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Abstract

It is proved, that the quotient space of the four-dimensional quaternionic pro-
jective space by the automorphism group of the quaternionic algebra becomes the
13-dimensional sphere while quotioned the the quaternionic conjugation.

This fact and its various generalisations are proved using the results of the
theory of the hyperbolic partial differential equations, providing also the proof
of the theorem (which was, it seems, known to [..S.Pontriagin already in the
thirties) claiming that the quotient of the complex projective plane by the complex
conjugation is the 4-sphere.

1 Introduction

In the paper [1] on the topology of the real algebraic curves, written in 1971, T have used
the fact, that the quotient space of the complex projective plane by complex conjugation
is the four-dimensional sphere. The attempts to find a reference for this fact in the
literature were not successful at this time '. However V.A.Rokhlin told me that this
result had been known to I..S.Pontriagin already in the thirties.

I do not know how had Pontriagin proved this theorem. My proof (published later
in[2] ) was based on the theory of the hyperbolic partial differential equations. Thinking
on this proof recently once more from the view point of the systematical complexifi-
cation and quaternionisation of the results of [3] ( related to the attempts to find the
quaternionic version of the Berry phase and on the quantum Hall effect, see [4, 5]) T
have realised that this proof, based on the complex numbers, has quaternionic and real
versions, leading to the following strange trinity of theorems with a common proof (of
which the first theorem is trivial while the third one seems to be new):

Theorem R. The real one-dimensional projective space is homeomorphic to the
circle:

RP' ~ S,
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Theorem C. The quotient space of the complex projective plane by the complex
conjugation is homeomorphic to the four-dimensional sphere:

CP?/conj ~ S*.

Theorem H. The quotient space of the four-dimensional quaternionic space by the
automorphisms of the algebra of the quaternions becomes, after a factorisation by the
quaternionic involution, a 13-dimensional sphere:

(HP*/AutH)/Conj ~ S'.

Remark. T have no doubt that the homeomorphisms constructed below become
diffeomorphisms, if the quotients are equiped with their natural smooth structures.
However the description of these structures is too long and so the diffeomorphisms are
not proved below (see, however, [6]-]9]).

2 Geometry of hyperbolic cones

Definition. A real algebraic hypersurface in the real projective space is called hyperbolic
with respect to some point P of its complement, if every real straight line containing P
intersects the hypersurface only in real points (whose number is equal to the degree of
the hypersurface provided that they are counted taking multiplicities into account).

The point P is then called a time-like point. The hyperbolic hypersurface of the
projective space RPY ™! are represented in the vector-space RM(whose vectors define
the homogeneous coordinates in the projective space) by the algebraic hyperbolic cones
(with vertices at the origin). The time-like points are represented by the time-like vectors
of this space. The hyperbolicity condition takes in the vector-space the following form:
every real straight line in RV parallel to the time-like vector, intersects the hyperbolic
cone at the real point, whose number is equal to the degree of the cone.

Example 1. Consider the space of the quadratic forms in R”. This real vector-
space of dimension N = n(n + ])/2 contains the cone of the degenerate forms. This
cone is hyperbolic with respect to the time-like vector, representing any positive-definite
quadratic form (i.e. any Fuclidean structure in R™). This property of the cone is
essentially the theory of the eigenvalues of the quadratic forms in the Fuclidean space.
The singular points of the cone form an algebraic variety of codimension 3 in the ambient
space of forms RV.

Example 2. Consider the space of the Hermitian quadratic formsin C™ (of the real
quadratic forms in the corresponding space R*”, which are invariant under the action of
the group S' of complex numbers of modulus one, acting as the multiplication of vectors

of C™).



This real vector-space of dimension N = n? contains the cone of the degenerate forms.
This cone is hyperbolic with respect to the time-like vector, representing any positive-
definite Hermitian form (i.e. any Hermitian structure in C”). This property of the
cone is essentially the theory of the eigenvalues of the Hermitian forms in the Hermitian
space. The singular points of the cone form an algebraic variety of codimension 4 in the
ambient space of forms, RV.

