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and the algebra of quaternions
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Introduction
The spreading of a wave over the surface of a two-dimensional sphere may be

described by means of various curves—wave fronts, rays, caustics, and so on.
A system of wave fronts is a system of equidistants of a single curve. Even if this

curve is smooth the wave fronts in general have singularities. The singularities of
all the wave fronts of the system themselves form a curve, called the caustic. The
caustic in general has cusps, just as the wave fronts do.

Another description of the spreading of a wave is given by a Lagrangian curve.
Such a curve divides the area of the sphere in half but in general has no singularities
apart from self-intersections.

The connections between all these curves, their singularities and their topological
invariants are clarified by means of three natural complex structures of quaternion
space: namely the connections between three projections of the same Legendrian
knot along three Hopf bundles S3 -t S2.

The following are studied below as consequences of these connections:
1) several generalizations of the classical four-vertex theorem for a plane curve;
2) an unusual version of the Gauss-Bonnet formula for an immersed circle in the

sphere and for wave fronts;
3) an explicit formula for the Maslov index of a Lagrangian curve on the 2-sphere;
4) unexpected connections between the indices of points with respect to hyper-

surfaces on even-dimensional spheres;
5) conformal invariants of an immersed circle in the plane that generalize the

Bennequin invariant;
6) new—partly proved and partly conjectured—generalizations of the Morse

inequalities and theorems of Chekanov and Givental' on Lagrangian
intersections and Legendrian links in symplectic and contact topology;

7) theorems on a duality between area and length in spherical geometry.
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In a natural way all these facts arise directly from consideration of the influence
exerted by the symmetry of the quaternion units on the symplectic geometry of the
2-sphere and the contact geometry of the 3-sphere. Without these connections the
facts stated might have remained unnoticed for a long time.

Since, however, the quaternions can be banished from the formulation of the
theorems in question (and, if it were desired, from their proof), I begin straight
away with their formulation (the motivation of which, for the most part, lies in the
symmetry of the quaternions).

CHAPTER I

THE GEOMETRY OF CURVES ON S2

We present here geometrical constructions which relate caustics and wave fronts
on the 2-sphere. The meaning of these constructions would be clearer if considered
from the point of view of contact and symplectic geometry. However I begin with
very elementary formulations, which do not require any prior knowledge for their
understanding.

§ 1. The elementary geometry of smooth curves and wave fronts

With every curve on the 2-sphere of radius 1 we associate two other curves. The
first of these is obtained by moving each point of the curve a distance π/2 along
normals to the original curve. This curve consists of the centres of curvature of
great circles of the sphere tangent to the original curve. For this reason it is said
to be dual to the original curve (Fig. 1).

Figure 1

Definition. The curve dual to a given co-oriented curve on the sphere is the curve
obtained from the original curve by moving a distance π/2 along the normals on
the side determined by the co-orientation.

This definition applies not only to smoothly immersed curves, but also to wave
fronts, having cusps (of semicubical type or, in general, of type xa = ya+1).
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The dual curve itself is naturally co-oriented and is a wave front equidistant from
the original one (lying at a distance π/2 from it).

The cusps on the original front correspond to points of inflection on the dual
front, while points of inflection on the original one correspond to cusps on the dual
(a point of inflection of a spherical curve is a point having an order of contact
greater than one with the tangent great circle).

The second dual of a front is antipodal to the original one, while the fourth
coincides with the original one.

Definition. The derivative of a co-oriented curve on the oriented standard sphere
S2 is the curve obtained by moving each point a distance π/2 along the great circle
tangent to the original curve at that point (Fig. 2). The direction of motion along
the tangent is chosen so that the orientation of the sphere, given by the direction
of the co-orienting normal and the direction of the tangent, is positive.

Figure 2

This definiton applies also not only to smoothly immersed curves, but also to
wave fronts.1

Example. On the unit sphere the parallel of latitude of Euclidean radius cos θ is
dual to the parallel of lattitude of Euclidean radius sin#. The length of the first
parallel is equal to the area between the second parallel and the equator of the
sphere.

The derivative of any parallel of latitude is the equator parallel to it.
It turns out that the coincidence of length and area and the division by the

equator of the sphere into halves is not accidental.

Theorem 1. The derivative of a wave front coincides with the derivative of any of
its equidistants and is a smoothly immersed curve on S2 even if the original wave
front has generic singularities.

1 Derivatives of smoothly immersed curves are studied in a recent work by B. Solomon
(B. Solomon, Tantrices of spherical curves, Preprint, University of Indiana, 1993) that refers to
earlier results of Jacobi and Kagan. The author is grateful to S.L. Tabachnikov for communicating
this preprint.
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Remark. In the definition of the derivative the movement along tangents by a dis-
tance π/2 may be changed to moving by an arbitrary constant distance s. The curve
so obtained is also smoothly immersed in S2, provided that s is not a multiple of π
(as B.A. Khesin has shown to me).

For a plane wave front one can move all the points along tangents by an arbitrary
non-zero constant distance: one always obtains a non-singular (smoothly immersed)
curve.

The derivative curve of a closed wave front is not an arbitrary curve immersed
in the sphere: it satisfies a topological condition of quantization.

If the derivative curve has no points of self-intersection, then this condition
consists simply in that, just like the equator, it divides the area of the sphere into
two equal parts.

On the other hand if the derivative curve of a closed co-oriented front has points
of self-intersection, then the condition of quantization is given by the formula

the area bounded by the derivative curve = — πμ,

where μ is the Maslov index of the original wave front. The Maslov index of a
wave front, defined in [1], is equal to the algebraic number of cusps of the front.
In calculating μ a semi-cubical cusp is considered to be positive if the chords that
join points of the branch approaching the cusp to points of the branch leaving it
co-orient the curve positively in a neighbourhood of the cusp. The number μ so
defined is the Maslov index of the closed curve that corresponds to the front on the
two-dimensional Lagrangian manifold of the cotangent bundle of the sphere, that
is, on the symplectization of the front (see [1]).

To clarify the quantization condition it remains to define 'the area bounded by
an immersed curve on 5 2 ' . Of course, this area is the integral of the standard area
form over a 2-chain, whose boundary is the given immersed curve in S2.

However the 2-chain defined by this condition is not unique, but only modulo
the 2-cycle S2. So 'the area bounded by an immersed curve in S2' is defined only
modulo 4ττ.

It turns out, however, that among all the 2-chains bounded by a given curve
immersed in the 2-sphere there is a distinguished 2-chain (called below the charac-
teristic chain).

The characteristic chain appears in an analogue of the Gauss-Bonnet formula for
curves immersed in S2. There is an analogous construction also for hypersurfaces
on all even-dimensional spheres.

The geodesic curvature of a co-oriented curve is considered to be positive if the
curve turns away from its geodesic tangent on the side of the co-orienting normal.

Theorem 2. The integral of the geodesic curvature of a closed co-oriented curve
immersed in S2 is equal to the area of its characteristic 2-chain.

The integral of the area of this characteristic 2-chain for an arbitrary closed
co-oriented front is equal to — πμ, where μ is the Maslov index of the front.

The co-orientation of the derivative curve is chosen here so that the co-orienting
vector together with the orientation form a positively oriented frame of S2. Such a
co-orientation is said to be correct.
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I now introduce a formula for calculating the characteristic chain of a co-oriented
hypersurface on an oriented even-dimensional sphere.

This formula has the form of the product of the volume element of the sphere by
a locally-constant function on the complement of the hypersurface. This locally-
constant function depends only on the co-orientation of the hypersurface and does
not depend either on the orientation of the hypersurface or the orientation of the
sphere. On change of sign of the co-orientation of the hypersurface this function
changes sign.

We select one of the points of the complement of the hypersurface on the sphere.
We call this the 'point at infinity' and denote it by B.

Stereographic projection maps the complement to the point Β to an oriented
Euclidean space. The hypersurface projects to a compact co-oriented hypersurface
lying in this space. This hypersurface of the Euclidean space has a certain index is
(the degree of the Gaussian map to a sphere). Moreover, for any point A of the
complement to this hypersurface there is denned the winding number i% of the
hypersurface around A (the degree of the map of the hypersurface to a sphere,
sending a point C to the direction of the vector AC).

Theorem 3. The difference i^ —(ίβ/2) is conformally invariant (that is, it depends
only on the point A and does not depend on B, the chosen point at infinity).

This difference, considered as a multiplicity function of the point A (integrally
or semi-integrally valued), turns the complement to the original hypersurface into
a chain whose boundary is the original hypersurface. This is the chain called the
characteristic chain of the original hypersurface.

The conformal invariant of the winding number of the hypersurface A (corrected
by subtracting is/2) is explained by the following elementary (but apparently not
previously observed) identity.

Theorem 4. There is a formula connecting the indices of points with respect to a
hypersurface and the indices of the hypersurface in even-dimensional space, namely

2iB

A = iB -ΪΑ-

Consider now a closed co-oriented wave front Γ on S2 with Maslov index μ, its
correctly co-oriented derivative curve λ with length element dl, and its characteristic
2-chain c (so that dc = λ).

Theorem 5. The integral of the area form ω over the characteristic chain, the
Maslov index of the original wave front and the geodesic curvature κ of its derivative
are connected by the relations

ω — —πμ = / κάΙ.

Remark. The equality of the left and right parts of these equalities is a general
formula of Gauss-Bonnet type, satisfied by any closed immersed curve λ (not nec-
essarily occurring as the derivative of a closed front).

A similar formula of Gauss-Bonnet type holds also for hypersurfaces immersed
in a sphere of arbitrary even dimension.
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The reason for the connection between the derivative curve and the Maslov
index is the following, also elementary, fact concerning the geometry of curves on
the standard two-dimensional Riemannian sphere.

Let us recall that the derivative curve is obtained from the original wave front
on the sphere of radius 1 by moving its points a distance π/2 along the tangent
great circles.

Theorem 6. The directions of these great circles at points of the derivative curve
are parallel in the sense of the standard Riemannian geometry of the sphere S2.

The preceding theorems allow one to determine necessary and sufficient condi-
tions on a curve immersed in S2 for it to be the derivative of a closed co-oriented
wave front: the area of its characteristic chain must be a multiple of 2π.

In particular, a curve embedded in S2 is the derivative of a closed co-oriented
front if and only if it divides the sphere into two parts of equal area (like an equator
of the sphere).2

The cusps of a system of fronts equidistant from one another form the caustic
(Fig. 3).

Figure 3

Theorem 7. The caustic of a system of equidistants from a closed co-oriented wave
front on the standard two-dimensional Riemannian sphere is dual to the common
derivative curve of any of the fronts equidistant to one another that form the family.

Remark. In particular, the caustic does not have any points of inflection, since its
dual is the derivative curve of fronts smoothly immersed in the sphere and so has
no cusps.

2The derivative of a smoothly immersed closed curve has full geodesic curvature equal to 0
and does not have an arc of full geodesic curvature π; each closed smoothly immersed curve in the
sphere with these properties is the derivative of a smoothly immersed closed curve, as B. Solomon
has shown in the work cited earlier.
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Theorem 8. The points of inflection of a family of fronts equidistant from one
another lie on two smoothly immersed curves in S2, each of which bounds an area
which is a multiple of 2π, these being the derivative curves of the caustic.

In fact the points of inflection of a front lie at a distance π/2 from the cusps of
the dual front along the great circle orthogonal to both fronts.

At a cusp of a front this great circle of the sphere is tangent to the caustic.
Therefore the points of inflection of all the fronts of the family lie on the pair of
derivative curves of the caustic (furnished, for each of the two curves of the pair,
with one of the two possible co-orientations).

The topological restriction on the area bounded by the derivative curve is trans-
formed on transfer to the dual curves into a quantization condition on the length
of the caustic.

Definition. The oriented length of a generic caustic is the alternating sum of the
lengths of its segments between successive cusps.

Theorem 9. The oriented length of the caustic of a system of closed equidistant
wave fronts on the standard Riemannian two-dimensional sphere is equal to an
integral multiple of 2π (in fact equal to π μ, where μ is the Maslov index of any
front of the family).

Which of these segments of the caustic to be counted here as positive will be
settled in § 24.

Theorem 9 generalizes a known property of the caustic of a closed plane curve
(the oriented length of such a caustic, for example the astroid, arising as the caustic
of an ellipse, is equal to zero).

The stated property is explained by the fact that the front is obtained from the
caustic 'by unwinding a thread from it' (just as an evolvent from its evolute). The
increase in the length of the free part of the thread is equal to the length of the
thread unwound from the caustic, so long as the caustic is convex (Fig. 4).

Figure 4
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On passing through a cusp of the caustic the direction of convexity changes. It
follows that the length of the unwound thread after such a point should be counted
with opposite sign.

If the evolvent of a plane curve is closed, then, for a complete circuit of it, the
increase in length of the free end of the thread must be equal to zero. Therefore the
algebraic sum of the lengths of the segments of the plane caustic between successive
cusps (with alternating signs) must be equal to zero.

On the sphere this sum is not zero, but is a multiple of 2π, since the return
to the original point of the evolvent no longer requires the return of the length
of the free part of the thread to its original value. The increase of this length by
2π corresponds to adding to the free part of the thread a complete circuit of the
sphere along the great circle containing the free part of the thread. In that case
the increase of the length of the free part of the thread by an integral multiple of
2π does not change the end point of the thread.

The preceding theorem shows that this increase of the length of the free part of
the thread after a full circuit of the caustic is equal to πμ, where μ is the Maslov
index of the front (which for a co-oriented front is always even).

Remark. The equality of the area of the characteristic chain of a closed curve
immersed in the sphere and the oriented length of its dual curve is independent
of the fact that the immersed curve is a derivative: this is a general 'area-length
duality' in the geometry of S2 (the sign of the length changes on passage through
each cusp of a generic front).3

To formulate all these formulae with their boring signs with a reasonable degree
of generality I must first of all recall some definitions from the general theory of wave
fronts and caustics in contact and symplectic geometry. After this, general theorems
will be proved (with the aid of quaternions). From these the theorems of this section
will follow. Theorem 1 is proved in §§ 6 and 9 of Chapter II. Theorems 2, 5 and 9
are proved in §§ 22, 23 and 24 of Chapter V. Theorems 3 and 4 are proved in § 18
of Chapter IV. Theorems 7 and 8 are proved in § 4. Theorem 6 is proved in § 12 of
Chapter III.

§ 2. Contact manifolds, their Legendrian submanifolds and their fronts

A linear hyperplane E™"1 of a tangent space to an η-dimensional smooth man-
ifold Mn is said to be a contact element of Mn. A co-orientation of the contact
element is the choice of one of the two halves into which it divides the tangent space.
A co-orientation of a contact element of a Riemannian manifold is determined by
a choice of direction on the line normal to it.

All the (co-oriented) contact elements on Mn form the bundle space Ε2η~λ of a
smooth fibration

p: ST*Mn -> Mn

with fibre S"'1 (the cotangent sphere bundle of Mn). This manifold E2n~l is
equipped with the natural 'tautological' field of tangent hyperplanes. The hyper-
plane of the tautological field at a point s of E2n~1 is the inverse image by p, of

3The area-length duality was encountered earlier by Santalo in works on integral geometry; it
has recently been employed by S.L. Tabachnikov in Russian Math. Surveys 48:6 (1993), 81-109
and by J.C. Alvares (Rutgers University, 1994).
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the hyperplane in the space tangent to Mn, which is represented by the point s of
the manifold E2"-1.

The tautological field of hyperplanes on E2n~x is called the natural contact struc-
ture of the manifold of contact elements on M".

Example. The manifold of co-oriented contact elements of S2 is the projective
space E P 3 = S3/ ± 1. Its natural contact structure is obtained from the field of
planes orthogonal to the fibres of the Hopf bundle S3 -> S2, under the projection
S3 -»· S3/ ± 1.

The identification ST*S2 « S3/ ± 1 will be described in detail below, in §6.

