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The index of elliptic operators; I*
By M. F. AtrvyaH and I. M. SINGER

Introduction

This is the first of a series of papers which will be devoted to a study of
the index of elliptic operators on compact manifolds. The main result was
announced in [6] and, for manifolds with boundary!, in [5]. The long delay
between these announcements and the present paper is due to several factors.
On the one hand, a fairly detailed exposition has already appeared in [14].
On the other hand, our original proof, reproduced with minor modifications
in [14], had a number of drawbacks. In the first place the use of cobordism,
and the computational checking associated with this, were not very enlighten-
ing. More seriously, however, the method of proof did not lend itself to
certain natural generalizations of the problem where appropriate cobordism
groups were not known. The reader who is familiar with the Riemann-Roch
theorem will realize that our original proof of the index theorem was modelled
closely on Hirzebruch’s proof of the Riemann-Roch theorem. Naturally
enough we were led to look for a proof modelled more on that of Grothendieck.
While we have not completely succeeded in this aim, we have at least found
a proof which is much more natural, does not use cobordism, and lends itself
therefore to generalization. In spirit, at least, it has much in common with
Grothendieck’s approach.

A further essential feature of our new approach is the elimination of
cohomology from the picture, at least in the first instance. The algebraic
topology that is really relevant to the study of elliptic operators is K-theory.
This is not surprising since K-theory may be roughly described as “the alge-
braic topology of linear algebra”. Thus, in the present paper, no homology
or cohomology is used, either explicitly or implicitly. Our main theorem, giv-
ing a formula for the index of an elliptic operator, is expressed purely in K-
theoretical terms. This is especially significant for generalizations which will
be dealt with in subsequent papers. The cohomological formula given in [6]
can be obtained quite simply from the K-theory formula given here. This,

* This research was supported by National Science Foundation grants NSF-GP5804
and NSF-GP6959.

! jointly with R, Bott.

? See for example [1] for an elementary treatment. See also [2] for a non-technical
exposition of the relation between K-theory and elliptic operators in euclidean space.



INDEX OF ELLIPTIC OPERATORS: I 485

of course, is simply an exercise in algebraic topology, translating from one
set of topological invariants to another, and it will be dealt with in paper III
of this series. Which formula actually provides the “best answer” is partly
a matter of taste. It depends on which invariants one is more familiar with,
or can most easily compute.

One generalization of the index problem plays a minor role in our proof
and is therefore included in this first paper. This concerns an elliptic operator
which is invariant under a compact Lie group G. The index in this case is a
character of G. The appropriate algebraic topology here is K,-theory® (or
equivariant K-theory), and our formula for the index is expressed in those
terms. In a subsequent paper, II of this series,* we shall show how this for-
mula can be expressed in terms of the fixed-point sets of elements of G. The
character formula obtained in this way is closely related to the generalized
Lefschetz fixed-point formula of [4], and is a special case of it when the fixed-
points are all isolated. As a particularly interesting special case of this
character formula (for general fixed-point sets) one can derive the formula of
Langlands [12] for the dimension of spaces of automorphic forms. This will
be dealt with in a separate paper.®

Besides the topics referred to above, subsequent papers of this series will
deal with

(1) Families of elliptic operators, parametrized by a space X. In this
case one can define an index in K(X).

(2) Real elliptic operators. For example, if D is a real skew-adjoint
elliptic operator, dim Ker D (mod 2) is a deformation invariant. This can be
interpreted as an index, and a general formula will be obtained which includes
this as a special case.

(3) Manifolds with boundary.

(4) Operators which are “elliptic relative to a group action”; i.e., their
symbols are elliptic in the directions transversal to the orbits.

In order to keep this paper to a reasonable and readable size, we shall not
attempt to develop ab initio all the relevant topology and analysis. Instead
we shall summarize the relevant basic material. Thus §2 contains a review
of K- and K,-theory, with special emphasis on those parts of the theory which
will be needed. In §5 we review pseudo-differential operators, and in §6 we
review the basic analytical properties of the index of elliptic operators. All
of this is essentially standard material.

3 See [16].
4 by Atiyah and Segal.
5 See also [7].
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The main ideas of the proof are explained in a non-technical manner in
§1. In §3 we define the topological index using the basic facts about K-
theory explained in §2. Then in §4 we set up some axioms for “index
functions” and prove a uniqueness theorem (4.6), so that any index function
satisfying these axioms must coincide with the topological index of §3.
The elementary properties of the analytical index given in §6 show that
this is an index function. At this stage we can formulate our main theorem
(6.7) which simply asserts that the analytical index is equal to the topological
index. In view of the uniqueness theorem for index functions established
in §4 it is enough to show that the analytical index satisfies the axioms.
This is done in §8 and §9. In §7 there is a digression dealing with elliptic
complexes, and we show how (6.7) implies a formula (7.1) for the Euler char-
acteristic of an elliptic complex.

Many of the analytical ideas and devices which we use here are due to
R. Seeley. He first introduced the “excision” property, and also carried
through for us the technical treatment of operators on product manifolds.
The final presentation of the analysis in §§ 5-9 owes a great deal to the help
of L. Hormander with whom we have had many illuminating discussions.
Finally we are glad to acknowledge our indebtedness to R. Palais whose
Annals of Mathematics Study [14] gave such a thorough presentation of our
first proof, and has been of considerable assistance to us in preparing the
present paper.

1. Idea of proof

In this section, we shall try to give some intuitive ideas of the nature of
the proof. In our more formal treatment in the remaining sections, we shall
present things in a slightly different manner for technical reasons.

Let X be a submanifold of a manifold Y, both being compact. Denote by
1: X — Y the inclusion. Let A be an elliptic operator on X. Then the main
step in our proof is the construction (on the symbolic level) of an elliptic
operator 7,(A) on Y such that

1.1) index A = index 7,(4) .

Once this has been done, we can take Y to be a sphere, and the general index
problem is reduced to the case of operators on the sphere. For these the
problem is easily solved. In fact we can go one step further. Thus, if
1: X —S is an embedding, and if j: P— S denotes the inclusion of a point,
we can show that there is an elliptic operator B on the point P so that
Ju(B) = 7,(A) (up to a suitable equivalence preserving the index). Thus
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index A = index %,(A) = index j,(B) = index B ,

and the problem is reduced to a point, where of course it is trivial!

The construction of 7,(4) and the verification of (1.1) is thus the heart of
the problem. Now in a tubular neighborhood U of X in Y, we may consider
the “transversal de Rham complex” C; i.e., in each normal plane of X we
consider the de Rham complex of that plane. The “tensor product” A ® C
can then be defined as an elliptic complex over U, at least on the symbolic
level. It turns out that there is a natural trivialization of the symbol of C
on the boundary of U, and this enables us to extend the symbol of AR C to
the whole of Y. This is the definition of ,(4).

