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1. Introduction. The classification of surfaces is one of the truly beautiful theo-
rems of modern mathematics. There are many proofs in the literature already, most
of which are quite elementary. This note presents yet another proof, one that
involves some very simple graph theory, an area increasingly popular with, and
familiar to, students today. It also involves rudimentary surgery and thus could
serve as an introduction to some of the methods of modern differential topology.

A surface is a compact two-manifold without boundary. For those readers for
whom this is not very helpful, [7, Chap. 1] and [4, Chap. 1, 2] both give a very
leisurely, well-illustrated explanation.

Perhaps the most familiar surfaces are the sphere and the torus (F1G. 1).
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Fi1G. 1.

Two more exotic surfaces are the projective plane and the Klein bottle (FiG. 2; see

also [6, pp. 64-67]).
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Most mathematicians are familiar with the Mobius strip (FIG. 3).

cylinder Mobius strip

F1G. 3.

This is not a surface but, like the cylinder, a surface-with-boundary. The boundary
of the cylinder is, of course, two disjoint circles, while the boundary of the M&bius
strip is just a single circle. The Mobius strip will be quite important in our proof
because it is so closely related to the projective plane. In fact, if the interior of a
small disc is removed from a projective plane the resulting surface-with-boundary is
a Mobius strip (see [5, p. 33)).

Any two surfaces can be combined to produce a third by forming what is called
their connected sum (see [S, p. 79]). A small open disc is removed from each surface,
and the two resulting boundary circles are then glued together (F1G. 4).
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ﬂw Connected sum of a torus and a projective plane.

FiG. 4.

The simplest and weakest form of the classification theorem says that any surface
can be built from the few examples described above using only the operation of the
connected sum.

THEOREM. Any surface is homeomorphic to the connected sum of a sphere, m tori,
n projective planes, and r Klein bottles, where m, n, and r are greater than or equal to
zero.

The basic idea of this proof is the same as that of [5, pp. 88—-89]. We attempt to
simplify the surface by removing tori, projective planes, or Klein bottles. Begin by
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looking for a nonseparating simple closed curve y on Z, that is, a curve y for which
2 — v is still connected. If W is a small open neighborhood of y on X, then W (the
closure of W) is either a cylinder or a Mobius strip. Consider £ — W the
surface-with-boundary obtained by removing W from Z. The boundary of ¥ — W
will be one or two circles since bdry(E — W) = bdry(W). Glue a disc (or discs)
onto the boundary circle(s) of £ — W to get a new surface 2’. In essence we go
from 2 to 2’ by removing a cylinder (handle) or a Mobius strip. A little care must
be taken here. The handle could have been attached nicely (F1G. 5(a)) or badly (F1G.
5(b)). It is a good exercise to show that the nice handle in FI1G. 5(a) is homeomor-
phic to a torus with a disc removed and that the bad handle in Fi1G. 5(b) is
homeomorphic to a Klein bottle with a disc removed.

A

(S

(a) “nice” handle (b) “bad” handle

FIG. 5.

We continue by looking for a nonseparating simple closed curve ¥y’ on £’ and
repeating the process. This leaves two major questions: Will we ever reach a surface
with no nonseparating curves? What can we say about such a surface? The answers
are quite simple. After a finite number of these surgeries, we will obtain a surface
with no nonseparating closed curves and such a surface is homeomorphic to a
sphere. The verification of these statements is usually rather lengthy, though.

In this proof we use triangulated surfaces and some graph theory to describe a
very concrete execution of the program just sketched. We show where to look for
the non-separating curve y and demonstrate easily that the procedure produces a
sphere in a finite number of steps. For convenience, we use a slightly different
technique for the surgery. Instead of removing an entire neighborhood of y, we
merely cut the surface open along y. The surface-with-boundary created is homeo-
morphic to the one described above and so the ultimate effect is the same.
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The idea of this proof came from Paul Melvin, who credits it originally to E. C.
Zeeman. (The referee has pointed out that a similar version of this proof [also
credited to Zeeman] appears in an excellent textbook by M. A. Armstrong [1].
Regrettably, this book does not seem to be very well known or readily available in
North America. We hope that those readers who find this article useful will be able
to examine Armstrong’s text in its entirety. The author would also like to acknowl-
edge financial support from Williams College, McMaster University, and Wilfrid
Laurier University.)

2. Some Graph Theory. For purposes of this note, we assume that all graphs are
connected. Recall that a spanning tree in a graph G is a subgraph of G that is a tree
containing all the vertices of G. It is easy to see that every graph has a spanning
tree.

Let V(G) (resp., E(G)) denote the number of vertices (resp., edges) in a graph
of G.

DErINITION. The cyclomatic number of a graph G, denoted by C(G), is defined
by the equation

c(G) =1 - ¥(G) + E(G).

The cyclomatic number measures the number of independent cycles in G. We need
only one of its properties. Some deeper results about C(G) may be found in [2,
Chap. 2].

PROPOSITION. C(G) > 0. Furthermore, C(G) = 0 if and only if G is a tree.

Proof. The proof follows quite easily using induction on the number of edges.

3. Proof of the Theorem. As in most proofs of this theorem, we use combina-
torial techniques and so assume that all surfaces are triangulated. It is a nontrival
result that this introduces no loss of generality in dimension two (see, e.g., [3,

§16.a)).

DEFINITION. A surface is a finite collection of triangles in some Euclidean space

such that:
(i) the intersection of any two triangles is empty, a single vertex, or a single edge;
(ii) any edge is the intersection of exactly two triangles; and
(iii) the triangles incident with a given vertex can be ordered A;, A,,..., A, so that
A, has exactly one edge in common with A,,;, for 1 <i <k, and A, has
exactly one edge in common with A;.