Definition 1. A Legendrian curve in a three-dimensional contact manifold E3 is
an integral curve of the contact structure, that is, an immersed curve in Ε3, whose
tangent at each point lies in the plane of the contact field of planes.4

Example. Each curve Γ immersed in a surface M 2 determines a Legendrian curve
in the contact manifold E3 = ST*M2. This curve consists of the contact elements
on M2, tangent to Γ.

A point on M2 also determines a Legendrian curve in E3. This curve consists
of the contact elements of M2, applied at the point (that is, it is a fibre of the
cotangent sphere bundle).

Definition 2. The front of a Legendrian curve L : Sl -> E3 on the manifold E3

of contact elements of a surface M2 is the projection of this Legendrian curve onto
the surface pLiS1) C M2.

The front of a generic Legendrian curve on the surface has semicubical cusps and
points of transversal self-intersection as its only singularities.

The contact elements forming the original Legendrian curve determine a
co-orientation of that front, namely a concordant choice of normal to the front
(at double points of the front there are two normals).

Such co-oriented fronts Γ of generic Legendrian curves on the 2-sphere will be
the starting material of our constructions.

§ 3. Dual curves and derivative curves of fronts

We consider a co-oriented front Γ in an oriented sphere S2 of radius 1.
The great circles of the sphere, orthogonal to the front, will be called its rays.

The rays are oriented (by the co-orientation of the front).
On moving each point of the front along the ray by a distance t we obtain a new

curve Γ*, called the t-equidistant of the front. For example, Γ2η = Γ.
According to the Huygens' principle, an equidistant is orthogonal to the rays

emanating from the original front. An equidistant co-oriented by the directions of
these rays is the front of a Legendrian curve, diffeomorophic (and contactomorphic)
to the original one.

4 A Legendrian submanifold of the contact manifold E2n l is an integral submanifold of max-
imal possible dimension (equal to η — 1).
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Definition 1. The front Γ ν equidistant by π/2 from the original one is said to be
dual to Γ.5

Example. The curve dual to a parallel of Euclidean radius sin θ on S2 is a parallel
of Euclidean radius cos#.

The following lemma (clarifying the connection with projective duality) is
obvious.

Lemma 1. The dual front is formed from the centres of the great circles tangent
to the original curve. The second dual of a front is antipodal to the original one:
pVV _ p

In particular, points of inflection of the original front correspond to cusps of the
dual (and conversely).

The co-orientation of the original front on the oriented sphere determines at
every point of the front (including singularities) a positive tangent direction (such
that the frame determined by the co-orientation and orientation directions orients
the sphere positively).

Definition 2. The derivative curve Γ" of a front Γ is formed from those points of
the great circles tangent to Γ which lie at a distance π/2 from the point of tangency
on the positive side.

Example. The derivative of a parallel of latitude of the sphere is its equator.

Remark. The derivative curve may be considered to be the curve of normals in the
same way that the dual curve may be considered to be the curve of tangents.

The following lemma (clarifying the term 'derivative') is almost obvious.

Lemma 2. The derivative of a front coincides with the derivative of an arbitrary
front equidistant from it.

Example. (Γ ν)' = Γ': the derivatives of dual fronts coincide. The derivatives of
anitpodal fronts also coincide: (—Γ)' = Γ'. Change of the orientation of a front
changes the sign of the derivative.

Theorem 1. The derivative of the front of a generic Legendrian curve is a smooth
curve (immersed in the sphere), bounding the area —πμ, a multiple ο/2π.

The topological meaning of the even number μ appearing here (in fact the Maslov
index) will be considered in Chapter V.

Theorem 2. The great circles tangent to a given front form at the points of the
derivative curve of this front a framing, parallel in the sense of the Riemannian
geometry of the sphere.

The connection between the integral of the geodesic curvature of the derivative
curve and the Maslov index of the front will be discussed below in Chapter V.

5The differential geometry of a pair of dual hypersurfaces on spheres has been a classical object
of study (see, in particular, Chapter 17 of Santalo's book); it is remarkable that here it is still
possible to find new results, even for curves on the two-dimensional sphere.
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Theorem 3. The angle between the great circles tangent to two equidistant fronts
at the point of their intersection on the derivative curve is equal to the distance
between the equidistants (and, in particular, is constant along the derivative curve).

Theorem 3 is obvious.
The proof of Theorems 1 and 2 will be given below in § 18 and § 12.

§ 4. The caustic and the derivatives of fronts

Consider the family of all the equidistants of a given co-oriented front on the
standard sphere. Even if the original front is non-singular, some of its equidistants
will have singularities.

A singular point of a front is a critical value of the projection of the corresponding
Legendrian curve.

The singular points of generic fronts are semicubical cusps. The double points
of a front in general are not singular.

Definition 1. The caustic of a family of fronts equidistant from one another is the
curve formed from their singular points.

The caustic of a generic front has as its only singularities semicubical cusps and
points of transversal self-intersection.

Theorem 1. The derivative of a front is dual to its caustic.

Proof. The front at a cusp is orthogonal to the caustic. Therefore to move such
a point a distance π/2 along the tangent to the front is the same as moving it a
distance π/2 along the normal to the caustic (Fig. 5).

Figure 5

Remark 1. The caustic, in general, is not co-oriented. In this theorem the
co-orientation of the front is not taken into account. Therefore the derivative of the
front in Theorem 1 is understood to be the union of both (mutually
antipodal) components, obtained by moving along the tangent a distance π/2 in
either direction.
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Remark 2. The caustic of a co-oriented front on the sphere consists of two different
(mutually antipodal) components. This follows easily from the evenness of the
number of cusps of a co-oriented curve on the sphere.

Corollary. The caustic of a family of fronts on the sphere equidistant from one
another has no points of inflection.

In fact, its dual, being the derivative of any of the fronts equidistant from one
another, has no cusps (by Theorem 1 of §3).

Theorem 2. The points of inflection of all the fronts equidistant from a given one
form an immersed curve on the sphere, bounding an area that is a multiple of 2π
(namely the derivative of the caustic, which is consequently the second derivative of
the front).

Proof. The points of inflection of the front are obtained from the cusps of the dual
front (lying on the caustic) by moving a distance π/2 along the ray orthogonal to
the front at the points of inflection and the cusps. At a cusp it is tangent to the
caustic, and this proves Theorem 2 (in view of Theorem 1 of §3).

CHAPTER II

QUATERNIONS AND THE TRIALITY THEOREM

Passing from the wave front to the dual front and to the derivative curve of them
both corresponds in algebra to passing from the imaginary unit i to the imaginary
units j and k in the space of quaternions (see §9).

In order to explain this we need some elementary facts from the geometry of
quaternions, set out in §§ 5-8. Basic to these facts is the easily proved identity

ekselte~ks = e*1, κ = i cos 2s + j sin 2s

(where s and t are real). The other computations of this chapter are just as simple,
but it is necessary to carry them out in order not to get lost among numerous signs
and orientations.

§ 5. Quaternions and the standard contact structures on the sphere S3

Let κ be an imaginary quaternion of length 1 (for example, i, j or k). Mul-
tiplication of all the quaternions by κ on the right imparts a complex structure
(depending on κ) to the space of quaternions R4.

We associate with each quaternion q the operator of multiplication on the left
by q in the space of quaternions R4.

Proposition 1. The operator of multiplication by the quaternion q on the left is
κ-complex.

Proof. In fact, denoting quaternion multiplication by a dot we have q • (z • κ) =
(q · ζ) • κ for every quaternion z.
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Proposition 2. The determinant of the operator of multiplication on the left by a
quaternion of length 1 is equal to 1.

Proof. Both length and determinant are multiplicative. Therefore the image of the
map det : S3 -¥ C\0 is a compact connected subgroup. The connected compact
subgroups of C\0 are two in number: the point 1 and S1. But S3 does not fibre
over S1. Accordingly, det(53) = 1.

Corollary. The determinant of the κ-complex operator of multiplication on the
left by an arbitrary quaternion is equal to the square of its length.

Proof.
det(g) = det(|9 |) • det(g/|g|) = | 9 | 2 • 1,

since the determinant of the operator of multiplication of a vector in the complex
plane by a real number is equal to the square of that number.

Example. The vectors 1 and j form an i-complex basis for E4. This means that
the quaternion x+yi+uj+vk may be considered as the complex vector (x+iy, u—iv)
(pay attention to the sign!).

With respect to this basis the operator of multiplication on the left by the quater-
nion q = a + bi + cj + dk has the matrix

fa + bi —c — di\ (A —C\ , ., . 2 , i2 , 2 , .2
\c - di a — bij \C A J

Accordingly, the group S3 of quaternions of length 1 is isomorphic to the group
SU(2) of unitary matrices of degree 2 with determinant 1.

If we were to start from another complex structure involving κ instead of i we
should obtain another isomorphism S3 -> SU(2).

For each quaternion κ of length 1 consider now its corresponding Hopf bundle

associating with each non-null point of the >r-complex line passing through 0 the
direction of that line.

The fibre of this principal S1 -bundle is the circle

{z-e** : t € M/(2TTZ)},

where ζ 6 S 3 is a point of the fibre. The action by S 1 on the fibre is determined
by shifts of the real axis t.

Warning. Our notations are not complex, but quaternionic. If Ικ is the operator
of the complex structure on C2 such that

I*z = ζ • κ,

then z • βκί = eI"tz.

Consider on the sphere S3 of quaternions of unit length the vector field κ, tangent
to the fibres of the bundle πκ,
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Proposition 3. The vector field κ is left-invariant (under the action of the group
S3 of quaternions of length 1 on itself, by multiplication by elements of S3 on the
left).

Proof.

g · (z • e*) = ( ? • * ) · e " 4 .

Consider the field of planes on S3 orthogonal to the vectors of the field κ. This
field provides 5 3 with a contact structure, which we call the >r-structure.

Proposition 4. The contact κ-structure is left-invariant (with respect to the action
of the group S3 of quaternions of length 1 on itself by multiplying elements of S3 on
the left) and gives an S3-left-invariant connection to the principal S1 -bundle πκ.

Proof. Left shifts preserve the metric on S3 and the vector field κ, and therefore
also the field of planes orthogonal to it. The S1 -structure of the fibres is also
preserved, since it is given by the parameter t.

We have constructed on S3, in particular, three 53-left-invariant vector fields
i,j,k and the contact structures that correspond to them and determine S3-left-
invariant connections on the three principal Hopf bundles π; : S3 -> S2, π, : 5 3 ->•
5?, and 7rk : S

3 -> S2.

§ 6. Quaternions and contact elements of the sphere S2

Suppose that the i-contact structure is assigned to the space of the j-bundle TTJ
constructed in § 5.

Theorem 1. The bundle TCJ : S3 -» S | is naturally isomorphic to the double
covering over the bundle of co-oriented contact elements of the 2-sphere,
TTJ : (ST*S2 « E P 3 ) —> S2. Under this isomorphism the contact structure on
S3 projects to the natural contact structure on the space of contact elements.

Proof of Theorem 1. We begin with the following obvious remark.

Lemma 1. The fibres of the bundle TTJ are Legendrian (that is, simply integral)
curves of the i-structure.

In fact, the fields i and j are orthogonal at every point. Therefore the direction of
the fibre of j is tangent to the orthogonal i-plane of the contact i-structure.

Thus the two-dimensional planes of the contact i-structure project along the
fibres of the j-bundle to one-dimensional contact elements of the sphere Sj. These
elements are co-oriented (by the projection of the direction of the field i).

Definition. The co-oriented contact element of the sphere S1? corresponding to a
given plane of the contact i-structure on S3 is the projection of the plane co-oriented
by the vector i along the fibres of the j-bundle.

We prove that the constructed map S 3 —> ST*S? is a double covering and has
the properties stated in the theorem.



16 V. I. Arnol'd

Lemma 2. On moving a point on S2 with velocity 1 along a fibre of the j-bundle
the contact i-plane changes in such a way that its projection on the sphere S2 turns
with angular velocity 2.

Proof. We compare the directions of the vectors of the field i at points ζ and ζ • e·7'*
of a fibre of the j-bundle. We bring the vector ζ • e^ • i of this field from the point
ζ • ejt back to the point ζ by acting on the right with the quaternion e~jt (which
does not change the projection onto S2). We obtain at the point ζ the vector
z-ei'-i-e-i*.

On varying t this vector turns in the plane of the vectors at ζ of the fields i and k,
orthogonal to the direction j of the fibre. The rotation is from the direction i to
the direction —k, and has (constant) angular velocity 2. For example, for small t

ejt • i • e~jt ss i + (ji - ij)t +

From Lemma 2 it follows that after the time t = 2π of a complete turn along
the fibre of the j-bundle on S3 the corresponding contact element on S'j has turned
through an angle 4π. Consequently, our natural map S3 -> ST*S? is fiber wise a
double covering of principal ^-bundles.

The projection of the contact i-structure by this map is the field of planes gen-
erated by the projections of the vector fields j and k. Such a plane contains the
velocities of motion of the contact elements for which the velocity of the point of
application belongs to the element (since the projection of the vector k onto the
sphere belongs to the element, while the direction j , by Lemma 2, corresponds to
the rotation of the element).

The constructed double covering S3 —> ST*Sj allows one to identify the latter
space in a natural way with the factor-space EP 3 = S3/ ± 1. In fact, e<J = —1
for t = π. Therefore both the antipodal points of S 3 project to one and the same
co-oriented contact element on the sphere S2. The theorem is proved.

Note that on the manifold

SO(3) « KP3 = S3/ ± 1

there are naturally induced from the sphere S3 a metric, vector fields κ (in partic-
ular i,j,k), the contact structures orthogonal to them, the principal 51-bundles

and the 53-invariant connections given by the corresponding contact structures.
Consider an i-Legendrian curve L on S3.
Project it to the three spheres Sf, S?,Sl by means of the three natural projec-

tions iTi,Kj,Kk- The projection TTJL is a front Γ of the i-Legendrian curve L on the
sphere S2. Let us clarify the meaning of the other two projections.



The geometry of spherical curves and the algebra of quaternions 17

Figure 6

The triality theorem. The projection TT^L is congruent to the front Γ ν dual to Γ,
while the projection TTIL is congruent to the derivative Γ" ο/Γ.

In this way a front, the dual front, and the derivative of them both, are three
personifications of one and the same Legendrian curve (Fig. 6).

The next few sections are dedicated to the proof of the triality theorem, com-
pleted below in § 9. The proof establishes also explicit forms of the isometries
S% —¥ Sj and Sf —> Sj that realize the congruences stated in the theorem.

To be precise, the first is induced by multiplication of S3 on the right by eI7r/4,
and the second by multiplication by efc7r/4.

From the triality theorem it follows that the derivative curve is smoothly
immersed. In fact the i-Legendrian curve L, smoothly immersed by definition,
is transversal to the direction of the fibres of the i-bundle. Therefore its projection
π»!» on the sphere Sf also is smoothly immersed. So Theorems 1 of § 1 and § 3
follow from the triality theorem.

Remark. The proof of the smoothness of the curves obtained from a front by moving
along tangents by a distance 2s that is not a multiple of π is similar to the proof of
the smoothness of the dual curve given below, except that multiplication by e*71"/4

has to be replaced by multiplication by eks.
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§ 7. The action of quaternions on the
contact elements of the sphere S?

Let 5 3 / ± 1 be identified with the space ST*S? of co-oriented contact elements
of the sphere 5 | by means of the complex structure j and the contact structure i,
as has been described in § 6. Let t be a real parameter.

The action of multiplication on the right by the quaternions elt,ejt and ekt on
S3 induces on S 3 / ± l « ST*S? three dynamical systems, described in the following
lemmas (Fig. 7).

Figure 7

Lemma 1. Under the action of elt on ST'S'j a contact element moves along a
geodesic at all times orthogonal to it in the direction of its co-orientation with
speed 2.

Lemma 2. Under the action of eJ< on ST*S? a contact element turns around
its fixed point of application with angular velocity —2 in the direction given by the
j-complex structure on the sphere S?.

Lemma 3. Under the action of ekt on ST*S"j a contact element moves with speed 2
along a geodesic at all times tangential to it in the direction obtained from the
co-orientation direction by turning through an angle π/2 in the direction given by
the j-complex structure on the sphere 5?.

