
Relatives of the quotient of the complex projectiveplane by the complex cojugationV.I.Arnold �AbstractIt is proved, that the quotient space of the four-dimensional quaternionic pro-jective space by the automorphism group of the quaternionic algebra becomes the13-dimensional sphere while quotioned the the quaternionic conjugation.This fact and its various generalisations are proved using the results of thetheory of the hyperbolic partial di�erential equations, providing also the proofof the theorem (which was, it seems, known to L.S.Pontriagin already in thethirties) claiming that the quotient of the complex projective plane by the complexconjugation is the 4-sphere.1 IntroductionIn the paper [1] on the topology of the real algebraic curves, written in 1971; I have usedthe fact, that the quotient space of the complex projective plane by complex conjugationis the four-dimensional sphere. The attempts to �nd a reference for this fact in theliterature were not successful at this time 1. However V.A.Rokhlin told me that thisresult had been known to L.S.Pontriagin already in the thirties.I do not know how had Pontriagin proved this theorem. My proof (published laterin[2] ) was based on the theory of the hyperbolic partial di�erential equations. Thinkingon this proof recently once more from the view point of the systematical complexi�-cation and quaternionisation of the results of [3] ( related to the attempts to �nd thequaternionic version of the Berry phase and on the quantum Hall e�ect, see [4, 5]) Ihave realised that this proof, based on the complex numbers, has quaternionic and realversions, leading to the following strange trinity of theorems with a common proof (ofwhich the �rst theorem is trivial while the third one seems to be new):Theorem R. The real one-dimensional projective space is homeomorphic to thecircle: RP1 � S1:�Partially supported by RBRF 96-01-01104 and by the Institut universitaire de France1among others I had asked N.Kuiper whether he knew such a reference1



Theorem C. The quotient space of the complex projective plane by the complexconjugation is homeomorphic to the four-dimensional sphere:CP2=conj � S4:Theorem H. The quotient space of the four-dimensional quaternionic space by theautomorphisms of the algebra of the quaternions becomes, after a factorisation by thequaternionic involution, a 13-dimensional sphere:(HP4=AutH)=Conj � S13:Remark. I have no doubt that the homeomorphisms constructed below becomedi�eomorphisms, if the quotients are equiped with their natural smooth structures.However the description of these structures is too long and so the di�eomorphisms arenot proved below (see, however, [6]-[9]).2 Geometry of hyperbolic conesDe�nition. A real algebraic hypersurface in the real projective space is called hyperbolicwith respect to some point P of its complement, if every real straight line containing Pintersects the hypersurface only in real points (whose number is equal to the degree ofthe hypersurface provided that they are counted taking multiplicities into account).The point P is then called a time-like point. The hyperbolic hypersurface of theprojective space RPN�1 are represented in the vector-space RN(whose vectors de�nethe homogeneous coordinates in the projective space) by the algebraic hyperbolic cones(with vertices at the origin). The time-like points are represented by the time-like vectorsof this space. The hyperbolicity condition takes in the vector-space the following form:every real straight line in RN , parallel to the time-like vector, intersects the hyperboliccone at the real point, whose number is equal to the degree of the cone.Example 1. Consider the space of the quadratic forms in Rn. This real vector-space of dimension N = n(n + 1)=2 contains the cone of the degenerate forms. Thiscone is hyperbolic with respect to the time-like vector, representing any positive-de�nitequadratic form (i.e. any Euclidean structure in Rn). This property of the cone isessentially the theory of the eigenvalues of the quadratic forms in the Euclidean space.The singular points of the cone form an algebraic variety of codimension 3 in the ambientspace of forms RN .Example 2. Consider the space of the Hermitian quadratic forms in Cn (of the realquadratic forms in the corresponding space R2n, which are invariant under the action ofthe group S1 of complex numbers of modulus one, acting as the multiplication of vectorsof Cn). 2



