 2 be the canonical maps and finally let α and β be fiber maps

(2)
$$f_1^{-1}(E_1) \xrightarrow{\alpha} f_2^{-1}(E_2)$$

such that $\alpha \beta \gamma 1 \beta \alpha \gamma 1$. Define maps $n_1: f_1^{-1}(E_1) \to E_2, n_2: f_2^{-1}(E_2) \to E_1$ by $n_1 = m_2 \alpha, n_2 = m_1 \beta$.

Now form the space $Z_{m_1n_1} = E_1 \cup_{m_1} f_1^{-1}(E_1) \times I \cup_{n_1} E_2$ letting \overline{k} be the quotient map, and define $q: Z_{m_1n_1} \to Z_{f_1f_2}$ by:

(3.1)
$$q(e_1) = p_1(e_1) \qquad e_1 \in E_1$$

(3.2) $q(e_1, a, t) = (a, t)$ $(e_1, a) \in f_1^{-1}(E_1)$

(3.3) $q(e_2) = p_2(e_2) \qquad e_2 \in E_2.$

Let \mathscr{E} be the triple $(Z_{m_1n_1}, q, Z_{f_1f_2})$.

Lemma 3.1. & is a quasifibration.

Proof. We use arguments similar to those given in [4], Proposition 2.3, or [11], Theorem 1.2. By [5], Satz 2.2, & will be a quasifibration if $Z_{f_1f_2}$ can be written as the union of two open sets U and V such that the triples $(q^{-1}(U), q, U), (q^{-1}(V), q, V), (q^{-1}U \cap V, q, U \cap V)$ are quasifibrations, i.e. provided U, V and $U \cap V$ are "distinguished". Let $U = X_1 \cup_{f_1} A \times [0, \frac{3}{4}]$, $V = X_2 \cup_{f_2} A \times (\frac{1}{4}, 1]$. Considered as subsets of $Z_{f_1f_2}$ U and V are open and $Z_{f_1f_2} = U \cup V$. Furthermore, U and V can be deformed onto $i_1(X_1)$ and $i_2(X_2)$, while $g^{-1}(U)$ and $g^{-1}(i_2(X_2))$ respectively, and since α and β were homotopy equivalences on each fiber, the same is true of any stages of the deformations. Hilfssatz 2.10 of [5] then implies that U and V are "distinguished" if $i_1(X_1)$ and $i_2(X_2)$ are. But this is certainly the case since \mathscr{E}_1 and \mathscr{E}_2 are fiber spaces. Since $U \cap V$ is clearly "distinguished" the proof of the lemma is complete.

Remark. The fiber homotopy type of $Z_{m_1n_1}$ will depend on the maps α and β that are used. There may be many possible choices.

We need to replace \mathscr{E} by a true Hurewicz fibration whose fibers will have the same homotopy type as those of \mathscr{E}_1 and \mathscr{E}_2 . This is done in the usual manner, i.e., let

(4)
$$E = \{(z, w) \mid z \in Z_{m_1 n_1}, w \in (Z_{f_1 f_2})^I, q(z) = w(0)\}$$

and define $p: E \to Z_{f_1 f_2}$ by

(6)

(5)
$$p(z, w) = w(1)$$
.

The triple $\tilde{\mathscr{E}} = (E, p, Z_{f_1 f_2})$ is a fiber space and there is a fiber-wise inclusion:

 $Z_{m_1 n_1} \xrightarrow{\mu} E$ $Z_{f_1 f_2}$ $\mu(z) = (z, q(z))$

and μ is a homotopy equivalence.

The only difficulty involves the homotopy type of the fibers of $\tilde{\mathscr{E}}$ and this is why some restriction must be imposed on the fibers of \mathscr{E}_1 and \mathscr{E}_2 ,

which of course are of the same homotopy type. Let us assume, then, that all fibers have the homotopy type of a CW complex. By Proposition 0, [15] the same is true of E_1 and E_2 and hence of $Z_{m_1n_1}$, and E. By Corollary 13, [15] $p^{-1}(z)$ has the homotopy type of a CW complex for any $z \in Z_{f_1f_2}$. Since \mathscr{E} is a quasifibration μ is a weak homotopy equivalence on each fiber and hence a homotopy equivalence, Theorem 3, [16]. This means that the fibers of $\widetilde{\mathscr{E}}$ have the required homotopy type.

Finally if we consider the fiber spaces $i_1^{-1}(\tilde{\mathscr{E}})$ and $i_2^{-1}(\tilde{\mathscr{E}})$ we see that μ induces fiber maps

which are homotopy equivalences on the fibers. Hence by Theorem 6.3 [3] $\mathscr{E}_1 \sim i_1^{-1}(\tilde{\mathscr{E}}), \ \mathscr{E}_2 \sim i_2^{-1}(\tilde{\mathscr{E}}).$

We have proved:

Theorem 3.1. Let $\mathscr{E}_i = (E_i, p_i, X_i)$ i=1, 2 be fiber spaces with fibers of the homotopy type of a CW complex. Let $f_i: A \to X_i$ be maps such that $f_1^{-1}(\mathscr{E}_1)_{\widetilde{f}}$ $f_2^{-1}(\mathscr{E}_2)$. Then there exists a fiber space $\widetilde{\mathscr{E}} = (E, p, B)$ together with inclusion maps $i_1: X_1 \to B$, $i_2: X_2 \to B$ such that $i_1^{-1}(\widetilde{\mathscr{E}})_{\widetilde{f}} \mathscr{E}_1$, $i_2^{-1}(\widetilde{\mathscr{E}})_{\widetilde{f}} \mathscr{E}_2$.

