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Abstract. This article concerns the arithmetics of binary quadratic forms with integer
coefficients, the De Sitter’s world and the continued fractions.
Given a binary quadratic forms with integer coefficients, the set of values attaint at
integer points is always a multiplicative “tri-group”. Sometimes it is a semigroup (in
such case the form is said to be perfect). The diagonal forms are specially studied
providing sufficient conditions for their perfectness. This led to consider hyperbolic
reflection groups and to find that the continued fraction of the square root of a rational
number is palindromic.
The relation of these arithmetics with the geometry of the modular group action on
the Lobachevski plane (for elliptic forms) and on the relativistic De Sitter’s world (for
the hyperbolic forms) is discussed. Finally, several estimates of the growth rate of the
number of equivalence classes versus the discriminant of the form are given.
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Introduction

This article is a description of a long chain of numerical experiments with
quadratic forms and periodic continued fractions, leading to some strange theo-
rems, confirming the conjectures, originated from these experiments.
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2 V. ARNOLD

One of these theorems states that the set of values of a form is in many cases
a multiplicative semigroup of integers: the product of any two values, attained
at integer points, is itself a value, attained at some integer point of the plane of
the arguments. I call such forms perfect forms.

The simplest example of a perfect form is the form x2 + y2, for which the
semigroup property follows from the existence of the Gauss complex numbers
multiplication. For the general forms the semigroup property is replaced by
the trigroup property: the product of any three values is still a value (while the
products of some pairs of values are not attained). It happens, for instance, for
the form 2x2 + 3y2, which attains the value 2 but does not attain the value 4
(even modulo 3).

The semigroup and trigroup properties are closely related to the hyperbolic
reflection groups of symmetries of the hyperbolae in the integer plane.

These symmetries imply a strange palindrome property of the periods of the
continued fractions of such quadratic irrational numbers, as the square roots of
ordinary fractions,

√
m/n.

I shall also discuss below the strange relation of these arithmetical problems to
the geometry of the modular group action on the relativistic de Sitter world. This
world is represented by the continuation of the Klein model of the Lobachevsky
plane from the interior part of a disc to its complementary domain. Quadratic
binary forms of a fixed negative determinant are represented by the points of this
relativistic world (or rather of its two-fold covering). The SL(2, Z)-classification
of the integer quadratic forms, whose invariants the present paper is studying,
is the study of the action on the de Sitter world of the group, generated by the
reflections in the three sides of the Lobachevsky infinite modular triangle.

The relation of the de Sitter world to the Klein model of the Lobachevsky
geometry, as well as the problem of the geometric investigation of the modular
group action on the de Sitter world, had been published as “Problem 1996 - 15”
in the book Arnold’s Problems, Phasis, Moscow, 2000, pp. 126 and 422. Other
applications of these ideas are discussed in the recent papers [1]-[5].

1 The semigroups and trigroups of the values of quadratic forms

Let f (x, y) = mx2 +ny2 +kxy (where the arguments (x, y) and the coefficients
(m, n, k) are integers) be a binary quadratic form.

Theorem 1. The product of any three values of such a form is also its value:

f (x, y)f (z, w)f (p, q) = f (X, Y ),
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where, for instance,

X = ap + bq, Y = cp + dq ,

a = m(xz) − n(yw),

b = n(yz + xw) + k(xz),

c = m(xw + yz) + k(yw),

d = n(yw) − m(xz).

Proof. (F. Aicardi) By the definitions of X and Y ,

f (X, Y ) = p2(ma2 + nc2 + kac) + q2(mb2 + nd2 + kbd) +
+pq(2mab + 2ncd + k(ad + bc))

= mp2m2(xz)2 + ... (there are 52 terms).

The product of the three values is, by the definition of f , the integer

f (x, y)f (z, w)f (p, q) = (mp2 + nq2 + kpq)

(mx2 + ny2 + kxy)(mz2 + nw2 + kzw).

This product consists of exactly the same 52 monomials in (x, y, z, w), as
f (X, Y ).

Definition. A form is perfect if the product of any two values of the form at
integer points is also the value of the form at some integer point.

Corollary 1. Any form, representing the number 1 = f (p, q), is perfect:
f (x, y)f (z, w) = f (X, Y ), where one may choose, for instance,

X = (mp + kq)xz + nq(yz + xw) − npyw,

Y = −mqxz + mp(yz + xw) + (kp + nq)yw.

Example 1. Any form x2 + ny2 is perfect.

There exist perfect forms which do not represent the number 1.
The following corollary shows, for instance, that this property holds for the

form 2x2 + 2y2.

Corollary 2. If a form is representing an integer number N , then its product
with N is a perfect form.
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4 V. ARNOLD

Proof. It follows from the identity (NA)(NB) = N(ABN), where A and B

are values, since ABN is a value by the trigroup property, proved by the Theorem.

Example 2. The form x2 +y2 represents 2, hence the form 2x2 +2y2 is perfect.

The form 2x2 + ny2 represents 2, hence the form 4x2 + 2ny2 is perfect (as
well as is any form m2x2 + mny2).

Remark. The Theorem defines a trilinear operation, sending three vectors u =
(x, y), v = (z, w), r = (p, q) to the vector U = (X, Y ). This operation depends
linearly on the form f (that is, on the coefficients (m, n, k)). Moreover, this
operation is natural, that is independent on the coordinates choice (while it is
defined in the Theorem by the long coordinate formula).

Namely, an SL(2, Z)-belonging operator A sends the form f to a new form
f̃ and sends the 4 vectors (u, v, r; U) to the 4 new vectors (ũ, ṽ, r̃; Ũ ). The
naturality claim means that the operation, defined by the transformed form f̃ ,
sends the transformed vectors (ũ, ṽ, r̃) to the transformed version Ũ of the vector
U .

These remarks are perhaps sufficient to find the formula of the Theorem for the
trigroup operation from the particular cases, like that of the forms mx2 +ny2, for
which I had first discovered these formulae (as a conclusion of some hundreds
of numerical examples).

I had therefore tried to find for this operation an intrinsic formula, using rather
the form and the 3 vectors, than the coordinates and the components. The final
answer (which is strangely asymmetrical and hence provides 3 different points
U , permuting the arguments) has been found by F. Aicardi:

U = F(u, v)r + F(v, r)u − F(r, u)v ,

where F is the symmetric bilinear form, equal to f along the diagonal.
It is an interesting question to find for which forms do the values form semi-

groups and for which ones they do not, for instance, what is the proportion of
the perfect forms among all the forms (say, in the ball m2 + n2 + k2 ≤ R2 of a
large radius R). The tables of the forms mx2 +ny2 with bounded |m| and |n| are
presented below in the section 3. The perfect forms fill, it seems, approximately
20 percents of the square which I had studied. The asymptotical proportion for
large R is perhaps representable in terms of π and ζ .

The statistics should be also studied, counting the SL(2, Z)-orbits of the forms,
rather than the forms themselves. The statistics of these orbits is discussed below
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in section 4, where the classes of the hyperbolic forms of a fixed determinant
are counted (by the integer points in an ellipse). And these statistics should be
compared with the natural Lie algebra structure (of the quadratic Hamiltonians)
of the space of forms.

2 Hyperbolic reflections groups and periodic continued fractions palin-
dromy

The hyperbola’s symmetries form a subgroup in GL(2, R), consisting of the
hyperbolic rotations, belonging to SL(2, R), and of the hyperbolic reflections
(of determinant −1). The quadratic forms f on Z

2 and their hyperbolae f = c,
c ∈ Z are related to the subgroups of those symmetries, which preserve the lattice
Z

2 in R
2. We shall now provide some methods, constructing such symmetries.

They are essentially some reformulations of the Picard-Lefschetz formula for
cycle reflection of singularity theory, but I shall rather imitate, than use, these
formulae.

Suppose first that the quadratic form f attains the value 1 = f (v), at an integer
vector v = (p, q).

Theorem 2. The following operator Rv : R
2 → R

2 is a reflection (of determinant
−1), preserving the integer points lattice, the hyperbola f = 1 and its point v:

Rvw = −w + λv, λ = 2F(v, w)/f (v) .

Here F is the symmetric bilinear form, coinciding with f along the diagonal.
For the quadratic form f (x, y) = mx2 + ny2 + kxy this bilinear form takes
at the vectors v = (p, q) and w = (x, y) the value F(v, w) = mpx + nqy +
k(py + qx)/2:

2F(v, w) = f (v + w) − f (v) − f (w) .

Proof of Theorem 2. The operator Rv is a linear operator, since F depends on
w linearly. The vector v remains invariant: λ = 2F(v, v)/f (v) = 2, Rvv =
−v + 2v = v. The f -orthogonal to v vectors w change their sign : λ = 0 since
F(v, w) = 0, Rvw = −w. Hence the vectors tangent to the hyperbola f = 1
at v are reversed : at the point v the differential of f takes on any vector w the
value 2F(v, w).

The integer points lattice is preserved by operator Rv, since 1) 2F(v, w) is
integer-valued, 2) f (v) = 1 and 3) det Rv = −1 (since Rvv = v, Rvw = −w

for the two vectors considered above).
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The form f (and hence the hyperbola f = 1) is preserved by the operator Rv:

f (Rvw) = f (−w) + 2λF(−w, v) + f (λv) = f (w),

since f (−w) = f (w), f (λv) = λ2f (v) and hence the increment is vanishing:

2λF(−w, v) + f (λv) = λ(−2F(v, w) + λ) = 0

by the definition of the coefficient λ.
Thus, the operator Rv sends the point v, the lattice Z

2 and the hyperbola f = 1
to themselves, reversing the orientations of the hyperbola and of the plane.

Corollary. The reflection operator Rv sends each hyperbola f = const to
itself and sends the integer points on any of these hyperbolae to the integer
points on the same one.

Remark. One might provide an interesting operator Rv for any integral vector
v, whatever the integer f (v) �= 0 is. To avoid the nonintegral points, we choose
now

Rvw = −f (v)w + 2F(v, w)v.

In this case f (Rvw) = f 2(v)f (w), hence the form f is no longer invariant,
unless f (v) = ±1.

The hyperbola and the lattice are sent onto themselves only if f (v) = ±1,
otherwise they are sent onto the homotetical ones. Such generalized reflections
do not generate a group, but only a semigroup of linear operators, which is still
interesting for the quadratic form arithmetics (and which is evidently related
to the values semigroup, studied in the section 1). The semigroup, formed by
the values, is the commutative version of the semigroup of the linear operators,
generated by the generalized reflections Rv, corresponding to all integer points
v and to a given quadratic form f .