This real vector-space of dimensionN = n2 contains the cone of the degenerate forms.This cone is hyperbolic with respect to the time-like vector, representing any positive-de�nite Hermitian form (i.e. any Hermitian structure in Cn). This property of thecone is essentially the theory of the eigenvalues of the Hermitian forms in the Hermitianspace. The singular points of the cone form an algebraic variety of codimension 4 in theambient space of forms, RN .Example 3. Consider the space of the hyperhermitian quadratic forms in thequaternionic n-dimensional vector-space Hn. These are real quadratic forms in thecorresponding space R4n, which are invariant under the action of the group S3 of uni-tary quaternions (acting on the vectors multiplying each component by the quaternionfrom some side, chosen once forever, say from the left).This real vector-space of dimensionN = n(2n�1) contains the cone of the degenerateforms. This cone is hyperbolic with respect to the time-like vector, representing anypositive-de�nite hyperhermitian form (i.e. any hyperhermitean structure in Hn). Thisproperty of the cone is essentially the theory of the eigenvalues of the hyperhermitianforms. The singular points of the cone form an algebraic variety of codimension 6 in theambient space RN of forms.The main fact of the geometry of the hyperbolic cones that we shall use is thefollowing theorem (see [2]).Consider the intersection of an hyperbolic cone of degree k inRN with a sphere SN�1centered at the origin. Fix a time-like point P (a pole) on the sphere and connect itwith �P by the meridians. Consider on each meridian the �rst intersection point withthe cone (counting from P ), the second one, ..., the k-th one.Theorem. The i-th points situated on all the meridians, form a semialgebraic vari-ety Vi, homeomorphic to the sphere SN�2.Indeed, the homeomorphism of Vi onto the equator is de�ned by the projection alongthe meridians.The proofs of the results formulated in the introduction are deduced below from thegeneral theorem above, applied to the variety V1 of the nonnegative degenerate quadraticforms of a suitable number of variables.3 The Gram matrix of a system of vectors.Consider n vectors v1; : : : ; vn in an Euclidean space. The Gram matrix of this system ofvectors is the matrix ai;j = (vi; vj) formed by their scalar products.Lemma. The Gram matrix of a system of vectors is the matrix of a nonnegativequadratic form, whose rank is equal to the dimension of the linear hull of the vectors.Each matrix of a nonnegative quadratic form of rank r is realizable as the Grammatrix of a system of n vectors in an r-dimensional Euclidean space.3



The ordered system of n vectors is de�ned by its Gram matrix up to the orthogonaltransformation of the ambient space Rr.The proof of this well-known fact is based on the representation of the orthogo-nalization of a given basis of an Euclidean space in terms of its Gram matrix. Thequadratic form, corresponding to the given system of vectors, is provided by the for-mula f(c) = (P civi;P civi). The Lemma implies theCorollary. The variety V1 of the nonnegative degenerate quadratic forms in Rn(normed by the condition \the sum of the squares of the components of the matrix ofthe form in a �xed basis is equal to 1") is homeomorphic to the variety of the orderedsets of n vectors in the Euclidean space Rn�1 (normed by the condition \the sum ofthe squares of the scalar products of the vectors is equal to 1"), considered up to theorthogonal transformations of the space Rn�1.Applying to V1 the Theorem of Section 2, we get the followingTheorem. The variety of the ordered normed sets of n vectors in Rn�1, consideredup to the orthogonal transformations of this Euclidean space, is naturally identi�ed withthe sphere SM , M = n(n+ 1)=2 � 2.The Theorems of Section 1 are deduced from this fact, n being 2; 3 or 5 (Rn�1 beeing,correspondingly, R;C;H).4 The proof of the theorem on the quotient of thequaternionic projective space.Starting from �ve quaternions q0; : : : ; q4 2 H5, we construct a nonnegative degeneratequadratic form of �ve real variables, f(c) = (P ciqi;P ciqi) | the scalar square of thelinear combination of the �ve quaternions.By the Theorem of Section 3, the variety of the normed (and hence nonzero) quin-tuples, quotioned by the action of the orthogonal group O(4) on H, is the sphere S13.The quotient space may be constructed in three steps.Lemma. The quotient space S4m+3=O(4) of the sphere in Hm+1 by the action of thegroup O(4) on H can be obtained from the quaternionic projective spaceHPm taking �rstthe quotient by the action of the automorphisms of the quaternions algebra and than thequotient of the resulting space by the action of the quaternionic conjugation involutionon it: S4m+3=O(4) � (HPm=AutH)=Conj:Proof. Denote by S3(= SU(2)) the group of the unitary quaternions. The directproduct S3 � S3 acts orthogonally on the space H of the quaternions by the left and4