Corollary 3.1. Let $A, X_i, Z, f_i, g_i, i=1, 2$, be as in Definition 2.5 and let $\mathscr{E}_i, i=1, 2$, be as in Theorem 3.1. Under these conditions there is a fiber space $\mathscr{E}' = (E', p', Z)$ such that $g_1^{-1}(\mathscr{E}') \underset{f}{\sim} \mathscr{E}_1, g_2^{-1}(\mathscr{E}') \underset{f}{\sim} \mathscr{E}_2$.

Proof. Construct $Z_{f_1f_2}$ and let $i_s: X_i \to Z_{f_1f_2}$, s=1, 2 be the inclusions. Since $i_1f_1 \sim i_2f_2$ we can consider $Z_{f_1f_2}$ as Z' and conclude that there exists a map $h: Z \to Z_{f_1f_2}$ such that $i_s \sim h g_s$, s=1, 2. Let $\mathscr{E}' = h^{-1}(\widetilde{\mathscr{E}})$. By Theorem 3.1 $i_1^{-1}(\widetilde{\mathscr{E}})_{\widetilde{f}} \mathscr{E}_1$, $i_2^{-1}(\widetilde{\mathscr{E}})_{\widetilde{f}} \mathscr{E}_2$. But $i_s^{-1}(\widetilde{\mathscr{E}})_{\widetilde{f}} (h g_s)^{-1}(\widetilde{\mathscr{E}})$ and $(h g_s)^{-1}(\widetilde{\mathscr{E}})_{\widetilde{f}}$ $g_s^{-1}(h^{-1}(\widetilde{\mathscr{E}}))_{\widetilde{f}} g_s^{-1}(\mathscr{E}')$.

Remark. Let LF(X) be the functor of [15], p. 239, where F has the homotopy type of a CW complex. Then on $\mathscr{C} LF$ is a homotopy functor. For in \mathscr{C} the analog of the wedge is the disjoint union and the wedge condition is automatically satisfied, while the equalizer condition holds by Corollary 3.1.

2. The Base Point Case

Let $f_i: A \to X_i$ be as before and let a_0, x_1, x_2 be corresponding base points. Then $f_i(a_0) = x_i$. We suppose given fiber spaces (\mathscr{E}_1, g_1) and (\mathscr{E}_2, g_2) over X_1 and X_2 respectively such that $f_1^{-1}(\mathscr{E}_1, g_1) \sim f_2^{-1}(\mathscr{E}_2, g_2)$.

Let $\overline{Z}_{f_1f_2}$ be obtained from $Z_{f_1f_2}$ by "collapsing" $a_0 \times I$ to a point and let $\varepsilon: Z_{f_1f_2} \to \overline{Z}_{f_1f_2}$ be the quotient map. For a base point in $\overline{Z}_{f_1f_2}$ choose $\overline{z} = \varepsilon(a_0 \times I)$. Since we are dealing with CW complexes ε is a homotopy equivalence

and letting v be a homotopy inverse for ε such that $v(\bar{z}) = i_1(x_1)$ we consider the fiber space $\bar{\mathscr{E}} = v^{-1}(\tilde{\mathscr{E}}) = (\bar{E}, \bar{p}, \bar{Z}_{f_1 f_2})$.

There are diagrams:

(8.1)

$$E_{1} \xrightarrow{i_{1}} Z_{m_{1}n_{1}} \xrightarrow{\mu} E \xrightarrow{\bar{s}} \overline{E}$$

$$\downarrow p_{1} \qquad \downarrow q \qquad \downarrow p \qquad \downarrow \overline{p}$$

$$X_{1} \xrightarrow{-i_{1}} Z_{f_{1}f_{2}} \xrightarrow{1} Z_{f_{1}f_{2}} \xrightarrow{\bar{s}} \overline{Z}_{f_{1}f_{2}}$$

$$E_{2} \xrightarrow{\bar{i}_{2}} Z_{m_{1}n_{1}} \xrightarrow{\mu} E \xrightarrow{\bar{s}} \overline{E}$$

$$\downarrow p_{2} \qquad \downarrow q \qquad \downarrow p \qquad \downarrow \overline{p}$$

$$X_{2} \xrightarrow{-i_{2}} Z_{f_{1}f_{2}} \xrightarrow{1} Z_{f_{1}f_{2}} \xrightarrow{\bar{s}} \overline{Z}_{f_{1}f_{2}}$$

where \overline{i}_1 and \overline{i}_2 are fiber maps over i_1 and i_2 , and $\overline{\varepsilon}$ is a fiber map over ε constructed by using the fact that ε and ν are homotopy inverses of each other. $\overline{\varepsilon}$ is a homotopy equivalence in each fiber, and hence so are $\overline{\varepsilon} \mu \overline{i}_2$ and $\overline{\varepsilon} \mu \overline{i}_1$. This means that $(\varepsilon i_2)^{-1}(\overline{\mathscr{E}}) \gamma \mathscr{E}_2$ and $(\varepsilon i_1)^{-1}(\overline{\mathscr{E}}) \gamma \mathscr{E}_1$.

However, we are interested in equivalence in the sense of Definition 2.4 and this means that we have to assign a suitable map $g: F \to \overline{E}$ to $\overline{\mathscr{E}}$. Since $f_1^{-1}(\mathscr{E}_1, g_1) \sim f_2^{-1}(\mathscr{E}_2, g_2)$ we can assume that the maps α and β used in constructing $Z_{m_1 n_1}$ are such that:

(9)
$$\alpha g'_1 \sim g'_2, \quad \beta g'_2 \sim g'_1$$

where for $i=1, 2, g'_i: F \rightarrow f_i^{-1}(E_i)$ is given by

(10)
$$g'_i(x) = (g_i(x), a_0)$$

Consider the chain:

(11)
$$F \xrightarrow{g_1} E \xrightarrow{\overline{i_1}} Z_{m_1 n_1} \xrightarrow{\mu} E \xrightarrow{\overline{z}} \overline{E}$$

and let $g = \overline{\varepsilon} \mu \overline{i}_1 g_1$.

