SEL MATH Sov
VoL. 5, No. 4, 1986

The Asymptotic Hopf Invariant and
Its Applications™

V. I. Arnold

The classical Hopf invariant distinguishes among the homotopy classes of
continuous mappings from the three-sphere to the two-sphere and is equal
to the linking number of the two curves that are the preimages of any two
regular points of the two-sphere.

The asymptotic Hopf invariant is an invariant of a divergence-free vector
field on a three-dimensional manifold with given volume element. It is
invariant under the group of volume-preserving diffeomorphisms, and
describes the “helicity”’ of the field, i.e., the mean asymptotic rotation of
the phase curves around each other. The asymptotic Hopf invariant
coincides with the classical Hopf invariant for the unitary vector field that
is tangent to the Hopf bundle. In the general case the asymptotic Hopf
invariant can have any real value (whereas the classical Hopf invariant is
always an integer).

The asymptotic Hopf invariant can also be considered as a quadratic
form on the Lie algebra of the volume-preserving diffeomorphisms of the
three-dimensional manifold that is invariant under the adjoint action of the
group on the algebra.

In this paper we present the definition and simplest properties of the
asymptotic Hopf invariant, as well as some of its applications to an unusual
variational problem that arises in magnetohydrodynamics which was called
to the author’s attention by Ya. B. Zel’dovich. In connection with this
problem there arise a whole series of unsoived mathematical problems,
some of which appear to be difficult. The main object of this paper is to
discuss these unsolved problems; all the theorems in the paper are obvious.

Attention was first called to the problems considered here by Voltjer [7]
in connection with magnetohydrodynamics. Applications to ordinary hydro-
dynamics were given by Moffatt [4], [5§] and Kraichnam [3].
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328 V. 1. ARNOLD

1. The problem of the minimum magnetic energy of a
frozen-in field

Let M be a three-dimensional closed Riemannian manifold, and ¢ a diver-
gence-free vector field on M. The energy of the field is the integral

E=Y& &)= jM (&8 do

We are to find the minimum energy for fields obtained from a given field under
the action of volume-preserving diffeomorphisms of the manifold M.

Here the action of a volume-preserving diffeomorphism g: M - M associ-
ates with a divergence-free field £ on M another divergence-free field g * £
such that the flux of the field ¢ across any surface o is equal to the flux of
g * £ across go. In other words, the field is frozen into a covering of M by
an incompressible fluid: the vector field can be thought of as drawn on the
elements of the fluid and expanding as these elements expand.

The two-dimensional analog can be formulated as follows:

To find a function that minimizes the Dirichlet integral
E=4Vu Vu)=1 J' (Vu, Vu) dv
M

among all functions u on the closed two-dimensional Riemannian manifold
M obtained from a given function u, by the action of an area-preserving
diffeomorphism on itself:

u(x) = up(g ™ "'x).

It is clear that similar problems arise for manifolds with boundary, for
example, for functions u(x, y) in an ordinary Euclidean disk. The mathe-
matical aspects of investigations of these problems have been highly unsatis-
factory.

1.1. The Euler equation

Theorem. The extremals of the problem stated above are divergence-free
fields that commute with their curl.

Proof. Let n be any divergence-free field. The variation of a field ¢ under
the infinitesimal diffeomorphism defined by 7 is given by the Poisson bracket
8¢ ={m, ¢} (in terms of the coordinates, (1, £) =(¢éV)n —(nV)£).
Consequently 8E = (¢, 6¢)=(¢, {n, £}). But, by a formula from vector
analysis, curl[n, é]={n, £&}—ndivé—£divn on any three-dimensional
Riemannian manifold. Since our fields ¢ and 7 are divergence-free, 0 = 8E =
(& curl[m, €1) =(curl £ [n, £]) =(n, [£ curl £]). Since n is divergence-free,
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ASYMPTOTIC HOPF INVARIANT 329

the vector product [£ curl £] is orthogonal to all divergence-free fields.
Consequently it is a gradient:

[£ curl £]=grad a,
whence, taking the curl of both sides, we obtain

{¢ curl ¢}=0,

as was to be proved.

Remark 1. In the two-dimensional case we obtain the equation
[Vu,VAul=0,

which says that the gradient of the extremal function is collinear with that
of its Laplacian.

