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On some problems in singularity theory 
By 

V A R N O L D  

Much progress in singularity theory of  differentiable maps is based on empirical 
data. Some of  these empirical facts later become theorems. We discuss here 
some facts, that are not explained today and some conjectures, related to them. 

L Semicontinuity of singularity spectrum 

Let f : ((7", 0) ~ (C, 0) be a holomorphic function-germ of  finite multiplicity p. 
One can associate to such a germ a set of/z rationals (not necessarily all different), 
which we shall call s ingulari ty  spec t rum.  

Following Steenbrink [14], we denote spectrum points I~, k = 1 , . . . , /~ .  The 
singularity spectrum has the following properties. 

(1) Eigenvalues 2~ of  the monodromy are related to the spectrum by exponen- 
tiation : A~ = exp (2nil~). 

(2) Let f be quasi-homogeneous, and let {x~} be a monomial C-basis o f  the 
local algebra 

Qt = C [[XI, �9 �9 �9 , x d l / ( a f / a x l ,  . . . , b f l a x , ) .  

Then {/~} is the set of  weights of  /z differential forms x ' ~  d x l . . ,  d x ,  (here 
deg x~ = deg dx~ = a~, deg f = 1). 

(3) Let f be a function in two variables, which is generic among functions 
with a given Newton diagram F(f igure 1). 

Then the spectrarn consists o f  orders (for the Newton filtration) of  monomials, 
whose exponents are detectable from figure 1 (the order of  a monomial x" in the 
Newton filtration is the coefficient 2, for which 2m E F). 

(4) In the general case l~ mod 1 is defined by 1, and the integer part  o f  l~ --  
by the Steenbrink convent ions:  

[I~1 = q if I~ corresponds to an eigenvalue of  the monodromy on the space 
H p, ~ of  the mixed Hedge struetare on the vanishing cohomology group. 

(5) The spectrum is symmetric, with centre 1 = n/2.  

Many exaanples led to the following conjecture. Let the spectra of  singularities 
be ordered : 11 ~< 12 ~< . . .  ~< ltd. 

P.(A)--I 
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Figere 1. The spectrum of a Newton diagram. 

Conjecture. The spectrum is semicontinuous in the following sense: let a 
singularity S be adjacent to a (simpler) singularity S' (with/~' </~), then It ~< l~ 
for k---- l , . . . , lZ ' .  

Remarks. (1) Even in simple and explicitly calculable cases, like (2) and (3) 
above, this conjecture is a nontrivial arithmetical assertion on integer points in 
convex polyhedra. 

(2) The conjecture implies the semicontinuity of dimensions of spaces of the 
Hedge filtration and of the filtration dual to the Hedge filtration in vanishing 
cohomology, that is the semicontinuity of numbers 

h" = ,~, ~, hP, ~ and h , = , ~ '  ~' h',q. 
p~r  ~ ~ > r q 

(3) In particular, for the case of functions in two variables, these semiconti- 
nuities are reduced to the semicontinuities of genus g of the Riemann surface 
(of the "vanishing  cycles manifold ") and of the " c o g e n u s "  • -- g. Semiconti- 
nuity of both numbers g and g -- g is clear (the last, as Yarchenko has explained 
to the present author, reduced to the fact that the inclusion of the vanishing cycles 
manifold of a simpler singularity, to that of a more complicated one is mono- 
morphical at the homology level). 

(4) The semioontinuity of/1, that is of the first spectrum point, is very impor- 
tant for the theory of integral asymptotics. Probably, our conjecture on the 
semicontinuity of 11 implies (or is equivalent to) the conjecture on the semi- 
continuity of oscillating integral asymptoties, which originated from [1], was 
disproved by Varchenko in [16] and was finally reformulated by Pham [131. 

(5) The relation of the spectrum to the set of zeros of  Bernstein polynomial 
(see [3], [121) seems less proved that one should like, but our conjecture can be 
reformulated in this setting too (?). 

(6) It follows from the spectrum symmetry, that the conjecture implies the 
two-sided ineqtmlities 

I l <~ l; <~ lk+(g-aq. 
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For instance, if only one point bifurcates from a complicated singularity (S), 
so that/z =/z '  + 1, then the deformed singularity (S') has a spectrum which 
divides the spectrum of (S). 

The relation between spectra of (S) and (S') is the same as between semiaxes 
of an ellipsoid in Rt* and of  its section by R~". Does there exist a quadratic 
form, associated with the singularity, whose eigenvalues (in some Euclidean space) 
are values of  a monotonic function at spectrum points ? 