Lemma 3.2. $(\varepsilon i_1)^{-1}(\bar{\mathscr{E}}, g) \sim \mathscr{E}_1$ and $(\varepsilon i_2)^{-1}(\bar{\mathscr{E}}, g) \sim \mathscr{E}_2$.

Proof. By definition $(\varepsilon i_1)^{-1}(\overline{\mathscr{E}}, g)$ is assigned the map $\overline{g}_1: F \to (\varepsilon i_1)^{-1}(\overline{E})$ given by

(12) $\overline{g}_1(x) = \left(\overline{e} \ \mu \ \overline{i}_1 \ g_1(x), x_1\right)$

and this is compatible with the fiber map $\alpha_1: E_1 \to (\varepsilon i_1)^{-1}(\overline{E})$ given by:

(13)
$$\alpha_1(e_1) = \left(\overline{\epsilon} \ \mu \ \overline{i}_1(e_1), \ p_1(e_1)\right)$$

This proves the first half of the lemma.

Now let $\alpha_2: E_2 \to (\varepsilon i_2)^{-1}(\overline{E})$ be given by:

(14)
$$\alpha_2(e_2) = (\bar{\epsilon} \mu \, \bar{i}_2(e_2), p_2(e_2)).$$

Composing with g_2 we get

(15)
$$\alpha_2 g_2(x) = (\overline{\epsilon} \mu i_2 g_2(x), x_2)$$

Since $(\varepsilon i_2)^{-1}(\overline{\mathscr{E}}, g)$ is assigned the map \overline{g}_2 corresponding to (12) we have only to prove that

(16)
$$\overline{\varepsilon} \mu \overline{i}_1 g_1 \sim \overline{\varepsilon} \mu \overline{i}_2 g_2$$

as maps from F into $\overline{p}^{-1}(\overline{z})$.

It is sufficient to prove that $\overline{i}_1 g_1$ and $\overline{i}_2 g_2$ are homotopic as maps into $q^{-1}(a_0 \times I)$. By (9) there is a homotopy γ_t , $0 \le t \le 1$, such that $\gamma_0 = \alpha g'_1$, $\gamma_1 = g'_2$. Define $H: F \times I \to Z_{m_1 n_1}$ by :

(17)
$$\begin{cases} H(x,t) = \overline{k}((g_1(x), a_0), 2t) & 0 \le t \le \frac{1}{2} \\ H(x,t) = \overline{k} m_2 \gamma_{2t-1}(x) & \frac{1}{2} \le t \le 1. \end{cases}$$

Then $H(x, 0) = \overline{i}_1 g_1$ and $H(x, 1) = \overline{i}_2 g_2$.

We have, then, the analog of Theorem 3.1 with fiber homotopy equivalence being replaced by equivalence of pairs (\mathcal{E}, g) . Using maps and homotopies preserving base points, Corollary 3.1 can be suitably modified and we have:

Theorem 3.2. The functor $\mathscr{H}(\ ,F)$ satisfies the equalizer condition on \mathscr{C}_0 , if F is of the homotopy type of a CW complex.

3. The Wedge Condition

Let (X_v, x_v) be a collection of spaces with base points and let $X = \forall X_v$ be the corresponding wedge. In X we choose a base point x_0 such that if $h_v: X_v \to X$ is the canonical inclusion $h_v(x_v) = x_0$. We have to prove that:

(18)
$$\Pi \mathscr{H}(h_{\nu}): \quad \mathscr{H}(X, F) \approx \Pi \mathscr{H}(X_{\nu}, F).$$

Lemma 3.3. $\Pi \mathscr{H}(h_{\nu})$ is onto.

Proof. For each index v let y_v be a point and let $A = \bigcup y_v$. Let $X_1 = \bigcup X_v$, i.e., the disjoint union, and let X_2 be a single point which we denote by *. Also let $f_1: A \to X_1$ be given by $f_1(y_v) = x_v$ and let $f_2: A \to *$ be the constant map. Finally let $i_v: X_v \to X_1$ be the inclusion map. By the usual property of the wedge there is a map $h: X \to Z_{f_1, f_2}$ such that

(19)
$$h(\bigcup h_{\nu}) \sim i_1(\bigcup i_{\nu}), \quad h(x_0) = * = i_2(*).$$

Further h is a homotopy equivalence and has an inverse $j: Z_{f_1, f_2} \rightarrow X$ such that

$$(20) jk(A \times I) = x_0.$$

For each v select a representative (\mathscr{E}_{v}, g_{v}) from $\mathscr{H}(X_{v}, F)$. If $\mathscr{E}_{v} = (E_{v}, p_{v}, X_{v})$ let $\mathscr{E}_{1} = (\bigcup E_{v}, \bigcup p_{v}, X_{1})$ and let $\mathscr{E}_{2} = (F, p_{2}, *)$. The fiber spaces $f_{1}^{-1}(\mathscr{E}_{1})$ and $f_{2}^{-1}(\mathscr{E}_{2})$ are certainly fiber homotopy equivalent since $f_{1}^{-1}(E_{1}) = \bigcup (p_{v}^{-1}(x_{v}), y_{v})$ and $f_{2}^{-1}(E_{2}) = \bigcup (F, y_{v})$. Recalling that we can select any fiber homotopy equivalence α let:

(21)
$$\alpha(e_{\nu}, y_{\nu}) = (\overline{g}_{\nu}(e_{\nu}), y_{\nu}),$$

where \bar{g}_v is some inverse for g_v and $e_v \in p_v^{-1}(x_v)$. Now as before construct $\tilde{\mathscr{E}} = (E, p, Z_{f_1 f_2})$ and let $\bar{\mathscr{E}} = h^{-1}(\tilde{\mathscr{E}})$. For each v we have similarly to (8.1) and (8.2)

(22.1)

$$E_{v} \xrightarrow{\overline{i}_{v}} Z_{m_{1}n_{1}} \xrightarrow{\mu} E \xrightarrow{j} \overline{E}$$

$$\downarrow^{p_{v}} \qquad \downarrow^{q} \qquad \downarrow^{p} \qquad \downarrow^{\overline{p}}$$

$$X_{v} \xrightarrow{\overline{i}_{v}} Z_{f_{1}f_{2}} \xrightarrow{1} Z_{f_{1}f_{2}} \xrightarrow{j} X$$

$$F \xrightarrow{\overline{i}_{2}} Z_{m_{1}n_{1}} \xrightarrow{\mu} E \xrightarrow{\overline{j}} \overline{E}$$

$$\downarrow^{p_{2}} \qquad \downarrow^{q} \qquad \downarrow^{p} \qquad \downarrow^{\overline{p}}$$

$$* \xrightarrow{i_{2}} Z_{f_{1}f_{2}} \xrightarrow{1} Z_{f_{1}f_{2}} \xrightarrow{j} X$$

and as in the proof of Lemma 3.2 we can show that

(23)
$$\overline{j} \mu \, \overline{i}_2 \sim \overline{j} \mu \, \overline{i}_\nu \, g_\nu$$

Hence if we assign the map $\bar{g} = \bar{j} \mu \bar{i}_2$ to $\bar{\mathscr{E}}$ we see that $h_{\nu}^{-1}(\bar{\mathscr{E}}, g) \sim (\mathscr{E}_{\nu}, g_{\nu})$. This proves the lemma.

To show that $\Pi \mathscr{H}(h_{\nu})$ is 1-1 we need

Lemma 3.4. Let (\mathscr{E}, g) be a fiber space over $X = \bigvee X_v$. Let $(\mathscr{E}_v, g_v) = h_v^{-1}(\mathscr{E}, g)$. Let $(\overline{\mathscr{E}}, \overline{g})$ be the fiber space constructed in the proof of Lemma 3.3. Then $(\mathscr{E}, g) \sim (\overline{\mathscr{E}}, \overline{g})$.

Proof. Using part of diagram 22.1 we see that we can define a map $\tilde{h}: \overline{E} \to Z_{m_1n_1}$ such that the diagram

(24)
$$\begin{array}{c} \overline{E} \xrightarrow{h} Z_{m_1 n_1} \\ \downarrow^{\overline{p}} \qquad \qquad \downarrow^{q} \\ X \xrightarrow{h} Z_{f_1 f_2} \end{array}$$

is homotopy commutative. \tilde{h} is *not* a fiber map because the homotopy inverse of μ is not. Using the inclusion $E_{\nu} \to E$ and the map $g: F \to E$ one can construct a fiber map $h': Z_{m_1n_1} \to E$ such that the diagram:

is commutative. Combining (25) and (24) we see that $p h' \tilde{h} \sim j h \bar{p} \sim \bar{p}$. Since we are dealing with Hurewicz fiber spaces we can replace $h' \tilde{h}$ by a fiber map f

118

over the identity. Since all maps are homotopy equivalences on the fibers we have $\bar{\mathscr{E}}_{f}\mathscr{E}$. Recalling the definition of \bar{g} from Lemma 3.3 we see that $\tilde{h} \bar{g} \sim i_2$ and hence $h' \tilde{h} \bar{g} \sim g$ as maps from F into E.

Now f is obtained as follows:

(26)
$$f(\overline{e}) = \Lambda(h'h(\overline{e}), w(\overline{e}))(1)$$

where λ is a lifting function for \mathscr{E} and $w(\overline{e})$ is the path in X connecting $ph' \tilde{h}(\overline{e})$ to $\overline{p}(\overline{e})$. Using (26) it is easy to see that $f \overline{g}$ and g are homotopic as maps from F into $p^{-1}(x_0)$, and therefore $(\mathscr{E}, g) \sim (\overline{\mathscr{E}}, \overline{g})$.

Theorem 3.3. $\Pi \mathscr{H}(h_v)$ is an isomorphism.

Proof. Only the one to oneness has to be proved. Let u_1 and u_2 be elements of $\mathscr{H}(X, F)$ such that $\Pi \mathscr{H}(h_v) u_1 = \Pi \mathscr{H}(h_v) u_2$. This means that for every index $v h_v^{-1}(\mathscr{E}^1, g^1) \sim h_v^{-1}(\mathscr{E}^2, g^2)$ where (\mathscr{E}^1, g^1) and (\mathscr{E}^2, g^2) are representatives of u_1 and u_2 . If $h_v^{-1}(\mathscr{E}^1) = (E_v^1, p_v^1, X_v)$ and $h_v^{-1}(\mathscr{E}^2) = (E_v^2, p_v^2, X_v)$ there are fiber maps $f_v: E_v^1 \to E_v^2$ such that:

$$(27) f_{\nu} g_{\nu}^{1} \sim g_{\nu}^{2}$$

where $g_{\nu}^{i} i=1, 2$ is given by $g_{\nu}^{i}(x) = (g_{\nu}(x), x_{\nu})$. If $Z_{m_{1}n_{1}}^{1}$ and $Z_{m_{1}n_{1}}^{2}$ correspond to \mathscr{E}^{1} and \mathscr{E}^{2} respectively the homotopies of (27) will allow us to construct a fiber map

which is a homotopy equivalence on each fiber. By Proposition 5, [15] $\tilde{\mathscr{E}}^1$ and $\tilde{\mathscr{E}}^2$ and hence $\bar{\mathscr{E}}^1$ and $\bar{\mathscr{E}}^2$ will be fiber homotopy equivalent. In fact it is easy to see that $(\tilde{\mathscr{E}}^1, \tilde{g}^1) \sim (\tilde{\mathscr{E}}^2, \tilde{g}^2)$. The theorem follows from Lemma 3.4.