To compute the index of 7,(A), we use an excision property,® observed by
Seeley [15], which shows that

index 7,(A) = index k,(4) ,

where k: X — Z is the inclusion of X in “the double” of U. Thus Z is fibered
over X by spheres. Moreover the symbol of k,(A) is the tensor product of the
symbol of A on X and a symbol “elliptic along the fibres” which may be
roughly described as ‘“one-half” of the de Rham complex along the fibres.
Now if Z were a product bundle X x S, we could use the multiplicative prop-
erty of the index [14; Ch. XIV] and obtain

1.2) index k(A) = index A-index 7,(1) ,

where j: P— S is the inclusion of a point, and 1 is an operator of index 1 on
P, This would reduce us to proving (1.1) with X = P, Y = S, which is fairly
simple by direct computation (and can moreover be reduced, by the multipli-
cative property, to the cases dim S = 1,2). In the general case when Z is not a
product bundle, we have to generalize the multiplicative property of the index
to deal with fibre bundles.” One does not always obtain a formula as simple as
(1.2), but one does obtain this formula when the “operator along the fibres”
is rigid in a certain sense. Fortunately the de Rham complex is rigid in this
sense, and so (1.2) holds and the proof is then complete. This rigidity of the
de Rham complex comes (in one point of view) from the fact that its coho-
mology groups are the cohomology groups of the underlying space and so have
an integral basis. The space of solutions of a general elliptic operator does
not normally have such a discrete structure, and it can therefore “vary” in a
continuous fashion.

It is perhaps worth making a remark about the construction of the

6 A very similar idea was suggested to us independently by P. J. Cohen.
7 It is here that it becomes helpful to introduce groups into the index problem.
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operator ¢(A). The trivialization of the de Rham complex used in extending
the symbol of ARQC from U to the whole of ¥ corresponds to the existence
of a natural boundary-value problem.® The use of such a boundary-value
problem in U may be more conceptual but, on the other hand, boundary ques-
tions involve more delicate considerations both analytical and topological.
For this reason, we have kept away from boundary-value problems for the
present,

Finally, it may be worth pointing out that the proof given in this paper
could be technically simplified in a number of ways if one only wants the
index theorem of [6], particularly if one is content to compute the index of
differential operators only. However, since our aim is to present a proof which
will generalize in various directions, we have not attempted to make these
simplifications. The ideas in any case are the same.

2. Review of K-theory

A general reference for the results summarized here is [1]. The basic
periodicity theorem is also in [3], while more detailed facts about K, can be
found in [16]. It should be emphasized that the only® non-trivial result which
is involved in all this is the periodicity theorem.™

Let X be a compact space. The isomorphism classes of complex vector
bundles over X form an abelian semi-group under €, and the associated abelian
group is denoted by K(X). If E is a vector bundle over X, the corre-
sponding element of K(X) is denoted by [E]. K(X) is a commutative ring
under . A continuous map f: X—Y induces a natural ring homomorphism
f*: K(Y)— K(X) which depends only on the homotopy class of f. K(Point)
is naturally isomorphic to the ring Z of integers. If X is a space with a given
base point P, then K(X) is defined as the kernel of the homomorphism

K(X)— K(P)
induced by the inclusion P— X. We have, moreover, a natural decomposition
KX)=KX)PKP)=KX)PZ.

If Y is a closed subspace of X, we denote by X/Y the space with base point
obtained by collapsing Y to a point (if ¥ = @ we take X/@ = X + P disjoint
sum). We define

8 See [5] for the relation of boundary conditions to the trivialization of an elliptic
symbol.

9 In Kg-theory we also need the basic (Peter-Weyl) theorem about rebresentations
of G.

10 Further comments on the periodicity theorem and the proofs in [1] and [3] will be
made later in this section.
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K(X,Y)=KX/Y).

If X is a locally compact space we define K(X) = K(X+) where X* is the
one-point compactification of X: it will be a contravariant functor of X for
proper maps, because only these extend to X*. This is “K-theory with
compact supports” and there is an alternative way to describe it which is very
convenient. We take, as basic objects, complexes of vector bundles over X,
that is sequences

a a a

0 E° E? E" 0

of vector bundles E‘ and homomorphisms « with & = 0. The support of such
a complex is the set of points z € X for which

0 E; E, oo E? 0

is not exact. We consider only complexes with compact support. Two such
complexes E, F are said to be homotopic if there is a complex G over X x I
(with I the unit interval) such that G|X x {0} = Eand G| X x {1} = F. The
homotopy classes of complexes over X, we denote by C(X). Thisis an abelian
semi-group under (P, and it contains a subsemigroup C,(X) represented by
complexes with empty support. As a second definition of K(X) we can then
take the quotient C(X)/C,(X); although apparently only a semi-group, it
turns out to be a group. The proof that our two definitions of K(X) agree
can be found in" [16]; in fact, we shall only use non-compact spaces in a very
mild way (e.g. the total space of a vector bundle over a compact base) and
the reader should have little difficulty in eliminating them entirely from the
presentation. The formalism is, however, much simpler and more conceptual
in the locally compact theory.

If E is a complex of vector bundles with compact support as above, we
denote by [E] its class in K(X). If X is actually compact, then we have
(2.1) [E] =3 (-1)[E].

Two complexes £ and F' which involve the same bundles, and whose homo-
morphisms @, and «a; coincide outside a compact set, are homotopic, and so
[E] = [F]. In fact we can define the class [E] of E even if the homomor-
phisms « are not defined on some compact set L; we simply multiply by 1 — @

where ¢ is a continuous function with compact support and vanishing in a
neighborhood of L.

Note that K(X) is a ring without identity unless X is compact. If U is

it For X, Y compact the analogous definition of K(X,Y) by complexes on X with
support in X — Y is treated in [1]. The version described here follows from this and the
continuity property (2.2): we consider the groups K(U, U — U).
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an open set of the locally compact space X, we have a natural map

Xt— X)X+ - U)= U+
and so a natural homomorphism

i K(U) —> K(X) .

Thus if {U,} denotes the directed family of all open relatively compact subsets
of X, the groups K(U,) form a direct system of groups (with the homo-
morphisms i5’: K(U,) — K(Uj) if U,c U;). Then K has the following conti-
nuity property
(2.2) K(X) = dirlim K(U,) .

The proof of this is quite elementary (cf. [16]).

If we work only with complexes of fixed length n > 1, then it is still true
that K(X) can be defined as C"(X)/C2(X). The advantage of using complexes
of arbitrary finite length lies in the multiplicative structure. Thus if £ is a
complex on X, F' a complex on Y, then E[X F' (the external tensor product)
is a complex on X X Y, and it has compact support if E and F have compact
support. This induces a product

KX)QKY)— K(X xY).

As a simple example of multiplication of complexes, let 0 —— E° AN

E'——0and 0 F B F! 0 be complexes with compact support on
spaces X, Y respectively. Their external tensor product is the complex

I— BRSSP RFPOERF s B RF —0,
wherep = aX 1+ 1XB,+v = —1X B + a«X 1. Now, using metrics in the

bundles, we can exhibit a complex of length one representing the same class
in K(X x Y) as the complex E [X F, namely the complex

0 ERFOERF A ERFOERF —0,
where
) (a[zl, - 1@,8*)
1XB, a*X1 )’
and a*, 8* denote the adjoints of @, 8 with respect to the metrics (for the proof
that this is equivalent to E[X F see [1; 2.6.10]). This particular representa-
tive for the product of two complexes will be needed later in § 9.