Remark 1. It would be interesting to know whether the product of three such
reflections, Ru, Rv, Rw, is itself a generalized reflection. If it is the case, the
products of pairs, RuRv, do form a semigroup of linear operators:

(RaRb)(RuRv) = RcRv

for Rc = RaRbRu, which is an interesting SL(2, Z)-invariant of the form f .
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Remark 2. For a multiplicative semigroup of integers, the products of all the
semigroup elements by an element N do form a new semigroup, divisible by N :

(NA)(NB) = N(NAB).

It would be interesting which of the semigroups of the values of quadratic forms
can be represented as such products of a number with a “divided” semigroup.
The form 4x2 − 2y2 is the first interesting example of the strange sets of values :
namely, every square is a value of the form 2x2 −y2, for 2a2 3a3 5a5 ... = 2x2 −y2,
ap is even for every prime number p = 8q +3, 8q +5, while the prime numbers
p = 8q ± 1 are all representable by the form 2x2 − y2, it seems.

The hyperbolic reflections are related to the palindromic structure of the con-
tinued fractions by the following construction. Let the hyperbola f = 1 contains
two different integer points, u and v. The product of the two reflections Ru and
Rv is then a hyperbolic rotation, preserving the hyperbola. It moves the points
of the hyperbola from one of the infinite points (corresponding to an asymptotic
direction of the hyperbola) to the other.

This symmetry explains the periodicity of the continued fraction, representing
the inclination t of the asymptote x = ty of the hyperbola (f (x, y) = 0 along
this line). The continued fraction t = [a0, a1, ...] has the form

t = a0 + 1

a1 + ...
,

where ak (k > 0) are natural numbers. We suppose here, for simplicity, that t

is positive. This can be always achieved by a convenient SL(2, Z) choice of the
coordinates.

The continued fraction algorithm describes a sequence of integer vectors vk,
approximating the line x = ty. Namely, the points vk are the vertices of the
two boundaries of the convex hulls of the two sets of the integer points : one is
formed by the points in the angle {x > ty} and the other in the angle {x < ty}
(into which angles the line x = ty divides the quadrant x ≥ 0, y ≥ 0).

The traditional notations for the approximating vectors are

v−1 = (0, 1), v0 = (1, 0); vk+1 = vk−1 + akvk.

These formulae provide the algorithm of the construction of the two convex
hulls and of the continued fraction expansion for t = [a0, a1, ...].

It starts from the choice of a0 = [t] (the integral part). This choice, as well
as the next ones, describes the motion from the vector vk−1, preceding the last
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8 V. ARNOLD

already constructed one, vk, adding to it that last constructed vector as many (ak)

times, as it is possible before the crossing of the line x = ty.
We shall denote the coordinates of the point vk by pk and qk. The construction,

described above, implies that the vectors vk and vk+1 are situated on the different
sides of the line x = ty. The area of the parallelogram, formed by these two
vectors, is equal to one (at every step k), or, taking the p ∧ q orientation into
account, to

det

(
pk pk+1

qk qk+1

)
= (−1)k.

Suppose now, that the quadratic form f attains the value 1 at two different points
on the same branch of the hyperbola f = 1.

Theorem 3. The periods of the periodic continued fraction, representing the
tangents t of the inclination of an asymptote of the hyperbola, is in this case
palindromic (sent to itself by a symmetry, reversing the order of the elements:
ar+i = ar−i , for some r).

Proof. The hyperbolical rotation RvRw, where v and w are the given points of
value 1, sends to itself the hyperbola asymptote x = ty and preserves the sets
of the integer points above it and below it. Hence it preserves the convex hulls
(at least far from the origin), and hence sends the vertices vi of its boundary to
the vertices vi+2s of the same boundary. The reflection Rv also permutes the
vertices of one of the 2 boundaries of the convex hull (namely on the one, to
which belongs the reflection center v = vj ). These boundary vertices are the
vertices vj+2s , and Rvj

sends vj+2s to vj−2s .
It is easy to derive from this invariance property the continued fraction palin-

dromy. Indeed, the number ak being the integral length of the segment between
vk−1 and vk+1, the symmetrical segments (vj−2s−2, vj−2s) and (vj+2s, vj+2s+2)

have equal integral lengths, and hence we get the equality aj−2s−1 = aj+2s+1.
The palindromic property of the numbers aj+2s follows from the description

of these numbers as of the integer angles of the same convex hull boundary at
the vertices points:

det (vk, vk+2) = ak+1 det (vk, vk+1) = ak+1 (−1)k .

Whence the symmetry Rv, mapping the boundary of the convex hull to itself,
permutes, reversing the order, the numbers aj−2s , and so we end the palindromy
proof : aj−2s = aj+2s .
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Example. The form f = x2 − ny2, where n is not a square, attains the value 1
at the point (1, 0) and at some other integer point with positive coordinates (the
Pell equation theory). Hence the continued fractions expansions of the irrational
numbers t = √

n are palindromic.
Thus, the preceding algorithm provides the 4-periodic continued fraction

√
167 = 12 + 1

11 + 1
1+ 1

24+ 1
1+ 1

11+ 1
1+...

,

which we shall denote by the symbol
√

167 = [12; (11, 1, 24, 1), (11, 1, 24, 1), ...] .

It is palindromic with respect to any of the symmetries centers aj , j = 4k+3:
aj−s = aj+s (whenever both indices are positive).

The continued fraction calculation for the quadratic form’s f asymptotic di-
rection is very fast, since the intersection with the line x = ty may be recognized
by the change of the sign of the form. We use the notations

fk = f (vk), Fk = F(vk−1, vk)

and introduce new vectors, slightly crossing the line:

ṽk+1 = vk−1 + ãkvk = vk+1 + vk (where ãk = ak + 1) .

The vector ṽk+1 is the first vector on the ray {vk−1 + avk}, where the sign of f

differs from that of f (vk−1) = fk−1. We denote this first opposite sign value by

f̃k+1 = f (p̃k+1, q̃k+1),

where p̃k+1 and q̃k+1 are the components of the vector ṽk+1.
With these notations, we get from the calculation of ak the identity

fk+1 = fk−1 + 2akFk + a2
kfk ,

where ak should be the maximal integral value, for which the sign of fk+1 remains
equal to the sign of fk−1 (while that of f̃k+1, corresponding to the next value of
a, ãk+1 = ak + 1, should differ).

To continue the calculations it is useful to observe that we have recurrently

Fk+1 = Fk + akfk .
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10 V. ARNOLD

It is also useful to represent the increment �k = fk+1 − fk−1 in the form

�k = ak (2Fk + akfk) ,

making easy the control of the signs of the increments �k and �̃k = ãk(2Fk +
ãkfk). The recurrent calculations are represented below by the tables, similar to
the following one, made for t = √

167, f = x2 − 167y2:

k −1 0 1 2 3 4 5 6 . . .

ak 12 1 11 1 24 1 11 . . .

pk 0 1 12 13 155 168 4 187 4 355 . . .

qk 1 0 1 1 12 13 324 337 . . .

fk +1 −23 +2 −23 +1 −23 +2 . . .

Fk 0 12 −11 11 −12 12 −11 . . .

p̃k 13 25 168 323 4 355 8 542 . . .

q̃k 1 2 13 25 337 661 . . .

f̃k +2 −43 +1 −46 +2 −43 . . .

The palindromic properties are here the identities:

a4+s = a4−s (−3 ≤ s ≤ 3), a6+s = a6−s (−5 ≤ s ≤ 5), ... ;
f4+s = f4−s (−4 ≤ s ≤ 4), f6+s = f6−s (−6 ≤ s ≤ 6), ... ;

Fi = −Fj (i + j = 5; i, j > 0), (i + j = 9; i, j > 0) , ... .

The periodicity holds for the four lines of the table:

ai+4 = ai, (i > 0) , fi+4 = fi, (i ≥ 0) ,

Fi+4 = Fi, (i > 0), f̃i+4 = f̃i , (i > 0) .

The hyperbola f = 1 contains two integer points v0 and v4. The reflection
operator Rv0 has the matrix

(
1 0
0 −1

)
.

The resulting hyperbolic rotation is

T = Rv4Rv0 =
(

56 447 729 456
4 368 56 447

)
,

acting on the vertices of the convex hull as the shift, T vi = vi+8.
Now we shall prove the palindromic property on the continued fractions of the

square roots of rational numbers. Let m/n be a rational number, the integer m

and n having no common nontrivial divisor (different from 1), and m having no
(nontrivial) square factors (m may be 6, but may not be 12).

Theorem 4. The continued fraction of the square root
√

m/n is palindromic.
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Proof. The value f (v) of the form f = mx2 − ny2 at the point v = (1, 0) is
m. The value of the bilinear form F(v, w) at any vector w = (x, y), being mx,
it is divisible by m. Hence the reflection operator, acting on w as

Rvw = −w +
(

2F(v, w)

f (v)

)
v ,

preserves the integral lattice Z
2. It preserves also the hyperbola f = m.

To find a second integral point at this hyperbola, we have to solve the equation
mx2 − ny2 = m. This equation implies that y = mz (since m and n have no
common divisors and m has no square divisors). We obtain for the integers x and
z the Pell equation x2 − mnz2 = 1, which has, as it is well known, a nontrivial
solution (where x2 �= 1). Thus we get the second integer point, u = (x, mz), at
the hyperbola f = m.

The value of the bilinear form F(u, w), where w = (a, b), is equal to mxa −
nmzb. This number is divisible by m. Hence the reflection Ru is defined by
an integral elements matrix. It is of determinant −1 and hence it preserves the
lattice Z

2.
Thus we had constructed two symmetries Ru, Rv of the quadratic form f .

These symmetries act on the continued fractions of the two numbers t = x/y,
defining the inclinations of the asymptotes f (x, y) = 0 of the hyperbola
f (x, y) = m.

These symmetries provide the palindromic structure of the periodic continued
fractions of the numbers t , as it has been explained in the proof of Theorem 3
above.

In many cases one can deduce from the palindromic structure of the period of
a continued fraction its relation to the situation of Theorem 4.

Theorem 5. Let x be the number, whose continued fraction has an odd period and
is palindromic with the period (b, . . . , d, d, . . . , b, 2a). Then x is the square
root of a rational number.

Denote the vectors like (x, 1) by the capitals like X, and denote by Ma and R

the matrices

Ma =
(

a 1
1 0

)
, R =

(
0 −1
1 0

)
.