Definition 3.1. Let $\overline{\mathscr{C}}_0$ be the subcategory whose objects are objects X of \mathscr{C}_0 such that for any $Y \in \mathscr{C}_1$ = finite CW complexes, $f: X \to X'$ is an equivalence if and only if $f^*: [Y, X]_0 \approx [Y, X']_0$.

We have shown that $\mathscr{H}(\ , F)$ is a homotopy functor on the category \mathscr{C}_0 . By Theorem 10 of [1] there is a $B_{\infty} \in \mathscr{C}_0$ and a $u \in \mathscr{H}(B_{\infty}, F)$ such that T_u : $[\ , B_{\infty}]_0 \to \mathscr{H}(\ , F)$ given by:

(29)
$$T_u[f] = \mathcal{H}(f) u$$

is an equivalence if $B_{\infty} \in \overline{\mathscr{C}}_0$. (T_u is always an isomorphism on \mathscr{C}_1).

As pointed out by BROWN, $\overline{\mathscr{C}}_0 = \text{category}$ of connected CW complexes, and we need only to show that B_{∞} is connected. T_u is an isomorphism in the category \mathscr{C}_1 of finite CW complexes. On the other hand, if X is a space consisting of two points with base point $x_0 \mathscr{H}(X, F)$ consists of one element. This means that B_{∞} is pathwise connected. This completes the proof of Theorem 2.1.

GUY ALLAUD:

IV. The Associated Principal Fiber Space

Definition 4.1. If $\mathscr{E} = (E, p, X)$ is a fiber space with fiber F let E^F consist of all maps from F into E which are a homotopy equivalence into some $p^{-1}(x)^2$. Let $\tilde{p}f = f(x), f \in E^F$, and set $\mathscr{E}^F = (E^F, \tilde{p}, X)$.

Proposition 4.1. If F is locally compact \mathscr{E}^F is a fiber space, and if H(F)is the space of homotopy equivalences of F into itself, there is a fiber-wise operation $\mu: E^F \times H(F) \to E^F$ given by $\mu(f, h) = f h$. If F is first axiom, then \mathscr{E}^F is a Serre fiber space.

Proof. If F is locally compact, the proposition is Lemma 7 of [15]. See also [4] p. 302. Suppose that F is first axiom. Let Z be a first axiom space and suppose given a homotopy $G: Z \times I \to X$ and a map $f: Z \times \{0\} \to E^F$ such that $\tilde{p}f = G_0$. The map $\bar{f}: Z \times F \to E$ associated to f is continuous, [7], or [10], p. 160. Since & is a fiber space we can apply the covering homotopy theorem to \overline{f} and \overline{G}^3 and extend \overline{f} and hence f to $Z \times I$ as required.

This means that the CHP holds for \mathscr{E}^F with respect to first axiom spaces. and these include finite polyhedra.

Remark. I do not know whether or not \mathscr{E}^{F} is a fiber space if no restriction is made on F. Perhaps an argument using quasi topologies as in [6], would do the trick.

Now let $(\mathscr{E}_{\infty}, g_{\infty})$ be the universal fiber space representing the functor $\mathscr{H}(, F)$. The only restriction we have made on F is that of being of the homotopy type of a CW complex. We can assume therefore that F is a metric space [12], Theorem 2, and hence first axiom; and we can consider \mathscr{E}^F_{∞} as being at least a Serre fibration.

Theorem 4.1. If $X \in \mathscr{C}_0$ and E_{∞} is the total space of \mathscr{E}_{∞} then $[X, E_{\infty}^F] = 1^4$.

Letting $F_{\infty} = p_{\infty}^{-1}(b_{\infty})$ we see that $\tilde{p}_{\infty}^{-1} = F_{\infty}^{F}$ the space of homotopy equivalences from F into F_{∞} . To prove Theorem 4.1 we first prove

Lemma 4.1. Let $i: F_{\infty} \to E_{\infty}$ be the inclusion, then $i^*: [X, F_{\infty}^F] \to [X, E_{\infty}^F]$ is onto.

Proof. Since only the homotopy type of X is involved, we can assume that X is first axiom. Let $\alpha: X \to E_{\infty}^{F}$ be given. If x_0 is the base point of X we can assume that $\tilde{p}_{\infty} \alpha(x_0) = b_{\infty}$. α gives rise to the diagram:

(1)
$$\begin{array}{c} X \times F \xrightarrow{\alpha} E_{\infty} \\ \downarrow^{\pi} \qquad \downarrow^{p_{\infty}} \\ X \xrightarrow{\widetilde{p}_{\infty} \alpha} B_{\infty} \end{array}$$

where $\pi: X \times F \to X$ is the projection. Since $\overline{\alpha}$ is a homotopy equivalence on each fiber, it follows that $(\tilde{p}_{\infty} \alpha)^{-1} (\mathscr{E}_{\infty})$ is fiber homotopy equivalent to a

² All function spaces have the CO-topology and subsets have the relative CO-topology.