For the application to elliptic operators, we shall be particularly con-
cerned with the groups K(V') where V is a real vector bundle over a space® X.

12 In the applications X will be a smooth manifold and V = TX will be its cotangent
bundle.
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If W is another such bundle then composing the product
KV)RKW)— K(V x W)

with the map K(V x W) — K(V @ W), induced by the diagonal inclusion
X — X x X, we obtain a product

(2.3) KVQKW)— K(VEW).
In particular, taking W = X, we see that K(V) is a K(X)-module.

Let E'‘, E‘*! be complex vector bundles over X, and let 7*E* denote the
induced bundle over V; the fibre (7*E*), may then be identified with Ef,,.

A homomorphism a: n*E‘— n*E**' is called (positively) homogeneous of
degree m if

o, = N, € Hom (E;.(v)’ :r(v)) ’

for all ve V and all real positive scalars .. Note that, if we fix a metric in
V, and let S(V) be the unit sphere bundle of V, then such a homogeneous «
is determined by its restriction to S(V). If all the homomorphisms « of the
complex E over V are homogeneous of degree m, we say that E is homoge-
neous of degree m. If X is compact and if, outside the zero-section of V, K
is exact, then it has compact support and so defines an element of K(V). It
is easy to show that K(V) can in fact be defined using only homogeneous
complexes (of fixed degree). More precisely let "C(V') denote the semigroup
of (compactly supported) homogeneous complexes of degree m modulo homo-
genous (compactly supported) homotopies, and let "C,(V)c™C(V') denote those
elements represented by complexes whose restriction to the unit sphere S(V)
is induced by a complex on X, so that

av = || v ”mBﬂ(v)
where
8

s B S Fit — 5 ..
is exact on X. Then
"C(V)["Cy(V) = C(V)[C(V) = K(V) .

This is proved as follows. Given a complex E on V with compact support L,
choose a ball bundle B,(V) of radius o containing L. The class [E] depends
only on the restriction of £ to B,(V). Since X is a deformation retract of

B,(V), it follows that, over B,(V), E* = Z w*F*, where F'* is the restriction of
E'‘ to the zero section. Moreover this isomorphism is unique up to homotopy
if we choose v, to be the identity on the zero-section. Putting

;= Y a7t
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on the boundary S,(V) of B,(V), and extending it to V as a homogeneous
function of degree m, we obtain a homogeneous complex E’. Associating E’
to E then defines a homomorphism C(V)— "C(V), and this induces the
required isomorphism C(V)/C (V) — C™(V)/"C(V).

Again we can restrict ourselves to complexes of length one so that we
can write

K(V) ="C (V)/"Cy(V) .

The degree m above plays, of course, a quite harmless role. Multiplica-
tion by [|v||*™ will map "C(V)— *C(V) isomorphically. Thus it would be
natural to consider only the case m = 0. However this is inconvenient for the
explicit description of products. If E, F' are compactly supported homogeneous
complexes of degree m over vector bundles V, W respectively, then E X F
over V x W is again compactly supported (i.e., exact outside the zero-section)
provided m > 0; if m < 0, there will be discontinuities in the homomorphisms
of VXX W at points (v, 0) and points (0, w). This fact will be of considerable
analytical significance in § 9.

On the other hand, we cannot settle for » > 0 because in one situation
we definitely must take » = 0. This occurs when X (the base of V) is non-
compact. A homogeneous complex over V, as above, cannot now have compact
support unless » = 0; when r = 0, it has compact support provided it is exact
outside the zero-section of V and in addition, outside some compact set in X,
the homomorphisms « are constant on the fibres of V. Actually, for non-
compact X, we shall only explicitly need the following fact. Every element
a € K(V) can be represented by a compactly supported homogeneous complex
of degree zero

0 — T*(E") — 7*(E') — 0 ,

with E° and E* trivial outside a compact set in X, This is proved much as
before. Since K(V) = K(V*), we can represent a by a complex

(2.4) 0 o2, 0
in which, outside some compact L — V, we have isomorphisms
By Fi{|V~-L—(V-L)xC,

and, over V — L, p = 57'B,. Let Y be open relatively compact in X contain-
ing w(L), and let o be chosen so that the compact set L lies in the ball bundle
B,(V)| Y. Then a is already determined by the restriction of the complex
(2.4) to B(V) | Y.
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B(V)| Y

/

/ 4

Fic. 1

Now on this compact set, since B,(V') | Y retracts onto ¥, we can find isomor-
phisms 6;: F* —n*E‘ (where E* is the restriction of F'* to the zero-section of
V). Moreover we can assume the 6, extend the isomorphisms over 7=4(Y — Y)
induced by the 8;; more precisely this means that, if e ¥ — Y and n(v) = «,
then the homomorphism 6,(v): F; — (x*E*), = F coincides with the com-
position B;(x)~' o B;(v). Now put a = 6;'9p6, on
ABAV) | ¥) = (SuV) | T) U(BLV) (¥ — 1)),

extend it to all of V| ¥ so as to be homogeneous of degree zero and extend it
outside Y in the obvious way (using the fact that the E¢ are trivial there,
and that « is isomorphic to the identity). We now have a representative for
a € K(V) of the required type.

Remark. If the base X is a smooth manifold, then the isomorphism
classes of continuous and smooth vector bundles over X coincide (by standard
approximation arguments). Similarly, if V is also smooth, we get the same
group K(V) if we take only smooth bundles over V in the above definitions
by complexes.

Suppose now.that V is a complex vector bundle over X, and assume first
that X is compact. Then the exterior algebra A*(V') defines in a natural way
a complex of vector bundles over V, exact outside the zero-section (and homo-
geneous of degree 1). We shall call this the exterior complex of V, and denote
it by A(V). The class of A(V) gives an element of K(V') which we denote by
Ay. Since K(V) is a K(X)-module, multiplication by A, induces a homomor-
phism

@: K(X)—> K(V) .
We call this the Thom homomorphism. Note that if 7: X — V denotes the
zero-section, then by (2.1) we obtain

(2.5) @) = {3 (— )NV for ¢ e K(X) .
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For locally compact X, the exterior complex A(V) does not have compact
support. However for any complex E on X with compact support, the product
A(V) ® E has compact support, and

E— AV)QFE
defines again a Thom homomorphism K(X)— K(V).
Since for vector spaces V, W, we have a natural isomorphism of algebras
AN(VQR W) =AY(V)Q A (W),
it follows that, for vector bundles, V, W, over a compact space X, we have
the multiplicative formula
(2.6) Ar oMy = Avgww -
Here we use the product (2.3). The formula (2.6) implies that the Thom
homomorphism
K(X)— K(VE W)
coincides with the composition of the two Thom homomorphisms
K(X)—K(V)
K(V)y— K(VH W)
the latter being obtained by regarding V' @ W as a bundle over V.

The fundamental result of K-theory, the Bott periodicity theorem,*
asserts that ¢ is an isomorphism. Note in particular the special case
X = point; V = C*. Then we have an isomorphism

@: K(Point) — K(C") .
Thus K(C*) = Z and is generated by \, = \¢». The multiplicative property of
» shows that », = (\)".

