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ANNALS OF MATHEMATICS 
Vol. 48, No. 1, January, 1947 

THEORY OF BRAIDS 

BY E. ARTIN 

(Received May 20, 1946) 

A theory of braids leading to a classification was given in my paper "Theorie 
der Zopfe" in vol. 4 of the Hamburger Abhandlungen (quoted as Z). Most of 
the proofs are entirely intuitive. That of the main theorem in ?7 is not even 
convincing. It is possible to correct the proofs. The difficulties that one en- 
counters if one tries to do so come from the fact that projection of the braid, 
which is an excellent tool for intuitive investigations, is a very clumsy one for 
rigorous proofs. This has lead me to abandon projections altogether. We shall 
use the more powerful tool of braid coordinates and obtain thereby farther 
reaching results of greater generality. 

A few words about the initial definitions. The fact that we assume of a braid 
string that it ends in a straight line is of course unimportant. It could be re- 
placed by limit assumptions or introduction of infinite points. The present 
definition was selected because it makes some of the discussions easier and may 
be replaced any time by another one. I also wish to stress the fact that the 
definition of s-isotopy is of a provisional character only and is replaced later 
(Definition 3) by a general notion of isotopy. 

More than half of the paper is of a geometric nature. In this part we develop 
some results that may escape an intuitive investigation (Theorem 7 to 10). 

We do not prove (as has been done in Z) that the relations (18) (19) are de- 
fining relations for the braid group. We refer the reader to a paper by F. Boh- 
nenblust1 where a proof of this fact and of many of our results is given by purely 
group theoretical methods. 

Later the proofs become more algebraic. With the developed tools we are 
able to give a unique normal form for every braid2 (Theorem 17, fig. 4 and re- 
mark following Theorem 18). In Theorem 19 we determine the center of the 
braid group and finally we give a characterisation of braids of braids. 

I would like to mention in this introduction a few of the more important of 
the unsolved problems: 

1) Assume that two braids can be deformed into each other by a deformation 
of the most general nature including self intersection of each string but avoiding 
intersection of two different strings. Are they isotopic? One would be inclined 
to doubt it. Theorem 8 solves, however, a special case of this problem. 

2) In Definition 3, we introduce a notion of isotopy that is already very 
general. What conditions must be put on a many to many mapping so that 
the result of Theorem 9 still holds? 

I F. Bohnenblust, The algebraical braid group, Ann. Math., vol. 48, (1947), pp. 127-136. 
2The freedom of the group of k-pure braids has been proved with other methods in: 

W. FR6HLICH, Uber ein spezielle8 Transformationsproblem bei einer besonderen Klasse von 
Zopfen, Monatshefte fur Math. und Physik, vol. 44 (1936), p. 225. 
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102 E. ARTIN 

3) Determine all automorphisms of the braid group. 
4) With what braids is a given braid commutative? 
5) Decide for any two given braids whether they can be transformed into each 

other by an inner automorphism of the group. Concerning applications of braid 
theory this is by far the most important problem. 

The last three of our questions seem to require an extensive study of the auto- 
morphisms of free groups. 

We shall have to consider numerous functions of several variables. All of 
them are meant to be continuous in all the variables involved so that the state- 
ment of continuity is always omitted. Only more stringent conditions shall be 
mentioned. 

Let x, y, z be the Cartesian coordinates of a 3-space. By a braid string we 
mean a curve that has precisely one point of intersection with each plane z = a 
so that z may be used as parameter. Denoting by X the two dimensional vector 
(x, y) we may therefore describe the string by a vector function X = X(z). In 
addition to that we assume the existence of two constants a, b such that X(z) 
assumes a constant value X for all z ? a and a constant value X+ for all z _ b. 
X- and X+ are called the ends of the string. 

By an n-braid we mean a set of n strings Xi(z) (i = 1, 2, ... n) without inter- 
sections (hence Xi(z) $ Xk(z) for i # k) where the numbering of the strings is 
considered unessential. 

Two n-braids Xi(z) and Yi(z) are called strongly isotopic (s-isotopic) if n vec- 
tor functions Xj(z, t) can be found with the following properties: They are defined 
for all z and for all t of a certain interval c < t < d, give an n-braid for each special 
t and are Xi(z) for t = c, Yj(z) for t = d. They are constant in z and t if z is 
large enough and also constant if -z is large enough. We remark at once that 
the ends remain fixed. 

THEOREM 1. s-isotopy is reflexive, symmetric and transitive. 
This allows us to unite s-isotopic braids into one class. We also obtain with- 

out difficulty: 
THEOREM 2. Let g(z, t) be a numerical function defined for all z and all t of a 

certain t-interval. Assume that it tends with z to oo uniformly in t (the sign is 
unimportant). If Xi(z) is a braid then the new braids Xi(g(z, t)) for different 
values of t are all s-isotopic. (They need not be s-isotopic to Xi(z) itself.) 

COROLLARY 1. If the numerical function g(z) satisfies lim g(z) = + so and 
z=+oo 

lim g(z) = - a, then the braids Xi(z) and Xi(g(z)) are s-isotopic. 
z-00 

PROOF: Put g(Z, t) = (1 - t) z + t g(z) for 0 _ t < 1. 
COROLLARY 2. Xi(z) is s-isotopic to any z-translation Xi(z + t). 
COROLLARY 3. The braids Xi( I z J + t) are s-isotopic among themselves for 

different values of t. For large positive values of t all braid strings are constant = 
Xt. For large negative values of t the part of the braid above the xy-plane looks 
like a z-translation of Xj(z), the part below this plane like its reflection on the xy- 
plane. 

This content downloaded from 129.215.149.97 on Sat, 22 Jun 2013 05:14:31 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


THEORY OF BRAIDS 103 

We mention a few theorems of which little use shall be made in this paper, but 
that are useful if braids are to be studied by means of their projection on the 
yz-plane from the positive x-direction. By lexicographical arrangement of vec- 
tors we mean, as usual, their arrangement according to the size of their y-co- 
ordinate and, in case the y-coordinates are equal, according to their x-coordinate. 

Two braids are said to have the same z-pattern of projection if the lexico- 
graphical arrangement of the vectors Xi(z) is for each value of z the same as 
that of the vectors Yi(z). 

LEMMA. Two braids with the same z-pattern of projection are s-isotopic. 
PROOF: Put Xi(z, t) = (1 - t)Xi(z) + t Yi(z) for 0 ? t ? 1. Assume we 

could find values z, t and i $ k such that Xi(z, t) = Xk(Z, t). This means that 
(1 - t)(Xi(Z) - Xk(Z)) + t(Yi(z) - Yk(z)) = 0. Let Xi(z) - Xk(z) = (a, b) 
and Yi(z) - Yk(z) = (a', b'). The y-coordinate of our equation shows that b 
and b' can not have the same sign hence b = b' = 0. Now the x-coordinate of 
the equation leads to a = a' = 0. But then Xi(z) would not be a braid. 

Two braids Xi(z) and Yj(z) are said to have the same pattern of projection 
if a monotonically increasing function g(z) with infinite limits exists such that 
Xi(z) and Yi(g(z)) have the same z-pattern of projection. 

THEOREM 3. Two braids with the same pattern of projection are s-isotopic. 
PROOF: Use the lemma and Corollary 1 of Theorem 2. 
THEOREM 4. Let d be less than half the minimal distance between two of the 

strings of Xi(z). Let Yi(z) be a braid with the same ends as Xi(z) and assume that 
equally numbered strings of the two braids have at each z level a distance less than d. 
Then the braids are s-isotopic. 

The proof is done with the same device as in the lemma and is trivial. 
DEFINITION: Two braids X,(z) and Yj(z) are called composable if: 
1) They have the same number of strings. 
2) After a suitable change in the numbering of the strings we have Y+l = X . 