³ $\overline{G}(z, x, t) = G(z, t) \ x \in F, \ z \in Z, \ 0 \le t \le 1.$ ⁴ This means that $[X, E_{\infty}^F]$ is the set consisting of one element.

product, and since $\mathscr{H}(X, F)$ and $[X, B_{\infty}]_0$ are equivalent it follows that $\tilde{p}_{\infty} \alpha$ is homotopic to the constant map $X \to b_{\infty}$ (keeping base point fixed). Let H be a homotopy such that

(2)
$$\begin{cases} H(x,0) = \tilde{p}_{\infty} \alpha(x) & x \in X, \ 0 \leq t \leq 1 \\ H(x,1) = b_{\infty} \\ H(x_0,t) = b_{\infty}. \end{cases}$$

Let λ_{∞} be a lifting function for \mathscr{E}_{∞} and define $\overline{H}: X \times F \times I \to E_{\infty}$ by

(3)
$$\begin{cases} \overline{H}(x, y, t) = \lambda_{\infty}(\overline{\alpha}(x, y), H_s(x))(t) & x \in X, y \in F, \ 0 \leq t \leq 1 \\ H_s(x) = \text{path } H(x, s) & 0 \leq s \leq 1. \end{cases}$$

Then $\overline{H}(x, y, 0) = \overline{\alpha}(x, y)$ and $\overline{H}(x, y, 1) \in F_{\infty}$. The usual properties of a lifting function show that \overline{H} induces a map $H': X \times I \to E_{\infty}^{F}$ such that $H'_{0} = \alpha$, $H'_{1}(X) \subset F_{\infty}^{F}$.

Remark. If we select $g_{\infty}: F \to E_{\infty}$ as a base point for E_{∞}^{F} then using a regular lifting function we get that $i^*: [X, F_{\infty}^{F}]_0 \to [X, E_{\infty}^{F}]_0$ is onto.

Theorem 4.1 will then follow from the next lemma.

Lemma 4.2. $i^*[X, F_{\infty}^F] = 1$.

Proof. Let $\varphi: X \to F_{\infty}^{F}$ be given and let $\overline{\varphi}: X \times F \to F_{\infty}$ be the associated map. Let $\pi: X \times F \to F$ be the projection and let x_1, x_2 be two points disjoint from X. Consider:

where f_i , i=1, 2 are the constant maps, and $S(X) = Z_{f_1 f_2}$ is the unreduced suspension. We take $i_2(x_2) = x_2$ as the base point of S(X). As in part 3 we replace the quasifibration $(Z_{\pi, \phi}, q, S(X))$ by a fibration: $\mathscr{E} = (E, p, S(X))$ and we have the usual map

(4)
$$Z_{\pi, \overline{\phi}} \xrightarrow{\mu} E$$
$$S(X)$$

Let $g: F \to E$ be given by (5)

where $\bar{i}_2: F_{\infty} \to Z_{\pi, \bar{\phi}}$ is the inclusion, and consider the pair (\mathscr{E}, g) . \mathscr{E}_{∞} being a classifying fiber space there exist maps f and \bar{f}

x

 $g = \mu \bar{i}_2 g_{\infty}$

(6)
$$E \xrightarrow{\overline{f}} E_{\infty}$$
$$\downarrow^{p} \qquad \qquad \downarrow^{p}$$
$$S(X) \xrightarrow{f} B_{\infty}$$

such that f is a homotopy equivalence on each fiber and

(7)
$$f g \sim g_{\infty}, \quad f(x_2) = x_{\infty}.$$

If $\overline{k}: F \cup X \times F \times I \cup F_{\infty} \to Z_{\pi, \overline{\varphi}}$ is the quotient map this means that $\overline{f} \mu \overline{k}$ restricted to $X \times F \times I$ is a map into E_{∞} and

(8)
$$\bar{f} \mu \bar{k} | X \times F \times \{0\} = \bar{f} \mu \bar{i}_1 \pi,$$

(9)
$$\bar{f} \mu \, \bar{k} \,|\, X \times F \times \{1\} = \bar{f} \mu \, \bar{i}_2 \, \bar{\varphi} \,.$$

 \overline{i}_1 and \overline{i}_2 being the inclusions of F and F_{∞} into $Z_{\pi,\overline{\varphi}}$. Since all maps involved are homotopy equivalences on fibers this is equivalent to a homotopy $H_t: X \to E_{\infty}^F$ such that:

(10)
$$H_0(x) = \bar{f} \mu \bar{i}_1,$$

(11)
$$H_1(x) = (\bar{f} \ \mu \ \bar{i}_2) \cdot \varphi(x)$$

By (7) and (5)

(12)
$$\bar{f} \mu \, \bar{i}_2 \sim \bar{f} \mu \, \bar{i}_2 \, g_\infty \, \bar{g}_\infty \sim (\bar{f} \, g) \, \bar{g}_\infty \sim g_\infty \, \bar{g}_\infty \sim 1$$

 \bar{g}_{∞} being an inverse to g_{∞} . It follows that φ and the constant map $X \rightarrow \bar{f} \mu \bar{i}_1$ are homotopic as maps into E_{∞}^F . But this implies that any map φ is homotopic to the constant map $X \rightarrow g_{\infty}$, proving the lemma and hence Theorem 4.1.

Corollary 4.1.
$$\pi_i(B_\infty, b_\infty) \approx \pi_{i-1}(F^F_\infty, g_\infty)$$
.

Corollary 4.2. If F is compact E_{∞}^{F} is contractible.

Proof. By Corollary 2 of $[12] F_{\infty}^{F}$ has the homotopy type of a CW complex and therefore E_{∞}^{F} does also. But if X is a CW complex any map $\varphi: X \to E_{\infty}^{F}$ is trivial.

V. A Special Case

Let F and F_{∞} be as in Section IV. Let x_0 be a base point for F and let $x_{\infty} = g_{\infty}(x_0)$. By [12], Theorem p.279, we can assume that there is a CW complex Z with base point z_0 such that the pairs (F, x_0) and (Z, z_0) are of the same homotopy type. In fact, Z is a simplicial complex in the weak topology and F is simply Z with the strong topology. Denote by H the set of homotopy equivalences from F into F_{∞}^{5} and by H_0 the subset of H consisting of equivalences $g: F \to F_{\infty}$ such that $g(x_0) = x_{\infty}$.