There is a fairly straightforward generalization of K-theory to the
category of G-spaces where G is a compact Lie group. Thus let X be a compact
G-space, i.e., a compact space with a given action of G on X. By a G-vector
bundle over X, we mean a G-space E which is also a vector bundle over X,

the projection E— X being compatible with the group action, and such that
for each g € G the map

E:c ? Eg(z)

defined by g is linear. Note that if X = Point, then a G-vector bundle over X
is just a complex representation space of G.
Starting from G-vector bundles over a G-space X we form a ring Ky(X)

13 This is also called the Thom isomorphism theorem for K-theory; the Bott periodicity
being restricted to the special case where V is a trivial bundle.
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just as in the case where there is no group. All the elementary part of K-
theory goes over without essential change to K, (see [16]). The Bott periodi-
city theorem in the general case presents some new features, and not all
proofs generalize automatically to K -theory. Thus the proof given in [1]
applies only when the vector bundle V decomposes into a sum of line-bundles.
This decomposable case would be adequate for our purposes because we shall
explicitly need only the case when X is a point and G is an abelian group.
However this is a rather artificial restriction and, in [3], a more fundamental
proof of the periodicity theorem is given which applies directly to K,. Since
the proof in [3] uses indices of certain classical elliptic operators (on the sphere
and projective space) it might appear that we were involved in a vicious
circle. However this is not the case; the main theorem (6.7) of this paper is
not used in [3]. In a sense, Theorem (6.7) expresses the index of a general
elliptic operator in terms of the index of certain classical operators and, for
these, one has explicit methods of computation which yield ultimately the
concrete formulas in papers II and III of this series.

We shall in fact only use the special case of the Bott periodicity when X
is a point, and so we state this explicitly:

(2.7) Let G be a compact Lie group, V a complex G-module. Then the

homomorphism
®: Ky(point) — K (V) ,

given by p(x) = -\, 18 an isomorphism.
Note that K, (point) is the character or representation ring R(G), and so is
determined by its restriction to all abelian subgroups. It is for this reason
that we could restrict ourselves to abelian groups and hence use only the
periodicity theorem as proved in [1].

If G acts freely on X so that X — X/G is a principal fibre bundle, then
we have a natural isomorphism

K. (X) = K(X/G) .
More generally if G x H acts on X with H acting freely, then
Kon(X) = Ko(X/H) .

In addition to the results reviewed so far, we shall need a small technical
lemma which is not given explicitly in the literature, and which we shall
therefore prove here.

Suppose W is a real G-module, V = W ®g C its complexification. Then
the map

v V—V
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given by complex conjugation is a G-map. We want to investigate the induced
homomorphism

V¥ Ko(V) — Ko(V) .

By (2.7) K;(V) is a free R(G)-module generated by the element A\, so it is
sufficient to compute +*\,. This can be done quite easily in general, but for
our purposes the two cases given in following lemma will suffice.

LEMMA (2.8). Let v: V—V be complex conjugation, where V=W Qg C
18 the complexification of the real G-module W. Then if +* is the induced
homomorphism of Ky(V) we have

(1) If wW=R, G=0Q), v*a= — a[V].

(2) If W =R}, G = SOQ2), y*a = a.

Proor. Case (2) follows from the fact that ¢ is G-homotopic to the
identity. We define

(U + ) = u + 19,(v) u,veW,0t<1
where g, € G = SO(2) is rotation through #t. In case (1) we observe that the
element ¢*\, + N[ V] e K, (V) is represented by the complex

CRV-5VRC

a, = .
0 =2
Here C = A(V) is a trivial O(1)-module, and we have used the natural iso-

morphisms V=V, VQV = C. Let g, GL(2, C) be a path connecting the
identity to the matrix (0 1). Then

10
z 0\ /1 %
0o 1% =

0 22
10

where

gives a homotopy from «, to (
homotopic to a constant and so

YN+ M[V]=0.
In view of (2.7), this completes the proof.

). Thus, on the unit circle S(V), «, is

3. Symbols and the topological index
Let X be a differentiable manifold, TX its tangent bundle.” This is a

14 Using a riemannian metric (G-invariant when appropriate) we will usually, in the
topological sections, identify the tangent and cotangent bundles. In the analytical sections
TX will denote the cotangent bundle.
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real vector bundle. If X is a differentiable G-manifold (i.e. if the compact Lie
group G acts differentiably on X) then so is TX and we may consider the
group K (TX).

Suppose now that X, Y are G-manifolds with X © Y and X compact. Let
1: X — Y denote the inclusion. Then we shall first define an R(G)-homo-
morphism

9 K(TX)— K (TY) .

Choose a G-invariant riemannian metric on Y (in the neighborhood of X),
and let N be an open tubular neighborhood of X in Y. Then N is a G-
manifold, and it may be identified with the normal bundle of X in Y (which
is, of course, a real G-vector bundle). The tangent bundle TX is then a
closed G-submanifold of 7Y, and the tubular neighborhood TN of TX in TY
may be identified with the vector bundle over TX obtained by lifting N p N.
The simple verification is left to the reader, but since there are two copies
of N involved, we must be explicit about our identification. We shall agree
that the first factor corresponds to a point of Y, and the second factor to
tangents to Y (along the fibres of N). Moreover we shall identify N @ N with
N@iN = N Qg C, so that the neighborhood TN of TX in TY is identified
with 7*(N Qg C), 7: TX — X denoting the projection. Since this is a complex
G-vector bundle, we have the Thom homomorphism

@: Ki(TX)— Ki(TN) .
Since TN is open in TY, we have a natural homomorphism

k.: Ki(TN)— K/(TY)
induced by the inclusion. Combining @ and k, we obtain the homomorphism

B K(TX) — K(TY)

which we wanted to construct. It is easy to check that it is independent of
the metric used in the construction and of the choice of tubular neighborhood.
The fact that it is functorial (i.e., that if X Y-, 7 are inclusions,
then (j4), = j,4)) is a consequence of the transitivity of the Thom homomor-
phism (see § 2). Formula (2.5) implies the following
3.1) (@) = {35 (—1)N(N Qr )} for x e K, (TX)
where i*: K, (TY)—K (TX) is the restriction homomorphism, and K,(TX) is
regarded as a K;(X)-module in the usual way.

Using the homomorphisms 4, just constructed we shall now proceed to
define a homomorphism

K, (TX)— R(@G) .
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This homomorphism will be called the topological index and will be written
as t-ind.

Thus let X be a compact differentiable G-manifold, and let i: X — E be a
differentiable G-embedding of X in a real representation space E of G. The
existence of such embeddings is essentially a consequence of the Peter-Weyl
theorem (for a proof see [13]). Let j: P— E denote the inclusion of the origin
Pin E. Then we have homomorphisms

KATX) - K(TE) <~ K(TP) = R@G) .

But j, is just the Thom homomorphism for the vector space E @grC (regarded
as G-bundle over the point P) and hence, by (2.7), it is an isomorphism. Thus
we may define

t-ind: K(TX) — R(G)
by
t-ind = ()"0 4, .