The representation y = a + 1
x

means that MaX is parallel to Y . Hence the
continued fraction

y = a + 1

b + · · · + 1
d+ 1

x

Bull Braz Math Soc, Vol. 34, N. 1, 2003



12 V. ARNOLD

means that the vector Y is parallel to the result of the application to X of the
product operator M[a,b,... ,d] = MaMb · · · Md .

Palindromic Lemma. The inverse to the product operator is conjugate to the
“palindromic product" operator by the projective line involution R:

(M[a,b,... ,d])−1 = ± R M[d,... ,b,a] R.

Proof of the lemma. The relation RMaR = M−1
a is obvious, since the equation

y = a + 1
x

is equivalent to the equation

−1

x
= a + 1

(− 1
y
)

.

Hence we represent the long inverse product in the form

(MaMb · · · Md)
−1 = M−1

d · · · M−1
a = (RMdR) · · ·

(RMaR) = ±RMd · · · MbMaR ,

(since R2 = −1) as required.
The Lemma implies the inverse continued fraction formula:

(
−1

x

)
= d + 1

c + · · · + 1
b+ 1

a+(−1/y)

.

Proof of Theorem 5. The palindromic property of the continued fraction of x

means (in the above notations) that for z = 1/x one has the parallelisms

X || (M[a,... ,d] Y ) , Y || (M[d,... ,a] Z) .

According to the Palindromic Lemma, we can write this condition in the form

(RY ) || M (RX) , Y || (MZ) ,

where M = M[d,... ,a] is the product linear operator; we shall denote its matrix

by
(

α β
γ δ

)
.

We thus get the expressions for the right part vectors of the above parallelisms,

RX = (−1, x), M (RX) = (−α + βx, −γ + δx),

RMRX = (γ − δx, −α + βx), (MZ) || (α + βx, γ + δx).
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The required parallelism condition, (RMRX)||(MZ), means therefore the
vanishing of the determinant

det

(
α + βx γ − δx

γ + δx −α + βx

)
= β2x2 − α2 − γ 2 + δ2x2,

whence x2 is the rational number (α2 +γ 2)/(β2 +δ2). Theorem 5 is thus proved.

Remark. The golden ratio, (
√

5 + 1)/2 = [1, 1, 1, . . . ], is not the square root
of a rational number. The proof of Theorem 5 is however applicable to the
palindromes of even periods of the form [b, . . . , c, d, c, . . . , b, 2a]. Several
examples are discussed at the end of the next section.

3 Statistics of diagonal forms

Forms f = mx2 +ny2 provide interesting examples for many properties of their
arithmetics and geometry. I shall present below the tables, showing the places
occupied on the plane with coordinates (m, n) by these (perfect) forms, whose
values set are multiplicative semigroups.

The form mx2 is perfect if and only if the number m is a square. Indeed, if
m = n2, we get

(mx2)(my2) = m(nxy)2.

For mx2 to be perfect, m2 should be attainable, since m12 = m is. Thus we get
for a perfect form the equality m2 = mx2 for some integer x = n, and hence
m = n2.

Consider now the forms x2 + ny2.

Theorem 6. All these forms are perfect.

Proof. The value f (x, y) = 1 is attainable (at x = 1, y = 0 ).

Hence the values form a semigroup (by the Corollary 1 of the Theorem 1).
Turn now to the forms −x2 + ny2.

Theorem 7. No such form, where n is negative, is perfect. For the positive
values of n between 1 and 100, the form is perfect if and only if n has one of the
following 21 values :

n = 1, 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58,

61, 65, 73, 74, 82, 85, 89, 97 .

The periods of the corresponding continued fractions
√

n are odd numbers.
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Remark. The proofs of this Theorem and of the next similar Theorems are
based on the studies of some infinite series of values of n, for which we prove
either the semigroup property of the set of the values of the form or its absence.
The restriction of the smallness of n is only used to check that our series do cover
all the values of n (till the required limit).

Proof. First one should consider the residues mod u. Since f = −1 is attain-
able (at x = 1, y = 0), if values of f form a semigroup, the equation of the
representability of f = 1 (implying that −x2 = 1 mod u) should be solvable for
any u.

For u = 3, 4, 7, 11, 19, 23, 31, 43, 47, this congruence has no solutions.
Hence the form −x2 + ny2 is not perfect, provided that n is divisible by one of
these 8 numbers.

A similar argument shows that no n = 3 mod 4 is possible for a perfect form
−x2 + ny2. Indeed, x2 = 0 or 1 mod 4, hence −x2 + ny2 is congruent mod 4 to
(0 or −1) +3 (0 or 1), which is not congruent to 1 mod 4. Thus, the value 1 is not
attainable by the form, while the value −1 is, and hence the form is not perfect.

For n = 25 the value 1 is also unattainable since the equality 25y2 − x2 =
(5y − x)(5y + x) = 1 implies, that 5y − x = 5y + x = ±1, and hence x = 0.

The remaining values of n, smaller than 100, are all of the form a2 + b2.
Among them n = 34 does not generate a semigroup, since −x2 + 34y2 does not
attain the value 1. To prove this it suffice to calculate the continued fraction of√

34, as it is explained in the section 2, and to see whether fk = −1 is attained
for f = x2 − 34y2. We get, from the algorithm of the section 2, the table

k −1 0 1 2 3 4 5 6 7 8 9 . . .

ak 5 1 4 1 10 1 4 1 10 1 . . .

fk −34 +1 −9 +2 −9 +1 −9 +2 −9 +1 −9 . . .

proving that the value −1 is never attained by the form x2 − 34y2. Hence the
form −x2 + 34y2 is not perfect: the number −1 is a value and +1 is not.

The remaining 21 values of n (smaller than 100) are listed above. The corre-
sponding form −x2 +ny2 is perfect by corollary 1 of Theorem 1, since the value
1 is attained by the form at the following place:

n 1 2 5 10 13 17 26 29 37 41 50

x 0 1 2 3 18 4 5 70 6 32 7
y 1 1 1 1 5 1 1 13 1 5 1
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n 53 58 61 65 73 74 82 85 89 97

x 182 99 29 718 8 1 068 43 9 378 500 5 604
y 25 13 3 805 1 125 5 1 41 53 569

These places are easily calculated by the above algorithm. But some series
of them might be obtained with no calculations. For instance, if n = a2 + 1, it
suffice to take x = a, y = 1 (cases n = 1, 2, 5, 10, 17, 26, 37, 50, 65, 82).

The restriction n < 100 is not used in these studies of the series.
For the series n = a2+4, where a is odd (n = 5, 13, 29, 53, 85, . . . ), the value

1 of the quadratic form −x2+ny2 is attained at x = a(a2+3)/2, y = (a2+1)/2.
The value set of the form is a semigroup (accordingly to Corollary 1 of Theo-

rem 1). Theorem 7 is thus proved.

I do not know whether similar methods work for n = a2 + b2. At least for
n = 45(= 36 + 9) and n = 34(= 25 + 9) the value sets of the quadratic forms
−x2 + ny2 do not contain 1 and hence do not form a semigroup.

It is interesting that, every time when the Diophantine equation mx2+ny2 = N

was solvable mod p (for sufficiently many p’s), it had been solvable in the
integers. I do not know whether this observation might be proved as a general
theorem (either for our quadratic forms representation equations (where the mod
pq version had been proved by Hasse), or for the general Diophantine systems,
and either provided that the existence of a solution modulo any prime number p

is given, or even modulo any integer, which might be virtually non equivalent to
the mod p solvability).

This difficulty is similar to the calculus convergence problem situations, where
the existence of a formal Taylor series (or of a solution modulo any degree of the
maximal ideal) does not imply the genuine existence of a holomorphic solution
of a differential equation.

Consider the quadratic forms ±2x2 +ny2. If both signs are negative, the form
can’t be perfect, since −2 is attained (at x = 1, y = 0) while 4 is not (being
positive).

If both signs are positive and n is at least 2, the value 4 can be attained only
when 4 = 2x2 +ny2 ≥ 2(x2 +y2), that is at the places where x2 ≤ 1 and y2 ≤ 1.
We get thus only two perfectness candidates cases (x = 0, n = 4, y2 = 1) and
(x2 = 1, n = 2, y2 = 1). These two forms, 2x2 + 4y2 = 2(x2 + 2y2) and
2x2 + 2y2 = 2(x2 + y2), are perfect, accordingly to Corollary 2 of Theorem 1,
since N = 2 is attained by the form x2 +2y2 (at (0, 1)) and by x2 +y2 (at (1,1)).

The remaining nonnegative forms (with n < 2) 2x2 and 2x2 + y2, define
values sets, the first of which does not form a semigroup (2x2 does not attain the
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16 V. ARNOLD

value 4), the second form being perfect (by Corollary 1 of Theorem 1), since the
second form takes the value 1 at (0, 1).

The study of the hyperbolic forms 2x2 − ny2 and −2x2 + ny2 (n > 0) leads
to the following conclusions.

Theorem 8. The quadratic form f = −2x2 + ny2 (0 < n < 100) is perfect if
and only if n has one of the following 27 values:

n = 1, 3, 4, 6, 9, 11, 12, 19, 22, 27, 33, 36, 38, 43, 44,

51, 54, 57, 59, 67, 73, 76, 81, 83, 86, 89, 99.

Proof. The direct calculation of the residues of the squares of integers mod u

shows, that 4 is not congruent to −2x2 (mod u) for the following 12 values of u:

u = 5, 7, 13, 23, 29, 31, 37, 47, 53, 61, 71, 79 .

Since f = −2 for (x = 1, y = 0), the form f is not perfect, if the equation
−2x2 + ny2 = 4 has no integral solution. Thus, the form −2x2 + ny2, corre-
sponding to an integer n, divisible by any of the 12 factors u listed above, is not
perfect.

This is also true for any n, congruent to 0 or to 2 mod 8 (since x2 is congruent
to 0, 1 or 4 mod 8 and hence −2x2 + ny2 is not congruent to 4 mod 8, as it
should be if −2x2 + ny2 = 4). The condition n < 100 is not used here. For
n < 100 the above congruences leave not so many candidates for the perfect
forms −2x2 + ny2. The values n = 2a2 + 1 (like 1, 3, 9, 19, 33, 51, 73, 99) do
define perfect forms, accordingly to the Corollary 1 of Theorem 1, since f = 1
for (x = a, y = 1).