So the upper ends of Yj(z) must fit the lower ends of Xi(z). 
If (after a suitable translation) we join these ends we obtain a new braid which 

is said to be composed of X,(z) and Yi(z) (in this order). The formal definition 
would be: 

Select an a and a b such that Xi(z + a) is constant for negative z and Yi(z + b) 
is constant for positive z. Put Zi(z) = Xi(z + a) for positive z and = Yi(z + b) 
for negative z. This braid and any translation of it is called the composed braid. 
We still have a great freedom in the selection of a, b and the translation. All 
these braids are however s-isotopic. 

If we replace both braids by others that are s-isotopic to them we obtain braids 
that are s-isotopic to Zi(z). The proof follows from the fact that after suitable 
selection of a and b the necessary deformation can be carried out independently 
in both sections of the composed braid. This leads to: 

DEFINITION 1. Two classes of braids A and B are called composable if the 
braids in these classes are composable. The resulting braids form a class de- 
noted by AB. It is to be remarked that if A is composable with B then B may 
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104 E. ARTIN 

not be composable with A. And even if the classes are composable from both 
sides then the commutative law may not hold. But the associative law does. 
If A and B as well as AB and C are composable then B and C as well as A and 
BC are composable and we have A(BC) = (AB)C. 

THEOREM 5. The classes of n-braids form a groupoid under our composition. 
PROOF: The postulates that we must verify are: 
1) The kind of associative law we just have mentioned. 
2) The existence of two classes U and U' for each given class A (dependent 

on A) such that AU = U'A = A. U is obviously the class containing a con- 
stant braid with the same lower ends as A and U' the similar class connected 
with the upper ends of A. 

3) The existence of a class A-' such that A-'A = U and AA-' = U'. Corol- 
lary 3 shows that the reflection of a braid on the x, y plane gives such a class. 

4) If A and B are given classes there exists a class C such that AC as well as 
CB can be formed. This just means to construct an example of a braid with 
given ends. 

If U is one of the unit classes call Gu the set of all A that have U as left as well 
as right unit. They form a group. If V is another unit and C a class such that 
UC = CV = C then G, = C'1GuC and the transformation thus indicated is an 
isomorphism. The knowledge of one of these groups reveals the structure of 
all and as a matter of fact the structure of the whole groupoid. The braids in 
such a group are those whose upper ends are only a permutation of the lower ends. 

Next we prove that s-isotopy can be extended to the whole space: 
THEOREM 6. Let Xi(z, t) be the n functions describing an s-isotopy. Then we 

can find a function F(X, z, t) defined for all X and z and all necessary t, whose value 
is a vector, and that has the following properties: 

1) For any fixed z it is a deformation of the plane. That means that it is a one 
to one correspondence of the plane if t also is fixed and it is identity for t = a if that 
is the beginning of the t-interval. 

2) Should for any special value of z the original functions Xi(z, t) be independent 
of t, then F(X, z, t) = X for that z and all X and t. 

3) If a point (X, z) of the 3-space has a sufficiently large distance from the origin 
then F(X, z, t) = X for all t. 

4) F(Xi(z, a), z, t) = Xi(z, t). So the deformation of the space moves the braid- 
strings precisely as the s-isotopy does. 

PROOF: 1) Select an r > 0 such that I Xi(z, t) - Xk(Z, t) I < 3r for all i # k 
and all z and t. We first construct an auxiliary function G(X, Ps,, Q,) of X and 
2n points Ps,, Q, (v = 1, 2, *** n) of the plane. The points P, are restricted 
by the condition that their mutual distance shall always be greater than 3r, the 
points Q, by the condition that Qi lies in the interior of a circle Ci of radius r 
around Pi . The value of G shall be X if X is outside of all the circles or on the 
periphery of one. For X = Pi the value shall be Qi . If X is in the interior 
of Ci bat different from Pi draw a radius through X and call R its intersection 
with Ci. Define the functionvalue as that point on the straight line segment 
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THEORY OF BRAIDS 105 

R Qi that bisects it in the same ratio as X bisects R Pi. Our function is con- 
tinuous in all the variables, is a one to one correspondence of the plane for fixed 
P, and Q, and reduces to identity if P, = Q, for all v. 

2) Divide the t interval into a finite number of parts tj < t < tail such that 
the variation of every Xi(z, t) in that interval is less than r for fixed z. 

In a = to < t < ti we define F(X, z, t) = G(X, X,(z, a), X,(z, t)). It has all 
the necessary properties. Assume that we succeeded to define F(X, z, t) for 
all t of to < t < t, and to check on the required properties. For tm < t < tm+i 

we define: 

F(X, Z, t) = G(F(X, z, tm), Xp(z, tm) X,,(z, t)). 

For t = tm we get the old value so it is a continuous continuation. The proper- 
ties 1, 2, 3 follow immediately. For X = Xi(z, a) we get F(X, z, ti) = 

Xi(z, ti) hence F(X, z, t) = Xi(z, t). 
The extension of an s-isotopy to the whole space is not the only use of Theorem 

6. We also use it to introduce new coordinates for the points of the space 
called braid coordinates. They are much more flexible in dealing with braids 
and the principal tool in the proofs of most of the following theorems. 

Let Xi(z) be a given braid, constant for z < a and for z > b. Consider the 
braids Xi(z + t) for 0 _ t < b - a. They are all isotopic and let F(X, z, t) 
be the extension of this isotopy to the whole space. Then we have: 

(1) F(Xi(z),z,t) = Xi(z+ t), 0< t ? b - a. 

With each point (x, z) of the space we associate now a 2 dimensional vector 
Y = Y(X, z) in the following way: 

For z ? a let Y = X. 
For a ? z < b let Y be the unique solution of F(Y, a, z - a) = X. For z = a 

we have F(X, a, 0) = X, therefore X = Y again. 
For z > b put Y(X, z) = Y(X, b). 
If z is fixed then the mapping Y = Y(X, z) is a one to one correspondence of 

the plane that is certainly identity, outside a large circle whose radius does not 
depend on z. It is identity for all X if z < a. For z > b it is in general not 
identity but at least is the same mapping for all z > b. 

F(Xi(a), a, z - a) = Xi(a + (z - a)) = Xi(z) if a < z < b because of (1). 
This shows that the Y for the point (X,(z), z) of the ith string is Xi(a) = X,. 
The same is true for z < a and for z > b for trivial reasons. 

We associate now with the point (X, z) the corresponding combination { Y, z 
and call it the braid coordinates of that point. They equal the ordinary co- 
ordinates for all z < a and also for all large I X I . All points on the ith string 
have the simple braid coordinates {X-, z}. 

Another way to look upon the braid coordinates is this: Interpret them as 
ordinary coordinates of a point of a 3-space. Then our 3-space is mapped by 
a one to one correspondence onto this new one and the braid strings are mapped 
onto vertical lines with the same lower ends. 
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106 E. ARTIN 

Let now u be any real number. The mapping { Y, z} {Y, z + u} in our 
old space is a one to one correspondence that has all the essential features of 
a translation and shall therefore be called translation by u along the braid. 
Each single string remains fixed as a whole. For large I X I and also if J z I is 
large in comparison to I u I it is an ordinary translation. For the other points 
the z-coordinate does at least behave in the ordinary way. 

We can of course also find the inverse function X = H(Y, z) that describes 
the passage from Y back to X. Let now X(z) be any other braidstring (it 
may intersect the strings of our braid). Apply to it a translation by u along 
our braid. The braid coordinates of (X(z), z) are { Y, z} where Y = Y(X(z), z). 
The translation moves it into { Y, z + u} . The ordinary coordinates are (X', 
z + u) where X' = H(Y(X(z), z), z + u). Looking at the new string as a whole, 
we may replace z by z - u and obtain the new braidstring 

X(z, u) = H(Y(X(z -), z - u), z) 

such that (X(z, u), z) are the points of the new braidstring. Letting now the 
u change, we see that we have before us an s-isotopic change where the points 
move only in horizontal planes. Should the original string not intersect the 
braidstrings, then its translation does not either and the braid formed out of the 
old braid by adding our new string undergoes an s-isotopy under translation. 

