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1. Introduction. The main purpose of this paper is to present a generalization of
Hirzebruch’s signature theorem for the case of manifolds with boundary. Our result
is in the framework of Riemannian geometry and can be viewed as analogous to the
Gauss—Bonnet theorem for manifolds with boundary, although there is a very signi-
ficant difference between the two cases which is, in a sense, the central topic of the
paper. To explain this difference let us begin by recalling that the classical Gauss—
Bonnet theorem for a surface X with boundary Y asserts that the Euler characteristic

E(X)is given by a formula:
1
s = ([ e+ o), -

where K is the Gauss curvature of X and o is the geodesic curvature of ¥ in X. In
particular if, near the boundary, X is isometric to the product ¥ x R+, the boundary
integral in (1-1) vanishes and the formula is the same as for closed surfaces. Similar
remarks hold in higher dimensions. Now if X is a closed oriented Riemannian manifold
of dimension 4, there is another formula relating cohomological invariants with
curvature in addition to the Gauss—Bonnet formula. This expresses the signature}
of the quadratic form on H% X, R) by an integral formula

sign (X) = %fxpl, (1-2)

where p, is the differential 4-form representing the first Pontrjagin class and is given
in terms of the curvature matrix R by p, = (27)-2Tr R2. It is natural to ask if (1-2)
continues to hold for manifolds with boundary, provided the metric is a product near
the boundary. Simple examples show that this is false, so that in general

sign X~ fxpl —f(T) +0. (19)

The notation in (1-3) is meant to emphasize that f(Y) depends only on Y (as an
oriented Riemannian manifold) and not on X In other words, if X’ is another manifold
with boundary Y, then

. 1 ) 1 ,
signX——| p,=signX'—<| p;.
3 X 3)x

D pta
t The signature of the quadratic formY,z*— )} 2 is p—gq.
1 p+1
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This is an easy consequence of (1-2) applied to the closed manifold X y (— X’) obtained
by glueing X’ (with orientation reversed) to X along ¥. We are therefore left with the
question of understanding how f(Y) depends on the metric on Y. The following
properties are clear from (1-3):

fis a continuous function of the metric, (1-4)

f(=Y)=-f(Y), (1-3)

where — Y is ¥ with the same metric but with opposite orientation. A natural con-
jecture, consistent with (i) and (ii) would be that fis given by some integral expression

f(Y)= f 6, where 6 is a 3-form on Y canonically constructed out of the metric.
Y

However, if this were the case, it would imply that f was multiplicative for finite
coverings, namely f(¥) = df(Y), whenever ¥ is a d-fold covering of ¥. Explicit
examples show that this is false: in fact, for ¥ = 3-sphere, f(¥) = 0 but f(¥) % 0 for
a suitable lens space Y (a quotient of the 3-sphere by the cyclic group of order d)f.
Thus f must be a global invariant of the metric. Rather surprisingly, and this is our
main result, it turns out to be a spectral invariant.

We recall that the eigenvalues A of the Laplace operator of the metric are con-
veniently studied via the Zeta-function:?

Ls)= 3 A~ (1-6)
A0

Real-valued invariants of the metric satisfying (1-4) can then be obtained by evaluating
{(s) at some point where it is known to be finite. Invariants obtained in this way are
however insensitive to the choice of orientation so that they will not satisfy (1-5).

To find a function of the eigenvalues which satisfies (1-5) we have to do something
more subtle. To begin with, we should use the Laplace operator on forms as well as on
scalar functions. Next we observe that this total Laplace operator A is in fact the
square of a self-adjoint first order operator§ B = + (d% — =d). Thus the eigenvalues of
A are of the form A2%, where A is an eigenvalue of B. Now, unlike A, the operator Bis not
positive so its eigenvalues can be positive or negative. Taking this sign into account,
we can therefore refine (1-6) to define a new function

7(s) = X (signa)|A|-=. (1-7)
A0
If we regard (1-6) as a generalization of the Riemann Zeta-function, then (1-7) can be
regarded as analogous to the Dirichlet L-functions. Since B involves the * operator
(linearly), it follows that reversing the orientation of ¥ changes B into — B and hence
7(s) into —7(s). If we now evaluate 7(s) at a suitable value of s, we will therefore obtain
an invariant satisfying (1-5).

To decide what value of s is a reasonable candidate, we consider the behaviour of
our function f with respect to scale changes of the metric. Since a scale change
(g5 k?g;;, k a positive constant) does not affect the curvature, it does not alter the

1 These examples will be treated in Part IT.

1 An eigenvalue is repeated in (1-6) according to its multiplicity.

§ Signs are technically most important in what follows, but to avoid complications at this
stage we simply write +. The correct signs will be found in section 4.
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value of f. On the other hand an easy check (see ((2); section 5)) shows that the eigen-
values A of B become k1A and so 7(s) becomes £~5y(s). The only value of s for which
7(8) is unaltered is therefore s = 0.

To sum up, we see that the simplest spectral invariant of ¥ that behaves like f(Y)
is 9(0). In fact our main result (Theorem (4-14)) asserts that f(Y) = }9(0). The factor
% has an obvious explanation, because B is clearly the direct sum of two operators
Bev, B°4d acting on forms of even and odd degrees respectively and * switches the two
so that the g-invariant of Be¥ is half the g-invariant of B. Thus we can remove the
factor } if we replace the operator B by the operator Be¥. Note that in the classical
notation for flat space B°" is essentially the operator

(O div )
grad curl

acting on the 4-vector consisting of a function and a vector-field (which may be
identified with a 2-form).

In the above discussion, we restricted ourselves to 4-dimensional manifolds X (with
3-dimensional boundary Y) only for simplicity. In fact everything goes through for
4k-dimensional manifolds (as stated in Theorem (4:14)), the main difference being
that thesimpleintegrand 3p, in (1-3) hasto be replaced by the Hirzebruch L-polynomial
in the Pontrjagin forms in the general case. Moreover, we show, in Proposition (4-20),
that in computing 7(s) the only relevant part of the operator B is d* acting on dQ2-1,
which is roughly in the middle dimension. Thus, in the classical situation discussed in
the previous paragraph, only curl contributes to the computation of #(s).

For positive self-adjoint elliptic operators the Zeta-functions given by (1-6) have
finite values at s = 0, which are given by explicit integral formulae. In view of
Theorem (4-14) and of the non-local character of f, the ¢-functions must behave in a
different way. The explanation for this difference between # and { is that 5 involves
the separation of Spec B into positive and negative. This is a global operation and it
accounts for the non-local character of 7.

Of course it is implicit in what we have said that 5(s) has a finite value at s = 0. Now,
just as for {(s), this value is defined by analytic continuation in s from the half-plane of
absolute convergence (Re s large). The behaviour near s = 0 of the two functions is
however somewhat different. Whereas {(0) is finite and explicitly computable as an
integral, 9(s) has at first sight a simple pole at s = 0 with an explicitly computable
residue. It is a remarkable fact that, for the operator B above, the integral formula for
this residue vanishes identically so that 2(0) is finite. This situation has some close
analogies with the analytic R-torsion studied in (14) and (15). There the appropriate
{-function turns out to vanish at s = 0 and one then proceeds to consider the next term
in the Taylor expansion, namely ¢’(0). This turns out to have a non-local character
which is related to the global topological invariant studied in Reidemeister torsion.
From yet another point of view, this paper has something in common with (14) and (15).
Each of these three papers introduces an analytic invariant for manifolds which is
related to a classical index invariant: namely the signature, Euler characteristic and
arithmetic genus. However, the differences between the three cases are substantial
and we do not see at present how to unify them under any common generalization.
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The finiteness of (0) turns out to be a general phenomenon valid for all self-adjoint
elliptic operators. For certain other operators arising in Riemannian geometry
(operators of ‘Dirac type’), this finiteness can be proved in exactly the same manner
asfor the particular operator B. That is, one computes the residue as an explicit integral
and then shows it vanishes identically, or alternatively one deduces it fom the analogue
of Theorem (4:14). For general self-adjoint operators, such a direct argument seems
difficult and instead we shall deduce it (in Part IIT) from the special Riemannian cases
by topological methods.

