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I. Introduction 

Let ~ be the category of CW complexes and let [X, Y] be the set of free 
homotopy classes of maps from X into Y. If F is a finite CW complex, denote 
by LF(X) the set of fiber homotopy equivalence classes of Hurewicz fibra- 
tions (E, p, X) with fibers the homotopy type of F. In [15] STASHEFF showed 
that there exists a CW complex B n such that the functors [ , Bn] and LF(  ) 
are naturally equivalent, the equivalence being obtained by taking induced 
fibrations from a universal one over B n. 

The objective here is to prove a classification theorem similar to STASHEFF'S, 
assuming only that F has the homotopy type of a CW complex. Similar, in 
this case, means that a somewhat different functor than LF(  ) is used (see 
Definition 2.4). This is due to the fact that we work in the category of based 
spaces and based maps, whereas in [15] non-based spaces and free maps are 
used. Restricting F to have the homotopy type of a CW complex is more or 
less forced by the fact that, in general, the transfer from a quasi fibration to 
the associated Hurewicz fibration only preserves the weak homotopy type of 
the fibers. Originally results of [2] were used, but [1] seems preferable. 

In any case, to a space X, in the category cg o of CW complexes with base 
point, we associate a set of equivalence classes of fiber spaces o~f'(X, F) and 
show that ~ (  , F) is a homotopy functor from cgo into the category So 
of sets with base points 1. By BRowN's main result, this means that there exists 
a B| in cgo such that ~4~( , F)  and [ , B~]o are naturally equivalent. Here 
[X, B~]o denotes homotopy classes of maps preserving base points, and as 
before the equivalence is obtained by taking induced fibrations from a uni- 
versal one. The ~ ( X ,  F) we use differs from LF(X) in that a fiber space 
over X is required to carry a homotopy equivalence g: F~p-~(xo) ,  xo being 
the base point, and if g denotes a fiber space over J(, it may be that two pairs 
(gl, gl)  and (8 2, g2) are not equivalent even if 81 =g2- 

The paper is organized as follows: in Section II the needed definitions are 
given, including that of a homotopy functor, and the main result is stated, 
i.e., Theorem 2.1. This is then proven in Section III. Section IV considers 

* Supported in part by the National Science Foundation under Grant NSF GP 2615. 
1 The morphisms in fro are homotopy classes of maps preserving base points, those 

of S O maps preserving base points. 
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the principal fiber space associated to the universal one over B~, and we 
show that its total space is aspherical. Section V gives one application, namely 
a theorem of HXLTON and GANEA on induced principal fibrations. 

It might be mentioned that if B~ denotes the classifying space for ~f  ( , F n) 
where F" is the join of F with itself n times, there are canonical maps B~o 
B~+ 1. In fact using the join operations between fiber spaces we get maps 
B~ x B~ ~ B  "+m. This leads to stable classes of fiber spaces and the study of 
B = (J B~. This will be considered elsewhere. 

Remark. Unless stated all fiber spaces are Hurewicz fiber spaces, gi 7 82 
will mean that 81 and 82 are fiber homotopy equivalent. 

II. Preliminaries and Definitions 

Definition 2.1. Let F be a topological space and let X be a space with 
base point Xo. A fiber space over X with fiber F consists of a sequence of spaces 
and maps 

F g ~E P--~X 
such that: 

a) The triple r = (E, p, X) is a fiber space. 

b) g: F ~ p - l ( X o )  is a homotopy equivalence. 

Remark. If X is not assumed to be arcwise connected, we have to restrict 
ourselves to fiber spaces whose fibers are of the same homotopy type. 

A fiber space will be written as a pair (r g) or simply as g in cases where g 
has no role. 

Definition 2.2. Let (r g) be a fiber space over X with fiber F and let f :  
Y - ~ X  be a base point preserving map. Let f - l ( g )  be the usual fiber space 
over Y induced b y f .  Let g': F - ~ f - I ( E )  be given by g'(x)=(g(x) ,  Yo). Then 

f -  1(8, g) is defined to be ( f -  l(g), g,). 

Definition 2.3. Let (81 gl) and (82 gz) be fiber spaces. A map (81, gl)-~ 
(~2~ g2) is a triple g: F 1 - ~ F 2 , f  : Ei -~E2, f :  X 1 ~ X  2 such that: 

Fi gl .El  ' m >X I 

172 ~ 2  , E2  p2 ~ X2 

(I) is homotopy commutative and (II) is commutative. 

Remark. There is no lost generality in requiring (II) to be commutative 
rather than homotopy commutative since the triple (E2 P2 X2) is a fiber space 
and using a lifting function we can replace f by a fiber map over f .  

Definition 2.4. Let (gl, g~) and ( 8 2 ,  g2) be fiber spaces over X with fiber F. 
We say that they are equivalent if there exists a map (gt, g t ) ~ ( g 2 ,  g2) of 
the form (1, e, 1), and we write (81, g l )~(82 ,  g2). 

