CHARACTERISTIC CLASS ENTERING IN QUANTIZATION CONDITIONS

V. I. Arnol'd

Recently V. P. Maslov gave a mathematically rigorous treatment of multidimensional asymptotic
methods of "quasiclassical” type in the large, i.e., for any number of conjugate points [1, 2]. It turned
out that there appeared in the asymptotic formulas certain integers, reflecting homological properties of
curves on surfaces of the phase space and closely related to the Morse indexes of the corresponding
variational problems. In particular, Maslov defined a one-dimensional class of integer-valued coho-
mologies whose values on the basis cycles enter into the so-called "quantization conditions."

In this note we give new formulas for the calculation of this class of cohomologies. This class is
characteristic in the category of real vector bundles, whose complexification is trivial and trivialized,
and also in certain wider categories.

§ 1. NOTATION

1.1. Phase Space

Phase space will be 2n-dimensional real arithmetic space
#={x}, X=q¢ P G=qp ... g P=Pp -, Pn
In RM we shall consider the following three structures:

1. The Euclidean structure, given by the scalar quadratic

(x, %) =p*+ ¢
2. The complex structure, given by the operator
I: R R [ (p, ) =(—~q, p) z=p-+ig, C ={z}.

3. The simplectic structure, given by the skew-scalar product

b gyl =Ux, y)=—1y, x| (1)

The automorphism groups of R® preserving these structures are called the orthogonal group G(2n),
the complex linear group GL(n, C), and the simplectic group Sp(n), respectively. From (1) there follows

LEMMA 1.1, An automorphism preserving two of these structures preserves the third also, so that
0@2n) N GL (7 C) =GL(n, C)[]Sp(r)=Sp(n)[]0(2n) =U(n)

The automorphisms preserving two (and thus all three) structures form the unitary group U(n), The
determinant det of a unitary automorphism is a complex number with modulus 1. Thus there arises a

mapping of U(n) onto the circle

SU (n) — U(n) > 8%, (2)
which is obviously a fibering (the fiber is the group SU (n) of unitary automorphisms with determinant 1).
1.2. The Lagrangian Grassmanian A(n)

We consider an n-dimensional plane RRC R22, It is called Lagrangian if the skew-scalar product
of any two vectors of R equals zero. For example, the planes p = 0 and q = 0 are Lagrangian.*

* . 3 v
The name comes from the "Lagrange brackets” in classical mechanics.
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The manifold of all (noﬁoriented) Lagrangian subspaces of R® is called the Lagrangian Grassmanian
A(n). .

From the complex point of view Lagrangian planes can be called real-similar, since there holds
LEMMA 1.2. The unitary group U(n) actson A(n) transitively with stationary subgroup O(n).

Proof. Let A be a Lagrangian plane. By (1) this means that the plane IA is orthogonal to A. Let
A'€A(n) and ¢, £' be orthogonal frames in A, A'. Then the automorphism of R® carrying ¢ into ' and
It into I£¢' is unmitary.

From this lemma it follows that A(n) is a manifold, A(n) =U(n)/O (n); thus there is a fibering
, 0(n)-»Um)—> A(n). 3
1.3 The Mapping Det?: A(n) — 8!

The determinant of an orthogonal automorphism A€¢O (n) C Um) equals +1. Therefore the square of
the determinant of a unitary automorphism carrying the plane p = 0 into the Lagrangian plane A depends
only on A. In this way a mapping is constructed

Det?: A (n)— St

Denote by SA(n) the sét of Lagrangian planes A¢A(n) with Det?A =1. On this set the group SU (n)
of unitary unimodular automorphisms acts transitively, and the stationary subgroup of any point is iso-
morphic to the rotation group SO (n). Therefore SA(n) =SU (n)/SO (n) is a manifold.

Thus we obtain a diagram (obviously commutative) of six fiberings:

50 (7)— 0 (n) = 8,
! ! i
det
SU(r)—-U(n) — S,
} } I 2
SA (n—A (,1}’2_"1: S,
where z? is the mapping of the circle (z =el® — ¢ =32,

1.4. The Cohomology Class a€H!(A(n), Z)

LEMMA 1.4.1. The fundamental group A(n) is free cyclic,
(A @) =1,

and its generator goes into the generator of S! under the mapping induced by Det?.

