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1. Introduction. The classical Gauss-Bonnet theorem expresses the "cur- 
vatura integra," that is, the integral of the Gaussian curvature, of a curved 
polygon in terms of the angles of the polygon and of the geodesic curvatures 
of its edges. An important consequence is that the "curvatura integra" of a 
closed surface (or more generally of a closed two-dimensional Riemannian 
manifold) is a topological invariant, namely (except for a constant factor) 
the Euler characteristic. 

One of us(') and W. Fenchel(2) have indepen(lently generalized the latter 
result to manifolds of higher dimension which can be imbedded in some 
Euclidean space. For such manifolds, they proved a theorem which we shall 
show to hold without any restriction, and which may be stated as follows: 

THEOREM I. Let Mn be a closed Riemannian manifold of dimension n, with 
the Euler-Poincare characteristic X; let dv(z) be the Riemannian volume-element 
at the point with local coordinates zA (1 ? < ? n); let g,v be the metric tensor, 
g = I g, I its determinant, R, 1A 2,1'2 the Riemannian curvature tensor at the same 
point; and define the invariant scalar T(z) by: 

n2 1 E(1u),E(v) 
T (z) = (27r) I2 n2 E .RAA2 v2RA3A4V3V4 R.n-lUnPn-lt 

(1) 2~(n/2)! M,v g 
for n even 

T(z) = 0 for n odd. 

Presented to the Society, December 30, 1941 under the title A general proof of the Gauss- 
Bonnet theorem; received by the editors April 23, 1942. 

(1) C. B. Allendoerfer, The Euler number of a Riemann manifold, Amer. J. Math. vol. 62 
(1940) p. 243. 

(2) W. Fenchel, On total curvatures of Riemannian manifolds. (I), J. London Math. Soc. vol. 
15 (1940) p. 15. The concluding words of this paper show that the author contemplated an exten- 
sion of his method which was to give him "a formula of Gauss-Bonnet type." We do not know 
whether such an extension has been published, or even carried out. 

101 
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102 C. B. ALLENDOERFER AND ANDRE WEIL [January 

Then: 

x = fjfz(z)dv(z). 

Here and throughout this paper a sign such as E,V indicates summation 
over all indices ,ui, Pi, these indices running independently over their whole 
range; and e(y) is the relative tensor CA1/12* .." defined by e(,)= +1 if 
(Alp M2Y , X /.n) is an even permutation of (1, 2, * . . . n), e()= -1 if it 
is an odd permutation, and e(y) = 0 otherwise. Owing to the symmetry proper- 
ties of the curvature tensor it is readily seen that each term in our sum occurs 
2n(n/2) ! times or a multiple of that number; for that reason, in our arrange- 
ment of the numerical factor, the sign I is preceded by the inverse of that 
integer, so that the sum under 1, together with the factor immediately in 
front of it, is (except for 1/g) a polynomial in the R's with integer coefficients; 
similar remarks apply to the other formulae in this paper. On the other hand, 
it may be convenient, for geometric reasons, to define the curvature as 
K=Wn/2 'I'(z), where con is the surface-area of the unit-sphere Sn in Rn+1, 
so that the curvature is 1 for that sphere if n is even(3); Theorem I then gives 
fKdv(z) = x n x/2. 

It does not seem to be known at present whether every closed Riemannian 
manifold can be imbedded in a Euclidean space. However, the possibility 
of local imbedding, at least in the analytic case, has been proved by E. Car- 
tan(4), and this naturally suggests applying the same method of tubes, which 
was developed for closed imbedded manifolds in the above-mentioned pa- 
per('), to the cells of a sufficiently fine subdivision of an arbitrary manifold. 
This gives a theorem on imbedded cells which is the n-dimensional analogue 
of the Gauss-Bonnet formula; the corresponding theorem for polyhedra will 
emerge as the main result of the present paper; except for details which will 
be filled in later, this can be stated as follows. 

In a Riemannian manifold Mn, let Ml be a differentiable submanifold of 
dimension r <n; we assume that Mr is regularly imbedded in Mn, that is, tak- 
ing local coordinates D; on Mr and zy on Mn, that the matrix IIOz/Oaijj is of 
rank r. We introduce the following tensors. First, we write: 

Ozg'i 0zP2 Ozvi 83zVs 

(2) Pili2j1h= E I 2 PIP2 
'- 

'Lv (34 Sl (3 
4 

331 h2 

(3) It will be noticed that for n even the numerical factor in 1/2 * C,n ,*(z) as calculated from 
(1) has, owing to the value of 1/2. *o,=2n/2 * (27r)n/2. (n/2) !/n!, a simple rational value. 

(4) E. Cartan, Sur la possibilitd de plonger un espace riemannien donne dans un espace 
euclidien, Annales de la Soci6t6 Polonaise de Math6matique vol. 6 (1927) p. 1. This followed 
a paper by M. Janet under the same title, ibid. vol. 5 (1926) p. 38, where an incomplete proof 
of the same theorem is given; Janet's proof was completed by C. Burstin, Ein Beitrag zum 
Problem der Einbettung der Riemannschen Rdume in euklidischen Rdumen, Rec. Math. (Mat. 
Sbornik) N.S. vol. 38 (1931) p. 74. 
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1943] THE GAUSS-BONNET THEOREM 103 

those being the components of the curvature tensor of the imbedding mani- 
fold Mn in the directions which are tangent to Mt. Next, let x be a normal 
vector to Mt in Mn, with the covariant components x;,; we write 

(3) Ai i(x) L - 2x v + E {v X ] - 

where 

{X,} 

are the Christoffel symbols in M". The A's are linear combinations of the 
coefficients of the second fundamental form of Ml in Mn. We now introduce, 
for 0 _ 2f _ r, the combinations 

x) = 
1 E E e(j 

()4 rj(tx) 22f1 f!(r - 2f)! , y 

*pilh2ilh i2 
. . 

Pi2f - i2f i2f -1i 2J * Ai2f +1i2f+ +(x) A * Air i(x) 

where y is the determinant of the metric tensor yij on Mt. Let now Sn-r-I 
be the unit-sphere in the normal linear manifold Nn-r(r) to Ml at t; calling t 
an arbitrary point on that sphere, that is, an arbitrary unit-vector(5), normal 
to Mr at ~, we denote by dS the area-element at t on Sn-r-1; and finally, we 
consider the expression (6) 

r -n/2r(nv/2) [,/2] rf(st (5), ~I'(~IM~)= 2 f (n -2)(n -4) ...n-2f 

which can be integrated over the whole or part of the sphere Sn-r-1. 
Let now Pn be a Riemannian polyhedron, that is, a manifold with a 

boundary, the boundary consisting of polyhedra P, of lower dimensions (pre- 
cise definitions will be given in ?7); zA and ?i being local coordinates in Pn 

and P', respectively, in the neighborhood of a point r of P', we consider the 
set r(m) of all unit-vectors t at that point, with components t, such that 

, dz'/ds ?0 when the derivatives dzA/ds are taken along any direction 
contained in the angle of pn at r (for more details, see ??6-7). r(m) is found 
to be a spherical cell, bounded by "great spheres," on the unit-sphere Sn-r- 
in the normal linear manifold to P, at ?, and is what we call the "outer angle" 
of Pn at t. 

(5) We consistently (except for a short while in the proof of Lemma 8, ?7) make no distinc- 
tion between vectors and their end points, and therefore none between unit-vectors and points 
on the unit-sphere. 

(6) In view of the geometrical nature of the problem, one may suspect that the nu- 
merical coefficients in Q are connected with areas of spheres; and bringing out such connec- 
tions may point the way to geometrical interpretations of our formulae. For instance, we have: 
7r-n/2. r(n/2)/(2 22f -f!(r -2f) !(n -2)(n -4) . . . (n -2f))-=21(W9n-2f-I * @2f * (2f) !(r -2f) !2f). 
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104 C. B. ALLENDOERFER AND ANDRE WEIL [January 

Our main theorem, which includes Theorem I as a particular case, ex- 
presses in terms of the above quantities the inner characteristic X'(Pn) of pn, 
that is, the Euler-Poincare characteristic of the open complex consisting of 
all inner cells in an arbitrary simplicial or cellular subdivision of Pn; our 
methods would enable us to give a similar expression for the ordinary char- 
acteristic. The result is as follows: 

THEOREM II. pn being a Riemannian polyhedron, with a boundary consisting 
of the polyhedra P', we have: 

( l)"X '(p) f I'(z)dvz) + E Z fdv(t) fJi( , PA). 
pn ~~r=0 A r r ? 

It will be shown in ?6 how the method of tubes, applied to an imbedded 
cell in a Euclidean space, leads directly to the formula in Theorem II for 
such a cell. Sections 2-3 give the necessary details on dual angles and outer 
angles, and contain the proof of the important additivity property for outer 
angles in affine space, which is stated in Theorem III; this may be considered 
as a theorem in spherical geometry, and is a wide generalization of some 
known results on polyhedra in RI; it also includes some results of Poincare 
on the angles of Euclidean and spherical polyhedra. Sections 4-5 are mainly 
devoted to the definition of the tube of a curved cell, and the investigation 
of its topological properties. 

The proof of the main theorem then follows in ?7, where it is shown how 
the additivity property for outer angles, proved in ?2, implies an additivity 
property for the right-hand side in the formula in Theorem II; hence Theorem 
II is true for a polyhedron pn if it is true for every polyhedron in a subdivision 
of pn. In particular, it is true for an analytic,cell because, by Cartan's theo- 
rem, every cell in a sufficiently fine subdivision of such a cell is imbeddable; 
by an elementary approximation theorem of H. Whitney, it is therefore true 
for an arbitrary cell. Hence it holds for every polyhedron which can be tri- 
angulated into cells; but it is known that every polyhedron can be so triangu- 
lated, and this completes the proof. Owing to the very unsatisfactory condi- 
tion of our present knowledge of differentiable polyhedra, it has been found 
necessary to include, in ?7, the proof of some very general lemmas on the sub- 
divisions of such polyhedra; and the section concludes with some remarks 
about the validity of Theorem II for more general types of polyhedra than 
those we are dealing with. 