Example 3. Consider the space of the hyperhermitian quadratic forms in the
quaternionic n-dimensional vector-space H”. These are real quadratic forms in the
corresponding space R*", which are invariant under the action of the group S? of uni-
tary quaternions (acting on the vectors multiplying each component by the quaternion
from some side, chosen once forever, say from the left).

This real vector-space of dimension N = n(2n—1) contains the cone of the degenerate
forms. This cone is hyperbolic with respect to the time-like vector, representing any
positive-definite hyperhermitian form (i.e. any hyperhermitean structure in H”). This
property of the cone is essentially the theory of the eigenvalues of the hyperhermitian
forms. The singular points of the cone form an algebraic variety of codimension 6 in the
ambient space RN of forms.

The main fact of the geometry of the hyperbolic cones that we shall use is the
following theorem (see [2]).

Consider the intersection of an hyperbolic cone of degree k in RN with a sphere SV~
centered at the origin. Fix a time-like point P (a pole) on the sphere and connect it
with — P by the meridians. Consider on each meridian the first intersection point with
the cone (counting from P), the second one, ..., the k-th one.

Theorem. The i-th points situated on all the meridians, form a semialgebraic vari-
ety Vi, homeomorphic to the sphere SN2,

Indeed, the homeomorphism of V; onto the equator is defined by the projection along
the meridians.

The proofs of the results formulated in the introduction are deduced below from the
general theorem above, applied to the variety V; of the nonnegative degenerate quadratic
forms of a suitable number of variables.

3 The Gram matrix of a system of vectors.

Consider n vectors vy, ..., v, in an Euclidean space. The Gram matriz of this system of
vectors is the matrix a;; = (v;,v;) formed by their scalar products.

Lemma. The Gram matriz of a system of vectors is the matriz of a nonnegative
quadratic form, whose rank is equal to the dimension of the linear hull of the vectors.

Fach matriz of a nonnegative quadratic form of rank r is realizable as the Gram
matriz of a system of n vectors in an r-dimensional Fuclidean space.



The ordered system of n vectors is defined by its Gram matriz up to the orthogonal
transformation of the ambient space R”.

The proof of this well-known fact is based on the representation of the orthogo-
nalization of a given basis of an Fuclidean space in terms of its Gram matrix. The
quadratic form, corresponding to the given system of vectors, is provided by the for-
mula f(¢) = (3 ¢v, 5 ¢v;). The Lemma implies the

Corollary. The variety Vi of the nonnegative degenerate quadratic forms in R”
(normed by the condition “the sum of the squares of the components of the matriz of
the form in a fived basis is equal to 17) is homeomorphic to the variety of the ordered
sets of n wvectors in the Fuclidean space R™™" (normed by the condition “the sum of
the squares of the scalar products of the vectors is equal to 17), considered up to the
orthogonal transformations of the space R" .

Applying to Vi the Theorem of Section 2, we get the following

Theorem. The variety of the ordered normed sets of n vectors in R"™", considered
up to the orthogonal transformations of this Fuclidean space, is naturally identified with

the sphere SM, M =n(n +1)/2 — 2.

The Theorems of Section 1 are deduced from this fact, n being 2,3 or 5 (R" ! beeing,
correspondingly, R, C, H).

4 The proof of the theorem on the quotient of the
quaternionic projective space.

Starting from five quaternions qq,...,qs € H?, we construct a nonnegative degenerate
quadratic form of five real variables, f(¢) = (3 g, ¢iq;)  the scalar square of the
linear combination of the five quaternions.

By the Theorem of Section 3, the variety of the normed (and hence nonzero) quin-
tuples, quotioned by the action of the orthogonal group O(4) on H, is the sphere S'°.
The quotient space may be constructed in three steps.