We use this in the following way: Let Xi(z) be an n-braid and replace its nth 
string by any other string X'(z) with the same ends. The new string may in- 
tersect Xn(z) but shall not intersect the other strings of our braid. This gives 
a new n-braid and we apply now to our old braid a translation by a large u along 
our new braid. What happens? The n - 1 first strings remain fixed. If u 
is sufficiently large then a very low portion of the nth string will now be in the 
main part of the braid. In that very low portion the string Xn(z) = X'n(z) . 
The string X'(z) does not change under our translation. This shows that in 
the main portion of our braid X"(z) has moved into the position X'(z). This is 
of course compensated by the fact that the n th string is now entangled in the 
other strings above the main portion of the braid. But above the main section 
of the braid, the first n - 1 strings are very simple, namely parallel lines. Re- 
member finally that we have shown in the preceding paragraph that the transla- 
tion can also be considered as a horizontal motion, as an s-isotopy. 

THEOREM 7. It is possible to apply to a braid an s-isotopy moving one string only 
whereby this string may be brought into any other position provided this is compen- 
sated by a motion of the string above the main section of the braid where the n - 1 
other strings are parallel. 

This suggests the definition: 
DEFINITION 2. A braid with the same upper and lower ends is called i-pure, 

if all but the i th string are constant. A class is called i-pure if it contains an 
i-pare representative. 

We see: if B and B' are braids or classes of braids having n - 1 strings in 
common then B = AB' where A is i-pure. 

This content downloaded from 129.215.149.97 on Sat, 22 Jun 2013 05:14:31 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


THEORY OF BRAIDS 107 

Another useful notion connected with braid coordinates is that of projection 
along the braid. Consider the plane z = zo . The mapping { Y, z } - { Y, zoI 
is this projection. It carries the braidstrings into their intersection with the 
plane and a point not on the braid into a point different from these intersections. 

Let now RB be the complementary set to B in the 3-space. We introduce the 
usual notion of homotopy of paths in RB. Two paths a = { Y(t), z(t) }, b = 
I Y'(t), z'(t) }, 0 < t < 1 are called homotopic in RB: a -,,B b if a function of two 
variables t and s (interval 0, 1) { Y(t, s), z(t, s) } can be found, that is constant 
for t = 0 and t = 1, gives the first path for s = 0 and the second for s = 1. 
All points of the deformation have to belong to RB which means simply that the 
function Y avoids the values X7. 

The composition of homotopy classes is introduced in the usual way and leads 
to a groupoid. If we select a point P in RB and consider the homotopy classes 
of those paths that have beginning as well as endpoint at P, we obtain the Poin- 
car6 group of RB. Let zo be the z coordinate of P and a = { Y(t), z(t) } any 
element of this group. The projection a' = { Y(t), zo} is homotopic to a as the 
function { Y(t), zo + s(z(t)- zo) } shows. If two paths in this plane are B-homo- 
tropic, say by the function { Y(t, s), z(t, s) }, then the function { Y(t, s), zo} shows 
that the paths are already homotopic in the plane. The Poincar6 group is 
therefore the same as that of a plane punctured in the n points Xi(zo). So it is 
a free group with n generators. 

We must now carefully describe the generators we want to use. The plane 
will be either in the region of z where the braidstrings assume the constant values 
X, and shall then be called a lower plane or in the region of the X+ when we call 
it an upper plane. Take an upper plane and draw in it a ray that does not meet 
any of the upper or lower ends. We intend to take the point P on that ray 
sufficiently far away. Each of the points X+ shall be connected with the be- 
ginning point Q of the ray by a broken line without self intersection such that 
two of the lines and also the ray have only the endpoint Q in common. By 1i 
we denote the connection thus established between the beginning point X+ and 
the point P on the ray. By li(e) we mean the same path but starting with 
the parameter value e. An orientation of the plane is selected. By ci(e) we 
mean a curve with the winding number 1 around X+ starting and ending at the 
beginning point of li(e) that stays within a small neighborhood of X+. It is 
well known that the paths (for small e) 

(2) t = I(e)yc (e)l (e) 

are free generators of the Poincar6 group of the punctured plane. This pattern 
of paths is then transferred to all other upper planes by projection (in the ordi- 
nary sense) including the point P. We use the same names for the paths in 
all the upper planes. 

In a lower plane we first transfer the ray, the orientation and the point P to 
it by ordinary projection. Since we now have to take eare of the lower ends, 
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108 E. ARTIN 

new paths are selected denoted by 1', l'(e), c'(e). The corresponding generators 
shall be called t',. 

What we intend to do with this setup is roughly this: If two braids are s-iso- 
topic they must by necessity have the same ends. It therefore suffices to consider 
braids with given ends. For all these braids we use the same pattern of paths 
in the lower and upper planes. If B is a given braid then we project by braid 
projection the generators t' into the upper plane. We obtain paths 7i that are 
now generators in the upper plane. Therefore they can be expressed in terms 
of the ti . It turns out that these expressions are a complete set of invariants 
for the isotopy classes. 

As a first indication that the study of the homotopy classes must give a solu- 
tion of our problem let us consider the following special case: 

Let C be an (n - 1)-braid. Form two n-braids by inserting in C an nth string 
in two ways but both time with the same ends. Select a zo such that the two 
strings are equal for z < zo and call P0 the point on the nth strings at that zo-level. 
In a similar fashion select zi and P1 for the upper end. Consider now the two 
pieces of the nth strings between Po and Pi . If they are homotopic relative to 
C we may call the two n th strings C-homotopic. Then the following rather sur- 
prising theorem holds: 

THEOREM 8. Let B and B' be obtained from C by insertion of an n th string with 
gien ends. If the two strings are C-homotopic then B and B' are s-isotopic. Every 
homotopy class can be realized by a braid. The converse is also true but will be 
proved later. 

PROOF: 1) We use braid coordinates of C and express the two inserted strings 
in terms of these coordinates: Yn(z), Y' (z). The fact that they do not intersect 
the strings of C means just that the functions avoid the values X, . By as- 
sumption there exists a function { Y(t, s), z(t, s) } defined in zo < t < z1, 0 < 
s ? 1 describing the homotopy of the strings. So Y(t, s) will avoid the values 
X,, have fixed beginning and end points for all s and will be Y"(t) for s = 0 and 
Y'(t) for s = 1. The method consists now in forgetting about the function 
z(t, s) altogether and to define a function Yn(z, s) as equal to Y(z, s) for zo < 
z < zL and equal to X, for all other z. The function avoids X- and reduces to 
the given strings for s 0 and s = 1. So it gives the required s-isotopy. 

2) If { Y(t), z(t) } is any curve defined in zo < z ? z1 that avoids the strings 
of C and joins Po and P1, put as before Yn(z) = Y(z) in that interval and = 
Xn for all other z. The function { Y(t), s * z(t) + (1 - s)t } shows that this nth 
string is homotopic to the given curve. 