Another infinite series of the perfect forms is provided by the choice of n =
2a2 + 4, (like n = 4, 6, 12, 22, 36, 54, 76).

Indeed, these quadratic forms are divisible by 2 : −2x2 + (2a2 + 4)y2 =
−2(x2−(a2+2)y2), and x2−(a2+2)y2 = −2 for (x = a, y = 1). Therefore, the
form −2x2 + (2a2 +4)y2 is perfect, accordingly to the Corollary 2 of Theorem 1
(where N = 2). We had not used the restriction here. Taking this restriction
into account the remaining numbers n (candidates to perfectness) are only the
16 values, 11, 17, 27, 38, 41, 43, 44, 57, 59, 67, 68, 81, 83, 86, 89, 97.

For many of these values of n the form −2x2 + ny2 attains the value 1 and
hence it is perfect, accordingly to Corollary 1 of Theorem 1. These 9 numbers n

of the preceding list (and those (x, y) where f = 1) are listed in the following
table:
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n 11 27 43 57 59 67 81 83 89

x 7 11 51 16 277 191 70 20 621 20
y 3 3 11 3 51 33 11 3 201 3

To prove the perfectness of the form −2x2 +ny2 for the even number n = 2m,
it suffices to solve the equation −x2 + my2 = 2: the Corollary 2 of Theorem 1
(for N = 2) implies that the set {−2x2 + 2my2} is then a semigroup.

The corresponding numbers n of our list (and their x and y) are listed in the
following table:

n 38 44 86

x 13 14 59
y 3 3 9

We have thus proved the perfectness for all the 27 cases of Theorem 8. It
only remains to prove the nonperfectness in the few remaining cases, which are
n = 17, 41, 68, 97.

Lemma. The form −2x2 + ny2 does not attain the value 4 for any of these 4
values of n.

Proof. Applying the (quadratic) continued fractions algorithm, described in
the section 2, we find the vertices vk of the boundaries of the convex hulls and
the values fk of the form f = 2x2 − ny2 at these vertices. The absence of the
value −4 in these tables proves its unattainability (accordingly to the convexity
arguments and to the easy calculation of the values of f on the segments, joining
the neighbouring vertices of the same convex hull).

Continued fractions of
√

n/2 (f = 2x2 − ny2).

Case n = 17 : √
17/2 = [2, (1, 10, 1, 4), (1, . . . ].

k −1 0 1 2 3 4 5 . . .

ak 2 1 10 1 4 1 . . .

pk 0 1 2 3 32 35 172 . . .

qk 1 0 1 1 11 12 59 . . .

fk −17 +2 −9 +1 −9 +2 −9 . . .

Fk 0 +4 −5 +5 −4 +4 . . .

p̃k 3 5 35 67 207 . . .

q̃k 1 2 12 23 71 . . .

f̃k +1 −18 +2 −15 +1 . . .
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This table implies that the negative values of 2x2 − 17y2 are smaller (or equal)
than −9.

Case n = 41 : √
41/2 = [4, (1, 1, 8), (1, 1, 8), . . . ].

The table below shows that the negative values of 2x2 − 41y2 are either equal
to −2 or are smaller (or equal) than −9. Indeed, a2 = 1, hence there are no
integer points inside the segment, joining v1 to v3. Similarly, a4 = 1, hence
there are no integer points inside the segment joining v3 to v5.

Inside the segment joining v5 to v7, there are 7 = a6 −1 integer points, but the
values of f at these points are smaller than the −9 value, attained at both ends
of the segment.

k −1 0 1 2 3 4 5 6 7
ak 4 1 1 8 1 1 8 1
pk 0 1 4 5 9 77 86 163 1 390
qk 1 0 1 1 2 17 19 36 307
fk −41 +2 −9 +9 −2 +9 −9 +2 −9
Fk 0 +8 −1 +8 −8 +1 −8 +8
p̃k 5 9 14 86 163 249 1 553
q̃k 1 2 3 19 36 55 343
f̃k +9 −2 +23 −9 +2 −23 +9

Case n = 68 : √
68/2 = [5, (1, 4, 1, 10), (1, . . . ].

The table below shows that the negative values of 2x2 − 68y2 are smaller (or
equal) than the value −18 (attained, for instance, at (x = 5, y = 1)). In this
case no large value is attained at the vertices of the convex hull boundary, and
the values along a segment of the boundary is smaller than at its ends, since the
quadratic function, that we restrict to the boundary, is convex along this segment.

k −1 0 1 2 3 4 5 6
ak 5 1 4 1 10 1 4
pk 0 1 5 6 29 35 379 414
qk 1 0 1 1 5 6 65 71
fk −68 +2 −18 +4 −18 +2 −18 +4
Fk 0 10 −8 +8 −10 +10 −8
p̃k 6 11 35 64 414 793
q̃k 1 2 6 11 71 136
f̃k +4 −30 +2 −36 +4 −30
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Thus, the values set of the form −2x2 +68y2 does not contain the value 4, while
the value −2 is attained (at x = 1, y = 0). Therefore, this form is not perfect.

Case n = 97 : √
97/2 = [6, (1, 26, 1, 12), . . . ].

The table below shows that the set of the values of the form −2x2 + 97y2 is
not a semigroup, since it contains −2 and does not contain 4. In this table the
form f = 2x2 − 97y2 is considered, and the value f = −4 is not attained, since
the negative values of f are smaller (or equal) than the value −25 (attained at
x = 6, y = 1).

k −1 0 1 2 3 4 5 6
ak 6 1 26 1 12 1 26
pk 0 1 6 7 188 195 2 528 2 723
qk 1 0 1 1 27 28 363 391
fk −97 +2 −25 +1 −25 +2 −25 +1
Fk 0 +12 −13 +13 −12 +12 −13
p̃k 7 13 195 383 3 723 5 251
q̃k 1 2 28 55 391 754
f̃k +1 −50 +2 −47 +1 −50

We had thus proved the completeness of the list of the perfect forms−2x2+ny2,
provided by Theorem 8 (for 0 < n < 100).

Theorem 9. The quadratic form f = 2x2 − ny2 (0 < n < 100) is perfect if and
only if n has one of the following 18 values:

n = 1, 4, 7, 14, 17, 23, 28, 31, 46, 47, 49, 62, 68, 71, 79, 92, 94, 97 .

Proof. As in the proof of Theorem 8, we start with some quadratic residues
calculations, showing that for some values of n the number 2x2 − ny2 is not
congruent to 4 mod u, while it should be congruent (and even equal) to 4 if f is
perfect, since f = 2 is attained (for x = 1, y = 0).

These 18 perfectness restrictions are listed in the following table, presenting
the values of the modulo u and the forbidden values of the residues r of n mod
u (obstructing the perfectness of the form 2x2 − ny2) :

u 3 5 8 8 11 13 16 19 29
r 0 0 0 2 0 0 6 0 0

u 32 32 37 43 53 59 61 67 83
r 12 20 0 0 0 0 0 0 0
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As in the other cases, the condition n < 100 of Theorem 9 is of no importance
for these restrictions.

Next we prove the perfectness of some infinite series of forms 2x2 − ny2.

Series n = 2a2 − 1 (containing, for instance, the 7 values n = 1, 7, 17, 31, 49,
71, 97, smaller than 100).

For (x = a, y = 1) we get 2x2 − ny2 = 1, and hence the form is perfect,
accordingly to Corollary 1 of Theorem 1.

Series n = 2a2 − 4 (containing, for instance, the 6 values n = 4, 14, 28,46,
68, 94, smaller than 100).

For (x = a, y = 1) we get x2 − (a2 − 2)y2 = 2, and hence the form
2(x2 − (a2 − 2)y2) is perfect accordingly to Corollary 2 of Theorem 1.

Series n = a2 − 2, where a is odd (containing for instance the values n = 7,
23, 47, 79, 119, 167, the first 4 being smaller than 100).

For these 6 members of this infinite series I had computed (using the quadratic
continued fractions algorithm of the section 2) the explicit representations of 1
by the forms 2x2 − ny2, given in the table below. This table implies that these 6
forms are perfect.

a 3 5 7 9 11 13
n 7 23 47 79 119 167

x 2 78 732 44 54 3 993 882
y 1 23 151 7 7 437 071

Unfortunately, I was unable to find any formula for these experimental results,
and the conjecture that the equation 2x2 − (a2 − 2)y2 = 1 is solvable for any
odd value of a remains unproved.

Series n = 2(a2 − 2)/b2, that is 2a2 − nb2 = 4.
The cases b2 �= 1 of this series are not immediately evident, but they do exist:

n 4 14 28 46 62 92

a 2 3 4 5 39 156
b 1 1 1 1 7 23

When b = 2c is even, 2a2 −4nc2 = 4 hence a = 2d is even, and 2d2 −nc2 = 1.
In this case the form 2x2−ny2 is perfect, accordingly to Corollary 1 of Theorem 1.
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When b is odd (as in our examples), n = 2m is even, and a2 − mb2 = 2.
In this case the form x2 − my2 attains the value 2, and hence the doubled form
2x2 − ny2 is perfect, accordingly to Corollary 2 of Theorem 1.

Therefore all the forms of our series are perfect (with no smallness restriction
on n).

Returning now to the case n < 100 (of Theorem 9), we see that the preceding
statements of the perfectness and imperfectness decide the perfectness questions
for all the values of n, except the following 3 values: n = 41, 73, 89.

The continued fractions, proving the nonperfectness of these 3 forms 2x2−ny2,
are presented in the following 3 tables.

Case n = 41 : √
41/2 = [4, (1, 1, 8), (1, 1, 8), . . . ].

The table (presented in the proof of Theorem 8 above, in the Lemma) shows
that 2x2 − 41y2 does not attain the value 1 (since it is at least +2 at the vertices
of the boundary of the convex hull, where the form is positive).

This fact implies that the value +4 is not attained too. Indeed, if it where
2x2 − 41y2, the value y should be even : y = 2z. Therefore, one should have
x2−82z2 = 2, and x = 2t should be even. Thus, we would obtain 2t2−41z2 = 1
and the form 2x2 − 41y2 would attain the value 1.

We have thus proved the nonperfectness of the form 2x2 −41y2, which attains
the value 2 but does not attain the value 4.

Case n = 73 : √
73/2 = [6, (24, 12), (24, 12), . . . ].

Applying the algorithm of the section 2 to the form f = 2x2 − 73y2, we get
the following table.

k −1 0 1 2 3 4 . . .

ak 6 24 12 24 12 . . .

pk 0 1 6 145 1 746 42 049 . . .

qk 1 0 1 24 289 6 960 . . .

fk −73 +2 −1 +2 −1 +2 . . .