2. Dual angles in affine space. It has often been observed that the word 
"angle" as used in elementary geometry is ambiguous, for it sometimes 
refers to a subset of the plane bounded by two rays and sometimes to what 
essentially is a 1-chain on the unit-circle. In order to preserve analogies with 
elementary geometry, we shall here use the word "angle" both for certain 
subsets of an affine vector-space Rn and for certain (n - 1)-chains in the mani- 
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1943] THE GAUSS-BONNET THEOREM 105 

fold of directions from 0 in Rn; this will be done in such a way that no con- 
fusion may arise. Even in affine space we shall adopt the unit-sphere Sn-1, 
that is, the surface Z,(xA)2 = 1, as a convenient homeomorphic image of the 
manifold of directions from 0 in Rn; in the present section, any other such 
image could be used just as well to the same purpose. 

In this section, Rn will denote an affine n-dimensional space over the field 
of real numbers. Assuming that a basis has been chosen in Rn once for all, 
we denote by xi (1 <,u<n) the components of a vector x in Rn with respect 
to that basis. As functions of x, the n-components xi are linear forms in Rn; 
and they constitute a basis for the vector-space Rn of all linear forms 
(y, x) =E;,y,* x, over Rn; the y, are then the components, with respect to that 
basis, of the form (y, x), or, as we may say for short, of the form y. We call 
Rn the dual space to Rn. We shall consider linear manifolds VI in Rn, which, 
throughout ??2-3, should be understood to contain 0; throughout this paper, 
the superscript, when used for a space or manifold, should be understood to 
indicate the dimension. To every Vr in Rn corresponds in Rn the dual mani- 
fold Vn-r, consisting of all linear forms which vanish over VI (this should not 
be confused with the dual space to Vr when the latter is considered as an 
affine space). 

Convex angles in Rn may be defined in two ways, which may be considered 
as dual to each other: (a) a convex angle is the set of points x in Rn which 
satisfy a finite number of given inequalities (b, x) > 0; (b) a convex angle is 
the set of points x-Epup ap, where the ap are a finite number of given points, 
and the numbers up take all values greater than or equal to 0. It is well known 
that these two definitions are equivalent. Throughout this paper, all angles 
will be convex angles, and we shall often omit the word "convex." 

A convex angle C is said to be of dimension r and of type s if r and s are 
the dimensions of the smallest linear manifold Vr such that VrD C and of the 
largest linear manifold Vs such that CD Vs; if r = s, the angle reduces to Vi 
and will be called degenerate; otherwise r>s. In the notation of angles, the 
superscript will usually denote the dimension and a Latin subscript the type 
of the angle whenever it is desirable to indicate either or both. A Greek sub- 
script will be used to distinguish among angles of the same dimension and 
type. 

Let C be an r-dimensional angle, contained in the linear manifold VT; a 
point of C will be called an inner point if there is a neighborhood of that point 
in Vr which is contained in C; such points form a subset of C which is open 
with respect to the space Vr; if C is defined by the inequalities (b, x) > 0, a 
point a in C will be an inner point if, and only if, all those of the forms (b,, x) 
which do not vanish on Vr are greater than 0 at a. For r =0, Vr and C both 
reduce to the point 0, which is then considered as an inner point of C. The 
points of an angle which are not inner points constitute a set which is the 
union of angles of lower dimension; such points are limits of inner points. 
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106 C. B. ALLENDOERFER AND ANDRE WEIL [January 

LEMMA 1. Let C be a convex angle of dimension r, with at least one point a 
in the open half-space (b, x) > 0; then its intersection, D, with the closed half-space 
(b, x) _ 0 is a nondegenerate angle of the same dimension. 

For all points of C, in a sufficiently small neighborhood of a, will be in D; 
among those points there are inner points of C, forming an open set in the Vr 
which contains C, so that D is r-dimensional. Moreover, D contains a and 
not -a, and so cannot be degenerate. 

Let C be a convex angle of dimension m; a finite set {D of distinct convex 
angles CA (0< r < m; 1 ? X<? Nr) will be called a subdivision of C into convex 
angles whenever the two following conditions are fulfilled: (a) every point of 
C is an inner point of at least one CA in D; (b) if two angles C,, C,, in D are 
such that there is an inner point of C,< which is contained in C,,', then CxCC,,. 
From (b), it follows that no two distinct angles in D can have an inner point 
in common. The angles in D can be considered, in the usual way, as forming 
a combinatorial complex. A subdivision of an angle C is called degenerate if 
it contains a degenerate angle VI of a dimension r >0; as 0 then is an inner 
point of VI and is in all the angles of D, it follows that all those angles con- 
tain Vr and are of type at least r, as well as C itself. If D is nondegenerate, 
it is easily shown to contain angles of all dimensions less than or equal to m 
and greater than or equal to 0, and in particular the angle CO which is the 
point 0. An angle Cx in {D will be called an inner angle if one of its points is 
an inner point of C; otherwise we call it a boundary angle. All angles C> of 
the highest dimension in D are inner angles. 

Let (b,, x) be linear forms in Rn, & running over a finite set of indices I; 
for every partition of I into three parts K, L, M, consider the angle defined 
by (bc, x) _ 0 (K CK), (b4, x) < 0 (- CL), (b, x) = 0 (A E M); all those angles, or 
rather those among them which are different from each other, form a sub- 
division of Rn. If this process is applied to the set of all linear forms which 
are needed to define some given angles C, C', C", . . . in finite number, then 
the angles of the resulting subdivision which are contained in C form a sub- 
division of C; and the same applies to C', C", 

The intersection of a convex angle of dimension r > 1 with the unit-sphere 
Sn-1 in Rn, or, as we shall also say, its trace on Sn-1, will be called a spherical 
cell of dimension r -1. If the angle is degenerate, so is the cell. A nondegener- 
ate cell is homeomorphic to an "element" (a closed simplex) of the same di- 
mension. A degenerate cell is a sphere. 

Let r be the trace of Cm on Sn-1; let D be a subdivision of Cm. The traces 
Pr>- of the angles C>> of ID on Sn-I for 1 <r < m form a subdivision of r into 
cells, and so, if {D is nondegenerate, into topological elements. We can there- 
fore apply elementary results in combinatorial topology to the calculation of 
the Euler-Poincare characteristic of such subdivisions. 

LEMMA 2. Let 'D be a nondegenerate subdivision of the angle Cm, consisting 
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1943] THE GAUSS-BONNET THEOREM 107 

of the angles Cx (0? r < m; 1 <X < NO); let N,' be the number of inner angles of 
dimension r in D; and write: 

m m 

x(QD)) = E (- l)r w xr(q:D) - E (- 1)r. N 
r=O r-O 

Then, if Cm' is nondegenerate, we have X('D) = 0, X'('D) = (-1)I; if Cm is degener- 
ate, %(D) =x'(D) = (- 1)m. 

This follows at once from the well known value of the characteristic for 
elements and for spheres, and from the fact that No =1, No =0. 

Let now C be a convex angle in Rn, defined as the set of all points 
x=Zpup ap, where the ap are given points and the up take all values greater 
than or equal to 0. A linear form (y, x) will be less than or equal to 0 on C 
if, and only if, (y, -aap) >0 for all p; the set of all points y in Rn with that 
property is therefore a convex angle C7. The relationship between C and C is 
easily shown to be reciprocal; we shall say that C and C are dual to each 
other. If two angles C, D are such that CDD, then their dual C, D are such 
that ZCD. If an angle is degenerate and reduces to the linear manifold Vr, 
then its dual is the dual manifold Vn-r. It follows that if VrD CD V1, then 
Vn-rCcCV n-8; if, therefore, C is of dimension r and type s, its dual C is of 
dimension n-s and type n-r. 

LEMMA 3. Let C be the dual of an angle C of type s, and CD Vs. A point b 
of Z is an inner point of C if and only if the form (b, x) is less than 0 at all 
points of C other than those of V8. 

Let C, as above, be the set of points x =pup ap when the u's take all 
values greater than or equal to 0. Then C is defined by the inequalities 
(y, -ap) >0, is of dimension n -s, and is contained in the dual Vn-s to Vs. 
We have seen that b is an inner point of C if and only if (b, -aap) >0 for all 
those values of p for which (y, -ap) does not vanish on Vn-8, that is, for which 
ap does not lie in V8; this obviously implies the truth of our lemma. 

We now introduce the unit-sphere 'n-1 in Rn (to which our earlier re- 
marks about spheres apply); and we shall use the subdivisions of Sn-', in- 
duced by the subdivisions of Rn into convex angles, in order to define chains 
on 'n-1 in the sense of combinatorial topology. All chains should be under- 
stood to be (n - 1)-chains on 3n-1 built up from such subdivisions, the ring of 
coefficients being the ring of rational integers. We make the usual identifica- 
tions between certain chains belonging to different subdivisions, by the fol- 
lowing rule: if D' is a refinement of D, and a cell rn-P of ID is the union of cells 
An-1 of D', we put Ln-1=i vAn- . With that convention, any n-dimensional 
angle C defines a chain, namely, the cell r=Cf7rln, taken with coefficient 
+1 in a suitable subdivision. An angle of dimension less than n is considered 
as defining the chain 0. Angles being given in Rn in finite number, there are 
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108 C. B. ALLENDOERFER AND ANDRE WEIL [January 

always subdivisions of En-, in which the traces of all those angles appear as 
chains: we get such a subdivision by making use of all the linear forms which 
appear in the definition of our angles, as previously explained. 

Let C be any convex angle in Rn, and C its dual; the chain defined by C 
on 3n-1 will be called the outer angle belonging to C, and will be denoted by 
Q(C); that is the chain consisting of the cell 7n 'n-l if C is of dimension n, 
that is if C is of type 0; if C is of type greater than 0, C is of dimension less 
than n, and Q(C) -0. With that definition, we have the following theorem: 

THEOREM III. In a subdivision D of a convex angle C of dimension m, let CA 
(O <r <m; 1 < N,') be the inner angles; let Q(C) and Q(C;) be the outer angles 
belonging to C and to C;, respectively. Then: 

miv rn N r1' 
E Z= (- 1) )Q(C)). 
r=O X=1 

We may assume that D is nondegenerate, as otherwise C and all C>> are 
of type greater than 0 and Q(C) = Q(C) = 0. Let F be any (n - 1)-cell in a 
subdivision of n-l in which Q(C) and all Q(C)) are sums of cells; put e= 1 or 0 
according as F is contained in Q(C) or not, and er,, = 1 or 0 according as F is 
contained in Q(Cr) or not. We have to prove that r,X( - 1) rer,x = (-)m * e. 

Take first the case e =1. Then r is contained in the dual C of C, and there- 
fore in the duals of all Cx, which all contain Z; all the e,,x are equal to 1, and 
our formula reduces toZEr( - I)r.N' = (- )m, which is contained in Lemma 2. 