REMARK. The s-isotopy of Theorem 8 moves the nth string only. 
Let us now return to our upper plane. Join one of the points X+ to P by a 

curve h that avoids the braid with exception of its beginning point. Define 
h(e) as before and let d(e) be a curve analogous to c,(e). Consider the element 
t = h(e)f'd(e) h(e). If we join the beginning point of li(e) to that of h(e) by a 
path e that stays in a small neighborhood of Xt then e lci(e)e is homotopic to 
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d(e). The path S' = li(e)-le h(e) is a certain element of the group and may be 
expressed in terms of the t. The element 

SI- tiS' = h(E)-'elli(e)l(-)-'ci(e)li(e)li(-)-e h (e) 

is homotopic to t. Assume now that a similar expression t = S-1tiS is known 
from some other source and may even not be in a reduced form. We first per- 
form the possible cancellations in S only; a further simplification of the expres- 
sion S-1tiS is then possible only if S begins with a power of ti . Then S-1 ends 
with the reciprocal of that power and we see that this term may indeed be 
dropped. This shows that S is uniquely determined but for a power of ti and 
we have therefore S' = ttS or 

(3) li(e)le h(e) = tS. 

Let us now reinsert in our plane the one point X+ and consider homotopies 
in that new plane, punctured in n - 1 points only. This homotopy shall be 
denoted by -i . It amounts to put ti = 1 in all previous expressions. The 
resulting element shall still be denoted by S. We obtain: 

li(e))'e h(e) -' S. 

The path lili(e)-le h(e)h-l is i-homotopic to a closed curve starting at Xt and 
remaining in a small neighborhood of that point. It is therefore i-homotopic 
to this point X+. This proves the formula 

(4) 17lh '.'i S. 

Let now B be a braid with the given ends. If we apply braid projection to 
a generator t' of a lower plane onto an upper plane and assume that the point 
P has been selected sufficiently far out, then the image 1i will be an element of 
the Poincar6 group for P. If 1i is the projection of l' we obtain equations of 
the form: 

(5) t- = S'ltiSi 

(6) 1i (E )-le 1 (e) Si 
(7) 1-1 1I Si 
It is to be remarked that the properties of the braid coordinates show that the 
form of the equation (5) does not depend on the precise location of the upper 
and the lower plane. It is also clear that it does not depend on e provided it is 
only small enough. The position of P plays also no role in it provided that it 
is far enough out. The equations (6) and (7) change of course their meaning 
and the exponent r may depend on e and ei . 

We may look upon this process in yet another way. Call g the straight line 
segment that connects P with its projection in the lower plane and put ri = 
gt g-1. They are elements of the Poincar6 group for P and as a matter of fact 
a set of generators. If we subject them to braid projection they will go over 
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again into the Ti. But being elements with the same beginning and end point 
ri is, as we have seen before, homotopic to Ti. So equation (5) becomes 

(8) 7' SL1tiSi. 

We are now ready for a generalized notion of isotopy: 
DEFINITION 3. A braid is called isotopic to another braid if the space can 

be mapped into itself in such a way that points on the first braid but no other 
points of the space are mapped onto points of the second braid. In addition 
to this we assume that the mapping is identity outside of a certain sphere. In- 
side that sphere the mapping must of course be continuous but need not be one 
to one. 

Consider now two isotopic braids B and C. Locate the lower and the upper 
plane outside the sphere and select P so that g is also outside this sphere. The 
two elements ri and its B-projection ti are B-homotopic. The surface connect- 
ing the two paths does not meet B. Its image under our mapping will therefore 
avoid C. This shows that the images of our paths are C-homotopic. But our 
paths remain fixed. So ri and ti are C-homotopic. ri on the other hand is 
C-homotopic to its C-projection. This C-projection is therefore C-homotopic 
to Ti and this proves: 

THEOREM 9. If B is isotopic to C then the exexpressions in formula (5) are 
the same for B and C. 

The i-homotopy of formula (7) may be interpreted as homotopy' with respect 
to the braid resulting from a cancellation of the ith string. Denote by Li the 
piece of the ith string that starts at the upper plane and ends at the lower plane. 
The path ii' 2il'g-' is a closed path starting at P and as such i-homotopic to 
its projection onto the upper plane. But this projection is obviously the left 
side of (7). Computing 2i out of the resulting homotopy we get: 

(9) 2 rIt ai liSigl/i_ 

and this shows that Si determines the homotopy class of the ith string. 
(9) Interprets the ith string but it would not completely explain Si since it 

is only an i-homotopy. Let 2' be any path connecting the beginning points 
of li(e) and 1(e) that stays in the immediate vicinity of the nth string without 
intersecting it. Its projection is then a curve that may be used as ei . Now 
the projection of li(E)-'2zl'(E)g is the left side of (6): 

(10) t$Si Ii1 ,(e)r2,'(f)g 

which provides the full geometric meaning of Si . The converse of Theorem 8 is: 
THEOREM 10. Let B and C be two braids with the same ends and with the same 

first n - 1. strings. Assume either that B and C are s-isotopic or that they are iso- 
topic or that the expressions (5) are the same for both braids. Then the nth strings 
are n-homotopic and there exists an s-isotopy moving the n th string only. 

PROOF: If they are s-isotopic then they are isotopic because of Theorem 6. 
If they are isotopic then the expressions (5) are the same because of Theorem 9. 
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If (5) is the same even for i = n only then the nth strings are n-homotopic be- 
cause of formula (9). The remark to Theorem 8 shows the rest of the contention. 

THEOREM 11. If two braids have the same ends and if the expressions (5) are 
the same for both braids then they are s-isotopic. 

PROOF: For n = 1 our theorem is trivial since the two strings are 1-homotopic. 
Let it be proved for braids with n - 1 strings. If B and C are two n-braids for 
which the assumption holds, let B' and C' be the braids resulting from cancella- 
tion of the nth string. The expressions (5) for B' and C' are obtained by putting 
tn = 1. So (5) is also the same for B' and C'. Therefore B' and C' are s-iso- 
topic. Extend the s-isotopy to the whole space and apply this mapping to the 
braid B. It carries B into an s-isotopic braid D having again the same expres- 
sions (5). D and C have now the first n - 1 strings in common so that Theorem 
10 shows that they are s-isotopic. This completes the proof. 

THEOREM 12. Isotopy and s-isotopy imply each other. 
The proof follows from Theorems 6, 9 and 11. 
THEOREM 13. The expressions (5) do not depend on the special braid-coordi- 

nates used. They depend even only on the class and give together with the ends a 
full system of invariants of the class that determines the class completely. 

The proof is now obvious. It is to be remarked, however, that the expressions 
depend on the selection of generators ti and t' . We must now develop methods 
that allow the actual computations of these invariants and reveal the structure 
of our groupoid. 

To do so we have first to change our notation slightly. Select in a plane n 
points Xi, a ray and paths li . Up to this point the numbering was considered 
unessential. Now we get a natural arrangement of our points by starting with 
our ray and going around Q in the positive sense of rotation (in a neighborhood 
of Q). The first path that we meet shall be called 11, the next 12 and so on. 
The points Xi are now numbered precisely as the paths leading to them. The 
very same pattern is now used for the upper planes as well as for the lower ones. 
The points Xi are now used as lower and upper ends of braids. We restrict 
ourselves to the investigation of braids whose lower ends are a subset of the Xi 
and whose upper ends are another subset. These subsets may or may not be 
the whole set, no restriction being put upon them. If B is such a braid and Xi, 
Xi the lower respectively upper end of one of its strings we write: 

j = B(i). 

Thus B maps a certain subset of the numbers 1, 2, * n onto another subset. 
The numbering of the generators ti and t' so far was connected with the number- 
ing of the string. Now we change that and attach to them the subscript of the 
point around which they run. We also drop the accent on the t' and write 
uniformly tj for all the generators in the different planes. This leads to the 
following situation: 

We have a group F before us with the n free generators ti. For the Poincar6 
group of a braid with the reference point in an upper or- a lower plane, not all 
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the generators are used; the Poincar6 group of such a plane is therefore con- 
sidered a subgroup of F generated by a subset of the ti. Braid projection of a 
lower unto an upper plane will provide us with an isomorphic mapping of the 
group in the lower plane onto the group in the upper one. If T is an element 
of the group in the lower plane then its image under braid projection shall be 
denoted by B(T). In this new notation (5) takes on the form: 

(11) B(ti) = S7ltjSj where j = B(i), 

and where the numbering of all generators has been changed according to our 
new convention. (11) alone already gives us the isomorphic mapping and in 
this form contains also the information about the upper and lower ends of the 
strings of the braid. In case all the points are used for the lower ends, it will be 
an automorphism of F. Otherwise it maps a subgroup of F onto another sub- 
group. 