We now return to explain the method of proof of our main theorem. Recall first
that the Hirzebruch signature theorem for closed manifolds is a special case of the
general index theorem for elliptic operators. In fact there is an operator (the ‘ signature
operator’) acting on certain spaces of differential forms whose index can be identified
via Hodge theory with the signature of the manifold. It is natural therefore, for a
manifold X with boundary Y, to try to set up a suitable elliptic boundary value
problem for the signature operator whose index will be the signature of X. The
difficulty with this programme is that there are topological obstructions to the
existence of such boundary conditions (1) and these obstructions are non-zero for the
signature operator. This is on the assumption that we are looking for classical or local
boundary conditions as for example in the Dirichlet or Neumann problems. If we
enlarge our point of view however and permit global boundary conditions, then it
turns out that we can indeed set up an appropriate boundary value problem. Near the
boundary, the signature operator takes the form

0'(5%+B), (1-8)

where # is the normal coordinate, o is a bundle isomorphism and B is the self-adjoint
operator on Y described earlier. For our boundary condition, we require that the
boundary value ¢| Y should lie in the subspace spanned by the eigenfunctions ¢, of B with
A < 0. If P denotes the orthogonal projection onto the space spanned by the eigen-
functions with A > 0, the boundary condition is P(¢|Y) = 0. The operator P is
pseudo-differential and its symbol p = p(y, £) is an idempotent m x m matrix of rank
4m defined on the cotangent sphere bundle of Y. It turns out that p is not deformable
(through idempotents of rank 4m) to a matrix function of y alone, i.e. to the symbol of
a multiplication operator. This is the topological obstruction referred to above which
shows that there is no (elliptic) boundary condition of local type for the signature
operator. For our global boundary condition P(¢|Y) = 0 however, we have a good
elliptic theory and, in particular, a finite index. This index can be identified with the
signature of X so that Theorem (4-14) appears as an index formula; the index being
expressed as the sum of two terms, one an integral over the interior X and the other
7(0) coming from the boundary Y.

It is clear that the right context in which to view Theorem (4-14) is therefore that of
index problems for such global boundary conditions. In section 3, we derive a general

1+ At least for odd-dimensional manifolds.
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analytical result, Theorem (3-10), giving such an index formula for first-order systems
which are of the simple type (1-8) near the boundary (with B now being any self-
adjoint first-order elliptic differential operator on Y). In Theorem (3-10), the interior
integral is only given implicitly since it depends on the asymptotic behaviour of the
corresponding heat kernel. If however our interior operator is one of the classical ‘ Dirac
type’ operators arising in Riemannian geometry then the main results of (2) enable us
to identify the integral with an explicit expression in the curvature. This is done in
section 4 and leads to results such as Theorem (4-2) for the Dirac operator on spinors.
As a simple illustration, we consider in some detail the case of Riemann surfaces with
boundary. In the second half of section 4 we show how the special case of Theorem
(4-14) fits into the general Riemannian framework. The main point here is to carry out
the analogue of the Hodge theory for manifolds with boundary. Now there is already
such a treatment (8), used successfully in (14), in which the absolute and relative
cohomology groups of X and (X, Y') are computed in terms of harmonic forms satisfying
appropriate local boundary conditions. Unfortunately this is not what we need here,
and in fact the attempt to use these classical boundary conditions held up progress for
a long time. Instead we have to connect cohomology to the null space A4~ of the
signature operator with its global boundary condition. To explain our result, it is
convenient to introduce the non-compact ‘elongation’ X of X obtained by attaching
the semi-infinite cylinder ¥ x R~ to the boundary Y of X. Note that a form in A4~
extends to an exponentially decaying harmonic form on X, and so is certainly square-
integrable. The result we need is, then, Proposition (4-9) asserting that the space of
square integrable harmonic forms on X is naturally isomorphic to the image of the relative
cohomology H*(X, Y) in the absolute cohomology H*(X). This image is so to speak the
part of the cohomology that lies half-way between the absolute and the relative, and
when represented by harmonic L2-forms on X, it is naturally acted on by the duality
operator .

There are many interesting generalizations and applications of our results, some of
which have been mentioned in ((5); section 2), and we shall treat these in detail in
Part IT of this paper. In particular, we shall study the relation with coverings,
exploiting the non-multiplicative character of 7(0) alluded to earlier. We shall also
discuss the relation of our invariant with the recent work of Chern and Simons (6).

In defining our »-function by (1-7), we mentioned the analogy with the L-functions
of Number Theory. In fact, there are some 3-manifolds arising in the theory of real
quadratic fields for which our invariant 5(0) turns out to coincide essentially with the
value L(0) of a certain L-function of the field. Modulo thisidentification Theorem (4-14)
for these 3-manifolds reduces to a result of Hirzebruch (10). One of the primary moti-
vations of our present work was in fact an attempt to understand the significance of
Hirzebruch’s result in the wider context of Riemannian geometry. Conversely we hope
that our results may have Number theoretical significance, particularly for totally
real number fields. We shall return to this question in a future publication.

In the search to identify the invariant f(¥), defined by (1-3), another important
clue was provided by a joint (unpublished) study of the first author and G. Lusztig.
This study was concerned with a periodic family of self-adjoint elliptic operators and
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an integer invariant called the spectral flow of the family. Roughly speaking the
spectral flow is the net number of eigenvalues that change sign (from — to + ) while the
parameter of the family is completing a period. Since it involves contrasting the
positive and negative eigenvalues, this special flow clearly has something in common
with our y-invariant. The precise relation will be explained in Part IIT.

The main technical and computational part of the paper is in section 2 where we
consider our boundary value problem on the semi-infinite cylinder ¥ x R+ instead of X.
This can be treated quite explicitly assuming only well-knownresults concerning elliptic
operators on the closed manifold ¥. The fundamental solution of this eylinder problem
then provides us in section 3 with a parametrix near the boundary for our boundary
value problem on the compact manifold X. Combined in the usual way with an interior
parametrix, thisleads tothe usualregularity and finitenessresults, showing that our pro-
blem is ‘elliptic’. In fact our problem can easily be fitted into the general class of elliptic
problemst studied for example in (11), but we have preferred to giveadirect elementary
treatment, partly because we need the explicit formulae for the heat equation.

The basis of our general index formula (3-10) is in principle similar to that of (2) in
that it uses the asymptotics of the heat equation. The only difference now is that our
heat operator must take into account the boundary condition and this produces a
boundary contribution in the asymptotics. The computation of this boundary contri-
bution can be made on the cylinder and much of section 2 is concerned with this
calculation, ending up with formula (2-25).

The main results of this paper were announced without proof in (5).

2. Computations on the cylinder. In this section, we shall make some explicit calcula-
tions which will be basic to the rest of the paper.

Let Y be a closed manifold, E a vector bundle over Y and 4: C*(Y, E) - C~(Y, E)
a self-adjoint elliptic first order differential operator.] Then 4 has a discrete spectrum
with real eigenvalues A and eigenfunctions ¢,. Let P denote the projection of C(Y, E)
onto the space spanned by the ¢, for A > 0. Then P is a pseudo-differential operator.
To see this, put B = 4 + H where H denotes projection onto the null-space of 4, then B
is invertible and so, by the results of Seeley (16), | B| the positive square root of B? is
pseudo-differential. Clearly P = $B-Y(B+|B|).

We now form the product Y x R+ of ¥ with the half-line # > 0 and consider the
operator P

D= P +4 (2-1)

acting on sections f(y, u) of F lifted to ¥ x R* (which we still denote by E). Clearly D is

elliptic and its formal adjoint is
0
D¥=——+4. 9.9
= (2:2)
+ In the framework of (11) our problem would be an over-determined elliptic system. This is
quite adequate for finiteness and regularity theorems but it does not deal with the index which
must refer to a determined system.
t F is assumed to have a C* Hermitian inner product and Y a C® measure dy, so that the

inner product for sections of E is given as usual by f (f(y), g(y)) dy.
Y
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We now impose the following boundary condition for D
Pf(-,0) = 0. (2:3)
Note that this is a global condition for the boundary value f(-,0): in fact it is

equivalent to
f (f(y,0), (%)) =0 forall A=0.