To see that this is independent of the choice of the embedding i: X — E,
let i: X — E’ be another embedding and consider the diagonal embedding

k:X— EDE', k) =1i(x)Pi().

It will be sufficient to show that 7 and & give the same answer for t-ind (the
same will then be true for i’ and k). Now we have a G-homotopy of embed-
dings X — E @ E’ given by

k(x) = i(x) P st'(x) 0<s=1

and t-ind depends only on the G-homotopy class. Thus it will be enough to
compare the embedding i: X — E with k: X — E@ E’. If N is the normal
bundle of ¢(X), then the normal bundle of k,(X) is N@ E’ A similar result
holds, rather trivially with X replaced by the origin P. The transitivity of
the Thom homomorphism then gives rise to the commutative diagram

K,(TX)

/" N\
i/ N (ko)
v v N
KA(TE) —— K,(T(E® E"))

AN /
JIAN /
N/

K(TP)
I
R(G)
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where + is the Thom homomorphism for E’ Qg C (as G-bundle over TE), and
j,l denote the inclusions P—E, P-EQE’. By (2.7), 7, and [, are isomorphisms,
and so therefore is vv. It now follows from the diagram that the two ways
from K,(TX) down to R(G) coincide, i.e., formally

ko), = 3T 75, = gy

Thus 7 and k, yield the same value of t-ind. We have then established that
t-ind is independent of the choice of the embedding X— E used in its definition.

An important element o, € K(TX) on any compact manifold X is the class
oy of the “de Rham symbol.” This is defined as follows.” We consider the
exterior algebra A*(T) of the tangent bundle T'=TX. Lifted to T this gives
a complex of real vector bundles, exact outside the zero section. The complexi-
fication of this thus defines an element p;e K(TX). If X is a G-manifold,
A*(T) is acted on naturally by G and so o, € K, (TX).

Remark. The element p, is closely related to (but not to be confused

with) the elements \, of § 2. Their relation is as follows. If T° = T ®g C,
the element

A€ Ko(T°X) .
If ©: TX — T°X is the inclusion, then

pX - 7:*7\@0 .

If we take X = S" = R" U <, G = O(n), then, in particular, we get an
element o € K;(,(T'S™). This element will play a fundamental role in our
proof. Actually a more fundamental object is the element j5,(1) € K,,,(TR")
where j: P— R" is the inclusion of the origin, but, as the following lemma
shows, this element is in some sense just “half” of o,.

LEMMA (3.2). Let j°: P°— S™, j=: P~— S™ be the inclusions of the origin
and the point at infinity, and let 8: TS"—TS™ be multiplication (of tangent
vectors) by —1. Then we have

Osn = 51(1) + 0%57°(1) € Ko(n (TS™) .

PrOOF. S" may be identified with the union By U B~ of two copies of the
unit ball B* — R”, and this identification is compatible with the action of
O(n). Then we have an O(n)-isomorphism

TS" = (Br x R") U (B~ x R"),
where we identify points over the equator S*' = 6By = 6B~ by

15 We will omit a factor ¢, which is more natural from the point of view of differential
operators but for our present purposes it is irrelevant.
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(x, v) — (x, h,v) xeS"™ L veR",
h, denoting the reflection in the hyperplane of R" orthogonal to z. Passing
to exterior algebras, we then have an O(n)-isomorphism of complexes

T*A*T° = (B x R x A*(C")) U (B x R" x A*(C"),

where 7: TS™ — S is the projection and, on the right, we make the identifi-
cation

(1) (x,v, w)— (x, b, h(w)),
h.( ) denoting the action on A*(C") induced by the reflection ~,. Suppose now
that 0 < s <1, and define a new complex A, of vector bundles over T'S" by
changing the bundle homomorphisms as follows. We define

B x R™ x A¥(C") — Br x R x A(C")

by

(il) (x, v, w)— (x, v, (v — tsx) A w) and

B x R" x AY(C") — B~ x R™ x A*(C")

by

(i) (x, v, w) — (x, v, (v + 182) A\ w).
Since h,(x) = —x, (i) implies that (ii) and (iii) agree over S™, and thus define
a complex of vector bundles over T'S™ as asserted. Now observe the following
facts about the complex A,

(a) for all s, it is exact outside the zero section of T'S™;

(b) for s = 0, it is the original complex 7*A*T°;

(¢) for s =1, it is exact outside P, and P...
By (a) and (b), the element pg» € Ky, (T'S™) is equally well defined by A,, for
any value of s. By (c), the complex A, defines an element @ = a’ + @~ in

Kotm(T(S" - S"_l)) = Kou(T°) © Ko(u(T") ,

where T° = T(By — S™"), T~ = T(B% — S™'). From their definitions'® we see
that
a® = k(1) a” = 0*kyr(1) ,

where k: P°— B, — S* ', k~: P~ — B, — S™' are the inclusions. Applying
the natural homomorphism

Kom)(T(Sn - Sn_l)) — Ko (TS™)
a becomes g, ki(1), and ki°(1) become ji(1), 57°(1) respectively, and so we obtain

Psn = Ji(1) + 6%57(1)
as required.

16 There is actually a scalar factor 1 between the complexes involved, but this does
not affect the class in K.
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4. Axioms for the index
In the preceding section we constructed an R(G)-homomorphism
t-ind: K(TX) — R(G) .
In this section we shall give axioms which will uniquely characterize this
homomorphism. In the analytical part of the paper we shall then introduce
the analytical index and show that it verifies the axioms.
We suppose now that, for every compact differentiable G-manifold X, we
are given an R(G)-homomorphism
ind}: K, (TX)— R(G) .
(We shall write ind instead of ind} when there is no possibility of confusion.)
We assume this is functorial with respect to diffeomorphisms in X and homo-

morphisms in G. More precisely if f: X — Y is a G-diffeomorphism, then the
diagram

K.(TX) L5 K (TY)
AN /
ind2\, ind¥
R(G)

commutes, and if ¢: G’ — G is a homomorphism, the diagram

K(TX) 25 K, (TX)
ind} l lindg’,
RG % R@G)
commutes. Such a functorial homomorphism, we will refer to briefly as an
index function.
We introduce the following two axioms for index functions.
(Al) If X is a point, ind is the tdentity of R(G).
(A2) ind commutes with the homomorphism , of § 3.
The meaning of (Al) is clear; when X is a point, TX = X, and K (TX)
is naturally isomorphic to R(G). In (A2) we mean that, for any inclusion
1: X — Y with X, Y compact G-manifolds, the diagram

KATX)— K(TY)

N, /S
indZ\indd
R(G)
commutes.
The topological index t-ind satisfies (Al) and (A2). The first is trivial,
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and the second follows from the transitivity of 4,.
The following is then a rather trivial consequence of § 3:

PROPOSITION (4.1). Let ind be an index function satisfying (Al) and
(A2). Then we have ind = t-ind.