Proof. The base 5? of the bundle π, is obtained from S3 by factorizing it by right
shifts (by elements of the form eJ>t). Therefore left shifts by elements of S3 act on
the factor-space Sj.

These left shifts preserve the eJi-right-invariant metric on S3 and, consequently,
preserve the natural metric on the sphere S?. Since the sphere 5 3 is connected, the
left shifts act on the sphere S? as motions.

All motions of the sphere 5 | are obtainable in this way from left shifts on S3,
since any element of S3 can be carried by left shifts into any other, and that means
that any direction tangent to the sphere 5? may be carried into any other.
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Consequently, it is enough to verify Lemmas 1-3 for a specially chosen element
of S3 and it is natural to choose the quaternion 1.

Lemma 4. Let κ be an imaginary quaternion of length 1, orthogonal to j . Then
the projection ττ, maps the great circle {e*1 : t £ Ε mod 2π} of the sphere S3 onto
a great circle of the sphere Sj as a double covering.

Proof of Lemma 4. Consider the circle of quaternions βκί — cost + xsint, ί e l ,
as a curve in the j-complex plane. Choose in this plane the j-complex Hermitian-
orthogonal basis (l,*c). A point with the complex coordinates {z\ = X\ + iyi,
z2 = x2 + 13/2) in this basis is the quaternion q = x\ + y\j + x-i>c + y2ycj.

In the affine coordinate w = zijz\ on the projective line CP1 = S? the projec-
tion 7Γ, of the circle in C2 defined above is given by the formula w = tani, and this
proves Lemma 4.

We now prove Lemmas 1 and 3. In the case of Lemma 1 the direction of motion
of the point of application on S? is at all times the projection of the vector field i.
Consequently, the direction of motion positively co-orients the moving contact ele-
ment, remaining orthogonal to the direction of the motion. Meanwhile the point of
application describes a great circle with speed 2 by Lemma 4.

In the case of Lemma 3 the direction of motion of the point of application on S'j
is at all times the projection of the vector field k. Consequently, the direction of
motion is at all times tangent to the moving contact element. Meanwhile the point
of application describes a great circle with speed 2 by Lemma 4.

Lemma 5. The complex j-structure on the sphere S^ = CP1 defines on it the
orientation in which the frame (π,, i, π,·, k) is positive.

Proof of Lemma 5. Consider the vectors i and k of the fields i and k at the point 1
of the sphere S3. We compute their projections on the sphere S? in the affine
coordinate w = z2/z\ = χ + iy on the sphere Sj, constructed as in the proof of
Lemma 4, in which we take κ as i.

The projections of the vectors i and k are d/dx and d/dy, respectively (at the
point w = 0). In fact, by the formulae of the proof of Lemma 4 with Z\ = 1, z2 = w
we find that q = 1 + xi + yk. On varying the real parameters χ and y near 0 we
have

dq/8x\00 = ι = i(l), dq/dy\Q0 = k = k(l),

as was asserted. Lemma 5 has been proved.

Lemma 3 is proved at the same time, since the direction TTJ. k of the motion of the
point of application is obtained from the direction ττ,·. i that co-orients the element
by turning through an angle π/2 towards the side defined by the given j-complex
structure.

Lemma 2 of § 7 follows from Lemma 2 of § 6 and Lemma 5, since the direction
of turning 'from i to —k', obtained in § 6, is opposite to the direction of turning of
the given j-complex structure.
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§ 8. The action of right shifts on left-invariant fields

It turns out that left-invariant contact structures on the sphere S3 are mapped
into each other by multiplication by appropriate quaternions on the right.

We denote by Rq : S3 -»• S3 multiplication on the right by the quaternion q of
length 1.

Theorem. Multiplication of S3 on the right by e·7* maps the field j to itself while
the fields i and k are turned through an angle 2i in the plane generated by them
(from i towards k ) :

(Reit) j = i cos 2i + k sin 2t.

Proof. The vectors of the fields i and k are orthogonal to the direction of the field j .
Under the isometries Rq : S3 -> S3,q = ejt, preserving the direction j of the fibres of
the bundle ττ, : S3 —> S?, the translated vectors remain orthogonal to the directions
of the fibres.

The projection to S? of a vector of the field i transported by the isometry Rejt
does not change under change of the parameter t, while the point of application
moves along the fibre (in the direction j) with speed 1.

The projection to S? of a vector of the field i, applied at this moving point, turns
with angular velocity —2 from π^ί towards Tr^k, by Lemma 2 of §7.
Consequently, a vector transported by the shifts Rejt turns with angular veloc-
ity +2 relative to i in the direction towards k.

Corollary 1. Multiplication of S3 on the right by e71^/4 turns the contact i-structure
of S3 into the k-structure (and the k-structure into the i-structure).

The vector field i then becomes the vector field k, while k becomes —i.

Corollary 2. Multiplication of S3 on the right by e71'·'/4 turns the bundle π* :
5 3 —>· Sf into the bundle π^ : S3 —> S% and TI> into π». The induced maps of the
2-spheres Sf -»• 5 | and Si -» Sf are isometries. The first of these respects the
orientations of these spheres given by the complex i- and k-structures, respectively,
while the second changes them. Their compositions are the antipodal involutions of
the spheres Sf and S%.

§ 9. The duality of j-fronts and fc-fronts of i-Legendrian curves

Let L be an i-Legendrian curve (that is, an integral curve of the i-structure
on S 3 ) .

Proposition 1. Multiplication of S3 by elt on the right sends an i-Legendrian
curve into an i-Legendrian curve.

Proof. This multiplication is an isometry of S3. It preserves the field i and therefore
the contact structure orthogonal to it. Therefore integral curves of the i-structure
are mapped to integral curves.
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Proposition 2. The fronts of the i-Legendrian curves L and L • elt on the sphere
S'j are equidistant (at a distance 2t in the direction from TTJL towards TTJ(L • elt)).

Proof. This is Lemma 2 of § 7.

Proposition 3. Cusps of the j-front TTJL of the i-Legendrian curve L on 5? cor-

respond to points of inflection to the k-front n^L on Si and, conversely, the points

of inflection on Sj correspond to cusps on Sf.

Proof. At a cusp L has the J-direction, that is, it is tangent to {z • e·3'}. Under the
/c-projection the circle {z • e J i } projects to the great circle on Sf with its normal
contact elements. Tangency of the first order (between L and {z • eJ t}) in the space
ST*S% is transformed after projection to Sf into tangency of the second order of
the projections, which implies a point of inflection of the A;-front.

Proposition 4. The front TTJ(L • elt) of the shifted i-Legendrian curve L • elt

is congruent to the front TT^L of the original i-Legendrian curve, where
κ = j cos 2t — k sin It.

Proof. Multiplication on the right by elt rotates the fields j and k in their plane with
angular velocity 2 from k towards j (by the Theorem of § 8) with cyclic permutation
of the units. The field j is sent by such a rotation into the field κ.

Theorem. The k-front of an i-Legendrian curve on Si is congruent to the
π ι'2- equidistant of its j-front on S j .

Proof. Setting t = π/4 in Proposition 4 we obtain the congruence of TTJ(L • e"lA)

and TCkL. By Proposition 2, TTJ(L • e l7r/4) is the π/2-equidistant of the front TTJL.

Proof of the triality theorem from § 6. The assertion concerning the dual front has
just been proved. The assertion concerning the derivative is obtained from that
proof by cyclic permutation of the imaginary units i, j and k.

In fact, multiplication of 5 3 on the right by ekt for t = π/4 takes the field j to
the field i, and the field i to the field —j. Consequently it takes the projection π^
to the projection π,·. The induced isometry Sf —¥ S j takes the curve -KiL to the
curve TTJ(L • e*71"/4). The latter curve on the sphere Sj is the derivative of the front
Υ = -KjL (by Lemma 3 of § 7). The theorem is proved.

Remark. It is not unprofitable to remark that the isometry Si —>• S'j constructed

in the proof (induced by multiplication on the right by et7r/4) respects the complex

orientations of the spheres Sf and Sj, while the isometry Sf —>· Sj (induced by

multiplication on the right by ekn/4) does not.
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C H A P T E R III

QUATERNIONS AND CURVATURES

Here the algebra of quaternions is used to obtain additional information about
spherical curves. First of all we consider the calculation of the geodesic curvatures
of curves on the standard two-dimensional sphere. These results are used below
in the proof of a generalized Gauss-Bonnet theorem and formulae for the Maslov
index.

§ 10. The spherical radii of curvature of fronts

Consider the front Γ = TTJL on the sphere S? of an i-Legendrian curve L C S3.
The centre of spherical curvature of the front at one of its points is the point of
intersection of infinitesimally close great circles orthogonal to the front at the point.
There are two such centres and they are antipodal.

Definition. The spherical radius of curvature of the front at a point is the distance
from this point to the centre of spherical curvature along the normal that co-orients
the front.

This radius is defined modulo π.

Theorem. // an i-Legendrian curve L in S3 has at a given point the direction

x = j cos θ + k sin Θ,

then its j-front KjL has at the corresponding point of the sphere 5? the spherical
radius of curvature θ mod π.

Proof The centre of curvature of the front at the given point lies on the caustic of
the family of its equidistants: it is a singular point of the corresponding equidistant,
lying on the normal to the front at that point.

On multiplication of the i-Legendrian curve L on the right by eli its j-front is
turned into its 2i-equidistant (Proposition 2 of § 9). This equidistant is singular
when the i-Legendrian curve L • elt is tangent to the directions ±j of the fibres of
the bundle π.,.

A vector κ, orthogonal to i, is turned by multiplication on the right by elt in
the moving plane of the fields j and k through an angle 2t in the direction from k
towards j (by the Theorem of § 8). Therefore the direction of the curve L • elt (at
the given point of L) becomes tangent to the fibre (Θ = 0 mod π) after turning the
vector κ through an angle θ mod π.

For such a choice of t(= Θ/2) the front of the curve L • elt is θ mod π-equidistant
from the original front TTJL. Consequently, the distance to the centre of curvature
of the front along its co-orienting normal is equal to θ mod π.

The theorem just proved allows us to consider the radii of curvature of the j -
fronts of i-Legendrian curves, without worrying about their smoothness.

Definition. The reduced radius of spherical curvature of a front at one of its points
is the minimum of the absolute values of its radii of spherical curvature, min |ηπ+0|.
This radius does not exceed π/2.
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Example. The reduced radius of spherical curvature of a parallel of latitude is
equal to the distance to the nearest pole along a meridian.

From the theorems proved there follow:

Corollary 1. The sum of the reduced radii of spherical curvature at corresponding
points of a front and its dual front is equal to π/2.

Corollary 2. The points of spherical inflection of fronts equidistant from the given
one lie on the derivative curve of the caustic.

In fact, at a point of the caustic the radius of curvature of the corresponding
front is equal to 0, while at a point of inflection of the front it is equal to π/2.
Moreover the caustic touches the ray (orthogonal to the front) at a cusp of the
front, lying on the caustic.

The theorems proved above enable one to relax the regularity of fronts and
caustics in these elementary assertions, requiring only that the i-Legendrian curve
is immersed in S3.

§ 11. Quaternions and caustics

Consider an i-Legendrian curve L on S3. To it there corresponds the j-front
•KjL on the sphere S2. The equidistants of this front are the projections of the
i-Legendrian curves L • eli.

Consider the caustic of this family of equidistants. The family of i-Legendrian
curves Lt = L • elt defines a torus immersed in S3:

T2 = {l-eu :l£ L, i £ l mod 2π} .

Def in i t ion. T h e caustic of the j-projection of an i-Legendrian curve is the set of

critical values of the restriction ρ : Τ2 —>• S2 of the projection π,· : S3 —• S2 to the
torus T 2 .

Theorem. The caustic of the j-projection of an i-Legendrian curve is the
j-projection of a k-Legendrian curve.

Proof. Fibre the torus T2 by i-Legendrian curves Lt with fixed t. Such an
i-Legendrian curve has at the point I • elt the j-direction for some t(l), to be precise
for t(l) = θ(1)/2 mod π, by the Theorem of § 10.

Definition. The curve {I • etl^ : I € L} is the j-critical curve of the i-Legendrian
curve L.

Lemma 1. The j-critical curve of an i-Legendrian curve L is the set of critical
points of the projection ρ : Τ2 —¥ 5 | .

Proof of Lemma 1. The tangent plane of the torus at each point is generated by
a vector of the field i and a vector which is orthogonal to it and tangent to the
curve Lt. This plane contains the j-direction if and only if the curve Lt is tangent
to it.

The surprising resemblance of one-dimensional caustics to one-dimensional wave
fronts is clarified by the following lemma.
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Lemma 2 (basic). The j-critical curve of an i-Legendrian curve is k-Legendrian.

Proof of Lemma 2. Consider an i-Legendrian curve, having the j-direction at a
given point. We introduce a local parameter s on this curve, reducing to 0 at this
point. A point of the curve corresponding to a small value of s has the form

l(s) = ζ + asz · j + o(s), αφΟ.

The angle of the tangent vector of this i-Legendrian curve with the j-direction is
given by the formula

0(s) = 6s + o(s),

since for s = 0 this angle is zero.
Consequently, the corresponding point of the j-critical curve has the form

l(s) · e i 9 ( s)/2 = (z + asz • j + o(s)) • (1 + ibs/2 + o(s))

= ζ + s(az • j + (b/2)z • Ϊ) + o(s).

The vector in the brackets that is tangent to the j-critical curve at the point ζ is
a real linear combination of the vectors ζ • j and ζ • i of the fields j and i at the
point z. It is orthogonal to the vector of the field k, as the lemma asserts.

The theorem is proved at the same time.
Thus a caustic and front on the sphere 5? are the j-projections of fc-Legendrian

and i-Legendrian curves. Therefore the symmetry between the imaginary units
allows us to extend to caustics what we already know about fronts.

§ 12. The geodesic curvature of the derivative curve

Here we relate the geodesic curvature of the derivative curve to the derivative of
the geodesic curvature of the original curve.

Theorem 1. The geodesic curvature κ of the original curve and the angle a of its
derivative curve with the great circle tangent to the original curve are connected by
the relation

κ = tan a.

Proof. Consider an infinitely thin spherical triangle, formed by two infinitely close
arcs of great circles that are tangent to the original curve (at points ds apart) and
of length ΤΓ/2, and the derivative curve. The angles of this triangle adjacent to
one of the circular arcs are equal to κάβ and a (Fig. 8). The altitude dropped to
that side is equal to (tana)<is, since the distance of its base from the vertex of the
angle a is equal to ds. Since this same altitude is equal to κάβ (being the side of
a spherical triangle with sides ?r/2 lying opposite the angle κάβ) one obtains the
relation stated in the theorem.

Example. If the original curve is a parallel of latitude with Euclidean radius sin Θ,
then κ = cot θ and a = (ττ/2) — θ.

Theorem 1 follows from this example, since the existence of a universal relation
between κ and a is obvious.
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Figure 8

Figure 9

Corollary 1. The derivative curve of a front is orthogonal to the great circle tan-
gent to the front if and only if this circle is tangent to the front at a cusp (Fig. 9).

Corollary 2. The derivative curve of a front is tangent to the great circle tangent
to the front if and only if this circle is tangent at a point of inflection (Fig. 10).

Figure 10

Both these corollaries allow one to estimate from below the number of cusps and
points of inflection of the front (in terms of the increase of the angle a along the
derivative curve).
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Theorem 2. The great circles touching the original front form a framing on its
derivative curve that is parallel with respect to the standard Riemannian metric on
the sphere.

Proof. Consider two points of the original front at a small distance s from each
other. We transport in parallel the tangent to the great circle touching the original
front at the first point, from a point / of this circle on the derivative curve of the
front along the derivative curve to a point II of the circle touching the original
curve at the second point (Fig. 11).

£

m Ε

ν
I

Figure 11

We replace the transfer along the segment (/, II) of the derivative curve by
transfer along a path (/, ///, II) along the trajectory orthogonal to the family of
great circles touching the original front up to a point /// on the second tangent
circle, and tnen along this circle touching the front to the point // on the derivative
curve.