The adjoint boundary condition to (2-3) is clearly
(1=P)f(-,0) = 0. (24)

The space of all C= sections satisfying (2-3) will be denoted by C*(Y x R+, E; P) and
C%mp will denote sections with compact support (i.e. vanishing foru > C). Also H! (for
I > 0) will denote the Sobolev space of sections with derivatives up to order /in L2 and
H}, the space of sections which are locally in H*. More precisely ¢ € H' if B(9[ou) ¢ € L*
for all j and for all differential operators B on Y of order {—j. Then the following
proposition asserts that (2-1) with the boundary condition (2-3) hasa good fundamental
solution Q.

ProrosITION (2-5). There is a linear operator

Q: Comp(Y xR, E) » O=(Y xR+, E; P)
such that
(1) DQg = g for all ge C3 (Y x RT, E)
) @Df = f for all fe C2n (Y x R, E; P)
(1_11) The kernel Q(y,u; z,v) of @ is C® for 4 % v (here y,2€ Y and u,veR)
(iv) @ extendstoa continuous map H — Hi , for all integral 1 > 1

Proof. To solve Df = g, we expand f and g in terms of an orthonormal basis of
eigenfunctions of 4:

F(y,u) = Zfi(w) $r(y), 9y, u) = Zga(w) $aly
We must now solve

(%“)f* =g, with f,(0)=0 for A= 0. (2-6)
We take the explicit solutions
Hilw) = jue"(”—“) gr(v)dv for A>0
0

= —f ev-vg . (v)dv for A< 0 (27
u

to define @,. Formally @ = 2@, satisfies (i) and (ii) and to see that this formal solution
for @ converges, it will be sufficient to prove (iv) by estimating the Sobolev norms.
To do this, we rewrite the equations (2-7) in terms of the Laplace transform

f® = f €% f(u) du

and we get FE) = g,\(i):{g(O)’
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where f,(0) = 0 for A > 0 and

H(0) = —fwe“’g,\(v) dv for A<O.
0

Computing L2-norms from (2-8), we have
Z[fill2 < ||gal2 for A=0

~ © d
2{“9/\"2"' A |f/\(0)|2JA_Go /\2_-5?2}

~ 1 T
2{igil+ 2 grgloale 7y for A <o.

Hence, using Parseval’s formula, we deduce for all A

[ALIAL < 2]gall- (2:9)
Combined with (2-6), this gives
d
Pl < 31gal. (2:10)
Since 4 is a first-order elliptic operator the Sobolevnorm || ||, for H! may be defined
by
11t = 11+ | Z "+ harye
2
= s+ |p+| L)

Except for A =0, (2-9) and (2:10) therefore give continuity H°-> H*. For A = 0,
u
folu) = Jo 9o(v) dv and this, together with (2-10), gives continuity H° - H} ,establishing

(iv) for I = 1. More generally, multiplying (2-9) by powers of A and differentiating (2-6)
with respect to «, we deduce

-1
I,\lp af/\ < 3|,\|p+q-1”g)(”+qz l,\|p+q—r—1 gg_"
r=1 o

which establishes (iv) for general 1. It remains to verify (iii). Now @ is given by con-
volution in the u-variable with

K(t) = e(t) e t4! P —g( —t) etl4l(1 — P), (2-11)
where ¢(t) is the characteristic function of the non-negative real line and
|4| = AP—A(1—P).

Fort > 0, et!4ljsthe ‘heat operator’ associated to the pseudo-differential operator | 4|
and so its kernel E(y,2,1) is a C° function on ¥ x ¥ x R*. Alternatively, this can be
deduced as follows. For 0 < to < t; < o0, we have

Jo, ) e

dy dzdt

" (A2 s < (= to) SAFHkeoM < oo
o A
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(since TAZme—2tlAl < C ZTA-2N which converges for large N). Since this holds for all 5, &
the Sobolev Lemma implies that  is C*. By (2-11), the same is therefore true of K(¢)
for ¢ & 0. Since Q(y, u; z,v) = K(y,z,u—v), where K(y, z,t) denotes the kernel of K{t),
@ has a C> kernel for u + v.

If we replace D by D* and the boundary condition (2-3) by (2-4), the only difference

in the above proof occurs for A = 0in which case we put fy(u) = — f go(v) dv. Thus D*

also has a fundamental solution with the properties in (2-5). If we regard D and D* as
unbounded operators on L? we have

ProrosiTiox (2-12). The closure of the operators on L? defined by D and D* with domains
given by (2-3) and (2-4) respectively are adjoints of each other.

Proof . 1f we decompose the Hilbert space L} Y x R+, E)intotwoparts: H = H' ® H”,
H" involving the zero-eigenvalue of 4 and H’ all the non-zero eigenvalues, then D and
D* decompose accordingly. On H”, D = 9[ou, D* = — /0w and the adjointness is clear.
On H’ the fundamental solution @ of (2-5) gives a bounded inverse @' for D and
similarly we get a bounded inverse R’ for D*. Then R’ = (Q')* follows by continuity
from the fact that (Df,g) = (f, D*g) for f,ge O, and satisfying (2:3) and (2:4)
respectively. Since adjoints commute with inverses, the proposition is established.

Let £ denote the closure of the operator D on L? with domain given by (2-3). The
domain of Z is clearly contained in the closed subspace W, which is the kernel of the
composite continuous map

HYY xR+, E) 2> LY,E) 5 LXY,E),

where r isrestriction to the boundary.t A similar remark applies with D replaced by D*
and (2-3) replaced by (2-4). Applying Proposition (2-12) we then see that equality must
actually hold, namely Domain & = W and similarly for Domain 2*.

Now let us form the two self-adjoint operators

A, = D*D, A, = DD*.

For¢ > 0, we can then consider the bounded operators e~t4: and e—t2:. We shall give the
explicit kernels of these operators in terms of the eigenfunctions ¢, of 4. Consider
first A,, which is the operator given by — 92/ou®+ A% with the boundary condition

Pf(-,0)=0 and (1-P){(%+Af)u=o}=o. (2:18)

Expanding in terms of the ¢,, so that f(y, u) = Zf\(u) (), we see that for each A we
must study the operator —d?/du?+ A% on » > 0 with the boundary conditions

H(0)=0 if A0 (2-14)
(‘;_{ZJ,AfA)M if A<o. (215)

+ Note that restriction is even continuous H}(Y x R+) > H¥(Y).
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Now the fundamental solution for 0ot — 2?/du?+ A% with the boundary condition
(2-14) is easily seen to be

) () e

while for the boundary condition (2-15), standard Laplace transform methods (see
(¢6); section 14-2)) give

—A%t (1 — )2 _ 2
f/47rt {exp ( (Qflt %) ) +exp (—(—Z:—ﬂ )} + /\e—"("“””)erfc;

- t: (2-17
2.t y )
where erfc is the complementary error function defined by

erfc (z) = %jw e dE.

The kernel of e~*41 at a point (y,u; z,v) is therefore given by multiplying (2-16) or
(2-17) (according as A > 0 or A < 0) by ¢,(y) ¢,(2) and summing over all A.
For the operator A,, the boundary conditions for each A are

f0)=0 if A<0 (2:18)

( ddf*.;./\f,\) =0 if a0 (219)

The fundamental solution of 9/df — 9%/ou?+ A2 for (2-18) is again given by (2-16) while
for (2-19) we must use (2-17) with A changed to — A.