The proof is obtained from the exact homotopy sequences of the left column and lower row of the
diagram of section 1.3. '

COROLLARY 1.4.2. The one-dimensional homology and cohomology groups of A(n) are free cyclic:
Hy (An), )= H'(A(n), l)~nl(A(n))~Z

For the generator « of the cohomology group HY(A(n), Z) we take the number of rotations of Det?,
i.e., the cocycle whose value on a closed curve vy: 8! — A(n) is equal to the degree of the composition

St 5 A(m) =5 St
(Here S! is the circle e“P oriented on the side of increasing ¢.)

Example 1.4.3. Let A be a Lagrangian plane: A6 A(n). Consider the automorphisms el ¥EeU (n).
The Lagrangian planes el¥A (0 = ¢ =< r) form a closed curve y: St — A(n), since elTE =—E.

The value of the class « on the curve y equals n.

Indeed, det(el¥E) = eiN®, therefore DetZel?* = e2N@pet2a.



1.5. Lagrangian Manifolds

Let M be an n-dimensional submanifold of the phase space R, The manifold M is called Lagrangian
if its tangent plane at each point is Lagrangian. For example, in the case n = 1 every curve M on the
phase plane R? is Lagrangian. :

Let M be a Lagrangian manifold. We consider the tangential mapping
. M—A(n),
carrying each point x€M into the subspace 7x€A(n) parallel to the tangent plane to M at x.

The cohomology class aeH!(AM), Z) introduced above induces on M a one~-dimensional cohomology
class

' =tacH'M, Z).

The value of a* on an oriented closed curve y: S! —M is defined as the number of rotations of the
square of the determinant of the tangent plane, i.e., asthe degree of the composition

S 5MSAmESs
The aim of this note is the proof of the following assertion.
THEOREM 1.5, The cohomology class a*EHl(M, Z) coincides with the "index of closed curves on the
Lagrangian manifold M" introduced by Maslov in [1].
§2, PROOF OF THEOREM 1.5

The Maslov index is defined by him as the index of intersection of a certain two-sided (n~1)-dimen-
sional cycle on MP — the singular cycle.

2.1. The Singular Cycle

Let M be an n-dimensional Lagrangian manifold. Consider the projection f: M —R2 of the manifold
M onto the plane p = 0; f(p, @) =q. The set T of points of M where the rank of the differential of f is less
than n is called the singularity of the mapping /. Regarding the singularity T, Maslov formulates the fol-
lowing assertions 1-5 (proofs are given below in § 3 and 4).

- THEOREM 2.1. By an arbitrarily small unitary rotation the manifold M can be brought into "general
position" relative to the projection f, so that the following assertions are valid:

ASSERTION 1. The singularity X consists of an open (n—1)-dimensional manifold 21, where df has
rank n—1, and the boundary (Z—z!) dimension strictly less than un—2, so that ¥ determines an (n—1)-
dimensional (unoriented) cycle in M.

ASSERTION 2. This cycle is two-sided in M.
The choice of a positive side of £ can be carried out in the following way.

ASSERTION 3. In a neighborhood of the point x}ez‘ the Lagrangian manifold M is given by n equations
of the form

9e = 4 Per G2 ) P (Pro G ' 4)
where E:l, 2,.... k-1, k+1,... nfor somek, 1<k =n.
: )
Obviously, in a neighborhood of such a point x the singularity =1 is given by an equation U - 0.

8pk
ASSERTION 4. On passing through =! the quantity aqk/apk changes sign.
It turns out that for the positive side of ! we can take the one for which q;/8p; >0.

ASSERTION 5. Such a definition of the positive side is correct, i.e., does not depend on which of the
coordinate systems P 9% (k = 1,... n we use,



2.2. The Maslov Index, indEHil(M, Z)

Suppose there is given on the Lagrangian manifold M in "general
position" in the sense of Theorem 2.1. a curve vy, transversal to the
cycle Z, with the initial and end points of y nonsingular:

O = Xy — Xy X, €5, %€,

Maslov calls the index ind ¥ of the curve v its index of intersec-
tion with £, i.e., the number v, of points of passage from the negative
side to the positive side minus the number »_ of points of passage from
Fig. 1 the positive side to the negative:

o

indy =v, —v_.

Example. Letn =1 and let M be a curve in the pg-plane (Fig. 1). For M in general position, =
consists of separate points a, b, ¢, . . . . The indexes of the curves v; (8y; = X;~Xg) are equal to 0, 1, 0,
1, 2, respectively.