Take now the case e = 0. Let b be an inner point of F; call E the angle, or 
closed half-space, determined by (b, x) > 0 in Rn; call I the subset of E defined 
by (b, x) >0. As b is not in C, C has a point in I, and therefore (by Lemma 1) 
D = CnE is an angle of dimension m. Similarly, C; has a point in I if, and 
only if, er,x = 0, and then Dr = CCInE is a nondegenerate angle of dimension r. 
Every inner point of D is an inner point of C, therefore an inner point of a C; 
it must be, then, an inner point of the corresponding DX, which shows that 
those Dr which correspond to values of r, X such that er,x =0 are the inner 
angles of a subdivision of D; if Mr' is the number of such Dr for a given 
dimension r, we have therefore, by Lemma 2, Er(-1)- M' = (- 1)m; hence, 
in that case, r - 1)r . er, =Er(- )r. (N' - )O0, which completes the 
proof. 

Theorem III applies to angles of any dimension and type, and in particu- 
lar to degenerate angles. Whenever C is of type greater than 0, Q(C) is 0. 

We observe here that it is merely in order to simplify our exposition that 
we do not deal with re-entrant, that is, non-convex angles; all our results 
apply automatically to such angles, provided Theorem III is used to define 
the corresponding outer angles; we mean that, D being a subdivision of a non- 
convex angle C into convex angles, Q(C) should be defined by the formula in 
Theorem III; Theorem III may then be used to show that this Q(C) does not 
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19431 THE GAUSS-BONNET THEOREM 109 

depend upon the choice of D. Even self-overlapping angles could be treated 
in the same way. 

3. Dual angles in Euclidean space. In view of the use to be made of dual 
angles in ??5-7, we add some remarks on the few circumstances which are 
peculiar to the case of Euclidean spaces. We therefore assume that a positive- 
definite quadratic form Z$,gMV xAx', with constant coefficients g,w, is given in 
the space Rn of ?2. As usual, this is used primarily in order to identify Rn 
with the dual space Rn by means of the formulae y,=Eg,,-x", or, calling 
1|gw'yv the inverse matrix to 11gy,f, xA=E,g'1' .y,; the two spaces being thus 
identified, xi and y, are called the contravariant and the covariant com- 
ponents, respectively, of the vector which they define; they are the same 
when, and only when, cartesian coordinates are chosen in Rn. We have 
(x, x') =ZE,g,,V x'x"'; two vectors are called orthogonal if (x, x') = 0. The unit- 
sphere Sn-1=Sn-' in Rn is then naturally taken to be the set of all unit- 
vectors defined by (x, x) = 1; only in cartesian coordinates does it appear as 

(X)2= 1. The dual manifold V - to a given linear manifold VTI is now the 
orthogonal or normal manifold to Vr, consisting of all vectors which are or- 
thogonal to every vector in Vr. 

Every linear manifold Vr may now itself be regarded as a Euclidean space, 
and identified with the dual space; if C is an angle in Vr, we may therefore 
consider its dual taken within Vr, which will be an angle in Vr, as well as its 
dual in Rn. When applied to an angle of given dimension and type, this leads 
to the following results, which we state in the notation best suited to later 
applications. 

Let RN be a Euclidean space; let A,r be an angle of dimension n and type r 
in RN, contained in the linear manifold Tn and containing the linear mani- 
fold Tr; put q = N - n, call Ns the orthogonal manifold to Tn, and Nn-r the 
orthogonal manifold to Tr within Tn: the orthogonal manifold to Tr in RN 
is then the direct sum Nn-r+Nq, consisting of all sums of a vector in Nn-r 
and a vector in Nq. 

If we take cartesian coordinates wa (1 ? a ? N) so that the r first basis- 
vectors are in T", the n - r next ones in Nn-r, and the q last ones in Nq, the 
angle A, can be defined by W+p = 0 (1 _ p _ q) and by a finite number of in- 
equalities of the form E"3lb wr+? 0. It is then readily seen that the dual 
AN-r of A, in RN, and its dual An-r taken within Tn, are related by the for- 
mula: _N-r = An-r + Ns, which means that 7N-r consists of all sums of a vec- 
tor in An-r and a vector in Ns; in other words, a vector is in 4N-r if and only 
if its orthogonal projection on Tn belongs to An-r. Moreover, A"n-r is the same 
as the dual, taken within N , of the trace of A r on Nn , that trace being an 
angle of dimension n - r and of type 0. In this way, questions concerning the 
dual of an angle of arbitrary dimension and type may be reduced to similar 
questions concerning the dual of an angle of type 0 and of the highest dimen- 
sion in a suitable space. The same, of course, could be done in an affine space 
if desired. 
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4. Convex cells and their tubes(7). We consider an affine space RN, and 
its dual RZN. The linear manifolds which we shall now introduce do not neces- 
sarily contain 0. 

A convex cell in RN is a compact set of points defined by a finite number 
of inequalities (b, z) >d,. It is said to be of dimension n if n is the dimension 
of the smallest linear manifold Wn containing it; it is then known to be 
homeomorphic to an n-dimensional element. Kn being an n-dimensional cell, 
contained in the linear manifold Wn, an inner point of Kn is a point, a neigh- 
borhood of which in Wn is -contained in Kn. Inner points of Kn form an open 
set in Wn; the closure of that set is Kn, and its complement in K", that is, the 
boundary of K", consists of a finite number of convex cells KX', where r takes 
all values greater than or equal 0 and less than or equal to n-1. We shall 
count Kn as one of the K,; with that convention, the K', for 0 < r ? n, form a 
conmbinatorial complex of dimension n. K, is a convex cell in a linear manifold 
W>; the inner points of K, are those which belong to no K,, for s <r. Every 
point in Kn is an inner point of one K' and one only; and, if an inner point 
of K, belongs to K,.,, then K,CK,,. 

z being a point in K", the points x= (z'-z), where z' describes Kn 
and t takes all values greater than or equal to 0, form a convex angle, which 
can be defined by some of the inequalities (b,, x) _ 0; this will be called the 
angle of Kn at z; conversely, if x is any point in that angle, z+e*x will be in 
Kn for all sufficiently small e > O. The angle of Kn at z is of dimension n, and 
contained in the linear manifold Vn, the parallel manifold to Wn through 0; 
if z is an inner point of K,, the angle of Kn at z is of type r and contains V;z>, 
the parallel manifold to Wx through 0; it depends only upon r and X, and will 
be denoted by Cr,,; its dual C?hr is of dimension N-r and type N-n. 

LEMMA 4. Let v be a vector in RN; v is in CNfr if, and only if, there is a real 
number e such that (v, z) =e on K, and (v, z) _e on Kn; v is an inner point of 
ZtN-r if, and only if, there is an e such that (v, z) = e on K' and (v, z) <e for all z 
in Kn except those in K,. 

As to the first point, let v be in CNr; let zo be in Krx; put eo= (v, zo). For 
every z in K, z-zo is in Cr,x, therefcre (v, z-zo) _O, hence (v, z) _eo; there- 
fore eo is the least upper bound of (v, z) on Kn and cannot depend upon the 
choice of zo in K,, so that (v, z) =eo for all z in K"; this proves the first point. 
Conversely, suppose that (v, z) = e for' one z in K,, and that (v, z') < e for all z' 

(7) Tubes of convex bodies and of surfaces are of course nothing new, being closely related 
to the familiar topic of parallel curves and surfaces. On some aspects of this topic which belong 
to elementary geometry, the reader may consult W. Blaschke, Vorlesungen iiber Integralge- 
ometrie. II, Hamburger Mathematische Einzelschrift, no. 22, Teubner, Leipzig and Berlin, 
1937, in particular ?37; on p. 93 of that booklet, he will find careful drawings of the tube of a 
triangle in the plane, and of a tetrahedron in 3-space. The volume of the tube of a closed mani- 
fold was recently calculated by H. Weyl, On the volume of tubes, Amer. J. Math. vol. 61 (1939) 
p. 461; part of H. Weyl's calculations will be used in our ?6. 
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in Kn; we have (v, z'-z) <0 for all z' in Kn; this gives (v, x) <0 for all x in 
Cr,x, and so v is in tN-r. The second part can now easily be deduced from 
Lemma 3. 

Kn being compact, every linear form (v, z) has on Kn a least upper bound e; 
the intersection of Kn with the linear manifold (v, z) = e is then one of the cells 
K,<. This fact, combined with Lemma 4, shows that the angles C -r constitute 
a subdivision of RN, according to our definition in ?2. The angle Cn of Kn 
at every inner point is degenerate, and reduces to V"; its dual UN-n is there- 
fore the dual manifold VN-n to Vn; the subdivision of RN which consists of 
the rN-, is therefore nondegenerate if N = n, and degenerate if N>n. We leave 
it as an exercise to the reader to verify that, conversely, every subdivision 
of RN into convex angles can be thus derived from a convex cell, or rather 
from a class of convex cells, in RN. We observe incidentally that Theorem III 
of ?2 could now be applied; taking N = n, which is the only significant case, 
the Q(Cnx-r) are now the spherical cells determined by the C7,, on the unit- 
sphere Sn-'. In particular, assuming that we are in a Euclidean space, and 
calling /A(Cr,,) the spherical measure of the cell determined by Cr,>, (which 
is nothing else than the measure of the "solid angle" Cr,x), we find that 
Er=O(-1) r ,(Cr,X) =0; this is the main result on Euclidean polyhedra in 
H. Poincare's paper(8) on polyhedra in spaces of constant curvature; his re- 
sults on spherical polyhedra could also be derived by similar methods. 

Now we take RN as a Euclidean space, distance and scalar product being 
defined by means of a fundamental quadratic form (y, y); and we conse- 
quently identify RN with RN, as we did in ?3. Let y be any point in RN; its 
set-theoretical distance 5(y) to Kn is a continuous function of y. Let z =z(y) 
be the nearest point to y in Kn; as Kn is a compact convex set, z(y) is uniquely 
defined and depends continuously upon y; the vector v =y -z(y), which is of 
length 5(y), therefore also depends continuously upon y. That being so, we 
have (y -z', y -z') >_ (v, v) for every z' in Kn. Let x be a vector in the angle of 
Kn at z; z' =z+E x is in Kn for sufficiently small e > 0, and then y -z' =v-e x, 
so that, for small E, we have (v - x, v - x) (v, v). That implies that 
(v, x) < 0. If, therefore, z is an inner point of Kx, so that the angle at z is C7,x, 
v is in Zf`. Conversely, let v be in C and z be an inner point of Kx; as 
z' -z is in CG,, for every z' in K , the same calculation will show that z is the 
point in Kn nearest to z+v. 