Math. Z., Bd. 92 8 
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Lemma 2.1. ~ /s an equivalence relation. 

Proof. By Theorem 6.3 of [3] a must be a fiber homotopy equivalence 
and hence has an inverse fl: E2 ~ El. This shows that N is symmetric. That 
it is reflexive and transitive is clear. 

We will denote the set of equivalence classes of fiber spaces by ~ (X, F). 
In Jt~(X, F) there is a natural base point, namely the class of the trivial 
fibration 

F ~ ~XxF---L~X 

which is also the class of any (g, g) for which E is fiber homotopy equivalent 
to a product. 

Given [f]e[X, Y]o define: 

Yf I f ] :  3r F)--*~(X,  F) 
by 

a/Z I f ]  {(8", g)} ={f-l(e, g)}. 

{ } denoting equivalence class. It is easy to see that W [f]  is well defined and 
that Yfis a contravariant functor from the category eg o to the category S o. 

Example 2.1. Let Xbe  a space such that for some n=>2, 1r,(X, Xo) contains 
an element which is not of order 2. Let P(X, Xo) be the space of paths starting 
at Xo, and let Y2(X, Xo) be the corresponding loop space. Consider the map 
#: g2(X, Xo)-+ P(X, Xo) given by/z(w) =w - ~, where w- l ( t )=w(1- t ) ,  O<t_< I. 
If i: ~2(X, Xo)-~P(X, Xo) is the inclusion we obtain two fiber spaces 

f2(X, * Xo)---->P(X, Xo) P >X 

O(X, Xo) .u >P(X, Xo)--~v X ,  

where as usual p is given by p w=w(1)weP(X,  Xo). Now (8, i) and (8, g) 
cannot be equivalent. To see this, suppose there did exist a fiber map a: 
P(X, Xo)~P(X, Xo) such that ~(w)(1)=w(1) and cr Let ws(t)=w(s t), 
0__<s_< 1, 0=<t_< 1, and consider the map 

H: Y2(X, Xo) x I--,O(X, Xo) 
given by: 

H (w, s) = w~ * [a (ws)] - i 

(* denotes the usual path multiplication). Then: H(w, 0)=Wo*[C~(Wo)] - i  
=x*=cons tan t  loop. H(w, l)=wl*[c~(wl)] - i  =w*[~(w)] -1 and H(w, 1) is 
homotopic to the square map w ~ w 2. But if the square map is homotopically 
trivial, every element of r~,(X)~rc,_l(f2(X) ) will be of order2 for all n's. 
This contradicts the choice of X. 

We now turn to the notion of homotopy functors. 
Definition 2.5. According to BROWN [1], also [2], a contravariant functor 

o~/t~ ego ~So is called a homotopy functor if the following conditions are 
satisfied: 
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Wedge Condition. If V X, is a wedge of spaces and h,: X~ -*V X~ are the 
injections then: 

H ~(h~): Wf(VX~)glINg(X~).  

Equalizer Condition. Suppose given spaces A, Z, X~, i=1, 2, and maps 
fi:  A--*X~, g~: X~ -*Z such that gl f l  " g z f z .  Suppose further that if Z' and 
g[: Xi-- ,Z '  are such that g'lf~ ~'g'lf2 then there exists an h: Z - * Z '  for which 
g'..~hgi. In ~o such a Z always exists givenf~, A, X~, i=1, 2. Under these 
conditions if ui~Yf(X~) satisfy 24~ =Yf(f2)u2 it is required that there 
be a v ~ ( Z )  such that ~ ( g l ) v = u i .  

In the next section it will be shown that J f  (X, F) is a homotopy functor 
if F has the homotopy type of a CW complex. Using the main result of BROWN 
on the realizibility of homotopy functors, Theorem 10, [1], we will have: 

Theorem 2.1. There exists Boosq~o and a fiber space over Boo with fiber 
F, (8~,g~) ,  such that the natural transformation T: IX, Bo~]o ~ ~ ( X ,  F) 
given by 

T [ f ]  = f -  ~(g~o, g~o) 

is an isomorphism for all X e ~ o .  

III. Proof of Theorem 2.1. 

1. The Equalizer Condition 

We begin with a construction in the category cg, i.e. base points will be 
ignored, and consider the following situation: 

Let f~: A-* X1, f2: A ~ X z be given maps. Let 8 i = (El, P l, X1) and 82 = 
(E2,pz ,X2)  be fiber spaces and suppose that fl-l(gl)~,f2-1(82). Consider 
the space Z :1:2 = X1 w : ~ A • I u :2 X2 , i. e., Z : ~ :2 is the quotient space obtained 
from X 1 u A x Iw X2 by the identification 

[ (a, O) =i t  (a) 
(1) "t 

((a ,  1) =f~ (a). 

a s A  

Let k: X ,  w A x I u  Xz ~ Z:1:2 be the quotient map and let il : X ,  ~ Z: ,  :2, 
i2:X2 ~Z:1:2 be the canonical inclusions. Also let m~:f i - l (E~)~E, ,  i=1, 2 
be the canonical maps and finally let e and fl be fiber maps 

(2) 
f~ J(E 1) ---------~------/ff 1(E2) 

\ /  
A 

such that e fl 71 fie ~, 1. Define maps nl : fs 1 (El) ~ E2 ' n2: f ;  t (Ez) ~ E1 by 

n l = m  2 o~ n 2 .~ -m 1 ft. 