The area of the triangle (/, //, ///) has order s2 and so the result of transfer along
the broken path (/, ///, II) differs from the result of transfer along the original
curve by O(s2).

The path (/, III) has geodesic curvature 0 at the point /, since the distance
from the point / to the centre of curvature of the path is equal to π/2. At a point
of this path at a distance χ from / the distance to the centre of curvature is equal
to π/2 + 0(χ). Therefore the geodesic curvature at this point is O(x). The distance
(/, ///) is O(s). Therefore the total angle of turn of a vector carried along the path
(/, ///) with respect to the directions of the normals to the path (/, ///) is O(s2).
The path (//, ///) is geodesic, and under parallel transport of a vector along this
path the angle between the vector and the direction of the path does not change.

Finally, the direction of the great circle touching the front carried from the
point / to the point // along the path (/, III, //) is transformed to the direction
of the circle touching the front at the point //, turned through an angle O(s2).
Under transfer along the derivative curve one obtains a result differing from this
by another O(s2). Therefore the derivative of the angle between the transported
vector and the directions of the great circles is equal to zero, and that means that
the framing is parallel.

Corollary. The framing of the curve on the sphere S2, obtained by πj -projection
from the k-vectors along a j-Legendrian curve, is parallel with respect to the
Riemannian metric of the sphere S2.
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In fact, we apply Theorem 2 to the front Γ on S 2 of an z-Legendrian curve L on
S3/ ± 1. The derivative curve of the front is the fr,- -projection of the image V of
the curve L under the action of multiplication on the right by ekn/4. The framing
by the directions of the great circles is the framing by the projections π .,·· of vectors
of the field k along the curve L'. The curve V is j-Legendrian if L is i-Legendrian,
since multiplication on the right by efc7r/4 maps the field i to the field j .

Thus by Theorem 2 for such a j-Legendrian curve V its framing by the k-vectors
projects onto Sj as a parallel framing.

Any j-Legendrian curve may be obtained from an appropriate i-Legendrian curve
by multiplication on the right by efc7r/4. On applying Theorem 2 to the front Γ of
this i-Legehdrian curve we have the corollary.

Remark. The quaternion units may be permuted. For example, along the projection
of an i-Legendrian curve in Sf the projections of the j-vectors (and also of the
k-vectors) are parallel.

Theorem 2 enables one to compute explicitly the geodesic curvature of the deriv-
ative curve. In fact, this curvature, by Theorem 2, is equal to the derivative of the
angle a between the derivative curve and the direction of the framing great circle
with respect to the natural parameter / (arc length) of the derivative curve.

Theorem 3. The geodesic curvature Κ = da/dl of the derivative curve is expressed
in terms of the geodesic curvature >c{s) of the original curve by the formula

άκ/ds

(VI +

which can also be written in the form

Κ = cos3 a άκ/ds = dsina/ds.

Corollary. The points of inflection (K = 0) of the derivative curve correspond to
the vertices (άκ/ds = 0) of the original curve.

Proof of Theorem 3. Consider once again the infinitely thin spherical triangle (with
sides π/2, (π/2) — ds and dl and the angle a). From this triangle we find that the
length dl of the segment of the derivative curve is ds/ cos a. But from Theorem 1
we get

dx 2

da — r- = cos a d>c.
1 + κΛ

These relations give for da/dl the expression stated in the theorem.

Example 1. For a parallel of latitude κ = const and its derivative curve is the
equator (K = 0).

Example 2. Near an ordinary (semicubical) cusp the square of the radius of cur-
vature of the front is proportional to the distance to the cusp.

In this case >t(s) ~ Ι/γ/ϊ*; άκ/ds ~ l / ( · ^ ) 3 . The value of Κ remains bounded
as s —> 0, as should be the case for an immersed curve. Therefore the Κ is positive
for positive cusps and negative for negative cusps.
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Example 3. Near a degenerate cusp of a front (x ~ pa, y ~ pa+1) the curvature χ
has order si 1" 0)/ 0. In this case >t(s) has order s(°~2)/° ~ p°~2 (p is a regular
parameter along the derivative curve).

Corollary. The geodesic curvature of the derivative curve of a front has a zero of
order μ — 1 at a point corresponding to a cusp of the front of multiplicity μ.

Here μ = a — 1: at an ordinary cusp (of multiplicity 1 ) α = 2,μ = 1 and the
geodesic curvature of the derivative curve at the origin is not zero.

We conclude that, at a cusp of the original front of multiplicity μ,μ—ί vertices
of the front vanish. For μ = 2 after a small perturbation the front has a pair of
cusps, and the vanishing vertex lies halfway between them.

The formulae obtained lead to new generalizations of the four-vertex theorem
(for spherical curves), but I do not elaborate on this here.

§ 13. The derivative of a small curve and
the derivative of curvature of the curve

The formulae of the preceding section can be used for the study of plane curves
also.

If the original curve is concentrated around the pole on the sphere, then its
derivative is concentrated near the equator. The geodesic curvature of a small
curve on the sphere placed near the pole is asymptotically equal to the curvature
of the plane curve obtained by projecting it to the tangent plane at the pole.
The curvature of the derivative curve which is close to the equator also admits a
simple asymptotic expression. By combining these two formulae we obtain a rather
remarkable expression for the derivative of the radius of curvature of a plane curve,
given by the following known theorem (see for example the text-book by Santalo).

Consider a curve Γ on the Euclidean plane with Cartesian coordinates (x,y),
the parameter on which is the azimuth ψ of the normal equator (so that
(cost̂ )cia; + (sinφ)dy ~ 0 along the curve). We denote the radius of curvature
of the curve by R and we let A = χ sin φ — y cos ψ (this measures the distance from
the origin to the normal to the curve). We shall denote the derivatives with respect
to the parameter ψ by dashes.

Theorem.
R' = A + A".

Remark. From this formula there follows at once the four-vertex theorem for a
convex plane curve, namely: R' has no fewer that four zeros.

In fact —A is the derivative by ψ of the supporting function Β = χ cos φ + y sin φ
of the curve, so that

R1 = -(£' +B'").

A function of the form B' + B'" has no fewer than four zeros on the circle by the
theorems of Sturm (Kellogg and Tabachnikov...), asserting that the Fourier series

F(<p) = 2_, an cos(n<p) + bn si
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has no fewer zeros than the number 2m of zeros of the first of its harmonics
(see [2], [3], [4], [5] for details).

Proof of the theorem. The formula to be proved is a limiting case of Theorem 3
of § 12. Let ε be a small parameter. Consider the small curve ε Γ on the Euclidean
plane, tangent to the unit sphere at the North pole. Its curvature is κ/ε, where
κ = \/R is the curvature of Γ. The natural parameter on εΓ is es, where s is the
natural parameter on Γ.

Project εΓ to the sphere (for example, along the axis through the pole, or from
the centre, or from the South pole). On the sphere we obtain a small curve Γε con-
centrated near the North pole. The geodesic curvature κε of this curve is asymptot-
ically equivalent to χ/ε as ε —> 0, while the natural parameter sE is asymptotically
equivalent to es. Consequently the expression of Theorem 2 of § 12 for the geodesic
curvature of the derivative of Γ£ takes the form

dxejdse ε~2άκ/άβ dR/ds dR/ds dR
= ~ε = £ = ε Wε~3κ3 κ άφ/ds άψ

Consider now the derivative of the small curve Τε (Fig. 12). As ε 4 0 this
derivative curve tends to the equator. It smoothly depends on ε. Let us introduce
on the sphere the coordinates of longitude ψ (x = costp,y = sin^) and latitude λ
(ζ = sin λ).

Figure 12

Lemma 1. The derivative ofTE for small ε is given locally by the equation

λ = Α(ψ,ε), \(ψ,0)=0.

In fact, consider the great circle tangent to Γε at the point corrresponding on Γ to
the point whose normal has the azimuth φ. This circle intersects the equator at the
point with longitude ψ — ψ + (π/2) + Ο (ε). The distance along the circle from the
point of tangency to the equator is equal to (π/2) + εΑ{ψ) + Ο(ε2). The expression
for λ now follows from the implicit function theorem, since the circle constructed
differs from the meridian of longtitude φ + (π/2) by a quantity of order ε.
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Lemma 2. The geodesic curvature of a smooth curve close to the equator

\ = Α(ψ,ε)=εΜ(φ)+ο(ε)

is given by the formula
Κ = ε(Μ + Μψψ)+ο(ε).

Proof. It is sufficient, for example, to apply the Gauss-Bonnet formula to a small
curvilinear quadrilateral bounded by the equator, two nearby meridians and our
curve close to the equator.

The area of the quadrilateral is proportional to M, while the difference of the
angles between our curve and the meridians is proportional to Μψψ (in a first
approximation with respect to ε). From this one obtains the required expression
for the geodesic curvature of the only side of the quadrilateral that is not a geodesic.

Comparison of Lemmas 1 and 2 leads at once to an asymptotic expression for
the geodesic curvature of the derivative of the curve Τε at the point corresponding
to the point on Γ where the normal has the azimuth φ:

Κ(ε) = ε[Α(φ)+Αφφ(φ)}+ο(ε).

Comparing this formula with formula (1) we obtain (for the appropriate choice
of sign of the geodesic curvature)

dR/άφ = A + Αψφ,

as had to be proved.

Remark. The resemblance of the passage from the small curve to its derivative used
here with the contactomorphism

DIM —> J \O , IK)

of the space of co-oriented contact elements of Euclidean space to the space of the
1-jets of functions on the sphere used in [4] deserves special study.

CHAPTER IV

THE CHARACTERISTIC CHAIN AND
SPHERICAL INDICES OF A HYPERSURFACE

The index of a point with respect to a closed plane curve is not conformally
invariant. It changes if one takes for the point at infinity some other point of the
Riemann sphere.

It turns out that one can adjust the indices of all points (deducting from them
a suitable number) so that the adjusted indices are conformally invariant.

In this way, with each component of the complement to a curve on the sphere one
can associate its spherical index. The components of the complement, furnished



The geometry of spherical curves and the algebra of quaternions 31

with this index as a multiplicity, form a 2-chain, whose boundary is the original
curve.

This remarkable 2-chain is called the characteristic chain of the curve. In an anal-
ogous manner one can define the characteristic η-chain of an oriented
(n — l)-dimensional hypersurface on an even-dimensional sphere and, more
generally, of a wave front on an even-dimensional sphere.

Integrals over the characteristic chain appear in the Gauss-Bonnet formula for
immersed curves, in the formula for the Maslov index, and so on. Unfortunately the
simplicity and naturalness of the constructions of this and the following chapters is
somewhat dimmed by the need to pay due heed and attention to endless signs and
orientations.

§ 14. The characteristic 2-chain

Consider a smooth immersion of an oriented circle in general position on the
oriented 2-sphere. The characteristic 2-chain of such an immersion is the chain
consisting of the closures of the regions of the complement to the image with
special (integral or semi-integral) coefficients. The curve itself is the boundary
of its characteristic chain. The coefficients are chosen in the following way.

Select an auxiliary point Β on the sphere outside the immersed curve. We
regard it as the 'point at infinity' and identify the complement of this point with
the oriented plane. The immersed curve on the sphere transforms to an immersed
curve in the plane. This curve has a well-defined index (the number of complete
turns of the normal as one travels right round the curve). We denote this by %B (it
depends on the choice of B).

For each point A of the plane outside the curve so obtained there is defined the
winding number of the curve around A. Since this number depends not only on A
but also on the choice of B, we denote it by i^. The number i^ depends on the
components of the complement to the curve in which A and Β lie (while is depends
on the component of B).

Theorem 1. The difference

i{A)=iB

A-{iB/2)

is a conformally invariant function on the complement to the curve on the sphere:
it does not depend on the choice of the point Β at infinity.

Example 1. Consider the equator on the oriented sphere. We orient it as the
boundary of the Northern hemisphere.

This means that the frame (the outward normal of the Northern hemisphere, the
vector orienting the equator) positively orients the sphere.

The choice of orientation and co-orientation of a hypersurface in an oriented
manifold is said to be correct if on placing after the co-orienting normal an orienting
frame one orients the manifold positively.

In the Northern hemisphere i(A) = 1/2, while in the Southern hemisphere
i{A) = -1/2 (Fig. 13, see p. 32). A correctly co-orienting vector is directed to
the side of smaller values of i.
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Figure 13

Example 2. Consider a figure of eight on the sphere (with correct orientation and
co-orientation). The figure of eight divides the sphere into three regions (Fig. 14).
One of these (R) is bounded by both loops, the second region (P) is bounded by
the loop with co-orientation directed into the region, while the third region (Q) is
bounded by the loop with co-orientation directed outside the loop. Calculations
show that i(P) = - 1 , ~i{Q) = 1, ~i(R) = 0.

Figure 14

Definition. The characteristic chain of an immersed curve in general position on
the sphere is the 2-chain consisting of the closures of the regions of the complement
with the coefficients i(A).

Suppose that we choose the point Β to lie in the same component of the com-
plement of the immersed curve in which A lies. Then i\ = 0. This proves the
following corollary.

Corollary. The following formula holds for the characteristic chain:
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Although this formula appears to be simpler, in practice it is easier to do calcu-
lations using the formula of Theorem 1, since in it the point at infinity is fixed.

Let us consider now the lift of the immersion S1 —> S2 to the Legendrian curve of
the normals formed from the correctly co-oriented contact elements of the sphere S2

(tangent to the immersed curve):

7 : S1 -> ST*S2 « KP3 w S3 / ± 1.

I remark that the bundle ρ : ST*S2 —> S2 doubly covers the Hopf bundle
S3 -> S2.

'The curve of normals' "/(S1) lies in RP3 and is doubly covered in S3 by a curve 7.
The covering curve consists of one or two components, depending on the parity of
the index of the corresponding curve on the plane. If the index %B is even, as for
the figure of eight, then there are two components, while if it is odd, then there is
one (the parity of the index does not depend on the choice of B, it is opposite to
the parity of the number of double points on the immersed curve).

Theorem 2. The linking coefficient of the Legendrian curve 7 in S3 covering the
curve of normals, with the fibre of the Hopf bundle lying over the point
A e S2\f(S1), is equal to

2i{A) = 2i%-iB,

independently of the parity of the index (ίβ mod 2).

We denote by F the fibre of the bundle ST*S2 ->· S2 (with its natural
orientation).

Theorem 3. Consider the 2-chain σ in ST*S2 whose boundary is the curve of
normals 7 if the index of the original curve is even, and the curve 7 — F if it is
odd.

The projection ρ*σ of the chain σ on S2 is the characteristic 2-chain i of
Theorem 1 (independently of the chioce of σ) for even index (ig mod 2), while
pta = i + (1/2) for odd index.

The proofs of Theorems 1-3 are given in § 18 in the more general situation of
wave fronts on even-dimensional spheres. But since some facts that we require
remain true also for spheres of any dimension, I begin with these more general
facts.

§ 15. The indices of hypersurfaces on a sphere

Consider an oriented smoothly immersed hypersurface M"""1 on an oriented
sphere Sn.

Definition. The correct co-orientation of the hypersurface Μ is the field of unit
normals ν such that the frame (normal, tangent frame positively orienting M)
positively orients the sphere.

Remark. If Μ is the boundary of a region (with its usual orientation), then the
normal ν is the outward normal of this region.
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Consider two points A and Β on the sphere outside M. On taking Β to be the
point at infinity and A to be the origin we may identify SN\B with W1 and A with
O e l " . The image of Μ in ffin will be denoted by Mf. The space Rn and the
hypersurface MB immersed in it are oriented.

Definition. The index ιΑ(Μ) of the hypersurface Μ on the sphere relative to the
pair of points (A, B) is the degree of the map of the hypersurface M% to the sphere
5™"1 by the rays from Ακ 0:

iB

A{M) = deg(^ : Mf -> S""1), **(*) = x/\x\

(the sphere Sn~l is oriented here as the boundary of the ball |x| < 1 in W1).

