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Abstract

Given a -eld k and a positive integer n, we study the structure of the -nitely presented
modules over the Leavitt k-algebra L of type (1; n), which is the k-algebra with a universal
isomorphism i : L → Ln+1. The abelian category of -nitely presented left L-modules of -nite
length is shown to be equivalent to a certain subcategory of -nitely presented modules over the
free algebra of rank n + 1, and also to a quotient category of the category of -nite dimensional
(over k) modules over a free algebra of rank n + 1, modulo a Serre subcategory generated by
a single module. This allows us to use Scho-eld’s exact sequence for universal localization to
compute the K1 group of a certain von Neumann regular algebra of fractions of L.
c© 2003 Elsevier B.V. All rights reserved.
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0. Introduction

Given a -eld k and a nonnegative integer n, the Leavitt k-algebra L of type (1; n) is
the algebra with generators xi; yj, 06 i; j6 n, and de-ning relations which, in matrix
form, can be written as

(x0; : : : ; xn)(y0; : : : ; yn)T = 1; (y0; : : : ; yn)T(x0; : : : ; xn) = In+1;

where Ir denotes the identity matrix of size r × r. Here the Leavitt type [19] of a
nonzero ring R is the pair of numbers (r; s) which is de-ned as follows. If R has
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invariant basis number (IBN), meaning that Ra ∼= Rb ⇒ a = b for all a; b∈N, then
we set (r; s) = (1; 0). If R does not have IBN, then r is the least positive integer such
that Rr ∼= Rr+i for some positive integer i, and then s is the least positive integer with
Rr ∼= Rr+s. For each Leavitt type (r; s), Leavitt constructed k-algebras Vr;s having a
universal isomorphism i : (Vr;s)r → (Vr;s)r+s, see [18,19], (the ones of type (1; n) are
those described above). Observe that the Leavitt algebra of type (1; 0) is precisely
k[x0; x−1

0 ], the algebra of Laurent polynomials in the indeterminate x0. It was shown
by Bergman [4, Theorem 6.1] that all -nitely generated projective L-modules are free,
of rank uniquely determined modulo n.

In this paper, we will study the structure of the abelian category fp(L) of /nitely
presented left L-modules, obtaining it in an explicit way as a quotient category of the
category of -nitely presented modules over the free algebra k〈Y 〉 := k〈y0; y1; : : : ; yn〉
(Theorem 5.1). (We use X = {x0; x1; : : : ; xn} and Y = {y0; y1; : : : ; yn} to denote the
two sets of n + 1 variables appearing in the above de-nition of the Leavitt algebra
L.) A crucial fact is that the algebra L -ts in a commutative diagram of algebra
embeddings

k −−−−−−−→k〈X 〉−−−−−−−→krat〈X 〉−−−−−−−→k〈〈X 〉〉�
�

�
�

k〈Y 〉−−−−−−−→ L −−−−−−−→ Q −−−−−−−→ T

For n = 0, this diagram reduces to the commutative diagram:

k −−−−−−−−−→ k[x0]−−−−−−−−−→ krat[x0] −−−−−−−−−−→k[[x0]]�
�

�
�

k[x−1
0 ] −−−−−→ k[x0; x−1

0 ]−−−−−→k(x0) = k(x−1
0 ) −−−−−→ k((x0))

where k[[x0]] is the power series algebra, krat[x0] is the algebra of rational series,
k(x0) = k(x−1

0 ) is the algebra of rational functions (the quotient -eld of k[x0]), and
k((x0)) the Laurent power series -eld.

The ring Q appearing in our diagram has been studied in [3] in connection with
the construction of purely in-nite simple von Neumann regular rings. Recall that a
simple ring R is called purely in/nite in case R is not a division ring and, for each
nonzero a∈R there are z; t ∈R such that zat=1. The rings satisfying the latter property
have been termed 1-simple rings by Cohn [10]. The name “purely in-nite” comes
from the characterization of these rings in [3, Proposition 1.5] as those such that
each nonzero right ideal contains an in-nite idempotent. We remark that purely in-nite
simple C∗-algebras play a central role in the ongoing Elliott’s classi-cation programme
for nuclear C∗-algebras, see for example [23]. By Ara et al. [3, Sections 5–7], the
ring Q is a purely in-nite simple, von Neumann regular ring which is a universal
localization of both k〈X 〉 and k〈Y 〉. Moreover, it coincides with two apparently diMerent
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constructions of localizations of the free algebra, obtained independently by Scho-eld
[28] and Rosenmann and Rosset [25]. By the above diagram, Q can be thought of as
a higher dimensional analogue of the -eld of rational functions in one variable. Of
course, both k〈X 〉 and krat〈X 〉 can also be embedded in the universal /eld of fractions
of k〈X 〉. This is a much more classical approach, see [8,9]. The ring T in our diagram
also appears in [3], in connection with some constructions of Tyukavkin [33].

A key subcategory of fp(L) is the category fp(L)N of -nitely presented left L-modules
of -nite length. It turns out that fp(L)N is the category of torsion modules with respect
to the localization L → Q. We obtain a category equivalence between fp(L)N and a
quotient of an abelian category of -nitely presented left k〈Y 〉-modules of negative Euler
characteristic, in fact of characteristic lying in −nN, modulo the Serre subcategory
generated by a single module M0. (The Euler characteristic of a -nitely presented
module M over R = k〈Y 〉 is de-ned to be r − s, where 0 → Rs → Rr → M → 0
is a presentation of M .) At the same time, the category fp(L)N is equivalent to a
category of -nitely presented left k〈X 〉-modules of Euler characteristic 0. All this is
summarized in Theorem 6.2. This provides a useful link between these two classes of
modules. Some of the ideas used here come from the papers [14,16], where Farber and
Vogel deal with the group ring Z[F] of the free group F . In fact, one can construct,
over any ring k, an analogue of the Leavitt algebra by using the universal localization
k[F]g, where k[F] is embedded in k〈〈X 〉〉 via the Magnus embedding, and k[F]g is
the universal localization with respect to the map given by right multiplication by the
row (x0; x1; : : : ; xn), as in Section 1. As pointed out to me by Desmond Sheiham, the
representation theory of k[F]g seems to be closely related to the structure of the link
modules appearing in [14–16,31,32]. We believe that these connections deserve further
investigation.

As an application of our techniques, we compute K1(Q), obtaining in Theorem 6.5 a
formula which is analogous to the one known for K1 of the universal -eld of fractions
of k〈X 〉; see [23,7] and [8, Section 7.9]. We also establish a new property of the free
algebra (Theorem 7.3), which is obtained from the exchange property of the Leavitt
algebras of type (1; n), recently established in [1, Theorem 2.1].