Fk 0 +12 −12 +12 −12 . . .

p̃k 7 151 1 891 43 795 . . .

q̃k 1 25 313 7 249 . . .

f̃k +25 −23 +25 −23 . . .

This table implies that the value f = +1 is never attained by the form f . We
deduce that form f is not perfect: it attains 2, but does not attain the value 4,
since otherwise we would have (2x2 − 73y2 = 4) ⇒ (y = 2z, x2 − 2 · 73z2 =
2) ⇒ (x = 2t, 2t2 − 73z2 = 1) ⇒ (f = +1 would be attained).
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Thus the form 2x2 − 73y2 is not perfect.

Case n = 89 : √
89/2 = [6, (1, 2, 26, 2, 1, 12), . . . ].

The table for the form f = 2x2 − 89y2 is:

k −1 0 1 2 3 4 5 6 7
ak 6 1 2 26 2 1 12 1
pk 0 1 6 7 20 527 1 074 1 601 20 286
qk 1 0 1 1 3 79 161 240 3 041
fk −89 +2 −17 +9 −1 +9 −17 +2 −17
Fk 0 +12 −5 +13 −13 +5 −12 +12
p̃k 7 13 27 547 1 601 2 675 21 887
q̃k 1 2 4 82 240 401 3 281
f̃k +9 −18 +34 −18 +2 −39 +9

It is clear from the table that the value f = +1 is never attained by the form.
This fact implies that the value 4 is not attained, too. Indeed, if it were attained,
we would deduce

(2x2 −89y2 = 4) ⇒ (y = 2z, x2 −2 ·89z2 = 2) ⇒ (x = 2t, 2t2 −89z2 = 1)

and the value f = 1 would be attained. The unattainability of the value 4 proves
that the form 2x2 − 89y2 is not perfect, since the value f = 2 is attained (at
x = 1, y = 0) by the form. Therefore, Theorem 9 is proved.

Remark. The series of the forms f = 2x2 − ny2, n = a2 − 2, which we had
studied in the proof, has interesting relations to the series of the forms X2 −NY 2,
where N = 2n.

Theorem 10. Let 2p2 − nq2 = 1. Then the vector (P = 4p2 − 1, Q = 2pq)

satisfies the equation P 2 − NQ2 = 1. Moreover, the unimodular operators
defined by the matrices

(
M

) =
(

P nQ

2Q P

)
,

(
M̃

) =
(

P NQ

Q P

)
,

preserve the forms f = 2x2 − ny2 and f̃ = x2 − Ny2 respectfully, whenever
P 2 − NQ2 = 1.
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Proof. By the definitions, we have the relations P = 2(2p2)−1, Q2 = 4p2q2.
Substituting 2p2 = nq2 + 1 in these relations, we get the equalities

P = 2nq2 + 1, Q2 = 2q2(nq2 + 1),

P 2 = 4n2q4 + 4nq2 + 1, NQ2 = 4nq2(nq2 + 1),

and thus P 2 − NQ2 = 1.
The forms preservation means the identities

2(Px + nQy)2 − n(2Qx + Py)2 ≡ 2x2 − ny2 ,

(P x + NQy)2 − N(Qx + Py)2 ≡ x2 − Ny2 ,

which can be written in the way

2P 2 − 4nQ2 = 2, 2n2Q2 − nP 2 = −n ,

P 2 − NQ2 = 1, N2Q2 − NP 2 = −N .

All these identities follow from the equation P 2 − NQ2 = 1, proved above.

Remark. For N = a2 − 2, P = a2 − 1, Q = a, we get P 2 − NQ2 = 1:

(a2 − 1)2 − (a2 − 2)a2 = a4 − 2a2 + 1 − a4 + 2a2 = 1 .

Therefore, the operator defined by the matrix
(

a2 − 1 a(a2 − 2)

a a2 − 1

)
,

preserves the form f = x2 − Ny2, N = a2 − 2.
For a = 2, . . . , 13 we obtain the useful symmetries matrices for the quadratic

form f :

N = 2 N = 7 N = 14 N = 23 N = 34
a = 2 a = 3 a = 4 a = 5 a = 6(
3 4
2 3

)
,

(
8 21
3 8

)
,

(
15 56
4 15

)
,

(
24 115
5 24

)
,

(
35 204
6 35

)
,

N = 47 N = 62 N = 79 N = 98
a = 7 a = 8 a = 9 a = 10(

48 329
7 48

)
,

(
63 496
8 63

)
,

(
80 711
9 80

)
,

(
99 980
10 99

)
,
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N = 119 N = 142 N = 167
a = 11 a = 12 a = 13(

120 1 309
11 120

)
,

(
143 1 704
12 143

)
,

(
168 2 171
13 168

)
.

The weak point of the preceding theory is that it reduces the solution of the
equation P 2 − NQ2 = 1 to the solution of a more difficult one, 2p2 − nq2 =
1, while the inverse reduction to the Pell equation would be more useful: the
existence of the solution of the equation 2p2 − (a2 − 2)q2 = 1, for the large odd
integer values of the parameter a, is still a conjecture.

Turn now to the quadratic forms ±3x2 + ny2. If the signs of both terms are
the same, there are few perfect forms. Indeed, the relation 3x2 + ny2 = 9 for a
positive n implies that x2 ≤ 1, y2 ≤ 9. If x = 0, the relation ny2 = 9 implies
that either (n = 1, y = ±3) or (n = 9, y = ±1). The form 3x2 + y2 is perfect,
since it attains the value 1. The form 3x2 + 9y2 is also perfect, since x2 + 3y2

attains the value 3 (Corollary 2 of Theorem 1, N = 3). Thus the contribution of
the case x = 0 to the list of perfect forms 3x2 + ny2 (for positive n’s) consists
of only two forms 3x2 + y2 and 3x2 + 9y2.

In the case x2 = 1 the equation ny2 = 6 has the only solution (n = 6, y2 = 1),
and the form 3x2 + 6y2 = 3(x2 + 2y2) is perfect, since x2 + 2y2 = 3 at the
point (1,1).

Therefore, the complete list of the positive perfect forms 3x2 + ny2, where
n > 0, consists of the 3 forms:

3x2 + y2, 3x2 + 6y2, 3x2 + 9y2.

The class of the negative definite forms, including −3x2 − ny2 (for positive
n), does not contain any perfect form, since the squares of the values (like +9),
are not attained, all the nonzero values of the form being negative.

Theorem 11. The quadratic form f = 3x2 − ny2 (where 0 < n < 100) is
perfect if and only if n has one of the following 14 values:

n = 2, 3, 11, 18, 23, 26, 39, 47, 59, 66, 71, 74, 83, 99 .

Proof. The quadratic residues mod u show that the equation of the represen-
tation of the value 9, which should be attained, if the form is perfect, has no
solutions, provided that the residue r of the coefficient n mod u has the value
shown in the following table:
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u 3 4 5 7 9 17 19 27 27 29 31 41 53
r 1 0 0 0 6 0 0 0 9 0 0 0 0

Example. 3x2 − ny2 = 9, where n ≡ 1 (3), y = 3z, x2 − 3nz2 = 3, x =
3t, 3t2 − nz2 = 1 impossible mod 3.

The forms 3x2 − ny2 defined by such values of n are not perfect, and the list
of the remaining possibilities (for 0 < n < 100) is not large.

The forms, corresponding to n = 3a2 − 1 are perfect. Indeed, f (a, 1) = 1
in this case and the perfectness is implied by the Corollary 1 of Theorem 1
(n = 2, 11, 26, 47, 74, . . . ).

Another series of perfect forms is defined by n = 3a2 − 9. Indeed, x2 − my2

attains the value 3 (at x = a, y = 1) in the case n = 3m.
Therefore, the tripled form, f , is perfect, accordingly to Corollary 1 of Theo-

rem 1 (n = 3, 18, 39, 66, 99).

The forms f = 3x2 − ny2 are perfect for n = 12m − 1, where m =
1, 2, 4, 5, 6, 7 (excluding 3 and 9, and I do not know what is this series con-
tinuation). This perfectness follows from the fact that these forms attain the
value 1, at the points, shown in the table (including the values (23, 59, 71, 83),
missing in the preceding series):

m 1 2 4 5 6 7
n 11 23 47 59 71 83
x 2 36 732 102 180 1194
y 1 13 151 23 73 227

Remark. These values provide the solutions of many problems, as it is ex-
plained above (Theorem 1, Theorem 10). For instance, in the case n = 47, it
follows from Theorem 10 that P = 2 143 295, Q = 221 064, N = 94, and that
the operator, defined by the matrix

(
M

) =
(

2 143 295 10 390 008
442 128 2 143 295

)
,

preserves the form f2 = 2x2 − 47y2 (providing the symmetry of the continued
fraction

√
47/2).

Theorem 1 provides in this case the f2-perfectness proving operation(
(x, y), (z, w)

) 
→ (X, Y ),
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(such that f2(x, y)f2(z, w) = f2(X, Y )) :

X = 1 464xz − 7 097(xw + yz) + 34 404yw ,

Y = −302xz + 1 464(xw + yz) − 7 097yw .

I have no general formula for the series n = 12m − 1.
The set of all the values of n, smaller than 100, is covered by the above series,

and so Theorem 11 is proved.

Theorem 12. The quadratic form f = −3x2 + ny2 (where 0 < n < 100) is
perfect if and only if n has one of the following 25 values:

n = 1, 3, 4, 7, 9, 12, 13, 19, 21, 28, 31, 36, 37, 39,

43, 49, 57, 61, 63, 67, 76, 79, 84, 91, 93 .

Proof. The residues of x2 mod u show the nonsolvability of the equation
−3x2 + ny2 = 9 for the following values of u and of the residue r of the
coefficient n mod u:

u 3 5 8 9 17 22 23 27 27 29 41 43
r 2 0 0 6 0 0 0 0 18 0 0 0

Example. If n = 9m+6 we find : (−3x2 +ny2 = 9) ⇒ (−x2 +(3m+2)y2 =
3) ⇒ (−x2 −y2 = 0( mod 3)) ⇒ (x = 3z, y = 3w) ⇒ (3 = 9(−z2 + (3m+
2)w2)), which is impossible. Hence, the equation −3x2 + ny2 = 9 is not
solvable, and the form −3x2 + ny2 is not perfect, since it attains the value −3.