THEOREM 2.2, The index of a closed oriented curve y on the Lagrangian manifold in general posi-
tion M depends only on the homology class of y and is the value of a one-dimensional class of integer-
valued cohomologies of M on the cycle y: indeH! (M, Z).

2.3. Index of Curves on the Grassmanian A(n)

Proofs of the formulated theorems (1.5, 2.1, 2.2) are based on fh_e following construction,

In the manifold of Lagrangian planes of A(n) we single out the sets Ak(n) of planes having a k-dimen-
sional intersection with a fixed plane oc€A(n) (namely, the plane q = 0). It turns out that the closure Alm)
determines a cycle (nonoriented) of codimension 1 (see 3.2.2),

In section 3.5 we prove

THE FUNDAMENTAL LEMMA. Alm) is two-sidedly imbedded in A(n) , i.e., there exists a con-
tinuous vector field transversal to Al(n) and tangent to A(n).

Such a vector field is constructed by means of the orbits of action of 8! = {eif} on A(). In § 3 we
prove

LEMMA 3.5.1, Every circle
B—etd, 0O, AEA(n), )
is transversal to Al(n).

For the positive side of A‘(n} we choose the one toward which the velocity vectors of the curves (4)
are directed.

The two-sidedness of Al(n) allows us to define
Inde HY(A(n), Z)
as the index of intersection of oriented closed curves on A(n) with Al(n) (Definition 3.6.1).

The index Ind is connected with the Maslov index ind and the cohomology class o of section 1.4,
Namely, it turns out that the choice of a positive side of Al(n) by means of the curves (4) agrees with the
definition of the positive side of T! from section 1.2. In § 4 we prove

LEMMA 4.3.1. The index Ind generates the Maslov index ind under the tangential mapping 7:
M® — A(n); ind = 7*Ind, i.e., for every curve y: S' —M we have ind y =Ind ry.

Proof of Theorem 1.5. Calculation of the index of the curves {4) {see Example 3.6.2) gives Ind y
=n= g (y) (Example 1.4.3). But HYA@®), Z) =Z (Corollary 1.4.2). So, Ind = . By Lemma 4.3.1 ind =
7*Ind and by Definition 1.5. &™=r1* o. Thus ind = a*, which was to be proved.




3. PROOF OF THE FUNDAMENTAL LEMMA

In this section we prove the two-sidedness of the singular cycle Al(n) and define the index IndeH!
(Am), Z).

3.1. Generating Functions

Let M be a manifold in phase space which is given in a simply connected neighborhood of the point
q = qy P =py by an equation of the form p =p(g).

LEMMA 3.1.1. The manifold M is Lagrangian if and only if there is a "generating function” s(q)
such that

p=—. (5)

q
Proof. Let s(q) = S p(q)dq. Independence of this integral of path is equivalent to the differential
qo
d(pdq) = dp /\ dq being 0 on M. But the value of dp/\ dq on the bivector £/\n is exactly equal to the skew-
scalar product [£, n], so that equality of dp/\ dq to zero on M is equivalent to M being Lagrangian. The
function s(q) satisfies (5), proving the lemma.

Remark 3.1.2. The function s(q) is determined up to a constant summand. In the particular case
where M is a subspace, this summand can be chosed so that s(q) is a quadratic form. From this there
follows

COROLLARY 3.1.3. The set of Lagrangian subspaces of the form p =p(g) (i.e., transversal to the
plane g = 0) make up in the manifold A(n) an open cell A%n), diffeomorphic to the linear space D of all real
symmetric matrices of order n. The diffeomorphism is given by the mapping

9: D> A'(n), @(Sy=»~rs (S€D, Ase A®(n)).
where A g denotes the plane p = Sq.

1
The proof is obtained from (5) by setting s(q) =3 (8q, 9.

The space of symmetric matrices D is R0 /2, Thus we have proved
COROLLARY 3.1.4. The manifold A(n) has dimension
dim A (n) == n(n 4 1)/2.

3.2. The Singular Cycle Al(n)

Notation 3.2,0. Let ¢ be the Lagrangian plane q = 0. We denote by AK(n) the set of all Lagrangian
planes A€A(n) whose intersection with the plane o is k-dimensional

LEMMA 3.2.1. The set Ak(n) is an open manifold of codimension k(k + 1)/2 in the Lagrangian Grass-
manian A(n).

