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OF ALGEBRAIC CURVES, OF INVOLUTIONS

OF FOUR-DIMENSIONAL SMOOTH MANIFOLDS,
AND THE ARITHMETIC OF INTEGER-VALUED
QUADRATIC FORMS

V. I. Arnol'd

There is an interesting connection between the distribution of the branches of a real algebraic curve
on the projective plane, on one hand, and, on the other hand, the topology of certain complex algebraic sur-
faces. In the present paper this connection is used in order to derive, from simple considerations of four-
dimensional topology and the arithmetic of integer-valued quadratic forms, information as to the dlstmbu-
tion of ovals of the real planes of algebraic curves.

§1. Formulation of the Result

We consider a nonsingular real algebraic curve of degree n on the real projective plane RP?, Such
a curve is a compact smooth one-dimensional manifold without a boundary. Its connected components are
diffeomorphic to circles and are called ovals.

A. Harnack [1] proved that the number of ovals does not exceed g + 1, where g = (n—-1) (n—2)/2 is
the genus of the curve. Curves with g + 1 ovals do exist, and are called M-curves.

The question as to how ovals can be distributed has been considered by many authors (in particular,
D. Hilbert [2], K. Rohn {3], I. G. Petrovsky [4], and D. A. Gudkov [5]), but has been answered only for
curves of degree 6 and less (see the survey in [5]).

To formulate our result we need to use the partition of ovals, introduced by I. G. Petrovsky, into
positive and negative ovals. We assume that the degree of the curve is even: n = 2k (we retain this nota-
tion throughout the paper). Then, the ovals lie two-sidedly in RP?, and each of them has an interior part
(diffeomorphic to a circle) and an exterior (diffeomorphic to a Mobius sheet). We shall call an oval p051-
tive (or even) if it lies within an even number of others, and negative (or odd) if it lies within an odd num-
ber of other ovals. For example, the circle x* +y2 = 1 is an even oval.

THEOREM 1. Let p be the number of positive, and m the number of negative, ovals of an M-curve
of degree 2k. Then, the following congruence holds:

p—m=k mod4. (D

We note that congruence (1) does not exhaust all the constraints on the distribution of the ovals. For
example, I. G. Petrovsky [4] proved the inequality
[2(p—m)— 1] <3 —3k+1 (2)

for any curve of degree 2k (with the necessarily maximal number of ovals), while D. A. Gudkov [5] proved,
for M~curves of degree 6, a congruence of the form of (1) but modulo 8. For other constraints, see §9,
paragraphs 4, 5, and 6.
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The proof given below of congruence (1) is based on a consideration of the actions of involutions of a
certain four-dimensional manifold Y on its two-dimensional homology.

82, Structure of Four-Dimensional Manifold Y

Manifold Y is a two-sheeted covering of the complex projective plane, ramifying along the set of
complex points of the curve in question. '

Let f(x,y) = 0 be the affine equation of the curve in question. Here, x and y are real variables while
f is a nonhomogeneous polynomial of degree 2k with real coefficients. The corresponding homogeneous
equation has the form F(x,, X4, X5} = 0, where f(x,y) = F(1, x, ¥).

Here, F is 2 homogeneous polynomial of degree 2k with real coefficients. Since the degree of F is
even, the sign of F is the same at all points (x(, X, X5) corresponding to one point (%, : X4 : x,) of the pro-
jective plane RP? which does not lie on our curve. We can so choose F that, at the points corresponding to
the nonorientable component of the complement to the curve in RP?, the values of F will be negative. We
fix such a polynomial F.

We now consider the equation
2 = F (xg, %1, X2}, (3)

where x, Xy, and x, are complex variables not all simultaneously equal to zero. This equation gives a com-
pact complex algebraic surface Y embedded in three-dimensional complex space E of the one-dimensional
vector fibration over the complex projective plane

P E—(CP? = {(xg: %1 : X2)})s

whose sections are homogeneous functions of degree k of the variables x;, x4, and x,. From the real point
of view, surface Y is a four-dimensional compact smooth orientable connected manifold without boundary.

In the affine map on E corresponding to the affine map (x, y) on CP?, surface Y is given by the equa-
tion z% = f(x, y).

The restriction of P to mapping P' on manifold Y gives a two-sheeted ramified covering of the com-
plex projective plane. The manifold of the ramifications is the intersection of manifold Y with the zero
fiber of fibration P'. We denote this manifold of ramification by A It is clear from Eq. (3) that PA is pre-
cisely the set of complex points of our algebraic curve F = 0. This, A is a smooth orientable connected
compact submanifold with boundary of the four-dimensional manifold Y. The real dimension (and codimen-
sion in Y) of manifold A equals 2.