Remark 2. A similar calculation leads to the following expression for the
second variation:

8’E ={{m, &}, {m, EH+{{n, &}, [curl & )

(where ¢ is an extremal whose first and second variations are given by the
formula

o =¢relm e+ imin gt €0,

in terms of a divergence-free vector field 7).

1.2.  Study of the extremal fields

Let ¢ be a divergence-free field on a three-dimensional closed orientable
Riemannian manifold M for which [, curl ¢]=grad a. All such fields are
extremals for our problem. It turns out that the field lines of ¢ have a very
special topology.

Theorem. Every noncritical level set of the function « is diffeomorphic to a
torus (or union of tori). In a neighborhood of such a torus we can define
coordinates ¢, ¢, (mod 27), z, such that ¢ is the angular coordinate on the
torus, z indexes the torus, and the field ¢ (as well as the field curl ¢) has
components

d 0 d J
=w,(z)—+ w,y(z)—; curl £ = wi(z)—+ wb(z)—.
E=an(z); ~+onlz); £=wi(2); -+ i)~

Here the coordinate z can be chosen so that the volume element has the form
do,ndo, A dz.

Remark. The coordinates ¢,, ¢,, z are analogs of the action-angle vari-
ables of classical mechanics. The theorem means, in particular, that both
the field lines of ¢ and of curl ¢ lie on the tori a = const. These lines are
either closed (if the relative frequency w is rational) or dense on the torus.
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330 V. 1. ARNOLD

For the proof see [1]. It follows from the theorem that, for example, in
the analytic case, when a # const the manifold M is divided by the critical
level sets of a into a finite number of cells, diffeomorphic to the product
of the torus by intervals in each of which the fields ¢ and curl ¢ are tangent
to the torus and generate periodic or conditionally periodic windings of
the torus. Consequently, we obtain an explicit description of the topology
of the field ¢ (or curl &).

It remains to consider the case when grad a =0. In this case [£, curl £]=
0, i.e., the fields ¢ and curl £ are collinear at each point. Such fields are
called force-free fields in magnetohydrodynamics.

If a force-free field ¢ is never zero, then curl ¢ = ¢£, where ¢c: M > R is
a smooth function. But div curl £=0; consequently, (grad ¢, £) =0, i.e., the
function ¢ is a first integral of the field £ (and also of curl £). Hence it
follows that the connected components of the nonsingular level surfaces of
c are tori, and the field lines of ¢ are windings on these tori (in the
corresponding coordinates ¢, ¢,, z, the constants along the field lines of
£ will be the frequency ratios, ¢,/ ¢, =« (z)). Therefore even in the case of
a force-free field the field lines lie on two-dimensional tori, provided that
the field does not have zeros and c is not constant.

A force-free field with curl £ = A¢, where A is a constant, can have a
much more complicated topology. An example of such a field on the
three-dimensional torus {x, y, z, mod 27} is given by the components

& =Asin z+ C cos y, £,=Bsin x+ A cos z, ¢, =Csiny+ Bcos z

The topology of these field lines was investigated experimentally by Henon
[2], using the computer at the Astrophysical Institute at Paris. As a result
he discovered a set of tori filled out by field lines (‘‘magnetic surfaces”)
together with whole domains of three-dimensional space whose field lines,
as far as one can tell from the experimental data, are ergodic, or everywhere
dense.

1.3. Discussion

Returning to our extremal problem, we see that a field of minimum energy
in a given class of frozen-in fields must either have a very special topology
(the field lines fill out tori), or be force-free fields of a special kind. But the
topological properties of the field lines are invariant under diffeomorphisms,
and therefore if the original field is a general one, then every field obtained
from it by a diffeomorphism has the same property. Consequently, a field
of minimum energy either does not exist (in the class of smooth fields to
which the preceding analysis applies) or is a force-free field of special type.

But force-free fields with curl £ = A¢ are scarce; they are eigenvectors of
the field of the operator curl on the space of divergence-free fields. Hence
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ASYMPTOTIC HOPF INVARIANT 331

we must assume that our variational problem apparently does not always
admit a smooth solution.