Proof. We compare with each plane AEAk(n) its intersection with the plane 0. There arises a map-
ping of AE(n) on the Grassman manifold Gn, k of all k-dimensional subspaces of the n-dimensional space
o. It is easily verified that this mapping determines a fibering

An — Ry — A (n)— Gar.

i op—ky = M—K@m—k+1) g; i =kin— 3
By Corollary 3.1.4 dim A%n—k) 5 . Since dim Gn,k k(n—k), we find

dim A* (n) ok —kt ) L R(n—F) = nin 1) __k(k:t' i =dim A (n) —

kk -1)
2 2 2 :

which was to be proved.

COROLLARY 3.2.2. Al(n) determines an (unoriented) cycle of codimension 1in A(n).

Proof. The manifold A(n) can be considered algebraic. The closure Al(n) = kU {\k(n) is analgebraic
—_— =



submanifold of codimension 1(k(k + 1)/2 =1 for k = 1). Therefore Al(n) determines a (nonoriented) chain.

The singularity of the algebraic manifold Al(n) is the algebraic submanifold A%n) =kU é& (n) of codimension

3 in A(n), since k(k +1)/2 = 3 for k = 2. Thus the homological boundary of the chain AI(n) equals 0, which

was to be proved.

3.3. Coordinates on A(n)

We consider a Lagrangian plane A€ A(n). Let AEAk(n), i.e., let the intersection A[1o be k-dimen-
sional. We introduce coordinates on A(n) in a neighborhood of A.

Notation 3.3.0. Let K be a subset of the set 1,2, . . ., n. Denote by ok the Lagrangian coordinate
plane

oxk=1{p, ¢:P.=0, q=0 VEkEK, VICK}.

' LEMMA 3.3.1. The plane }\EAk(n) is transversal to one of the Cg coordinate planes o, where K
has k elements.

Proof. The intersection A ) o= Ap is k-dimensional. Consequently, the plane A, in o is transversal
to one of the C; (n—k)-dimensional coordinate planes 7 = o No, i.e., for some K we have A, (] o Kﬂ o=0.
We shall show that the plane okis transversal to A: oy Na=o.

By the condition, A, + 7 =0¢. From the Lagrangian property of A and o it follows that {A, Ay] =0
(since Xy A) and [og, 7] =0 (since 7 C o). Thus, [A{1og, Ag + 7] =0, i.e., [A (] 0k,0] =0. But the
largest number of pairwise skew-orthogonal independent vectors in R® equals n. Therefore the n-dimen-
sional plane ¢ is itself a maximal skew-orthogonal plane, thus A Nog) Co. So, ANogc= AN o Noy=
(Ay N 7) = 0, which was to be proved. ‘

From the lemma just proved it follows that every plane A€A(n) is transversal to one of the 28 co-
ordinate planes o .. This allows us to set up an atlas of A(n) of 2" charts.

One of the maps was constructed in section 3.1.1: the region A%n) is diffeomorphic to the space of
symmetric matrices D = RPN +1)/2 where the diffeomorphism g: D— A %) is defined as
¢(S)=As={p, q:p=Sq} ¥SeD.
Notation 3.3.2. We denote by IK the operator of multiplication by i of the variables z, =p,, +iq,,
n€K:
Ix: R*—Ren,

and for =iK§ _
Ge(M) = +p. (), pc(M)=—4gx () VxEK,

gv (M) = 4+ (E), pv(m) = py 13 Vv El\'

The operator Ik is unitary, therefore it carries Lagrangian planes into Lagrangian planes. In particular,
Ixe =ok. Thuslk carries the set A%n) of planes transversal to o into the set of planes IKA"(n) trans-
versal to g Thus the formula

Ok (S) == Ixhs€ A(n), S€D . (6)

gives a diffeomorphism ¢g: D —IA%n), where I;A%n) is the set of all Lagrangian planes transversal to
oK- ‘ ' '

By Lemma 3.3.1 the 2" regions IKAo(n). cover A(n) entirely, so that formula (6) gives an atlas of
A(n) of 2™ charts. ‘

LEMMA 3.3.3. The set Ak(n) is covered by CE charts ¢ D(K consisting of k elements) and in the
coordinates S = wk‘)\ is given by k(k +1)/2 linear equations S, =0 (Vu€K,Vr€K).

Proof. LetdimA{lo=k. By Lemma 3.3.1 A [ g,,=0 for some K of k elements. Therefore the
plane IpA = IIE’)\ is transversal to o and has an equation p = 8q. The intersection (IgA)) o =Ig(A 1 o)
has dimension k. But on g we have q 1 =0 (VIEK),. Pm =0 (VmeK). Therefore on a k-dimensional
subspace q; = 0 (IgK) of the plane p =0, k of the functions Py (p= Sq, u€K) must vanish identically. This
is equivalent to the equations S,y =0, as was to be proved.



