
REMARKS ON THE LOOP SPACE OF A FIBRATION

GuY ALLAUD

Introduction. The fact that the existence of a cross section for a Hurewicz
fibration 8 (E, p, B) implies that the loop space of E splits in a natural way
is well known and has appeared in many variants. On the other hand, the
converse is certainly false for let ]:X --> Y be a map such that f(]):f(X, Xo) -f(Y, yo) is inessential but ] is not, then, if 8(Y) is the fibration of paths in Y
based at yo the fiber space 1-1(8(Y)) has no cross section but its loop space
splits as a product (at least if the spaces involved are CW complexes). The
purpose of this note is to point out that if we consider the loop space f(E, Xo)
as a fibration over f(B, bo) with fiber f(F, Xo), F p-l(bo), Xo F, then its
fiber homotopy type is essentially determined (See Corollary 2.1 for a precise
statement) by the homotopy class of the map : f(B, bo) -- F induced by a
lifting function. ( gives rise to the boundary homomorphism in the exact.
sequence of 8.) For instance, in the example above the class of is obviously
zero. Our result contains the standard case for fibrations with cross sections
but, in addition, it applies to situations where cross sections do not exist e.g.,
the generalized Whitney sum (3).
Some remarks about notation and conventions. A fiber space means a triple

8 (E, p, B), p’E -- B continuous, which has the covering homotopy property
(CHP). f(X, x0) denotes the space of loops in X based at Xo and x* stands
for the constant path at x all path spaces being given the C-0 topology. The
word "map" will mean continuous map, and all spaces are assumed to be T2
In so far as has been possible no restrictions have been imposed on the spaces.
involved and this, of course, has complicated some of the arguments e.g., in
proving that a fiber map is a fiber homotopy equivalence we cannot appeal
to the fact that it is a homotopy equivalence on fibers because the base space
is not assumed to have any "nice" local properties.

I would like to thank the referee for several valuable comments and, in
particular, for suggesting Definition 2.1.

1. Fibrations associated to a map. Associated to a map f (X, Xo) -- Y, yo)’
between spaces with base points we consider the three fibrations below

(1) 8(]) (E(]), pf, Y)

Eft) {(x, w) z X, : Y,/(x) w(0)}

P(z, w) w(1)

Received June 6, 1969. This work was supported in part by the National Science Foundatior
under Grant NSF GP-8896.

357



358 GUY ALLAUD

(2) a(]) (A(]), r, X)

A(]) p}-l(yo) (x, w) E(]) w(1) Yo

(x, zo) x

(3) F(]) (F(X), q, F)F /-(yo)

F(Z) {w:I-- X w(O) Xo w(l) F}

q(zv) zv(1).

Note that A (]) and r are, essentially, the third space and second map respec-
tively in the mapping sequence of ] (the duul of the Puppe sequence) e.g.,
[7; 117].
The projection #’E(]) X (the obvious extension of 7r) is a homotopy

equivalence a homotopy inverse being provided by the canonical inclusion
X ---> E(]) which sends x into (x, f(x)*), and if ] is itself a fiber map we have
the following proposition which is a special ease of Proposition i of [4].

PooswION 1.1. Suppose (X, ], Y) is a fibration and let ]: F(X) -tl(Y, Yo) be the map induced by . Then ] is a homotopy equivalence. In ]act,
i] A is a lilting ]unction ]or g a homotopy inverse ]or ] is given by the map

a -- A(xo, a), a e f(Y, Yo).

2. Regular points of fibrations.

DEFiNiTiON 2.1. Let g (E, p, B) be a Hurewicz fibration. A point
Xo e E is said to be a regular point of g if there exists a lifting function A for

such that

A(xo, b*o) X*o, bo p(xo).