Theorem 4. The index of a smoothly immersed hypersurface on the sphere with
respect to a pair of points of the complement depends only on the components of
the complement to which these points belong. The function i% on the sphere of a
pair of regions of the complement to the hypersurface is skew-symmetric, and may
be represented in the form

ίΒ

Α=φ{Β)-φ{Α),

where ψ is a function of the region of the complement.

Consider an η-chain c on 5", consisting of the closures of regions of the comple-
ment of a hypersurface Μ with coefficients

c(A)=iB,

where Β is an arbitrary fixed point of the complement. The sphere and the com-
ponents here are oriented.

Theorem 5. The boundary of the η-dimensional chain c is the original oriented
hypersurface:

dc = Mn~1.

Consider a point Β outside the image of the hypersurface Μ on the sphere.
Taking Β to infinity we identify Sn\B with W1, as before.

Definition. The index IB{M) of the immersed hypersurface Μ with respect to the
point Β is the degree of the Gauss map

iB(M) = deg(sB : Μ"" 1 -»• S""1),

where SB (X) is the normal vector of length 1 at a; which co-orients the hypersurface
M " " 1 correctly.

Theorem 6. On an even-dimensional sphere the indices of a hypersurface relative
to points and pairs are connected by the relation

1iB

A =ie -ΪΑ-

In particular, the parity of all the indices %A is the same.
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Theorem 7. 6 On an odd-dimensional sphere the indices of a hypersurface
relative to all points of its complement are the same and equal to half the Euler
characteristic of the immersed hypersurface:

iB(M)=X(M)/2.

The proofs of Theorems 1-7 will be given below, in § 18.

§ 16. Indices as linking coefficients

Consider the manifold E2n~x = ST*Sn of co-oriented contact elements of the
sphere. As with any contact manifold defined by a global contact form a, it has a
canonical co-orientation α Λ (da)n~1.

[An orienting frame can be obtained, for example, by adjoining to a frame ori-
enting the base Sn a frame orienting the fibre Sn~1. The orientation of the fibre
may be obtained from the orientation of the base as the orientation of the bound-
ary of a small disk of radius r. The outward normals of the disk form the fibre, as
r —> 0. Here, as usual, the cotangent vectors are identified with the tangent vectors
by means of a metric]

Thus in E2n~l one can consider the indices of intersection of transversal chains
of complementary dimension (and also of cycles of complementary dimension).

In particular, we can intersect Legendrian (n — l)-dimensional chains with
η-dimensional ones.

Definition. The Legendrian manifold of normals Ln~1 of an immersed oriented
hypersurface Mn~1 in the oriented sphere 5" is the manifold of correctly co-oriented
contact elements of the sphere tangent to the immersed hyperpsurface Mn~1.

If the original immersed manifold Mn~l is in general position in Sn, then the
Legendrian submanifold U1"1 of normals is embedded in E2""1.

The submanifold Ln~1 of normals is homologous to the fibre F"~x over an arbi-
trary point b ε Sn\Mn~1 with some coefficient (since the cyclic group i?n__i(E) is
generated by [F]): there is an η-chain σ such that

da = L- kFb, keZ.

[Here we use the homology groups of E2n~l:
if η is even, then the group is JJ% in dimension η — 1 and 0 in dimension n;
if η is odd, then it is Ζ in dimensions η — 1 and η (and, of course, always Ζ in
dimensions 0 and In — 1);
the Ii2-homology groups are 7Li in dimensions 0, η — 1, η and 2n — 1.]

Theorem 8. The index of an immersed hypersurface Μ relative to a pair of points
is equal to the difference between the indices of intersection of the chain σ with the
fibres over these points, to be precise

The non-uniqueness of the choice of σ has no effect on the difference.

Now suppose that the dimension of the ambient sphere Sn is even.
6 On this matter see also the work of Tabachnikov [15] and the results of White discussed there

on Legendrian links in a contact manifold of dimension 4n + 1.
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Theorem 9. On an even-dimensional sphere the index of intersection of the
chain σ with the fibre FA is equal to

aHFA = -iA/2 + e/2,

where ε = 0 if the index IA (and therefore also any index IB) is even, while ε = 1
if the index IA is odd.

In particular, the projection of the η-chain σ on the sphere Sn does not depend
for even η on the choice of σ, and the boundary of this projection is the original
oriented hypersurface M"" 1 .

Remark. Theorem 9 makes clear why the indices

1(A) =iB

A- (iB/2) = -iA/2

can be interpreted as linking coefficients. In fact, for a hypersurface of even index
on an even-dimensional sphere under arbitrary choice of the point Β

iA =anFA-

Since in this case da = L, Theorem 2 means that IA is the linking coefficient of
the Legendrian manifold L of normals of Μ with the fibre FA over the point A (this
linking coefficient is defined as the index of intersection of the chain σ filling out L
with this fibre).

The proofs of Theorems 8 and 9 are carried out in § 18 with the help of the
following constructions.

§ 17. The indices of hypersurfaces on a sphere as intersection indices

Consider two distinct points A and Β of the sphere Sn. For this pair of points
we construct the η-chain in the manifold E2n~1 of co-oriented contact elements of
the sphere (to intersect the Legendrian submanifolds with it).

Definition 1. The cylinder VA over the segment (A,B) is the η-dimensional sub-
manifold (with boundary) in E2n~1 of all contact elements of the sphere applied at
the points of the segment {A,B) smoothly embedded in the sphere.

By the segment (A, B) we understand here any smooth embedding of a segment
in the sphere joining A to Β (for example, a geodesic segment).

The cylinder V^ carries a natural orientation.

Definition 2. The orientation of the cylinder Vj± is counted as positive if its
intersection index with the Legendrian sphere formed from the outward normals of
a small disk on 5 n with centre at A is equal to +1.

Theorem 10. The index of an immersed oriented hypersurface Mn~1 with respect
to a pair of points A and Β of the oriented sphere Sn is equal to the intersection
index of the Legendrian manifold L of normals of the immersed hypersurface Μ
with the cylinder over a segment (A,B):

Remark. Here it does not matter whether the hypersurface Μ is correctly oriented,
provided only that it is the projection on Sn of the Legendrian manifold L. In fact,
changing the orientation of Μ changes also the orientation of L and therefore also
the signs on both the left- and the right-hand sides of the equality.
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Theorem 11. The boundary of the cylinder V^ is equal to the difference of the
coherently oriented fibres over the points A and B, to be precise

dVf = (-l)n(FA-FB).

Consider a point Β on Sn. For this point we construct the η-chain in the manifold
E2n~l of co-oriented elements of the sphere (to intersect Legendrian manifolds
with it).

Definition 3. A B-section VB is the η-chain in Ε obtained from any constant
vector field on K™ under stereographic projection with centre B, Mn —> Sn\B.

Remark. The stereographic projection sends a constant field on K" to a manifold
diffeomorphic to an open ball of dimension n. Choosing an appropriate diffeomor-
phism we get a smooth map which extends to the closed ball. On the boundary we
then obtain a map of the sphere 5™"1 C Rn to the sphere FB (the fibre over B),
given by the 'folding' map

ω —> e — 2(ω,ε)ω, (*)

where e is a constant vector of length 1.
The folding map (*) sends any vector ω of the unit sphere S1"^1 to the reflection

of the constant basis vector e in the mirror orthogonal to ω.
One can easily prove the following lemma.

Lemma. The folding map (*) is realizable geometrically as the stereographic pro-
jection of a sphere from its centre onto another sphere of the same radius passing
through this centre.

Example. For η = 2 the folding map (*) of a circle on a circle is the ordinary
double covering 'φ -> 2φ' (Fig. 15).
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The map of a closed ball to Ε 2 " " 1 described above defines an η-chain VB- Its
orientation is induced from the orientation of the base W1 « 5" \ B.

Theorem 12. The index of a hyper surface Mn~1 with respect to Β on Sn is equal
to the index of intersection of the Legendrian manifold Ln~l of normals of the
immersed hypersurface Mn~l with the B-section VB'

Remark. Here it does not matter whether the mainfold Μ is correctly oriented,
provided only that it is the projection of a Legendrian manifold L to the sphere S".
For a change in the orientation of Μ implies a change in the orientation of L and
change in the signs on both the left- and the right-hand sides of the equality.

Theorem 13. The boundary of the B-section VB is the image of the sphere S"" 1

by the folding map (*), to be precise (taking account of the orientations)

In other words, on even-dimensional spheres dVB = —2FB, while on odd-
dimensional spheres dVs = 0.

The geometrical Theorems 10-13 are verifiable directly, from the definitions. For
example in Theorems 10 and 12 the contributions of each point of intersection in
the left- and in the right-hand side of the equality is the same. It is only necessary
to follow accurately through all the orientations. Theorems 1-9 are derived below
from these four geometrical theorems.

§ 18. Proofs of the index theorems

Proof of Theorem 6. Let η be even. From Theorems 11 and 13 we have

d(2Vf -VB+ VA) = 0.

Therefore from Theorems 10 and 12 it follows that

that is, Theorem 6.

Proof of Theorem 4. From Theorem 11 it follows (for arbitrary n) that

d(v£ + v£) = o, d{v£ + v£ + v£) = o.

Applying Theorem 10 we conclude that

iB — iB iA

lA - l c - %c-

By this Theorem 4 is proved.
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Proof of Theorem 5. For a fixed point Β the index i^(M) can be computed as the
flow of the radial field in i " « S" \ ΰ with centre at the point A. The change of
this flow corresponding to transversal positive intersection of the hypersurface Μ
by the point A is equal to —1. This proves Theorem 5.

Suppose now that the dimension of the sphere Sn is even.

Proof of Theorem 7. Consider Μ as an immersed hypersurface in general position
in R" « Sn \ B. Construct two B-sections, corresponding to the constant fields
ey and —e\ in Era. On calculating the degree of the Gaussian map over the points
±ei g Sn~1 we obtain

ie = mg - mX Λ V m+_x,

iB = TUQ - mf Η h m~_1;

where m^ is the number of points where the co-oriented normal has the direction
±ei and for which the restriction of the coordinate function ±xi has a Morse critical
point of index k.

The restriction of the function X\ to Μ has therefore in all m* = m^ + mjjT
critical points of index k. Thus, χ = mo — m\ + ... + m n_i = 2ίβ, and Theorem 7
is proved.

Proof of Theorem 8. For η-chains σ and r in E2n~x

{da) Π τ = (-1) η σΠ(9τ).

Let da = L-kFc, τ = Vf. Then (δσ)Πτ = iB

A by Theorem 10, since FcnVf = 0
(the segment (A, B) may be chosen so as not to pass through C). On the other
hand,

σ Π (8τ) = (-1)η(σ Π FA - σ Γ) FB),

according to Theorem 11. Finally,

ιΒ

Α = (3σ) Γ) τ = (-1)ησΠ(<9τ) = σ Π FA -anFB,

which proves Theorem 8.

Proof of Theorem 9. Let η be even. Put r = —VA- Then 2r = FA by Theorem 13.
The cycle L — EFB is homologous to zero, so there is an η-chain a with boundary
da = L - eFB. Now (da) Π r = σ Π (dr). But we have

(da) HT = (L- eFB) nVA=eFBnVA-Ln VA,

while also σ Π (2τ) = 2 σ Π ^ . According to Theorem 12, Lf] VA - %A(M). Besides
this, FB Π VA — 1 due to the choice of the orientation of the fibre FB and the
^4-section VA- Thus, ε — IA — 2σ Π FA, which proves Theorem 9.

Proof of Theorem 3. This is a particular case of Theorem 9 (the independence of
the chain ρ*σ from the choice of a follows also from the fact that Hn(ST*Sn) — 0
for even n).
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Proof of Theorem 1.' This is a particular case of Theorem 6.

Proof of Theorem 2. We use Theorem 9. Denote by σ the inverse image of the
chain σ under the double covering S3 ->· ST*S2. The fibre of the Hopf bundle over
A is the double covering FA of the fibre FA of the bundle ST*S2 -» S2 over A. We
have da = 7 - eFc- Denote by DQ a 2-chain in S3 with boundary dD = Fc- Then
the 2-chain σ — eDc has boundary 7. Therefore the linking coefficient sought for is

f(7, FA) = (σ - eDc) nFA=dnFA- eDc Π FA.

According to Theorem 9, σ Π FA = 2σ Π FA = ε - ΪΑ· The linking coefficient of
the fibres Fc and FA of the Hopf bundle is equal to 1, and therefore DQ Π FA — 1 ·
Thus 1(J,FA) = —ΪΑ- But, by Theorem 6, -%A = 2i\ - is- And so Theorem 2 is
proved.

§ 19. The indices of fronts of Legendrian
submanifolds on an even-dimensional sphere

Let Ln~x be an oriented Legendrian immersed submanifold of the contact man-
ifold ST*Sn of co-oriented elements of the oriented sphere Sn.

Consider the front of L (its projection to the sphere) as an oriented and
co-oriented (singular) hypersurface of the sphere.

Example. Let L be the manifold of normals of an oriented hypersurface immersed
in the sphere. Then for the front we get this immersed hypersurface with its regular
co-orientation.

Remark. If one changes the orientation of L, then for the oriented and co-oriented
front one obtains the same co-oriented hypersurface but with changed orientation.
In such a case the co-orientation of the oriented immersed hypersurface forming the
front is not correct.

In the general case the front has singularities. In such a case there is no relation
between the orientation and co-orientation of the front and the orientation of the
ambient sphere. Therefore in transferring the preceding results to fronts one needs
to omit the correctness of the co-orientation everywhere (replacing it by the agree-
ment of the orientations of the Legendrian manifold L and its front). With this
change all the results of the previous sections hold.

Let A and Β be points of the complement of a front in the sphere. Identifying
Β with the point at infinity, we get in En an oriented and co-oriented front M^T1.

Definition. The index is is defined as the degree of the Gauss map Ln~1 —» Sn~1

(associating with a point of the Legendrian manifold the direction of the normal
which co-orients the front in Kn).

The index i% is defined as the degree of the radial map Ln~x ->• Sn~l (associating
with a point of the Legendrian manifold the direction of the vector from A to the
point of the front).

The quantity
\A) =iB

A- {iB 12)
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in this new situation is as before a locally constant function on the complement
of the front that does not depend on Β (it is equal to — M / 2 , as in the case of an
immersion).

Example. The values of the function i(A) for some fronts with two cusps are
shown in Fig. 16.

Figure 16

Definition. The characteristic η-chain of an oriented and co-oriented front in an
even-dimensional oriented sphere is the η-chain consisting of the oriented closures
of the components of the complement of the front with coefficients i{A).

Remark. On changing the orientation of the ambient sphere the characteristic
η-chain does not change. One can say that an oriented and co-oriented front deter-
mines the orientations as well as the multiplicities of the regions of the complement.

On change of the co-orientation of a front the characteristic η-chain also does
not change.

On change of the orientation of a front (that is, of the Legendrian manifold
corresponding to it) the characteristic chain changes sign: its boundary is always
the oriented front.

From these properties of the characteristic chain it is evident that it is possible
to define it also for (oriented and co-oriented) fronts on a projective space of even
dimension.

To be precise, for the two-sheeted cover of a projective space by the sphere the
full inverse image of the characteristic chain of a front on the projective space is
the characteristic chain of the full inverse image of the front on the sphere.

Example. The characteristic 2-chain of an oriented circle on the projective plane
is the disk bounded by this circle (with its orientation chosen so that its boundary
is the given oriented circle). On the Mobius strip complementary to the disk i = 0.
All this does not depend on the co-orientation of the front.
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Figure 17

The characteristic 2-chain of the front consisting of a confocal ellipse and hyper-
bola is shown in Fig. 17.

Theorem 14. Theorems 1-6 and 8-13 of this chapter remain true for fronts.

Even in the proofs practically nothing has to be changed (if we define the indices
as mentioned above and define the orientation of the front Μ independently from
its co-orientation as the orientation of its parametrizing Legendrian manifold L).

The proofs of Theorems 10,12 and 5 are the most crucial. Consider, for example,
the assertion of Theorem 12:

iB{M) = Lr\VB.