Let A and B be two composable braids and form the composed braid in such 
a way that in AB the part B corresponds to negative, the part A to positive z. 
Returning for a moment to the interpretation of our projection in terms of the 
generators ri which allow to express projection in terms of homotopies we see: 

AB(T) = A(B(T)). 

We project namely a lower plane of AB first onto the plane z = 0 and the result 
onto an upper plane. Making use of the fact that (11) completely determines 
the class we see: 

THEOREM 14. The groupoid of braid classes whose lower and upper ends are 
subsets of the Xi is isomorphic to the groupoid of mappings in F indicated by (11). 

Consequently we express the braid class B in form of a substitution 

(12) B = t;si) 

where ti runs of course only through certain of the generators. It is convenient 
to consider also more general substitutions 

B (ti 

in the free group F where certain ti are mapped onto power products regardless 
of whether the substitution is derived from a braid or not. If the substitution 
is derived from a braid class then we say briefly that it is a braid. Also in this 
general case we denote by B(T) the result of applying the substitution B onto 
the power product T. 

The braid substitutions have one special property that we must derive. Draw 
a huge circle in a lower plane starting at the reference point of the Poincar6 group 
and running around the braid. It is well known from the theory of the homo- 
topies in a punctured plane that this element of the Poincar6 group is homotopic 
to the product of the generators ti (of course only those that we need for our 
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braid) taken in the natural arrangement of the subscripts according to their 
size. Braid projection onto an upper plane carries the circle into a similar 
circle starting at P. This proves: 

THEOREM 15. If B is a braid then 

(13) B (H ti) =t ti 

both products taken in the natural arrangement of their subscripts. 
Select a subscript i < n and put X,(z) = Xv = const for v # i, i + 1. We 

connect now Xi and Xi+, by a broken line starting at Xi and running then 
parallel to li until it comes near the ray; then it runs parallel to lib+ until it comes 
close to Xi- with which it is then connected. If X(t) (O ? t ? 1) is the para- 
metric representation of this line we put 

TXi for z ?0 

Xi(z) X(z) for 0 _ z _ 1 

,Xi+, for z 1. 

Then we draw a similar parallel curve between Xi+, and Xi running farther 
out and not intersecting the previous one but at the ends. The string Xil+(z) 
is explained in a similar fashion than Xi(z) but it has Xi+, as lower and Xi as 
upper end. That this braid carries t, into itself if v 0 i, i + 1 is seen by using 
ordinary projection which shows that T' is homotopic to t4. ti is mapped into a 
transform of ti+1. To find the transformer we go back to (10). As parallel 
curve we use one that will under ordinary projection become the parts of li(e) 
and li+1(e) up to the ray. Consider now the right side of (10). Instead of li 
we have to write li 1 in our new notation. The path projects by ordinary pro- 
jection still into a homotopic path. But this homotopic path is now obviously 1. 
So ti is carried into ti+1. The image of ti+1 can now be found by a simpler 
method, namely, by Theorem 15. Since the product of the ti must remain fixed 
we find by a simple computation that till is mapped into ti-1titit+ . The class 
of this particular braid shall be called oi and the corresponding substitution is: 

(14) a = ( ti, ti+1 ) (14) = 

K~~~~~~~~~~ti+1 
, 
t4T~ ti ti+1) 

with the understanding that the generators that are not mentioned are left un- 
changed. For oj we have to compute the inverse substitution and an easy 
computation gives: 

(15) = titi+1t 7 s i 

To check whether a given braid is ai it suffices, however, to check the following 
properties: dropping the ith and i + 1't string we must obtain a unit. In it 
the i + 1't string must correspond to the unit homotopy. After reinserting it 
the ith string must have unit homotopy (always using the simpler formula (9) 
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rather then (10)). According to our theory these checks already determine the 
class. 

From now on the nature of our proofs will be mostly algebraic. 
Consider a rather general substitution B that maps each generator ti onto a 

transform Q j'tkQi = Ti (in reduced form) of some generator tk. When is B 
a braid? The answer is given by the condition of Theorem 15, namely that 

(16) TiT2 ... Tn = tlt2 ... tn.- 

The necessity is obvious. To prove the sufficiency we assume each Qi written 
as a product of terms t , e = 1= j . The number of terms shall be called the 
length of Qi and the sum of all these lengths the length of B. If the length of B 
is 0 then (16) can hold only if each Ti = ti or B = 1 which is the unit braid. So 
we may assume our contention proved for all braids with smaller length than B. 
(16) can hold only if some cancellations take place on the left side. Since each 
Ti is already reduced these cancellations must take place between adjacent 
factors of the left side. Two cases are conceivable: 

1) In a cancellation between two neighbors the middle terms are never 
affected. Carrying them out in (16) there will be a residue R, left from each 
Ti and this residue must contain the middle term of Ti . We obtain: 

RR2 ... Rn = tlt2 ... ta 

and no further cancellation is possible. This proves Ri = ti = middle term. 
The terms on the left side of the middle term of T1 never could be cancelled at 
all since no factor is on their left. So Q, = 1. Now there is no further chance 
for Q-1 to be cancelled, so it must be 1 too. This shows Ti = ti so that this case 
is settled. 

2) Or else there are two neighbors Ti and Tj+1 = Q-1t8Qil4 such that one or 
both of the middle terms are reached in a cancellation. They cannot be affected 
at the same time since their positive exponent prevents it. Now two alternatives 
are forced upon us: 

a) tk is affected first. Consider the product TiTi+17T. Because of the special 
form of the T, a cancellation is now possible on both sides of Ti+1 . Carry it 
out, term by term, on both sides until the middle term of Ti and Tj l is reached 
and stop the cancellation at that point even if it is possible to go on. More 
than half of Ti and T7 will have been absorbed, the middle term of Ti+1 will 
not yet be reached and Ti+1 will have lost as many factors as the other two. A 
few remnants from these factors will remain but they will be shorter than the 
loss. It is of course very easy to write this down formally. What is important 
is, that the length of this product is shorter than that of Tall. Consider now 
the substitution Bat71. We find: 

Bo-i = (T', )lTT T, ti+1) v < i, i + 1. Bo i T, TiTi+1 T-1 Ti 
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The product of the second line is T1T2 * T, = tit2 tn. It has still the 
general form of B but is shorter. So this substitution A is a braid. Since B = 
A vi, we see that B is a braid. 

b) t8 is affected first. Then we find that Ti-+TiTi~l is shorter than Ti so that 

Bi tv ti, ti+1 ) v 4i, +1 
v (s il T+, /s+ T+ Ti+T 

is a braid. This proves that B = AaT1 is a braid. 
Our proof also shows that B can be expressed as a powerproduct of the a, . 
The proof would also have worked if the subscripts i ran through a subset of 

all indices only. No condition need be put on the tk and Qi. (15) has to be 
replaced by the condition that B leaves Dit (in the natural order) invariant. 
The braids ai have of course to be replaced by the corresponding braids for this 
subset of ends. 

The most general case would be finally this. A subset of the tj and mappings 
of the previous kind are given. B carries ltt into itj where the tj form another 
subset also in the natural order. To reduce this case to the previous one let B, 
be a braid having the Xi as lower ends and the Xi as upper ones. The substitu- 
tion B B71 maps JjTtj onto itself and is therefore a braid. So B is a braid. Let 
(i) and (j) be subsets of the indices both equal in number. Our result shows 
that 

(17) B(i)(J,-= (J is a braid. (i, j natural arrangement). 