This is equivalent to saying that the triple ((E, Xo), p, (B, bo)) is a fibration
in the category of topological spaces with base points and maps preserving
base points. Given g a preassigned Xo may fail to be a regular point, the non-
regular (in the usual sense) fibration of Tulley [12] being such an example,
but I do not know if there exists an 3 with no regular points. In any case,
here is u simple sufficient condition for a point to be regular.

PtOOSTION 2.1. Suppose that bo ]-1(0) ]or some map ]: B ---> I (e.g.,
B CW complex). Then ]or any fibration over B every point o] p-(bo) is a
regular point.

Pro@ Define a map /: Bz -- I

(1) ,(a) sup ](a(t)).
o<t<l

3’ is continuous, and furthermore 3,(a) 0 iff a b*o. The argument used in
[12; 127] will give a lifting function with the desired property.
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Remarks. If the pair (B, bo) has the HEP, a map ] as above can always
be found [8; 82]. It should also be pointed out that if B is a CW complex,
any fibration over B turns out to be a regular fibration. This follows from
the fact that while B X B need not be a CW complex, it is nevertheless a per-
fectly normal space [1; 121] so that the statement on page 133 of [12], whose
proof is straightforward, is applicable.

PROPOSITION 2.2. If is a fibration with regular point Xo the triple ()
(2(E, Xo), 2(p), (B, bo)) is a fibration with regular point X*o.

Pro@ Let A be a lifting function for 3 such that A(Xo b*o) X*o. Given
a 2(E, Xo) and w e (B, bo)to.ll such that (p)(a) w(O) we need to find a
path in 2(E, Xo) starting at a and lying over w (and of course varying con-
tinuously with respect to a and w). If s, [0, 1], let w8 [0, 1] - B be the path

(2) w.(t) ((t))(s);

i.e., the value of w8 at is the loop w(t) evaluated at s. A lifting function X
for 2(3) is then obtained by letting 7t(a, w)(t) be the loop in E whose value
at s is A(a(s), w,)(t) or more formally

(3) [(a, w)(t)](s) A(a(s), w.)(t).

Obviously all that is involved is the fact that an element of (B, bo) t’lJ can
be considered as an element of t(B ’11, b*o), or in other words "a path of loops
is a loop of paths."

Remark. Actually, as pointed out by the referee, the existence of a regular
point is not necessary to show that 2(8) is a fibration.
From now on we work in the category of based spaces; i.e., given a fibration

8 we assume that 8 has a regular point Xo which is the base point of E, and
bo p(xo) is the base point of B. We let F p-l(bo); and when working with
two fibrations we use subscripts i 1 or 2. Unless stated, lifting functions,
homotopies, and so on all preserve base points. The one exception is that in
constructing fiber homotopy equivalences we do not insist that base points
be preserved, the reason being that we want to make no restriction on the
spaces involved; e.g., we do not assume that xo is "nicely" imbedded in E.
Given a fibration 8 (E, p, B) a choice of lifting function A will give rise

to a map : t(B, bo) -- F by setting

() () (Xo, )().

If A’ is another lifting function, it is easy to see that and ’ are homotopic
relative b*o; and in this way gives rise to a well defined homotopy class in
[2(B, bo), b*o; F, Xo]. ([ denotes the set of homotopy classes).

DEFINITION 2.2. The homotopy class of is called the loop class of
and is denoted by [5].

Remark. With no restriction on the spaces involved it does not seem possible
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to guarantee that sny representative of the loop class is representable s the
restriction of a lifting function.

PROPOSITION 2.3. [2(8)] and 2([8]) are inverses o] each other. (Recall that
homotopy classes of maps into a loop space form a group.)

Proof. Considering the unit squre I X I we first find homotopy
H’I X II X 1,0 < u_ 1, sotht

(5) Ho(s, t) (s, t),H(s, t) (1 t,s), 0

_
s <_ 1, 0 <_ <_ 1

H,,(I X ]U i X I) C I X iU i X I.