3.4. Unitary Paramaterization

By means of the coordinates S introduced above it is possible to express the unitary transforma-
tions carrying the "purely imaginary" plane p = 0 into the plane Ag€A%(n).

It is obvious that we have

LEMMA 3.4.1. Let S, U be square n X n matrices with complex elements, Then

= Y

and for S, U, related by formulas (7),
8 is self-adjoint if and only if U is unitary,
S is symmetric if and only if U is symmetric,

Thus, formulas (7) set up a diffeomorphism between the space D of real symmetric matrices S and
the manifold of unitary symmetric nonsingular matrices U. (The unitary matrix U is nonsingular if —1
is not a proper value; for a real symmetric S we always have det(E + iS) = 0).

It is always possible to take the square root of a nonsingular unitary matrix, definingit by continuity,
beginning from VE = E.

LEMMA 34.2, Let A SEA°(n) be a plane p = Sq. Then the matrix

VT =£=

VE+§t
gives a unitary transformation carrying the plane p = 0 into the plane Ag.

Proof. Since S is symmetric and real, vE + < is real, and VU carries the plane p =0 into the same
image as E—iS. The latter transformation carries the point

©, 9)ER™, Le.. igER*CC
into the point
ig+SqeC, ie., (Sq, Q)€As TR,
which was to be proved.

COROLLARY 3.4.3. The mapping Det?: A(n) —S! of section 1.3 is given by the formula

E—iS
2 hg = det .
Det? &g & T

. COROLLARY 3.4.4, The symmetric nonsingular unitary matrix U for which VU carries the plane
p = 0 info the plane A is uniquely determined by this plane A€A%n).

In fact, by 3.4.1 U is uniquely determined by S, and by 3.4.2 S is uniquely determined by A.
3.5 Two-Sidedness of the Singular Cycle

Let A be a Lagrangian plane. Then each of the planes elfX g Lagrangian.

LEMMA 3.5.1. If AéA'(n), then the curve v: S' — A(n),e19 —el0A is transversal to the cycle Al(n)
at the point 8 = 0.

Thus, the velocity vectors v(A) = dde 0=10 (ew)\) form a transversal structure to Al(n), from which
there follows the

FUNDAMENTAL LEMMA. The singular cycle Al(n) is two-sidedly imbedded in A(n).

We will carry out the proof of Lemma 3.5.1 in three stages.

A. Firstlet A6A)n), A= A g, where S€D is a real symmetric matrix. We shall compute the coor-
dinates of the velocity vector of the curve elfa in this coordinate system.

ILEMMA 3.5.2. For any matrix S€¢D

_E. —1 0i0 I 4 Qe
Gl = —@E s,



Proof of Lemma 3.5.2. According to section 3.4 the plane A is in a unique correspondence with a
nonsingular unitary symmetric matrix U so that

E—U
;‘-:A'S(U): S(U)“—‘—lma

and VU carries the plane p = 0 into A.

Let U(6) = e2i6 U. The matrix U(0) is unitary, symmetrig,afndfor small |¢] nonsingular, so that
VU(6) =el®VU. Therefore vU(6) carries the plane p = 0 into elfA, so that

Aswin = €%swy, or g ehsey = S(U (B)). (8)

The vector Tole=09 1e10 lies in the tangent space to the linear space of symmetric matrices D;

this tangent space is naturally identified with D itself. With this identification, by the formula of 3.4.1,

d

de

d l.E~e'”°U _ 4w

= =E - S2,
d8 joy E-} ey (E+UP

SUmy=

B=
which together with the formulas (8) proves Lemma 3.5.2.

B. Now let AeéAl(n). By Lemma 3.3.3 the point A€Al(n) belongs to one of the n charts oD, where
K consists of one element w, 1 = y <n. In other words, in the notation of 3.3.2
A= Ik As,where S €D, AsEA° (n).
It is easy to calculate the velocity vector of the curve v: S — A(n), el — eifa for 9 =0 in the co-
ordinate system goI?A = 8.

LEMMA 3.5.3. For any matrix Se€D, XA =IgA s

el le® == — - S2).