We now consider the set ON of all points y in RN whose distance 5(y) to 
Kn is at most 1, and we call it the Euclidean tube of Kn in RN. As ON is a 
compact convex set and contains an open set in RN, it is homeomorphic to 
an N-dimensional closed element. On the other hand, let BN be the set of all 
vectors v in RN such that (v, v) _ 1, the boundary of which is the unit-sphere 
SN-1; let T(Kn) be the subset of the direct product KnXBN, consisting of all 

(8) H. Poincar6, Sur la gentralisation d'un theoretme glementaire de geometrie, C. R. Acad. 
Sci. Paris vol. 140 (1905) p. 113. 
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elements (z, v) of that product such that, if z is an inner point of K,, v is in 
CX-'. We have shown that the relation y =z+v defines a one-to-one bicontin- 
uous correspondence between )N and T(Kn); the latter, therefore, is a closed 
subset of Kn XBN, homeomorphic to BN; by means of the correspondence 
defined by y-z +v, we identify once for all oN and T(Kn). Calling (z(y), v(y)) 
the point in T(Kn) which is thus identified with y in ON, we see that the 
boundary of ?N consists of all points y for whi-ch v(y) is on SN-1; in other 
words, the mapping y--v(y) of the tube into BN maps the boundary into the 
boundary. As every v is in at least one cNrr, the image of the tube by the map- 
ping v(y) covers the whole of BN. If we consider a vertex zo =K: of Kn, and 
take for vo an inner point of the angle CN, all vectors v sufficiently near to vo 
in RN belong to CN and to no other angle 'N- , as CX is an angle of the highest 
dimension in the subdivision of RN which consists of the N r*. Every such 
vector v, therefore, is the image, by v(y), of the point y =zo+v and of no other 
point of ON. This shows that in the neighborhood of such a vo the mapping 
v(y) has the local degree +1, and so, as it maps boundary into boundary, it 
has the degree +1 everywhere, provided of course that both ON and BN are 
given the orientation induced by that of RN. 

5. Curved cells and their tubes. From now onwards, Kn will be a convex 
cell in an affine space Rn; the object of ??5-6 will be to discuss differential- 
geomnetric properties of Kn corresponding to the Riemannian structure de- 
termined on it by a certain choice of a ds2. We write the coordinates in Kn as 
e, (1 <,ui < n); and we choose coordinates t' (1 ?is< r) on each one of the cells 
K'x (1_r<n-1); for instance, we may choose the P from among the z", 
taking care to select such as are independent on K,, and this may be under- 
stood for definiteness, although playing no part in the sequel. In what follows, 
N=n+q is any integer greater than or equal to n; and we make for ? ?5-6 the 
following conventions about the ranges of the various letters which will occur 
as indices: 

15 <ao < N; I < pi, v < n; 1 _ i, j < r; 1 p _ q; 1< o- _ n -r. 

We shall consider real-valued functions +(z), defined on Kn. As usual, 
such a function is said to be of class C' (on Kn) if it has a differential 
d4 =Z,O,(z) dz' with coefficients 4,,(z) = O4/Oz which are continuous func- 
tions over Kn; class Cm is defined inductively, 4 being of class Cm if it is of 
class C' and the 49/9zA are of class Cm-1. 

Local properties of Kn as a differentiable space are those which remain 
invariant under a differentiable change of local coordinates with jacobian 
different from 0. Such properties include the intrinsic definition of the tangent 
affine space Tn(z) and of the angle of Kn at the point z as follows. Tn(z) is the 
vector-space consisting of all differentiations X+, defined over the set of all 
functions + of class C' in a neighborhood of z, which can be expressed as 
X4=lim [. [p(z ")-p(z')], where z' and z" both tend to z within Kn, and t 
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tends to + oo. The vectors Xl,? =349/9zA form a basis for Tn(z), so that every 
point of Tn(z) can be written as X4> =>I,xA a49/3z9; we shall denote by x the 
point of Tn(z) which, for that basis, has the components x's. As in ?2, the dual 
space Tn(z) to Tn(z) is the space of the linear forms (y, x) =Z,y, x,; the 
elements x of Tn(z) and y of Tn(z) are known in tensor-calculus as contra- 
variant and covariant vectors, respectively. 

The angle of Kn at z is the subset of Tn(z), consisting of all those differen- 
tiations X) which can be expressed as X4> =lim t. [4 (z') -4(z)], where z' 
tends to z within Kn and t tends to + oo ; by the correspondence which maps 
every point x = (xA) in Tn(z) onto the point with coordinates xA in the affine 
space Rn containing Kn, that angle is transformed into the angle of Kn at z 
as defined in ?4, the difference between the two being of course that the latter 
was defined in affine space whereas thedefinition of the former refers to Kn 
as a differentiable space. The relationship between them implies that, if 
z =z(v) is an inner point of K,, having in K, the coordinates ? , the angle at z 
is of dimension n and type r; we then denote it by At,x(); the linear manifold 
Tx'(r) contained in A7,,,(r) will be identified as usual with the tangent affine 
space to Kx by the formulae o?3/az /=E.,,a/lz9 z; it is spanned by the r 
linearly independent vectors (az9/49a). We denote by A,T(r) the dual angle 
to Ar,,x(;), which is of dimension n-r and type 0; it is contained in the linear 
manifold Nx`T(v) of all vectors y = (y,) such that (y, x) = 0 for x in Tar(r). 

We now consider mappingsf(z) = (fa(z)) of Kn into an affine space RN ;f(z) 
is said to be of class Cm if each fa(z) is of class Cm. A mapping f(z) = (fa(z)) 
will be said to define an n-dimensional curved cell (K", f) if it is of class C' 
and the n vectors (Ofa/Ozl) in RN are linearly independent for every z in Kn. 
As usual, the linear manifold spanned by the vectors (Ofa/Oz;1) in RN is identi- 
fied with the tangent affine space Tn(z) to Kn at z by identifying point x = (xA) 
in Tn(z) with the vector (Z,X;,I Afa/Oz9A) in RN; Tn(z) thus appears as im- 
bedded in RN. The manifold Tx(v), as a submanifold of Tn(z). when z=z(r) 
is in K,,, is thus also imbedded in RN, and as such is spanned by the vectors 
(Of a/lai) = (EZAzm/lai. *fa/laz,,). In the same imbedding, the angle A,X(;) ap- 
pears as an angle of dimension n and type r in RN, contained in T%(z) and 
containing T,(v). As the vectors (Ofa/Oqi) are independent, the mapping f, 
when restricted to K,, defines a curved cell (Kx, f) of dimension r in RN. 

We now take RN as a Euclidean space; cartesian coordinates being chosen 
for convenience, the distance is defined by the form (w, w)=a(W a)2. The 
quadratic differential form (df, df) =Za(dfa)2 =jAgP dz;'dz' is nondegener- 
ate, under the assumptions made on f, and defines a Riemannian geometry 
on Kn; this amounts to making the tangent affine space Tn(z) into a Eu- 
clidean space, either by means of its imbedding in RN or intrinsically by 
(x, x) = A,gA. xl'x3; the gA,, are functions of z alone. We may then identify 
T"(z) with its dual Tn(Z), as in ?3, by the correspondence y. =E^gAxi; calling, 
as usual, 11g'A"Jj the inverse matrix to jjg|,jj, we have then x1=EgA y^; the 
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y, are called the covariant components of the tangent vector x, and the quan- 
tities >2,x; O4fa/O9zP are its components in RN. 

The Riemannian geometry thus defined in Kn induces on each Kx a Rie- 
mannian geometry, with the fundamental form (df, df) =Eiiyi dDidDi, where 
Sy,,=EygzwAz/a; z z'/O9i. The determinants of the matrices j Ig,^jj, I'yi]jI are 
denoted by g and oy, respectively; we have g >0, y >0. 

We now call Nq(z) the orthogonal linear manifold to Tn(z) in RN, that is, 
the normal linear manifold to the cell at z; and, taking z = z(r) to be an inner 
point of Kx, we apply to A7,x(3) the results of ?3. Identifying, as we now do, 
Tn(z) with Tn(z), the dual linear manifold N?-'(r) to Tx(O) within Tn(z) 
appears as the orthogonal manifold to Tx(r) within Tn(z), that is, the normal 
manifold to the subcell (Kx, f); the orthogonal manifold to Txr() within RN 
is then NAT-(r) +Nq(z). The dual angle A7-r(r) to A7,,)() within Tn(z) is now 
an angle of dimension n -r and type 0 in the normal manifold NA-7r(); it 
is the same as the dual, taken within Nx-r(v), of the trace of A7,&(v) on 
N?-'(r). Finally, the dual ix?-'(r) of A7,x(r) within RN is an angle of dimen- 
sion N{-r and type q, and can be written as AN 7r(r)+Nq(z); this 
means that a vector w is in A if, and only if, its orthogonal projection 
on Tn(z) is in AXx-r(r). 

It should be observed that the dual angle I-r() to A,x(r), as originally 
defined in the dual affine space 7Tn(z) to Tn(z), depends only upon Kn re- 
garded as a differentiable space, irrespective of the choice of f or of a Rieman- 
nian structure; and we write that a vector y in Tn(z), given by its compo- 
nents y,, is in Xf-lr(.) by writing that >,y, * X(z;) < 0 for every differentiation 
X contained in the angle of Kn at z(r). On the other hand, the angles in RN 
and in Tn(z) which we have identified with ,-'r(r), and which, for short, we 
also denote by the same symbol, depend, the former upon the choice of the 
mappingf, the latter merely upon the g,,. 

We now define the tube T(Kn, f) of the curved cell (Kn, f) as the subset 
of KnXBBN which consists of all points (z, w) of that product such that, if z 
is an inner point of Kg and z =z(r), then w is in 71-r( ). Whenever f is an 
affine mapping, that is, when the fa are linear functions, the tube T(Kn, f) is 
the same as the tube T(Ln) of the convex cell Ln =f(Kn), as defined in ?4. 
Furthermore, if (Kn,f) is an arbitrary cell, the set E5a(Kn,f) of all points at a 
set-theoretical distance 8 from f(Kn) in RN is easily shown to be the same as 
the set of all points ya =fa(z) + 8. wa when (z, w) describes T(Kn, f), and it 
seems very likely that these relations define a one-to-one correspondence be- 
tween e5(Kn, f) and T(Kn, f) provided f itself is a one-to-one mapping and 
provided 8 is sufficiently small. 