§3., Involution 7 and Form & ¢

Multiplication of z by —1 gives a smooth involution 7 of manifold Y. The set of fixed points is again
our complex curve A.

On all our complex manifolds we choose an orientation in the natural way (by means of the form
RezAImzA. . ARezgAImzg) such that the indices of intersection of the complex manifolds will be non-
negative. We remark that involution 7 retains the orientation of manifold Y.

We denote by Hy(Y) = Hy(Y, -z_) mod Tors the group of two-dimensional integer-valued homologies of
space reduced modulo the torsion. The index of intersection (-, ) of two-dimensional cycles gives, on Hy(Y),
a bilinear integer-valued nonsingular (Poincaré duality) form. The involution 71 Y — Y induces the iso-
morphism 7, :Hy(Y) — Hy(Y) . On Hy(Y) we define the bilinear form ?; by the relationship

®:(a, b) = (t,a, b), a, bEHy(Y). K (4)

-LEMMA 1. Form® ;is symmetric and nonsingular (det &+ = % 1).

Proof. Since invelution T retains orientation on Y, (T*a, b) = T (T ,a;b) ={a, TLb) = (7,b, a). The
second assertion follows from the Poincaré duality.

§4. Arlthmetle Lemma.

Let & : Z¥ x Z¥ — Z be an mteger—valued symmetric nonsingular (det & = = 1) bilinear form. The
following lemma is well known (see [6, 7, 8]). )
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LEMMA 2. There exists an element w € ZT such that, for all x € 2T
@ (x, x) = O (w, x) mod 2. (5)

Element w is defined univocally mod 2ZT. The magnitude of #(w, w) mod 8 does not depend on the choice
of the representative w, and coincides, modulo 8, with the signature of the form.

In what follows we shall need only the fact that a consequence of (5} is
Ow,w)=0w, w)mod8 for w =w 4 2. (6)

Proof of relationship (6). We have

O @, w') = D@, w) -+ 4D(w, x) + 4D (x, x),
where, according to (5), the numbers &®(w, x) and ¥(x, x) have the same parity.

Element w (defined modulo 2) will be called the fundamental class of form &.

§5. Computing the Fundamental Class of Form ®,

Let 7: Y% — Y*® be an orientation-retaining involution of the oriented compact smooth 4s-dimen-
sional manifold without boundary with the 2s-dimensional oriented manifold of fixed points A%S, We define
form &7 on H,g(Y*S) by Eq. (4).

LEMMA 3. As the fundamental class of form @ . one can choose the homology class [A2S] repre-
sented by cycle A%, '

Proof. To each point of intersection Q, not lying on A2S, of the cycles 2 and Ta there corresponds a
second point 7Q. At the points of intersection of 2 and A?S one can achieve pairwise transversality of A%,
a, and T2 by small displacements of 2. Therefore, the indices of intersection of 2 with T2 and with A?S
coincide modulo 2.

Now, let A€ Y be the manifold of §3.

LEMMA 4. The index of self-intersection of cycle A in Y equals half the square of the degree of
algebraic curve PA:

@ (A}, {A]) = (A, A) = 2F".

Proof. Consider projection PA of curve A on CP%, Let A' and A" be curves, homologous to PA, in
cp? intersecting transversally, and not on PA. Then, the index of intersection of A' and A" in CP? equals
the square of the degree of curve PA, i.e., 4k®. Consequently, the index of intersection of the cycles P~1A"
and P~'A" in Y equals 8k, But in Y we have P71A'~2A ~P~IA", 50 that (A, A) = 2k%,

§6, Real Part I of Manifold Y

We now investigate the set of real points of manifold Y, i.e., the points to which there correspond
real values of coordinates z and x; : Xy : Xy.

Consider, on real projective plane RPZ?, the set C of points to which there correspond values of F=0,
In RP2 set C is a smooth two~-dimensional submanifold whose boundaries are the ovals of interest to us.
In general, manifold C is not connected; in view of the conventions made in §2 about the sign of F, it is
orientable. We note that the Euler characteristic of manifold C equals the difference p—m between the
numbers of positive and of negative ovals.

LEMMA 5. SetII of real points of manifold Y is a smooth compact two~-dimensional orientable man-
ifold without boundary, smoothly embedded in Y. Manifold I is diffeomorphic to the doubled manifold with
boundary C. '

The proof follows from Eq. (3) and the triviality of fibration P over C; this latter is guaranteed by
the choice of the sign of F.