In this connection we consider the following example. Let M be a sphere
in three-dimensional Euclidean space, and let the field lines of £ be horizon-
tal circles with centers on the vertical axis. According to Zel’dovich, the
energy of such a field can be made arbitrarily small by means of a suitable
diffeomorphism which preserves volumes and is fixed in a neighborhood
of the boundary. In fact, let us divide the whole sphere into a number of
slender solid tori (doughnuts) formed from the circles of the field, and a
remainder of small volume. Then let us deform (preserving its volume) each
solid torus (violating the axial symmetry of the field) so that it becomes fat
and small, with the hole decreasing almost to zero. Then the field energy
in the solid tori is decreased (since the field lines are shortened). It can be
seen that the whole construction can be carried out in such a way that the
field energy in the remaining small volume is not increased by too much,
as a result the total energy remains arbitrarily small.

It would be of interest to carry out this construction precisely.

In connection with this example, there arises the question of whether it
is possible to reduce the energy of an arbitrary field to an arbitrarily small
value by an appropriate volume-preserving diffeomorphism. We shall see
below that this is not the case. An obstacle to the complete annihilation of
the energy can be constructed by considering two linked doughnuts of field
lines. In this case the shortening of the field lines in one doughnut, shrinking
its hole, induces a lengthening of the field lines in the other, so that there
is an obstacle to the decrease of the energy. The asymptotic Hopf invariant,
which measures the linking of the field lines (not necessarily closed) lets
us give a qualitative expression for this situation in the form of a lower
bound for the energy.

1.4. Magnetohydrodynamic discussion

In magnetohydrodynamics the role of ¢ is played by the magnetic field H,
frozen into a fluid of finite viscosity, but of infinite conductivity, which fills
M. With an appropriate choice of units, the velocity field v and the magnetic
field H satisfy the system of equations

d
£+(Vv, v)=—grad p—vAv+[jH], divv=0,

oH . .

B-t-z{v, H}, div H=0, curl H =j.
The magnetic field H and the velocity field v are prescribed at the initial
time. In the course of time, the kinetic energy is dissipated because of the
viscosity, and the motion ceases “‘in the end,” since each particle approaches
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332 V. 1. ARNOLD

some terminal position. The magnetic field, being frozen in, then attains
some terminal value. The energy of this terminal field must be a minimum;
otherwise the magnetic energy would have been converted into kinetic
energy and, on account of the Lorenz force, the fluid would move until it
dissipated the excess of magnetic energy above the minimum.

This sort of description of the behavior of solutions of the system
presented above is usually given by physicists. Unfortunately, the preceding
analysis of the topology of the extremal fields holds out little hope that this
description is correct for any general initial conditions: in fact, the initial
magnetic field can be taken without having magnetic surfaces, and then the
limiting field, if there is one, must be a force-free field of special type; but
such fields are too scarce, and one would hardly find a field with the
prescribed lines of force among them.

It appears that for a correct description of the actual process it is necessary
to take account of the magnetic viscosity, which violates the assumption
that the field is frozen in, and was not taken into account in our system of
equations.

The question of the extent to which one can use the extremal field to
study the behavior of H over an extended period of time during which the
ordinary viscosity succeeds in extinguishing the motion of the fluid, but the
magnetic viscosity does not extinguish H, is an interesting unsolved problem.

Zel’dovich proposed the problem of the minimum magnetic field in
connection with the question of the evolution of the magnetic field of a
star. In this case M is a sphere in three-dimensional Euclidean space, and
the field is propagated over the whole space with the boundary conditions

curl H =0 outside M, div H =0 outside M,
(H, n) is continuous on dM,

and the condition of decrease at infinity. Consequently, the volume-
preserving diffeomorphism of M acts on the field H throughout the whole
space. It is necessary to minimize the total energy of the field H (i.e., the
integral over all space). The minimizing field must provide a minimum of
the magnetic energy inside M with respect to fields obtained from the given
diffeomorphism and stationary near the boundary.

We will not discuss the question of how close this simple model is to
reality. In what follows we restrict ourselves to a more simple system, in
which M is a manifold without boundary.

2. Definition of the invariant

We begin with a dogmatic presentation: we consider an ad hoc definition
of the invariant, and establish its simplest properties. The interesting mean-
ing of the invariant (and an explanation of how the invariant was found)
will be discussed in the following sections.
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ASYMPTOTIC HOPF INVARIANT 333

Let M be a three-dimensional manifold that is closed (compact, without
boundary), oriented, and connected, and let v be the volume element (i.e.,
a 3-form defining the correct orientation) on M. It will be convenient to
assume that the total volume of M is 1. Notice that we are given a volume
element on M, but we are not given any particular Riemannian metric.