® e-:oq),(e A (E - 8%

Indeed, by Definition 3.3.2, ¢y =Ii ¢, and Ix commutes with elf . Therefore
K™ K K

—1 {0 —1 8

ox e A =9 k' € Ixhs = 9 e As,
and Lemma 3.5.3 follows from Lemma 3.5.2.

C. The singular cycle Al(n) in the coordinates S = (pf{1)\ has an equation Snn =0 (Lemma 3.3.3).

The velocity vector v =—&% gol'éeiek by Lemma 3.5.3 is a negative definite matrix, —v
6=0

vand Al(m) are transversal, which proves Lemma 3.5.1.

wn = 1. Thus,

Remark 3.5.4. At the same time we have shown that the vector v is directed to the side of Al(n)
where Svm > 0.

3.6. The Index Ind of Curves on A(n)

Let y be an oriented curve in A(n), transversal to A’_(n), and let v(\) be the velocity field of Lem-
ma 3.5.1,

DEFINITION 3.6.1. By Ind vy we shall denote the index of intersection of the curve y with the cycle
Al(n), equipped with the field v(p).

In other words, Ind y =y —v _, where v + is the number of points of intersection of v with Al(n)
in which the vectors y and v lie on the same side of Al(n), and v_ is the number of those onwhich they
lie on opposite sides.

The index of the closed curve vy, like every index of intersection, is determined by the homology
class of v and can be considered as a one-dimensional cohomology class

Ind ¢ H' (A (n), Z).
EXAMPLE 3.6.2. The index of the closed curve y: S! — A(n), formed by elfA, 0 =9 =1, is n:

Indy =n,



Proof. We have that dim Amn) = dim Al(n) is 2 (Lemma 3.2.1). Therefore for almost all A the
curve elf A does not intersect A%(n). Such a curve is transversal to Al(n) at every point of intersection
(Lemma 3.5.1). In this case Ind v is simply the number of these points of intersection (Definition3.6.1).

Let A€A%n). By Lemma 3.4.4 we have A = A S(U) where U is a unitary symmetric nonsingular
matrix. We may consider the plane A to be such that all proper vales of the matrix U

iap

IR, fai<m,
are distinct.
But
03 —
et} = l's(ezio o

by formula (8) of 3.5.2, and

(.. €A () (det(E + e®U) = 0)

s(eziﬂu)
by Lemma 3.4.2. In other words, in the points of intersection of y with Al(n)
=" (mod ).
2
There are precisely n such 6 on the interval 0 = ¢ =7. Thus, Ind vy =n, as was to be proved.

§ 4. PROOFS OF THE THEOREMS ON GENERAL POSITION
Here we prove Theorems 2.1 and 2.2 of § 2.

4,1. Transversality

Notation 4.1.1. Let A be a smooth manifold, and let a€A. By TA,; we denote the tangeht space to
A at the pointa. If f: A—B is a smooth mapping, then by fx: TA, —-TBf (a) Ve denote the differential of
f ata,

Let f : A —B, h: C —B be two smooth mappings. The mappings f, h are called transversal at the
point beB if

f.TAs+h,TC. = TB,

for every pair of points a€A, c€C, for which f (2) =h(c) =b. The mappings f and h are transversal if they
are transversal at every point beB.

In the particular case where f or h is an imbedding, we may speak of the transversality of a map-
ping to a submanifold or of the transversality of two submanifolds.

The concept of transversalitv extends also to the case where A is the union of several manifolds,
A= U Ak [for example, Alm) = kUl Ak(n) in § 3]— in this case the restriction of f to each Ak must be
transversal to h. '

It is easy to prove (see, for example, {3]) the lemma of M. Morse and A. Sard

LEMMA 4.1.2. Letf: A —B be a smooth mapping. Then the measure of the set of points b&éB not
transversal to f equals 0 (the point bCB is a zero-dimensional submanifold of B).

From Lemma 4.1.2 there follows (see, for example, [4])

LEMMA 4.1.3. Let B be a homogeneous space on which a Lie group G acts transitively (Vg ¢G, g:
B—B is a diffeomorphism). Let CGB be a smooth submanifold of B and let f: A —B be a2 smooth map-
ping. Then the measure of the set of points g€G for which the mapping

fo A—B. fi(0) = gf@
is not transversal to C is zero.
For completeness we carry out the proof of Lemma 4.1.3.

Remark 4.1.4. Since the union of a countable number of sets of measure zero has measure zero, it



is sufficient to prove Lemma 4.1.3 for a neighborhood Ay of a point a, € A, a neighborhood C; of a point
¢, € C and a neighborhood of the identity e in the group G.