right multiplications, q 7! uqv�1. We have constructed a homomorphism S3 � S3 !SO(4) which is the standard universal two-fold covering Spin(4) ! SO(4), whose kernelconsists of two elements (1; 1) and (�1;�1).The quaternionic projective space HPm consists of the equivalence classes of the(nonzero)m+1-tuples of the quaternons (uq0; : : : ; uqm) 2 Hm+1n0. The automorphismsof the algebra of quaternions are interior automorphisms (of the form q 7! uqu�1; u 2S3). Such an automorphism sends the equivalence class of a vector q 2 Hm+1 n 0 inan equivalence class (of the vector qu�1), since the left and the right multiplicationscommute. Thus, S4m+3=SO(4) �HPm=AutH.The quaternionic conjugation Conj does not act onHPm; but does act on the space ofthe two-sided equivalence classes that we have constructed: the element Conj(uqv�1) =Conj(v�1)Conj(q)Conj(u) belongs to the class of Conj(q):The orthogonal transformation Conj : H ! H changes the orientation of this real4-space. Hence we �nd that(HPm=AutH)=Conj � S4m+3=O(4);which proves the lemma.Applying the Lemma to the case m = 4; we �nd from the Theorem of Section 3,that S13 � S19=O(4) � (HP4=AutH)=Conj;which is the Theorem H of the Introduction.Theorems R and C are proved by the same reasoning, one should only replace thequaternions by the real or by the complex numbers and replace the projective four-spaceby the one-space or by the two-space accordingly.The quotient space by the action of O(4) will be replaced by the quotient space bythe action of O(1) and of O(2) respectively. The real (complex) projective space thatone gets at the �rst step should be quotient by the action of O(1)=S0 = 1 in the realcase and of O(2)=S1 = S0 in the complex case (the nontrivial element of the last groupof two elements acts as the complex conjugation on CP2):5 The hyperhermitian geometryReplacing the quadratic forms by the Hermitian or by the hyperhermitian ones in theTheorem of Section 3, one gets new generalisation of the theorems proved above.De�nition. An Hermitian form in a complex vector-space is a real quadratic formon it, which is invariant under the multiplication of the vector of this complex spaceby the complex numbers whose modulus is equal to one. The dimension of the realvector-space of the Hermitian forms in Cm is equal to m2:A positive-de�nite Hermitian form is called an Hermitian structure. The complexlinear transformations, preserving the Hermitian structure, form the unitary group U(m)of dimension m2: A complex vector-space equiped with an Hermitian structure is calledtheHermitian space. 5



Theorem. The variety of the ordered normed n-tuples of vectors in the Hermitianspace Cn�1; considered up to the unitary transformations of this space, is naturallyidenti�ed with the sphere SM ;M = n2 � 2:Example. For n = 2 we get the Hopf �bration S2 = S3=S1: For n = 3 we obtainthe quotient space ( which is no longer the base of a �bration)S7 � S11=U(2) = CP5=SU(2) = HP2=S1:De�nition. A hyperhermitian form in the quaternionic vector-space is a real quad-ratic form, which is invariant under the multiplication of all the quaternionic componentsof the vector from the left by any unitary quaternion.Remark. It does not imply in general the invariance under the multiplication fromthe right.The positive-de�nite hyperhermitian form are called hyperhermitian structures, andthe quaternionic space equiped with a hyperhermitian structure is called the hyperher-mitian space.Example. The function F (q) = q1�q1 + : : : + qm�qm de�nes in Hm the standardhyperhermitian structure. Each hyperhermitian structure can be written in such a formin terms of the components with respect to a suitable basis. Fixing the basis, we get forthe hyperhermitian forms the following description.Theorem. Every hyperhermitian form in Hm can be represented using a ( uniquelyde�ned) quaternionic matrix fi;j ; verifying the hyperhermiticy conditionfj;i = �fi;j; by the formulaf(q) = mPi;j=1 qiFi;j�qj: (1)Proof. 