8* 
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Now form the space Z,,,,~ =E l  w,,~.f~-l(E1)xlw,~ E2 letting k be the 
quotient map, and define q: Z,,~,I ~ Z:x :2 by: 

(3.1) q(el)=pl(el) eltE1 

(3.2) q(el, a, t) =(a,  t) (e l, a)ef~l(E1) 

(3.3) q (e2) = P2 (e2) e2 ~ E2. 

Let g be the triple (Zm ....  q, Z:I  ~'2). 

Lemma 3.1. g is a quasifibration. 

Proof. We use arguments similar to those given in [4], Proposition 2.3, 
or [11], Theorem 1.2. By [5], Satz 2.2, g will be a quasifibration if Z: , :2  
can be written as the union of two open sets U and V such that the triples 
(q-l(U), q, U), (q-l(V), q, V), (q-1 Uc~ V, q, Uc~ V) are quasifibrations, i.e. 
provided U, V and Uc~ V are "distinguished". Let U=X i w:~A • [0, �88 
V=X: w:~A • (�88 1]. Considered as subsets of Z:~:~ U and V are open and 
Z:~:~=Uw V. Furthermore, U and V can be deformed onto il(XO and 
i2(X2), while g-~(U) and g-a(V) can be deformed in a fiber-wise manner 
onto g -  l(il(X1) ) and g -  l(i 2 (X2)) respectively, and since g and fl were homotopy 
equivalences on each fiber, the same is true of any stages of the deformations. 
Hilfssatz 2.10 of [5] then implies that U and V are "distinguished" if i~(X1) 
and i2 (X2) are. But this is certainly the case since gl and g2 are fiber spaces. 
Since Uc~ V is dearly "distinguished" the proof of the lemma is complete. 

Remark. The fiber homotopy type of Zm,,~ will depend on the maps 
and fl that are used. There may be many possible choices, 

We need to replace g by a true Hurewicz fibration whose fibers will have 
the same homotopy type as those of g~ and g2. This is done in the usual 
manner, i.e., let 

(4) E = {(z, w) [ z ~ Z . . . . .  w 6 (Z j. 1 : J ,  q (z) = w (0)} 

and define p: E ~ Z:1:2 by 

(5) p(z, w) = w(1). 

The triple ~---(E, p, Z:~ :~) is a fiber space and there is a fiber-wise inclu- 
sion: 

(6) \ / 

Zfl  f2 

#(z) = (z, q (z)) 

and # is a homotopy equivalence. 
The only difficulty involves the homotopy type of the fibers of g and 

this is why some restriction must be imposed on the fibers of g 1 and ~2, 
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which of course are of the same homotopy type. Let us assume, then, that 
all fibers have the homotopy type of a CW complex. By Proposition 0, [15] 
the same is true of E~ and E2 and hence of Z,,~,~, and E. By Corollary 13, 
[15] p-l(z)  has the homotopy type of a CW complex for any z~Zi~ ~ .  Since g 
is a quasifibration # is a weak homotopy equivalence on each fiber and hence 
a homotopy equivalence, Theorem 3, [16]. This means that the fibers of 
have the required homotopy type. 

Finally if we consider the fiber spaces i7 l(o~) and i f  1(~) we see that/~ 
induces fiber maps 

E1 ....... ~,~ , i l l(E) E2 u~___.~ i21(E) 
(7) \ / \ / 

x, x~ 

which are homotopy equivalences on the fibers. Hence by Theorem 6.3 [3] 

~ 7 i 7 ~ ( ~ ) ,  g27i f~(r  

We have proved: 

Theorem 3.1. Let gi=(Ei,p~, J(i) i=1,  2 be fiber spaces with fibers of the 
homotopy type of a CW complex. Let f~: A ~ X i  be maps such that f~l(gl)~[ 
f21(r Then there exists a fiber space g=(E ,p ,B)  together with inclusion 
maps ii: Xt ~ B ,  i2: X2---~B such that i [ - l (g )7g l ,  i 2 1 ( ~ ) 7 r  2. 

Corollary 3.1. Let A, X i, Z,f~, gi, i= 1, 2, be as in Definition 2.5 and let 
g~, i=1 ,  2, be as in Theorem 3.1. Under these conditions there is a fiber space 
g' =(E',p', Z) such that gi-l(g ' )~,gl ,  g~' l(8 ')7,g 2. 