We brieNy outline the contents of the paper. In Section 1 we -x some basic notation
that will be used throughout the paper, and we recall several basic facts which we will
need later. In Section 2, we show that the Leavitt algebra is Nat as a right module over
the free algebra k〈Y 〉, a result which we will use repeatedly in the sequel. Section 3
gives a -rst approximation to the structure of the category fp(L) of -nitely presented
modules over the Leavitt algebra. In particular, we establish the relationship with the
-nite dimensional left k〈Y 〉-modules. We de-ne the notion of lattice for a -nitely
presented L-module of -nite length in Section 4, and we use it to get a right inverse
of the tensor product functor on the category of -nite dimensional k〈Y 〉-modules. In
Section 5 we obtain one of the main results in the paper, namely a description of fp(L)
as a suitable quotient category of the category fp(k〈Y 〉). We give in Section 6 a further
characterization of the category fp(L)N of -nitely presented L-modules of -nite length,
and we obtain the formula K1(Q) = k×=(k×)n × D�, where D� is the reduced divisor
group of k〈X 〉. Finally, Section 7 contains an interpretation of the exchange property
of L in terms of k〈Y 〉.
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1. Notation and preliminary results

We start by -xing some convenient notation, which will be coherently used through-
out the paper.

Notation 1.1. Let us -x a -eld k and a positive integer n. Let X = {x0; x1; : : : ; xn} and
Y ={y0; y1; : : : ; yn} be two sets of n+1 independent variables, and denote by �=k〈X 〉
the free k-algebra on X and by R = k〈Y 〉 the free k-algebra on Y . We will denote
by X ∗ the free monoid on X , with identity element (i.e. the empty word) denoted
1. Label words in X ∗ in the form xI = xi1xi2 · · · xit for -nite sequences I = (i1; : : : ; it)
of indices from {0; 1; : : : ; n}, with the convention x∅ = 1. (Similar conventions apply
to Y ∗.) If I = (i1; : : : ; it) is a multi-index as before, we will use I∗ to denote the
multi-index (it ; it−1; : : : ; i1). Note that k〈X 〉 is the monoid algebra on X ∗, and similarly
for k〈Y 〉. We will denote by L the Leavitt k-algebra of type (1; n) in the variables
x0; x1; : : : ; xn; y0; y1; ; : : : ; yn, that is

L = k

〈
x0; x1; : : : ; xn; y0; y1; : : : ; yn |yixj =  ij all i; j;

n∑
i=0

xiyi = 1

〉
:

There are two canonical maps �= k〈X 〉 → L and R= k〈Y 〉 → L. It is well-known that
these maps are injective, cf. [3].

Denote by k〈〈X 〉〉 the algebra of noncommutative power series on X . For i =
0; 1; : : : ; n, the left transductions @i : k〈〈X 〉〉 → k〈〈X 〉〉 are de-ned by

@i

(∑
w∈X ∗

#ww

)
=
∑
w∈X ∗

#xiww:

The augmentation on k〈〈X 〉〉 is the algebra homomorphism � : k〈〈X 〉〉 → k sending∑
w∈X ∗ #ww to #1. The maps @i are left �-derivations, i.e.

@i($%) = @i($)% + �($)@i(%)

for $; %∈ k〈〈X 〉〉.
We will use the theory of universal localization for arbitrary maps between -nitely

generated projective modules, as developed in [27]. If T is a ring and & is a set of
maps between -nitely generated projective left T -modules, we will denote by T& the
universal localization of T with respect to &. There is a canonical localization map
–& :T → T& which is universal &-inverting, see [27, Theorem 4.1]. When & = {h} for
a single map h, we will write Th instead of T{h}.

For any k-algebra T such that k〈X 〉 ⊆ T ⊆ k〈〈X 〉〉, we consider the map g :T →
Tn+1 given by right multiplication by the row (x0; x1; : : : ; xn). Observe that the canonical
map k〈X 〉 → L is the localization map –g : k〈X 〉 → k〈X 〉g, and similarly the canoni-
cal map k〈Y 〉 → L is the localization map –f : k〈Y 〉 → k〈Y 〉f, where f is the map
k〈Y 〉n+1 → k〈Y 〉 given by right multiplication by the column (y0; y1; : : : yn)T.
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Assume now that T is any k-algebra with k〈X 〉 ⊆ T ⊆ k〈〈X 〉〉 such that T is closed
under all left transductions @i. Note that, for r ∈T , we can write

r = �(r) +
n∑

i=0

xi@i(r)

with @i(r)∈T because of the closure condition on T . In case T is in addition a local
algebra (so that all elements in T with nonzero constant term are invertible in T ), we
have the following result from [3].

Theorem 1.2 (Ara, Goodearl and Pardo [3, Theorems 5.4 and 5.6]). Let T be a local
subalgebra of k〈〈X 〉〉 containing k〈X 〉, and let g :T → Tn+1 be the map given by right
multiplication by (x0; x1; : : : ; xn). Then the universal localization Tg is a purely in/nite
simple, von Neumann regular ring. Moreover K0(Tg) is a cyclic group of order n,
generated by [Tg].

This obviously applies to the case where T = k〈〈X 〉〉. More important for us is the
case where T is the algebra of rational series krat〈X 〉, which has been studied in some
detail in [3, Sections 6 and 7]. Recall that krat〈X 〉 is the division closure of k〈X 〉 in
k〈〈X 〉〉. (This algebra plays an important role in formal language theory and the theory
of codes, see [6].) By Cohn [8, p. 135], the algebra of rational series is closed under
all left transductions. Since it is obviously local, Theorem 1.2 applies to it. It is also
known that krat〈X 〉 is a universal localization of k〈X 〉. We record this fact here for
further reference.

Proposition 1.3 (Cohn and Dicks [11, p. 416]). Let &′ be the set of those square ma-
trices over k〈X 〉 which become invertible over k〈〈X 〉〉. Then krat〈X 〉 is the universal
localization of k〈X 〉 with respect to &′.

In fact, the same result holds when k is just a principal ideal domain by Dicks
and Sontag [13, Theorem 24] (see also [16, Theorem 5.1]), or even a Bezout domain
[12], but not for a general noncommutative coeOcient ring k [29]. It seems to be an
open question whether it holds for a general commutative coeOcient ring k. It follows
from Proposition 1.3 that the ring Q = krat〈X 〉g, which is a purely in-nite simple von
Neumann regular ring by Theorem 1.2, is also a universal localization of the Leavitt
algebra L, namely Q = L&′ . In this paper, we shall study in detail the structure of the
“torsion modules” with respect to the latter localization, and we will -nd a formula
for K1(Q) in close analogy to the formula for K1 of the universal -eld of fractions of
k〈X 〉, found in [22,7] (see also [8, Section 7.9]).