1o: This form is real. Indeed, �f (q) = P qj �fi;j �qi = f(q):2o. This form is invariants under the multiplication of q from the left by a unitaryquaternion u: Indeed, f(uq) =Xuqifi;j�qj�u = uf(q)�u = f(q);since the real number f(q) commutes with u:3o: Thus formula (1) de�nes a hyperhermitian form. We shall prove now, that everyhyperhermitian form can be represented by formula (1):To prove it equip with the usual Euclidean scalar products (p; q) = Re(p�q) the spacesH and Hm = �H1i : Our form can be written asf(q) =X(Ai;j(qi); qj); A�i;j = Aj;i ;6



where Ai;j : H ! H is a real-linear operator, the sign � being Euclidean conjugation.The invariancy condition for f takes the form(Ai;j(ux); uy) = (Ai;j(x); y)for any quaternions x and y. Hence Ai;j should verify the relation u�1Ai;ju = Ai;j(since u� = u�1). Thus the operator Ai;j should commute with the multiplication ofquaternions by u from the left.Lemma. Any real-linear operator A in H, which commutes with the multiplicationof the quaternions (from the left) by the unitary quaternion u, is the operator of themultiplication by some quaternion from the right.Proof. The commutativity implies that A(u) = A(u � 1) = uA(1): Hence A acts onany quaternion q as the multiplication from the right, A(q) = qa; where a = A(1):It follows from the Lemma that we have thus proved that Ai;j(qi) = qifi;j; wherefi;j is a quaternion. Since A is symmetric, the resulting quaternionic matrix fi;j ishyperhermitian, fj;i = �fi;j. In particular the diagonal elements are real. We thus getformula (1): f(q) = ReX qifi;j �qj =X qifi;j �qj:4o: The huperhermitian matrix is unambiguosly de�ned by the form f . Indeed, iff = 0, its restriction to H1i �H1j also vanishes. Hence the operators Ai;j (and thus alsothe quaternions fi;j) vanish. The theorem is thus proved.Corollary. The dimension of the real vector-space of the hyperhermitian forms inHm equals m+ 4m(m� 1)=2 = m(2m� 1).De�nition. A hyperunitary transformation of a hyperhermitian space is a quater-nionic-linear transformation, preserving the hyperhermitian structure. (A quaternionic-linear operator is a linear operator A, for which A(qx) = qA(x) for any quaternionq). The dimension of the hyperunitary group of the hyperhermitian space Hm equalsm(2m+ 1). This group is denoted (unfortunatly) Sp(m).The hyperunitary transformations are de�ned by the matricies, whose elementsshould be written from the right of the components of the vectors, likeA(q1; q2) = (q1a1;1 + q2a2;1; q1a1;2 + q2a2;2):The condition that transformation is hyperunitary (with respect to the standardhyperhermitian structure F (q) = P qi�qi in H) takes for the matrix the formXj ai;j �ak;j = �i;k:7



Hence, the hyperhermitian scalar product in Hm (with quaternionic values) de�ned bythe formula hq; ri =X qi�riis invariant under the hyperhermitians transformations:hAq;Ari = hq; ri:Remark. This follows also, of course, from the quaternionic polarization formula,which is however too long to be reproduced here.Theorem. The variety of the ordered n-tuples of vectors in the hyperhermitianspace Hn�1, considered up to hyperunitary transformations of this space, is the sphereSM ;M = n(2n � 1) � 2.Example. For n = 2 we get the quaternionic Hopf bundle, S4 = S7=S3: For n = 3we get S13 = S23=Sp(2): This suggest some relation to the Caley projective plane.The proof of the theorem, as well as that of its Hermitian version, is based on thesame reduction to the theory of the hyperbolic cones which was used in Section 3 toprove the Euclidean version of this theorem.De�nition. The Gram matrix of a system of n vectors qi in the standard hyper-hermitian (hermitian) space Hm (Cm) is the matrix of the hyperhermitian (Hermitian)form f(c) = F (c1q1 + : : :+ cnqn); c 2 Hm(Cm):This form is hyperhermitian (Hermitian) since the argument of F is multiplied by ufrom the left when all the qi are multiplied by u from the left. By the de�nition of thestandard hyperhermitian (Hermitian) structure F , we getf(s) =X cihqi; qji�cj; whence fi;j = hqi; qji:Thus the form f is invariant under the hyperunitary (unitary) transformations of thespace Hm (Cm).The hyperhermitian (Hermitian) matrix fi;j de�nes the orthogonalization of the n-tuple qi. Hence this matrix determines this n-tuple up to a hyperunitary (unitary)transformations of the space Hm (Cm).6 The equivariant Neuman-Wigner theorem on thenonintersections of electronic levels.As we have seen, the eigenvalues theories for quadratic, Hermitian and hyperhermitianforms are theories of the hyperbolic cones in the space of forms which are invariant8