Proof. Construct Zs~I~ and let i~: Xi--*ZI~I~, s = l ,  2 be the inclusions. 
Since ilfl,,~izf2 we can consider ZI~I: as Z'  and conclude that there 
exists a map h: Z ~ ZI, I~ such that i~ ,-~ h g~, s = 1, 2. Let g '  = h-  ~ (g). By Theo- 
rem3.1 i l-1(g)7r i2-1(g)~,g2 . But ig~(g)7(h g~)-~(g) and (h g~)-a(g)7 

g; ~(h- ~(e))7 g; ~(e'). 
Remark. Let LF(X) be the functor of [15], p. 239, where F has the homo- 

topy type of a CW complex. Then on cg LF is a homotopy functor. For in cg 
the analog of the wedge is the disjoint union and the wedge condition is 
automatically satisfied, while the equalizer condition holds by Corollary 3.1. 

2. The Base Point Case 

Letf~: A -~X~ be as before and let ao, xl,  x2 be corresponding base points. 
Then fi(ao)=Xi. We suppose given fiber spaces (81, gl) and (g2,g2) over 
Jr1 and J(2 respectively such that f l -  1(8~, gl) ~ f [  l(g2, g2)- 

Let ZI1 ~ be obtained from Zj., J'2 by "collapsing" ao x I to a point and let 
8: ZIls2--*Zy~s 2 be the quotient map. For a base point in Zs~s2 choose ~=  
e (ao x I). Since we are dealing with CW complexes e is a homotopy equivalence 
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and letting v be a homotopy inverse for s such that v(z-)=ij(x~) we consider 
the fiber space f f = v - l ( g ) = ( E ,  ~, Zslr2 ). 

There are diagrams: 

Ei T, ,Zml, ,__ " >E ~ ~E 

Xt ~1 ,Zs, s2 ~.__~Zs, s2___~Z~,s~ 

E2 h ,Z,nlnl__ ~ 'E  ;" 'F. 

where ii and i2 are fiber maps over il and i 2, and ~ is a fiber map over 
constructed by using the fact that s and v are homotopy inverses of each 
other. ~ is a homotopy equivalence in each fiber, and hence so are ~/~ i2 and 
~ # i l .  This means that (e i2)-a(g)Zg2 and ( e i i ) - l ( g ) T g l .  

However, we are interested in equivalence in the sense of Definition 2.4 
and this means that we have to assign a suitable map g: F ~ E  to ft. Since 
f ( i ( g l ,  g l )~ . . f f l (82 ,g2)  we can assume that the maps c~ and/3 used in con- 
structing Z,,, , ,  are such that: 

(9) . . . .  ~g* ~g2 ,  f l g 2~g l  

where for i=1 ,  2, g':  F-+f,-I(E,)  is given by 

(10) g; (x) = (g/(x), ao). 

Consider the chain: 

(11)  e ~' , e .  7' ,Z~,n~ " - - -~eJ~E 

and let g =g # i, g , .  

Lemma 3.2. (g i , ) - l ( &  g ) ~ # ,  and (s i2)-1(~, g ) ~ 4 .  

Proof. By definition (e i i ) - l (  o~, g) is assigned the map ~,: F ~ ( s  i ,)-* (E) 
given by 

(12) g,(x) =(g/~ ( g , ( x ) ,  x,)  

and this is compatible with the fiber map e , :  E , -+(e  i,)-l(Ev) given by: 

(13) el(e,)  = (E# ((e l ) ,  pl(ei)) �9 

This proves the first half of the lemma. 
Now let ez: Ea -+ (e i2)- 1 (~) be given by: 

(14) o~2 (e2) = (g~ i2 (e2), P2 (e2)) �9 
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Composing with g2 we get 

(15) ~2 g2 (x) =ff~ i~ g~ (x), x2). 

Since (e i2)-i(~, g) is assigned the map gz corresponding to (12) we have 
only to prove that 

(16) ~# fl g~ ~~-# f2 g2 

as maps from F into ~-~(z-). 

It is sufficient to prove that i~ g~ and i2 g2 are homotopic as maps into 
q-~(aoXI). By (9) there is a homotopy Yt, 0 < t < l ,  such that yo---~g~, 
yl=g~.  Define H: FxI--*Z~I~ by : 

fH(x,  t)=-k((gl(x ), ao), 2t) 0< t< �89  

(17) ,;~.H(x, t)=-km2v2t-t(x) �89 

Then H(x, O) =il gl and H(x, 1) =i2 g2. 
We have, then, the analog of Theorem 3.1 with fiber homotopy equivalence 

being replaced by equivalence of pairs (g, g). Using maps and homotopies 
preserving base points, Corollary 3.1 can be suitably modified and we have: 

Theorem 3.2. The functor ~ (  , F) satisfies the equalizer condition on ~o, 
if F is of the homotopy type of a CW complex. 

3. The Wedge Condition 

Let (Xv, xv) be a collection of spaces with base points and let X=VXv 
be the corresponding wedge. In X we choose a base point Xo such that if 
hv: X~--*X is the canonical inclusion hv(x~)=x o. We have to prove that: 

(18) / / ~ ( h v ) :  Nt'(X,F)~II ~(Xv,  F). 

Lemma 3.3. 1-I J~f (hO is onto. 