We have the following diagram, in which all maps are inclusions:
k −−−−−→k〈X 〉 –&′−−−−−→krat〈X 〉−−−−−→ k〈〈X 〉〉�

� –g

� –g

� –g

k〈Y 〉 –f−−−−−→ L
–&′−−−−−→ Q −−−−−→ k〈〈X 〉〉g
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It was proved in [3, Theorem 7.5] that the map R=k〈Y 〉 → Q is also a universal local-
ization, namely Q =R&, where & is the set of monomorphisms with -nite-dimensional
cokernel between -nitely generated projective left R-modules. The universal localization
R& was -rst considered by Scho-eld [28].

We shall need some results on K1 from [2]. We denote by T× the group of invertible
elements of a ring T .

Theorem 1.4 (Ara and Brustunga [2]). Let L and Q be the rings described before.
Then we have:

(a) The canonical map k× → K1(L) is surjective with kernel (k×)n, so that K1(L) ∼=
k×=(k×)n.

(b) The canonical map K1(L)→ K1(Q) is injective.

2. Flatness

In this section, we prove that L is Nat as a right R-module. This will play an
important role in the sequel.

We will use the properties of the construction of skew polynomial rings with freely
independent indeterminates, as in [3, Section 3], in the special case where the coef-
-cient ring is k〈X 〉. Then the ring S = (k〈X 〉)〈Y ; �; @〉 coincides with the k-algebra
k〈X; Y |yixj =  ij all i; j〉, so that L = S=I , where I is the ideal of S generated by
1−∑n

i=0 xiyi, see [3, Section 4]. Elements in S can be uniquely written as
∑

I pIyI

with pI ∈ k〈X 〉 and the multiplication rule in S is determined by

yip = �(p)yi + @i(p)

for p∈ k〈X 〉 and i = 0; 1; : : : ; n. (Note that we are dealing here with left �-derivations,
and so coeOcients appear in the opposite side of [3].)

The ideal I = S(1 − ∑n
i=0 xiyi)S coincides with the socle of S, denoted Soc S.

In fact, it is easy to check that e := 1 −∑n
i=0 xiyi is a minimal idempotent and

that (xI eyJ∗ | I; J ) is an in-nite system of matrix units generating I as a k-vector
space.

Proposition 2.1. Let R = k〈Y 〉 be the free algebra on Y and let L be the Leavitt
algebra. Then L is 8at as a right R-module.

Proof. In order to prove that LR is Nat, it suOces to show that TorR1 (L;M) = 0 for
every left R-module M . Note that S = (k〈X 〉)〈Y ; �; @〉 is a free right R-module with
free R-basis (xI )I . It follows from the description of Soc S given above that Soc S is
also a free right R-module with free R-basis (xI e)I , where e= 1−∑n

i=0 xiyi. We have
a short exact sequence of right R-modules

0→ Soc S → S → L→ 0
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and to see that TorR1 (L;M) = 0 for a given left R-module M , it suOces to check that
the induced map

.: ⊕
I
xI e ⊗R M ∼= Soc S ⊗R M → S ⊗R M ∼= ⊕

I
xI ⊗R M

is injective. Note that

.

(∑
I

xI e ⊗ mI

)
=
∑
I

xI ⊗ mI −
n∑

i=0

∑
I

xI xi ⊗ yimI :

If
∑

I xI e⊗mI ∈⊕I xI e⊗R M is nonzero, take an index I0 of minimal length such that
mI0 �= 0. Since xI0 ⊗R M ∼= M , we get xI0 ⊗ mI0 �= 0. Note also that the term xI0 ⊗ mI0
cannot be cancelled in the sum

∑
I xI ⊗mI −

∑n
i=0

∑
I xI xi ⊗ yimI , because for each

of the nonzero terms xI xi ⊗ yimI appearing in that expression, the length of I ∪ {i} is
strictly larger than the length of I0, and the sum ⊕I xI ⊗R M is a direct sum. It follows
that . is injective and so TorR1 (L;M) = 0, as desired.

3. Finitely presented modules over the Leavitt algebra L

Recall that for every left semihereditary ring S, the category of -nitely presented
left S-modules fp(S) is an abelian category. (Here, we are looking at fp(S) as a full
subcategory of the category S-Mod of all left S-modules. The fact that S is left semi-
hereditary implies that the kernel, image and cokernel of every map between -nitely
presented modules are also -nitely presented).

Let R=k〈Y 〉 be the free algebra on Y={y0; : : : ; yn}, viewed as a subalgebra of L. We
also view L as a subalgebra of Q, the universal localization of R obtained by inverting
the set & of all the monomorphisms between -nitely generated free left R-modules
with -nite-dimensional cokernel, see [3, Sections 6 and 7] and Section 1. By a result
of Bergman and Dicks (see [5] or [27, Theorem 4.9]), every universal localization of
a hereditary ring is also hereditary. Since the free algebra k〈Y 〉 is hereditary (in fact,
it is a -r [8, Corollary 2.4.3]), we see that L and Q are both hereditary algebras. Note
that Q is a von Neumann regular ring by Theorem 1.2, and so every -nitely presented
left Q-module is projective.

Let T be the full subcategory of R-Mod consisting of all the left R-modules of
-nite dimension over k. This category is obviously an abelian category, and we will
show below that it is the category of objects with -nite length in the category fp(R).
First of all, note that every -nite dimensional R-module is -nitely presented, since a
submodule of -nite codimension in a -nitely generated free R-module is also -nitely
generated [20, Theorem 4].

Proposition 3.1. The category T of /nite-dimensional R-modules coincides with the
category fp(R)N of modules with /nite length in fp(R).

Proof. Clearly all the objects in T are objects of -nite length in fp(R). It remains to
observe that a simple object in fp(R) must be -nite dimensional. Let M be a simple
object in fp(R). By Lewin [20, Theorem 2], there is a -nitely generated free R-module
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P such that P6M and M=P is -nite dimensional. Since M is simple in fp(R), we
must have P = 0 and thus M is -nite dimensional.

We can now compute the Grothendieck group of the abelian categories fp(R) and
T = fp(R)N.

Proposition 3.2. Let T be the category of /nite-dimensional left R-modules, where
R = k〈Y 〉 is the free algebra of rank n + 1. Then the following properties hold:

(1) K0(T) is a free abelian group over the set of isomorphism classes of simple,
/nite-dimensional left R-modules.

(2) The canonical map – :K0(R) → K0(fp(R)) is an isomorphism, so that K0(fp(R))
is a cyclic group generated by [R].

(3) The map K0(T) → K0(fp(R)) sends K0(T) onto the subgroup of K0(fp(R))
generated by n[R].

Proof. (1) Since the category T coincides with fp(R)N by Proposition 3.1, the result
follows from [24, Theorem 3.1.8(1)].