The central result of this paper is now implicit in the following lemma, 
which will turn out to contain the Gauss-Bonnet formula for curved cells: 
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LEMMA 5. The mapping (z, w)-+w of the tube T(K", f) into BN has every- 
where the degree 1. 

The lemma has been proved in ?4 for the Euclidean tube of a convex cell. 
The general case will be reduced to that special case by continuous deforma- 
tion. 

As a preliminary step, we consider the topological space, each point of 
which consists of a point z in Kn and a set of q mutually orthogonal unit- 
vectors in Nq(z). This is a fibre-space over K", the fibre being homeomorphic 
to the group of all orthogonal matrices of order q; therefore, by Feldbau's 
theorem(9), it is the direct product of Kn with the fibre; that implies that it 
is possible to choose the q vectors np(z) as continuous functions of z in Kn so 
as to satisfy the above conditions for every z. We call np(z) the components 
of np(z) in RN. 

Let now z=z(r) be an inner point of K,, and w a point in RN; call x, u the 
orthogonal projections of w on Tn(z) and Nq(z), respectively; call x, the co- 
variant components of x, up the components of u with respect to the basis- 
vectors np(z), so that we have 

af IA P 
w = E g xv + Zna(z) u 

We have, then, (w, w) = (x, x) +(u, u) =EA,,gAxx,A+p(uP)2; and (z, w) is 
in the tube T(Kn f) if and only if x is in 7>-(r) and (w, w) < 1. 

All that applies to the special case when fa(z) is replaced by ,, zIA 

that is, by z; for a =,u < n and by 0 for a > n, in which case the tube becomes 
the Euclidean tube ON of a convex cell; theiefore, z =z(O) being again an inner 
point of K,, (z, v) will be in ON if and only if the vector in 7Tn(z) with the com- 
ponents v,, = v (1 <?, < n) is in A and Ea(Va)2 < 1. Writing, therefore, 

E A, .- v;A ̂ (z) * VA, ,,-1/2 X= ) v < I < n), 

UP = Vn+p (1 p < q) 

these formulae, together with the formulae above, define a homeomorphic 
correspondence between the points (z, v) of the Euclidean tube ON and the 
points (z, w) of T(Kn f). 

We now assume coordinates to be such that 0 is in Kn; calling r a parame- 
ter taking the values O<r<1, the point T.z=( -Zz) is in Kn if z is in Kn. 
For every r > 0, we consider the curved cell (Kn, f) defined by f(z) =f(r * z)/r. 
Putting Of1/Ozm =fr(z), we have, for the cell (Ks, f), O9fa/O9zA=J.g(r*Z), 
g,(Z) =g ,(r z), g(z)=gI'(Trz), and we may take as normal vectors to that 

(9) J. Feldbau, Sur la classification des espacesfibres, C. R. Acad. Sci. Paris vol. 208 (1939) 
p. 1621. 
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cell fii(z) = n,(r z). That being so, the above formulae for the transformation 
of ON into T(Kn, f) show that this transformation depends continuously 
upon r, and therefore that the tube T(Kn, f) is deformed continuously when r 
varies. When r tends to 0, these formulae tend to the corresponding formulae 
for the cell (Kn, fo) defined by fog(z) =,Ef'(O) .zA when the normal vectors 
for (Kn, fo) are taken as n?(z) =np(O) ;fo being affine, (Kn, fn) is a convex cell, 
to which the results of ?4 apply. 

Lemma 5 follows easily. For the image of our tube in BN by the mapping 
(z, w)-?w is deformed continuously when the tube is so deformed; the image 
of its boundary remains in SN-1. The degree is therefore constant during the 
deformation; as it is + 1 for r = O, it is + 1 for r = 1, which was to be proved. 

6. The Gauss-Bonnet formula for imbedded cells. We put 

dw = dw' dw2 ... dwN. 

A special consequence of Lemma 5 in ?5 is that the integral of dw over the 
tube T(Kn, f) is equal to the integral of the same differential form over 
BN , that is, to the volume v(BN) of the interior of the unit-sphere in RN. 

Therefore, calling Ir,x the integral of dw/v(BN) over the set of those points 
(z, w) in the tube for which z is an inner point of Kv i, we have 

n 
I r,X = 1. 

r=o 12 

This becomes the Gauss-Bonnet formula when the Ir,X, are expressed intrin'si- 
cally in terms of the Riemannian geometry on Kn. The calculation depends 
upon a lemma which immediately follows from a formula proved in a recent' 
paper by H. Weyl('0). 

LEMMA 6. Let IjAAjij, IILP IjI be q+1 matrices of order r; and write 

Pili2 jl j2 = ELi -L) 
p 

Then the integral of IAi +EpLP uPI du' du2 . . duq, taken over the volume 
Ep(Xp)2 < C2, is equal to: 

[r/2] 

v(Bq). E kq,f .Cq+2f 
f=O 

v pf p.itit212 
J 22 .f !(r -2f)1 21132 I Air.r 

where k,f = 1/(q+ 2) (q+4) * (q+ 2f), and the conventions about summation 
are as explained in ? 1. 

(10) Loc. cit., Footnote 7, p. 470. Similar calculations may also be found in W. Killing. 
Die nicht-euklidischen Raumformen in analytischer Behandlung, Teubner, Leipzig, 1885, p. 255. 
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Our calculation of Ir,x will be valid under the assumption that the map- 
pingf(z) is of class C2; in order, however, to be able to introduce the Rie- 
mannian curvature tensor, we assume from now onwards that f(z) is of class 
C3. In the course of the calculation of I,,x, we simplify notations by omitting 
the subscript X. 

We may calculate I, by cutting up the cell Kr into small subsets, and 
cutting up Ir correspondingly; we take those subsets to be cells of a subdivi- 
sion of Kr, and so small that it is possible to define, on each of them, q vectors 
np(v) of class C' and n -r vectors va(?), also of class C1, satisfying the follow- 
ing conditions: the n&(r) are an orthonormal basis for the normal linear mani- 
fold Nq(z) at z(?); the va(r) are an orthonormal basis for the normal manifold 
Nn-r(-) to Tr(S) in Tn(z); and, calling v,, np' the components of those vectors 
in RN, the matrix A clfffa/O3i o np'ff has a determinant greater than 0. The 
latter determinant can then be calculated by observing that, if AT is the trans- 
pose of A and r=1lyiilf, we have 

r o 
AT.A = r?1 

0 1 

and therefore (I a) 2 =y, so that A a =+y 1/2. 
z=z(v) belonging to one of our subsets in Kr, let (z, w) be in the tube 

T(Kn, f). Let x, u be the orthogonal projections of w on Tn(z) and N1(z), 
respectively; x is in An-r(P)CNn-r(v), so that x can be written asE.V,(0 tr; 

let uP be the components of u with respect to the basis np. We have: 

a ;a+a( p a P 

As these are functions of ?, t u of class C1, we can express dw in terms of 
dD = dl . dD2 ... dPr, dt = dtl . dt2 . . . dtn-r, du =dul * du2 . . . duq: 

a a 
O'U U 3fl p a a d t du dw = | -it + E u VUflp |d .dt*du. 

The determinant is best calculated by multiplying its matrix to the left by AT, 
the determinant of which has been found to be +,y/2; that gives a matrix of 
the form 

M O 

which has the determinant I MI. That gives: 

dw = Aii + ELj-u -/2 dD.dt.du 
p 

if we put 
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a oa a Cif 8ap a L Pi anp- A5, = E a-.t i =E 
a,u ori a 

In the integration of this, orientation has to be considered. Call t, u the points 
with the coordinates (te), (uP), respectively, in two auxiliary spaces pn-r, Pq; 
we also consider the point with the coordinates Pi, to, uP in the space 
pN=KrXpn-rXpq. The formulae z=z(?), w=E arp * ta+pnp * uP define the 
portion of the tube now under consideration as a homeomorphic image of class 
C' of the subset of pN defined as follows: ? is in a given subset of Kr; t is such 
that x=y2Pv.tw is in An-r(r); and Je(tU)2+Zp(up)2< 1. As An-r depends 
continuously upon ?, that set is the closure of an open set in pN. Call now 
01, 02, 03 any orientations of Kr, pn-r pq, respectively; the factors in the 
product PN=K,Xpn-rXPq being ordered as written, Oi, 02, 03 define an ori- 
entation 01X02X03 in pN, and therefore a local orientation, also denoted by 
01 X02X03, in the part of the tube which we are discussing. On the other hand, 
-the mappings (t) >EePe te, (u)--*Zpnp.uP of pn-r, pq onto Nn-r(?), Nq(z) 
transform 02, 03 into orientations, also denoted by 2, 03, of Nn-r(r), Nq(z). 
We now choose for Oi, 02, 03 the natural orientations of Kr, pn-r, pq, respec- 
tively, defined by the coordinates ?, i, up taken in each case in their natural 
order. The condition on the sign of j Aj which served to define the vZ, np 
amounts to saying that the orientations Oi, 02, 03 of f(Kr), Nn-r(r) Nq(z) at 
z =z(r) define, when taken in that order, the natural orientation of RN. That 
being so, we now show that the local orientation of the tube defined as 
oiX02Xos coincides with that orientation Q of the tube as a whole which 
ensures the validity of Lemma 5. That is easily verified for the tube of a 
convex cell, by identifying it with a subset EN of RN as in ?4. In the general 
case we use the deformation of our tube into that of a convex cell, by means 
of which we proved Lemma 5; for, in such a deformation, the manifolds 
Nn-r((), Nq(z) vary continuously, and therefore we have O1 X 02 X 03 = Q during 
the whole deformation, since this is true for one value T = 0 of the parameter. 

We can now proceed to integrate dw by first integrating with respect to 
u while ? and t are kept constant; u is to be given all values such that 
Ep(Up)2 < 1I EZ.(ta)2. We first observe that, by differentiating the relations 
EaOfa/9i. va=0, =0 adfa/9inp = 0 which express that va, np are normal vec- 
tors to Tr(r), we get the following expressions for Ait, L': 

a2f a aa 2f a a 
Ai=-'di -x, Lis= E -n, 

where xa= c ta are the components of the vector x in RN; these are the 
negatives of coefficients of the so-called "second fundamental forms" of f(Kr) 
in RN. The Ai1 are thus seen not to depend upon the choice of the basis-vectors 
va in Nn-r(r), but only upon the vector x; as such, we shall now call them 
Ai1(x); it is known that they are intrinsic quantities with respect to the 
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Riemannian geometry in Kn, and can be expressed by formula (3) in ?1, if we 
denote by x/, the covariant components of x; we have x, =EaOfa1/ZIA xa. 