Proof. For each index v let Yv be a point and let A = U Yr. Let X1 = U X,, 
i.e., the disjoint union, and let -g2 be a single point which we denote by ,. 
Also let f l :  A ~X1 be given byf~(y~)=x, and let f2: A ~ *  be the constant 
map. Finally let i v: X v ~ X1 be the inclusion map. By the usual property of 
the wedge there is a map h: X-~Z~II2 such that 

(19) h(U hv)'i~(U i,), h(xo)=,=i2(, ) . 

Further h is a homotopy equivalence and has an inverse j :  Zs~ ~'2 ~ X such that 

(20) j k(A x I) =x0.  

For each v select a representative (oa~, gO from 2/f (X,, F). If g,  = (Ev, p~, X~) 
let 81=(UEv,  Up~,X1) and let g2=(F, p2, ,). The fiber spaces f~-l(gl) 
and f ; l ( g2 )  are certainly fiber homotopy equivalent since f l - l (E1)=  
U (P~ ~ (x~), y,) and f~- 1(E2) = ~) (F, Yd. Recalling that we can select any 
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fiber homotopy equivalence c~ let: 

(21) e(e,,  y~)=(g~(e,), y,) ,  

where ~ is some inverse for g~ and e, ep~'*(x~). Now as before construct 
~ = ( E , p ,  Z r~s-~) and let ~ = h - l ( ~ ) .  For each v we have similarly to (8.1) 
and (8.2) 

E~" 7~ ,Z,n~,,~ "' " ,E J ~ff. 

X~ i~ , - .  1 - - J ~ X  "----:---+Z~f l f 2  ~ Z f  l f2  

(22.2) 

F---:-~Zm, ,, 

i2 1 " 
* - - : ' ~  Z f l  f 2  ~ Z f ,  f2 J-~ X 

and as in the proof of Lemma 3.2 we can show that 

(23) J #  [2 %/#  i~ g~. 

Hence if we assign the map ~=jkt72 to ~ we see that h~l(~ ,g)~(8~,g~) .  
This proves the lemma. 

To show that IlJC'(h~) is 1 - 1  we need 

Lemma 3.4. Let (8, g) be afiber space over X = V X~. Let (8~, g ~) = h~ 1 (g, g). 
Let (~, g) be the fiber space constructed in the proof of Lemma 3.3. Then (g, g),,~ 
(& ~). 

Proof. Using part of diagram 22.1 we see that we can define a map ~t: 
~Z, , , ,~ such that the diagram 

h" ~Zm,.~ 

X h ~Zf~ f2 

is homotopy commutative, h is not a fiber map because the homotopy inverse 
of # is not. Using the inclusion E~ ~ E  and the map g: F--*E one can construct 
a fiber map h': Z,,~,~ ~ E  such that the diagram: 

Zm,.~ h. , E  

(25) lq ip 

Z f l  f2 J :' S 

is commutative. Combining (25) and (24) we see that p h' h ~ j h  ~..~ff. Since 
we are dealing with Hurewicz fiber spaces we can replace h' h by a fiber m a p f  
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over the identity. Since all maps are homotopy equivalences on the fibers 
we have dT~,~. Recalling the definition of ~ from Lemma 3.3 we see that 

g~i2  and hence h' h ~,-~g as maps from F into E. 

Now f is obtained as follows: 

(26) f (~) = A (h' h (~), w (~)) (1) 

where 2 is a lifting function for g and w(e-) is the path in X connecting ph' h (e-) 
to ~(e-). Using (26) it is easy to see t h a t f  ~ and g are homotopic as maps from F 
into p-l(Xo), and therefore (d ~ g )~ (g ,  ~). 

Theorem 3.3. Il Yf (h,) is an isomorphism. 

Proof. Only the one to oneness has to be proved. Let ua and uz be elements 
of Jr (X,  F) such that II~r ul=lI~(h~)u2.  This means that for every 
index v h; a(gl, g l )~h;  t(g2, g 2) where (gl, gl) and (gZ, g2) are representa- 
tives ofua  a n d u  2 . I f  -a 1 1 1 h~ ( # ) = ( E g , p ~ ,  X~) and h;l(gz)=(E~,p~, X~) there 
are fiber maps f~: E~ ~ E~ z such that: 

(27) ~ 1 z J~ g. g~ 

�9 1 2 where g{, i =  1, 2 is given by g~(x)=(g~(x), x~). If Z=,.~ and Z,~.~ correspond 
to g* and g2 respectively the homotopies of (27) will allow us to construct a 
fiber map 

Zlmlnl f ~ 2 " Z m l  nl 

(28) 

Zf~ fz 

which is a homotopy equivalence on each fiber. By Proposition 5, [15] ~ 
and ~z and hence ~1 and o a2 will be fiber homotopy equivalent. In fact it is 
easy to see that (g71, ~t)~,,(oa2 ' ~,z). The theorem follows from Lemma 3.4. 