Lemma. The quotient space S* 4 /0(4) of the sphere in H™*' by the action of the
group O(4) on H can be obtained from the quaternionic projective space HP™ taking first
the quotient by the action of the automorphisms of the quaternions algebra and than the
quotient of the resulting space by the action of the quaternionic conjugation involution
on it:

S4m+3/0(4) ~ (HPm/AutH)/Conj-

Proof. Denote by S%(= SU(2)) the group of the unitary quaternions. The direct
product S* x §% acts orthogonally on the space H of the quaternions by the left and



right multiplications, ¢ — ugv~'. We have constructed a homomorphism S% x §% —
SO(4) which is the standard universal two-fold covering Spin(4) — SO(4), whose kernel
consists of two elements (1,1) and (—1,—1).

The quaternionic projective space HP™ consists of the equivalence classes of the
(nonzero) m+ 1-tuples of the quaternons (uqo, - . ., uq,,) € H""'\ 0. The automorphisms
of the algebra of quaternions are interior automorphisms (of the form ¢ — uqu ', u €
S%). Such an automorphism sends the equivalence class of a vector ¢ € H™*'\ 0 in
an equivalence class (of the vector qu~'), since the left and the right multiplications
commute. Thus, S*"+3/50(4) ~ HP™ /AutH.

The quaternionic conjugation Conj does not act on HP™, but does act on the space of
the two-sided equivalence classes that we have constructed: the element Conj(uqv—') =
Conj(v~")Conj(q)Conj(u) belongs to the class of Conj(q).

The orthogonal transformation Conj : H — H changes the orientation of this real
4-space. Hence we find that

(HP™ /AutH)/Conj ~ S*"*3/0(4),

which proves the lemma.
Applying the LLemma to the case m = 4, we find from the Theorem of Section 3,
that
S~ S/0(4) ~ (HP*/AutH)/Conj,

which is the Theorem H of the Introduction.

Theorems R and C are proved by the same reasoning, one should only replace the
quaternions by the real or by the complex numbers and replace the projective four-space
by the one-space or by the two-space accordingly.

The quotient space by the action of O(4) will be replaced by the quotient space by
the action of O(1) and of O(2) respectively. The real (complex) projective space that
one gets at the first step should be quotient by the action of O(1)/S° = 1 in the real
case and of O(2)/S" = 5% in the complex case (the nontrivial element of the last group
of two elements acts as the complex conjugation on CP?).

5 The hyperhermitian geometry

Replacing the quadratic forms by the Hermitian or by the hyperhermitian ones in the
Theorem of Section 3, one gets new generalisation of the theorems proved above.

Definition. An Hermitian form in a complex vector-space is a real quadratic form
on it, which is invariant under the multiplication of the vector of this complex space
by the complex numbers whose modulus is equal to one. The dimension of the real
vector-space of the Hermitian forms in C™ is equal to m?.

A positive-definite Hermitian form is called an Hermitian structure. The complex
linear transformations, preserving the Hermitian structure, form the unitary group U(m)
of dimension m?. A complex vector-space equiped with an Hermitian structure is called

the Hermitian space.



Theorem. The variety of the ordered normed n-tuples of vectors in the Hermitian
space C"' considered up to the unitary transformations of this space, is naturally

identified with the sphere SM M =n? — 2.

Example. For n = 2 we get the Hopf fibration S? = §%/5". For n = 3 we obtain
the quotient space ( which is no longer the base of a fibration)

ST a0 S /U(2) = CP?/SU(2) = HP?/S".

Definition. A hyperhermitian form in the quaternionic vector-space is a real quad-
ratic form, which is invariant under the multiplication of all the quaternionic components
of the vector from the left by any unitary quaternion.

Remark. It does not imply in general the invariance under the multiplication from

the right.

The positive-definite hyperhermitian form are called hyperhermitian structures, and
the quaternionic space equiped with a hyperhermitian structure is called the hyperher-
melian space.

Example. The function F(q) = qig1 + ... + Gmqn defines in H” the standard
hyperhermitian structure. Fach hyperhermitian structure can be written in such a form
in terms of the components with respect to a suitable basis. Fixing the basis, we get for
the hyperhermitian forms the following description.