(7) We can deform the loop, defining the monodromy in the base space of 
the versal deformation of a complicated singularity into a product of the loop, 
defining the monodromy of  the simpler one and of some "posi t ive"  loops, along 
which the discriminant argument increases. One can conjecture that the image 
of the product in the matrix group "rotates more than for the simpler monodromy" 
This gives some heuristic explanation for the semicontinuity. While these 
ideas are not at all clear, they are sometimes useful; for instance it was precisely 
these ideas that have led the present author to the conjecture on the formula for 
the quasi-homogeneous singularity signature (see [6]). In this case, the " ro ta-  
t ion" was defined in terms of two-dimensional invariant planes of the symplectic 
mapping 

( O Var) 
(Var') -1 

in H* + H. .  The conjecture was related to the positivity of some eigenvalues of 
this symplectic mapping in the sense of Krein's parametrical resonance theory. 
However the proof of the conjecture, given later by Steenbrink [15], is quite 
different. 

2. Bifurcation diagrams of complex singularities 

Bifurcation diagrams of real functions at critical points of  series A (A 2 ------ x 3 -~ ye, 
A3 = x 4 + y2, . . . )  are very useful for the calculations (and definitions) of  gene- 
ralised Whitehead groups in algebraic K-theory (Cerf [5], Hatcher [9], Wagoner 
[18], Volodin [17]). 

This led to the question, what is the "complex analogue" of these algebraical 
objects ? Such "complex analogues" are perhaps quite different from 
K-theory. For instance, complex analogue for Morse theory is Picard-Lefschetz 
theory, but it would be very difficult to reconstruct the second theory, knowing 
nothing but the first. We also know that the complex analogue for K(n, 0) is 
K(n, 1), and for the symmetric group--the braids group. The complex analogue 
for " b o u n d a r y "  is "two-fold ramified covering ". But we have no general 
methods or axioms for finding such analogues. 

As one of the candidates, arising from the complex bifurcation diagrams, we 
describe a "quasi-resolvent" of  the fundamental group of  the complement 
to the singularity bifurcation diagram. 

Let F o be a group, presented as the quotient Fo/R,, where Fo is free and R0 
is an invariant subgroup, generated (as an invariant subgroup) by elements of  the 
form (a f ) f  -x, where f e Iv, and a E Aut Fo, group of automorpbisms of Fo. 
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Let/ '1  be a group of automorphisms of Fo, leaving invariant every class f R o ,  
and large enough to generate Re. Let us suppose, that /'1 is represented as 
F~ = F~/RI, and so on : we have a chain of groups F, = FdR~. We call such 
a chain quasi-resolvent of Fo. 

Something of this kind arises from the fandaanental group F0 of  the comple- 
ment C ~ -- 27 to the bifurcations diagram Z in the versal deformation base space 
C~ of a singularity. Let Fo be nl (C 1 \ Z ) ,  where C 1 is a generic line in C~. Let us 
consider in C~'/C 1 the set 271 of non-generic (with respect to 2;) lines. The group 

1"1 = ~1 ((CP'/el) X2; 3 

acts on nl (C~NZ), leaving invariant elements of nl (Ct~N2;). Choose in C~/C ~ a 
generic line (that is, a generic C 2 containing C 1 in Ct'). We obtain a set of 
generators for /'1, that is we consider the free group 

Fx = ~1 ((C21C1)\,'Fq), 

and so on, finishing at F~,_~. 

In the case of  A~ singularities, the group F 0 is the Artin braids group with 
/x -t- 1 strings, the free group F 0 is generated by the g standard generators of the 
braids group, the group F~ can be considered as a "quasi-relations" group for 
F0 (not to be confused with R0). In the same way F 2 corresponds to the "quasi- 
relations between quasi-relations" and so on. But even in the A~, case it is not 
clear whether /'1 coincides with the whole group of  automorphisms of F 0, which 
conserves all elements of  Fo (and which belongs to the group of  automorphisms, 
generated by orientation-preserving plane with holes homeomorphisms). 

Perhaps for the study of  {F~} the classification of  all decompositions of  simple 
singt~larities A, D, E into simpler ones will be useful. Such a classification 
for functions (not just for levels, which is much easier) is recently found by 
Ljashko [10]. 

Very little is known on the topology of  the compleanents to more complicated 
singularities bifurcations sots. Looijenga [11] has reported that the comple- 
ments are K(n,  1) for parabolical singularities, but Ms arguments are not clear. 

3. Cohomology of complements to bifurcation diagrams 

The imbedding of  the versal deformation of a simpler singularity (S') base space 
C~' into the base space for a more complicated singularity (S) defines a cohomo- 
fogy homomorptdsm : 

~ ,  (or \ z )  ,- H* (C~ ' \Z ' )  (# > #3, 

between the cohomologies of  complements to bifurcation diagra~as. 