Our results may be expressed in the theorem: 
THEOREM 16. A substitution is a braid if, and only if, it has the general form 

of a transformation and if it satisfies the condition of Theorem 15. The full group 
of n-braids has the ai as generators. A general braid can be expressed as a product 
of a braid of the form (17) followed by generators like the ai but concerning the lower 
ends of the braid only. 

A simple computation of substitutions shows that the following relations hold 
between the a,: 

(18) aiak=akai if I i-k | I 2 

(19) aia+iai = ar+1aifi+j. 
In Z. I have shown that these relations form a full set of defining relations 

for the group. The method is geometric and can easily be made rigorous by 
means of the tools developed in this paper. However a more interesting proof 
shall be given in a paper by F. Bohnenblust which is essentially algebraic and 
leads deeper into the theory of the group. I shall therefore omit a proof here 
especially since no use shall be made of this fact in this paper. All we shall use 
is that these relations hold. 

A simple operation is that of removing a string. What does it mean for the 
substitution? Let A be the braid and remove the string with Xr as lower and 
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Xm as upper end. That means that we have to cancel the column referring to 
the image of tr. In addition to that we have to substitute everywhere in the 
second row tm = 1 since that describes the shrinkage in the homotopy generators. 

The inverse problem in a somewhat simplified form would be; 
Given a braid in the form (12), assume r does not occur among the i and m 

not among the j. Form a new braid A by inserting one string with X, and Xm 
as respective lower and upper ends. The simplification will consist in the special 
position which the new string is in, we shall namely get A (tr) = ti . To do it, 
enlarge the meaning of B by prescribing of a new substitution C that it shall 
have the same effect on the ti as B and map tr onto ti . This substitution will 
in general not be a braid since the condition concerning the product will be 
violated. Define two new substitutions a and ,3 by their effect on the ti respec- 
tively tj and tr and tr resp tm 

ti if i<r 
a(ti) =a(tr) = t 

(20)Ltj tr if i > r, 
(20) [ji 

= ( {:) 1J ;X: 
m 13(tm) = tm. 

tM tj t;; if j > m 

Then A = ,3Ca is the desired braid. We first prove that it is a braid by show- 
ing that A carries the product 

II ti * t * ][I ti into H tI *t* ti t, 
i<r i>r i<m j>m 

Indeed a carries it into 

II ti * try tr1 U ti * to -HI ti * tr 
i<r i>r 

C transforms it into 
II tj tm = II ti * II tj tm 

,<m j>m 

and # into 
II totm II to tm *= II totm I ti. 
j<m ,>m j<m m 

It is seen immediately that cancellation of the rth string leads back to B. So 
A is the desired braid. Obviously A(tr) = ti . 

We may now combine both operations. If A is a braid, we may first cancel 
the rth string and then reinsert it with the same ends so that it maps tr onto ti . 
The new braid shall be denoted by A(r). Theorem 7 shows that A may be ob- 
tained from A(r) by multiplying it from the left by a uniquely determined m-pure 
braid (m and not r-pure because of our change of notation). That A(r) is 
uniquely determined by A follows from Theorem 8 since A(r) (tr) = tm describes 
the homotopy class of the rth string. We may write: 

A = UmA(r), Urn m-pure. 
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We know how to compute A(r) from A and shall see a little later how U. can 
be computed. 

The elements Si in their dependency on the braid shall be denoted by Sj(A). 
In order to have well defined elements before us, we must still make an agree- 
ment about the arbitrary power of tj that still may be added as a left factor. 
We choose it in such a way that the sum of the exponents of tj in Si is 0. 

Let now A and B be two composable braids. B maps t, into Sj(B)-ltjSj(B). 
A maps this into A(Sj(B))-lYSk(A)-lFt.Sk(A).A(Sj(B)), where k = A0j). 
Since the transformer is determined to within a power of tk we get to within 
such a power 

(21) Sk(AB) = Sk(A)A(Sj(B)), k = A (i). 

On the left side and in the first factor on the right the sum is 0; in Sj(B) the 
sum of the exponents of tj is 0. A maps it into a power product where the sum 
of the exponents of tk is 0. So (21) is correct as it stands. 

A rather elementary invariant can be derived from (21). Calling Hj(A) the 
sum of all exponents in Sj(A) we obtain: 

(22) Hk(AB) = Hk(A) + Hj(B) k = A(j). 

Defining now the "twining number" T(A) as the sum of all Hk(A) we get: 

(23) T(AB) = T(A) + T(B). 

Since T(Q) = e for e = i 1 this invariant can in case of the full group of n-braids 
also be explained as the sum of all exponents of the u, in any expression of A by 
the ai. This allows us to determine the factor commutator group without 
making use of the fact that the system of relations (18), (19) is complete. Mak- 
ing all ai commutative (19) gives the equality of all the ai . In the factor com- 

toT(A) ~ j mutator group a braid A shrinks therefore to A) So this group is infinite 
cyclic and T(A) gives the position of A in it. 

The -homology class of a string is obtained from S j(A) by the substitution of 
tj = 1. The result may be denoted by 3j(A). In order to obtain a formula 
similar to (21) we must see what effect that substitution has on the second term 
on the right of (21). A maps tj onto a transform of tk . After substituting tk = 
1 all terms coming from tj will disappear. Hence we may substitute tj = 1 in 
Sj(B). In addition to that, we must also substitute tk = 1 in the result wherever 
it appears from the rest of the substitution. The same effect is achieved if the 
braid A is replaced by one where the jth string has been dropped. Let us denote 
this braid by A-j. Then we have: 

(24) Sk(AB) = Sk(A) .A-j(j(B)), k = A(j). 

Consider the special case that A is k-pure. Then k = j, A_j a unit. Hence: 

(25) Ok(AB) = Ok(A) * Sk(B); if A is k-pure. 
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A still more special case is obtained when both A and B are k-pure. Theorem 
8 tells that the homotopy class of the kth string together with the ends deter- 
mines any k-pure braid completely. It also shows that every homotopy class 
is possible. (25) means therefore that Sk(A) gives an isomorphic mapping of 
the group of k-pure braids with given ends onto the free group of the generators 
ti with i 5 k. If we denote by Aik the k-pure braid that is mapped onto ti then 
the Aik are the generators of our group and the mapping 3k(A) means just a 
replacement of each Aik by ti . These braids satisfy Ask = Aki. We prove 
this by giving at the same time the full substitution of A k for i < k and e any 
integer. 

trI ti, trI tk 

Ask = Aki tr tiCik, Cik trCik, C ik tkc 

(26) \r < i or > k) i r<k, / 
Cik = (t, tkl) *(ti tk)E. 

Writing out the critical terms we see that all are transformations of generators. 
The product property holds so they are braids. Ri(Ak) = tk, Sk(Atk) = t: and 
the braid reduces to a unit if we drop either the ith or the kth string. This proves 
all our contentions. 

It is convenient to introduce also the inverse mapping Fk to Sk . It maps ti 
onto A ik . Let it also have a meaning for tk whose image shall be 1. 

Let A be a braid and assume k = ACj). We can write A = U*A '( where U 
is k-pure. Making use of (25) we obtain Sk(A) = ;k(U)k(A(j)) = Sk(U) 

since A(') maps by definition tj onto tk, whence Sk(A(j)) = 1. Now applying 
Fk gives U = Fk(3k(A)) or: 

(27) A = Fk(Sk(A)) A- , A(j) = k. 

This is the algebraic form of Theorem 7. 
(27) also solves the general question: given a braid B; insert a new string with 

the given homotopy class Sk(A). We have learned to form a braid with the 
homotopy class 1, it is the braid A j. If we substitute this and the given Sk(A) 
in (27) we obtain A expressed by the A ik and A'j). Use now (26). 