LEMMA 6. The index of self~-intersection of the real orientable compact smooth analytic manifold
M of dimensionality 2s in its complexification equals (—1)Sy, where y is the Euler characteristic of man-
ifold M. ‘
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Proof. On M we construct the tangent vector field with simple singular points, and we multiply this
by i. The sign of (—1)% corresponds to the difference between the two orientations of C?°: we can initially
take all the coordinate axes real, and then imaginary, and we can select the orientation as specified in §3.

LEMMA 7. The Euler characteristic of surface 1 is expressed in terms of the numbers of positive
and negative ovals by the formula '

X =2(p—m).

~ For the proof we note that p—m is the Euler characteristic of the manifold with boundary C, and we
then use Lemma 5.

Joining Lemmas 6 and 7, we obtain the following result.

LEMMA 8. The self-intersection index of surface I in manifold Y equals (II, ) = 2(m—p).

§7. Homologies between the Cycles of A and {

LEMMA 9. The homology classes represented by surfaces A and II in Y coincide modulo 2; more
precisely, '

[Al=[MeH, ()R Z,.

Proof. We denote by = the "infinitely distant" complex line x, = 0 in CP? with coordinates Xg T Xg 1 Xy
from Eq. (3). We shall assume that this line intersects curve PA transversally in n = 2k points. We can
consider line » as a cycle (with coefficients from Z or from Z,).

We denote by [~] the homology class of cycle = in Ho(CP?. Each cycle ¢ of H,(CP? is homologous to
(c, ©) [»]. For example, PA ~ 2k[w»].

Further, we denote by «y the cycle Plw in Y, and by [~y] its homology class in Hy(Y). Lemma 9
follows from the two relationships

[Al = k[ooy] € Hy(Y), (7)
(I = k[ooy) € Hy (Y, Z,). (8)

To prove relationship (7) we note that the integer-valued cycle PA=2kw is the boundary of some in~
teger-valued three-dimensional chain Ky in CP?, We set K§ = P~'K;. Then, 9K; = 2A—2kwy, i.e., [A]~-
k[oy] is a second-order element in Hy(Y, Z), which also proves Eq. (7) (we recall that Hy(Y) is the torsion-
factored homology group).

For the proof of relationship (8) we note that the ovals divide M-curve PA into two parts, the complex
conjugate taking one part into the other (this is established in the proof of Harnack's Theorem). Let B be
one of these parts. B is a connected compact oriented two-dimensional manifold with boundary. The
boundaries of B are just the ovals of curve F =0 on RP2,

Consider the surface B + C, where C is the submanifold in RP? whose boundaries are the ovals of
curve F =0 (manifold C was defined in §6). The nonsmooth surface B +C is a combinatory, generally non-
orientable, connected compact two-di mensional submanifold without boundary in CP?. Therefore, surface
B +C defines, in CP?, cycles with coefficients in Z,.

We now show that the index of intersection of cycles B + C and = in CP? equals k modulo 2.

Indeed, if the ovals do not intersect the infinitely distant line, then éxactly half of the 2k points of
intersection of PA and = fall in B (the complex conjugate interchanges the interiors of B and PA—B). If
the ovals do intersect the infinitely distant line, then, by continuing this line up to B + C, one can achieve
its intersection solely within B, transversally and at precisely k points.

For the proof we choose the real affine coordinates (x, y) so that line « has the equation x = 0, and
so that its infinitely distant point lies outside C. The line x = it, where ¢ > 0 is sufficiently small, is homo-
logous to the line x =0, does not intersect C, and transversally intersects B in precisely k points. Indeed,
we orient the tangent field ¢ of each oval. Then, upon movement in the direction of along an oval in the
(x, y) plane, we cross the line x = 0 from left to right as many times as from right to left. To intersec-
tions of one type correspond the points of intersection of PA with line x = ic lying in B and, to the other,
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on PA—B (this follows from the fact that i¢ is a normal to an oval in B). The nonreal points of intersec-
tion of PA with (x = ie) lie in B and PA—B in equal parts if ¢ is sufficiently small (because this is the
case when £=0).

Thus, our earlier assertion is proven. It follows from it that [B +C] = k[~] €H, (CP?, Z,). There-
fore, the cycle B + C—ke is homologous to 0 as a Z, chain: there exists a three-dimensional Z, chain in
Lg in CP? for which

0Ly = B+ C — koc.
Setting Lg = P~11,; we find
ALy = 2(PB) + Il —kooy, Le. [II]=klooy]€H,y(Y, Zy).