The proof consists in calculating the contributions of points of transversal inter-
section of L with VB both to the left-hand side and to the right. It is asserted that
both these contributions are equal for each point separately.

In terms of the Euclidean space W1 « 5" \ Β the manifold VB C ST*M" is
describable as a constant generic (co)vector field v. The contribution to the right-
hand side is given only by those points of L where the co-orienting normal to Μ
has directon v.

By choosing the field υ to be generic we can arrange that the corresponding
points of the front Μ are non-singular. At these and only at these points the
vector co-orienting the front has the direction υ.

In computing the number ig(M) as the degree of the Gauss map Ln~1 —> Sn~1

it is enough to count the signs of all these inverse images of the direction v.
At these points the front is a smooth oriented and co-oriented hypersurface. If

its co-orientation is correct for the given orientation, then such a point gives the
same contribution to both sides of the equality in Theorem 12 (its proof therefore
consists in this verification of the coincidence of the contributions).

If the co-orientation of Μ is not correct for the given orientation, then we change
(locally) the orientations of L and M. Then the co-orientation becomes correct.
The equality of the contributions to the left- and right-hand sides will then hold
at the point under consideration. But the contributions both on the left and on
the right have changed sign under the change of the orientations. This means that
they were equal to start with. By this the assertion of Theorem 12 is proved for
the case of fronts.

The assertions of Theorems 10 and 5 are proved in exactly the same way.
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The assertion of Theorem 7 for fronts in S3 or in E3 is clearly not true: the
index IB depends on the choice of point B.

In the case of S2, where the front is one-dimensional, all the indices and char-
acteristic chains of generic fronts may be computed also by means of the following
construction of averaging the indices of smoothings of the front.

Apart from self-intersections, the only singular points of a generic front are
semicubical cusps. There are two ways of smoothing a cusp (Fig. 18): in the one
case near the cusp there appears a point of self-intersection, while in the other case
there does not. In either case a co-orientable front becomes non-co-orientable, while
a non-co-orientable front becomes co-orientable.

Figure 18

On smoothing in one way or the other all the cusps of a co-orientable front we
obtain two new co-orientable fronts (since the number of cusps of a co-orientable
front is even). Note that both the fronts so obtained are oriented (like the original
front away from its cusps).

Theorem 15. For the computation of the indices is, i\ and i^ is enough to
smooth the original front near all its cusps both ways and to take the arithmetic
mean of the values of the corresponding indices for the two immersed curves so
obtained.

Example. Fig. 18 shows the characteristic chains of both smoothings of the sim-
plest curve with two cusps.

Remark. One can form the mean of all the 2N possible smoothings resulting from
smoothing Ν cusps—the result will be just the same.

Proof. It is sufficient to prove the assertion for plane curves. We denote by tp(t)
the azimuth of the co-orienting contact element of the original front at the point
corresponding to t on the Legendrian curve. For the smoothed curves we denote
the corresponding functions by φ+ and </?_. Choose the values of the azimuth so
that at one non-singular point of the front all three functions have the same value.
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On passing through the nearest cusp the differences φ+—φ and ψ~—ψ each change
by π but in opposite directions. The same happens on passing through the next
cusp. Finally on returning to the original point the difference φ+ — ψ has changed
by an (even) multiple of π in the one direction, and the difference ψ- - φ in the
other. This means that

2 · (the increase in φ) = (the increase in φ+) + (the increase in ψ-),

that is, for the index %B of the original front we have the expression

in terms of the indices of both the smoothings.
The number of circuits of the front around different points of its complement in

the plane does not change at all for a sufficiently small smoothing:

Therefore the characteristic chain also coincides with the arithmetic mean of the
smoothed chains outside a small neighbourhood of the front:

2iA = IA{+) +IA{-)-

In particular, from this we conclude that even for a front with cusps

so that for the indices of fronts with cusps one has conformal invariance, the formula
of Theorem 6, and so forth.

CHAPTER V

EXACT LAGRANGIAN CURVES ON A
SPHERE AND THEIR MASLOV INDICES

The simplest exact Lagrangian curve on the symplectic sphere is an embedded
curve, dividing the area of the sphere in half. Here we calculate the Maslov index
of an exact immersed Lagrangian curve: it is expressed in terms of the area of the
characteristic chain of the immersed curve, introduced in Chapter IV.

Our construction leads to an unusual version of the Gauss-Bonnett formula and
to proofs of the theorems on the dual and derivative curves, formulated in § 1
(Theorems 5 and 9 of § 1 and Theorem 2 of § 3), and to the theorems of duality
between area and length.
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§ 20. Exact Lagrangian curves and their Legendrian lifts

Consider a smoothly immersed curve on the standard sphere S2 of radius 1.

Definition. A curve is said to be exact if the area that it bounds is a multiple of
2 π (half the area of the sphere).

Remark. The area bounded by a curve is the integral of the area form over the
2-chain whose boundary is the curve.

Such a 2-chain is not unique: it is defined up to the addition of the entire sphere.
Therefore the area mentioned is defined modulo 4π, which means that the fact of
it being a multiple of 2π is well defined. Moreover the distinction between exact
curves, the one bounding an area 2π (mod 4π) and the other an area 0 (mod 4π),
is also well defined.

Example. An embedded curve is exact if and only if it divides the area of the
sphere in half.

A figure of eight is exact if and only if the absolute values of the areas of both
the regions bounded by a loop are the same or differ by 2π.

A parallel of latitude, described ρ times, is exact if and only if it bounds a disk
of area 2nk/p, with k an integer.

Consider now the 5x-bundle π; : S3/ ±l-¥ Sf from §6.

Theorem. Exact Lagrangian curves on the sphere S? are precisely the projections
on that sphere of i-Legendrian curves lying in the manifold S3 / ±1 with its standard
contact i-structure.

Proof. The contact ί-structure provides the principal bundle ij with an 51-con-
nection. A curve in the space of the bundle is i-Legendrian if and only if it is
the lift of its projection on the base as an integral curve of the connection. This
.S^-connection is invariant with respect to rotations of the sphere. Let us compute
its curvature.

For future calculations it is necessary to introduce on 5 3 / ± 1 a basis for the
differential 1-forms.

Definition. The form on is defined by its values on the vector fields i, j and k:

au(i)=2, a i ( j )=0, a<(k) = 0

(the coefficient 2 is introduced for convenience, bearing in mind its appearance in
Lemmas 1, 2 and 3 of § 7).

The forms o.j and a* are defined by cyclic permutation of the quaternionic units,
so that

Since the fields i, j and k are left-invariant, all three constructed forms are also
left-invariant.

The basic fact in what follows is the following lemma.
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Lemma 1. The differential of the form cti is the lift of the standard area form Wj
from the complex sphere Sf:

Proof. The differential of a, in the direction of the field i is equal to zero. By the
homotopy formula

0 = L\a.i = ii{dcti) + d{iicti) = ii(dai),

so i\o.i = 2 is constant. Conseqently, the form da, vanishes when evaluated on the
vector i tangent to a fibre.

This means that the 2-form is the lift of some 2-form from the factor-space Sf.
The left invariance of c^ implies that this 2-form on Sf is invariant under rota-

tions of the sphere Sf. This means that it is proportional to the standard area form
u>i, that is,

It remains only to compute the constant c.
For the computation of c we use the following fact.

Lemma 2. The integral of the form cti along a fibre of the bundle TTJ : S 3 / ± l —> Sf,
oriented by the field i, is equal to 2π.

Proof. In the notations of Lemma 2 of § 7 (where the matter concerns the sphere
S'j, so the quaternion units must be permuted cyclically) a full revolution is accom-
plished in time 2π (and in the direction opposite to the direction of the complex
structure, if the bundle is identified with ST*Sf in the usual way). The time stated
is the integral of the form along the fibre oriented by the field i.

Lemma 3. Consider a vector field with one singular point Β on the complex
sphere S2 as a 2-chain σ, oriented by the complex orientation of the sphere. Then
da = —2FB, where FB is the fibre over Β (with the orientation given by the direc-
tion of the complex-positive rotation of the sphere).

Proof. This is a particular case of Theorem 13 of § 17 (actually that theorem is
obvious). The index of the only singular point of the field is equal to +2. Consider
the field on the boundary circle of the disk covering this sphere except for a small
neighbourhood of the point B. This boundary of the big disk goes around Β along
a small circle oriented negatively (with respect to the direction of the complex
rotation around B). This means that as one goes round this circle a vector of the
field turns so that it completes two full revolutions in the negative direction, from
which Lemma 3 follows.

Conclusion of the proof of Lemma 1. We compute the integral of the form dcti over
the chain σ. By Stokes' formula

da>i= a>i= α , = 4 π .
JJo Jda J—2F
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In Tact, the integral of the form c*j over the fibre oriented by the direction of the
field i is equal to 2π. Moreover the direction of the field i is opposite to that of
the complex rotation of the sphere Sf (by Lemma 2 of § 7). Thus — F is the fibre
oriented by the direction of the field i. We see that

JJs? l JK
, . don = 4π

Is?

and consequently c = 1.

Remark. It is useful to remark that the left-invariant forms aj, and so on, satisfy
the equations

dtti = —Oij Λ a.k

and so on.
In fact, the forms on either side are left-invariant and reduce to zero on the

vectors of the i-direction. Therefore it is enough to verify the coincidence only on
the pair (j,k).

On this pair the left-hand side has the value —4, since the complex orientation
of the sphere Sf is the orientation from k to j (by Lemma 5 of § 7). The right-hand
side also has the value —4.

Of course, one can do all this also by direct coordinate calculations, simply
multiplying quaternions and explicitly calculating the components of the forms at
the point 1, neglecting quantities of the second order of smallness.

Actually all these computations are simply the computations of the structural
constants of the group 50(3). But I have given them in full, so as to be sure about
the correctness of those cursed signs.

Proof of the theorem. Let L be an i-Legendrian curve on S3/ ± 1 (so that a» reduces
to zero on L). Consider a 2-chain σ with boundary L — eF (where ε = 0 if the
curve L is homologous to 0 and equal to 1 if not). Here F is a fibre of the bundle
TXi : S3 / ± 1 —> Sf with the orientation given by the complex structure of the sphere
(so that JpOti = — 2TT).

By Stokes' formula

dcti = a, - αϊ = ε2π.
JJa JL JeF

By Lemma 1, dai = π*ωί and consequently

// dai = / / 7f>i = //_ ω,

is the area bounded by the projection of L on the sphere Sf.
Thus this area is an integral multiple of 2π.
Conversely, start with an arbitrary closed Lagrangian curve on Sf. It is covered

by a segment of a Legendrian curve L', ending above its initial point. Join the end
point to the initial point by a segment Δ of the fibre FB- We get a closed curve
L U Δ in S3/ ± 1. We construct a 2-chain σ with boundary L — eF just as before.



48 V. I. Arnol'd

Now for the area bounded by the original Lagrangian curve (mod 4π) we have the
expression

/ / LJi = dai = at - ai= cti + 2πε.
JJHi,a JJa JL JeF JA

If the original Lagrangian curve is exact, then the area on the left, and that means
also the integral of the form on over the segment Δ, is a multiple of 2π. This
means that the beginning and end points of the segment coincide, and the theorem
is proved.

§ 21. The integral of a horizontal form
as the area of the characteristic chain

Consider a closed Legendrian curve L in the space of co-oriented contact elements
of a standard sphere S2 of radius 1. We set about the computation of the integral
of a horizontal contact form along this curve. First I recall some notations from § 6.

Consider two bundles over the standard sphere S|,

τi : S3/ ± 1 -> S]; p: ST*S] -» Sj.

The fibres of the first bundle are the orbits of multiplication by {eJi} on the
right. The fibres of the second bundle are the circles consisting of the co-oriented
contact elements applied at a point of the sphere.

Definition. The natural i-identification of both these bundles is the map associat-
ing with a point ζ of S 3 /± 1 the contact element on S? orthogonal to the projection
of the vector of the field i at ζ (co-oriented by this projection).

By means of the identification we carry over to the manifold of the co-oriented
contact elements the differential 1-form a,· = a (defined in § 20 in terms of S3 / ± 1).

This 1-form is horizontal: planes a = 0 are orthogonal to fibres of the bundle.
It is left-invariant and invariant with respect to multiplication by e·?* on the right.
Its integral along the fibre F of our bundle (oriented by the complex structure of
the sphere) is equal to — 2π (see §20).

Main theorem. The integral of the horizontal form a along a Legendrian curve
L is equal to the area of the characteristic 2-chain of the front of this curve:

JL J Jcip.l

where ω is the standard area form on the complex sphere Sj.

Proof. We construct a 2-chain σ with boundary da = L — eF (where ε = 1 or 0).
By Stokes' formula

// da — I a — ε a = / a + 2πε.
Jia JL JF JL
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According to Theorem 3 of § 14 the projection of the chain σ to the sphere is
ρ*σ = c + eSj/2. By the theorem of § 20 the differential of the form a is the area
of the projection: da = ρ*ω. Thus we find that

Π da = f I ρ*ω = ω = I Ι ω + ε2π.

Consequently, and finally,

as was asserted.

Remark. The standard «-identification may be changed here to an arbitrary
r-identification, where the quaternion r is orthogonal to j (for example, a
^-identification).

§ 22. A horizontal contact form as a Levi-Civita
connection and a generalized Gauss—Bonnet formula

The contact structure aj = 0 in S 3 / ± l determines a connection in the S1 -bundle

Theorem 1. The contact connection aj = 0 is transformed into a Levi-Civita
connection of the bundle of (co)tangent vectors of unit length on the sphere S?
under the natural i-identification of the bundles

TFJ- : S3/ ± 1 -> 5?, p: ST*S] ->• S]

(cotangent vectors are identified with tangent vectors by means of a metric on the
sphere).

Here, as in §21, the «-identification may be changed into an arbitrary
r-identificaton, where the quaternion τ is orthogonal to j .

Proof. The vectors of the fields i and k at each point of S3 / ± 1 generate the plane
aj = 0. An integral curve of the field k is z-identified in ST*Sj with the motion of
the co-orienting vector of the normal along the geodesic everywhere orthogonal to
it, while the field i is everywhere tangent to it (by Lemmas 3 and 1 of § 7). Both
these motions are parallel transports in the sense of the Levi-Civita connection
(according to its definiton). The theorem is proved.

Definition. The geodesic curvature of a co-oriented curve is considered to be posi-
tive if the curve bends away from the geodesic tangent to it towards its co-orienting
vector.

Example. The parallel of latitude, at a distance θ from the pole of the standard
sphere of radius 1 and co-oriented by the direction to the pole, has geodesic curva-
ture κ = cot Θ.

From this example we have the following result.
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Lemma 1. The geodesic curvature κ of a co-oriented curve on the sphere of
radius 1 is connected with the spherical radius of curvature of the curve, Θ, by
the relation κ = cot#.

Consider now a Legendrian curve L in the space ST'S? of co-oriented contact
elements of the sphere S?. Recall that we defined above the horizontal 1-form ay
in the space of the fibration ρ : ST*Sj -> Sj. The sphere 5 | is oriented by its
complex structure.

Lemma 2. The value of the horizontal form a, on any tangent vector of a
Legendrian curve L is equal to κάβ, where κ is the geodesic curvature of the
co-oriented front pL of this curve, while ds is the length of the projection of the
vector on the sphere {with plus sign if the projection orients the front correctly, and
minus if it does not).

I remind you that the orientation of a co-oriented curve on an oriented surface
is correct if the frame (co-orienting vector, orienting vector) imparts a positive
orientation to the surface.

Proof of Lemma 2. The tangent vector of an i-Legendrian curve is orthogonal to
the i-direction. Therefore one can represent it as a combination of the vectors of
the fields j and k:

ξ = jAcosfl + kAsin0, A > 0.

According to the Theorem of § 10, the spherical radius of curvature of the front is Θ.
According to Lemma 1 the geodesic curvature of the front is κ = cot#.