Definition 3.1. Let ~o be the subcategory whose objects are objects X 
of ego such that for any Yeeg~ =finite CW complexes, f :  X--+X' is an equiv- 
alence if and only if f * :  [Y, X]o ~[Y, X']o. 

We have shown that ~ ( , F) is a homotopy functor on the category eg o. 
By Theorem 10 of [1] there is a Booeego and a ueaf(B~,  F) such that T,: 
[ , Boo]o --+ ~ (  , F) given by: 

(29) T.[f] = Jr( f )  u 

is an equivalence if B ,  egPo. (T,, is always an isomorphism on cg~). 

As pointed out by BROWN, cR o =category of connected CW complexes, 
and we need only to show that B ,  is connected. T, is an isomorphism in the 
category egt of finite CW complexes. On the other hand, if X is a space con- 
sisting of two points with base point X o ~ ( X  , F) consists of one element. 
This means that B ,  is pathwise connected. This completes the proof of Theo- 
rem 2.1. 
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IV. The Associated Principal Fiber Space 

Definition 4.1. If ~=(E,p,  X) is a fiber space with fiber F let E e consist 
of all maps from F into E which are a homotopy equivalence into some 
p - l ( x  ) 2. Let f f f = f ( x ) , f s E  e, and set ~V=(EF,/~, X). 

Proposition 4.1. I f  F is locally compact ~v is a fiber space, and if H(F) 
is the space of homotopy equivalences o f F  into itself, there is a fiber-wise opera- 
tion #: Ee x H(F) ~ E e given by #(f, h)=f  h. l f  F is first axiom, then E e is a 
Serre fiber space. 

Proof. If F is locally compact, the proposition is Lemma 7 of [15]. See 
also [4] p. 302. Suppose that F is first axiom. Let Z be a first axiom space 
and suppose given a homotopy G: Z • I ~ X  and a map f :  Z • (0)-+ E • such 
that f f f=G o. The map f :  Z x F ~ E  associated to f is continuous, [7], or 
[10], p. 160. Since ~ is a fiber space we can apply the covering homotopy 
theorem to f and d a and extend f and hence f to Z • I as required. 

This means that the CHP holds for 8 F with respect to first axiom spaces, 
and these include finite polyhedra. 

Remark. I do not know whether or not ~ r  is a fiber space if no restriction 
is made on F. Perhaps an argument using quasi topologies as in [6], would 
do the trick. 

Now let (6~o~, go~) be the universal fiber space representing the functor 
~ (  , F). The only restriction we have made on F is that of being of the 
homotopy type of a CW complex. We can assume therefore that F is a metric 
space [12], Theorem 2, and hence first axiom; and we can consider ~ as 
being at least a Serre fibration. 

Theorem 4.1. I f  Xscgo and Eo~ is the total space of ~| then [X, E ~ ] = I  4. 

Letting F~ =p~l(b~)  we see t h a t / ~ 1  = F ~  the space of homotopy equiv- 
alences from F into Fo~. To prove Theorem 4.1 we first prove 

Lemma4.1.  Let i: F ,  ~ E .  be the inclusion, then i*: IX, F~]~[X,E~]  
is onto. 

Proof. Since only the homotopy type of X is involved, we can assume 
that X is first axiom. Let c~: X ~ E ~  be given. If Xo is the base point of X we 
can assume that/~o cz(x0)=b~. ~ gives rise to the diagram: 

X x F  - ~  >E~ 

X v~-~B~ 

where n: X x F ~ X  is the projection. Since ~ is a homotopy equivalence on 
each fiber, it follows that (ig~ a)-1(8~) is fiber homotopy equivalent to a 

z All function spaces have the CO-topology and subsets have the relative CO-topology. 
3 G(z,x,t)=G(z,t) x~F, z~Z, 0_<t~<l. 
4 This means that [X, E~ ] is the set consisting of one element. 
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Lemma 4.2. i* [X, Fr~] 

Proof. Let cp: X--* F~ 
map. Let re: XxF-~Fbe 
from X. Consider: 

product, and since J(f(X, F) and [X, B~]o are equivalent it follows that if| a 
is homotopic to the constant map X~boo (keeping base point fixed). Let H 
be a homotopy such that 

{ H(x,O)=~,a(x) xeX, 0_<t_<l 

(2) H(x, 1) = boo 

H (xo , t) = boo. 

Let ;t~ o be a lifting function for g| and define H: XxFxI-~E~ by 

( H(x,y,t)=2~(5(x,y),H~(x))(t) xeX, yer ,  0_<t<_l 

(3) H~(x)=pathH(x, s) 0_<s_<l. 

Then _H (x, y, O)=5(x, y) and H(x,y, 1)eF~o. The usual properties of a 
lifting function show that R induces a map H': Xx IoE~ such that H~ =~, 
H~ (X) c F~. 

Remark. If we select goo: F---rEoo as a base point for E~ then using a 
regular lifting function we get that i*: [X, r [X, e F~o]o-~ E~]o is onto. 

Theorem 4.1 will then follow from the next lemma. 