2.1. Notation

Every vector field ¢ on M generates a differential 2-form w, according to
the formula

w§(7’9 ;) = v(§5 YA {) for all , {7

and the correspondence £~ w, is an isomorphism of the linear spaces of
fields and 2-forms. The derivative of the form w,, as for every 3-form, can
be written in the form

dﬂ)g = @,

where ¢: M - R is a smooth function. The function ¢ is called the divergence
of the field &:
o =div &

The velocity field of a flow that preserves the volume element on M is
divergence-free; and, conversely, every flow with divergence 0 on M is the
velocity field of an incompressible flow (i.e., of a flow that preserves the
volume element v on M).

A divergence-free vector field £ on M is said to be homologous to zero
if the 2-form w, corresponding to it is the total differential of a 1-form «
on M:

w,=da.
The 1-form « will be called a form-potential. A field is homologous to

zero if and only if its flux across every closed surface is zero.

Remark. If a Riemannian metric is given on M then the 1-form a can be
identified with the vector field a for which

a(n)=(a,n)  for every 7.

In this case &£ =curl a, and the vector field a is called the vector potential
of £ However, it is essential to observe that the forms w and « (in contrast
to the field a) do not depend on the Riemannian metric, but only on the
choice of the volume element v.

2.2. Definition

The (mean)Hopf invariant of a field ¢ that is homologous to zero on the
three-dimensional manifold M with volume element v is the integral of the
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334 V. 1. ARNOLD

product of the form w, and its form-potential, i.e., the number
I(§)=J dada, where w,=da.
M

Let us show that this definition is consistent, i.e., that the value of I does
not depend on the particular choice of the form-potential a, but only on the

field ¢.

In fact, if B = a + vy is another form-potential, then dy =0, and therefore

J aAda—,BAdB=J yAda=I d(yaa)
M M M

=-[ yAa=0.
aM

Remark. Ifa Riemannian metric with volume element v is given on M, then
1(¢)= j (& a) dv=(&curl™' §),
M

where a is any vector potential of & Therefore [ is the scalar product of the
field with its vector potential. It is essential to observe, however, that the
Riemannian metric does not enter into the definition of I

2.3. Invariance

Corollary. Every volume-preserving diffeomorphism g: M > M carries every
field & that is homologous to zero into a field with the same Hopf invariant.

In particular, on a Riemannian manifold the scalar product of a divergence-
free field and its vector potential is preserved when the field is acted on by a
volume-preserving diffeomorphism.

Consequently the invariance of I under diffeomorphisms that preserve
the volume element follows from the fact that I can be defined by using no
structures other than the smooth structure of M and the volume element v.

Remark. The question of whether I is preserved under homeomorphisms
that preserve the volume element (transforming the phase flow of ¢ into
the phase flow of another field ¢') is an interesting unsolved problem, as
is the closely related problem of whether one can define the invariant I directly
for one-parameter groups of homeomorphisms that preserve the volume element.

Remark. In the case when M is a manifold with boundary, the number
is preserved under all volume-preserving diffeomorphisms that are stationary
in a neighborhood of the boundary. If, however, ¢ is tangent to the boundary,
then I is preserved under all volume-preserving diffeomorphisms provided
that M is simply connected. The question of whether one can define an
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ASYMPTOTIC HOPF INVARIANT 335

invariant analogous to I for general divergence-free fields on a manifold
with boundary (including a surface term in I) is an interesting unsolved
problem.

2.4. Examples

If we take £ to be a magnetic field, we arrive at the conclusion that the
Hopf invariant of a magnetic field frozen into an incompressible fluid that fills
a closed manifold does not change during any flow of the fluid.

If we interpret the field £ as the vorticity field of a perfect fluid, we
obtain the result that in the flow of a perfect fluid on a closed three-dimensional
manifold, the scalar product of the velocity field and the vorticity field does
not change with time.

If we consider the field ¢ as an element of the Lie algebra of the group
S Diff M of volume-preserving diffeomorphisms of the three-dimensional
manifold M, we obtain the result that on the Lie algebra of the group S diff M
there is a symmetric bilinear form that is invariant with respect to the corre-
sponding action of the group on the algebra. If we give a Riemannian metric
on M then

1(& n)=(&curl™ n),

where curl ™' 7 is the vector potential of the field 7. In particular, for every
divergence-free field n we have

{& ) curl™ £) =0,

which is, of course, easily verified by direct calculation.
For a two-dimensional manifold M we obtain a skew-symmetric form
instead of a symmetric form.