(2) This is a standard argument. Since R is a -r, every -nitely presented module M
admits a presentation

0→ P1 → P0 → M → 0

with P0 and P1 free R-modules. By standard computations, the map 1 :K0(fp(R)) →
K0(R) given by 1([M ]) = [P0]− [P1] is the inverse of the canonical map – :K0(R)→
K0(fp(R)).

(3) Let M be a -nite-dimensional R-module and take a free resolution

0→ Rm → Rs → M → 0:

By Lewin’s Theorem [20, Theorem 4], we have m=nr+s, where r is the k-dimension
of M . It follows that [M ] = −nr[R] in K0(fp(R)). Since there are one-dimensional
R-modules (e.g. the module M0 de-ned below), we see that the image of the map
K0(T)→ K0(fp(R)) is exactly the subgroup generated by n[R].

Now we recall the exact sequence in universal localization constructed by Scho-eld.
Let R → R& be an injective universal localization. Let P& be a set of maps between
-nitely generated projective modules such that each map which becomes invertible
over R& is associated to a map in P&. Let G be the full subcategory of the category
of f.p. modules with objects the cokernels of the maps in P&. Then we have an exact
sequence [27, Theorem 4.12]

K1(R)→ K1(R&)→ K0(G)→ K0(R)→ K0(R&):

We specialize again to the case where R = k〈y0; : : : ; yn〉. Let R → R& be an injective
universal localization of R such that R& is Nat as a right R-module. Then we have an
exact functor F : fp(R) → fp(R&) given by F(M) = R& ⊗R M , and it follows easily
that the kernel of this functor is precisely G. For example, in the case where & is the
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family of all the monomorphisms having -nite-dimensional cokernel, we get a universal
localization Q which is Nat as a right R-module by [3, p. 89], and the corresponding
category T of torsion modules coincides with the category of -nite-dimensional left
R-modules. In order to understand what happens with the Leavitt algebra L, we consider
the map f :Rn+1 → R de-ned by

f(r0; r1; : : : ; rn) = r0y0 + r1y1 + · · ·+ rnyn:

The cokernel M0 of this map will play an important role in what follows. Note that
M0 is a one-dimensional module, M0 =k, and R acts on M0 via the augmentation map:

yi$ = 0 for all i∈{0; 1; : : : ; n} and all $∈M0:

Now L is a Nat right R-module by Proposition 2.1. The exact sequence in universal
localization gives us in this case

K1(R)→ K1(L)→ K0(T′)→ Z→ Zn → 0:

Here T′ is the kernel of the exact functor fp(R) → fp(L). Note that T′ ⊆ T. By
Theorem 1.4(a), the map K1(R) = k× → K1(L) is surjective, so we get K0(T′) ∼= Z.
This implies that [M0] must be a generator of K0(T′).

Our next result gives a -rst description of the structure of the -nitely presented
L-modules of -nite length.

Proposition 3.3. Let L be the Leavitt algebra of type (1; n). Then the following
holds:

(1) Let N be a /nite-dimensional left R-module with a composition series of length
k:

0¡N1 ¡N2 ¡ · · ·¡Nk = N:

Assume that exactly r composition factors are isomorphic to M0. Then L ⊗R N
is an L-module of /nite length and its length is exactly k − r.

(2) Let M be a /nitely presented left L-module. Then there is a /nitely generated
free module P such that P6M and M=P is a module of /nite length.

(3) Every /nitely presented left L-module M of /nite length is isomorphic to a module
of the form L⊗R N , where N is a /nite-dimensional left R-module.

Proof. We begin with the crucial observation that, for a simple, -nite-dimensional
R-module N , we have L⊗R N = 0 if and only if N ∼= M0. Indeed, if L⊗R N = 0 and
N �∼= M0, then [N ]Z ⊕ [M0]Z ⊆ K0(T′) ⊆ K0(T), a contradiction since K0(T′) is a
cyclic group.

Next, we show that L⊗R N is a simple module for every simple, -nite-dimensional
R-module N such that N �∼= M0. By the above paragraph, we have L ⊗R N �= 0. Let
$=
∑

I xI⊗$I be a nonzero element in L⊗N , where $I ∈N . Since
∑n

i=0 xiyi =1, there
is j such that yj$ �= 0, and we see inductively that we can -nd J such that yJ $ �= 0
and yJ $∈ 1 ⊗ N . Now the simplicity of RN gives us R(yJ $) = 1 ⊗ N , showing the
simplicity of L⊗R N .
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(1) It follows easily from the above observations and the fact that L is Nat as a left
R-module (Proposition 2.1).

(2) Let M be a -nitely presented left L-module. By [27, Corollary 4.5], there is
a -nitely presented left R-module N such that L ⊗R N ∼= M . Now by [20, Theo-
rem 2], there is a -nitely generated free R-module P such that P6N and N=P is
-nite-dimensional. Since LR is Nat, we have that M ∼= L ⊗R N contains the f.g. free
L-module L⊗R P. Moreover, (L⊗R N )=(L⊗R P) ∼= L⊗R (N=P) is an L-module of -nite
length by (1).

(3) Let M be a -nitely presented left L-module of -nite length. It is clear that M
cannot contain any nonzero free module. Hence, the result follows from (2).

4. Modules of type L for k〈X〉

In this section, we introduce another point of view for the modules over the Leavitt
algebra L. This has been inspired by the papers [14–16], so that we (temporarily)
borrow some of the terminology used in these papers.

A left � = k〈X 〉-module M is said to have the Sato property if Tor�q (k;M) = 0 for
all q, where k is viewed as a right �-module with trivial action via the augmentation
map. It is not hard to show that a left �-module M has the Sato property if and only
if the map 5 :Mn+1 → M given by

5((m0; m1; : : : ; mn)) =
n∑

i=0

ximi

is an isomorphism, cf. [26, Proposition 2.3]. From this characterization we easily see
that a left �-module M has the Sato property if and only if it is a left L-module. In
fact, if 5 :Mn+1 → M is an isomorphism then we can de-ne an action of k〈Y 〉 on M
by the rule 5−1(m) = (y0m; y1m; : : : ; ynm) for all m∈M . This action combines with
the �-action to provide the structure of L-module on M .

A module of type L is a left -nitely generated �-module with the Sato property.
By the above observation, a module of type L is a left L-module which is -nitely
generated as �-module.

Let M be a �-module of type L. A lattice in M is an R-submodule A ⊂ M such
that A is -nite dimensional over k and M = �A. (Recall our notation: R := k〈Y 〉.)

Proposition 4.1. (1) Let M be a left L-module. Then M is a module of type L if and
only if M is a /nitely presented L-module of /nite length.