(Tote thgt H is just g 90 counterclockwise rotgtion round (1/2, 1/2).)
This means that the involution of t(2(B, bo), b*o) which sends loop
w" I -- gt(B, bo) into the loop : I --+ 12(B, bo) with equation

(6) ((s))(t) (w(1 -t))(s)

is homotopic to the identity.
Let : t(2(B, bo), b*o) --* t(F, Xo) be the mp induced by . (See (3)). Com-

paring (w) nd 2()(w) for ny w" I -- gt(B, bo) we see that

(7) (())(s)

[e()()](s) ((s))

where w,(t) (w(t)) (s).
Now consider w-’I -- (B, bo). From (6)

(8)

i.e., w-(s) w, Substituting in (7)

(9) ((w))(s) (w,) (w-(s)) [t()(w-)](s)
i.e., (w) 2()(w-). But this means that 4 is homotopic to the mp sending
w into t()(w-), nd this is exactly wht we wished to show since t()(w-)
[()()]-.
THEOreM 2.1. 2() and a() are fiber homotopy equivalent and an equivalence

: A () -- (E, Xo) can be chosen so that r-(b*o) is homotopic to the canonical
map ]rom r- (b*o) into (F, Xo) which sends (b*o, a) into a.

Proof. Consider the mp " E() -- F(E)
(o) (,

/ 2(B, bo), a F, (/) a(0), path multiplication. This gives u com-
mutative diagram

E() " ) r(E)
(11) p’, / q

F
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i.e., t is a fiber map. Composition of t with p: r(E) - fl(B, bo) yields a map
sending (t, a) into o b*o, and this means that pg is homotopic to the projection
#: E() -- t(B, bo), #(f, a) ; but this in turn implies that g is a homotopy
equivalence since this is the case for # and 1 (Proposition 1.1). A result of
Dold [2, Theorem 6.1] allows us to conclude that t is a fiber homotopy equiva-
lence.
Now if g t[A(), the diagram

A() -- (E, xo)
(12) r /f(p)

2(B, bo)

is homotopy commutative since a(p)(g([, a)) o b*o. ( , (B, bo), a F,
() a(0), a(1) Xo.) Because the map t --/ b*o is homotopic to the
identity keeping the base point b*o fixed, we can use the CHP and find a fiber
map 1: A() -- gt(E, Xo), such that ] r-l(b*o) and g ’-l(b*o) are homotopic
as maps into 2(F, Xo). Since g is a homotopy equivalence, so is ] and, again
using Dold’s result, ] is a fiber homotopy equivalence with the required property
since g(b*o, a) X*o o a.

DEFINITION 2.3. Two loop classes [I] and [3] are said to be related if
there are maps ]: FI - F and A: 2(BI bl) - t(B b) such that/[31]
[.] (Upper and lower # denote the induced maps between homotopy classes.)
If, in addition, / and A are homotopy equivalences, [1] and [] are said to
be equivalent.

THEOREM 2.2. Let 1 and 2 be fibrations with related loop classes. Then
there exists a fiber map 1:(E1 xl) (E2 x2) over A such that
and fl(/) are homotopic.

Pro@ This is a direct consequence of the functoriM character of
By hypothesis there is a homotopy commutative diagram

gt(B1, bl)- a 2(B2, 52)

F1 F.

and this means that we can construct a commutative diagram

A(4I) m., A(.)
(14) rl r

a(B1, bl)-- a(B, b2)

such that m restricted to the fiber over b* is homotopic to the map sending
(b*, a) ito (b*, t(/) (a)). For a proof see [7; 120] keeping in mind that Nomura’s
definitions do not quite agree with ours, the role of 0 and 1 being interchanged
in the definition of lifting function. Now let 1 A() (E x,) i 1, 2
be the maps guaranteed by Theorem 2.1 and denote by ]1 a fiber homotopy
inverse for ]1 Setting ] ].m]l completes the proof.
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COROLLARY 2.1.
homotopy equivalent.