3. Asymptotics of the coefficient of linking
with a curve

Let M be a closed connected oriented and simply connected three-
dimensional manifold with volume element v, let y be a smoothly embedded
closed orientable curve in M, and let ¢ be a divergence-free vector field on
M. We define an asymptotic coefficient of the linking of the field lines of
¢ that issue from the point x with the curve y. Let {g': M > M} be the
phase flow of the field & Select a 2-chain o (of smooth simplexes) for which
4o = .

3.1. Asymptotic linking coefficient

For every pair of points x, y of M we introduce a “short curve” A(x, y)
that joins these points and has the following properties:

(1) If x and y do not belong to 7, then A does not intersect ¥.
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336 V. 1. ARNOLD

(2) The number of intersections of A(x, y) with y is bounded by a
constant independent of x and y.

It is easy to construct such a system of “short curves;” the dependence
of A on x and y can be made measurable (and even piecewise smooth).

We fix a system of curves A and consider the segment of the orbit g'x
of x corresponding to 0= ¢t < T. We join the last point g"x = y with the first
by A(y, x); then we have a closed curve I'+(x). We assume that this curve
does not intersect .

Let N7(x) denote the linking coefficient of I'-(x) with vy (i.e., the index
of the intersection of I'(x) with o).

Theorem. For almost all x in M the limit
1
lim ?Nr(x) = A(x)

exists (where T runs through the values for which T'(x) does not intersect
v). This limit belongs to L,(M, v) and, as an element of L,, is independent
of the system of curves A.

The limit A (x) is called the asymptotic linking number of the orbit g'x with
the curve 7.

To prove the theorem it is convenient to give a different definition of the
asymptotic linking number, and then prove that it is equivalent to the
definition given above.

3.2.  Second definition of the asymptotic linking number

On the manifold M — y we can construct a closed differential 1-form a with
the following properties:

(1) The linking number with y of every closed curve 8 in M — vy is equal
to the integral of « over é.

(2) There is a diffeomorphic embedding u: §'x D*> M of the direct
product of a circumference and a disk into M such that the circumfer-
ence S' x0 maps to y and the form a induces, on the complement
of this circumference, the standard form u * a = (1/27) arc tan(y/x)
(where x, y are the coordinates in D?).

We select a form a with these properties, and consider the limit
- 1 (T (d
A(x)=lim — —g'x ) dt
=t o(Ge)

Theorem. The limit exists for almost all x and is independent of the choice
of the 1-form a satisfying hypotheses (1) and (2).
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Proof. Consider the function

d
fx)=a(é(x),  where £(x)=—| g'x

t t=0
This function belongs to the space L,(M, v) by condition (2) on a. By
Birkhoff’s ergodic theorem, the time average of f exists almost everywhere.
This establishes the first part of the theorem, since A(x) is the time average
of f.

To prove the second part, we observe that « is defined on M —y up to

a differential of a single-valued function. If ¢ is a smooth function on
M — v, then

T
| ao(Lgx) ai=gte™- o0,
0 t

Now we observe that if g'x does not approach y asymptotically as t > oo,
we can choose a sequence T; - oo such that the distance of the points g"ix
from vy remains bounded below. But ¢ is bounded above by a constant
C(e€) outside an e-neighborhood of y. Consequently, for all points x that
are not asymptotic to y there is a sequence T, -+ along which ¢(g7ix)
is bounded above. Therefore the limit A(x) is the same for any two 1-forms
a for all points x except those asymptotic to y (and those points for which
one of the limits does not exist). But the points asymptotic to y form a set
of measure 0 (since the field ¢ is divergence-free), and we have established
that A is independent of a for almost all x.

3.3. Equivalence of the definitions

The theorem of Section 3.1 is a consequence of the following theorem.
Theorem. For almost all x, the limit A(x) exists and is equal to A(x).

Proof. By property (1) of the form a, it is enough to prove that for almost
all x

limlj a(£&) dt=0.
70 T JagTxx

But since the number of intersections of A and o is bounded (see property
(2) of the curves A), it follows that the integrals of « along A are uniformly
bounded; consequently, the limit (over a sequence of values of T for which
A does not intersect y) is zero; this establishes the theorem.