The application of Lemma 6 further leads to the introduction of the quan- 
tities 

Pi1i2ili = E 0i (L j 2i2L1- ii) 
p 

which also are known to be intrinsic quantities, their expression in terms of 
the curvature tensor in Kn being given by formula (2) in ?1. We now distin- 
guish two cases: 

(a) If r = n, the P in the foregoing calculation should be read as zA, and y 
as g; there are no vP, no to, no Ai5. Integrating dw first with respect to u, we 
get, by straightforward application of Lemma 6: 

In= (z)dv(z), 
Rn 

where I(z) is defined by formula (1) in ?1. 
(b) If r <n, the integration of dw with respect to u by Lemma 6 gives, if 

we define the functions ?rj(;; x) by formula (4) in ?1 

trl2] __(q/2)+f 
v(B2)* f - k (tj)2 (Q/2)+f X) x)dv(t).dt, 

f=O 

where dv(?) =y1l2 dR is the intrinsic volume-element in Kr. We may push the 
integration one step further, by writing x=a {, x,,=a ^, tff=a .TU, where 

a (T )2 =1 and 0 ?a ?1; t,, are thus the covariant components of vector (, 
Ta its components with respect to the basis vd,, and t is on the unit-sphere in 
Nn-r(?); t describes a spherical cell r(n), the trace on that sphere of Xn-r(r); 
r(n) is the outer angle in Nn-r(?) of the trace of A,(?) on Nn-r(r). Calling.dt 
the area-element or spherical measure on that sphere, we have dt = ar-i da d,. 
We can now carry out the integration in a, which involves only the elementary 
integral fo(i -a2)(-/2)+f an-2f-l da, and thus find 

Ir= jw fr(D) '(r' t Kr), 
Kr rff 

Kr) 

where I is defined by formula (5) in ?1. This, combined with our earlier re- 
sult r ,= 1, completes the proof of Theorem II for K , with the Rie- 
mannian structure defined by the g,,,, if we observe that the inner character- 
istic of Kn is X'(Kn)=(_1)n. 

It may be observed that, for r =n -1, the outer angle r(m) is reduced to 
a point, namely, the unit-vector t on the outer normal to Kn-1 in the tangent 
space to Kn; the integral in dt should then be understood to mean the value 
of the integrand at that point. Similarly, for r = 0, Kr is reduced to a point, 
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and the integral in dv(r}-should be understood correspondingly. In the latter 
case, Io contains only one term, corresponding to f= 0, which is simply the 
spherical measure of the outer angle rm(), measured with the area of the 
sphere taken as the unit. In the case of a Euclidean convex cell, the terms Io 
in our formula are the only ones which do not reduce to 0. 

As a preparation to ?7, we furthermore have to prove some identities 
concerning the application of the above results to cells of lower dimension 
imbedded in Kn. Let LP be a convex cell, f a one-to-one mapping of class C3 
of LP into Kn, such that (LP, 4)) is a curved cell; we assume that 0 _p _ n-1. 
For simplicity of notations, we identify LP with its image in Kn by 4), and 
call (LP, f) the curved cell which according to earlier conventions should be 
written as (LP, h) where h is the product of the two mappingsf, 4. L'r denoting 
either LP or, for 0 < r p.- 1, any one of the boundary cells of LP, we choose 
coordinates Ri on Lr, and again identify Lr with its image in Kn. The part of 
the tube of (LP, f) which corresponds to LB then consists of all points (z, w) 
in KnXBN for which z=z(?) is an inner point of Lr, (w, w) _ 1, and w is in 
the dual in RN to the angle of LP at this point; the latter angle is in the tan- 
gent linear manifold to LP, which as before should be considered as imbedded 
in the tangent linear manifold Tn(z) to Kn at the same point, and is of dimen- 
sion p and type r; we denote it by Br(?). Let Nn-r(r) be the normal linear 
manifold to Lr at P; the dual to Br(r) in RN consists of all vectors w whose 
projection x on Tn(z) belongs to the dual to Br(r) in Tn(z), which is contained 
in Nn-r(r). Let L'r be an open subset of Lr, so small that we may define on 
it q vectors n, and n-r vectors v' precisely as before (Kr being replaced 
by Lr). The calculation and integration of dw for that part of the tube con- 
sisting of all points (z, w) with z in L'r now proceeds, without any change, 
just as before; the case r =n does not'arise, as r ? p ? n-1; calling 4 the in- 
tegral of dw/v(BN) over that part of the tube, we have, therefore: 

rit =Jdv(r) J (,t|Lr), 

where we now denote by r(LP, P) the trace on the unit-sphere in Nn- (?) of 
the dual to Br(;) in Tn(z). On the other hand, we could have applied our 
method to LP itself, considered intrinsically and not as imbedded in Kn; this, 
for r = p, would have given us 

Itp = *o(&vd(r)q 

if we denote by 'o(J) the invariant built up in LP just as I(z) was built up 
in Kn. As this is true for any sufficiently small L'P, we get, for every inner 
point ? of LP, the identity 
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(6) *offl = J (, t I LP), 
r(LP, r) 

where r(LP, P) being as above defined, is easily seen to be the full sphere in 
Nn-P(r). Similarly, for 0< r < p-1, we denote by Io(?, o I Lr) the quantity, 
similar to ', which is built up in LP from the Riemannian structure defined 
on LP by its imbedding in K , from the imbedded submanifold Lr, and from 
a unit-vector to normal to Lr in the tangent linear manifold TP(r) to LP; and 
calling ro(LP, ?) the trace on the unit-sphere of the dual to B,(r) in TA'?), we 
get as before, r being any inner point of LI: 

(7) 'o(D, to I Lr) = fr(L t I Lr). 
rO(LP,r) r(L",t) 

The identities (6), (7) contain only quantities which are intrinsic in Kn for 
the Riemannian structure defined in Kn by the metric tensor gpv. They'have 
just been proved for the case in which the g, are defined by a mapping f 
of KR into RN; however, they depend only upon the g,, and their derivatives 
of the first and second order at point z(v). It is easy to define a small cell K'n 
containing a neighborhood of point z(v) in K", and a mapping f' of K'n into 
a Euclidean RN', so that (Kn , f') is a curved cell and that the g,,, defined by 
f' over K'n have, together with their derivatives of first and second order, 
prescribed values at z(v); in fact, we may do that by taking any analytic g,1, 
satisfying the latter conditions, and apply Cartan's theorem (4), but there are 
of course more elementary methods of obtaining the same result. As (6), (7) 
are purely local properties of the Riemannian cell Kn and of the imbedded 
LP, LI, they are thus shown to hold without any restriction. They could, of 
course, be verified by direct calculation; this would be straightforward but 
cumbersome, and would require another application of Lemma 6. 

7. The Gauss-Bonnet formula for Riemannian polyhedra. We first define 
Riemannian polyhedra as follows. 

Let Pn be a compact connected topological space, for which there has been 
given a covering by open subsets Q, and a homeomorphic mapping q, of each 
Q, onto an n-dimensional convex angle C, which may be Rn; if the X, and the 
inverse mappings i1, are such that every q$ [I,'(x)] is of class Cm at every 
x C, such that 4, (x) C?IC, Pn will be called an n-dimensional differentiable 
polyhedron of class Cm. As noted before (?2), re-entrant angles would lend 
themselves to similar treatment but are purposely avoided for simplicity's 
sake. 

By a differentiable cell of class Cm, we understand a differentiable poly- 
hedron of class Cm which can be put into a one-to-one correspondence of class 
Cm with a convex cell. 

The beginning of ?5 provides a definition for the tangent affine space and 
the angle of a differentiable cell at any one of its points; those definitions, 
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being purely local, apply without any change to a differentiable polyhedron. 
If C is the angle of Pn at the point z, z has a neighborhood homeomorphic to C; 
if C is of type r, we say that z is of type r in Pn. Points of type n in Pn are 
called inner points of pn. Points of type at most r (where 0? <r_n) form a 
closed, and therefore compact, subset of pn, the closure of the set of the points 
of type r; if the latter consists of Nr connected components, the former is the 
union of Nr, and not of less than N, differentiable polyhedra P', of dimension 
r. A point of type r is an inner point of one of the P,, and of no other P,,; 
if an inner point of P, is contained in Pl,, then P, CPA,. The P,, for 0 _ r _ n-1, 
will be called the boundary polyhedra of Pn. 

By a regular subpolyhedron QP in Pn, we understand the one-to-one 
image of a polyhedron QC in Pn, provided it satisfies the following conditions: 
Di being local coordinates in QC at any point, and z;' local coordinates in Pn 
at the image of that point, the functions z/A(v) which locally define the map- 
ping are of the same class Cm as the polyhedron Pn, and the matrix jjozl/laijj 
is of rank p. Each boundary polyhedron P, of Pn is a regular subpolyhedron 
of Pn. 

We say that a finite set of distinct regular subpolyhedra Qp of Pn forms 
a subdivision {D of Pn if the following conditions are fulfilled: (a) each point 
of Pn is an inner point of at least one Qp in qD; (b) if QV and QS, in ID, are such 
that there is an inner point of Qr, contained in QS, then Qp CQS. From (b), it 
follows that no two polyhedra in D can have an inner point in common unless 
they coincide. 

Pn and its boundary polyhedra Pr, thus form a subdivision of Pn, which 
we call the canonical subdivision. If {D is any subdivision of Pn, those poly- 
hedra Q2a in D which are contained in a given polyhedron Qtp in D form a sub- 
division of Qtp. 

LEMMA 7. If Qr is a polyhedron in a subdivision )D of Pn, all inner points 
of Qr have the same type in Pn. 