Proor. Given X we take an embedding i: X — E where E is a real G-
module. Let E+ be the one-point compactification of E. Since we can assume
G acts orthogonally on E, it is clear that G acts differentiably on the sphere
E*;i.e., E* is a G-manifold. Now let i*: X— E+ be the embedding given by
t. Similarly if P is the origin of E, we have j: P— E, j+*: P— E+. Consider
the following diagram

K. (TE)
1N
i/ l N\t
< i
K(TX)— K (TE*) —— K«TP) = R(G) .
N S
indd ™\ ind§" /ind}
N l v
R(G)
The top two triangles commute because of the way 4, and j, are defined. The
bottom two triangles commute by (A2). By (Al), indZ is the identity. Now
Jyis an isomorphism, and t-ind: Ko(TX) — R(G) is defined by t-ind = j;'i,. The
diagram then shows that it coincides with indZ.
Axiom (A2) is not easy to verify, and our next aim is to show that it

follows from a number of other more elementary axioms. First we describe
an excision axriom.

(Bl) Let U be a (non-compact) G-manifold,
. U— X, iU — X'

two open G-embeddings into compact G-manifolds X, X’'. Then the following
diagram commutes

KL(TX)
VAN
i*/ \.ind¥
/ N\
K(TU) R@G) .

N\ /o

2N nas

NS
KA(TX")

When (B1) is satisfied, we can define
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ind: K,(TU) — R(G)

as the composition ind - 5*, and it is independent of the choice of j: U— X
provided that one such X exists”. In particular if E is a real G-module then
ind: K4(TE) — R(G)

is defined. Our next axiom is, like (A1), a normalization axiom?®,

(B2) Let j:: R(O(n)) — Ky, ,(TR™) be induced by the inclusion j: P—R",
where P is the origin. Then ind 7,(1) = 1.

Actually we shall also want to consider a weaker axiom, involving only the
abelian groups O(1) and SO(2).

(B2') ind j,(1) = 1 where j, is either

R(0(1)) — K,,(TRY)
or
R(SO(2)) — K50 (TR .

Finally we want to introduce a multiplicative axiom. This is the most
significant one, and it requires some care in setting up. The simplest kind of
multiplicative axiom would be concerned with product manifolds X x Y, but
this is not enough. We need to consider not just products but fibre bundles.

Suppose then that P— X is a compact differentiable principal fibre bundle
with group H (a compact Lie group). Thus H acts freely on P, on the right,
and X = P/H. If F is a compact differentiable H-manifold (H acting on the
left), we can form the associated fibre bundle Y over X, given by

Y - P X H F;
i.e., Y is the quotient of P x F by the action of H: k(p, f) = (ph™*,hf). Since
H acts on F, it also acts on TF, and P x , TF is then a vector bundle over Y.
This is usually called the tangent bundle along the fibres, and denoted by
T(Y/X); it is a sub-bundle of T'Y and (using a metric), we have a decomposi-
tion

TY = T(Y)X) @ n*TX
where 7: Y — X is the projection. Thus we have a multiplication
K(TX)® K(T(Y/X))— K(TY) .

On the other hand, we have homomorphisms

K(TF)— K,(P x TF) = K(P x 4 TF)
= K(T(Y/X)) .

17 In fact this assumption can be avoided, but we do not need this.
18 In (B2) we either assume (Bl) so that ind is unambiguously defined on Ko\ (TR?),
or else we define it by the standard embedding R < (R?)+ = S»,
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Combining these we thus obtain a mutiplication
K(TX)R® K (TF)— K(TY) .

Suppose now that a second compact Lie group G acts on all the preceding
situation. Thus we assume that G acts (on the left) on P and F' commuting
with the action of H and so inducing an action on X = P/Hand Y = P x , F.
Then we get a multiplication

K(TX)RQ K(T(Y/X))—> K(TY)
and a homomorphism
Kiuu(TF)— K, y(P X TF) = K(P %, TF)
= K(T(Y/ X)),
which combine to give
4.2) KA(TX)® Kgxu(TF) — K(TY).

On the other hand, if V is any complex G x H-module, P x, V is a
G-vector bundle over X. This extends to an R(G)-homomorphism
4.3) tp: R(G X H)y—> K (X) .

Finally let us recall that K (TX) is a K;(X)-module. We are now ready to
formulate our multiplicative axiom.

(B3) Forall G, H, P, F, as above we have
ind¢(ab) = indf(a- pp(indf, (b))
where a € Ko(TX), be Ko u(TF) the product ab is taken as in (4.2) and p,
is the homomorphism of (4.3).
Suppose, in particular, that indj, ,(b) lies in the subring R(G) of R(G x H).
Then, since /¢, and ind¥ are both R(G)-homomorphisms, (B3) simplifies to
indab = ind a-ind b ¢ R(G) .

It is only this special case of (B3) which we shall need, and so we state this as
(B3') If indf, ,(b) € R(G) C R(G x H), then, in the notation of (B3),
indf(ab) = indfa-indZ, b .

Remark. Taking F' = point, H =1, we see that (B3’) implies (A1) unless
ind = 0; but, of course, this is a trivial formal observation.

Axioms (B3) and (B3') are for fibre bundles with group H. In particular
therefore they apply to products, taking H = 1. Thus (B3’) implies

(B3") If X, F are G-manifolds and a € K,(TX), be K, (TF), then

indZ **(ab) = ind¥a-indZb .

It is of course possible to reformulate (B3”) in terms of “external products”
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for different groups G. Thus, if X; is a G;-manifold and a;, e K;(TX;), we
can form the product a,a, € K,(TX) where X = X, x X,,G = G, X G,. Then
applying (B3”) with X, = X, X, = F we see that

indj a,a, = ind¥1a,-ind2a, ,

where the latter product is given by:

R(G) @ R(G.) — R(G) .

Our aim now will be to show that Axioms (B1), (B2') and (B3’) imply (A2).
First we prove

PROPOSITION (4.4). Awxioms (Bl), (B2') and (B3") imply (B2).
ProoF. Axiom (B1) enables us to extend (B3”) to open sets in compact
manifolds. Thus if a; e K, (TU,) with U, open in X, (i = 1, - - -, k), then

ind[Ta, =] inda, .
(The point of (B1) is that ind II @: may be computed by any manifold com-

pactifying J] Ui, not necessarily J] X;.) In particular, this multiplicative
property holds for U; = R" and G; < O(n;)
a; = ji) jii P—— R"

Ifalln; =1 or 2and G; = O(1) or SO(2), then (B2') asserts that inda, = 1.
Hence by (B3') ind [] a; = [T ind a; = 1€ R(]] G;). Now, since j, is multi-
plicative, it follows that JJ a; is the restriction of a = 71(1) € Ky(,,(TR™).
Thus ind a € R(O(n)) gives 1 when restricted to any subgroup II G: of
O(n) (with G; = O(1) or SO(2)). But these subgroups contain all cyclic sub-
groups of O(n), and so are sufficient to determine a character of O(n). Hence
ind @ =1 € R(O(n)), establishing (B2).

Remark. The verification (for the analytical index) of (B2) is not in fact
much more difficult than (B2), but it seems relevant to observe (as we have
done in (4.4)) that (B2’ is sufficient.

We can now prove

PROPOSITION (4.5). Axioms (Bl), (B2) and (B3') imply (A2).