Since f i e~8dE < e=" we see that (2-16) and (2-17) are both bounded by
x

e—A% + 2| A e~ (u —v)?

gt |\ T )
Using the inequality z < ¢*%2, it follows that the kernel e,(¢; y,u; z,v) of e~t41 jg
bounded by

T S S0+ e exp (<UL ). (2:20)

Since the kernel of e~t4* on the diagonal of ¥ x Y is bounded by Ct-"2 (see for example
((2); section 4)) we deduce

PROPOSITION (2-21). T'he kernels of e7**1and e—t2: are exponentially small intast — 0
for w + v. More precisely they are bounded by

— — )2
ormea(-5)

for some constant C as t — 0.

Proposition (2-21) asserts that, as usual, the contribution outside the diagonal (u = v)
is asymptotically negligible. What we are primarily interested in is of course the con-
tribution from the diagonal. Moreover we are interested in the difference between
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e~tA1and e~*22, solet K (t, y, u) denote the kernel of e~t41 — e*A2at the point (y, u; ¥, u) of
(Y x R*Y) x (¥ x R+). Formulae (2:16), (2-17) and their counterparts for A, then give

e—At g—ullt

K(t,y,u) = %sign /\{— _JT +|A| e?Au erfe (%+ |A| Jt)} | Pa(w)|?

= % sign /\a—z-‘[%ez Al erfe (f/—bt +]A| Jt)} I ()]2, (2-22)

where, for convenience, we have defined sign A = + 1if A = 0. Integrating over ¥ x R+,

we obtain
sign A

K(t) =fwf Ky, w)ydydu = -3 erfe (|A] /) (2-23)
0oJr x 2
and hence, differentiating with respect to ¢,
1
d — —A%t .
K'(t) ——44nt§ Ae—7%, (2:24)

Note that, as t - oo in (2:23), K(t) > — 3k, where A = dim Ker 4 is the multiplicity
of the 0-eigenvalue. Moreover, K(t) + 4k — 0 exponentially as ¢ - co. Also (2-23) shows
that |K(¢)| < 1/ynZe*t < Ct—¥" ast - 0. Hence for Re(s) large

f " (K()+ 3Ry -1dt

0

converges. Integrating by parts and using (2-24), we get

® T'(s+%) o signa
K(t)+3h) ts-1dt = —
fo( (t) + 3h) 25 axe A
Ds+%
= ‘é—sﬁ)”(?g) (2:25)

by definition of #(s). This is the final formula which we shall be applying in the next
section. In particular if we assume that K(t) has an asymptotic expansion

Kit)~ I qtttast—>0,
kz—-n
then (2-25) yields

3 N
7(2s) = _%—%{2—8+k£nélj§s+ﬁl"(8):’ (2-26)

where 6,(s) is holomorphic for Re(s) > — 4(V + 1). Thus (2-26) gives the analytic con-

tinuation of 7(2s) to the whole s-plane. In particular, 9(s) is holomorphic near s = 0
and its value at s = 0 is given by

7(0) = — (2a0+ ). (2-27)

Finally, we note that if, instead of defining K(t) by integrating over Y x R+, we
integrate only over Y x [0, 6] for some & > 0, the asymptotic expansion is unchanged.
In fact, the difference is

§ sign A3 e erfe (8[nft + |A|4/t)
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which is bounded by
o
—— e M < Ce¥itt—in

NG
and hence is exponentially small.

3. The index formula. In this section, we shall consider a boundary value problem
on a compact manifold X with boundary ¥ which coincides near the boundary with
the problem studied in section 2. The computations in section 2 will then be used to
derive an explicit formula for the index of our problem. The main result is stated in
Theorem (3-10).

Let D: C®(X,E) - C*(X, F) be a first order elliptic differential operator. In a
neighbourhood ¥ x I of the boundary, it is then of the form

D= o’(—a%+Au), (3-1)

where u €1 is the normal coordinate, o = op(du) is the bundle isomorphism £ - F
given by the symbol o, of D and 4,: C*(Y, E,) - C=(Y, E,) is an elliptic operator on
Y depending on the parameter « (and E, = E|Y x {u}). We now assume that 4, is
independent of u. More precisely, this means that a suitable isomorphism of £ > #*(E,)
identifies all 4, with 4 = A, (here 77 denotes the projection ¥ x I - ¥). With this
assumption, we shall just write our operator in the form

D=a(%+A). (3-1)

As in section 2, we assume 4 is self-adjoint, with respect to given C*® hermitian inner
products on E|Y and a C* measure dy on ¥, and we shall fix inner products on E, F
extending this inner product from ¥ x I to X and a C® measure dz on X extending
dydu on the collar. In particular, o is taken to be an isometry.

We consider the operator D with the boundary condition (2:3) and we construct a
parametrix R by patching together the fundamental solution @ of (2-5) with an interior
parametrix ¢,. More precisely, let p(a, b) denote an increasing C* function of the real
variable u, such that

p=0 for u<a and p=1 for w20,

and define four C* functions ¢,, ¢,, ¥y, ¥, by

¢ =p(t.3), Ya=p:2)

¢ =1-p(} 1), Yr=1-19,.
Note that ¢; = 1 on the support of ;. We regard these functions of « as functions on
the cylinder Y x I and then extend them to X in the obvious way: ¢,, 1, being extended

by 0 and ¢,, ¥, being extended by 1. Finally, we put @, = Qo' and (considering ¢,, i,
as multiplication operators)

R = ¢, Q¥+ P Q2.
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Here @, can, for definiteness, be taken as the Green’s operator for D on the double of

X (note that, because of the form (3-1), there is a natural double of D on the double

of X, the roles of E and F being switched on the two halves). R is a linear operator
C=(X,F) > C~(X,E; P),

where C°(X, E; P) is the space of sections of Z which satisfy the boundary condition

(2-3).

Proposition (2-5) shows that R is a right parametrix, that is DR — 1 has a C~-kernel.
Switching the roles of ¢;, i, gives a left parametrix, hence R is, in fact, a 2-sided para-
metrix. Proposition (2-5) also shows that R is continuous from H*-! » H* (for Il > 1).
It now follows that

D:C~(X,B; P) > C~(X,F)
and D H(X,E; P)»> H-Y(X,F) (forl>1)

are Fredholm operators with the same null-space. Similar statements hold for the
operator D* with the adjoint boundary condition (2-4) and by essentially the same
argument as in (2-12), it follows that this gives the Hilbert space adjoint of D (as a
closed operator on L?). This implies that an L?-section of F, orthogonal to the image
of D, is necessarily C* (being in Ker D). Thus D has a well-defined index, computed
either in C® or in L2, and

index D = dim Ker 2 — dim Ker 2*, (3-2)

where 2 is the closed operator defined by D (with domain HY(X, E; P)).

The operator 2*2 is then a self-adjoint operator and ¢—#2*2 is the fundamental
solution of 9/dt+ D*D with the boundary condition (2:13). An approximate funda-
mental solution can be constructed from the fundamental solution e;, constructed for
the corresponding operator on the cylinder in section 2, and the fundamental solutiont
e, of 0/0t + D*D on the double of X. Using the functions ¢;, ¥, defined above, we put

f=drea¥1+dges¥, (3-3)
Proposition (2-21) and the corresponding result for closed manifolds show that
(8/ot+ D*D)f is exponentially small as ¢t — 0. From this, and the fact that f - I as

t — 0, it follows (see for example(13)) that our fundamental solution ¢ = ¢~*2'? js given
by a convergent series of the form

e=f+ §1<—1)mcm*f,

where * denotes convolution in ¢ and composition of operators. Here ¢, = (9/dt + D*D) f
and ¢, = ¢,,_; *¢,. In particular, for ¢ > 0, ¢ has a C® kernel which differs from
the kernel of f by an exponentially small term as £ - 0. Thus, in computing the
asymptotic behaviour of Tre—*2°?, we can replace ¢ by f. Applying the same remarks
to e~t22* and subtracting, we obtain asymptotically

Tret2*? — Tre-t22* NJ:fy K(t,y,u) ¥ (u)dy du +fx F(t,z) Yy(x)dz, (3-4)