The table above eliminates most of the candidates n for the perfect forms f .
Perfect forms are provided by the following series of forms f = −3x2 + ny2.

Series n = 3a2 + 1 (including, for instance, n = 1, 4, 13, 28, 49, 76). For
this choice of n the form f attains the value 1 (at (x = a, y = 1)). Hence it is
perfect, accordingly to Corollary 1 of Theorem 1.

Series n = 3a2 + 9 (including, for instance, n = 9, 12, 21, 36, 57, 84). For
this choice of n the form f/(−3) = x2 − my2, (where m = a2 + 3) attains the
value −3 (at (x = a, y = 1)). Hence the form f is perfect, accordingly to
Corollary 2 of Theorem 1.

Series n = 3b2 + 3b + 3 (including, for instance, n = 3, 9, 21, 39, 63, 93).
For this choice of n the form f/(−3) = x2 −my2, where m = b2 +b+1, attains
the value −3 (at the point (2b + 1, 2)). Hence the form f is perfect, accordingly
to Corollary 2 of Theorem 1.
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Remark. The continued fraction corresponding to the value n = 3b2 + 3b + 1
is, according to F. Aicardi,

√
n/3 = [b, (1, 1, 6b + 2, 1, 1, 2b), (1, 1, . . . , 2b), . . . ] .

The list of difficult values of the coefficient n, for which the preceding series
do not claim neither the perfectness, nor the imperfectness, is rather small, if
0 < n < 100. Calculating the continued fractions for these difficult cases by the
algorithm of the section 2, we find the following results.

Series n = 12a − 5. The following 7 values of n define the perfect forms
f = −3x2 + ny2, attaining the value 1 at the following places:

n 7 19 31 43 67 79 91
x 3 5 45 53 293 195 11
y 2 2 14 14 62 38 2

For n = 61 (not entering in the list above) the form is also perfect, because in
this case f (9, 2) = 1.

The 3 remaining difficult values of n define imperfect forms f = −3x2 +ny2,
where the continued fractions, proving the imperfectness, are provided by the
following tables (whose notations had been explained in the section 2).

Continued fraction
√

52/3 = [4, (6, 8), (6, 8), . . . ].

k −1 0 1 2 3 4
ak 4 6 8 6 8
pk 0 1 4 25 204 1 249
qk 1 0 1 6 49 300
fk +52 −3 +4 −3 +4 −3
Fk 0 −12 +12 −12 +12
p̃k 5 29 229 1 453
q̃k 1 7 55 349
f̃k −23 +25 −23 +25

This table shows that the form f = −3x2 + 52y2 does not attain the value
+1 (the minimal value at the vertices of the boundary of the convex hull, corre-
sponding to the positive f , being equal to 4).
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Hence f is imperfect. Indeed, the value 9 is not attained, since if it were
attained, we would have : (−3x2 + 59y2 = 9) ⇒ (y = 3z, −x2 + 3 · 59x2 =
3) ⇒ (x = 3t, −3t2 + 59z2 = 1), while the value f = 1 is not attained, as we
have seen from the continued fraction.

Continued fraction
√

73/3 = [4, (1, 13, 1, 8), (1, 13, 1, 8), . . . ].

k −1 0 1 2 3 4 5 6
ak 4 1 13 1 8 1 13
pk 0 1 4 5 69 74 661 735
qk 1 0 1 1 14 15 134 149
fk +73 −3 +25 −2 +25 −3 +25 −2
Fk 0 −12 +13 −13 +12 −12 +13
p̃k 5 9 74 143 735 1 396
q̃k 1 2 15 29 149 283
f̃k −2 +49 −3 +46 −2 +49

This table proves the imperfectness of the form f = −3x2 + 73y2, since this
form does not attain the value +9, its minimal value at the positive vertices being
+25 (while f (1, 0) = −3).

Continued fraction
√

97/3 = [5, (1, 2, 5, 1, 2, 10), (1, 2, . . . ), . . . ].

k −1 0 1 2 3 4 5 6 7
ak 5 1 2 5 2 1 10 1
pk 0 1 5 6 17 91 199 290 3 099
qk 1 0 1 1 3 16 35 51 545
fk +97 −3 +22 −11 +6 −11 +22 −3 +22
Fk −15 +7 −15 +15 −7 +15 −15
p̃k 6 11 23 108 290 489 3 389
q̃k 1 2 4 19 51 86 596
f̃k −11 +25 −35 +25 −3 +49 −11

It follows that the form f = −3x2 + 97y2 is imperfect, since it does not attain
the value +9. This unattainability can be seen from the easy calculations of the
values of f along the segments of the boundary of the convex hull (between the
vertices v1 et v3 and between the vertices v3 and v5), but one can also immedi-
ately observe that the value +1 is not attained, while if 9 were attainable, one
would have : (−3x2 + 73y2 = +9) ⇒ (y = 3z, −x2 + 3 · 73z2 = +3) ⇒
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(x = 3t, −3t2 + 73z2 = +1), and so the value f = +1 would be attained
(contradicting the inequalities +6 > +1, +22 > +1, making +1 unattainable).

Theorem 12 is now proved, since the series, for which we had proved either
the perfectness or the imperfectness of the form −3x2 + ny2, do cover all the
interval 0 < n < 100.

Remark. Putting together the information on the perfect forms f = mx2+ny2

for |m| ≤ 16, |n| ≤ 16, we get the following table of the small perfect diagonal
forms:

−10 −5 0 5 10 15

−10 −5 0 5 10 15

0

5

10

15

−15
0

5

10

15

Figure 1: Table of perfect forms.

There are 561 forms in the table, and the statistics of the table is (−16 ≤ m ≤
16, 0 ≤ n ≤ 16) :

forms type elliptic hyperbolic parabolic all

total number 256 256 49 561
number of perfect forms 71 93 9 173

Therefore, for all the forms in the square |m| ≤ 16, |n| ≤ 16, the statistics is

forms type positive hyperbolic negative parabolic total

number 256 512 256 65 1 089
perfect forms 71 186 0 9 266
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To compute this table, I had used all the methods, explained above. These par-
ticular series studies, having no restrictions on the coefficients (m, n) smallness,
might be useful also for other purposes, so I list here a small part of the series
studies results.

Series aux2 + ny2. To be perfect, such a form should represent the number
n2 (mod u). The quadratic residues show that in the cases, mentioned in the
following table, it is impossible, and hence the following series contain no perfect
form (in the table r means the residue of n mod u) :

u 3 4 5 5 6 6 7 7 7 8 8 8 8 8
r 2 3 2 3 2 5 3 5 6 2 3 5 6 7

Series apx2 + aqy2. To be perfect, such a form should represent the number
a2p2, so one should have the representation

px2 + qy2 = ap2.

Suppose, that p is a prime number and that q is not divisible by it. Then we
get y = pz, and get the representations

x2 + pqz2 = ap , x = pt , pt2 + qz2 = a .

If this is impossible (say, due to the quadratic residues, or, in the case of a
definite form, to the checking of the small finite list of candidates (t, z)), then
the initial form were not perfect.

Some of the many examples of this kind are listed in the following table of the
pairs (m = ap, n = aq), defining imperfect forms:

m −4 −4 −4 6 6 6 6 6 6 −6 −6
n 22 24 26 −21 −9 −8 10 15 18 21 22

m 5 −5 7 7 −9 −9 10 12 13 14 21
n −10 10 −21 14 12 15 26 22 26 22 18

Among the strange series of the perfect forms, discovered due to the compu-
tation of the small forms table, I have no theory, explaining the perfectness of
the following series, f = 4x2 − ny2, n = 4s + 3, whose forms attain the value
1 at the following strange places:
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n 3 7 11 15 19 23 27 31 35

x 1 4 5 2 85 12 13 760 3
y 1 3 3 1 39 5 5 273 1

I do not know, how to continue this series, but n = 39 should not be included.
An easy case is the perfect forms sub-series n = 4a2 − 1 : in this case

f (x, 1) = 1, and the perfectness follows from Corollary 1 of Theorem 1.

Perfect forms series f = (2a + 1)x2 − (2a − 3)y2. Its perfectness follows
from Corollary 1 of Theorem 1, since f (a − 1, a) = 1.

Perfect forms series f = (3a + 9)x2 − 3ay2. Its perfectness follows from
Corollary 2 of Theorem 1, since f = 3[(a+3)x2−ay2], while (a+3)x2−ay2 =
3 at the point (x = 1, y = 1).

Series f = 4x2 − a2y2, where a is odd, contains no perfect forms. Indeed, a4

is not representable by f , since the representation

4x2 − a2y2 = a4 4x2 = a2(a2 + y2) ,

would imply, that y is odd, that a2 = 1 (mod 4), y2 = 1 (mod 4), 4x2 = 2
(mod 4), which is impossible. Hence, the forms 4x2 − 9y2 and 4x2 − 25y2 are
imperfect.

Perfect forms series f = 4a(x2 − y2). Such a form is always perfect,
accordingly to Corollary 2 of Theorem 1, since x2 − y2 = 4a at the point
(x = a + 1, y = a − 1).

Perfect forms series f = a2x2 + aby2. Such a form is always perfect,
accordingly to Corollary 2 of Theorem 1, since ax2 + by2 = a at the point
(x = 1, y = 0). For instance, every form 4x2 + ny2 is perfect, if n is even.

4 De Sitter relativistic world and statistics of quadratic forms classes

The Klein model of the Lobachevsky plane inside the unit disc might be extended
outside the disc, providing a pseudoriemannian structure of Lorentzian signature,
which I shall call “de Sitter 2-world”. A similar construction might be used in
n dimensions. Its definition is described below (in a more general situation of
hyperbolic geometry).

A projective algebraic hypersurface of degree d in RP n is called hyperbolic
(with respect to a “time-like” point), if every real straight line, containing this
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point, intersects the hypersurface at d real points (counted with their multiplic-
ities). In the smooth hypersurface case no multiplicities are needed, and the
hypersurface is called strictly hyperbolic.

A useful example is provided (in the space R
N , N = n(n + 1)/2) by the

cone of the degenerate forms, which is hyperbolic with respect to any positive-
definite direction (since the eigenvalues of symmetric matrices are real). Similar
hyperbolic hypersurfaces are provided by the cones of the degenerate Hermitian
(or HyperHermitian) complex (or quaternionic) matrices.