An inner point of Qr obviously has a type at least r in Pn; hence the lemma 
is true for r=n; we prove it by induction, assuming it to hold for all QV, in D 
with s>r. Let v be an inner point of Qr; call s its type in Pn, so that s_r; 
v is then inner point of some P,; we need only show that all points of Qr, 
sufficiently near to ?, are in PS. That will be the case if all points of PA, suffi- 
ciently near to ?, are in Qr; for then, since P, and Qr are of class at least C' 
and regular in Pn, we must have s = r, and PSA, Qr must coincide in a neighbor- 
hood of point P. If that is not so, then v must be a limiting point of inner 
points of P, which are not in Qr; as each of the latter points is an inner point 
of a polyhedron in D, and there is only a finite number of such polyhedra, it 
follows that there is a Qt in D, such that v is a limiting point of inner points 
of Qe, each of which is an inner point of P, and is not in Qr. This implies that 
A;Q t, and therefore QrCQt; hence t>r, as otherwise an inner point of Qr 
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would be inner point of Qe, and Qr would be the same as Qt. By the induction 
assumption, the lemma holds for Qt; as there are inner points of Qt which are 
inner points of P,, we have, therefore, QtCP} , and so QrCP'X; this proves the 
lemma. 

An immediate consequence is that all the polyhedra, in a subdivision D 
of pn, which are contained in a given boundary polyhedron P, of pn, form 
a subdivision of that PY; this can be expressed by saying that every subdivi- 
sion of Pn is a refinement of the canonical subdivision. In particular, if a 
polyhedron Qr, in a subdivision D of Pn, contains at least one inner point of 
Pn, all inner points of Qr are inner points of Pn; Qr is then called an inner 
polyhedron of the subdivision. 

LEMMA 8. D being a subdivision of Pn, and z any point of pnt the angles at z 
of those polyhedra in D which contain z form a subdivision of the angle of pn 
at z; the inner angles in the latter subdivision are the angles of the inner polyhedra 
in D which contain z. 

In the proof of this lemma, we shall denote by A (Q), Q being any regular 
subpolyhedron of pn, the angle of Q at z, if zEQ, and the null-set otherwise. 
Let x be any vector in A (pn), defined by an operator Xq = lim t * [c/(z') - (z) ], 
where z' tends to z within pn and t tends to + oo ; as every z' is an inner point 
of a Qp in DJ, and there is only a finite number of such Qp, we may define x 
by a sequence of z', all belonging to one and the same Q' ; A (Qp) then contains 
x. Let Qr be a polyhedron of the lowest dimension in D, such that x EA (Qr); 
if x were not an inner point of A (Qr), it would be in the angle at z of a bound- 
ary polyhedron Q's of Qr, with s <r. The polyhedra in D which are contained 
in Qr form a subdivision of Qr, and so, by Lemma 7, those which are contained 
in QT form a subdivision of Q's; x would therefore be in the angle at z of one 
of the latter polyhedra, which would be of dimension at most s, in contradic- 
tion with the definition of Qr This shows that x is an inner vector of A (Qr). 
Suppose, that, at the same time, x is an inner vector of A (pn); and let x be 
defined by X5 = lim t. [p(z') -+(z)] where the z' are in Qr; all z', sufficiently 
near to z, must be inner points of pn (otherwise x would not be an inner point 
of A (Pn)), and so Qr must be an inner polyhedron of the subdivision D. On 
the other hand, if x is not an inner point of A (pn), it must be in the angle at z 
of a boundary polyhedron Prx of pn; since those polyhedra of D which are 
contained in Prx form a subdivision of Pr,, it follows, as above, that x is then an 
inner point of an angle A (Q8), where Q8 is a polyhedron in D and is con- 
tained in Pr. 

The proof of the lemma will now be complete if we show that, whenever Q,p 
and Q( , belong to D and there is an inner point of A (Q` ) contained in A (Q' ), 
Qr, itself is contained in QS. Using induction, we may, in doing this, assume 
that the lemma is true for all subdivisions of polyhedra of dimension less 
than n (the lemma is obviously true when pn has the dimension 1). The ques- 
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tion being purely local, we need consider only a small neighborhood of z in pn, 
which we may identify with a convex angle in Rn; by the distance of two 
points in that neighborhood, we understand the Euclidean distance as meas- 
ured in Rn. Let Qr be a polyhedron in D, such that zCQr; let A be anf inner 
vector of A (Qr), defined as above by an operator Xp=lim r . [p(z') -4(z)], 
where we may assume that z' runs over a sequence of innler points of Qr tend- 
ing to z. In RI, the direction of the vector zz' tends to that of the vector x. 
Our lemma will be proved if, assuming furthermore that x is in the angle at z 
of a polyhedron in {D which does not contain Qr, we show that this implies a 
contradiction. But the latter assumption implies that, if w is a nearest point 
to z' in the union W of those polyhedra in D which contain z and do not 
contain Qr, the direction of the vector zw tends to that of x; we need there- 
fore only show that this implies a contradiction. 

w must be contained in a polyhedron Qs belonging to qD and containing Qr, 
since otherwise it could not be a nearest point to z' in W. Let QT be the poly- 
hedron in {D of which w is an inner point; this is contained in Q' , and cannot 
contain Qr; it is therefore, by Lemma 7, contained in one of the boundary 
polyhedra Q/t of Q . As there are only a finite number of possibilities for 
QVI, Qs, I Q/t, we may, by replacing the sequence of points z' by a suitable sub- 
sequence, assume that these are the same for all w. We now identify a neigh- 
borhood of z in Q , with a convex angle in a. Euclidean space Rs; as z, z', w, 
Qr, Q/t are contained in Q' , we may, in the neighborhood of z, identify them 
with corresponding points and subsets of that convex angle, and x with the 
corresponding vector in that same angle. 

We have assumed that the direction of the vector zw tends to that of x; 
therefore Qr cannot be the same as Qs, for w is on the boundary of Q', and x 
is an inner vector of Qr. Therefore Qr is contained in a boundary polyhedron 
Qfu Of Q'; the directions of the vectors zz', zw tend to the direction of x; 
each point w is in Qt, each point z' in Q"u, and, in the neighborhood of z, Q"t 
and Qtu are the same as two boundary angles of the convex angle Q',; there- 
fore x must be in the angle at z of Q'tIrQ"u, which, by Lemma 7 (applied to 
Q. ), is the union of polyhedra of D, so that x is in the angle at z of one of the 
latter polyhedra. Therefore (applying the induction assumption to Q"u) Qr is 
contained in that polyhedron, and a fortiori in Qt. Hence, applying the induc- 
tion assumption to Qit, we get QrCQ", which contradicts an earlier statement. 

We now define a cellular subdivision of a polyhedron Pn as a subdivision )D, 
every polyhedron Z4 in which is a differentiable cell (of the same class as Pn). 
The application of the results of ?6 to arbitrary polyhedra depends upon the 
following lemma: 

LEMMA 9. Every differentiable polyhedron admits a cellular subdivision. 

This is essentially contained in the work of S. S. Cairns on triangulation, 
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and also in a subsequent paper of H. Freudenthal on the same subject(1"), 
and need not be proved here. 

On a differentiable polyhedron, it is possible to define differentials and 
differential forms in the usual manner. Such a polyhedron will be called a 
Riemannian polyhedron if there has been given on it a positive-definite quad- 
ratic differential form, locally defined everywhere, in terms of local coordi- 
nates VI, as E. Vg,,,dzAdz^. We make once for all the assumption that our 
Riemannian polyhedra are of class at least C3, and that the g, which locally 
define their Riemannian structure, are-of class at least C2 wherever defined. If 
Pn is such a polyhedron, and QP any regular subpolyhedron of Pn, the Rie- 
mannian structure of pn induces again such a structure on QP; if tz are local 
coordinates at a point r in QP, and the functions zv(v) define the local im- 
bedding of QP in Pn at that point, the structure of QP at that point is defined 
by the form >ij,yijd?id-i, where yij =EJ ,,g/az1i 9z"/6i. We shall denote 
by dv(z) the intrinsic volume-element in pn at z, and by dv(v) the same in QP 
at P. 

On a Riemannian polyhedron Pn, satisfying the above assumptions, we 
can define locally at every point z the Riemannian curvature tensor, and 
hence, by formula (1) of ?1, the invariant '(z). Let now QP be a regular sub- 
polyhedron of Pn, and r a point of QP; we shall denote by Nn-p(t) the normal 
linear manifold to QP at ?, which is a submanifold of the tangent space to Pn 
at D. We denote by r(QP, O the trace, on the unit-sphere, of the dual angle, 
taken in the tangent space to Pn, of the angle of QP at P. Furthermore, x being 
any vector in Nn-p we define I(D, x I QP) by formulae (2), (3), (4), (5) 
of ?1. 

Let now Rs be a polyhedron in a subdivision of QP. If s= p = n, we define 
I(QP, R) as the integral of '(z) .dv(z) over RB. If s <n, we define I(QP, R8) 
as the integral of '(D, t| Rs)dv(v) when v describes the set of inner points of Rs 
and t describes, for each ?, the spherical cell r(Qp, t). This implies that 
I(QP, RB) = 0 if the inner points of RS are of type greater than s in QP, because 
r(QP, t) has then a dimension less than n-s-1. If, therefore, we consider 
the sum Zs,,I(QP, R), taken over all polyhedra RS of a subdivision of QP, 
this sum has the same value as the similar sum taken for the canonical sub- 
division of QP; the value of that sum is therefore independent of the subdivi- 
sion by means of which it is defined, and we may write: 

c(Q ) = .L I(QP Ra), 
8=0 a 

the sum being taken over all polyhedra of any subdivision of QP. 
(11) See S. S. Cairns' expository paper, Triangulated manifolds and differentiable manifolds, 

in Lectures in topology, University of Michigan Conference of 1940, University of Michigan 
Press, 1941, p. 143, where references will be found to Cairns', Freudenthal's and Whitehead's 
publications. 
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'J(z) has been defined by using Pn as the underlying Riemannian space. 
If, on the other hand, we use QP as underlying space, we may, substituting p 
for n in formula (1) of ?1 and using the metric and curvature tensors of QP, 
define the similar invariant for QP, which we denote by 'fo(v). Similarly, 4o be- 
ing a normal unit-vector to Rs in the tangent space to QP at a point v of R8, 
we define TIo(, toj RI) by the formulae, similar to (2)-(5) of ?1, where QP is 
taken as underlying space instead of pn. We also define ro(Qp, O) as the trace, 
on the unit-sphere, of the dual angle, taken in the tangent space to QP, of 
the angle of QP at t. And we define Io(QP, R8) as the integral of qo(v)dv(v) 
over Rs if s =p, and, if s <p, as the integral of o0(D, toI R8)dv(t) when v de- 
scribes the set of inner points of Rs and to describes, for each ?, the spherical 
cell ro(Qp, t). By the same argument as above, we see, that the sum 

go(Q ) = ZIo(Q2, ) 
8,0 

taken over all polyhedra R, of a subdivision of QP, is independent of that 
subdivision. This sum, taken for the canonical subdivision of QP, is the same 
(except for slight changes of notations) as the sum that occurs in the right- 
hand side of the formula in Theorem II of ?1, when that theorem is applied to 
QP. With our present notations, we may, therefore, re-state our Theorem II 
in the following terms: 

THEOREM II. For every Riemannian polyhedron QP, oo(QP) = (-1)PX'(QP). 