T Note that this is not the e, of section 2 which was the counterpart of ¢; but for the operator
D+,
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where K is defined by (2-22) and F(¢, ) is obtained from the kernels of e~tP*2 and ¢—tPD*
on the double of X. More precisely, F(t,z) = F,(t, z) — Fy(t, z), where
Fi(t,2) = Te#|p (x)|?
»

p runs over the eigenvalues of D*D (fori = 1) or DD* (for i = 2) and ¢, are the corre-
sponding eigenfunctions.
Because of the estimates at the end of section 2, it follows that, in the first integral

1 ©
of (3-4), we can replace yr; by 1 and j byj so that we end up with the function K(¢)
0 0

given by (2-23). On the closed manifold (double of X), we know (see ((2); section 4)) that
we have an asymptotic expansion '

F(t,z) ~ T o(x)td*, (8:5)

kz-n

where the coefficients «,(x) are explicit local functions of the operators DD* and D*D.
In the collar neighbourhood of Y, the operators DD* and D*D are isomorphic, via o;
and so F(t,z) ~ 0 for x in the collar. Hence, F(¢, z) {,(z) ~ F(t, ) and so (3-4) becomes

Tret2*?2 - Tret22* ~ K(t)+ 3 f a(x) da t3k, - (3-6)
kz—nd X ‘

Now the operators 2*2 and 2% * have discrete spectrum with finite multiplicities
and their non-zero eigenvalues coincide. In fact, if

D*D = ugp, then DI*(DP) = uDp

80 ¢ +—> D¢ defines an isomorphism of the u-eigenspace of 2*% onto that of 29* (with
inverse 1 — u~19*yr). Also the null-space of 2*Z coincides with that of &, while the
null-space of 22* coincides with that of 2*. Hence by (3-2)

index D = Tre-t2*2 _ Ty ¢ 199*,

Combined with (3-6), this gives an asymptotic expansion for K (¢):

K(t)y ~indexD - ¥ o () da ik, (3-7)
kz2-nd X
Applying (2-26) we deduce that
_ 2sm (th+indexD ¥, a,(x) i
R e b == LAl )l #9)
where Oy(s) is holomorphic for Re(s) > ——l—szl.

Thus %(s) is extended meromorphically to the whole plane and in particular

7(0) = 2fx ay(x)dx — (h+ 2index D)

or index D =f ao(x)dx—}—b+—;7£g). (3-9)
x
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This formula is what we have been aiming at and we therefore summarize our results
so far in the following theorem:

THEOREM (3-10). Let X be a compact manifold with boundary Y and let
D: C~X,E)— C°(X, F) ’

be a linear first order elliptic differential operator on X (acting from the vector bundle E to
the vector bundle F'). We assume that, in a neighbourhood Y x I of the boundary, D takes

the special form
D=o (5% + A)

where u is the inward normal coordinate, o is a bundle isomorphism E|Y — F|Y and A is
a self-adjoint elliptic operator on Y. Let C*(X, E; P) denote the space of sections f of E
satisfying the boundary condition
Pf(-,0)=0
where P is the spectral projection of A corresponding to eigenvalues = 0. Then
D:C~(X,E; P)—> C~°(X,F)
has a finite index given by
index D = j ao() do — 7L7](0)’
X 2

where ay, b, 7 are defined as follows:
(i) ao(x) is the constant term in the asymptotic expansion (as t — 0) of

Ze W |g ()2 — Zet g ()2,

where p’, ¢, denote the etgenvalues and eigenfunctions of D*D on the double of X, and u”,
. are the corresponding objects for DID*.
(ii) » = dimKer A = multiplicity of 0-eigenvalue of A
(iii) %(s) = /Eo sign A|A|~3, where A runs over the eigenvalues of A.

In (iii) the series converges absolutely for Re(s) large and then 57(s) extends to a mero-
morphic function on the whole s-plane with a finite value at s = 0. Moreover, if the asymp-
totic expansion in (i) has no negative power of ¢ then 3(s) is kolomorphic for Re(s) > —4.

Remark. This theorem can be viewed as providing information about the function
7(s), associated to the operator 4 on Y; in particular that 9(0) is finite. The proof
depends on being able to find X with X = Y and an elliptic operator D on X extending
dfou+ A. As we shall see in the next section, the natural operators 4 arising in
Riemannian geometry tend to be extendable in this sense. For more general operators,
one has to work somewhat harder and this will be discussed in Part III.

The index of the boundary value problem in Theorem (3-10) can be given an alter-
native description by introducing the non-compact manifold X = X y {Y x [0, —o0)}
illustrated in the figure. '

1 X

N
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We extend the bundles E, F (together with their inner products) to X in the obvious
way and we take the measure dx = dydu on Y x[0, —00). We shall be primarily
interested in the L?-sections of B and F over X, but we shall also consider a slightly
larger space. By an extended L?-section of B, we shall mean a section f which islocally in
L? and such that, for large negative u,

fy,») =gy, u) +fo(y),

where ¢ is in L? and f,eKer 4. Thus f has f,, as an asymptotic or limiting value as
% —->—00. A similar definition holds for extended LZ%-sections of F (using the
isomorphism o: £ — F in the cylinder ¥ x [0, —o0)).

ProposITION (3-11). Let D: C*(X, B, P) > C*(X, F) be the operator in (3:10) and
D*: 0=(X,F,1—P) - C*(X, E) the adjoint operator. Then

(i) Ker D is isomorphic to the space of L2-solutions of Df = 0 on X.

(ii) Ker D* is isomorphic to the space of extended L2-solutions of D*f = 0 on X.

Proof. (i) Let fe Ker D and expand it near the boundary in the form
f(y,w) = Zfy(w) da(v),

where the ¢, are an orthonormal base of eigenfunctions of 4. Since Df = 0, we have
of|ou+ Af = 0,50 thatf)(u) = e~2%f,(0). Since Pf(-,0) = 0, we have f,(0) = 0 for A > 0
and so

f@,w) = ,\{‘oe-mf"(o) Pay)- (3-12)

This shows that fextends to asection fon X which satisfies Df = 0 and is exponentially
decaying as u - — o0, hence certainly in L2. Conversely a solution of Df = 0 on X,
which is in L2, must be of the form (3-12}, because terms involving e=** with A > 0 are
not in L2. Thus f—f gives the required isomorphism.

(it) Let fe Ker D¥, then instead of (3-12), we get

f,w) = T fi(0) ()
A0
and f is now an extended L2-section of F (as defined above) with limiting value

foy) =A§0f)«(0) (). (3:13)

Conversely, an extended L2-section f of F satisfying D*f = 0 is necessarily of the form
(8-13) so that fi— f gives an isomorphism as required.
In view of (3:2) we therefore deduce

COROLLARY (3-14) index D = h(E) — h(F) — ko (F) where h(E) is the dimension of the
space of L? solutions of Df = 0 on D¢ , b(F') the corresponding dimension for D* and h(F)
is the dimension of the subspace of Ker A consisting of limiting values of extended
L2-sections f of F satisfying D¥f = 0.

On the compact manifold X we have already seen that Ker D coincides with Ker D*D
(with the appropriate boundary conditions). We shall now show that similar results
hold for L2-sections on X.
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PRrOPOSITION (3:15). The L2-solutions of D and D*D coincide on X, as do the extended
L2-solutions. The same also kolds with D and D* interchanged.

Proof. Any solution of D*Df = 0 has an expansion on Y x [0, —o00) of the form
f(y,u) = };(a,\e"“+b,\e"‘“) $a(y) (3-16)

and for this to bein L2 as 4 — — o0, we must have a, = 0 for A < 0 and b, = 0 for > 0.
Hence, fis exponentially decaying as « — — co. More precisely, we have

1f¢,u)| < Ce* with a >0, (3:17)

where || || denotes the L*-norm on Y. Applying D to (3-16), we see that Df also satisfies
an estimate of the form (3:17). We now apply Green’s formula to the compact manifold
Xy, = X u[0,U] < X obtaining

f (D*Df. f) d~ f (Df, Df) dz = f (Df, of ) dy, (3-18)
Xg Xy Yy

where Y; = 0X;is the copyof Y at w = U. In view of the estimates (3-17) for f and Df,
it follows that the right-hand side of (3-18) tends to zero as U — —co. Since D*Df = 0,
(3-18) gives

fX(Df,Df) de =0 (3-19)

and hence Df = 0. This proves the first part of the Proposition. For an extended
L2-section f satisfying D*Df = 0, the expansion (3-16) may now have non-zero terms
corresponding to A = 0so, instead of (3-17), we can only assert that || f(+,«)| is bounded
as u - —o0. However applying ) removes these terms and so (3-17) holds for Df and
this is now enough to show that the right-hand side of (3-18) tends to zero as U - —oo0.
As before, we conclude that Df = 0, proving the second part of the Proposition. The
corresponding statements with D and D* interchanged are proved in exactly the same
manner.