Starting from a homogeneous function, defining the hyperbolic hypersurface
as the set where the function value is zero (for instance, from the determinant of
the quadratic forms), one might imitate the Klein – de Sitter world construction
(explained below), defining interesting pseudoriemannian structures on the hy-
persurface of constant determinant forms (or on a non zero level hypersurface of
the cone defining homogeneous function). These structures might be interpreted
also as pseudoriemannian structures (of different signatures) on the components
of the complement to the hyperbolic hypersurface in the projective space.

These pseudoriemanian structures signatures, for the quadratic forms space
case, may be calculated (due to the transitivity of the SL(n, R) group action on
the space of the forms of fixed signature in R

n), using the following fact.
The signature of the second quadratic form of the {zero determinant quadratic

forms} cone hypersurface at its smooth point is equal to the signature of the very
quadratic form, which is this point. (This fact is “Theorem 4” in the paper: V.
I. Arnold, Ramified covering CP 2 → S4, hyperbolicity and projective topology,
Siberian Mathematical Journal, 1988, vol. 29, N. 5, pp. 36-47).

These natural “de Sitter type symmetric manifolds”, generalizing the E. Cartan
symmetric riemannian manifolds of positive definite forms, had not been studied
(neither by the geometers, nor by the relativists), and I shall discuss below the
case of the real binary forms (n = 2, N = 3).

The degenerate forms in {mx2 +ny2 + kxy} form the quadratic cone {D = 0}
in this 3-space, where the determinant is D = 4mn − k2 (the matrix of the form
is multiplied by 2 to avoid the fractional coefficients).

The pseudoriemannian metric of the generalized Klein model is constructed
using a homogeneous polynomial D (we shall only consider the above deter-
minant of the binary quadratic forms, but the same construction works in many
other cases).

Consider the hypersurface {D = 1} in the vector space R
N , where the cone

{D = 0} lives. The Klein type metric on this hypersurface is provided by the
following construction. Consider a neighboring homotetical hypersurface, which
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is defined by the slightly deformed equation, {D = 1 + ε}. The hyperplane,
tangent to the initial hypersurface, {D = 1}, is intersected by the deformed
hypersurface along a “quadric”, defined by the equation g(ξ) = ε, where g is
a quadratic form of the tangent vector ξ . The field of quadratic forms, defined
along the hypersurface {D = 1} by this construction (sometimes with a minus
sign, if one wishes obtain a genuine riemannian metric) is the pseudoriemannian
metric on the hypersurface {D = 1}, which I propose to call the “generalized
Klein model”.

The resulting pseudoriemannian metric is evidently invariant under the action
of the group of those linear transformations of the ambient vector space R

N of
the cone, which preserve the cone (and the function D), since nothing else had
been used in the above coordinates-free definition. To reduce the dependence
of the metric on the scale (that is, on the choice of D), one usually projects the
hypersurface {D = 1} to the projective space RP N−1 (whose points are the rays,
connecting the nonzero points of our vector space R

N to 0).
In the case of the forms determinant, D = 4mn−k2, considered above, the two-

sheeted hyperboloid {D = 1} is projected onto the interior disc of the “absolute”
circle (to which is projected the degenerate forms cone). This identification of
the interior part of the disc with the hyperboloid of the binary quadratic forms of
determinant D = 1 (or, to be exact, with any of the two connected components
of this hyperboloid – say, of that formed by the positive definite forms) may be
extended to the case of any other fixed nonzero value of the determinant.

The binary forms of fixed negative determinant (which are hyperbolic, having
the (+, −) signature) are projected by the rays from the origin to the exterior
domain of the disc in the projective plane. This exterior domain is topologically
the Möbius band. The surface of the binary forms of a fixed negative determinant
is a one-sheeted hyperboloid. The projection by the rays, sending it to the
projective plane, is a two-fold covering of the Möbius band by the hyperboloid
surface, which is diffeomorphic to the cylinder. Thus, the exterior domain of
the disc of the Klein model of the Lobachevsky plane can be considered as the
manifold of the hyperbolic binary quadratic forms of a fixed determinant (the
forms, to be strict, should be considered up to the sign, since every image point
of the projection represents two opposite preimage points on the hyperboloid).

Unlike the interior disk, where the pseudoriemannian metric defined above
is the Lobachevsky riemannian metric of the usual Klein model, in the exterior
domain it is Lorentzian, that is, it has signature (+, −) and has two “light direc-
tions” at each point. The light directions on the hyperboloid are the directions
of its generating straight lines, and on the projective plane exterior domain of
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the Lobachevsky disc they are the directions of the two tangents to the absolute
circle, bounding the disc.

The projective transformations of the projective plane, preserving the disc, act
both inside it (as the Lobachevsky plane isometries) and outside it (as the de Sitter
world isometries). The de Sitter 2-world is naturally projectively equivalent
to the space of the projective lines in the Lobachevsky disc, which space is
diffeomorphic to the Lobachevsky disc of the Klein model, where one point (the
center) is resolved by a sigma process (replacing it by a real projective line,
which is the infinity line in the standard affine plane Klein model).

The group SL(2, R) of the area-preserving linear transformations of the (x, y)-
plane, on which our binary quadratic forms are defined (as well as its modular
subgroup SL(2, Z), preserving the integer points sublattice Z

2) acts on the space
R

3 of the quadratic forms f (x, y) (as the linear transformations), preserving
the cone of the degenerate forms {D = 0} and even preserving the determinant
function D and the hyperboloids {D = c} in R

3.
The modular group is the reflection group of the Lobachevsky infinite modular

triangle, represented in the Klein model by an ordinary Euclidean equilateral
triangle, inscribed into the “absolute” circle. It acts also on the Klein model with
one point resolved, which is the de Sitter world.

The geodesics of the (pseudo)riemannian metric of the model are simply the
usual projective lines in the projective plane (both inside the Lobachevsky disc
and outside it), since the hyperboloid has symmetries, preserving the planes,
containing the origin.

Therefore, the study of the classification of the hyperbolic forms mx2 + ny2 +
kxy of a fixed determinant means geometrically the investigation of the orbits of
the points of the de Sitter world under the action of the symmetries of the modular
triangle, described above. This study might be done by the usual geometrical
methods of the discrete groups theory, starting from the fundamental domains
in the de Sitter world (similar to the covering of the Lobachevsky plane by the
images of the modular triangle, reflected many times in its sides straight lines).

I shall report below the results on the invariants of integer coefficients binary
quadratic forms of fixed determinant and on these forms orbits under the action
of the modular group on the de Sitter world. However I shall not represent the
initial geometric reasonings which had lead me to these results, to avoid the
drawings of the too numerous Klein-Fricket type diagrams.

One might eliminate the de Sitter world point of view, representing the exterior
points in the Klein model by the polar dual interior straight lines of the usual
Lobachevsky plane. In the projective plane, containing a circle, the line, polar
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to an exterior point, joints the two tangency points of the circle with the two
straight lines, containing this exterior point. The Lobachevsky line might be
characterized by its point, closest to the origin (except the absolute diameters
line) – this is the diffeomorphism interpretating the de Sitter world as the one
point resolution of the Lobachevsky plane, quoted above.

The results, described below, might be interpreted as statements on the action
of the group, generated by the reflections in the sides of the modular triangle,
on Lobachevsky lines (representing the integer coefficients quadratic forms of a
given negative value of the determinant).

Some invariants of this SL(2, Z)-classification were already introduced above
: a perfect form remains perfect, whatever SL(2, Z)-frame in the (x, y)-plane is
used to define the coefficients (m, n, k).The set of the values of the form is itself
an invariant, be it a semigroup or not. One might distinguish in this set the subset
of those values, which are attained at the indivisible points (x and y having no
nontrivial common divisor). And the geometry of the continued fraction (that is
of the boundaries of the convex hulls of the sets of the integer points, separated
by the asymptotes f = 0 of the form f ) is an SL(2, Z)-invariant characteristics
of the form. One might also consider as the invariants of the form the relation of
its values set with different prime numbers (similar to the classical description
of the x2 + y2 values) : such descriptions are missing even for the perfect forms,
discussed above.

Theorem 13. The set of the SL(2, Z)-equivalence classes of the binary forms
mx2 + ny2 + kxy with integer coefficients m, n, k having a fixed negative value
of the determinant D = 4mn− k2, is finite. Moreover, the number of the classes
is smaller than

π

2
|D| + 4

√|D| .

Proof. We shall distinguish the “irrational" forms, whose lines f = 0 do
contain no nontrivial integer points (different from zero), and the “rational”
ones, where there is such a nonzero point. In the second case integer points do
exist on both straight lines f = 0, since the quadratic equation, defining these
lines inclination, has integer coefficients, and hence if one of its roots is rational,
the other is rational too, accordingly to the Vieta formula.

Lemma. The number of the SL(2, Z)-classes of binary irrational forms of
negative determinant D with integer coefficients does not exceed the number of
the integer points in the ellipse, k2 + 4r2 ≤ |D| (where the points on the axis
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r = 0 are not counted and the others points on the boundary curve are counted
with multiplicity 1/2 each).

Proof. For an irrational form one can choose such a frame of two integer
vectors, that the value of the form on the first of them is positive, on the second
negative, while the oriented area of the parallelogram, defined by these vectors,
is equal to 1 (this is impossible for some “rational” forms, like f = xy, for
instance).

To choose the frame in the irrational case, it suffices to apply the continued
fraction algorithm: two consecutive vectors (vk, vk+1) have the required property.

This reasoning is the only place where we have to use the irrationality. In the
coordinates, defined by the frame, chosen above, two of the 3 form’s coordinates
will have fixed signs, m > 0, n < 0. Let a, b the natural numbers |m| = a,
|n| = b. The ordered pair (a, b) defines, together with the coefficient k, the
“normal form” of the class of the quadratic form, ax2 − by2 + kxy, verifying
the determinant condition 4ab + k2 = |D|.

We shall now count the number of the solutions of this equation. Observe first,
that the equality ab = r2 implies, that either 1 ≤ a ≤ r , or 1 ≤ b < r , since
otherwise (a > r, b ≥ r) ⇒ (ab > r2).

Therefore, the number of the natural solutions (a, b) of the equation ab = r2

does not exceed the sum of the numbers of the solutions of the two inequalities
1 ≤ a ≤ r and 1 ≤ b < r .

The number of solutions of the first one is the integer part [r] of r , while the
number ]r[ of solutions of the second inequality is equal to [r] if r is not an
integer and to [r] − 1 if it is a positive integer.

Thus, the number of the solutions (a, b) of the equation ab = r2 does not
exceed the sum [r]+]r[.