Theorem. Fvery hyperhermitian form in H™ can be represented using a ( uniquely
defined) quaternionic matriz f; ;, verifying the hyperhermiticy condition
fii = fij, by the formula

flqg) = i qiFijq;. (1)

Proof. 1°. This form is real. Indeed, f(q) = > q;fi ;0. = f(q).
2°. This form is invariants under the multiplication of g from the left by a unitary
quaternion u. Indeed,

flug) = ugifijqu = uf(q)u = f(q),

since the real number f(q) commutes with w.

3?. Thus formula (1) defines a hyperhermitian form. We shall prove now, that every
hyperhermitian form can be represented by formula (1).

To prove it equip with the usual Euclidean scalar products (p, ¢) = Re(pg) the spaces
H and H™ = @HJ Our form can be written as

Jq) =Y (Aii(ai), qi), AT = A,



where A, ; : H — H is a real-linear operator, the sign * being Fuclidean conjugation.
The invariancy condition for f takes the form

(Aij(ur),uy) = (A (7). y)

for any quaternions z and y. Hence A,; should verify the relation v 'A, .u = A,
(since u* = u~"). Thus the operator A;; should commute with the multiplication of
quaternions by u from the left.

Lemma. Any real-linear operator A in H, which commutes with the multiplication
of the quaternions (from the left) by the unitary quaternion w, is the operator of the
multiplication by some quaternion from the right.

Proof. The commutativity implies that A(u) = A(uw-1) = uA(1). Hence A acts on
any quaternion ¢ as the multiplication from the right, A(q) = ga, where a = A(1).

It follows from the Lemma that we have thus proved that A;;(¢;) = ¢.f;;, where

¥R
fii 1s a quaternion. Since A is symmetric, the resulting quaternionic matrix f;; is

hyperhermitian, f;; = f.;. In particular the diagonal elements are real. We thus get

formula (1):
flg) =Red qifijai = qifijdq

4°. The huperhermitian matriz is unambiguosly defined by the form f. Indeed, if
f =0, its restriction to H! & H; also vanishes. Hence the operators A;; (and thus also
the quaternions f; ;) vanish. The theorem is thus proved.

Corollary. The dimension of the real vector-space of the hyperhermitian forms in

H™ equals m +4m(m —1)/2 = m(2m — 1).

Definition. A hyperunitary transformation of a hyperhermitian space is a quater-
nionic-linear transformation, preserving the hyperhermitian structure. (A quaternionic-
linear operator is a linear operator A, for which A(gx) = gA(x) for any quaternion

q).

The dimension of the hyperunitary group of the hyperhermitian space H” equals
m(2m + 1). This group is denoted (unfortunatly) Sp(m).

The hyperunitary transformations are defined by the matricies, whose elements
should be written from the right of the components of the vectors, like

Alqr, q2) = (rar g + qas1, rar 2 + Gaas ).

The condition that transformation is hyperunitary (with respect to the standard
hyperhermitian structure F(¢) = 3 ¢;q; in H) takes for the matrix the form

Y aijan; = i
j



Hence, the hyperhermitian scalar product in H” (with quaternionic values) defined by

<Q7 7“> = Z qir;

is invariant under the hyperhermitians transformations:

(Ag, Ar) = (q, 7).

the formula

Remark. This follows also, of course, from the quaternionic polarization formula,
which is however too long to be reproduced here.

Theorem. The variety of the ordered n-tuples of vectors in the hyperhermitian
space H* ™', considered up to hyperunitary transformations of this space, is the sphere

SM M =n(2n —1) — 2.

Example. For n = 2 we get the quaternionic Hopf bundle, S* = S§7/8% For n = 3
we get S'? = §27/9p(2). This suggest some relation to the Caley projective plane.

The proof of the theorem, as well as that of its Hermitian version, is based on the
same reduction to the theory of the hyperbolic cones which was used in Section 3 to
prove the FEuclidean version of this theorem.

Definition. The Gram matriz of a system of n vectors ¢; in the standard hyper-
hermitian (hermitian) space H™ (C™) is the matrix of the hyperhermitian (Hermitian)
form

fle)=Flagi+...+cuqs),  c€ H"(C™).