(2) Let M be a module of type L. Then M contains a lattice. Moreover, an
R-submodule A of M is a lattice if and only if A is /nite dimensional and the natural
map L⊗R A→ M is an isomorphism.

(3) Every module of type L contains an smallest lattice.

Proof. (1) If M is a -nitely presented L-module of -nite length then by Proposition
3.3(3) there is a -nite-dimensional left R-module N such that L ⊗R N ∼= M . Then
clearly M is -nitely generated as a �-module.
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The converse follows from (2).
(2) Assume that M is a left L-module which is -nitely generated as �-module. Let

a1; : : : ; ar be generators of M as a left �-module. Then

yiaj =
∑
k

7kijak ;

where 7kij ∈�. Let r be a bound for the degrees of the polynomials 7kij. Let A be the
k-space generated by xIaj, where |I |6 r. Then yiA ⊆ A for all i, and clearly A is a
lattice for M .

If A ⊂ M is -nite dimensional and the natural map L⊗R A→ M is an isomorphism,
then M =�A and thus A is a lattice in M . Conversely assume that A is a lattice in M .
Since L is Nat as a right R-module, the map L⊗R A→ L⊗R M is injective. Now the
natural map L ⊗R M → M is an isomorphism, because the inclusion R → L is a ring
epimorphism. It follows that the map L⊗R A→ M is injective. Since A is a lattice this
map is clearly surjective.

(3) This follows from the arguments in [14, Lemma 1.6]. We include a short proof
for completeness. We -rst show that A1 ∩ A2 is a lattice for any two lattices A1 and
A2. Namely assume a∈A1. Then, since �A2 = M , we can write a =

∑
|I |=k xI bI , for

some k, where bI ∈A2 for all I . For a -xed J with |J |= k, we have

bJ = yJ∗a∈A1

which shows that bJ ∈A1∩A2. Therefore, A1 ⊂ �(A1∩A2) and so M=�A1=�(A1∩A2).
This proves that A1 ∩ A2 is a lattice.

Now let A be a lattice in M of minimal k-dimension. By the above, it is clear that
A is the smallest lattice in M .

Proposition 4.2 (Farber [14, Lemma 2.6]). Let A be a lattice in a module M of type
L, and B be any L-module. Then any R-homomorphism A → B can be uniquely ex-
tended to an L-homomorphism M → B. Thus HomL(M;B) = HomR(A; B). If f :M1 →
M2 is a surjective L-homomorphism between modules of type L, then f restricts to a
surjection from A1 onto A2, where Ai is the minimal lattice of Mi.

Proof. Let f :A→ B be an R-homomorphism. We have L⊗RA ∼= M and also L⊗RB ∼=
B, so the extension is just id ⊗ f.

If f :M1 → M2 is surjective, then f(A1) is a lattice in M2 and so A2 ⊆ f(A1). Let
C = f−1(A2) ∩ A1. Then C is a lattice in M1 contained in the minimal lattice A1. So
C=A1 and f(A1)=A2. (To show that C is a lattice, take a∈A1. Then f(a)∈M2 so that
we can write f(a)=

∑
#ibi for #i ∈� and bi ∈A2. Now bi ∈f(A1) so there are ai ∈A1

such that f(ai) = bi. But then ai ∈A1 ∩f−1(A2) =C. Observe that f(a−∑ #iai) = 0,
so that c := a−∑ #iai ∈C. It follows that a∈�C, as desired.)

Proposition 4.3. Let f :M1 → M2 be an L-homomorphism between modules of type
L. Let Ai be the minimal lattice in Mi, for i = 1; 2. Then f(A1) ⊆ A2.

Proof. By Proposition 4.2, we have f(A1) = B, where B is the minimal lattice in
f(M1). So it suOces to prove that B ⊆ A2. To show this, it is enough to prove that
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A2∩f(M1) is a lattice in f(M1). For a∈f(M1), we can write a=
∑

|I |=k xI aI , for some
k, where aI ∈A2. For a -xed J with |J |=k, we have yJ∗a=aJ , and so aJ ∈A2∩f(M1).
We conclude that A2 ∩ f(M1) is a lattice in f(M1).

Recall from Section 3 that T denotes the category of -nite-dimensional left R-
modules. Let S denote the category of -nitely presented left L-modules of -nite length.
By Proposition 3.3, we have a well-de-ned functor F :T→S given by F(N )=L⊗RN .
We are going to de-ne a right inverse of F . For an object M in S, set G(M)=A, where
A is the minimal lattice in M . If f :M1 → M2 is a map in S, then f(G(M1)) ⊆ G(M2)
by Proposition 4.3. Hence, we can de-ne G(f) :G(M1)→ G(M2) as the restriction of
f to G(M1).

Clearly, this assignment de-nes a functor G :S→T.

Theorem 4.4. With the above notation, we have FG ∼= IS.

Proof. Let M be an object in S. By Proposition 4.1(2), the natural map

F(G(M)) = L⊗R G(M)→ M

is an isomorphism. It is clear that this isomorphism is natural, so the result is proved.

5. The category fp(L) as a quotient category

Let M0 be the one-dimensional R=k〈Y 〉-module de-ned in Section 3. We will show
in this section that fp(L) is equivalent to the quotient category fp(R)=M0, where M0

is the Serre subcategory of fp(R) generated by M0.
We -rst recall some basic de-nitions on abelian categories. Let A be an abelian

category. A Serre subcategory of A is an abelian subcategory B which is closed under
subobjects, quotients and extensions. Note that the Serre subcategory M0 of fp(R)
de-ned above is the full subcategory of fp(R) whose objects are the -nite-dimensional
left R-modules having all composition factors isomorphic to M0.

Given a Serre subcategory B of an small abelian category A, one can form a
quotient abelian category A=B and an exact functor T :A→A=B with the following
universal property: given an exact functor S :A → C from A to an abelian category
C such that S(B) ∼= 0 for every object B of B, there exists a unique exact functor
S ′ :A=B→ C such that S = S ′ ◦ T ; see [36, Chapter 2].

We denote by F the functor fp(R)→ fp(L) induced by the tensor product L⊗R −.
Note that F is an exact functor because L is a Nat right R-module (Proposition 2.1).

Theorem 5.1. Let M0 be the Serre subcategory of fp(R) generated by the simple left
R-module M0. Then the abelian categories fp(R)=M0 and fp(L) are equivalent.

Proof. Clearly the category M0 consists of all the -nite-dimensional left R-modules
whose composition factors are all isomorphic to M0.
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Consider the exact functor F : fp(R) → fp(L) such that F(P) = L ⊗R P for every
object P in fp(R). By Proposition 3.3(1), F(N ) ∼= 0 for all objects N in M0. By the
universal property of fp(R)=M0, we get an exact functor F ′ : fp(R)=M0 → fp(L) such
that F = F ′ ◦ T , where T : fp(R)→ fp(R)=M0 is the localization functor.