If we have an index function satisfying (B1), then as observed above (B3’
or (B3”) implies a corresponding result for open sets in compact manifolds.
Thus (B3’) continues to hold when F'is an open set (stable under G x H) of some
G x H- compact manifold ', the space Y = P x , F'is then an open set of the com-
pact manifold P x ,F'. In particular, we can take F =R", F=(R")* =S*, H=
O(n), b = ji(1) where j: A— R" is the inclusion of the origin A. Then P is a prin-
cipal O(n)-bundle over the compact manifold X, and G acts on P, commuting
with O(n). We make G act trivially on R*. The space Y=Px,,, R"is then the
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associated real vector bundle over X; it is a G-bundle. The homomorphism
K(TX)— K«(TY)
given by a — ab is just the homomorphism 4, induced by the zero-section in-
clusion i: X — Y. If ind satisfies (B2), then
ind,(,,(b) = 1€ R(O(n)) ,

and if we regard G as acting trivially on R*, the same formula holds with
G x O(n) instead of O(n) (using the functoriality of ind for the projection
homomorphism G x O(n) — O(n)). Now applying (B3’), we obtain

ind 7(a) = indab = ind a-ind b
= inda € R(G) .
This establishes (A2) in the special case when Y is a real vector bundle over
X. But for a general embedding
kb X— 7,

the homomorphism

ky: K(TX)— K/(TZ)
is defined as the composition of

Ji: K(TX) — K4(TN)
and the natural homomorphism

K(TN)— K«(TZ) ,
where N is the normal bundle of X in Z. In the following diagram

K{(TX) — K,(TN)— K(TZ)
inc\1>\ iindN /in/dz
N\ /
R(G)
the first triangle commutes by what we have just proved, and the second
commutes by (Bl). Thus
ind?ky(a) = ind*a

and (A2) is established in general.

Putting together Propositions (4.1), (4.4), and (4.5), we then obtain the
following uniqueness theorem. '

THEOREM (4.6). Let ind be an index function satisfying (A1), (Bl), (B2')
and (B3'). Then ind = t-ind.
Remark. It will be noticed that (B3) has not been used—only (B3'). It will
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actually turn out in § 9 that the stronger axiom (B3) holds for the analytical
index.

Axiom (B2') can be replaced by another which is, in practice, more con-
venient to check.® Let us recall (cf. § 3) that, for any compact G-manifold X,
we have the “de Rham symbol class” o;e K,(TX). We then introduce the
following variant of (B2'):

(B2"). (i) ind ps. = 2 € R(SO(2));

(ii) ind o1 =1 — £ e R(O(1)), where &:0(1)— U(l) is the standard
representation.

(iii) ind j(1)=1¢€ Z, where j: P— S* is the inclusion of the origin.

Remark. The elements occurring here all belong to K,,,(n =1 or 2), but
in (i) and (iii) we choose to restrict to the smaller groups SO(n).

We shall now show that (B2'), can be replaced by (B2").

LEMMA (4.7). Let ind be an index function satisfying (B2”). Then it
also satisfies (B2').
Proor. By Lemma (3.2), we have
ps» = J1(1) + 0*57(1) € Ko (T'S™)

where j% P°— S”, j=— S” are the inclusions of the origin and the point at
infinity, and 6 is multiplication by —1 on tangent vectors. Let f: S"— S" be

reflection in the equator so that f interchanges P° and P~ and commutes with
6. Then

FH(0*37Q)) = 0*5%1) .
By the functorial properties of an index function, this implies that
ind 6*j7(1) = ind 6*53(1) € R(O(n)) .
Thus
ind pg» = ind (1 + 6*)53(1) .
Now, by definition, j¢ (which we now write simply as j,) factors through the

group K, (TR" and, on TR" = C*, 6 coincides with complex conjugation.
Applying Lemma (2.8) therefore we deduce

ind pg: = ind 25,(1) = 21ind 7,(1) € R(SO(2))
ind pg = ind (1 — £)j,(1) = (L — &) ind 5,(1) € R(O(1)) .
Parts (i) and (ii) of (B2"”) then give

19 Verifying (B2’) for the analytical index involves computing the index of a certain
operator in euclidean space (see a forthcoming paper by Atiyah and HOrmander). In some
ways this is more direct and natural than verifying (B2'/), on the sphere. However, it
involves more explicit analysis which we avoid by the topological deformations implied in
4.7).
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2ind j(1) = 2
1—-¢&indj(1)=1-¢.
Now the annihilator of 1 — & in

R(0(1)) = Z[5)/(1 — &)
consists of integral multiples of (1 + &). Hence we deduce
ind 7,(1) = 1 € RSO(2)
indj,(1) =1 + a1 + &) e R(0O(1))
for some integer a. Restricting the second equation to the identity of O(1),
and applying (iii) of (B2"), we deduce
1=1+2a¢ ie.,,a=0.
Thus ind 7,(1) = 1 both for SO(2) and for O(1). This is precisely Axiom (B2'),
bearing in mind that ind on K(TR") is defined via the compactification
R" — S™ (cf. footnote™).

To conclude this section, we might point out that the topological index
of §8 clearly satisfies axioms (Al), (A2), and also (B2). It is not quite so
obvious that it satisfies (B1) and (B3) but, with a little work, these can be
established directly. On the other hand, once we have shown that the ana-
lytical index (to be introduced in §6) satisfies (Bl), (B2), and (B3), the

uniqueness theorem (4.6) will imply that t-ind = a-ind, and so t-ind will also
satisfy these axioms.

5. Pseudo-differential operators

In this section, we shall review the basic analytical facts concerning
pseudo-differential operators. Their application to the index of elliptic opera-
tors will be treated in § 6. For proofs of the results stated here, we refer to
Kohn-Nirenberg [11], Seeley [15], Hormander [9][10], and Palais [14]. We
shall however attempt to present the material so that only standard results
are given without proof.

The term “pseudo-differential” is applied, in different places, to slightly
different classes of operators. For our purposes any one of these classes would
be equally good. In fact, we shall eventually form a closure of this class and,
by that stage, any differences would disappear. Perhaps the largest and most
natural class is that given in Hormander [10], and we begin therefore by re-
calling his definition.*

2 Actually [10] is concerned primarily with classes Ly';, and we only use the case
p=1,0=0. The other values of p, 6 are used in [10] to treat certain classes of hypo-
elliptic operators. For these the index problem can be solved by reducing it to the

standard elliptic case discussed here. This is proved in a forthcoming paper of Atiyah
and Hormander.
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Consider first an open set U of R", and let « = (x,, - - -, ,) be the standard
coordinates. For any integer m, we denote by S™(U) the set of all smooth
functions p(x,&) on U x R" such that, for every compact K c U, and all multi-
indices a, B, we have

| DID¢p(w, &) | = Coppe(l + [E)™, reK,teR".
Here D¢ stands for the partial derivative
(—10/08,)"(—10/0&,)* - - - (—10/0E,)"™ ,
la| =3 a;and C,; « is a constant depending on «, 8, K, and p. For any such
p, we define a linear operator
P: 9(U) — &(U)
by the formula

Pu = (27‘5)‘”810(3;, A OdE |

Here & denotes the smooth functions on U, 9 those with compact support, and
# is the Fourier transform of w. If p is a polynomial in ¢ of degree m with
smooth coefficients, then p e S™(U), and P is the differential operator associ-
ated to it in the usual way. For this reason, when we want to show the
dependence of Pon p, in the general case, we write

P = px, D),

where D stands formally for the vector with components —1i(d/0x;).