under some representation (of group U(1) in the Hermitian case and of group SU(2)in the the hyperhermitian case), namely under a representation which is a multiple ofan irreducible one. The corresponding generalized von Neuman-Wigner theorems (see[6], [3]) claim in our present terminology that the codimensions of the varieties of thesingular points on the cones of the degenerate points are equal, in the real, complexand quaternionic cases, to 2, 3 and 5 (these numbers are the codimensions of the one-dimensional spaces of the diagonal forms of two variables in the spaces of quadratic,Hermitian and hyperhermitian forms of two variables).One can replace here the standard irreducible representations of groups U(1) andSU(2) by any irreducible representation of any compact Lie group. The results, describebelow, show, that such a generalization provides no new hyperbolic cones: all the spacesof quadratic forms, invariant under the multiples of the irreducible real representationsof compact Lie groups, are naturally isomorphic either to the space of all real quadraticforms, or to the space of the Hermitian forms, or to the space of the hyperermitianforms.Fix a real irreducible representations of a compact Lie group G by orthogonal trans-formations of the Euclidean space Rn.De�nition. A symmetry of the representation is a real linear operator, commutingwith all the operators of the representation: Ag = gA (in other terms it is an operatorinterwinning the representation with itself).The symmetries of a given representation form an (associative) algebra (a subalgebraof the algebra of all the operators from Rn to itself). We shall use the following realversion of the Shur's lemma:Theorem.The symmetry algebra of any real irreducible representation of a compactLie group is isomorphic (as an algebra of linear transformations of the Euclidean space)to one of the following three algebras:1) algebra R of real numbers, acting in Rn as the scalar matricies;2) algebra C of complex numbers, acting in Cm (n = 2m) as the scalar matricies;3) algebra H of quaternions, acting in Hk (n = 4k) by the multiplication of thecomponent of a vector by a quaternion from the right.Remark. This classical theorem provides the royal way to quaternions, which ap-pear here not as an uncomplete axiomatic generalization of complex numbers, but as thesolution of a natural problem in real Euclidean geometry. All the \axioms" of quater-nions are simply the necessary properties of the solutions of this natural problem, andto discover them one is not forced to use the spirits as employed by Hamilton. Simulta-neously one gets the classi�cation of the associative algebras with division (not only asof abstract objects but also as operators algebras). The proof is so simple that I shallgive it below.Proof. ComplexifyRn to get Cn � R2n. The complexi�ed representation operatorsg and symmetries A act on Cn as complex linear operators. The representation of G9



in R2n that we obtain is reducible: it is the direct sum of two copies of the originalrepresentation.Lemma 1.The complexi�ed symmetry operator A either is the multiplication by areal number, or has two complex-conjugate eigenvalues � = ��! of multiplicity m = n=2each (the dimension of the original real representation space being even).Proof. Otherwize A would have a nontrivial complex eigenspace whose complexdimension either smaller or greater than m: The �rst is impossible, since this invariantspace of the representation would have a nontrivial intersection withRn, in contradictionwith the irreducibility. In the second case the orthogonal complement to the eigenspace(which is also invariant under the representation) would have a nontrivial intersectionwith Rn, in contradiction with the irreducibility.Denote I = (A� �1)=!. One obviously get the followingLemma 2. Symmetry operator I is a complex structure in Rn, i.e. I2 = �1.Lemma 3. Each complex structure, which is a symmetry of an irreducible orthogonalrepresentation in Rn, preserves the Euclidean structure.Indeed, the