Remark. We have simultaneously proved that A (x) is independent of the
family of short curves A.
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338 V. 1. ARNOLD

Remark. Itis obvious from the theorem that the asymptotic linking number
is invariant under volume-preserving diffeomorphisms, in the sense that if
a diffeomorphism h carries the system (M, v, vy, & x) to (M', v, y', &, x')
then

Ny (%) = Mg (X).

The question of whether the asymptotic linking number is invariant under
volume-preserving homeomorphisms is an unsolved problem, as is the related
question of the possibility of defining an asymptotic linking number with a
topological curve vy for a one-parameter group of volume-preserving homeo-
morphisms.

3.4. The mean linking number with a curve

Let {g'} be the phase flow of a divergence-free field £ on a simply connected
three-dimensional manifold M with volume element v. Let y =40 be an
oriented smooth curve in M, and let o be a piecewise smooth 2-chain. The
mean linking number of {g'} with vy is the average of the asymptotic linking
number with respect to M:
A =J- A(x)v.
M

Theorem. The mean linking number A is equal to the flux of the field ¢ through
the surface o.

Proof. The number A(x) is the time average of f(x)=a(£&(x)). Con-
sequently, the space averages of f and A are the same, i.e.,

)«=J:w a(§)v=JM a A wg.

Now the theorem follows from the homology of the 2-chain o and the
1-form a as de Rham flows in M — vy (strictly speaking, we should consider
not M — v, but the complement in M of an e-neighborhood of v, and then
let €>0).

Remark. One can obtain similar results for the case when v is not smoothly
embedded, but is a piecewise smooth curve. In addition, one can assume
that M is n-dimensional and that the chain vy is (n —2)-dimensional.

4. Asymptotic linking number of a pair of trajectories

Let M be a three-dimensional closed simply connected manifold with
volume element v, let £ be a divergence-free field on M, and let {g‘} be its
phase flow.
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4.1. Definition of the asymptotic linking number of a
pair of trajectories

We consider a pair x,, x, of points of M. We are going to associate with
this pair of points a number that characterizes the “asymptotic linking” of
the trajectories of {g'} that issue from them. For this purpose we first join
any two points of M by a “‘short path” connecting the points (the conditions
imposed on a short path were described above and are satisfied for ‘““almost
any” choice of the short path).

We select two large numbers T, and T, and close the segment g'«x;
(0=t,=T,) of the trajectories issuing from x, and x, by short paths
A(g " xi, x;) (k=1,2) so that we obtain two closed curves I', =I'7, (x;). We
assume that these curves do not intersect (which is true for almost all pairs
Xy, x, for almost all T,, T,). Then the linking number N1, r,(x;, x;) of I'
and I, is defined as follows.

Definition. The asymptotic linking number of the pair of trajectories
g%, 8, is defined as the limit

N
A(x, y) = Tlirm Tl,Tg(xI,xz)

1, 12> Tl Tz

(T, and T, are to vary so that I'; and I'; do not intersect).

We are going to prove that this limit exists almost everywhere and is
independent of the system of short paths (as an element of L,(M X M)).

4.2. Digression on Gauss’s formula

It will be useful to have the formula given by Gauss for the linking number
of two closed curves in three-dimensional Euclidean space. There is also a
similar formula for a simply connected manifold: see de Rham’s book
Variétés différentiables.

In order to state Gauss’s formula, we introduce the following notation.

Let x;: S]>R® and x,: S} R’ be smooth mappings of a circumference
in three-dimensional Euclidean space, with disjoint images. Let ¢, (mod T;)
and t, (mod T;) be coordinates on the first and second circumference; then
we denote by x, = X,(¢,) the velocity vector of the flow on the first, and by
X, = %(t,) that on the second.

We assume that the circumferences are oriented by the choice of the
parameters f, and t,, and we fix an orientation for R®. Then we can define
vector products and triple scalar products in R>.

Gauss’s Theorem. The linking number of the closed curves x,(S") and x,(S?)
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is equal to

1 [ [Ty, %, x,—x
N“2=+_J. J LL_z__ler,‘ ds,.
dm Jo Jo |x1—x2|‘

Proof. Consider the mapping
f: T,» §?

of the torus on the sphere, making a pair of points on our circumferences
correspond to the vector of unit length directed from x,(t,) to x;(t,):
f=F]/|F|, where F(t;, t;) = x,(t,) = xs(12).