Lemma 9 is proven.

§8. Proof of Theorem 1

We apply Lemma 2 to form & ; and homology classes w = [A] € Hy(Y), w' = [1I] € Hy(Y).

According to Lemma 1, the form is symmetric and nonsingular; according to Lemma 3, class w is
fundamental. By Lemma 9, class w' differs from w on even elements. Thus, Lemma 2 is applicable, and
we find from Eq. (6) that

(Dt ([A], [A]) = (Dt (lH]: (H) mOd 8.

We note that T4«w =w, T,w' = —w' (change of sign of z changes the orientation of ). Thus, & ;([A], [A])
(A, A), ([0, O]) ==, H), Therefore, (A, A) + (II, I) = 0 mod 8. Substituting the values of the self-
intersection indices (A, A) = 2k? from Lemma 4 and (I, I) = 2(m—p) from Lemma 8, we find

2k +-2(m —p)=0mod 8,
g.e.d.

§9. Remarks

1. Assertion (1) (modulo 8 rather than 4) was formulated by D. A. Gudkov in the form of a hypothe-
sis supported by a large number of examples. Although the proof of congruence (1) does not use the re-
sults of D. A. Gudkov, the present paper could not have been produced had not D. A. Gudkov communicated
his hypothesis to the author.

2. Manifold Y was studied by V. A. Rokhlin in a recent work [9] by means of the Hirzebruch-Atiyah-
Zinger signature formmlas ({101, § 6). By joining these computations with ours and with the Lefschetz-
Dold~Atiyah-Bott formulas given by Hirzebruch in [11], we can obtain additional information on manifold Y

and its involutions.

We note that the real differentiable type of manifold Y and its involution 7 depends only on the degree
of curve A, which may not even be real. However, the complex conjugate 0: Y — Y depends on the dis-
tribution of the real ovals of the curve.

Involutions ¢ and T commute, so that on Y there acts the group H = 2, + Z, of the four elements 1, o,
7, 0T. We denote by ¢ (where h € H) the form ®h(x, y) = (hxX, y) on Hy(Y). We denote by II' the submani-
fold consisting of those points in Y for which the point x;, : x4 : X, is real while z is pure imaginary. Then,
for any real curve F = 0 (not necessarily with maximal number of ovals), the relationships shown in Table
1 hold:

h l 1 | g T a1
Fixed points of involution h; Y 1 A m
Fundamental ¢lass of form &y (& 4+ 1)[ooy] klooy] klooy] [(k 1) [oey]
Trace of involution he 2+2g |2(p— m)—2 —2g. 2(m—p)
Signature of form & 2 — 2k 2(m—-p) 2k 2(p—m) —2
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Not all these results were used for our proof of congruence (1), but without the computations of V. A,
Rokhlin this proof would hardly have been found. Tobe more specific, the formulation of Lemma 9 resulted
from a comparison of the data of Table 1 with the hypothesis of D. A. Gudkov.

3. The connection we have observed between the distribution of ovals and the involutions of four-
dimensional manifold Y can also be used in the contrary direction, obtaining information on the involutions
of manifold Y on the basis of data on real curves. For exar;_;ple, we find from relationships (1) and (2)
that v

2 }-Tro, =2 mod8 (for M curves); |1+ Tro,|<38#—3k+1.

It also follows from Table 1 that forms &5 and @ r have the same parity as the number k, while
forms &; and ¢4+ have that of k + 1. Indeed, for even k, the signature of form &,, and for odd k the signa-
ture of form ®r, is not divisible by 8. Consequently, for all k there exists a cycle whose index of intersec-
tion with oy is odd. By combining this information with the form of the fundamental classes, we obtain
our assertion.

From Table 1, congruence (1), and inequality (2), it is clear that forms $; and ®¢r are not sign-
definite, while forms @4, ¥ are sign definite only when k =1 and k = 2. Theorems on the structure of
quadratic forms ([8], Chapter 5) therefore permit a complete reconstruction of the canonical form of forms
¢y, &5, &7, &g for all k. For example, when k = 2 (i.e., for curves-of degree 4), the form —®4 =® 1 is,
in the notation of [8], the form I'; corresponding to Lie algebra Eg.

4. Tt is of interest to note that our involution ¢ allows us to provide a simple proof of the inequality
of I. G. Petrovsk given in our (2). To this end we consider the linear space E = Hy(Y, R} with scalar pro-
duct given by the index of intersection. Involution ox acts in E, retaining scalar products, so that E de-
composes into the direct sum of two orthogonal proper subspaces E; and E_q, corresponding to eigenvalues
1 and —1 of operator o«.