nonnegative form (Ix; Ix) is invariant, since (Igx; Igx) = (gIx; gIx) =(Ix; Ix), the form (y; y) being g-invariant. Hence one gets (Ix; Ix) = �(x; x) (othervizethe eigenspace of this form would be a nontrivial G-invariant subspace in Rn). There-fore we �nd, that (x; x) = (I2x; I2x) = �2(x; x); �2 = 1. Since the form (Ix; Ix) isnonnegative, � = 1. Thus every symmetry which is a complex structure is orthogonal.If the real linear combinations of 1 and I exhaust the symmetry algebra, we get thecase 2 of the theorem. Suppose there is one more symmetry in the algebra. Replacing itby its linear combination with the identity 1, we construct a complex structure B. Thesymmetry operator IB + BI is symmetric. The irreducibility of the original represen-tation implies that any symmetric symmetry operator is a scalar: IB + BI = 2" 2 R.Denote by J the operator J = (B + "I)=p1� "2: Here "2 � 1; since the orthogonaloperator C = IB is di�erent from �1, B being independent of I.Lemma 4. Operator J is a complex structure, anticommuting with I.Indeed,J2 = (B + "I)2=(1� "2) = �1; IJ + JI = (IB +BI + 2"I2)=p1 � "2 = 0:Lemma 5. Operator K = IJ is also a complex structure; all the three complexstructures (I,J,K) anticommute.Indeed, K2 = (IJ)(IJ) = IJ(�JI) = I2 = �1;10



IK = I2J;KI = �JI2; JK = �J2I;KJ = IJ2:Therefore the vectors (a; Ia; Ja;Ka), where a is any unite vector, are mutually orthog-onal and generate R4 on which the operators (I; J;K) are acting as the quaternions(i; j; k): In the orthogonal complement to R4 we choose one more unite vector and con-struct one more R4. Continuing this way, we identify at the end the original Euclideanspace Rn with Hk; n = 4k.Lemma 6. Any symmetry of the irreducible representation is a real linear combina-tion of the four operators (1; I; J;K) that we have constructed.If there were one more symmetry, we would construct, as above, its linear combina-tion L with 1 and I which would be, as J , a complex structure, anticommuting withI : IL+ LJ = 0; L� = �L:Operator JL = LJ is symmetric. The irreducibility implies that JL = LJ = 2�1 isa real number. Operator X = K(L+ �J) is symmetricX� = LK + �JK = LIJ + �I = �ILJ + �I = �I(2� � JL) + �I = ��I +KL:The irreducibility implies that X = � 2 R; whence L = ��J � �K. This proves theLemma and hence the Theorem.Now suppose that the compact Lie group is represented in RNn and that this rep-resentation is the direct sum of N copies of the irreducible representation in Rn whosesymmetry algebra (R;C or H) has the real dimension d = 1; 2 or 4.Theorem. The quadratic forms in RNn which are invariant under this representa-tion form a real vector-space of dimension N + dN(N � 1)=2, which is isomorphic tothe space of the quadratic (Hermitian, hyperhermitian) forms in RN (in CN , in HN).The determinant of the invariant quadratic form, considered as a polynomial of thecoe�cients of the form in RNn, is equal to the nd -th power of the determinant of thecorresponding quadratic form in RN (in R2N , in R4N).Corollary. The cone of the degenerate invariant quadratic forms on RNn is sentby the isomorphism mentioned in the theorem onto the cone of the degenerate quadraticforms in RN (of the degenerate Hermitian forms in R2N , of the degenerate hyperhermi-tian forms in R4N).For instance, the codimensions of the varieties of the singularities of these cones (andhence the codimensions of the varieties of the forms with eigenvalues of nonminimalmultiplicity) do not depend on the irreducible representation nor on the group | theyonly depend on the symmetry algebra (being equal to d+1 on the cone of the degenerateforms and d+ 2 in the space of forms).Therefore the phenomenon of the repulsion of the eigenvalues, discribed by the vonNeuman-Wigner theorem, has only three variants: the real one, the Hermitian one andthe hyperhermitian one. To collide two eigenvalues one needs 2; 3 or 5 independent11