Lemma 5.1. Let $v: H \to F_{\infty}$ be the evaluation map at x_0 , i.e. $v(g) = g(x_0)$. Then the triple (H, v, F_{∞}) is a quasifibration and $v^{-1}(x_{\infty}) = H_0$.

Proof. Let P be a finite polyhedron and suppose we have a diagram:

(1)
$$F_{\infty}^{F_{\infty}^{F}} v f = K$$

$$P \times \{0\} \subset P \times I \xrightarrow{K} F_{\infty}$$

⁵ That is $H = \tilde{p}_{\infty}^{-1}(x_{\infty}) =$ fiber over x_{∞} of \mathscr{E}_{∞}^{F} .

P and *F* being first axiom this is equivalent to having a map $f^*: P \times F \times \{0\} \to F_{\infty}$ such that $f^*(p, x_0, 0) = x_{\infty}, p \in P$. Now let α and β be maps $\alpha: (F, x_0) \rightleftharpoons (Z, z_0)$: β such that $\alpha \beta \sim 1$, $\beta \alpha \sim 1$, preserving base points. Consider the map $f^*(1 \times \beta \times 1): P \times Z \times \{0\} \to F_{\infty}$. Define $G: P \times Z \times \{0\} \cup P \times z_0 \times I \to F_{\infty}$ by:

(2)
$$\begin{cases} G(p, z, 0) = f(1 \times \beta \times 1) \\ G(p, z_0, t) = K(p, t). \end{cases}$$

 $(P \times Z, P)$ as a CW complex pair has the homotopy extension property and G can be extended to all of $P \times Z \times I$. Let \overline{G} be the extension and consider $\overline{G}(1 \times \alpha \times 1)$: $P \times F \times I \to F_{\infty}$. Since $\overline{G}(p, z_0, t) = G(p, z_0, t)$ we see that if G^* : $P \times I \to F_{\infty}^F$ is the map induced by $\overline{G}(1 \times \alpha \times 1)$ then $v(G^*(p, t)) = G^*(p, t)(x_0) = K(p, t)$, i.e. G^* is a homotopy over K. Also $G^*(p, 0)(x) = f \beta \alpha(x)$ and since $\beta \alpha \sim 1$ keeping x_0 fixed we see that the maps f and $G^* | P \times \{0\}$ are vertically homotopic. This means that the triple (H, v, F_{∞}) has the weak covering homotopy property with respect to maps from finite polyhedra [3], Theorem 5.13. This is sufficient to imply the exactness of the homotopy sequence as remarked by DOLD [3], p.238⁶.

Assume now that F has only a finite number of non zero homotopy groups, i.e., there are integers p and q such that

(3)
$$\pi_i(F, x_0) = 0$$
 $i < q, \ i > p + q - 2, \ p \ge 2, \ q \ge 2.$

Theorem 5.1. v^* : $\pi_i(H, g_{\infty}) \rightarrow \pi_i(F_{\infty}, x_{\infty})$ is an isomorphism if $i \ge p$ and a monomorphism if i=p-1.

Proof. By Lemma 5.1 it is sufficient to show that $\pi_i(H_0, g_{\infty}) = 0$ if $i \ge p-1$. Letting y_0 be a base point for the *i*-th sphere S^i we have to consider homotopy classes of maps $S^i \times F \to F_{\infty}$ with preassigned values on $(S^i \times x_0) \cup (y_0 \times F) = S^i \vee F$. Replacing F by the CW complex Z, we have the problem of finding the homotopy classes of maps of $S^i \times Z$ into F_{∞} , relative to $S^i \vee Z$, which extend $f_0: S^i \vee Z \to F_{\infty}$ given by:

(4)
$$\begin{cases} f_0(y) = x_{\infty} & y \in S^i \\ f_0(z) = g_{\infty} \beta(z) & z \in Z \end{cases}$$

where β is the homotopy equivalence $(Z, z_0) \rightarrow (F, x_0)$. Consider the cohomology groups:

(5)
$$H^n = H^n \left(S^i \times Z, S^i \vee Z; \pi_n(F_{\infty}) \right).$$

By [14], Lemma 1.6, this is equivalent to considering the group of the reduced product $(S^i \otimes Z, y_0 \otimes z_0)$. Since $S^i \otimes Z$ is the *i*-th suspension of Z this means that:

(6)
$$H^n = H^{n-1}(Z, z_0; \pi_n(F_\infty)).$$

⁶ This was also pointed out to me by Dr. MARTIN FUCHS.

If n > p+q-2 then $H^n = 0$. Now suppose that $i \ge p-1$. Then if $n \le p+q-2$, $n-i \le q-1$ and $H^n = 0$. In particular $H^q = 0$ and by a standard result of obstruction theory, any two maps f and g such that $f | S^i \lor Z = g | S^i \lor Z = f_0$ are homotopic relative to $S^i \lor Z$, i.e., $\pi_i(H_0, g_\infty) = 0$ if $i \ge p-1$.

Corollary 5.1. Let $\mathscr{E}_{\infty} = (E_{\infty}, p_{\infty}, B_{\infty})$ be the universal fiber space for F. Then the boundary homomorphism $\delta_{\infty} : \pi_{i+1}(B_{\infty}, b_{\infty}) \to \pi_i(F_{\infty}, x_{\infty})$ is an isomorphism if $i \ge p$ and a monomorphism if i = p - 1.