This form is hyperhermitian (Hermitian) since the argument of /' is multiplied by u
from the left when all the ¢; are multiplied by u from the left. By the definition of the
standard hyperhermitian (Hermitian) structure F, we get

f(s) = cilaiq;)c;,  whence  fi; = (g, q;)-

Thus the form f is invariant under the hyperunitary (unitary) transformations of the
space H™ (C™).

The hyperhermitian (Hermitian) matrix f;; defines the orthogonalization of the n-
tuple ¢;. Hence this matrix determines this n-tuple up to a hyperunitary (unitary)
transformations of the space H™ (C™).

6 The equivariant Neuman-Wigner theorem on the
nonintersections of electronic levels.

As we have seen, the eigenvalues theories for quadratic, Hermitian and hyperhermitian
forms are theories of the hyperbolic cones in the space of forms which are invariant



under some representation (of group U(1) in the Hermitian case and of group SU(2)
in the the hyperhermitian case), namely under a representation which is a multiple of
an irreducible one. The corresponding generalized von Neuman-Wigner theorems (see
[6], [3]) claim in our present terminology that the codimensions of the varieties of the
singular points on the cones of the degenerate points are equal, in the real, complex
and quaternionic cases, to 2, 3 and 5 (these numbers are the codimensions of the one-
dimensional spaces of the diagonal forms of two variables in the spaces of quadratic,
Hermitian and hyperhermitian forms of two variables).

One can replace here the standard irreducible representations of groups U(1) and
SU(2) by any irreducible representation of any compact Lie group. The results, describe
below, show, that such a generalization provides no new hyperbolic cones: all the spaces
of quadratic forms, invariant under the multiples of the irreducible real representations
of compact Lie groups, are naturally isomorphic either to the space of all real quadratic
forms, or to the space of the Hermitian forms, or to the space of the hyperermitian
forms.

Fix a real irreducible representations of a compact Lie group G by orthogonal trans-
formations of the FEuclidean space R”.

Definition. A symmetry of the representation is a real linear operator, commuting
with all the operators of the representation: Ag = gA (in other terms it is an operator
interwinning the representation with itself).

The symmetries of a given representation form an (associative) algebra (a subalgebra
of the algebra of all the operators from R” to itself). We shall use the following real
version of the Shur’s lemma:

Theorem. The symmetry algebra of any real irreducible representation of a compact
Lie group is isomorphic (as an algebra of linear transformations of the Fuclidean space)
to one of the following three algebras:

1) algebra R of real numbers, acting in R™ as the scalar matricies;

2) algebra C of complex numbers, acting in C™ (n = 2m) as the scalar matricies;

3) algebra H of quaternions, acting in H* (n = 4k) by the multiplication of the
component of a vector by a quaternion from the right.

Remark. This classical theorem provides the royal way to quaternions, which ap-
pear here not as an uncomplete axiomatic generalization of complex numbers, but as the
solution of a natural problem in real Euclidean geometry. All the “axioms” of quater-
nions are simply the necessary properties of the solutions of this natural problem, and
to discover them one is not forced to use the spirits as employed by Hamilton. Simulta-
neously one gets the classification of the associative algebras with division (not only as
of abstract objects but also as operators algebras). The proof is so simple that T shall
give it below.

Proof. Complexify R” to get C™” ~ R?". The complexified representation operators
g and symmetries A act on C” as complex linear operators. The representation of ¢



in R?" that we obtain is reducible: it is the direct sum of two copies of the original
representation.

Lemma 1.The complexified symmetry operator A either is the multiplication by a
real number, or has two complex-conjugate eigenvalues A = a+w of multiplicity m = n/2
cach (the dimension of the original real representation space being even).

Proof. Otherwize A would have a nontrivial complex eigenspace whose complex
dimension either smaller or greater than m. The first is impossible, since this invariant
space of the representation would have a nontrivial intersection with R™, in contradiction
with the irreducibility. In the second case the orthogonal complement to the eigenspace
(which is also invariant under the representation) would have a nontrivial intersection
with R, in contradiction with the irreducibility.

Denote I = (A — al)/w. One obviously get the following

Lemma 2. Symmetry operator I is a complex structure in R™, i.e. I* = —1.