From the transitivity of the action of G there follows easily

ASSERTION 4.1.5. There exists a diffeomorphism of the product of spheres

u:Dy x Dy G,

D= R |1 <) vy =dimB—dimC, vy=dimG— v,
such that u(0, 0) =e, and the mapping
3: Dy X Dy xCp—> BX Dy,
given by the formula
B, i O =(u(x,. )¢, ) Vx €Dy y€Dy c€Go
is a diffeomorphism of Dy X D, X C, onto some neighborhood E of the point (¢, 0) in B X Ds.
Now define the projection of ECB X D, on Dy X D,

@®: E— Dy x D, by the formula ®3{x, 4, )= (1 o).
Further, define the mapping '

F: Ax Dy B'X D, by the formula f{a, 1) = (f (), y).

We apply Lemma 4.1.2 to the composite mapping
e=®°}: Ay X Dy — Dlng.
ASSERTION 4.1.6. Let x,y€D, x D, be a point transversal to the mapping ©. Then the mapping

fgI Ag'—' By &= (u (.1’, y))-lu
is transversal to the imbedding C,C B.

Proof of Assertion 4.1.6. Consider &~!(x, y)(x €Dy, y€D,). Obviously, $ (%, y) =(Cx’y?y), where
Cx,y =u(x, y)Cy CB. The kernel of the differential & «: T(B x Dz)b,y - T(Dy X Dz)x,y is exactly thetangent
space to (Cx,y, y):

ker @, =T (Cx_y. Woy

Therefore the transversality of the mapping ® = &- f to the point x,y implies
1T (4 % Dalgy + T Diayy =T (B X Daly

for all a €A, for which f (a) = beCX,y. 'Thus, the mapping f: Ag—B is transversal to the imbedding ;
Cx,yCB. Applying the diffeomorphism g = (u(x, y))~1€G, we see that gf : A, —B is transversal to ng,y =
Cy as required. : ‘

Proof of Lemma 4.1.3. We apply Lemma 4.1.2 to @. The set of points x, y€Dy X D, not transversal
to @ has measure zero. The corresponding set of points g = (u(x, y))~! €G has measure zero in G. For the
remaining g close to e the mapping f g is transversal to C, by 4.1.6. This proves Lemma 4.1.3 according
to remark 4.1.4.

4.2, Proof of Theorem 2.1.

We apply Lemma 4.1.3 to the case where A is a Lagrangian manifold M2, B is the Lagrangian Gras-
smanian A{n), f is the tangential mapping 7: Mn-—- A{n), C is the submanifold Ak(n}CiA(n}, and G is the
unitary group U(n}.

From Lemma 4.1.3 it follows that for almost all uéU (n) the manifold uM™ is such that its tangential
mapping 7 is transversal to every Ak(n) G AMm), k=1,2, .. .. Letus show that such a manifold uMP is
in "general position” in the sense of Theorem 2.1.

Assertion 1 of Theorem 2.1 follows from the implicit functions theorem and Lemmas 3.2.1 and 3.2.2.
Assertion 2 follows from the fundamental lemma of section 3.5. Assertion 3 is dedueced from Lemma 3.3.1.
Assertion ¢ is obtained from Lemma 3.3.3 for k = 1. Finally, Assertion 5 follows from Lemma 3.5.1 and
remark 3.5.4. Theorem 2.1 is thus proved.
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4.3. Proof of Theorem 2.2

Let M™ be a Lagrangian manifold in general position, and let v: St —M" be an oriented closed curve,
transversal to the singular cycle Z.

LEMMA 4.3.1. Let 7oy: S! — A(n) be the tangential mapping of M" onto the curve v. Then
indy = Ind voy.

In fact, 21 = r-1p! (n) (definitionsof sections 2.1 and 3.2). Further, the positive (in the sense of
section 2.1) side of Z!is carried under the mapping T into the positive (in the sense of Definition 3.6.1)
side of Al(n) —this follows from remark 3.5.4. Thus, each point of intersection of y with Z!gives to ind
the same contribution as the corresponding point of intersection of 7.y with Al(n) to Ind, which proves
Lemma 4.3.1. :

At the same time we have proved Theorem 2.2. also, since Ind 7 . v does not change under replace~
ment of v by a homologous curve y' [this follows from the fact that dim A2(n) = dim Al(n)—2].
§ 5. A QUASICLASSICAL ASYMPTOTIC EXPRESSION

Here we give without proof the asymptotic formulas of Maslov, in which the index plays a role, for
the simplest example.