We shall first prove that o(QP) =o(QP). As o(QP), oo(QP) can be defined 
from the canonical subdivision of QP, it will be enough to prove that, for every 
Qp in that subdivision (that is, either QP or one of its boundary polyhedra), 
I(QP, QP) =Io(QP, QP); and this will be proved if we prove that 

(6') to(r)f = (D (I QP) 
r(Q ,?) 

whenever r is an inner point of QP, and 

(7') J' To(r ' to QT) = r (D t j Qr) 
ro(Qrw? n(Q'0? 

whenever v is an inner point of a boundary polyhedron Qr of QP. But these 
identities have been proved, as formulae (6) and (7) of ?6, in the particular 
case when pn is a Riemannian cell; they are purely local, and depend only 
upon the angle of QP at ~, the g,., and their first and second derivatives and 
the first and second derivatives of the Z/(0) at that point; hence they hold in 
general. 

We now prove the important additivity property of the function o(QP) 
=a(o(QP): 
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LEMMA 10. For any subdivision of Pn, the formula holds: 

(- 1)"f(P') = E'(- 1)tO(Q') 
r,p 

where E' denotes summation over all inner polyhedra Qp of the subdivision. 

Call S the sum on the right-hand side. Replacing the a(Q ) by their defini- 
tion, we see that 

S = E ,,,.IQ1,), 
r, p,8,0 

where the sum is taken over all values of r, p, s, a, and Er,p,8,0 has the value 
(-1) r whenever QpDQ8a and Qr, is an inner polyhedron of the subdivision, and 
the value 0 otherwise. We may write, therefore: 

S - E J81 at 
S a 

where Js,a is defined by 

Jtf - E frpsl(Qp Qo"); 
r,p 

the latter sum may be restricted to those values of r, p for which Qr, contains 
QCY and is an inner polyhedron. 

We first calculate J, in the case s = n; the sum then contains only one 
term, and we have: 

J1n,o ( 1) I(Q;g, Qw) =( )IP " 

We now take the case s <n. From the definition of I(Qp, Q'), it follows that 
J8,0 is the integral of T(D, tj Q')dv(r) when r describes the set of inner points 
of Q', and the integration in (, for each ?, is over the chain: 

A = >2 p, i.).(QP ) 
r,p 

Now r(Qp, P), as a chain on Sn-s-', is the same as the outer angle, taken in 
Nn-8(;) according to our definitions in ?2, of the trace on Nn-8(v) of the angle 
of Q' at D. In the sum for A, we have all those Qp which are inner polyhedra 
of the subdivision and which contain Q' , that is, which contain r (since r 
is an inner point of Q' ); by Lemma 8, their angles at r are the inner angles of 
a subdivision of the angle of Pn at P; since all those angles contain the tangent 
manifold to Q, at ?, their traces on Nn--(r) bear the same relationship to the 
trace on Nn-s(r) of the angle of Pn; we may therefore apply to the outer angles 
of those traces Theorem III of ?2, which gives here A= (-1) nr(Pn, ?), and 
therefore: 

=, (- rI(P", Q )., 
which proves the lemma. 
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Lemma 10 shows that if Theorem II holds for every cell in a certain cellu- 
lar subdivision of pn, it holds for Pn; for, if all Qrp are cells and Theorem II 
holds for them, we have a(Qp) = (- 1)rx'(Qp) = 1, and the right-hand side of 
the formula in Lemma 10 reduces to the inner characteristic of Pn, as cal- 
culated from the given subdivision. Since every polyhedron admits a cellular 
subdivision, it will now be enough to prove Theorem II for cells. By ?6, we 
know it to hold for an "imbeddable" cell K", that is, for one in which the g,v 
are defined, as in ?6, by a mappingf of Kn into a Euclidean space RN. 

We next take the case of an analytic cell, which we may define by taking 
a convex cell Kn, and n(n+1)/2 functions g,p(z), analytic over Kn, such that 
the quadratic form with the coefficients g,,(z) is positive-definite for every z 
in Kn. By Cartan's theorem("2), every point of Kn has a neighborhood which 
can be analytically and isometrically imbedded in a Euclidean space. If, 
therefore, we subdivide Kn into sufficiently small convex cells (for example, 
by parallel planes), the Riemannian structure induced on any one of the latter 
by the given structure in Kn can be defined by an analytic mapping into some 
Euclidean space, and therefore the results of ?6 apply to all cells in that sub- 
division. Therefore Theorem II holds for Kn. 

We now take an arbitrary cell, defined as above by a convex cell Kn and 
functions g,,(z) over K", the latter being only assumed to be of class C2; by a 
theorem of H. Whitney("3), the g,,(z) can be uniformly approximated, to- 
gether with their first and second derivatives, by analytic functions and their 
derivatives. But the expression o(Kn), considered (for a given Kn) in its de- 
pendence upon the g, depends continuously upon the g,p and their first and 
second derivatives; for the integrands T are rational expressions in the g, 
their first and second derivatives, and the components 6 of vector t; the 
denominators in the T consist merely of the determinants g, y, which are 
bounded away from 0; dv(z) is g"12 dz, dv(r) is yl'12*d?. As to X, we may put 

*w ,,, where , describes the trace of the dual of the angle of Kn at r on the 
surface Z(tM)2= 1, which is independent of the gpv, and &= (EV9gPV .y1v)-1/2. 

Expressing ,, dt in terms of the 4,, we get expressions which are continuous 
in the g,. Since o-(Kn) is equal to 1 whenever the gA, are analytic, it follows 
that it is always 1, and this completes our proof. 

Our main result is thus proved in full. Owing, however, to the very un- 
satisfactory condition in which the theory of differentiable polyhedra has 
remained until now, the scope of our Theorem II may not be quite adequate 
for some applications, and we shall add a few remarks which properly belong 

(12) Loc. cit. Footnote 4. 
(13) H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. 

Amer. Math. Soc. vol. 36 (1934) p. 63 (see Lemma 2, p. 69 and Lemma 5, p. 74; as to the latter 
lemma, which is due to L. Tonelli, cf. C. de la Vallee Poussin, Cours d'analyse infinitesimale, 
vol. 2, 2d edition, Louvain-Paris, 1912, pp. 133-135). 
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to that theory (to which part of this section may also be regarded as a con- 
tribution). 

One would feel tempted to regard as a differentiable polyhedron any com- 
pact subset of a differentiable manifold which can be defined by a finite num- 
ber of inequalities 0,(z) > a, where the q/, are functions of the same class Cm 
as the manifold; and one would wish to be able to apply the Gauss-Bonnet 
formula to such sets. 

Now, a compact set P determined, on a manifold Mn of class Cm, by in- 
equalities q54(z) !a, the 4, being functions of class Cm in finite number, ac- 
tually is a differentiable polyhedron of class Cm, according to our definitions, 
if the following condition is fulfilled: (A) For any subset S of the set of in- 
dices v, consisting of s elements, and any point z of Mn satisfying 4.,(z) =aG 
for oCS and 45,(z) >a, for vEES, the matrix 11490/OIzIPff (where a runs over S 
and y ranges from 1 to n) is of rank s. In fact, if condition (A) is fulfilled, 
let z be any point of P; call S the set of all those indices a for which 4c7(z) = a,; 
by condition (A), their number s is at most n, and we may take the 4,(z) as s 
of the local coordinates at z; the neighborhood of z in P is then an image of 
class Ctm of the angle determined in Rn by the s inequalities x, _ 0. 

If condition (A) is not satisfied, P need not be a differentiable polyhedron, 
and indeed it can be shown by examples that "pathological" circumstances 
may occur. It can be shown, however, that condition (A) is fulfilled, in a suit- 
able sense, for "almost all" values of the a0, when the q5 are given. This gives 
the possibility of extending the validity of Theorem II to cases when (A) is 
not fulfilled, by applying it to suitable neighboring values of the a, and passing 
to the limit. Alternatively, almost any "reasonable" definition of a differen- 
tiable polyhedron, more general than ours, will be found to be such that our 
proofs of Lemmas 7 and 8 will remain valid; all our further deductions will 
then hold provided triangulation is possible. 

Finally, it may also be observed that the set P, defined as above by in- 
equalities 40(z) _ 0, can be considered as a limiting case of the set Pn defined 
by the inequalities 45(z) _ 0, H4,0,(z) _ E, where e is any number greater than 
0. The latter is a polyhedron with a single boundary polyhedron pn- which 
is a compact manifold of dimension n -1; it may be considered as derived 
from P by "rounding off the edges." We may therefore apply Theorem II to 
P'; and it is to be expected that the formula thus obtained will tend to a 
formula of the desired type when e tends to 0. In fact, this idea could prob- 
ably be used in order to derive our main theorem from the special case of 
polyhedra pn bounded by a single (n -1)-dimensional manifold. 

HAVER'qORD COLLEGE, 
HAVERFORD, PA. 

This content downloaded from 129.215.149.97 on Mon, 13 May 2013 23:39:32 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 101
	p. 102
	p. 103
	p. 104
	p. 105
	p. 106
	p. 107
	p. 108
	p. 109
	p. 110
	p. 111
	p. 112
	p. 113
	p. 114
	p. 115
	p. 116
	p. 117
	p. 118
	p. 119
	p. 120
	p. 121
	p. 122
	p. 123
	p. 124
	p. 125
	p. 126
	p. 127
	p. 128
	p. 129

	Issue Table of Contents
	Transactions of the American Mathematical Society, Vol. 53, No. 1 (Jan., 1943), pp. 1-155
	Volume Information [pp. ]
	Torsion of Hollow Cylinders [pp. 1-13]
	Heat Conduction in an Infinite Composite Solid With an Interface Resistance [pp. 14-24]
	Congruences in Unitary Space [pp. 25-40]
	Recursive Predicates and Quantifiers [pp. 41-73]
	Bézout's Theorem and Algebraic Differential Equations
[pp. 74-82]
	The Continuity of Functions of Many Variables [pp. 83-100]
	The Gauss-Bonnet Theorem for Riemannian Polyhedra [pp. 101-129]
	Linear Operators in the Theory of Partial Differential Equations [pp. 130-155]