In view of this Proposition, the dimensions in (3-14) can equally well be defined
using D*D and DD*.

We conclude this section with some further comments on the 0-eigenvalue. If we
replace D by D* from the beginning, we obtain an operator &: C=(X, F; P) - C»(X,R),
where P is essentially the spectral projection of 4 corresponding to A < 0. This is
because near the boundary of X we have

2

D=U(6u

+4), D= -o1(Z-4). 20

Thus Zhas a slightly larger domain than D*: C*(X, F,1— P) - C=(X, E) and hence
a different index. In fact, applying Corollary (3-14), we get
index D = W(F)—WE) — ho(E). (3-21)

where %,(E) is the dimension of the subspace of Ker 4 consisting of limiting values of
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extended L?-sections f of E satisfying Df = 0. On the other hand, Theorem (3-10)
applied to D gives ’
indexD=—| ) dx——}L_n—(O)
x 2

, (3-22)

where a,, k, 7(0) refer to the operator D (the point being that «; and 5(0) change sign
when we replace D by D but & = dim Ker 4 = dim Ker (— 4) is unaltered). Thus
(3-21) and (3-22) yield

- f (@) dx—h—‘;’@ = h(F)— h(E) — ho(E) (3-23)
while Theorem (3-10) and Corollary (3-14) applied to D give
J' o) ez — "—4’2’@ = W(E) = h{(F)—h(F). (3-24)

Adding (3-23) and (3-24) we deduce
h = ho(E) +ho(F). (3-25)

This formula suggests that every section in Ker 4 is uniquely expressible as a sum
of limiting values coming from E and F respectively. In any case, the dimensions
behave as if this were true and we shall use (3-25) in the next section for one of our
applications.

4. The Riemannian case. We shall now apply the general index formula of section 3
to the cases that naturally arise in Riemannian geometry. The main result of (2)
-agserts, then, that the integrand oy (z) dz that occursin Theorem (3-10) can be identified
explicitly as a suitable Pontrjagin form and that the asymptotic expansion in (3-10)
(1) has no negative powers of ¢ (implying, according to Theorem (3-10), that #(s) will be
holomorphic for Re(s) > — 4). The prototype, and in some sense the fundamental case,
is that of the Dirac operator and so we begin by describing this.

Let X be an oriented compact manifold with boundary of dimension 27, so that
Y = 0X has dimension 2n — 1. We assume, moreover, that X is a spin manifold and we
choose a definite spin structure. Finally, we choose a Riemannian metric on X which
coincides with a product metric on ¥ x I in a neighbourhood of the boundary. Then the
‘Dirac operator of X is an elliptic first order differential operator

D: 0=(X,8*) > C=(X,8),

where S+ and 8- are the two spin bundles (associated to the two half-spin representa-
tions of Spin (2n)). For its definition and formal properties we refer to ((2); section 6) or
((12); Chapter IV). The restriction of S* to ¥ may be identified with the spin bundle §
of Y (associated to the spin representation of Spin (2n— 1)), and in ¥ x I we have

D= (r(%+A), (41)

where 4 is the Dirac operator on Y,  is the inward normal coordinate and o is Clifford
multiplication by the unit inward normal. Note that the Dirac operator on ¥ depends
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on the choice of orientation (it changes sign if we reverse the orientation). The sign
convention we are using may be considered as defined by (4-1). Asusual, a solution of
Af = 0 (or equivalently A%f = 0) is called a karmonic spinor on Y.

Combining Theorem (3-10) with the results of ({2); section 6), we obtain

THEOREM (4-2). The index of the Dirac operator on X with the global boundary condition
(2-3) 15 given by

index D =J' Ap) - h_—i-;y(_O)
X

where his the dimenston of the space of harmonic spinors on Y, 9(s) is the 5-function of the
Dirac operator on Y and A(p) is the Hirzebruch A-polynomial applied to the Pontrjagin
forms p; of the Riemannian metric on X. Moreover 3(s) ts holomorphic for Re(s) > — 3.

Remarks (1) Using (3-14), we can replace index D above by A(8*) — A(8~) — A, (S7),
these integers being computed from the non-compact ‘elongation’ X of X as in
section 3. Together with (3-25) this yields the formula given in Theorem 4 of (5).

(2) The condition that X beisometric to a product near Y can clearly be relaxed. On
the one hand it is fairly clear that the analytical results of section 3, concerning
operators like D, continue to hold: the fundamental solution given in section 2 must
now be used as simply the first step in an iterative procedure to construct a parametrix.
Thus index D will be defined and will remain constant under continuous variation of
the interior metric (while the metric on Y remains fixed). On the other hand the
integral in (4-2) remains unaltered, provided the first two normal derivatives of the
metric vanish on Y': this is because two such metrics yield a C2-metric on the double
of X, and so we can argue as in section 1. Thus, (4-2) continues to hold as it stands for
such metrics. For a more general metric, there will be an extra integral over ¥ involving
the second fundamental form, and this is the analogue of the geodesic curvature in
Gauss-Bonnet.

(3) If » is odd, i.e. dim X = 2mod 4, then A(p) = 0. We now distinguish the two
cases 7 = 1 and » = 3 mod 4, using the particular structure of the Clifford algebra in
these dimensions (see (3)).

(¢) n = 1mod 4, so dim ¥ = 1mod 8, then the Dirac operator 4 on Y is of the
form A = ¢B, where B is real skew-adjoint (cf. the case ¥ = circle, B = d/dz). Hence
Spec 4 is symmetric about the origin, so #(s) = 0 and (4-2) reduces to:

h = —2index D.

Now £ mod 2 is directly seen to be an invariant of ¥, independent of the metric (see (4))
and so (4-2) gives an analytic proof that this invariant vanishes when ¥ is a spin
boundary, or in other words Amod 2 is @ spin-cobordism invariant. This was known
before but only as a corollary of the mod 2 index theorem ((4); Theorem (3-1)).

() » = 3mod 4, sodim ¥ = 5mod 8. In this case, the spin-bundle of ¥ has a natural
quaternionic structure (defined say by j) and j4 = —A44. This shows again that
7(s) = 0 and also that the harmonic spinors have a quaternion structure. Thus % is
automatically even and (4-2) gives no further information (except to identify 1% with
— index D).
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Suppose now £ is a hermitian vector bundle on X with a unitary connexion and that,
near the boundary, the metric and connexion are constant in the normal direction.
Then we have a generalized Dirac operator D;, acting on spinors with coefficients in
£ (that is, we tensor the spin bundles with £) and near ¥ we have

7

where 4, is the generalized Dirac operator on Y. Using the results of ((2); section 6),
(4-2) generalizes to

index D, =chh§Je?(p) - w, (4:3)
where %, 7,(s) relate to the operator Ag and in the integrand ch £ denotes the Chern
character of £ (as a differential form), & is the sum of all Hirzebruch polynomials 4,
and we pick out the form in the product of top dimension.