Proof. If we consider the associated principal fiber space \mathscr{E}^F_{∞} and let $\tilde{\delta}$ be the corresponding boundary homomorphism we have a commutative diagram:

By the theorem, δ_{∞} will have the required property if $\tilde{\delta}$ is an isomorphism for $i \ge p-1$, but by Corollary 4.1 this is the case for all dimensions. As a consequence we have the following theorem, GANEA [8] and also [9]:

Theorem 5.2. Let X have the homotopy type of a CW complex and suppose that $\pi_i(X) = 0$ unless perhaps $q+1 \leq i \leq p+q-1$ $p \geq 2$, $q \geq 2$. Then $\mathscr{H}(, \Omega(X))$ and $[, X]_0$ are naturally equivalent on the category of (p-1)-connected CW complexes.

Proof. Let $\mathscr{E} = (P(X, x_0), p, X)$ and choose a suitable F and a homotopy equivalence $g: F \to \Omega(X, x_0)$. If $(\mathscr{E}_{\infty}, g_{\infty})$ is the classifying fiber space for F there is a map $f: X \to B_{\infty}$ such that $f^{-1}(\mathscr{E}_{\infty}, g_{\infty}) \sim (\mathscr{E}, g)$ i.e., there is a commuting diagram:

(8)
$$P(X, x_0) \xrightarrow{\bar{f}} E_{\infty}$$
$$p \downarrow \qquad \qquad \downarrow p_{\infty}$$
$$X \xrightarrow{f} B_{\infty}$$

such that $f_0 = \overline{f} | p^{-1}(x_0)$ is a homotopy equivalence (in fact, $f_0 g \sim g_\infty$). Corollary 5.1 and the contractibility of $P(X, x_0)$ imply that $f^*: \pi_i(X, x_0) \rightarrow \pi_i(B_\infty, b_\infty)$ is an isomorphism if $i \ge p$. A slight modification of Theorem 16.3 of [13] then implies that $f^*: [Z, X]_0 \approx [Z, B_\infty]_0$ for all (p-1)-connected CW complexes. Now let \overline{g} be a homotopy inverse for g. If we define $g^*: \mathscr{H}(\ , F) \rightarrow \mathscr{H}(\ , \Omega(X))$ by:

(9)
$$g^*\{(\mathscr{E},g')\} = \{(\mathscr{E},g'\overline{g})\},\$$

we see that g^* is one to one and onto. Defining $T: [Z, X]_0 \to \mathscr{H}(Z, F)$ by:

(10)
$$T[h] = \{(f h)^{-1}(\mathscr{E}_{\infty}, g_{\infty})\}, [h] \in [Z, X]_{0}$$

the required equivalence is the composition $g^* \circ T$.

124

As a final remark suppose that $\pi_i(F)=0$ unless perhaps $p \leq i \leq 2p-2$, i.e., p=q. Corollary 5.1 implies that $\pi_i(E_{\infty})=0$ if $i \geq p$. On the other hand there exists a CW complex \overline{B}_{∞} and a map $f: \overline{B}_{\infty} \to B_{\infty}$ such that

(9)
$$\pi_i(\overline{B}_{\infty})=0, \qquad i \leq p-1,$$

(10) $f^*: \pi_i(\overline{B}_{\infty}) \approx \pi_i(B_{\infty}), \quad i \ge p.$

If we consider the induced fiber space $f^{-1}(\mathscr{E}_{\infty})$, we see that the homotopy groups of $f^{-1}(E_{\infty})$ all vanish. Since $f^{-1}(E_{\infty})$ has the homotopy type of a CW complex, [15] Proposition 12, it follows that it is contractible, and this in turn implies that F has the homotopy type of a loop space, namely, $\Omega(\overline{B}_{\infty})$. As pointed out by the referee, this is a weaker version of a known theorem about spaces whose homotopy groups vanish except possibly in the range p to 2p-2.

Bibliography

- [1] BROWN, E. H.: Abstract homotopy theory. A.M.S. Summer Topology Institute, Seattle 1963.
- [2] Cohomology theories. Ann. of Math. 75, 467-484 (1962).
- [3] DOLD, A.: Partitions of unity in the theory of fibrations. Ann. of Math. (2) 78, 223-255 (1963).
- [4] -, and R. LASHOF: Principal quasi fibrations and fiber homotopy equivalence. Illinois J. Math. 3, 285-305 (1959).
- [5] -, u. R. THOM: Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math. 67, 239-281 (1958).
- [6] FADELL, E.: On fiber homotopy equivalence. Duke Math. J. 26, 699-706 (1959).
- [7] Fox, R. H.: On topologies for function spaces. Bull. Am. Math. Soc. 51, 429-432 (1945).
- [8] GANEA, T.: Fibrations and cocategories. Comment. Math. Helv. 35, 15-24 (1961).
- [9] HILTON, P. J.: On excision and principal fibrations. Comment. Math. Helv. 35, 77-84 (1961).
- [10] Hu, S. T.: Elements of general topology. Holden-Day, Inc. 1964.
- [11] JAMES, I. M.: The transgression and Hopf invariant of a fibration. Proc. Lond. Math. Soc. 11, 589-600 (1961).
- [12] MILNOR, J.: On space having the homotopy type of CW complexes. Trans. Amer. Math. Soc. 90, 272-280 (1959).
- [13] SPANIER, E.: Infinite symmetric products, function spaces and duality. Ann. of Math. 69, 142-197 (1959).
- [14] Function spaces and duality. Ann. of Math. 70, 338-378 (1959).
- [15] STASHEFF, J.: A classification theorem for fiber spaces. Topology 2, 239-246 (1963).
- [16] WHITEHEAD, J. H. C.: Combinatorial homotopy I. Bull. Amer. Math. Soc. 55, 213-245 (1949).

Dept. of Math., Western Reserve University, Cleveland (Ohio), USA