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BRIEF COMMUNICATIONS 

The Complex Lagrangian Grassmannian 

V. I. A r n o l d  UDC 514.154 

The manifold of the Lagrange subspaces of the symplectic vector space R 2n is U(n)/O(n) (see [I]). It 
is natural to try to construct complex and quaternionic versions of this manifold (see [2]). We prove below 
that the complex version is the manifold U(n) of unitary matrices. This manifold is a complexification of 
the space of Hermitian matrices in the same sense in which the real Lagrangian Grassmannian compa~tifies 
the space of real symmetric matrices. 

1. Complexlfication of the Darboux theorem. Instead of the complex symplectic structure in the 
complex vector space C n , we consider the following version of this structure. 

Definition 1. By a C-symplectoidal structure in C n we mean a real symplectic structure f~ that is 
invariaut under the multiplication of the vectors by complex numbers of modulus one, f~(A~, At}) = f~(~, z/) 
for IAI---- 1. 

T h e o r e m  1. A n y  C-symplectoidal  structure can be wri t ten in the form ~ = ~ +xk A Yk in a suitable 
system of complex coordinates zk = xk + iyk in the vector space C '~ . 

Proof .  The multiplications by e it form a one-parameter group of linear symplectic operators in R 2n , that 
is, a I-Iamiltonian flow with a quadratic Hamiltonian function H.  By a real linear symplectic transformation, 
one can reduce the  Hamiltonian function to the standard normal form 

H =  Z ( + ( p ~  + q~)/2), ( 2=  Z p k A q k ,  

because the eigenfrequencies are equal to 5:1 since the osciUations are 27r-periodic. 
The invariant coordinate 2-planes (Pk, qk) are complex lines (because the oscillations act as the multipli- 

cations by eit). However the symplectic (pkAqk) orientations can be sometimes opposite to the complex orien- 
tations (ddined by frames of the form ~, i~). If the complex coordinate on the plane (Pk, qk) is zk = xk +iyk ,  
then x k A y k  = c~pkAqk .  For zk(t) = eit~k we have zk = iz~, ~ctr = --Yk, and Ytr = xk. For H = •  
we obtain the Hamiltonian equations 15k = q:qk and qk = 5:Pk. Hence, pk 5: iqk = ck(xk + iy~) = ckzk. A 
linear change of variables Zk = CkZk ~ves  Pk 5: iqk = Zk = X~ + iYk,  so that dpk A dqk = 4"dXk A dYk,  and 
thus we have reduced f~ to the desired canonical form. 

2. A d a p t e d  s y m p l e c t i c  s t r u c t u r e  in C zn.  Consider the bilinear form S(~, r/) = I2(i~, rl) , where I) is 
a C-symplectoidal structure. The form S is symmetric because S(r/, ~) = f~(ir/, ~) = f~(-r/, i~) = -12(W, i~) = 
f~(i~, r/) = S(~, r/). The signature of the quadratic form S(~, ~) is a (nnique) invariant of the C-symplectoidal 
structure (the signature is defined by the number of minus signs in the normal form in the above theorem). 

Def in i t ion  2. A C-symplectoidal structure f~ in C 2n is called an adapted symplectic s tructure if the 
signature of the quadratic form S vanishes (that is, if the number of minus signs in the normal form of 12 
is equal to the number of plus signs). 

By the above theorem on the normal form, the adapted structure is unique (up to a complex linear 
transformations of the  space C2n). 

Example. Denote the summands in the expansion of the vector ~ E C ~n -- C~ ~ C~ by x E C~ and 
y E C~, and denote the similar summands for the vector 7/by v ~ C~ and w E C~. 
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Denote by ( , > the Hermitian inner product of vectors in C~ by vectors of C~ (for instance, (x, w) -- 

Consider the Hermitian form w(~, 7/) : (x, w) § (y, v) E C in C ~ . It  is clear that w(T/, ~) --- ~(~, ~/) and 
w(A~,~) -- Aw(~,~). Hence, w(A~, Arl) -- w(~,~) for IAt - 1, and thus the form w is Sl-invaxiant. 

Denote the real and imaginary parts of the form w by S and ~ ,  respectively: 

w(~; 7) = s ( 5 . )  + i~(~, .) ,  
.where S(~, ~/) E R and f~(~, ~/) E ]~. 