To show that F ′ is an equivalence, we have to show that every object in fp(L) is
isomorphic to an object of the form F(P) for some object P in fp(R) and that F ′ is
fully faithful. The former assertion follows from [27, Corollary 4.5]. To see that F ′ is
fully faithful we have to check that the canonical map

HomC(P1; P2)→ HomL(F(P1); F(P2))

is an isomorphism for all -nitely presented left R-modules P1 and P2, where C denotes
the abelian category fp(R)=M0.

The maps in C are equivalence classes [(f; g)] of diagrams in fp(R),

P1
f←P

g→P2;

where the kernel and the cokernel of f are objects in M0. For such a pair, we have
F ′([(f; g)])=(1⊗g)◦(1⊗f)−1. Now assume that (1⊗g)◦(1⊗f)−1=0. Then 1⊗g=0.
By Proposition 3.3, we have Im(g)∈M0, and consequently [(f; g)] = [(f; 0)] = 0
in C.

To prove surjectivity, we need a somewhat diMerent approach to the universal local-
ization L=Rf where here f :Rn+1 → R denotes the map given by right multiplication
by the column (y0; y1; : : : ; yn)T. This is in close analogy to Scho-eld’s construction,
see [3, Section 6].

We denote by P(R) the category of -nitely generated projective left R-modules.
Let ;= Mor(P(R)) denote the class of all homomorphisms between -nitely generated
projectives. Let < denote the class of all monomorphisms in ; whose cokernel belongs
to M0. The same proof as in [3, Proposition 6.2] gives that < is a multiplicative set of
nonzerodivisor maps in ; which satis-es the right Ore condition. It is then possible to
construct the quotient category D=P(R)<−1, [35, Section 10.3], [3]. Set H=EndD(R)
be the endomorphism ring of the object R in the localized category D. Then H is the
universal localization of R with respect to < . By Proposition 3.3 all maps in < become
invertible in L, so we have a unique k-algebra homomorphism H → L which is the
identity on R. Since f∈< , the above map is an isomorphism, and we can identify
L and H . Let h :L ⊗R P1 → L ⊗R P2 be a homomorphism between induced -nitely
generated projective left L-modules. Then h is in the localized category P(R)<−1 and
so there exists a diagram

P1
s←−−P g−−→P2

in P(R) such that s∈< and h = (1⊗ g) ◦ (1⊗ s)−1. Note that s is an M0-iso and so
F ′([s; g]) = h.

Finally, consider a homomorphism h: L⊗R M1 → L⊗R M2 between induced -nitely
presented left L-modules. Choose presentations

0−−→P1
?1−−→P0

?0−−→M1−−→0;

0−−→Q1
@1−−→Q0

@0−−→M2−−→0
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for M1 and M2, respectively. Then there exists Ph :L ⊗R P0 → L ⊗R Q0 such that (1 ⊗
@0)◦ Ph=h◦ (1⊗?0). By the above argument there exists a -nitely generated projective
R-module P and a diagram

P0
s←−−P g−−→Q0

such that s∈< and Ph = (1 ⊗ g) ◦ (1 ⊗ s)−1. We have to verify that the pair [(s; g)]
induces a map in C = fp(R)=M0 from M1 to M2. To this end, we have to prove that
the composition

[(1; @0)] ◦ [(s; g)] ◦ [(1; ?1)] (1)

is 0 in C. To simplify notation, assume that P1 ⊆ P0 and ?1 is the inclusion map.
Then the above composition is represented by the diagram

P1

s|s−1(P1)←−−−s−1(P1)
@0◦g|s−1(P1)−−−−−→M2:

For p∈ s−1(P1) we have

(1⊗ (@0 ◦ g))(1⊗ p) = (1⊗ @0)( Ph(1⊗ s(p))) = h(1⊗ ?0(s(p))) = 0

and so L⊗R Im(@0 ◦ g|s−1(P1)) = 0. We infer from Proposition 3.3 that Im(@0 ◦ g|s−1(P1))
is in M0. It follows that composition (1) is represented by the diagram

P1

s|Ker(@0◦g|s−1(P1)
)

←−−−−−−−−Ker(@0 ◦ g|s−1(P1))
0−−−→M2

and so it is 0 in C.
It follows that there exists a unique map k :M1 → M2 in C such that k ◦ [(1; ?0)] =

[(1; @0)] ◦ [(s; g)]. Now we have

h ◦ (1⊗ ?0) = (1⊗ @0) ◦ Ph = F ′([(1; @0)] ◦ [(s; g)]) = F ′(k) ◦ (1⊗ ?0):

We conclude that h = F ′(k), which -nish the proof of surjectivity.

We can now get a better picture of the category S of -nitely presented left L-modules
of -nite length. Recall that T denotes the abelian category of -nite dimensional left
R-modules. The exact functor F :T → S induces an exact functor F1 :T=M0 → S.
On the other hand, we constructed a functor G :S→T in Section 4 which is a right
inverse of the functor F :T → S. Let us denote again by T the localization functor
T→T=M0.

Corollary 5.2. With the above notation, the functors F1 :T=M0 → S and T ◦
G :S → T=M0 de/ne mutually inverse category equivalences between the abelian
categories T=M0 and S.

Proof. The functor F1 :T=M0 → S is just the restriction to T=M0 of the functor
F ′ : fp(R)=M0 → fp(L) obtained in the proof of Theorem 5.1. By using Theorem 4.4,
we get

F1 ◦ (T ◦ G) = F ◦ G ∼= IS:
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Since F ′ : fp(R)=M0 → fp(L) is an equivalence by Theorem 5.1, we conclude that F1

and T ◦ G are mutually inverse category equivalences.

It is now a simple matter to get the following information on the structure of S.

Corollary 5.3. Keep notation as above. The following properties hold:

(1) K0(S) is a free abelian group over the set of isomorphism classes of simple,
/nite-dimensional left R-modules not isomorphic to M0.

(2) The canonical map – :K0(L) → K0(fp(L)) is an isomorphism, so that K0(fp(L))
is a cyclic group of order n generated by [L].

(3) The map K0(S)→ K0(fp(L)) is zero.

6. K1 of the universal localization of the Leavitt algebra

Recall that for any left semihereditary ring S, the category fp(S) of -nitely presented
left S-modules is an abelian category. Assume now that S is a semi-r. Given a -nitely
presented module M we have a presentation

0−−−→Sn A−−−→Sm−−−→M−−−→0

and the Euler characteristic 1(M) =m−n is well de-ned. Here of course A∈Mn×m(S)
acting on the right on Sn. If B∈Ms×t(S) is another matrix de-ning an injective map,
then A and B de-ne the same module (i.e. coker(A) ∼= coker(B)) if and only if A and
B are stably associated, meaning that the matrices A⊕ Ip and B⊕ Iq are associated for
suitable identity matrices. See [8, Theorem 0.6.2]. In fact it can be shown that if A
and B as above are stably associated then A⊕ It is associated to B⊕ Im, [8, Corollary
0.6.3].