5.1. Asymptotic Expression as h — 0 of the Solution of the SchrodingerEquation

hSE =~ —Z AP+ U@ b =¥ . 6R" ®)

with the initial condition

.
= [(q)
$l_, = 0(q)e" .where(g)' is a finite function, (10)

To the Schriodinger equation there corresponds the classical dynamical system given in the 2n-dimen-~
sional phase space R 2" by the Hamilton equations

. aH - aH 1
= e = H = — 2 | i
=% p 3 2;H—U(q)

The solutions of the Hamilton equation define a one-parameter group of canonical* diffeomorphisms of
the phase space—the phase flow gt- R2n —R2D,

Tolthe initial condition (10) there corresponds a function ¢(q) on a surface M", given in the phase
spaceR & by the equations
— I a o
M= {p, g: p(q) = aq}-

The surface M is projected uniquely onto the g-plane. It is Lagrangian by Lemma 3.1.1. The phase
flow gt carries M into another Lagrangian surface gt M = M;.. The surface M; is no longer necessarily
projected uniquely onto the g~plane. There arises a mapping Q(q) = q(g (g, ) (Fig. 2).

Let xj = (pj, qj) be points of M such that gtx (P], Q) €M;. Assume that the Jacobian — DQ _ = 0.

Dq |4= g

Maslov proved the following asymptotic formula for the solution of equation (9) with the condition
(10).

THEOREM 5.1, Ash —0

*A diffeomorphism g: R — R is called canonical, if for every closed curve v: S' —R?™ we have

‘y pdq = sa pdq. The differential g, has then at each point a simplectic matrix: under a canonical trans-

Y oy
formation the 2-form dp /\ dq goes into itself. Therefore a Lagrangian manifold under a canonical dif-
feomorphism goes into a Lagrangian.
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DQ —‘/ — S;(Q0)—
q vQ 0 =305 7o,
where Sj(Q, t) is the action along the trajectory g9xJ-:

t

S@0=fa)+{Ld L=L—U@: ©O ¢0) =2

0

and pj j is the Morse index of the trajectory g X i.e., the number of
points q(gex ), 0 <6 <t, focal to M.

R —

5.2. Connection between the Maslov and Morse Indexes

Fig. 2
In Theorem 5.1 there appeared the Morse index u. The Morse
index is a special case of the Maslov index; there holds

THEOREM 5.2. Consider in the (2n + 2)-dimensional phase space R ¥ 2={p, q}, p =py, p: 4=qp
q (p, @) €ER2D, the (n + 1)-dimensional manifold M: (p, q) €M¢, @y =t, py =—H(p, q). Then the manifold M
is Lagrangian, and the Morse index of the trajectoryg”x, 0 < 6 < t, is the Maslov index of the curve
(6, —H, g 9x) on the manifold M.

The proof follows easily from the definitions of the indexes p and ind: since(zzH ¢, g) >0,a
simple focal point gives a contribution of + 1 to ind. ”
COROLLARY. For any curve v on M » o )
indgy —indy = n(g® 1) —p(g* 1)
where g%+, g%y-(0 =6 =1) are trajectories with endpoints v, 8y = y* —
For, the quadrilateral v, g *, gty (g v19)~1on M is, obviously, homologous to zero; therefore

its Maslov index equals zero (Theorem 2.2), which in view of Theorem 5.2 proves the desired relationship.

5.3. Quantization Conditions

- In Theorem 5.1 there appear indexes of curves which are not closed. The indexes of closed curves
enter into asymptotic formulas for stationary problems.

Let M be an invariant Lagrangian manifold of the phase flow gt, lying on the hypersurface H = E
(such invariant manifolds exist not only for integrable systems: see [5]).

Maslov proved
THEOREM 5.3. The equation
1
SAY =2 (U@ —E)Y

has a series of proper numbers Ay — o with asymptotic expressions Ay = uy + O 'I;ri) if for every
y€H(M, Z)

My .
' dg=ind v (mod 4).
. E]? peq (11)

In this case the characteristic functions yy are also related to the manifold M (in a sense defined
precisely in {1] and under assumptions of the type of a simple spectrum).

In the particular case n =1 the index of the circle equals 2, and formula (11) becomes the classical
"quantization condition”

pyHpdg=2a(N + )
Y
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