Proposit ion 1. The s~ructure ~ is an adapted symplectic structure in C ~ .  

By the above uniqueness theorem, our formula for w provides a normal form for any adapted  symplectic 
structure. 

It follows from the definition of the form w that 

S(~, ~7) = R e x R e w  + I m x I m w  + R e y R e v  + I m y I m v  = 8(7, ~), 

~(~, 7]) = I m x R e w  - R e x I m w  + I m y R e v  - R e y I m v  = -~07,~),  

~(i~, y) = R e x R e  w + I m x  Im w + R e y  Rev  + Im y Im v = S(~, ~), 

and therefore 
s(i~, 7) = n(-~, ~) = -n(~,  v). 

We see that f~ and S are nondegenerate real Sl-invariant bilinear forms, f~ is skew-symmetric, S is sym- 
metric, and the signature of S is zero, which follows, for instance, from the formula 

4 S ( f , , )  = IIx + ~tl ~ "  IIx - wll 2 + lly + vii 2 - Ily - vii 2. 
The proposition is thus proved. 

Denote by X ,  Y, V, and W the n-component complex vectors given by the formulas 

x - y = X ,  x + y = Y ,  v - w = V ,  v + w = W .  

We have constructed a new decomposition C 2n -- C~ $ C ~  (X E C~, Y E C~, V E C~,  and W E C~ 
are the new "components" of the vectors ~ and ~/). Note that  2x --- X § Y, 2y : - X  q- Y,  2v = V + W, 
2w : - V  § W. Therefore, for the form w, we obtain the relation 

4~(~, ~/) -- 4(x, w> + 4(y, v) = 2(Y, W> - 2(X, V>. ( , )  

3. L a g r a n g i a n  p lanes .  A complex subspace L of C-dimension n in C 2n is said to be f~-Lagrangian if 
f~(~, v/) -- 0 for any vectors ~, r / in L. It is said to be w.Lagrangian ff w(~, r/) - 0 for any vectors ~, v/in L. 

P r o p o s i t i o n  2. A subspace L is f~-Lagrangian if and only if it is w-Lagrangian. 

Proof .  As we saw above, w(~, ~/) -- f~(i~, ~/) + if~(~, 7/). Since the subspace L is complex, i t  follows that 
i f  belongs to L together with ~. Therefore, if ft - 0 on L, then w : 0 on L. If w -- 0, then  its imaginary 
part ~t (as well as its real part S) also vanishes. 

P r o p o s i t i o n  3. The intersection of any Lagrangian subspace L with the plane x = y (on which X = O) 
is the point O. 

Proof .  For any vector ~ E L N (x = y), we have w(~,~) : 2<x,x) -- 0, and hence x = 0. 

Coro l l a ry  1. Every Lagrangian subspace L in C 2n is the graph of a complex linear operator U: C~ --* 
C~ (i.e., it is defined by the equation Y = UX) .  

Indeed, by the previous proposition, L is a section of the fibration C 2n -~ C~ with fibers parallel to C~. 

T h e o r e m  2. The graph of an operator U is a Lagrangian subspace if and only if the operator is unitary. 
Proof .  By formula ( ,)  we have 

4w(~, 7/) = 2(II, W) - 2<X, V). 

For Y = UX and W = UV, the condition w = 0 (which means that  the graph is Lagrangian) becomes 

<ux, vv> = <x, v> 

209 



for any X and V in C~. This means that the operator U is unitary and that the graph is Lagrangian for 
any unitary operator U. 

Corol lary  2. The manifold of the Lagrangian subspaces in C 2n is diffeomorphic to the group U(n) of 
unitary matrices. 

The diifeomorphism sends any matrix U to the graph of the corresponding operator. 
Remark .  If a complex subspace is the graph of an operator y -- Ax, then the condition that the 

subspace is Lagrangian, w(~, r/) = (x, w) + (y, v) = 0, becomes (x, Av) + (Ax, v) = 0, that is, A* = - A  
(the operator A is skew-Hermitian). The relation between the operators A and U is provided by the Cayley 
transform (which already occurred in this situation in [1]): 

A = ( U -  1)/(U + 1), U = (1 + A)/(1 - A). 

Therefore, the unitary group compactilies the (real) vector space of the skew-Hermitian matrices (corre- 
sponding to the unitary matrices that have no eigenvalue equal to -1) .  
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