We orient the sphere by the inner normal and the torus by the coordinates
t,, t,. The degree of the mapping is equal to the linking number N, ,. In fact,
this is true for widely separated small circumferences: both the linking
number and the degree of the mapping f are 0. Furthermore, it is easy to
verify that under a deformation of a curve by any passage of one curve
through another both the linking number and the degree of the mapping
change by 1, in the same direction. Now the equation N,,=degf is
established, in view of the connectedness of the set of smooth mappings
S'> R’

Let us show that the degree of the mapping f is given by the integral formula
of Gauss. In fact, by the definition of the degree,

degs=[[ reor,

T

where w? is the area element on the unit sphere. By the definition of f; the
value of the form f * w> on the pair of vectors £,, &, tangent to the torus,
is equal, at ¢, to its triple scalar product with the vector —f = —f(t) (we
oriented the sphere by the inner normal),

W' (f*&,f*x&E)=([*&,f*&,—f).
Differentiating f, we obtain f* £ = F * ¢/| €| + c(€)f, and therefore
wz(f*,glif* §2)=(F* gla F* §29 _F)/”F”3‘

Since F = x, —x,, we obtain, for an element of the spherical image of the
torus, the expression

[ o’=+(%, %, x, - %)%, _xz”_3 dt, a dt,,

as was to be shown.

4.3. A second definition of the asymptotic
linking number

Let {g'} be a phase flow, defined by a divergence-free field ¢ in a three-
dimensional compact Euclidean domain M. The field is assumed to be
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tangent to M on the boundary of M. We set

1 J’Tz JTI (g"‘xla g‘2x25 xl ~x2)
0 ”x)(tl)—xz(tz)”3

A(x,, x,) = lim

— dt, dt,.
Ty»xo T, T, 477 e
T,»

0

We shall show that:

(1) the limit A(x,, x,) exists almost everywhere on M x M;
(2) the number A(x,, x,) coincides, for almost all x,, x,, with the number
A(x, y) defined above.

To prove the first statement it is enough to verify that X is the “time
average” of a summable function on the manifold M X M, on which the
commutative group {g"}x{g"} acts.

q)(xl,x2)=(§1’§2sxl_x2)/“x1—x2”3 (sz_ g"‘xk)
dtk =0

The integrand
has a singularity on the diagonal of M X M of order no higher than r™?
(where r is the distance to the diagonal): since the codimension of the
diagonal is 3, the function & belongs to the space L,(M x M), as was to
be proved.

To compare A with A we represent the linking coefficient of the curves
I'r,x, and I'r,x, by Gauss’s integral with 0=¢,=T,+1,0=t,=T,+1, and
using the value of the parameter ¢, from T, to T, for parametrizing the
“short path” that joins g *x, to x;.

d

Definition. A system of short paths joining the points x, y € M is a system
of paths, depending in a measurable way on x and y, such that the integrals
of Gauss type for every pair of nonintersecting paths of the system, and
also for any nonintersecting pairs (paths of the system, segments of phase
curves g'x, 0=r=r7<1), are bounded independently of the paths by a
constant c.

It is easy to verify that systems of short paths exist (it is useful to keep
in mind that an integral of Gauss type for a pair of straight-line segments
remains bounded when the segments approach each other).

I() -[(i 4[) J()

of integrals of Gauss type can be estimated by the sum of at most [ T, ]+ [ T,] +
3 terms, none of which exceeds c¢. Consequently,

. 1 T, 1 fT1 T, (T,
A(x,y)—/\(x,y)=rlim TT(J J —J I )
1,220 [ 15 0 0 0 0
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(where T, and T, tend to infinity on any sequence for which the curves
I'r,x, and I'r,x, do not intersect).
4.4. Average linking number

Theorem. The mean value of the asymptotic linking number of a pair of

trajectories,
JJ A(xy, X,) dv, dvz/ ‘[J dv, dv,,

MxM MxM

is equal to the asymptotic Hopf invariant of the phase velocity field,
1(¢) =(curl™" & ¢).

Proof. Consider the Biot-Savart integral

(p=-p [ 0o
nz Mo x|’

. dv(x,),

where [ , ] denotes the vector product. Then curl n = ¢ and therefore

[f(xl)’ §(x2), (xl _xl)]

1 = x|

(n, &)=(curl ' £ &)= +ﬁ “ dv(x,) dv(x,),

MxM

as was to be proved.