=1. 

be given and let ~: XxF-~F~o be the associated 
the projection and let xl, x2 be two points disjoint 

F w,~ X x F •  w~F~=Z,~,~ 

xlus~ X x I  u~2x2---S(X ) 

wherefi ,  i=l, 2 are the constant maps, and S(X)=Z~2 is the unreduced 
suspension. We take i2(x2)=x2 as the base point of S(X). As in part 3 we 
replace the quasifibration (Z~,~, q, S(X)) by a fibration: ~=(E,p, S(X)) 
and we have the usual map 

Z~,~ " ----~ E 
(4) 

s(x) 
Let g: F---> E be given by 

(5) g=~  z2 goo 

where i2 : F~ --* Z~, ~ is the inclusion, and consider the pair (g, g). 8~ being a 
classifying fiber space there exist maps f and f 

E Y >Eo~ 

S(X) ~B~o 
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such that f is a homotopy equivalence on each fiber and 

(7) f g ~ goo, f (x2)  = x~o. 

If k: F u X x F x I u F ~ Z ~ , 7 o  is the quotient map this means that f # k  
restricted to X x F x I is a map into Eoo and 

(8) f # k l X x F x  { 0 } = f p i l  ~, 

(9) f # k [ X x F x { 1 } = f  #i2~o. 

31 and 3 2 being the inclusions of F and Foo into Z~, ~. Since all maps involved 
are homotopy equivalences on fibers this is equivalent to a homotopy Ht: 
X ~ E~ such that: 

(10) Ho(x)=f  # i 1, 

Hi(x)=(] # i2)" 
By (7) and (5) 

(12) f # i2 '~'] # i2 goo -goo ,w(] g) goo "~go~ g~o ,,~1. 

goo being an inverse to go~. It follows that q~ and the constant map X--~f# il 
are homotopie as maps into E~.  But this implies that any map q~ is homotopic 
to the constant map X ~ g ~ ,  proving the lemma and hence Theorem 4.1. 

Corollary 4.1. ~i(B~o, b~) gz~i_ I(F~, g~o). 

Corollary 4.2. I f  F is compact E~ is contractible. 

Proof. By Corollary 2 of [12] F~ has the homotopy type of a CW complex 
and therefore E~ does also. But if X is a CW complex any map q~: X ~ E ~  
is trivial. 

V. A Special Case 

Let F and F~ be as in Section IV. Let Xo be a base point for F and let 
xo~ =g~(Xo). By [12], Theorem p.279, we can assume that there is a CW 
complex Z with base point z o such that the pairs (F, x0) and (Z, Zo) are of 
the same homotopy type. In fact, Z is a simplicial complex in the weak topo- 
logy and F is simply Z with the strong topology. Denote by H the set of 
homotopy equivalences from F into Foo s and by Ho the subset of H consisting 
of equivalences g: F--*Fo~ such that g(Xo)=Xo ~. 

Lemma 5.1. Let v: H ~ Fo~ be the evaluation map at Xo, i.e. v(g)=g(xo). 
Then the triple (H, v, F~) is a quasifibration and v- l(x~)=Ho. 

Proof. Let P be a finite polyhedron and suppose we have a diagram: 

(1) ;/i" ~ f 

P x { O } ~ P x I  ~C.,Foo 

5 That is H=,~l(x~)=f iber  over xoo of g~. 
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P and F being first axiom this is equivalent to having a map f *  : P x F x {0} -+ F~o 
such that f *  (p, Xo, 0) =xo~, peP. Now let e and/~ be maps ~: (F, Xo)~,__ (Z, zo): 
fi such that e / ~  1, fl c~~ 1, preserving base points. Consider the map 
f* ( 1  x / ~ x l ) :  PxZx{O}--+F~. Define G: PxZx{O}voPxzoxI--+Foo by: 

G(p , z ,O)=f ( l x f l x l )  

(2) G(p, z o t)=K (p, t). 

(P x Z, P) as a CW complex pair has the homotopy extension property and 
G can be extended to all of P x Z x L Let G be the extension and consider 
G(1 •  1): PxFxI--*F~o. Since G(p, Zo, t)=G(p, Zo, t) we see that if G*: 
PxI--*F~ is the map induced by G(1 x ~ x  1) then v(G*(p, t))=G*(p, t)(Xo) 
=K(p ,  t), i.e. G* is a homotopy over K. Also G*(p,O)(x)=ffl~(x) and 
since/3 ~ 1 keeping x o fixed we see that the m a p s f  and G*[P x {0} are verti- 
cally homotopic. This means that the triple (H, v, Fo~) has the weak covering 
homotopy property with respect to maps from finite polyhedra [3], Theorem 
5.i3. This is sufficient to imply the exactness of the homotopy sequence as 
remarked by DOLD [3], p. 238 6. 

Assume now that F has only a finite number of non zero homotopy 
groups, i.e., there are integers p and q such that 

(3) rti(F, xo )=0  i<q, i > p + q - 2 ,  p>2, q>2. 