parameters, correspondingly, whatever the compact group and its representation, whichis the direct sum of some copies of an irreducible real representation one considers.Proof. Decompose the representation space into orthogonal irreducible invariantsubspaces Rni ; i = 1; : : : ; N: The quadratic form can be written, as in Section 5, as thesum of N2 blocks of the sise n� n:f(x) =X(Ai;jxi; xj); A�i;j = Aj;i:The invariancy condition under the g of the group takes the form g�1Ai;jg = Ai;j; gbeing orthogonal and (Ai;jx; y) being equal to (x;Aj;iy). Hence Ai;j commutes with g.From the (real) Shur lemma we know, that operator Ai;j : Rn 7! Rn acts either as themultiplication by a real scalar, or as the multiplication by a complex scalar in Cn=2, oras the multiplication (from the right) by a quaternion in Hn=4.Present the space Rn(Cn=2;Hn=4) as the orthogonal sum of the spaces Ri(Ci;Hi).We thus reduce the matrix of our quadratic form to the block-diagonal form fromn(n=2; n=4) identical blocks, each block being the matrix of a quadratic (Hermitian,hyperhermitian) form in the space RN(CN ;HN ). The Theorem follows.Remark. The characteristic polynomials of our invariant form in RNn are the nd -thpower of the polynomials which, generically, have no multiple roots. The forms for whichthe multiple root occur, form an algebraic submanifold of real codimension d+1 = 2; 3; 5in the space of the quadratic (Hermitian, hyperhermitian) forms.The discriminants of these polynomials with real roots do not change the sign. Prob-ably these polynomials of the coe�cients of the forms are sums of squares of severalpolynomials.Example. For N = 2 the number of squares is 2 in the Euclidean case, 3 { in theHermitian case and 5 in the hyperhermitian case.Remark. A simpler but also important example of an almost everywhere posi-tive polynomial is provided by the attempt to complexify and to quaternionnise thedeterminants of real operators.A complex linear operator A : Cn ! Cn de�nes a real linear operator RA : R2n !R2n; for which det(RA) = jdetAj2: Therefore, the determinant of the real operator RAis the sum of squares of two polynomials of the elements of its matrix ( as it should be,the variety of the degenerate complex operators being of real codimension 2).The variety of the quaternionic-degenerate operators A : Hn ! Hn has the realcodimension 4 in the space of the quaternionic operators. Hence it is natural to considerthe nonnegative polynomial det �RA : R4n ! R4n� of the elements of the quaternionsforming the matrix of A and to try to represent it as the sum of (at least four) squaresof polynomials. 12



A quaternion can be represented by a complex 2 � 2-matrix  z � �ww �z ! : Thisoperation transforms a quaternionic operator into a complex operator CA : C2n ! C2n.Since RA =RCA, we get the formuladet(RA) = jHj2; where H = det(CA):The function H, which is de�ned as a complex-valued polinomial, is in fact a (non-negative) real polynomial of the elements of the quaternions forming the matrix of A.Therefore det(RA) = H2 is not a sum of two squares but just one square of a nonnegativepolynomial H, whose zeroes still form an algebraic variety of real codimension 4 in thespace of the quaternionic matricies.In the case n = 1 this polynomialH is the sum of the squares of the four componentsof the quaternion. One might conjecture that it is still represantable as the sum of atleast four squares in the general case.For n = 2 the polynomial H has a simple expression in terms of the minors of the2� 4 complex matrix (z;w):H = jM12j2 + jM14j2 + jM34j2 � 2ReM13 �M24;where M12M34 +M14M23 = M13M24:This formula is strangely similar (di�ering only by the presence of the complexconjugation) to the formula of the Klein representation of the space of the lines in CP 3,which is quoted by Atiyah [10] in the description of the Penrose twistors space.References[1] V.I.Arnold. On disposition of ovals of real plane algebraic curves, involutions offour-dimensional manifolds and arithmetics of integer quadratic forms. Funct. Anal.and Its Appl., 1971, V. 5, N 3, P. 1-9.[2] V.I.Arnold. Rami�ed covering CP2 ! S4; hyperbolicity and projective topology.Siberian Math. Journal 1988, V. 29, N 5, P.36-47.[3] V.I.Arnold.Modes and quasimodes. Funct. Anal. and Its Appl., 1972, V. 6, N 2, P.12-20.[4] V.Arnold. Remarks on eigenvalues and eigenvectors of Hermitian matricies, Berryphase, adiabatic connections and quantum Hall e�ect. Selecta Math., 1995, V. 1, N1, P. 1-19.[5] V.Arnold. Symplectization, complexi�cation and mathematical trinities. CERE-MADE(UMR 7534), Universit�e Paris-Dauphine, No 9815, 04=03=98, P. 1-20.[6] V.Arnold. Topological content of the Maxwell theorem on multipole representationof spherical functions. Topological methods in nonlinear Analysis. Journal of theJuliusz Schauder Center, Vol. 7, 1996, p. 205-217.13
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