Lemma 3. Fach complex structure, which is a symmetry of an irreducible orthogonal
representation in R™, preserves the Fuclidean structure.

Indeed, the nonnegative form (I, Ix) is invariant, since (Igx, [gz) = (glx,glx) =
(Ix, Ix), the form (y,y) being g-invariant. Hence one gets (Ix, Ix) = Mz, 2) (othervize
the eigenspace of this form would be a nontrivial G-invariant subspace in R"). There-

fore we find, that (x,2) = (IPx, *2) = M (x,2),A* = 1. Since the form (I, Ix) is
nonnegative, A = 1. Thus every symmetry which is a complex structure is orthogonal.

If the real linear combinations of 1 and [ exhaust the symmetry algebra, we get the
case 2 of the theorem. Suppose there is one more symmetry in the algebra. Replacing it
by its linear combination with the identity 1, we construct a complex structure B. The
symmetry operator I'B 4+ Bl is symmetric. The irreducibility of the original represen-
tation implies that any symmetric symmetry operator is a scalar: TB+ Bl = 2¢ € R.
Denote by J the operator J = (B + &l)/v/1 — &%, Here £ < 1, since the orthogonal
operator ' = I B is different from +1, B being independent of 1.

Lemma 4. Operator .J is a complex structure, anticommuting with I.
Indeed,
JP=(B+el)?/(1 — &)= -1, IJ+JI=(IB+ BI+21*)/V1 &> =0.

Lemma 5. Operator K = 1.J is also a complex structure; all the three complex
structures (1,J,K) anticommute.

Indeed,
K?=N(I1))y=1J(—J)=1>= -1,
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IK=1J,KI=—JI’JK=-JKJ=1J%

Therefore the vectors (a, la, Ja, Ka), where a is any unite vector, are mutually orthog-
onal and generate R* on which the operators (7,.J, K') are acting as the quaternions
(7,7, k). Tn the orthogonal complement to R* we choose one more unite vector and con-
struct one more R*. Continuing this way, we identify at the end the original Fuclidean

space R” with H*. n = 4k.

Lemma 6. Any symmetry of the irreducible representation is a real linear combina-
tion of the four operators (1,1,.J, K') that we have constructed.

If there were one more symmetry, we would construct, as above, its linear combina-
tion I, with 1 and [ which would be, as .J, a complex structure, anticommuting with
[:1L+1L]=0,1"=—1L.

Operator JI = L.J is symmetric. The irreducibility implies that JIL = LJ = 2£1 is
a real number. Operator X = K(L + £J) is symmetric

X* =LK +&JK =LIJ+&l = —TLJ+ &0 =—1(26 — JL)+ &1 = —€6T + K L.

The irreducibility implies that X = u € R, whence I, = —&J — pK. This proves the
[Lemma and hence the Theorem.

Now suppose that the compact Lie group is represented in RV™ and that this rep-
resentation is the direct sum of N copies of the irreducible representation in R” whose
symmetry algebra (R, C or H) has the real dimension d = 1,2 or 4.

Theorem. The quadratic forms in RN™ which are invariant under this representa-
tion form a real vector-space of dimension N + dN(N — 1)/2, which is isomorphic to
the space of the quadratic (Hermitian, hyperhermitian) forms in RN (in CV, in HV).

The determinant of the invariant quadratic form, considered as a polynomial of the
coefficients of the form in RN", is equal to the Z-th power of the determinant of the
corresponding quadratic form in RN (in R?*N, in R'WY).

Corollary. The cone of the degenerate invariant quadratic forms on RN™ is sent
by the isomorphism mentioned in the theorem onto the cone of the degenerate quadratic

forms in RN (of the degenerate Hermitian forms in R*N, of the degenerate hyperhermi-
tian forms in RN ).

For instance, the codimensions of the varieties of the singularities of these cones (and
hence the codimensions of the varieties of the forms with eigenvalues of nonminimal
multiplicity) do not depend on the irreducible representation nor on the group  they
only depend on the symmetry algebra (being equal to d+1 on the cone of the degenerate
forms and d + 2 in the space of forms).