On the other side, the number of the integer points, u, on the segment −r ≤
u ≤ r is equal to the same sum (provided, that u = 0 is not counted and that
u = +r and u = −r are counted together as 1 point).

Applying this result to the equation 4ab = |D| − k2, where k is fixed, we
see that the number of its solutions does not exceed the number of the integer
points in the interval −r ≤ u ≤ r , where r is defined by the ellipse equation,
4r2 + k2 = |D|. As in the preceding reasoning, the point u = 0 is not counted
and the boundary points u = r and u = −r are counted together as one point
(in the case where r is a positive integer).

The lemma is thus proved. To prove the theorem, we evaluate the number of
the integer points (r, k) in the above ellipse, for which k �= 0, associating to any
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such point a unit coordinate square domain, of which the point is a vertex, the
square being directed from this vertex toward the origin.

Since the open squares do not intersect and lie inside the ellipse, their number
does not exceed the area inside the ellipse, which is π

√|D|(√|D|/2) since the
axes are k2 ≤ |D|, 4r2 ≤ |D|. The number of the integer points, for which
k = 0, does not exceed 2[√|D|/2]. Thus, the total number of the classes of the
irrational forms of negative determinant D does not exceed (π/2)|D| + 2

√|D|.
To count the rational forms classes, choose the closest integer point on the

line f = 0 as the first basic vector. In such a coordinate system, the form will
be f (x, y) = ny2 + kxy. The determinant being D = −k2, we have only to
normalize the coefficient n. To do this, it suffices to add y to the coordinate x.
This SL(2, Z)-change of coordinates shifts the coefficient n by k. It follows that
the residue of n mod k is an invariant of the form, and that any such form is
equivalent to one, for which 1 ≤ n ≤ |k|. Hence, the number of classes does not
exceed 2|k| = 2

√|D| (one might observe that, essentially, we had classified the
integer lattice parallelograms of a given area k).

Adding the number of the rational forms classes to the previous upper bound
of the number of the irrational forms, we obtain the upper bound claimed by
Theorem 13.

Remark. This bound is larger than the actual number of the classes, and I shall
provide below some more realistic arguments, suggesting the smaller growth
rate of the number of classes of forms of a fixed determinant D (at least one
hope it should be correct for the total number of classes of those forms which
determinants lie between 0 and −|D|).

To evaluate the number of the natural solutions of the equation ab = c (and of
the inequality ab ≤ c), one may use the hyperbola b = c/a and the area below it
(taking into account the restriction a ≤ c, b being natural). Adding the rectangle
(0 ≤ a ≤ 1, 0 ≤ b ≤ c) to take into account the points with a = 1, while
counting the unit squares, issued from the integer points below the hyperbola
to the direction of smaller coordinates, we get for the number N of the integer
points below the hyperbola the “entropie type” formula

N ∼ c + c ln c .

It suggests that the number M(c) of points on one hyperbola should behave
like dN

dc
= 2 + ln c (neglecting the fluctuations, making some hyperbolae, like

c = n!, more populated then the others like those, corresponding to prime c,
where M = 2).

In this sense we shall call 2 + ln c the “averaged upper bound”.
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Example. For c = 24 the genuine number N = 84 of the integer points below
the hyperbola is smaller than the upper bound 25 + 25 ln 25 � 105, provided by
our reasoning. However, the number M = 8 of the integer points exactly on our
hyperbola is larger, than our “averaged upper bound”, which is 2 + ln 24 � 5, 2.

In all these upper bounds reasonings, we have not taken into account the
arithmetical restriction on the value of 4ab = |D| − k2: this integer should be
divisible by 4. To eliminate 3/4 of the hyperbolae, we first write the total number
of classes as the sum of the numbers of points on the particular hyperbolae,

∑
k,k2≤|D|

M(Ck) , where 4Ck = |D| − k2 .

Replacing next the sum by the integral and the actual integers M by the above
averaged upper bound, we shall then divide the integrand by 4, to take the arith-
metical restriction into account, and we shall multiply the positive k integral by
2, to take into account the negative values of k as well. The resulting “euristical”
integral formula for the number A(D) of the SL(2, Z)-classes of binary quadratic
forms with integral coefficients of fixed negative determinant D is:

A(D) “ ∼ "
∫

0≤k≤√|D|
2 + ln C

2
dk , where 4C = |D| − k2.

Taking into account the relations 4 dC = −2k dk, dk = −2dC/k, we rewrite
this integral in the independent variable C form,

A(D) “ ∼ "
∫ |D|/4

1

2 + ln C√|D| − 4C
dC .

The main contribution to this convergent integral is provided by the right
boundary point, C = |D|/4. It is of the order of magnitude, provided by the
formula

A(D) “ ∼ "
(
2 + ln(|D|/4)

)√|D|/2 .

This “euristical upper bound” is much smaller, than the bound of the order
|D|, rigorously proved in Theorem 13. The euristical formula asymptotics is
closer to the actual numbers observed in the examples than the rigorous bound,
proved in Theorem 13. The actual numbers of hyperbolic forms classes of mild
determinants −|D| are, accordingly to the numeric calculations by F. Aicardi,
those, presented in the following table:

|D| 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29
A 1 2 1 1 3 2 1 4 1 2 2 2 5 2 1
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|D| 32 33 36 37 40 41 44 45 48 49 52 53 56 57
A 3 2 6 1 2 1 2 3 4 7 2 1 2 2

|D| 60 61 64 65 68 69 72 73 76 77 80 81 84 85
A 4 1 8 2 2 2 3 1 2 2 4 9 2 2

|D| 88 89 92 93 96 97 100 101 104 105
A 2 1 2 2 6 1 10 1 2 4

This table suggests for the total number of the hyperbolic forms classes of
determinants between 0 and−|D| the approximate value 1.4·|D| (for |D| ≤ 100).

The symbol “∼" means the absence of a rigorous proofs of the correspond-
ing relations : they represent rather the averaged asymptotics, providing more
reliable estimations for the sums

∑
d≤|D| A(d), than for the values of the num-

bers A(d) themselves, which might fluctuate around the mean values estimated
below.

For the positive definite forms the numbers A of the classes of forms corre-
sponding to a given value of the determinant D = 4mn − k2 is, accordingly to
F. Aicardi, for 0 < D ≤ 104, given by the table

|D| 3 4 7 8 11 12 15 16 19 20 23 24 27 28
A 1 1 1 1 1 2 2 2 1 2 3 2 2 2

|D| 31 32 35 36 39 40 43 44 47 48 51 52 55 56
A 3 3 2 3 4 2 1 4 5 4 2 2 4 4

|D| 59 60 63 64 67 68 71 72 75 76 79 80 83 84
A 3 4 5 4 1 4 7 3 3 4 5 6 3 4

|D| 87 88 91 92 95 96 99 100 103 104
A 6 2 2 6 8 6 3 3 5 6

Denote by µ(D) the number of the classes of determinant between 0 and D:

µ(D) =
∑

A(d), 0 < d ≤ D.

The table provides the approximate formulaµ(D) ≈ 7D/4 forD ≤ 104. Aicardi
suggested the empirical growth rate µ(D) ≈ 0.16D1.5 (the theoretical “euristi-
cal” arguments below provide for the upper bound the suggestion of order D7/4).

For the hyperbolic case (where D < 0, −|D| ≤ d < 0) the empirical growth
rate suggestion is

µ(D) ≈ 0.48 |D|1.23,
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while the theoretical “euristical” arguments below provide the upper bound of
the order of D3/2.

The difference between the theoretical and the empirical growth rates might
be explained by the fact, that the theoretical bound is an attempt to evaluate
the maximal fluctuations, while in the empirical study only the sum over d is
evaluated.

The fluctuations sum might be smaller, than the sum of the maximal fluctua-
tions, the maximum being attained only for a small part of the values of d.

Theorem 14. The number of the SL(2, Z)-equivalence classes of the positive
definite forms f = mx2 + ny2 + kxy with integer coefficients (m, n, k), having
a fixed positive value of the determinant D = 4mn − k2, is smaller or equal to
the number 8D/π2.

We start from a geometric observation (due to Minkowsky):

Lemma. There exists an indivisible integer point at which the value Ã of the
form is of order of

√
D:

0 < Ã < 2
√

D/π .

Proof. The area of the ellipse f ≤ C equals C(2π/
√

D). If this area is greater
or equal to 1, the ellipse intersects its version translated parallely to some nonzero
integer center point. Hence the doubled ellipse, f ≤ 4C, contains in this case a
nonzero integer point.

For C = √
D/(2π) the area of the ellipse is 1, and hence we find a nonzero

integer point, where the form value is at most equal to 4C = 2
√

D/π , as required
in the Lemma. To make this point indivisible it suffices to divide it.

Proof of Theorem 14. Choosing an SL(2, Z)-coordinate system (X, Y ), we
make (X = 1, Y = 0) the coordinates of the point of the Lemma. The form and
the determinant have now the expressions

f = AX2 + NY 2 + KXY , D = 4AN − K2 .

When D and A are fixed, the last equation defines a parabola in the plane of
(N, K).

The choice of new coordinates (X̃, Y ), where X = X̃ + pY , moves the point
(N, K) along this parabola, replacing the coefficient K by its new value, K̃ =
K + 2Ap. Choosing the integer p, we attain the parabola segment where 0 ≤
K̃ < 2A.
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This segment contains at most 2A integer points. We have proved that one of
these points does represent the SL(2, Z)-equivalence class of the form f . Hence
the number of the equivalence classes of forms of determinant D is at most equal
to the product of the numbers of the possible values of the integers A and K̃ , that
is to 2A2 ≤ 8D/π2, which proves the Theorem.

Remark. The upper bound, provided by Theorem 14, seems to be higher than
the genuine asymptotic of the number of the classes, when D is large.

Indeed, the number of the integer points on the 0 ≤ K < 2A segment of the
parabola {N = (D +K2)/(4A)} seems to grow with A rather as

√
A than as 2A,

which would provide for the number of the classes an upper bound of the order
of A3/2 (that is of D3/4 instead of D).

To explain this growing rate of the number of the integer points on the parabola
segment, consider the case D = 0. In this case the number 4NA on the parabola
should be a square of an integer. Denote A = Q2R, where the integer R has
no squares of primes among its divisors. Then one should have N = RS2, for
some integer S. The bound K < 2A implies the inequalities N < A, S <

√
A,

and hence the number of the integer points on the segment of the parabola, for
which D = 0, is at most

√
A.
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