The value of the form atj on a vector of the field ξ is equal to 2 A cos θ (from the
definition of this form). We prove that the oriented length of a vector of the field ξ
is equal to 2Asin#.

In fact, under the projection ρ along the j-directon we have

But the oriented length of the projection p,k of the vector of the field k on the
sphere S? is equal to 2 by Lemma 3 of § 7. Thus, ds(£) = 2Asin#.

Finally we find that

α,· (ξ) = 2A cos θ = (cot 6»)2A sin θ = κ ds(£),

which is what had to be proved.

Combining Lemma 2 with Theorem 1 and the main theorem of § 21, we obtain
the following generalized Gauss-Bonnet formula.

Consider a co-oriented curve Κ smoothly immersed in the sphere with geodesic
curvature κ.

Theorem 2. There is a Gauss-Bonnet formula for immersions
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where c is the characteristic chain of a correctly oriented curve Κ and ω is the
Gaussian curvature form (that is, for the standard sphere of area 1 simply the area
form).

I remind you that a correct orientation of a curve is defined by the condition
that the frame (co-orienting vector, orienting vector) positively orients the sphere.

Proof. At first let the metric be standard. By Lemma 2 the left-hand side is then
equal to the integral of the horizontal form a along the curve of normals. By the
main theorem of § 21 this integral is equal to the double integral on the right-hand
side of the formula. So this formula is proved for the standard metric.

Any metric can be obtained from a standard one by a sequence of local defor-
mations. Under a local deformation the equality of the left- and right-hand sides
cannot be broken. This follows from the fact that the Gauss-Bonnet formula is
true for embedded curves.

Remark. A direct proof of Theorem 2 for an arbitrary metric repeats the proof of
the main theorem. The topological equality ρ*σ = c + sS2/2 does not depend on
the metric. On the other hand, the relations

\ α — -2π, / / ω = 4ττ

are satisfied for the form a of the Levi-Civita connection and its curvature form ω
for any metric of the sphere.

Consider now an oriented and co-oriented front on an oriented sphere.

Definition. A point of a front is said to be positive if the pair (co-orienting vector,
orienting vector) positively orients the sphere.

Example. A semicubical cusp of a front separates its positive branch from its
negative one.

Theorem 3. The following Gauss-Bonnet formula holds for fronts:

where c is the characteristic chain of the front Κ and ds is the element of the
oriented length of the front (positive at the positive points of the front and negative
at the negative points).

The proof is the same as that of Theorem 2.
Already from Theorem 2 we have an important corollary.

Corollary. Every exact Lagrangian curve is the derivative of a closed front.

Proof. Select at a point of the Lagrangian curve the great circle passing through
this point. Transport the tangent vector of this circle at this point parallel to itself
(in the sense of the standard Riemannian metric on the sphere) along our closed
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Lagrangian curve. On returning to the original point we get the initial vector. In
fact, the rate of change of the angle of the vector carried parallel to itself along
the curve with respect to the tangent vector of the curve is equal to the geodesic
curvature of the curve. Therefore for a complete circuit the transported vector turns
with respect to the tangent vector through the integral of the geodesic curvature.
By Theorem 2 this angle is equal to the area of the characteristic chain. If the
original Lagrangian curve is exact, then the angle is a multiple of 2π and the vector
returns to its place (and if not, not).

Consider now the great circles intersecting the Lagrangian curve in the directions
of the transported vectors. This family of circles has an envelope.

Lemma. The distance along each of these circles from the original Lagrangian
curve to the envelope is equal to π/2.

Proof of the lemma. Replace a small segment of our curve by a small great circle
arc. The parallelism of the circles constructed above along our curve means that
the difference between the angles of this arc with the circles of our family at its
ends is of an order of smallness no higher than the first with respect to the length
of the arc. But infinitely close great circles intersecting the equator at the same
angle intersect at a distance π/2 from the equator along each of them. This means
that infinitely near great circles of our family also intersect at a distance π/2 along
them from the Lagrangian curve.

The derivative of the envelope constructed in this way is our original exact
Lagrangian curve. The corollary has been proved.

§ 23. Proof of the formula for the Maslov index

I recall that the Maslov index μ of an oriented and co-oriented front in general
position is equal to the difference between the numbers of positive and negative
cusps (Fig. 19).

Figure 19
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Theorem. The Maslov index μ of an oriented and co-oriented front on an ori-
ented sphere is connected to the characteristic chain c (that means with the geodesic
curvature κ also) of its correctly co-oriented derivative Κ by the relations

ω = —πμ = / xds,
J Jc JK

where u) is the area element of the sphere and ds is the element of length.

Proof. A cusp of the front corresponds to a point where the derivative curve is
orthogonal to the family of the framing great circles, with the help of which the
derivative has been constructed (see § 12).

So at a generic cusp the angle a between the derivative curve and the framing
direction passes through the value ±π/2 with non-zero velocity. The sign of the
velocity is determined by the sign of the cusp (according to Theorem 3 of § 12 and
Example 2 following it).

We conclude that the number μ of cusps, taking account of their signs, is equal
to twice the number of turns of the framing vector with respect to the normal vector
of the derivative curve.

But the framing vectors form a parallel framing (Theorem 2 of § 12). Conse-
quently the angle of turn of the normal vector with respect to the framing vector
after one circuit of the derivative curve is equal to the integral of its geodesic cur-
vature.

The angle of turn of the framing vector with respect to the normal is the opposite,
therefore it is equal to — JK xds. Consequently the number of turns is equal to
- JK xds/(2ττ). Therefore twice this number of turns, namely - j K xds/ττ, is equal
to the Maslov index μ. Hence the second equality of the theorem is proved.

The first follows from the second by Theorem 2 of § 22.

Remark. The metric of the sphere in the proved theorem is the standard one.
Generalizations of this theorem to the case of other metrics are not known to me
(the definition of the derivative uses the standard metric).

To verify the sign in the preceding theorem it is necessary to apply it to a front
with a non-zero Maslov index.

Example. Consider a system of fronts whose caustic is a parallel of latitude of
the standard sphere of radius 1 traversed ρ times (at a distance θ < π/2 from the
North pole along meridians). Suppose that the length of the parallel (27rsin#) is
equal to 2π/ρ. One of the fronts, Γ (for the case ρ = 3), is shown in Fig. 20. The
orientation of the sphere is also shown in Fig. 20.

Choose the co-orientation and orientation of the front as shown in Fig. 20. Both
the cusps are positive, so that μ = 2. The derivative curve of the front is the (p = 3
times traversed) parallel of latitude, at a distance (π/2) — θ from the North pole
along meridians. The orientation of the front gives the orientation of the derivative
curve Γ", shown in Fig. 20 (see p. 54). The correct co-orientation of this derivative
curve is to the side of increasing distance from the North pole.

The geodesic curvature κ of the correctly co-oriented derivative curve is there-
fore equal to — tan#. The integral of this curvature along the derivative curve
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caustic

second caustic

Figure 20

(of length 2πρ cos Θ) is equal to

xds = -27rpcos#tan# = -2-nps\n6 = -2πL
(since the original parallel has length 2π/ρ =

Our theorem consequently gives μ = +2, as it should.

Remark. For a parallel of latitude Κ with ζ = cos# = fc/π, described ρ times, one
would obtain μ = 2k.

§ 24. The area-length duality

Consider an oriented and co-oriented front on the standard oriented two-
dimensional sphere of radius 1. The dual front is also oriented and co-oriented.

Theorem 1. The area of the characteristic 2-chain bounded by the front dual to
the given one is equal to the oriented length of the original front.

Corollary. The area of the characteristic 2-chain bounded by the given front is
opposite to the oriented length of the dual front.

In fact, the oriented length of the second dual of the front is opposite to the
oriented length of the original front, since the antipodal map of the sphere changes
its orientation.
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Figure 21

Example. Let the original front be the parallel of latitude at a distance θ < π/2
along a meridian from the North pole, co-oriented by the vector directed from the
pole (Fig. 21). Take the orientation of this front to be correct (so that the frame
(co-orienting vector, orienting vector) positively orients the sphere).

The dual front is the parallel of latitude at a distance θ + (π/2) with the same
co-orientation (from the Pole) and with the correct orientation.

The area of the characteristic chain of the dual front is 2π8ΐη#.
The length of the original front is 2ffsin#.
The area of the characteristic chain of the original front is —2-Kcose.
The length of the dual front is 2π cos Θ.

Proof of Theorem 1. Let the original front Γ be the front of an i-Legendrian curve
L in ST*S^. Then the dual front Γ ν is the front of the (also i-Legendrian) curve
L v = Le"'A (by Lemma 1 of § 7).

Multiplication by el7r//4 on the right sends the field k to the field j and the field
j to the field — k (by the theorem of § 8). Therefore

ak= ah a-, = - ak.
JL J Ly JL JLV

On the other hand, by the main theorem of § 21

/ a i = ω> / a i = / / ω-
JL JJc JLV JJcv

But the oriented length of the projection on 5 | of the i-Legendrian vector ξ is
exactly a/fc(£) (see the proof of Lemma 2 of § 22). Therefore

ι = the oriented length of the front Γ,

= the oriented length of the front Γ ν.

The theorem is proved.
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I now recall that the derivative curve of the front is dual to the caustic.
Applying Theorem 1 to this pair, we are able to find the length of the caustic.

We orient and co-orient the caustic in such a way that the derivative curve of the
front (with its orientation defined by the orientation of the front and with the
correct co-orientation) is dual to the caustic. Then from Theorem 1 one obtains
the following result.

Theorem 2. The oriented length of the caustic on the standard sphere is equal to
an integral multiple of 2π, in fact equal to —πμ, where μ is the Maslov index of the
front.

In fact, by Theorem 1 this length is equal to the area of the characteristic chain
of the derivative of the front, which is equal to -τχμ by the theorem of § 23.

Example. In the situation of Fig. 20 the caustic is the parallel of latitude at a
distance θ from the North pole (and described ρ times). It is co-oriented by the
direction towards the pole and oriented incorrectly. Therefore its oriented length is
-27rpsin# = — 2π, while the Maslov index of the front is μ = +2.

I note also another useful formulation of the area-length duality.
Let da — L\ — LQ be the homology between two i-Legendrian curves on

RP3 « ST*S] with fronts Γι and Γο on S].

Theorem 3. The area of the projection of the chain σ on the sphere (that is, the
difference of the areas bounded by the fronts Τ χ and Γο) is equal to the difference
of the oriented lengths of the fronts whose duals are the fronts Γχ and FQ:

IL - 5(Γ0) = Ι(-Γ^) - Ζ(-Γο

ν).

The proof is the same as for Theorem 1.

§ 25. The parities of fronts and caustics

Definition. A closed curve in KP3 is said to be even if it is homologous to zero
and odd otherwise.

Wave fronts, their derivatives and caustics, equipped with various framings,
determine closed curves in ST*S2 « EP 3. These curves may be even or odd.

Example 1. All the equidistants of a front, framed with co-orienting normals,
have the same parity, since they are mutually homotopic.

Example 2. The derivative curve of a closed front, framed with the directions of
the great circles which are parallel along it, has the same parity as the original
front.

For moving a distance π/2 along a tangent can be interpolated by a family of
moves by t from the identity map.

A caustic has a natural framing by normals (for which the dual curve of the
caustic is the correctly framed derivative curve of the front).
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Theorem 1. The parity of the caustic coincides with the parity of the front if
μ = 0 mod 4, and is opposite to it if μ = 2 mod 4.

Example 3. In Fig. 20 the caustic is a parallel of latitude described ρ times. Its
parity is the parity of the number p.

The parity of a front (as it is not hard to convince oneself) is the parity of the
number ρ — 1. In this example μ = 2.

Theorem 1 follows at once from the following fact.

Theorem 2. The parity of a front coincides with the parity of its derivative curve,
framed with the parallel circles, while the parity of the caustic coincides with the
parity of the same derivative of the front framed by its normals.

Both these facts have already been proved above, the first in Example 2 and the
second in Example 1.

Proof of Theorem 1. The normal framing of the derivative curve differs from the
parallel framing by μ/2 turns (by the theorem of § 23). Each circuit of the framing
changes the parity of the curve in ST*S2 by 1, since it adds to the homology
class of the curve in EP 3 the generator of the group iii(ffiP3,Z) w Z2. Therefore
the difference of the parities of the caustic and the front is μ/2 (mod 2), as was
asserted.

The Maslov index and the parity are (the only) invariants of the regular homo-
topy of the Legendrian immersion of a circle in the contact manifold ST*S2. The
Maslov index of the curve is also preserved under the contactomorphisms of this
manifold (the author thanks S. L. Tabachnikov and E. Zhir for showing him that
this follows from the uniqueness of trivialization of the bundle of contact planes
on S3).

CHAPTER VI

THE BENNEQUIN INVARIANT AND THE SPHERICAL INVARIANT J+

For immersions of a circle in the plane there is an invariant J+, defined in [6],
that counts positive self-tangencies that occur during perestroikas (see also [5]). It
is uniquely defined by the following conditions:

1) on passing through a positive self-tangency (when both the tangent branches
have the same orientation) the value of J+ changes in the same way that the number
of double points changes (that is, it increases the value of J+ or decreases it by 2),
while on passing through the remaining perestroikas of codimension 1 (negative
self-tangencies and triple intersections) it does not change its value;

2) the invariant is additive for the connected sum:

J+(X + Y) = J+(X) + J+(Y);

3) the value of J+ does not depend either on the orientation of the curve or on
the orientation of the plane.
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Example. The values of J+ for the simplest curves are shown in Fig. 22.
The invariant J+ is not conformally invariant.

Example. The frist and third curves in Fig. 22 are conformally equivalent, but
have different values of the invariant J + .

It turns out that after a small correction the invariant J+ can be made spherical,
that is, conformally invariant.

§ 26. The spherical invariant J +

Consider on the plane a curve of index i.

Theorem. The invariant SJ+ = J+ + (i2/2) of the plane curve is conformally
invariant (that is, does not depend on which point of the Riemann sphere is chosen
as the point at infinity).

Definition. The quantity SJ+ is called the spherical invariant J+ of the spherical
curve (obtained from the given plane curve by adding to the plane a point at
infinity).

Proof of the theorem. Since (by a theorem of Whitney [7]) the space of immersed
curves of fixed index i is connected, it is enough to do the following.

1) For one curve of each index to construct a curve conformally equivalent to it
but of different index and to verify that the increments in J+ and i2/2 on passage
to the new curve are of opposite sign.

2) To produce just so many such examples that the indices connected by them
fall into two classes: even and odd numbers (the parity of the index under conformal
transformations does not change, since it is opposite to the parity of the number of
points of self-intersection of the curve).

The required examples are shown in Fig. 23.
The verification of the conformal invariance of SJ+ follows from the identity

-2n+(n + l) 2 /2=(n-l) 2 /2.

The proof is complete.
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77 points
( π = 4)

Figure 23

§ 27. The topological meaning of the invariant S J+

For each co-oriented front Γ on the sphere S2 one can define a Legendrian curve
L C ST*S2(zi B.P3); its double cover L C S3 is a Legendrian curve in the standard
contact sphere S3.

The curve L consists either of two components or of one.

Definition. The Bennequin invariant P(L) is the linking coefficient P(L)=l(L, Le)
of the Legendrian curve L and its small shift LE in the direction transverse to the
contact structure.

The orientation of S3 is chosen here in the ordinary way (that is, in such a way
that the linking coefficient of the covering fibres of the bundle ST*S2 -> S2 is equal
to +1).

The Bennequin invariant is an invariant of Legendrian knots but not of immer-
sions: it is defined only for embedded Legendrian curves (see [8]).

Theorem 1. The Bennequin invariant is connected with the spherical invariant
J+ by the relation

= 2(l-SJ+(r)).

In [6] the linking polynomial L(t) is defined for an embedded Legendrian curve
of index i in ST*R2. It belongs to the group ring of the group Zj. The sum of its
coefficients is connected with the invariant J+ by the relation

L(l) + J+ = 1.