For a semi-r S, let Tor(S) denote the full subcategory of S-Mod consisting of all
modules M admitting a presentation

0−−−→Sn A−−−→Sn−−−→M−−−→0;

where A is a full matrix over S. By Cohn [8, Theorem 3.3.3], the category Tor(S) is
an abelian subcategory of the category fp(S).

If S is a -r, then every full matrix over S admits a complete factorization into atomic
factors, and any two such complete factorizations are unique, cf. [8, Theorem 3.3.7].
This is due to the fact that the category Tor(S) is an abelian category with objects of
-nite length, and so the Jordan–HRolder Theorem holds in it. The simple modules in
Tor(S) correspond to the equivalence classes of full atomic matrices under the relation
of stable association.

Let � = k〈X 〉 be the free algebra on X . Recall that � is a -r, so that the above
theory applies to it. Let &′ be the set of all square matrices over � which become
invertible in k〈〈X 〉〉. The set &′ is exactly the set of matrices X such that �(X ) is
invertible, where � :�→ k is the augmentation homomorphism. Obviously all matrices
in &′ are full. Let us consider now the class Z of all left �-modules M admitting a
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presentation

0−−−→�n A−−−→�n−−−→M−−−→0;

where A∈&′. If

0→ M1 → M2 → M3 → 0

is an exact sequence of -nitely presented left �-modules, then we have a relation
C=AB, where A; B; C are matrices presenting M1; M3; M2, respectively, cf. [8, Proposi-
tion 0.6.1]. Since �(C) is invertible if and only if �(A) and �(B) are both invertible, we
conclude that Z is a Serre subcategory of Tor(�). In particular Z is an abelian cate-
gory. Recall that the category S is the category of all -nitely presented left L-modules
of -nite length.

Proposition 6.1 (cf. Farber and Vogel [16, Lemma 4.3]). There exists an equivalence
of categories between Z and S.

Proof. We are going to de-ne a functor C :Z → S. Let M be a module with a
presentation

0−−−→�n A−−−→�n−−−→M−−−→0;

where A is a matrix over � such that �(A) is invertible. Then Tor�∗ (k;M) may be
computed as the homology of

0−−−→k ⊗� �n 1⊗A−−−→k ⊗� �n−−−→0

which coincides with

0−−−→kn
�(A)−−−→kn−−−→0:

The last complex is acyclic because �(A) is invertible over k. It follows that Tor�∗ (k;M)
=0 and so M is an L-module. Since M is -nitely generated as left �-module, it follows
from Proposition 4.1(1) that M is an object in S. Since the map � → L is a ring
epimorphism, it follows that any left �-homomorphism f :M1 → M2 between objects
M1; M2 in Z is automatically an L-homomorphism. Thus we get a functor C: Z→S.

Let M be a -nitely presented left L-module of -nite length. Let N be the minimal
lattice in M . Consider the �-homomorphism

u :�⊗k N → �⊗k N; u(#⊗ z) = #⊗ z −
n∑

i=0

#xi ⊗ yiz;

where #∈�, z ∈N . It is clear that u∈&′ and thus coker(u)∈Z. As in [16, proof of
Lemma 4.3], the map g : coker(u) → M given by g([# ⊗ z]) = #z is an isomorphism
of L-modules. It follows that every object in S is isomorphic to an object of the form
C(M) for M in Z. Since C is clearly fully faithful, we get that C is an equivalence
of categories.

Let T0 be the abelian category of -nite-dimensional left R-modules admitting a
composition series all of whose composition factors are not isomorphic to M0. As has
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been pointed out to me by Desmond Sheiham, the natural exact functor T ′ :T0 →
T=M0 is not a category equivalence. However, it induces an isomorphism K0(T0)→
K0(T=M0), as follows. First, note that by Heller’s localization theorem [36, Theorem
II.6.4], we have K0(T=M0) ∼= K0(T)=K0(M0). Second, the natural map K0(T ′) :K0(T0)
→ K0(T=M0) = K0(T)=K0(M0) sends a Z-basis of K0(T0) to a Z-basis of K0(T)=
K0(M0), so it is a group isomorphism.

By Corollary 5.2, the functor T ◦ G: S → T=M0 is a category equivalence, so
that K0(S) ∼= K0(T=M0) ∼= K0(T0). We can summarize the above observations and
Proposition 6.1 as follows:

Theorem 6.2. The functors C :Z→ S and T ◦ G :S→T=M0 are category equiv-
alences. The natural exact functor T ′: T0 → T=M0 induces a group isomorphism
from K0(T0) onto K0(T=M0), so that we get K0(Z) ∼= K0(S) ∼= K0(T0). In particu-
lar, there is a bijection between the set of equivalence classes of stably associated full
atomic matrices over � which become invertible under � and the set of isomorphism
classes of /nite-dimensional simple left R-modules not isomorphic to M0.

We now introduce the reduced divisor group D� in analogy with the divisor group
of [23,7] and [8, Section 7.9].

De,nition 6.3. Let �= k〈X 〉 be the free algebra on X . The reduced divisor group D�

of � is the free abelian group on the set of equivalence classes of stably associated
full atomic matrices over � which become invertible under �.

We get from Theorem 6.2.

Proposition 6.4. D�
∼= K0(Z) ∼= K0(S) ∼= K0(T0).

Proof. Since Z is an abelian category with objects of -nite length, it follows from
[24, Theorem 3.1.8(1)] that K0(Z) is a free abelian group on the set of isomorphism
classes of simple objects in Z. On the other hand, the isomorphism classes of simple
objects in Z are in a bijective correspondence with the classes of stably associated
atomic full matrices over �. We conclude that K0(Z) ∼= D�.

Finally, it follows from Theorem 6.2 that K0(Z) ∼= K0(S) ∼= K0(T0).

Let Q be the universal localization of the Leavitt algebra L obtained by inverting
all the homomorphisms between -nitely generated projective left L-modules whose
cokernel is a left L-module of -nite length (i.e. belongs to S). It is clear from Theorem
6.2 that Q is the ring obtained from R=k〈Y 〉 by universally inverting all maps between
-nitely generated projective modules with -nite-dimensional cokernel, and also that Q
is the universal localization of �= k〈X 〉 with respect to &′ ∪{g}, where g :�→ �n+1

is the map induced by right multiplication by (x0; x1; : : : ; xn). This was shown in [3,
Theorem 7.5] by other means.