A question naturally arises whether these homomorphisms are canonical and 
whether one can define a stable cohomology ring (which is, in a sense, the ring 
of cohomologies of  the complement to the bifurcations diagram for f --- 0 in 
the infinite-dimensional vorsal deformation space). Even if this programme 
cannot be completely realised, one still can associate stable • classes 
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to (at leasO some strata of  the natural stratification of the set of function-germs 
set (or hyperface-germs set). 

Since the cohomology classes of complements to bifurcation diagrams for 
versal deformations define corresponding classes in the base spaces of  arbitrary 
deformation complement to bifurcation sets, one can hope that any information 
on the "stable r ing" can be useful to obtain information on global properties of 
bifurcation sets for arbitraxy famifies of functions (hypersurfaces, mappings, . . . ) .  

4. Modallty 

The modality (moduli number) of a Lie group action at a point of  a manifold 
is the minimal integer m for which orbits in some neighbourhood of  the point 
can be arranged in a finite ntunber of  families with ~< m parameters. 

Problem. Let f :  (R ' ,0 ) -}  (R, 0) be a finite multiplicity real function-germ. 
Is its modulus number in the real jets space equal to its modulus number in 
the complex jets space? [The corresponding groups are the groups of jets 
(R ", 0) --} (R n, 0) and (C", 0) -} (C", 0) acting as "r ight  equivalence" (gf) (x) - 
f (g (x))]. 

I was told by Professor E. B. Vinberg that there exist real representations of  re~l 
Lie groups, such that the modality of  their complexification is larger than the 
modality of the initial real action. But it is unknown whether such a case is 
possible for the right equivalence action of the diffeomorphism group on the 
functions space. 

For quasi-homogeneous singularities there exists a notion of "inner modali ty" 
which can be calculated as the munber of  monomials of  positive degrees in the 
monomial basis of the corresponding versal deformations module 

 .m(E . ,  , i =  l , . . . , . ;  

t : 1  

r , q =  1 , . . . , p .  

Here f j e  C Ix1, . . . ,  x,] are quasi-homogeneous polynomials of  degrees D~, where 
deg x,----A~; the module (C [x]F is generated by p free generators a/~y,, whose 
degrees are -- D~ ; one supposes that p ~ n and that dime T < oo. 

One conjecture that the inner modality for p < n is equal to the modality (of 
the contact group action), but it is not proved (as it is a known problem for 
the e~se of right-equivalence of functions). The above conjecture is partially 
confirmed by the theorem (due to I. G. Scherbak) that inner modality 0 complete 
intersections (quasi-homogeneous curves) in C 3 coincide with contact modality 0 
complete intersections (which are all quasi-homogeneous). The classification of  
these as a standard exercise on Newton diagrams, was at Moscow a known 
examination problem (1973). By the way, this classification disproves some of 
the classification results in the sixth part of J. Mather's celebrated paper on 
singularities. 



6 F Arnold 

The Scherbak theorem (containing also quasi-homogeneous unlmodulax singu- 
larities list) was proved with the help of the following formula for the Poincar6 
polynomial of  the graded mo&tle Tt for p = n -- 1 (that is, for singularities of  
generic quasi-homogeneous curves) : 

II (1 - t ~ )  
p( t )  --1"I(1 --t-~O ( ~  t-v~ -- E t-& + 1) + t :g Dj-~''~'. 

One can rewrite this a~ 

(*) p (t) = t zDs - z ' t t h  (l/t) 

denoting by h the Poincar6 polynomial of the relative differential forms graded 
module H-, calculated by Harem [7]. The formula (*) was found empirically 
for n = 3, p = 2. It seems that Ljashko can prove it, but his proof does 
not explain the dttality between modttles T and H for quasi-homogeneous curves 
singularities. 

In the more general case of generic complete intersections of positive dimension 
the Ljashko's formula for the Poincar6 polynomial of T t is 

p (t) = (-- 1 ) , - '  

tr~Dj_~A, [ _  l + res V [ 1 - -  st& H s -- st'~ ds ? 
~-o s -- st'4~ 1 stDJ 1 -- ,~ 

17 (1 - -  tD,) 
q - f f ( l  -- tA0 [~' t-DJ -- ~' t-a' q- 1]. 

Recently Harem and Gruel have proved p (1) = h (1) for n -- p > 0, but they 
give no formula for p (t). 

5. Real singularities t o p o l o g y  

Mixed Hedge structure defines for every singularity of a function a large set of 
integers h~.* (where 2 are monodromy eigenvalues). It seems that these numbers 
are closely related to the real geometry of the function, its level sets and its morsi- 
fications and bifurcations diagrams topology. 

A simple example of this is the generalised Petrovski inequality 

I ind ] < h~ I~''% 

for the local degree of the gradient mapping of a real smooth function-germ 
f :  (/P, 0 ) ~  (R, 0), n even : see [11 for more details. 