Therefore the phenomenon of the repulsion of the eigenvalues, discribed by the von
Neuman-Wigner theorem, has only three variants: the real one, the Hermitian one and
the hyperhermitian one. To collide two eigenvalues one needs 2,3 or 5 independent

11



parameters, correspondingly, whatever the compact group and its representation, which
is the direct sum of some copies of an irreducible real representation one considers.

Proof. Decompose the representation space into orthogonal irreducible invariant
subspaces R?,7 = 1,..., N. The quadratic form can be written, as in Section 5, as the
sum of N? blocks of the sise n x n:

fle) =Y (Aijmia;), A7 = A,

The invariancy condition under the g of the group takes the form ¢ 'A; ;g = A, g
being orthogonal and (A;;x,y) being equal to (2, A;,y). Hence A;; commutes with g.
From the (real) Shur lemma we know, that operator A, ; : R” — R" acts either as the
multiplication by a real scalar, or as the multiplication by a complex scalar in C™/2, or
as the multiplication (from the right) by a quaternion in H™/*.

Present the space R"(C™? H"*) as the orthogonal sum of the spaces R;(C;, H;).
We thus reduce the matrix of our quadratic form to the block-diagonal form from
n(n/2,n/4) identical blocks, each block being the matrix of a quadratic (Hermitian,
hyperhermitian) form in the space RY(CN, HV). The Theorem follows.

Remark. The characteristic polynomials of our invariant form in RV are the Z-th
power of the polynomials which, generically, have no multiple roots. The forms for which
the multiple root occur, form an algebraic submanifold of real codimension d+1 = 2,3,5
in the space of the quadratic (Hermitian, hyperhermitian) forms.

The discriminants of these polynomials with real roots do not change the sign. Prob-
ably these polynomials of the coefficients of the forms are sums of squares of several
polynomials.

Example. For N = 2 the number of squares is 2 in the Euclidean case, 3 in the
Hermitian case and 5 in the hyperhermitian case.

Remark. A simpler but also important example of an almost everywhere posi-
tive polynomial is provided by the attempt to complexify and to quaternionnise the
determinants of real operators.

A complex linear operator A : C* — C” defines a real linear operator ®A : R —
R?, for which det(® A) = | det A|2. Therefore, the determinant of the real operator ® A
is the sum of squares of two polynomials of the elements of its matrix ( as it should be,
the variety of the degenerate complex operators being of real codimension 2).

The variety of the quaternionic-degenerate operators A : H” — H” has the real
codimension 4 in the space of the quaternionic operators. Hence it is natural to consider
the nonnegative polynomial det (RA : RY — R4”‘) of the elements of the quaternions
forming the matrix of A and to try to represent it as the sum of (at least four) squares
of polynomials.

12



A quaternion can be represented by a complex 2 x 2-matrix ( i) 72“) . This

operation transforms a quaternionic operator into a complex operator €A : C?» — C?7.
Since BA =R€ A we get the formula

det(RA) = |H|?,  where H = det(®A).

The function H, which is defined as a complex-valued polinomial, is in fact a (non-
negative) real polynomial of the elements of the quaternions forming the matrix of A.
Therefore det(®A) = [? is not a sum of two squares but just one square of a nonnegative
polynomial H, whose zeroes still form an algebraic variety of real codimension 4 in the
space of the quaternionic matricies.

In the case n = 1 this polynomial H is the sum of the squares of the four components
of the quaternion. One might conjecture that it is still represantable as the sum of at
least four squares in the general case.

For n = 2 the polynomial H has a simple expression in terms of the minors of the
2 x 4 complex matrix (z,w):

H = |/V[12|2 + |/\/[14|2 + |/V[34|2 — 2ReM 3 My,
where MyaMsq + MiaMaz = MisMay.

This formula is strangely similar (differing only by the presence of the complex
conjugation) to the formula of the Klein representation of the space of the lines in CP?,
which is quoted by Atiyah [10] in the description of the Penrose twistors space.
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