Another application of (24) is this: let A be j-pure and assume of B that B(t ) = 
tk hence B l(tk) = tj. Then Sk(B) = ;j(B 1) = 1. This leads to Sk(BAB-1) = 

B-j(j(A)). BAB-1 is k-pure so we can apply Fk . This leads to: 

BAB-1 = Fk(Bj(j(A))). 

To get a still more general formula let B be now any braid. We first replace 
in the previous formula B by B(j). On the right side B(W? appears. It is fol- 
lowed by the mapping Fk which anyhow maps tk onto 1. So this braid may be 
replaced by B itself. Use now (27) on B. We obtain 

(28) BAB-1 = Fk(Sk(B)) .Fk(B(Sj(A))) . (Fk (S(B))) 1, B(j) = k. 
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B is here completely general so that we have before us the general transformation 
formula for a j-pure braid A. If A is given as a power product of the Aij then 
Si is a very trivial mapping and so is Fk . The right side is directly expressed 
as a power product of the Aik . It is a very powerful formula that allows us to 
write down transformation formulas whose direct computation would be very 
painful. 

As an application let A = Ai and B = ur. We give only the result of the 
computation which is now very easy: 

(29) urAiju'r 

Aii if r s i-1,ixj-1,j 

A i+,, i if r=i I 

=A ,jAij_1A,7~ if r=j- but id j- 1; A1,-1fori = j-1 

Ai-71A i-,si A if r =i1 I but i 5j . + 1; Ai,j+1for i =j + 1. 
tAilj+i if r =j 

It is to be remarked that the symmetry Ai j = A ji gives other expressions for 
the same transforms. We note the very special cases r = i, j. Since a very 
simple computation gives Aii+ = we obtain for i < j the following explicit 
expressions of the Ai in terms of the generators ar 

= 1 -1 -1 2 
30 Aij = ai ai+1 ...0 _2a _1 ja -2 .. r 

(30 2 -1 -1 -1 
= (i-1 Tj-2 *-i+1G iaii+1 ... af-2 a-. 

As a second application we study the structure of the group I of n-braids 
with identity permutation. We fist prove: 

LEMMA: If A is an element of I that maps ti onto itself for i _ j then the Sk for 
k > j do not depend on these ti . 

PROOF: Dropping in the substitution A the first j columns will give a substitu- 
tion that still satisfies the product condition, so it is an (n - j)-braid. This 
proves the lemma. 

Now we use (27) for j = k = 1. On A (l) we use it for k = 2 and so on. Mak- 
ing use each time of the lemma we obtain a unique expression of A: 

THEOREM 17. The Aik are generators of the group I. Every element can be 
expressed uniquely in the form: 

(31) A = UlU2 ...Un- 

where each Uj is a uniquely determined power product of the Aii using only those 
with i > j. (Of course A i = A ii). 

The simple geometric meaning of this normal form shall be given lat,-r when 
we interpret our results in terms of projection. 

What are the defining relations between these generators? Obviously those 
that permit the change of an arbitrary power product of them into the normal 
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form. We must therefore find rules for interchanging factors of Uj with factors 
of Ui. For this purpose we derive all transformation rules for the expression 
ArsAikA-E (e t1). We use (28) with i instead of k for B = A"8, A = A a. 
A simple computation yields: 

THEOREM 18. The braid ArsAikA-E (e = ?1) is i-pure. The following rules 
give its expression as i-pure braid: 

1) If i = r or s then it has already the desired form. Since the i-pure braids 
form a free group no other expression can be expected. 

2) If all indices are different and if the pairs r, s and i, k do not separate each 
other we simply get Aik. 

In all other cases we change, if necessary, first the names r, s in such a way that 
the arrangement i, r, s as compared with the natural arrangement of these three 
numbers is a permutation with the same sign as e. 

3) If k = r we get: A76AirAa . 
4) If k = s we obtain: 

A7 :A7rAiArA. A i8A sur * Aie *A 'rA 8. 

5) If finally the subscripts are all different and if the pairs r, s and i, k separate 
each other the result is: 

A A YA ssA fir *Ak *A AA iArA !& 9 
As defining relations the ones where i is the smallest index of all are sufficient. 

It also suffices to have only e = +1 since e = -1 is just only the inverse auto- 
morphism. 

For braids whose permutation is not identity, a normal form is also easily ob- 
tained. Select to each of the n! permutations ir a braid B, with this permuta- 
tion. Any braid can then be written as a product like that in Theorem 17 
followed by a B,. This form is again unique. 

The operation A() obviously satisfies: 

(32) (AB)(j) = A(k)B(3), k = B(j). 

For the group I, it is therefore a homomorphic mapping and it suffices to know 
the result for the generators Aik. A (r) = 1 for r = i or k since Ask is i- and k-pure. 
It is Aik if r < i or > k as the substitution shows. If r is between i and k we 
apply (27) and Theorem 18. The result is: 

1 for r = i or r = k 

(33) Ak = A if r not between i and k 

1.AirAik'ir = A N AkiA if i < r < k. 
We return now to the general group of n-braids. Let A be a braid that leaves 

tj fixed if either j < i or j > k. For the same reason as that in the previous 
lemma, we find that A maps ti, till ... tk onto expressions depending on these 
variables alone. A can therefore be expressed in terms of the generators a;, 
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anal, I... O**k . These braids form a subgroup denoted by Gik. They behave 
as if they were braids of k - i + 1 strings (from i to k) only. 

Put Cik = titian ... tk and consider the following substitution Cik 

tr ts 

(34) Cik = tr Cik t- Cik 
(r < i or > k i < s < k 

It is a braid of Gik since the product property holds. It is obviously commu- 
tative with any element of Gik hence in the center of this group. If we drop the 
kth string in Cik and Ck- or the ith in Cik and Citl,k we always obtain identical 
braids. Ci,k-1 leaves tk and Cilk leaves ti fixed. Hence: 

(35) Ck = Ci.k-1, Cik = Ci+l,k (Cii means 1). 

Formula (27) gives: 

(36) Cik = AikAiil,k ... Ak-1kCik-1 = Aii+]Aii-.2 ... AikCi-4,k 

This gives us the explicit expressions by the Aik . 
Cik is closely related to a braid Dak of Gik which maps titi+* ... tkl onto till, 

ti+2 tk but tk onto CTik tlCik . We see that 

(37) Cik = (Dik)ki]l. 

The product Oiail . . . ak-1 has the same effect on ti ti1, 4 -- tk-1 as Dik 

Because of the product property this suffices to establish equality. Hence: 

(38) Cik = (aiai+1 ... ak- )k-i+l. 

THEOREM 19. If n = 2 all braids are commutative. If n _ 3 let k be one of 
the numbers < n. If B is commutative with every k-pure braid, then B is a power 
of C1.n. This also determines of course the centers of the whole group, of I, Gi. 
and ik = I n G-. 

PROOF: If A is r-pure and B(r) = s, then BAB-' is s-pure. Put A = Aik. 
It is pure only for i and k. Since BAikB' = Aik we see that B can at most 
interchange i and k. If n > 3 then i may be replaced by another index which 
shows that k remains fixed. Consequently i remains fixed too so B has identity 
as permutation. 

We now make use of (28) where j = k. The braid B in the middle term on 
the right side came originally from Bk which we introduce again. For A we 
take any k-pure braid so that the left side is A again. If we then apply the 
operation Sk to both sides we get: 

Sh(A) = ,Sk(B) -B-k (k(A)) * (S.(B))1. 