I] [51] and [32] are equivalent, (1) and - (2) are fiber

Proof. In this case m turns out to be a homotopy equivalence [7, Lemma 6],
and the same is true of ]. In general, given a diagram of fiber spaces

E.. >E’

B >B’
] induces ]: E -- ]-l(E’), (e) (](e), p(e)); and if j: ]-l(E’) --> E’ is the
canonical map j(e’, b) e’, then ] j. If/ is a homotopy equivalence, so
is j (e.g., [10; 81]) therefore if ] is a homotopy equivalence the same is true of )
which is then a fiber homotopy equivalence.

COROLLARY 2.2. If [5] 0, ft() is fiber homotopy equivalent to (B X F).
(0 denotes the class o] the constant map.)

3. Concluding remarks.
(A) Suppose 3 has a cross section (r: B ----> E(z(bo) Xo).

To see this let
Then [3] 0.

(1) .(t) (s-t-- (1 s)t), 0

_
s

_
1,(B, bo)

and consider

(2) H(, s) A(o-((s)), .) (1).

Then H(, 0) (), H(, 1) Xo H(b*o, s) Xo and we see that ft(E, Xo)
is fiber homotopy equivalent to ft(B X F, (bo, Xo)). (cf [6; 104], [3; 50], [7; 126]).

(B) If and 2 are fibrations over a common base B, let 3 2 denote
their Whitney sum as defined in [5] the fiber over bo F * F being the join
(in the strong topology) of the respective fibers. In the notation of [5] let
((1/2)xl, (1/2)x) be the base point for E1 ( E2. If we use the lifting function
described in [5; 363], the expression for becomes

(3) () ((1/2)(/), (1/2).()).

Now, in general, the map from A X B into A * B sending (a, b) into ((1/2)a,
(1/2)b) is inessential, but not necessarily relative, to a preassigned base point;
i.e., is freely homotopic to the constant map into ((1/2)x (1/2)x2). To
be able to conclude that [g @ g.] 0 we may as well assume that the pair
(B, bo) has the HEP. (Actually, it is sufficient to assume that (ft(B, bo), b*o)
has the HEP, but the condition on (B, bo) also guarantees that xl and x2 are
regular points of and g respectively for any choice of x in pT (bo) i 1, 2.)

THEOREM 3.1. Let and be fibrations over a common base B and suppose
(B, bo) has the HEP. Then ( ) is fiber homotopy equivalent to
(B X (F * F)) loops being based at ((1/2)x (1/2)x) and (bo ((1/2)Xl
(1/2)x)) respectively ]or any choice o] xl and x over bo
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In [5; Theorem 4.1] Hall pointed out that the homotopy sequence of any
sum breaks up into short exact sequences because all the differentials are zero,
but, in fact, Theorem 3.1 implies that the homotopy sequence of a Whitney
sum is isomorphic to that of a product; i.e., all the short exact sequences split,
for given any fibration 8, we get a ladder (i >_ 1)

a(g) (a(F)). > i(a(E)) i(a(B)) /-l(a(F)) >
where the vertical arrows represent the canonical isomorphisms, and @ and @
are commutative while @ is antieommutative (essentially because of Proposition
2.3, see also [9; 18].

(C) In general, [g] 0 yields no information regarding the existence or
non-existence of cross sections. To begin with, there are examples of fibrations
with contractible fibers which do not admit cross sections e.g., [4; 8]. Re-
stricting the base to a reasonable type of space, say a CW complex, does not
improve the situation because of the example mentioned in the introduction.
Furthermore Whitney sums need not have cross sections as was pointed out
by Hall [5; 366] and also by Svarc who showed [11; 112] that if we start with
a space B and let g be the fibration over B consisting of paths starting at some
fixed b0, then the sum g @ g has a cross section if and only if eat B 2. On
the other hand, we have seen that [g @ g] 0.
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