Other geometrical invadants of the real singularity, which would be interesting 
to compare with Hedge numbers, are, for instance : 

(i) Betti numbers of real non-singular neighbour level set (or their partial sums, 
may be alternate); 

(ii) Numbers of critical points of  different indexes, arising from different real 
morsifications (or their partial sums, may be alternate); 
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(iii) Numbers describing the possible complication of  one real level set of  a 
morsification, for instance, the maximal number of singular points on the same 
level set. 

For empirical works in this direction it is possible to use the Steenbrink con- 
jecture [14] (while this conjecture is wrong as it is stated). A comparison of  
I-Iodge numbers, calculated from the Newton diagram by formulas of  Steenbrink, 
Danilov and Kirillov, with the values of geometrical invariants, like those above 
will, perhaps, generate new (and best possible) inequalities for the real geometry 
invariants. 

However even the Petrovski inequality is known to be best possible only in 
the simplest cases. For example, it is not known how large the Poincar~ index 
( =  the local degree of  the gradient map) can be for a real homogeneous function 
f of degree m in n variables, f : R" ~ R. 

We only know that the Petrovski inequality gives the exact maximum for n ----- 3 
(that is, for curves in RP a) or for m = 3 [the extremal function f = (xl + . . .  
+ x~) a -- ~ -- . . .  -- x, a was constructed by D B Fuks]. For m = n = 4 (surfaces 
of degree 4 in RP a) the inequality is the best possible too. 

The classification of real projective surface of degree 4 in RP 3 was one of  the 
qttestions in the 16th Hilbert problem, at present this classification is known 
completely, after the works of  V M Harlamov (see [8]) and V V Nikulin; they 
find not only the topological types, but also all possible isotopical types in RP 3 
and even classify components of the complement to the degenerate surfaces set 
in the space of all real surfaces of degree 4 in RP 8. 

The Petrovski inequality is still true for nongradient vector fields (see [1]). 

It gives the best possible bound for the Poincar6 index of a vector field in ~ ' ,  
whose components are homogeneous polynomials of  degree m -- 1 (A G Hovanski). 

6. Maxima singularities 

Let 

F(y)  = max f ( x , y )  

be the maxima function F : B - .  R of  a family f : M • B ~ R of real func- 
tions on a compact closed manifold M, depending on a parameter y, belonging 
to a "base  space '" B, which is an (open) manifold of  dimension n. 

The maxima fimction is continuous, but generically, is not smooth. Empirical 
dsts lead to a conjecture : the maxima function for a generic family is topologically 
equivalent (in some neighbourbood of  every base space point y) to a Morse func- 
tion (that is, either to a non-zero linear function or to a stun of  a constant and 
of a non-degenerate quadratic form at point 0). 

For n ~< 6 this is proved by Brisgalova (see [4]). 

For the general case, the arguments are : 

(i) Suppose for a given y ~ B there is only one maximum point x (may be 
degenerate). In this case the graph of  F has at y a tangent plane, and the maxima 
function is generically topologically linear. 
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(ii) Suppose for a given y e B there are n d-1 maxima points. Then the 
grapll of  F is a pyramid with n + 1 faces, each face having at  y a tangent plane. 
Tl~e maxima ftmction is generically either topologically linear or topologically 
eqttivalent to a Morse function at a minimum point. 

(iii) In a generic family the maximttm is obtadned at s points for y on a mani- 
fold of  codimension s --  1. Along this submanifold S the graph of  Fin has tangent 
planes and in the transversal direction we can use argtunent (ii). 

(iv) In the particular ease o f  a germ f ,  which is R+-equivalence stable (see [4]) 
one can prove that  the set {y, z : z > F(y)} is locally diffeomorphic to a convex 
5ody. For  instance, s~bil i ty is generic for families with n ~ 6 parameters. It  
is natural to ask whether the set described above is still locally diffeomorphic to 
a convex body for generica.l families maxima function singularities, if n > 6. 

I f  it is trtte, this will be one more confirmation for a general principle o f  
fragility of  all good things. 

To explain this principle let us consider, for exaznple, the set o f  all polynomials 
x n + a~x ~-1 + . . .  ~- an (a real), having only real zeros (or only non-real, or only 
zeros with negative real parts). This set, at  singularities of  its boundary,  fills 
less than one h a l f  of  the neighbottrhood space. Thus under deformation the 
corresponding property of  being good (elliptic, hyperbolic, stable and so on) 
will rather disappear than persist. The theorems, generated by this principle, 
(and describing the cones of  velocities o f  curves, moving from the boundary 
paint  inside the good set) were recently proved by L. V. Levantovski. 
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