By using Proposition 6.4 and the exact sequence of universal localization, together
with the computations in [2], we can now compute K1(Q).
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Theorem 6.5. Let Q be the ring obtained from the Leavitt algebra L by universally
inverting all the homomorphisms between /nitely generated projective left L-modules
with cokernel in S. Then

K1(Q) ∼= k×=(k×)n × D�;

where D� = K0(Z) ∼= K0(S) ∼= K0(T0) is the reduced divisor group of �.

Proof. We use Scho-eld’s exact sequence [27, Theorem 4.12] for the universal local-
ization Q = L&′ to get

K1(L)→ K1(Q)→ K0(S)→ K0(L)→ K0(Q):

The map K0(S) → K0(L) is the zero map by Corollary 5.3(2),(3). (In fact the map
K0(L) → K0(Q) is an isomorphism by [3, Theorem 7.6].) Moreover, K0(S) ∼= D� by
Proposition 6.4, so we get

K1(Q) = K1(L)× D�; (2)

where K1(L) is the image of K1(L) → K1(Q). By Theorem 1.4, we have K1(L) =
k×=(k×)n, so the result follows from (2).

Note that Q is a purely in-nite simple von Neumann regular ring by [3, Theorem
5.4]. In particular, we have K1(Q) = (Q×)ab, the abelianized group of units of Q by
[3, Theorem 2.3]. Therefore, we have a Dieudonn=e determinant

GL(Q) =
⋃
i¿1

GLi(Q)→ (Q×)ab = k×=(k×)n × D�

by Theorem 6.5.

7. The exchange property

As an application of the techniques developed in the previous sections and the main
result in [1], we establish in this section a new property of the free algebra.

Following War-eld [34], we say that a unital ring S is an exchange ring if the
regular left S-module SS satis-es the (-nite) exchange property. By a result obtained
independently by Goodearl [17] and Nicholson [21], S is an exchange ring if and
only if for every element a in S there is an idempotent e in S such that e∈ Sa and
1− e∈ S(1− a).

It has been proved in [1] that every purely in-nite simple ring is an exchange ring.
Combining this result with the fact that Leavitt algebras of type (1; n) are purely in-nite
simple rings [3, Theorem 4.2], we get:

Theorem 7.1 (cf. Ara [1, Theorem 2.1]). Let L be a Leavitt algebra of type (1; n)
over a /eld k. Then L is an exchange ring.

We interpret here this result in terms of the free algebra R = k〈Y 〉. We keep the
notation of the previous sections, so that Y = {y0; : : : ; yn} and R = k〈Y 〉 ⊆ L.
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It is useful to extend the notion of a lattice to the case of -nitely generated projective
left L-modules.

Let P be a -nitely generated projective L-module. A lattice in P is an R-submodule
M of P such that L·M =P and M is -nitely generated projective as R-module. Observe
that, if M is a lattice in P, then the natural map L⊗R M → P is an isomorphism. This
follows from the facts that LR is Nat and that L⊗R P ∼= P (because the map R→ L is
a ring epimorphism).

Proposition 7.2. Let P be a /nitely generated projective left L-module.

(a) P admits a lattice.
(b) Let M be a free R-submodule of P. Then M is a lattice in P if and only if the

natural map L⊗R M → P is an isomorphism.
(c) Let M be a lattice in P and let Q be a /nitely generated submodule of P. Then

there exists a lattice N of Q such that N ⊆ M .

Proof. (a) Every -nitely generated projective L-module is free, and so it is isomorphic
to an induced module. Therefore there exists a -nitely generated free left R-module A
and an isomorphism h :L⊗R A→ P. Let N =h(1⊗A) ⊆ P. We want to prove that N is
a lattice in P. Clearly LN =P. Consider the map h′ :A→ N given by h′(a) =h(1⊗a).
Let K denote the kernel of h′. We have an exact sequence

0−−−→L⊗R K−−−→L⊗R A
1⊗h′−−−→L⊗R N−−−→0:

Since LN = P, we see that the map g :L ⊗R N → P is an isomorphism. Since 1 ⊗
h′ = g−1 ◦ h, we conclude that 1⊗ h′ is an isomorphism too, and then we get from the
above exact sequence that L⊗R K = 0. Since R is a -r, K is a free R-module, and so
we conclude that K = 0. Thus h′ is an isomorphism and so N is a free R-module.

(b) We have observed before that the map L ⊗R M → P is an isomorphism for
every lattice M in P. Conversely, let M be a free R-submodule of P such that the map
L ⊗R M → P is an isomorphism. Then L ·M = P, and also M is necessarily -nitely
generated. We conclude that M is a lattice.

(c) Let M be a lattice in P and let Q be a -nitely generated L-submodule of P.
Consider N = M ∩ Q. Then N is an R-submodule of Q. We claim that LN = Q. Let
q∈Q. Then we can write q=

∑
|I |=r xImI , for some r¿ 1, where mI ∈M , because M

is a lattice in P. For a -xed J such that |J |= r, we have

yJ∗q = mJ ∈M;

but also yJ∗q∈Q, and so mJ ∈M ∩ Q = N . We have shown that q∈LN .
Observe that N is a submodule of the free R-module M , and so N is a free module.

Since LN = Q, the usual argument gives that the natural map L ⊗R N → Q is an
isomorphism. It follows from (b) that N is a lattice in Q.

We say that a submodule N of an R-module M is co-M0 in case M=N ∈M0. Note
that every co-M0 submodule of a -nitely generated free module is -nitely generated.
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Theorem 7.3. Let A and B be /nitely generated left submodules of a free left R-module
Rk such that A+B is a co-M0 submodule of Rk . Then there exist submodules M ⊆ A
and N ⊆ B such that M ∩ N = 0 and M + N is a co-M0 submodule of Rk .

Proof. Write C := LA ⊆ Lk and D := LB ⊆ Lk , and observe that A and B are lattices in
C and D, respectively. Since A+ B is a co-M0 submodule of Rk , we get C +D = Lk .
By Theorem 7.1, L is an exchange ring, and so every -nitely generated projective
L-module has the -nite exchange property. Hence, we can apply [21, Proposition 2.9]
to get a decomposition Lk = P ⊕ Q, with P ⊆ C and Q ⊆ D. By Proposition 7.2(c),
there exists a lattice M in P such that M ⊆ A. Similarly, there exists a lattice N in Q
such that N ⊆ B. Therefore M ∩ N = 0, and L⊗R (Rk=(M ⊕ N )) = 0. It follows from
Proposition 3.3 that M ⊕ N is a co-M0 submodule of Rk , as desired.

The author has been unable to -nd a more direct proof of Theorem 7.3 (i.e. without
utilizing Theorem 7.1).
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