Similar formulae hold for spin®-manifolds (the condition w,(X) = 0, defining a spin-
manifold being now relaxed to allow w,(X) to be the image of an integral cohomology
class). As explained in ((2); section 6), this includes the case of complex Kéahler mani-
folds. As a simple illustration, let us consider the case of Riemann surfaces. Let X be a
compact Riemann surface (without boundary) and delete from it small disjoint open

discs By, ..., B, around points p,, ..., p,. Then

_ r
X=X-U B;
i=1
is a surface, whose boundary Y consists of 7 circles. If z, is a local parameter centred at
p;, we choose a metric on X — (Jp,, whichis |dz,/z;|? near p;. Thisidentifies the elongated
manifold X conformally with the punctured surface X — J p;. Applying now the analogue
of (4-3) for the 8-operator on X, we obtain

. = r
indexd = -t (4-4)
Here we have used the fact that the tangential component of & on each boundary circle
is the standard operator — i(8/96), hence (s) = 0 and » = 1. Now the Chern form ¢, of a

surface coincides with the Euler form and so, by Gauss—Bonnet,

f ¢ =2—-29—r,
X

where g is the genus of X. Thus (4-4) becomes
indexd=1—g—v. (4:5)

It is interesting to check (4-5) directly using (3-14). Since a holomorphic L2-function
on X decays exponentially at co, we have h(E) = 0 (assuming r > 0, so that X + X ).
On the other hand, the space of holomorphic L?-one-forms is a conformal invariant
(the condition f w A < oo does not use the metric) and hence can be computed from
the punctured surface X — |J p,. One easily checks that a holomorphic L2 form must then
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extend holomorphically across the puncture, so that A(#) = g. To compute % (F) we
use (3-25) and the fact that k(E) = 1 (extended holomorphic L2 functions on X being
just the constants). Applying (3-14) this gives

indexd = 0—g—(r—1),
which checks with (4-5).

Included amongst the case of (4-3) is that of the signature operator. This is of parti-
cular importance because of its relation with cohomology and so we shall now treat
this in detail. Moreover, since the signature operator exists without the spin restriction
involved in (4-3), we need to give it an independent treatment.

We recall that, for an oriented Riemannian manifold X of dimension 2I, the
operator d +d* acts on the space Q of all differential forms and anti-commutes with
the involution 7 defined by 7¢ = iP®—D+« ¢ for ¢ e QP. Denoting by Q, and Q_ the

+ 1-eigenspaces of 7, it follows that d + d* interchanges Q, and Q_, and hence defines
by restriction an operator

A4:Q, > Q_
which we call the signature operator. For a closed manifold X of dimension 4k, one
checks easily, by the Hodge theory, that

index 4 = sign (X),
where sign (X)) denotes the signature of the quadratic form on H%(X; R) given by the
cup-product.
Suppose now X is a manifold with boundary Y and is isometric to a product near the
boundary ; then near Y, 4 is of the required form
A=oc (i + B)
ou

with B a self-adjoint operator on Y. In fact we may identify the restriction of Q, to Y
with the space of all differential forms on Y and a little computation then shows that

B¢ = (—1)ktotl(cxd—d %), (4:6)

where * now denotes the duality operator on Y, 4k = dim X and ¢ is either a 2p-form
(e = 1) ora (2p —1)-form (¢ = — 1). Note that B preserves the parity of formson ¥ and
commutes with ¢+ (—1)? * ¢, so that B = Be¥ @ B°dd and B*" is isomorphic to B,
In particular, the #-function of B is twice the y-function of B®, and the same holds for
the dimension of the null spaces.

Combining Theorem (3-10) with the local signature theorem of ((2); section 5)we
deduce, as in (4-2) and (4:3),

index 4 = f L(p) — (h+7(0)), (4'7)
X
where k and 7 refer to the operator B*7, and L is the Hirzebruch L-polynomial. Also by
(3-14), we can replace index 4 by
index A4 = At —h~—hg, (4-8)

where h* are the dimensions of L2-harmonic forms in Q. of the elongated manifold X
and k is the dimension of the space of limiting values of extended L? harmonic forms
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in Q_(X). We proceed now to give topological interpretations to the integers occurring
in (4-8). First we prove the following result which is of some independent interest:

PROPOSITION (4-9). The space (X)) of L2 harmonic forms on X is naturally isomorphic
to the image H(X) of H:omp(X) — H*(X) (or equivalently H*(X, Y) -~ H*(X)).

Proof. Because of (3-15) the L2 harmonic forms on X coincide with the L2 solutions of
(d+d*)¢ = 0. Since the Laplace operator preserves degrees of forms the components
@2 of a harmonic form ¢ = X¢? are also harmonic. It follows that an L2 harmonic form
¢ also satisfies dp = d*¢ = 0. In particular, ¢ defines an element [¢] of H*(X). To see
that [¢] lies in the image of H;‘omp(X ), it is sufficient to check that its restriction to
H#*(Y) is zero. Now, since ¢ is closed,

[s=] s
Y Tu
where v is a cycle in ¥ and 7, the corresponding cycle in ¥, = ¥ x {u} = X. But ¢ is

exponentially decreasing as 4 - — oo (see (3-17)) hencef ¢ = 0 for any v and so [¢]
¥

restricts to zero in H*(Y). Thus ¢+ [¢] defines a map
a: #(X) > H(X)

which we shall prove is an isomorphism. First, we deal with surjectivity. A quite
general theorem of de Rham-Kodaira ((9); p. 169) asserts that any closed L?-form ¢
can be written as

Y =d0+¢, (4-9)
where ¢ € L%, d¢ = d*¢ = 0 and 0 is some current (distributional form). In particular,
a closed C* form ¥ with compact support has such a decomposition. Since every
£e A(X) is represented by such a ¢ and since H*(X) can be computed from the com-
plex of currents, (49) shows that a(¢) = £, so that « is surjective. Finally, to prove
injectivity we assume a(¢) = 0, so that ¢ = df for some C= form & on X. We claim
first that @ can be chosen bounded (i.e. as 4 — o0, & = 0,+ 0,du, where §,, 6, are
formson Y, depending on u, and are bounded). In fact, putting v = 1/u we get a normal
coordinate near the boundary for the compactification X of X (obtained by adjoining
a copy of Y ‘atoo’). Since ¢ is exponentially decaying as v — 0, it follows that ¢ extends
to a O form on X. Hence ¢ = d6 with 6 a C=-form on X. Since dv = — du/u?, it follows
that 6, and 6,4 are both bounded. Now apply Green’s formula to a compact part
X, of X (given by —u < — U), and we get

[ @ao-[ weo=[ w0, (#10)
Xy Xy Yy
where ¢ = ¢o+¢,du, 6 = 0+ 6,du and Yy = 0Xy is a copy of Y. Since ¢ - 0

exponentially while 6 is bounded as U - — oo, the boundary contribution in (4:10)
tends to zero. Since d¥*¢ = 0 and ¢ = db, we deduce that

fXU<¢,¢)—+0
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as U - —o0. But

fx,,<¢’ $)~ ] B9 =14l%

hence ¢ = 0 and « is injective as required.

Remark. In (9), it is pointed out that the Hodge theorem, identifying cohomology
with harmonic forms on a compact manifold, does not extend to L*-forms on a non-
compact manifold. Proposition (4-9) shows nevertheless that, for the special cylinder-
like manifolds X, there is still an interesting connexion between L2 harmonic forms
and cohomology.

We recall now that the signature of a 4k-dimensional manifold X with boundary Y
is defined to be the signature of the (non-degenerate) quadratic form defined on A2(X).
This quadratic form is induced by the degenerate quadratic form on H%*(X, Y) given
by the cup-product: Poincaré duality for (X, ¥) shows that the radical is precisely the
kernel of H*(X, Y) - H%*(X).[Hence, just as for a compact manifold, (4-9) implies

COROLLARY (4-11). Sign (X) = h* —h~, where h* = dim H#°* and
#: = #%)n Q. (X).