In these notations Theorem 1 can be written in the form

Suppose now that the index i = 2k is even. In this case it is possible to take
separately the sums of the coefficients of the polynomial L of even and odd degrees,

Lev = (L(l) + L(-l))/2, Lodd =

The covering Legendrian curve L in S3 in this case consists of two components, L\
and L-2-
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Theorem 2. There are two sharpenings of the formula of Theorem 1:

β{ίλ) = β(ί2) = Le v - k2,

l(Li,L2) = Lodd - k2.

The proofs of Theorems 1 and 2 are obtained by rather direct but heavy calcula-
tions of indices of intersection, and I do not dwell on them. The role of the number
j2/2 has been discussed before by Tabachnikov in [15].

CHAPTER VII

PSEUDO-FUNCTIONS

The motivation behind all the above research was the wish to promote some
generalizations of Morse theory relevant to 'multivalued functions' (see [9], [2], [3],
[4], [5], [6], [16], [17]).

We begin with the simplest example: a function on the circle has no fewer than
two critical points.

What we shall be concerned with is the generalization of this 'Morse inequality'
to objects that are more general than functions—the so-called quasi-functions of
Chekanov (which are, in fact, Legendrian submanifolds, whose Lagrangian curves
lie on the surface of a cylinder, and according to the inequality, have no fewer than
two points of intersection with its equator) and the pseudo-functions of Givental'
(the Lagrangian curves of which lie on the surface of a sphere, and, according to
the inequality, intersect each great circle at least twice).

Other generalizations of elementary Morse theory for functions on the circle are
provided by the theorem of Sturm (Kellogg, Tabachnikov and others), according to
which the number of zeros of the Fourier series

a-n cos(na;) + bn sin(nx)

on the circle is not less than the number (2N) of zeros of its first harmonic (see [2],
[3], [4], [5]).

For Ν = 1 this is precisely the theorem of Morse, since a function with mean
value 0 is the derivative of a function on the circle. In this way the theorem of
Sturm and others is a generalization of the Morse inequality to the case Ν > 1.

In the case Ν = 1 the Morse inequality has been transferred to the 'multivalued'
cases of the quasi-functions and pseudo-functions of Chekanov and Givental'.

In the case Ν > 1 only the first steps have been taken in the direction of such
transfer.

These first steps, and the conjectures to which they lead, are given below. The
generalization of Sturm's theory to functions of more than one variable is a yet more
interesting consequence of our constructions, but I do not concern myself with that
here.7

7There is, by the way, an interesting preprint by Μ. Ε. Kazaryan on umbilical characteristic
classes (Bochum, 1994).
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§ 28. The quasi-functions of Chekanov

For any function / : Μ -> R there is an exact Lagrangian submanifold L C T*M
(formed from the differentials of / at all points). The critical points of the function
are intersections of L with the zero section. Suppose that Μ is compact. The
Morse inequalities estimate from below the number of points of intersection of L
with the zero section.

The first attempts to generalize the Morse inequalities are related to replacing
the Lagrangian section L by Lagrangian submanifolds that need not be sections.

Example. Let Μ = S1 be the circle. Then T*M = ffi χ S1 = {p, q mod 2π}—the
cylinder, and L is a curve homotopic to the zero section. The exactness condition
consists in the fact that the area between L and the zero section is zero:

pdq = 0.

If such a curve L has no self-intersections, then it must intersect the zero section
twice (for example, if it were above the zero section everywhere then the integral
would be positive).

However, if the curve can intersect itself, then the intersection with the zero
section can vanish. I described the simplest example of such a thing in 1965 in [9]
(Fig. 24).

Figure 24

The exactness condition in this example takes the form of a relation between
the areas, A + C = B. It is easy to construct a curve with ρ > 0 satisfying this
condition. For such a curve the 'generalized Morse inequality' (the number of points
of intersecton with the zero section ^ 2) is not true.

I conjectured in 1965 that, for embedded exact Lagrangian submanifolds in
the space of the cotangent bundle of a manifold that are Hamiltonially isotopic
to the zero section, the number of points of intersection with the zero section is
bounded below by the sum of the Betti numbers of the manifold. This conjecture
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(after the proof by Conley and Zehnder [10] of an analogous conjecture on the fixed
points of exact symplectomorphisms of the torus) has been proved by many people:
Chaperon [11], Laudenbach and Sikorav [12], and others.

Chekanov [13] noted that the result remains true even for some self-intersecting
immersed exact Lagrangian submanifolds, which he called quasi-functions.

Definition. A quasi-function on a compact manifold Mm is a Legendrian embed-
ding of Mm in the contact space Jl{M, E) = (T*M) χ Μ of 1-jets of functions on
Mm, which can be joined to the zero section by a regular homotopy consisting of
Legendrian embeddings.

The projection of a Legendrian quasi-function embedded in J 1 (Μ, K) is an exact
Lagrangian immersion of Μ in T*M. This immersion is homotopic to the zero
section, but in general has self-intersections.

Chekanov's theorem [13], [16]. The number of points of intersection of the
Lagrangian projection of a quasi-function to the space of the cotangent bundle T*M
with the zero-section (the number of quasi-critical points of the quasi-function) is
not less than the sum of the Betti numbers of the manifold Μ (if one takes multi-
plicities of points into account).8

Example. Let Μ = S1. Then the number of points of a quasi-function where
ρ = 0 is not less than two.

In particular, the curve of Fig. 24 cannot be the Lagrangian projection of a
quasi-function.

This means that for any regular homotopy of the zero section to the curve of
Fig. 24 there is a moment when the curve has a double point, breaking it into two
loops, along each of which J pdq = 0.

For the simplest homotopy the proof of Chekanov's theorem even for curves on
a cylinder is not known.

Remark. Of course, in Chekanov's theorem for the number of quasi-critical points
of a quasi-function there were obtained more precise lower estimates than by the
sum of the Betti numbers. For many manifolds Μ this number is not less than
the Morse number; the usual lower estimates in this situation for the number of
geometrically distinct quasi-critical points have also been obtained.

However, the conjecture that these numbers are always not less than the minimal
number of critical points of a function on Μ (taking account of multiplicities or
not) has been neither proved nor disproved.

§ 29. From quasi-functions on the cylinder to
pseudo-functions on the sphere, and conversely

The following useful simple lemma is due to Archimedes.
Consider the cylinder x2 + y2 = 1 wrapped round the sphere x2 + y2 + z2 = 1.

The projection of Archimedes projects the complement to the poles of the sphere
onto the surface of the cylinder by horizontal radii χ = ειχ0, y = ety0, ζ = z0).

8The proof of this important theorem was for a long time missing from the literature, until in
1994 there appeared a preprint by M. Chaperon on this theme (Paris-7).
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Lemma. The Archimedean projection S2 \ S° —»• S 1 χ (—1,1) is a symplecto-
morphism.

This lemma enables us to transfer quasi-functions to the sphere (less its poles).
Adjoining the poles, we arrive at the following concept.

Definition. A pseudo-function (on the circle) is an exact i-Lagrangian immersion,
which is the projection of an i-Legendrian embedding of a circle in ST*Sf, belonging
to the component of a Legendrian embedding that projects to the embedding of
the equator, in the space of all Legendrian embeddings.

In other words, we deform the equator of the sphere to a smoothly immersed
curve so that

1) the curve at all times bounds an area of half the sphere (2π mod 4π),
2) during the deformations neither of the loops of the curve into which a double
point divides it bounds the area of half the sphere.

Givental's theorem [14]. A pseudo-function intersects a great circle of the sphere
in no fewer than two points.

Remark. If a pseudo-function has no self-intersections, then what has to be proved
is obvious. The example of Fig. 24 allows us to construct an immersed circle in
the Northern hemisphere, bounding an area of half the sphere. From Givental's
theorem it follows that the immersed curve of Fig. 24 not only does not determine
a quasi-function, but is not even a pseudo-function.

Example. If a pseudo-function is obtained from the equator by a homotopy not
passing through the poles, then this homotopy projects to the cylinder and there
one obtains a quasi-function. For this quasi-function one has, therefore, an asser-
tion close to Chekanov's theorem. If, on the contrary, the pseudo-function passes
through the poles during the deformation, then the projection to the cylinder fails
to determine a quasi-function. For example, in Fig. 25 (see p. 64) we show one such
perestroika. As a result of this perestroika on the surface of the cylinder S1 χ (—1,1)
one obtains a closed contractible curve, bounding the area 2π.

Such a curve is far from being a quasi-function, but it must nevertheless intersect
the zero section at least twice. If the curve is embedded, then this is obvious,
since the area of the cylinder whether above or below the zero-section is equal
to 2π. Givental's theorem asserts that the intersection points cannot vanish even
for curves that have self-intersections, if in the process of deformation none of the
double points forms on the curve a loop bounding an area of half the sphere.

Remark. The theorem of Givental' presented here was proved by him in the much
more general setting of exact Lagrangian embeddings of EPra in CP n (our case of
spherical curves corresponds to taking η = 1).

§ 30. Conjectures concerning pseudo-functions

Symplectic and contact generalizations of the classical four-vertex theorem lead
to the following result (see [4]).
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Figure 25

The tennis-ball theorem. Consider a curve embedded in the standard sphere and
bounding an area of half the sphere. Such a curve has no fewer than four points of
spherical inflection.

Using Fig. 24 it is easy to construct an example of a curve, immersed in the
standard sphere and obtained from the equator by regular homotopy in the class
of immersions bounding the area of half the sphere, that has only two points of
spherical inflection.

We have already seen that the curve of Fig. 24 cannot be a pseudo-function.

Conjecture 1. The number of points of spherical inflection of a pseudo-function
is not less than four.

One can formulate an analogous conjecture concerning quasi-functions on the
cylinder.

Definition. A point of spherical inflection of a quasi-function is a point of spherical
inflection of the projection of its Lagrangian curve to the sphere by rays from the
centre.

If a quasi-function is given locally by the equation ρ = f(q), then the point q of
spherical inflection is determined from the equation f" + f = 0.

Conjecture 2. A quasi-function has no fewer than four points of spherical
inflection.

Theorem. // the Lagrangian projection of a quasi-function has no points of self-
intersection, then it has no fewer than four points of spherical inflection.

Proof (the author is grateful to B. A. Khesin, whose idea is used here).
Suppose that the spherical projection has fewer than four points of inflection.

Then this curve on the sphere can be confined to a hemisphere (see [4]). This
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hemisphere cannot be bounded by a vertical meridian, since a quasi-function has
points with arbitrary values of q.

Thus the Lagrangian curve lies in the half-cylinder ζ > ax + by (or ζ < ax + by).
But {(x,y,z — ax — by)} is also a quasi-function. Since everywhere ζ φ αχ + by
we obtain a contradiction to Chekanov's theorem (in its elementary form, since our
Lagrangian curve has no points of self-intersection). The theorem is proved.

These conjectures and results can be applied, for example, to the study of the
vertices of curves on the Euclidean plane.

Consider a plane co-oriented and smoothly immersed curve of index 1 with no
double oriented normals. We associate with it a quasi-function in the following
(usual) way.

With the point (x,y) with the co-orienting normal direction φ we associate the
1-jet at the point φ of the function with the value ζ = χ cos φ + y sin φ and the
value of its derivative ρ = —χ sin φ + y cos φ. If locally ρ = Α(φ) and the radius of
curvature of the original curve is i?(y), then

R' = A + A",

according to § 13. This means that the vertices of the original curve (where R' = 0)
are the points of spherical inflection of the qausi-function so obtained. If the original
curve has no double normals with the same orientation, then the Lagrangian curve
does not intersect itself. According to the preceding theorem the original plane
curve has no fewer than four vertices.

Consider an immersed curve of index 1 on the Euclidean plane.

Conjecture 3. // the curve of normals of our curve belongs to the component of
the curve of normals of a circle in the space of Legendrian embeddings S1 —> ST*R2,
then the original curve has no fewer than four vertices.

Example. The curve of Fig. 26 has two vertices in all. But this curve has J+ φ 0,
and therefore its curve of normals does not lie in the component of the curve of
normals of a circle.

Figure 26
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Returning to perestroikas of quasi-functions by passing pseudo-functions through
the poles, consider on the surface of the cylinder |p| < 1 a closed contractible
smoothly immersed curve, bounding the area 2π and lying in the component of a
non-self-intersecting curve in the sense that one can join it to a curve with no self-
intersections by a regular homotopy in the class of Lagrangian immersions bounding
the area 2π and such that no double point of an intermediate curve forms on it a
loop of area 2π (for safety's sake perhaps one should prohibit loops of areas that
are multiples of 2π as well).

Is it true that such a Lagrangian curve has no fewer than four points of spherical
inflection?

Theorem. // a contractible Lagrangian curve of area 2π on the cylinder \p\ < 1
has no points of self-intersection, then it has no fewer than four points of spherical
inflection.

Proof. In the opposite case the projection to the sphere from the centre is confined
to an open hemisphere, and the original curve is confined to an open half-cylinder.
But since this Lagrangian curve bounds the area 2π it cannot be confined to a
half-cylinder of area 2π.

The theorem is proved.

§ 31. Space curves and Sturm's theorem

We now state a geoemtrical problem, leading to the case of an arbitrarily large
number of zeros in a theorem of Sturm type.

Consider an immersion of the circle into a Euclidean subspace of dimension 2n
in a Euclidean space of dimension 2n + 1. The highest torsion of such a curve is
identically equal to zero.

Consider an arbitrary small (along with its derivatives) spatial perturbation of
this plane immersion. The number of fiat points of the generic perturbed immersion
(that is, the number of zeros of the highest torsion) is finite. How small can it be?

Theorem. The least number of flat points is equal to 2n + 2 for all curves in E 2 " + 1

whose projections into E 2 n satisfy the following convexity condition: the number of
points of intersection with any (2n — 1)-dimensional hypersurface in E 2 n does not
exceed In (taking multiplicities into account).

Example. We call a standard curve (or generalized ellipse) in the space of
dimension 2n a curve given by the equations

χι = a\ cos t, . . ., xn — an cos(ni);

2/i = 6i sini, . . ., yn = bn sin(nt),

where α ϊ , . . . , bn φ 0. This curve in K2 n is convex.

Theorem. The number of flat points of a small perturbation of a standard curve
in R 2 n + 1 is no fewer than 2n + 2.
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Example. For η = 1 the standard curve is an ellipse. The assertion consists in
saying that a perturbation of the ellipse which is small along with its derivatives
has no fewer than four flat points.

This result is true also for curves in odd-dimensional projective spaces.
Analogous results are true also for curves in even-dimensional projective spaces

having convex projections or obtainable by small perturbations from convex curves
lying in odd-dimensional hyperplanes.

As an example of a convex curve in E P 2 " " 1 , take the image of the immersion

Χι — cos t, ..., xn = cos(2n — l)i;

?/i = sint, ..., yn = sin(2n - l)i

(the coordinates being homogeneous, with ί G Ε mod π). The corresponding
theorems on Chebyshev systems of sections of a non-trivial one-dimensional bundle
over the circle will be published in another place.

From these theorems it follows, for example, that a curve projectively dual to
a convex curve is convex, and that convex curves in RP m form a connected set
(M. Shapiro, M. Kazaryan).

Remark. The appearance of numbers of flat points linearly increasing with the
dimension of the space leads one to conjecture that the question is related to the
Morse theory of a projective space (or more correctly to its product with the circle).
How vigorously one can deform a convex curve is not known even for the case of
curves in EP 2, where the question reduces to an extension of the theorem of Mobius
(on three points of inflection of a curve non-homologous to zero) to curves with self-
intersections. For a discussion of the theorem of Mobius see [18].

Figure 27
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Conjecture. A non-contractible immersion of a circle in the real projective plane
has no fewer than three points of inflection if it can be joined with the standard
embedding of the projective line in the class of immersions without dangerous self-
tangencies (in which both branches have the same direction).

Remark. The imposed condition of avoiding dangerous self-tangencies means the
preservation under deformation of a type of Legendrian knot. It is easy to construct
an immersion with one point of inflection, which can be obtained from the standard
embedding of the projective line by once passing through a dangerous self-tangency
(Fig. 27).
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