For a surface X, let A, A,,..., A, be a list of all the triangles of =. The
collection of vertices and edges of these triangles forms a graph that we also denote
by 2. Let B, be the barycenter (centroid) of A,. Form a new graph Gs whose
vertices are the barycenters By, B,,..., B,. There will be an edge B;B, in Gy if
and only if A; and A; have an edge e in common. In this case we say that B,B;
crosses e.

Let T be any spanning tree of Gy and K be the subgraph of = consisting of all
the vertices of 2 and those edges of 2 not crossed by T. It is easy to verify that K
is connected since T is a tree.

It is perhaps helpful to think of T as lying along the edges of b(ZX), the first
barycentric subdivision of Z. It is not, however, a subgraph of b(Z) because the
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vertices of T are just the barycenters of the triangles in =. We can use b%(Z), the
second barycentric subdivision of =, to produce neighborhoods U > 7 and ¥V D K r
on the surface 2 satisfying:

D UNV=9¢,

(i) UU ¥V =3, and

(iii) bdry U = bdry V.

For example, U will be T together with the interiors of all the triangles and edges of
b%(Z) that intersect T. There is a similar description for V. We should remark here
that U is homeomorphic to a two-dimensional disc since T is a tree.

FIGURE 6 shows a triangulation of the projective plane. (Note that there are
identifications on the boundary of the hexagon.) One of the possible choices of T is
drawn with heavy lines. The corresponding K, is drawn with broken lines. The
shaded region is U and the unshaded one is V.

FIG. 6.

Now focus on the cyclomatic number L = C(K7). We consider two cases.

Case 1: L = 0. In this case K is a tree. Then V is a disc, as observed above.
Thus X is the union of two discs, U and ¥, joined by an identification of their
common boundary. This means that = is homeomorphic to a sphere.

Case 2: L + 0. In this case, K, is not a tree so there must be a cycle y in K.
This is the curve on which we do surgery.

LEMMA. The cycle y does not separate 3.

Proof. The tree T has a vertex in each triangle of = and does not cross y. Thus
any two points of 2 — y can be joined by a path in = — y.

Instead of removing a whole neighborhood of y, we just cut the surface open
along y to create a triangulated surface-with-boundary 2. Just as in our earlier
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discussion, the boundary of X consists of one circle if y has Mobius strip
neighborhood and of two circles if y has a cylinder neighborhood.

In the example of F1G. 6, L = 1 and essentially the only choice of y is the cycle
ADFA. The neighborhood of y is shown in F1G. 7. It is obviously a Mobius strip.

Fi1G. 7.

The next step is to cap off the boundary of = with a suitably triangulated disc
(or discs) as shown in FI1G. 8. This creates a new surface =’. The heavy lines in
F1GURE 8 show how the existing tree T can be extended into each new triangle to get
a new tree 7" that will be a spanning tree for Gy. We then compute L’ = C(K;) by
simply counting the vertices and edges added to or lost from K, to produce K.
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(a) one boundary component (b) two boundary components
FiG. 8.

LEMMA. If 2 has one boundary circle, then L' = L — 1; if 3. has two boundary
circles, then L' = L — 2.
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The whole procedure can now be iterated, decreasing the value of L each time. In
a finite number of steps, then, we arrive at the L = 0 case, which corresponds to a
sphere. As outlined in Section 1, each surgery (the process of cutting along y and
capping off the boundary of X)) is equivalent to removing a torus, a projective
plane or a Klein bottle. This completes the proof of the theorem.

REFERENCES

1. M. A. Armstrong, Basic Topology, McGraw-Hill (UK), London, 1979.

2. C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam, 1976.

3. C. O. Christenson and W. L. Voxman, Aspects of Topology, Marcel Dekker, New York, 1977.

4. H. B. Griffiths, Surfaces, Cambridge University Press, Cambridge, 1976.

5. C. Kosniowski, A First Course in Algebraic Topology, Cambridge University Press, Cambridge,

1980.
J. Stillwell, Classical Topology and Combinatorial Group Theory, Springer-Verlag, New York, 1980.
7. J. R. Weeks, The Shape of Space, Marcel Dekker, New York, 1985.

>

Another Required Reading Program for Mathematics Majors

JaMEes C. REBER
Department of Mathematics, Indiana University of Pennsylvania, Indiana, PA 15705

I appreciated the article by Robert L. Brabenec, “A Required Reading Program
for Mathematics Majors” [this MONTHLY, April 1987]. For precisely the reasons he
presented we have introduced a reading program at Indiana University of Pennsyl-
vania. The differences between programs, and respective advantages and disad-
vantages might be worth noting.

Our program is tied to individual courgses required for all majors, and uses
readings on reserve in the library. Each instructor teaching a course in the program
requires the readings for that course, specifies how the requirement is met (typically
with a short reaction paper), and determines how the assignment will be graded.
General readings are used in courses populated primarily with mathematics majors;
readings explicitly tied to the course are used in courses that include many
non-mathematics majors.

One disadvantage of this approach: though encouraged to complete the assign-
ment early in the semester, students often complete it amid the pressure of other
work.

Advantages: students minoring in mathematics or taking just a few courses
complete some readings; faculty are more likely to integrate the readmgs into the
course; there is no departmentwide bookkeeping; and the program is easy to start
since it can be phased in several courses at a time.

The explicit readings we use might be instructive, though I agree with Brabenec’s
comment, “The specific content of what our students are reading is not nearly as
important as the fact that they are reading.”

Calculus I. Read two of three essays on the nature of mathematics from
Mathematics: People/Problems/Results: “Math and Creativity” by Alfred Adler;
“The Meaning of Math” by Morris Kline; “Math as Creative Art” by Paul Halmos.