Remark. There is a similar result for any compact simply connected
three-dimensional Riemannian manifold M, but the Gauss integral has to
be replaced by the integral of de Rham’s ‘“double form;” this form cannot
be written as explicitly, but has similar properties.

Remark. The question of whether the asymptotic and mean linking numbers
are invariant for a pair of trajectories under homeomorphisms that preserve
the volume element remains open, as does the closely related question of
whether one can define asymptotic and mean linking numbers for trajectories
of one-parameter groups of volume-preserving homeomorphisms.

5. Applications to the variational problem

From the existence of the Hopf invariant there follow some lower bounds
for the energy of any field obtained from a given field by a volume-preserving
diffeomorphism. In particular, on any three-dimensional Riemannian mani-
fold one can find a field that is minimal in its class. In particular, certain
special force-free fields have this property.
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5.1.  Minimal force-free fields

Let M be a three-dimensional closed Riemannian manifold. We consider
the operator curl on divergence-free fields that are homologous to zero (i.e.,
have a single-valued divergence-free potential). By Weyl’s lemma on
orthogonal projctions, we can define a single-valued inverse of the operator
curl on our space, so that there is an inverse (integral) operator curl™" from
the space of divergence-free fields that are homologous to zero, onto itself.
This operator is symmetric, and its spectrum accumulates at zero on both
sides.

Theorem. The eigenfield of curl™ corresponding to the eigenvalue v of largest
modulus has minimum energy in the class of divergence-free fields obtained
Jfrom the eigenfield under the action of volume-preserving diffeomorphisms.

Proof. Let v_and v, be the smallest and largest eigenvalues of the operator
curl™'. Then for every field ¢ that is homologous to zero we have

v H=(curl £ H=v (£ ), v-<0<v,.

Consequently, we have the following bound for the energy in terms of the
Hopf invariant:

(& &y=(curl™ & &)/,

where v denotes the value v, or v_ of larger modulus.

The inequality becomes an equality for the eigenfield with the eigenvalue
v. The right-hand side of the inequality is invariant under volume-preserving
diffeomorphisms (see Section 2). Consequently, under the action of such a
diffeomorphism on the eigenfield with eigenvalue v, the field energy can
only increase. This completes the proof of the theorem.

5.2.  Examples

Let us take M to be the three-sphere with the usual Riemannian metric.
The eigenfield of the operator curl™' can be calculated explicitly. The
eigenfields with largest and smallest eigenvalues are the Hopf field and its
symmetric field (corresponding to Hopf invariant —1). The moduli of these
eigenvalues are equal.

Corollary. The Hopf field on the three-sphere has minimum energy among
all fields obtained from it by the action of a volume-preserving diffeomorphism.

(The field lines of the Hopf field are circles, and the linking coefficient of
any two of them is 1.)
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As another example, we consider the three-dimensional torus with the
usual Riemannian metric. The eigenfields of the operator curl™' with largest
and smallest eigenvalues can be written explicitly in terms of sines and
cosines. We obtain the following corollary:

Corollary. Each of the fields
& =Asinz+ C cos y, ¢, =Bsinx+ Acos z, (&, =Csiny+ Bcosz

on the three-dimensional torus has minimum energy among all fields obtained
from it under volume-preserving diffeomorphisms.

Consequently, a minimal force-free fietd can have a complicated topology
for its field lines, as is the case for generic nonintegrable systems (some
field lines cover two-dimensional tori densely, others do not lie on any
two-dimensional surfaces: see the experiment of Henon mentioned in Sec-
tion 1.2).

In conclusion, we remark that we can extract from the asymptotic linking
number A(x, y) more invariants than the mean linking number A; for
example, the measure m(A,) of the set {x, ye M X M: A(x, y) <A}, or the
value of the Hopf invariant for various regions that are invariant under the
flow of a given field £ By using such invariants one can sometimes give
lower bounds for the energy of a field obtained from a given field by the
action of diffeomorphisms, more precisely than those found by using only
the Hopf invariant.
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Note added June 6, 1985. A survey of modern generalizations of the
asymptotic Hopf invariant is given in [6]. In the simplest generalization
one begins with two closed 2-forms a, b on S* such that as’=aab=5>=0
and considers I(a,b)=p[and 'and 'b+q[brd"and 'b.Suchforms
define two foliations of S* into surfaces intersecting along lines and the
functional I probably has an asymptotic ergodic description similar to that
given here for the Hopf invariant.
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