In this formula Sk(A) may be any power product T of the tj with i $ k. 
This shows: 

B-,k(T) = d-FTd, where d = Sh(B). 
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For T = To = Hik ti we have on the other hand B4A(To) = To. So To is 
commutative with d. Since To occurs in a generator system of the free group 
d is a power of To say To . B-k transforms all T with To'. The same trans- 
formation is produced by (Cl,)1k ; B-k is therefore this braid. Put now C = 
B C'i. We find Ck = 1 so C is k-pure. But C is still commutative with all 
k-pure braids. They form a free group with at least 2 generators whence C = 1 
or B = Cl, This proves the contention. 

For our next question we need a certain result about automorphisms of free 
groups. Let F be a free group with the generators t4 . Divide the subscripts 
into two classes p and q and in some other way into the classes g and h. We 
assume that there are at least two tq and two th . Let x be a power product of 
the tk that appears among a generator system of F and y a similar power product 
of the t4 . Since we assumed that there are at least two th, x will not be commu- 
tative with every th . Define now the automorphisms C and D by: 

(39) C(tg) = tg , C(th) = xathXa; D(tp) = tp, D(tq) = y-btqyb 

where a and b are positive integers. We ask for all automorphisms A that 
satisfy: 

(40) D A = A C. 

C leaves all tg as well as x invariant. Their image T under A will satisfy 
(because of (40)?): 

(41) D(T) = T. 

The power products T = A(th) give D(T) = AC(th) = A(xathxG) hence: 

(42) D(T) = z' T zG where z = A(x). 

The equations (42) (41) exhaust (40) and only the condition that A is an auto- 
morphism will have to be taken care of. 

Denote by the letter P any power product of the t, alone, by Q one of the t, 
and by R one of the t, and y. Any T can be written in the form: 

(43) T = P1QiP2Q2 ... 

where P1 may be absent. Then: 

(44) D(T) = P1lybQlybp2 
... 

Assume T satisfies (41). Each Qj must be commutative with yb But y oc- 
curs in a generator system of F so Qj is a power of y. Hence T is an R. We get 

(45) A(tg) = Rg., A(x) = z = Ro. 

This takes care of (41). Assume now that T satisfies (42). We get: 

(46) ply-bQ1YbP2y bQ2 ... = PQ1P2Qm * * za. 
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If every Q is a power of y then T is an R and D(T) = T must be commutative 
with za. But z is the image of a generator so is itself a generator. So T is a 
power of z. Since one th at least will not be commutative with x, its image T 
will not be commutative with z. So this case does not always happen. 

Assume now that Qi is the first of the Q in (46) that is not a power of y. Then 
the whole segments on the left of this factor in (46) must be equal since z on the 
right side is also an R. We obtain: (the earlier Q are powers of y) 

PAQ1P2.. PiY = z PaQi * Pi or 
a R-ly bR 

Since y and z are generators this is only possible if a = b. R-'yR is also a 
generator and we get: 

(47) z = R-'yR. 

With this R put now T = R1'ToR. Because of D(R) = R (42) gives: 

(48) D(To) = Yb ToYb. 

Writing now To in the form (43) we get: 

PlybQlybP2 ... = y-bplQlp2 ... yb 

The right side shows that P1 must be absent. But also the presence of P2 leads 
to a contradiction. To is therefore a Q. Our results so far are: 
(49) A(t,) = R,, a = b, A(x) = R lyR, A(th) = R-1QhR. 

A maps the group generated by the t0 and x into the group of the t, and y. 
A-' satisfies A-'D-' = C-1A-1 where the roles of g and p are interchanged. It 
maps therefore the group of the t, and y into the group of the t, and x. The 
mappings are therefore one to one and this shows that the number of subscripts 
g is the same as that of the subscripts p. 

We go now back to the braids and ask what automorphisms satisfy: 
(50) CakA = ACa8X a > 0. 

Our conditions are satisfied. The p are < i or > k, the q satisfy i < q ? k, 
the g are < r or > s, the h satisfying r ? h < s. x = Crs and y = cik are genera- 
tors. We must have k - i = s - r. 

Assume a little more about the automorphism A namely that it maps each 
tj onto a transform of another. Then: 

(51) A(tg) = RltpRp, A(th) = R-1Qj1tQqR, A(cr8) = R-lcikR 
where each Qq is a power product of the tq, Rp and R power products of the tp and 
of Cik. 

Split A into two substitutions: 

(52) B(tg) = R-ltpRv, B(tr+4) = R-ltin+R, 0 < j < k - i = s-r. 

(53) E(tp) = C,, E(ti-+) = Q, ltqQq where r + j corresponds to q. 
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A maps cr. on one hand onto R-'cikR; computed directly onto IIJRi1Q-1tQQqR 
whence fI Qqlt'Qq = c C. Now we see that E leaves Cik fixed and therefore 

(54) A = EB. 

We see at the same time that E is always a braid. The condition that A be 
an automorphism is therefore that B is one and that E is a braid. Should A 
be also a braid then B is one and conversely. 

In case A is a braid the geometric significance of (52), (53) and (54) is obvious. 
B behaves as if the ith up to kth string were just only one strand (only the product 
of the th and of the tq plays a role). A is obtained by weaving the pattern E into 
the ith up to the kth string, then, considering this partial braid as one string 
only, interweaving it with the other strings according to pattern B. 

1 i i + n 
FIGURE 1 

1 ri + n 
FIGURE~ 2 

The question whether a given braid A can be considered as braid of braids 
amounts to checking relations of the type (50). It suffices of course to consider 
a = 1. Since we can decide whether or not they hold, this question is decided 
too. 

THEOREM 20. The number n is a group invariant of the group of braids with n 
strings. 

PROOF: Theorem 19 shows that Cl,, is a generator of the center and therefore 
together with its reciprocal characterized by an inner property of the group. 
The number T(C1,,) = n(n - 1) is therefore also an invariant since it gives the 
position in the factor commutator group. 

The structure of the group does not depend on the position of the ends. We 
may therefore put the ends in the special points with the coordinates x = 0, 
y = i, (i = 1, 2, * * * n). As ray for the Poincar6 group we may select x = 1, 
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THEORY OF BRAIDS 125 

y < 0 and as paths 1i the straight line segments form the beginning point of 
the ray to the ends. It is advisable to use as orientation of the plane the nega- 

1 i k- 1 k 
FIGURE 3 

FIGURE 4 

tive one, so the sense of rotation from the positive y-axis to the positive x-axis. 
This fixes all the necessary data and we are now in a position to interpret our 
results in the projection from the positive x-direction onto the yz-plane. 
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Theorem 4 shows us that any braid is isotopic to another one whose strings 
are broken lines. It leaves us so much freedom that we can assume in addition 
that the projection is free from any triple points and that no two double points 
occur at the same z-level. 

Figures 1 and 2 show the generators as and at71 in their projection. 
Corollary 3 to Theorem 2 shows indeed that they are reciprocal. The braid in 
Fig. 1 maps t4 obviously onto itself if v $ i, i + 1. It maps ti onto ti+1 and, 
because of the product property, that is sufficient to establish its identity. 
Theorem 3 teaches how to read off from the projection of a braid its expression 
in terms of the generators ao . 

Formula (38) shows that Cik is simply the full twist of all the strings from the 
ith to the kth and that gives the geometric meaning of Theorem 19. 

Formula (30) gives now the projection of the generator Aij. It is indicated 
in Fig. 3. 

The geometric meaning of the normal form of Theorem 17 and that mentioned 
after Theorem 18 is now also clear. Every braid is isotopic to another one whose 
pattern of projection is especially simple and is indicated in Fig. 4 for a special 
case. This pattern is unique. The braid in Fig. 4 has the expression: 

A=A123 4A 12A4A4r * A -'A223A24A -2 -A A34A3-2 * A-41 *A-4 A = A'A'A' 

Although it has been proved that every braid can be deformed into a similar 
normal form the writer is convinced that any attempt to carry this out on a 
living person would only lead to violent protests and discrimination against 
mathematics. He would therefore discourage such an experiment. 

INDIANA UNIVERSITY 
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