We mention that the scalar product is not degenerate. Therefore, each of the spaces E; and E_; can
be presented in the form of the direct sum of orthogonal subspaces on which the scalar square is positive
(negative) definite: :

E = E: -+ EI’ E_= Eil + E;;.

We have used here the following notation: dim Ef =2, dim Ef = b, dim EL = ¢, dim EZ; = d. In this
notation,

Tro, =a--b—c—d, Trl,=a+b-c+d,
'Sgn(D.,=a—b——c+d, Sgn®, =a—0b-+c—d.

We substitute into the left sides of these equations the values of traces and signatures from Table 1.
Adding and subtracting the equations thus obtained, we find

a=(k—1)(k—2)2, ¢ =a+1, b+d=3k2—3k+1, b—d=2(p—m)—1.
Since b and d are non-negative, [b—d|=b + d, which also proves inequality (2).

5. Our constructions also lead to new constraints on the distribution of ovals. In order to formulate
these constraints, we partition all ovals into three classes as a function of the sign of the Euler character-
istic of that component of the complement to the curve forwhich the oval is an exterior boundary. We de-~
note the numbers of positive ovals bounding domains with positive, zero, and negative Euler characteristic
by p,, pg, and p_ respectively, and the numbers of negative ovals by m,, m,, and m_, so that

P=Pitpo-tp-, Mm=m+mg+m_.
For example, p, is the number of positive ovals containing no other ovals inside themselves.

THEOREM 2. For any curve of degree 2k,

p_<(k——i)(k—2), m.< (k——‘l)(k-—2),

2 2 p+<b) 'n+<d7

where numbers b and d are defined in paragraph 4.
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Proof. Consider connected component Ij of surface II, projected in the region of RP? bounded ex-
ternally by the given oval y4. Of the p surfaces Ilj, the p_ have a negative Euler characteristic.

The homology classes represented by these p_ surfaces (of whatever orientation) [Ij] € Hy(Y) are
pairwise & ;-orthogonal, and the quadratic form ¢, on the p_ classes [11;] assumes positive values. More-
over, o« [0j] = [Mjl.

It follows from this that the p_ classes [Ilj] are linearly independent, and that on the plane L span-
ning them, form @, is positive definite, but 0 = 1. Therefore,

p_=dimL<dimE;=_qe__i)2(k_—2)_, .

which also proves our first inequality.

The other three inequalities are proven analogously (in considering m_ it is necessary to take into
account the nonorientable component of the complement).

6. From the linear independence of all the I} would follow the stronger inequalities

(k—1) (k—2)

k—14)(k—
po+p<E=0E=D 1 Lmy< >

9 - P+“}‘Pa<b: m+';'m‘0\<‘d
and, for M-curves of degree 2k, the following lower bound on the number of empty ovals: py +m + = K2,

According to D. A. Gudkov, in all the interesting examples of M-curves, p, +m = k% + (k~1)(k—2) /2,
where, for any odd k, there exists an M-curve of degree 2k with p; = k?, p, = m,=(k=1) (k—2) /2.

7. We also note that the factor space X = Y/7¢ from the naturally arising commutative diagram of
the two-sheeted ramified coverings

Y-X
|
CP* 51
is a closed connected singly-connected oriented four-dimensional smooth manifold for which
SgnX =%(SgnY +5gnW) =p—m—~E =a—d,

where, for all known M-curves,
ad, c¢<b, a—d=0 (nod8).

From the validity of these relationships for all M~curves would follow both the validity of the Gudkov
hypothesis modulo 8 and the inequality

lp—m—1|LBP~—1,
which is a strengthening of the Petrovsky inequality for M-curves.

8. For the first proof of Lemma 9 the author is indebted to A. N. Varchenko, to whom the author
communicated this lemma in the form of a hypothesis. Although there were flaws in the proof of A. N,
Varchenko, it convinced the author of the validity of the Lemma, without which the present paper could not
have been produced. Our proof of Lemma 9 uses some ideas from the reasoning of A, N. Varchenko. Thus,
the proof of congruence (1) is the result of the joint efforts of the author and A. N. Varchenko. Unfortun-
ately, A. N. Varchenko would not agree to consider himself the co-author of this paper.

The author wishes to thank A. N. Varchenko, D. A. Gudkov, V. A, Rokhlin, and D. B. Fuks for num-
erous discussions and much support,
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