This corollary identifies twolof the three terms in formula (4-8). To deal with the
third term A2, we consider the space " > # (X) of all extended L? harmonic forms on
X, as defined in section 3. Again, because of (3-15), any ¢ € # satisfiesd¢ = d*¢ = 0
and hence we obtain a map g: o - H*(X) extending «. In the cylinder, we can write
¢ =+ 0, where ¢ = ¥+, du with ¢y, ¥, harmonic forms on ¥ (independent of w)
and 6 an L? harmonic form (hence decaying exponentially). The composition

A > H¥X) > H*(Y)

is thus given by ¢ ¢,. Now if £+ = A nQ,, we see that, for g%, we have
¥ du = +7(¢,) and so ¥y = 0 => g€ =, Thus, if f+: A+ -~ H*(X) are the restrictions
of B, we have

Kerjg* = s+, (4-12)

Now Poincaré duality in the exact sequence
HxX) > gx(1) %> BYX, V)
shows that Imj isldual to its orthogonal complement, so that
dimImj = 3dim H*(Y) =%

(where h is the same as in (4-7)). From (4-12) we therefore deduce

ks < b, (4-13)
where A% = dim X% [5#°* in the notation of section 3 and (4-8). But (3-25) asserts that
ht+hy = 2R

(recall that the % in (3-25) is dim H*(Y) which is 2% of the present section). Hence

5 PSP 77



66 M. F. Ativan, V. K. Patop: AND I. M. SINGER

hs = k% = h, and so the integers %, h cancel when we combine (4-7) with (4-8). Using
(4-11) we therefore derive our final result, the signature theorem for manifolds with
boundary :

THEOREM (4-14). Let X be a 4k-dimensional compact oriented Riemannian manifold
with boundary Y and assume that, near Y, it is 1sometric to a product. Then

sign X = [ _z(9) - 5(0)

where these terms have the following meaning

(i) Sign X is the signature of the non-degenerate quadratic form defined by the cup-
product on the image of H*(X, Y) in H¥(X);

(ii) L(p) = Ly(p,, ..., px), where L, is the kth Hirzebruch L-polynomial and the p; are
the Pontrjagin forms of the Riemannian metric;

(iii) #(s) is the y-function (defined by (1-7)) for the self-adjoint operator on even forms

on Y given by
o (—1)HPH(xd—dx) g (PeQ?)

and is holomorphic for Re(s) > —}%.

It is remarkable that the three terms in Theorem (4-14) arise from three different
areas: sign X is a topological invariant, f L(p) is differential-geometric and 7(0) is
a spectral invariant. This interplay gives the theorem special interest and leads one to
expect a variety of applications.

In section 1, we mentioned the Gauss-Bonnet theorem as an analogue and motiva-
tion for the signature theorem we have just arrived at. However, we also pointed out
the significant difference between the two cases, namely that in Gauss-Bonnet there
is no term corresponding to #(0) in (4-14). We shall now explain this in more detail.

We begin by recalling (see ((2); section 5)) that the signature operator 4: Q, - Q_
interchanges even forms and odd forms, so that 4 = A+ @® 4, where

A+: QFF —» Qodd 4-: Q934 . Qv
Now let usreplace A by A+ in the proof of (4-14). The tangential operator on Y is, then,
just Be¥ whose g-function is half that of B: thus 7(0) in (4-14) gets halved. Using the

1
results of ((2); section 6), theintegral in (4-14) now becomes 3 {j L(p) +f e}, where e
X X

is the Euler form of the metric (generalizing (277)~1 x Gauss curvature for surfaces).
To find the integer contribution, we must return to the general formula given in (3-10)
together with the L? interpretation of theindex givenin (3-14). From these, we see that
sign X in (4-14) must be replaced by

dim %, — dim A g + 3 dim Hev(Y), (4-15)

where HeV(Y) is the even-dimensional cohomology of ¥ and 5, " refer to the L2 and
extended L2, harmonic forms on X of the appropriate types ( £ , even/odd). Using (4-9),

we deduce
dim S#°F, — dim 5534 = 4{sign X + E(Kerj)}, (4-186)
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where E = dim HeV —dim H°4 and j is the restriction H*(X) - H*(Y). Moreover, in
the course of proving (4-14), we showed that (4-13) was an equality and hence

jp— A [~ —>1Imj

is an isomorphism. Thus

dim A 539 —dim # 544 = dim (Im j)odd, (4-17)
Using (4-16), (4-17) and the equality

dim A®"(Y) = 3 dim H*(Y) = dim (Im})
proved earlier, (4-15) becomes
3{sign X + E(Kerj)} + $E(Imj). (4-18)

Finally, since E(Kerj) + E(Imj) = E(X), the Euler characteristic of X, we deduce the
refinement of (4-14) which we want:

sign X+ B} =3 [_(Z@)+e) - 100). (419)

Replacing A+ by 4 yields the same formula except that £(X) and e are changed in
sign. Adding the two formulae gives (4-14) back again, but subtracting them gives the
Gauss—Bonnet theorem

E(X) =J"e.

From this point of view, we derive Gauss—Bonnet as the difference between two index
problems in which the non-local boundary contribution #(0) cancels out. In fact, the
topological obstruction mentioned in section 1 to the existence of a classical local
boundary condition for the operator d+d*: Q¢¥ — Q°dd vanishes and one can derive
Gauss—Bonnet from the index theorem as given in (1) in which there is no non-local
contribution.

The cohomological term sign (X) in Theorem (4-14) only involves the middle
dimension H%(X). In fact the analytical invariant 7(0) can also be shown to involve
only the 2k-forms on Y. To see this, we use the decomposition

Qev — Hev @ dQedd ® d*Qev

and observe that the operator B of (4-6) annihilates H®" and coincides up to sign with
d+ on dQ°% and with *d on d*Q°44, Now we have

dx: dQ-1 » dQ¥—2p-1  xd: g*QWw-1 —» d*Quk—2p+1
and 2p—1=4k—2p—1 onlyif p=k
2p—1+ 4k—2p+1.
Hence we can decompose B in the form
B =B,® B, ® B,,

where B, is the zero operator on H¢%, B, = d* on dQ%-1 and B, is an operator of the

form 0 T
Bo=(ps o)
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Since B, is conjugate to the operator

6™ i)

and since /(T7T*) and /(T*T) have the same spectrum it follows that the spectrum
of B, is symmetric so that its y-function vanishes identically. Hence the 7-function of
B is equal to the »-function of B;. Thus we have established

PRrROPOSITION (4-20). T'he term 3(s) in Theorem (4-14) is equal to 9,(s) where () 15 the
97-function of the operator dx acting on the space dQ%-1,

This Proposition leads to a suggestive way of looklng at 7(0). Let us define a
quadratic form Q on Q%-1 by

Q(a) =fya/\da. (4-21)

In fact the radical of @ is Kerd, so that  can be viewed as a non-degenerate quadratic
form on dQ%-! (note the formal analogy with the quadratic form leading to sign X).
If do is an eigenvector of d* with eigenvalue A, then

Qa) = {a, *da) = A7 e, *dsda) = — A Ka, d*de)
= —)"1 <d06, doc)

Thus — () has the same sign as A. In other words, we can formally interpret —#(0) as
the ‘signature’ of the quadratic form @ (on the infinite-dimensional space dQ%-1), The
interest of this reformulation is that (4-21) does not involve the metric. However to give
proper meaning to its signature, we need a metric and the value of the signature will
indeed depend on the metrie.

We conclude with a few remarks about the finiteness of (0). Theorem (4-14) implies
of course that, for the operator on Y defined in (4-14) (iii), #(0) is finite. This assumes
however that we can find an oriented manifold X with boundary Y. This is not always
the case but the main results of Thom’s cobordism theory assert that, in all odd
dimensions, we can always find an X whose boundary consists of fwo copies of ¥ (with
correct orientation). Clearly the 9-function on 2Y is twice the g-function of ¥ and so the
finiteness at s = 0 follows from Theorem (4-14). Similar remarks apply to the »-func-
tions of the Dirac operator and its generalizations as in (4-3). In each case we need to
use the appropriate cobordism theory (see (17)) to deduce that, in odd dimensions,
everything bounds after multiplication by some integer. In Part III, we shall give an
alternative proof of these finiteness results independent of Theorems (4-14), etc. and we
shall then deduce the finiteness for all self-adjoint elliptic operators on odd dimensional
manifolds.
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