Theorem 5.1. v*: ~i(H, goo)~Tri(Fo~, x~) is an isomorphism if i>=p and 
a monomorphism if i =p-1 .  

Proof. By Lemma 5.1 it is sufficient to show that rt i(Ho, g~) = 0 if i > p -  1. 
Letting Yo be a base point for the i-th sphere S i we have to consider homotopy 
classes of maps S ~ • F-+ Foo with preassigned values on (S i • Xo) vo (Yo x F)  = 
S i v F. Replacing F by the CW complex Z, we have the problem of finding 
the homotopy classes of maps of S~x Z into F~ ,  relative to S ~ v Z, which 
extend fo:  S~ v Z ~ F~o given by: 

S fo (Y) = x ~ y e S i 
(4) 

fo (z) = g ~/~ (z) z e z 

where fl is the homotopy equivalence (Z, Zo) ~ (F, Xo). Consider the cohomology 
groups: 

(5) n "  = H ~ • Z,  S' v Z; ,~.(F~)). 

By [14], Lemma 1.6, this is equivalent to considering the group of the reduced 
product (Sr yo~Zo). Since S ~ Z  is the i-th suspension of Z this means 
that: 

(6) H" = H"- i (Z,  z o ; re, (F~)). 

6 This was also pointed out to me by Dr. MARTIN FUCrtS. 
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If n > p + q - 2  then H"=0. Now suppose that i > p - 1 .  Then if n < p + q - 2 ,  
n - i < q - I  and H"=0.  In particular H~=0 and by a standard result of ob- 
struction theory, any two maps f  and g such t ha t f  IS z v Z = g ]  S t vZ=fo  are 
homotopic relative to S i vZ ,  i.e., zh(Ho, g~o) =0 if i > p -  1. 

Corollary S.1. Let goo=(Eoo,poo, Boo) be the universal fiber space for F. 
Then the boundary homomorphism 6 oo : rh + 1(Boo, boo) ~ ~ ~ ( Foo , x ~) is an iso- 
morphism if i>=p and a monomorphism if i = p -  1. 

Proof. If we consider the associated principal fiber space g r and let 
be the corresponding boundary homomorphism we have a commutative 
diagram: 

~i+I(B~, boo) ~ -~(Foo, xoo) 
\ / (7) ~,,,~V/o, 

~(H, goo) 

By the theorem, 800 will have the required property if 6 is an isomorphism 
for i>_p-1, but by Corollary4.1 this is the case for all dimensions. As a 
consequence we have the following theorem, GAN~A [8] and also [9]: 

Theorem 5.2. Let X have the homotopy type of a CW complex and suppose 
that rq(X) =0 unless perhaps q+ 1 <=i<p+q- 1 p>=2, q>_>_2. Then ~ (  , f2(X)) 
and [ , X]o are naturally equivalent on the category of (p-O-connected CW 
complexes. 

Proof. Let #=(P(X,  xo), p, X) and choose a suitable F and a homotopy 
equivalence g: F ~ O ( X ,  Xo). If (r is the classifying fiber space for F 
there is a map f :  Z ~ B ~  such that f -  1(r g~)~(o ~, g) i.e., there is a commut- 
ing diagram: 

P(X, xo)- y ,Eoo 

X ~ -+Boo 

such that f o = f [ p - l ( x o )  is a homotopy equivalence (in fact, fog~g~) .  
Corollary 5.1 and the contractibility of P(X, Xo) imply that f* :  ~(X,  xo) 
~i(B~, b~) is an isomorphism if i>p. A slight modification of Theorem 16.3 
of [13] then implies that f * :  [Z, X]o ~,[Z, B~]o for all (p-O-connected CW 
complexes. Now let ~ be a homotopy inverse forg. If we define g*: ~'g( , F) 
~ (  , f2(X)) by: 

(9) g* {(g, g')} = {(~, g' g)}, 

we see that g* is one to one and onto. Defining T: [Z, X]o ~Yf(Z, F) by: 

(10) T[h] = ( ( f  h ) - ' ( e~ ,  g~)}, [h] ~ rZ, X]o 

the required equivalence is the composition g*o T. 
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As a final remark suppose that ~i(F)=0 unless perhaps p<i<2p-2,  
i.e., p=q. Corollary 5.1 implies that 7h(E~)=0 if i>p. On the other hand 
there exists a CW complex B~ and a map f :  B~ ~B~ such that 

(9) ~,(~)=0, i__<p- 1, 

(10) f * :  zci(B~o)~i(Boo), i > p .  

If we consider the induced fiber space f-l(goo), we see that the homotopy 
groups off -J (E |  all vanish. Sincef-l(E|  has the homotopy type of a CW 
complex, [15] Proposition 12, it follows that it is contractible, and this in 
turn implies that F has the homotopy type of a loop space, namely, ~(Boo). 
As pointed out by the referee, this is a weaker version of a known theorem 
about spaces whose homotopy groups vanish except possibly in the range p 
to 2 p - 2 .  
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