A pseudo-differential operator is one which is locally of the above type.
Precisely, we denote by L™(U) the set of all mappings P: D(U) — &U) such
that, for all fe D(U), there exists some p,e S™(U) with P(fu) = p,(x, D)u
for all w € D(U). An equivalent definition [10; § 2] is that P is continuous, and
that the commutator

pia, §) = ¢~ O P(fei*?)
belongs to S™(U) for all fe D(U).
In this paper we shall introduce a sub-class $™ < L™ consisting of opera-

tors P for which all the functions p,(x, &) above lie in a certain subspace
S™MU x R™) of S™(U x R"). A function pe S if, for £ = 0, the limit

p(x, M)

O-(p)(x7 é) = liml—»w "™

exists. Then ¢(p) is a C= function on U x (R" — 0), and it is homogeneous
of degree m in &, For an operator Pe 9™, we define the symbol a(P) by

o(P)(x, §) = a(p))(=, £) ,
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where f is any function equal to 1 near x. It does not depend on the choice
of f. The symbol is a C= function of (x, &) outside & = 0, and it is homo-
geneous of degree m. It follows from results of [10] that L™ and 9™ are
invariant under diffeomorphisms of U, and hence corresponding classes of
operators can be defined globally for smooth vector bundles over smooth
(paracompact) manifolds (for the details of this, see [10] or [4]). If E and F'
are smooth vector bundles over a smooth manifold X, we shall denote by
9™(X; E, F) the space of pseudo-differential operators*
P:9(X; E)—> &X; F)

of type $™. Locally, with respect to a coordinate patch on X and bases in E,
F, such an operator P is given by a matrix p,;(z, D) of operators in euclidean
space as above.

The symbol ¢(P) of P™(X; E, F) is globally well-defined as a smooth
homomorphism

o(P): n*E — *F

of vector bundles on the cotangent space TX (with the zero-section removed).
Here 7 denotes the projection 7: TX— X, On each fibre of TX, o(P) is
(positively) homogeneous of degree m. We denote by Symb™(X; E, F') the
space of all homomorphisms 7*E — z* F which are defined and smooth outside
the zero-section and, on each fibre of TX, are homogeneous of degree m. If
we choose the unit sphere bundle S(X) of TX defined by some smooth
riemannian metric, we can clearly identify Symb™(X; E, F') with the space of
smooth homomorphisms 7} E — 7 F where 7;: S(X) — X is the projection.

We recall briefly a few important properties of pseudo-differential opera-
tors. First of all they compose well; that is,

PeP™", QeP, feDX)=— PfQeP™",
and
o(PfQ) = 0(P)fo(Q) .
If X is a compact manifold then the function f may be omitted. Secondly
they transpose well; that is,
Pc9"(X; E,F)— P'c¢9™(X; F',E"),
where E’ = Hom (E, Q) (Q denoting the volume bundle of X as in [4; §5]),

and P! is the transpose of P (so that the distributional extension of P*
coincides with the dual of P). Moreover o(P!) = o(P) where o1+ ¢’ is the

21 We write & X; E) for the spaces of smooth sections of E over X and 9(X;E) for
those with compact support. When X is clearly understood, we shall omit it.
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map of symbols induced by the isomorphism Hom (E, F') — Hom (F’, E') of
bundles. If we choose a smooth hermitian metric for E, and a smooth
positive measure on X, we get an anti-linear isomorphism E — FE’'. If we
also have a metric for F, then the transpose P’ec 9™(X; F', E') can be
replaced by the “formal adjoint” P* ¢ 9™(X; F, E). For the symbols, we
then have o(P*) = o(P)*.

We come now to the Sobolev spaces. If E is a smooth vector bundle over
a smooth manifold X, and if s is any non-negative integer®, we denote by
H*(X; E) the space of those distributional sections w of E for which
Dw e Ly for all differential operators

D: 9(X; E)— 9(X; 1)
with smooth coefficients, and of order <s. If, for local coordinates (x;), and
a local base (¢;) of E, we write u = Y, u;(¥)e;, then (in the coordinate patch)

ue H* — <.a§_>auz e Ly* for all « with |a| < s.
x

The space H!*(X; E) has a natural topology given by a countable® set of
semi-norms. It is a Fréchet space. We also consider

H;™(X; E) C H*(X; E)

consisting of sections with compact support. It has its own natural topology
as a direct limit (over compact K < X) of Hilbert spaces (this is not of
course the induced topology from H!*). We define H(X; E) as the dual of
He™(X; E'), and H<™(X; E) as the dual of HXYX; E’') where E’' =
Hom (E, Q) as above.

If X is compact, then H*™ = H!* and we write it simply as H,. An
explicit Hilbert space norm for H, can be defined in terms of a hermitian
metric and connection for E, and a smooth positive measure on X as follows.
For s = 0 we have the usual L,-norm

et = (] < )™

For s > 0, we first introduce the positive definite operator A =1 + D*D),
where D: D(E) — D(E @ T) is the covariant derivative given by the connec-
tion, and then put

tull, = (] <am, wy)™

22 These spaces are also defined for real s [8] but the integer case is enough for our
purposes. The invariance properties for integral s are then rather trivial.

23 All our manifolds are assumed paracompact so that we can take a countable set of
coordinate patches.
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For s < 0, we take the dual norm. Note that, if a compact group G acts
differentiably on X and E, then an invariant measure on X, and an invariant
connection will lead to Hilbert space norms on H,(X; E) invariant by G.

Pseudo-differential operators behave well with respect to the H,-spaces,
namely we have

(5.1) A pseudo-differential operator
P: 9NX; F)— &(X; F)
n P™(X; E, F) extends, for integer s, to a continuous linear operator
P;: HX; By — H*.(X; F) .

Let Opy = Op;(X; E, F) denote the space of all continuous linear maps
H™(X; E)— H)*,(X; F) with the topology of bounded convergence. Then
P P, defines a map 9™ — Op™ whose image we denote by 9. If X is
compact, Op7 is a Banach space (with norm denoted by || ||7) and the closure
P has a rather simple structure as described in the following result.

(5.2) Let X be compact, then the symbol
0: PNX; E, F)— Symb™ (X; E, F)

18 continuous for the sup norm topology on the unit sphere bundle of TX; it
extends by continuity to a map

o,:97(X; E, F) — Symb™ (X, E, F)

which is surjective, and has the compact operators H, — H,_,, as kernel.

Remark. We recall that Symb™ (X; E, F) is isomorphic (by restriction
to the unit sphere bundle S(X) in TX) to the space of smooth homomorphisms
n¥E—ntF where 7, S(X)—X is the projection. The closure Symb™ (X; E, F')
can thus be identified with the space of continuous homomorphisms
TiE — wiF,

To obtain C > results from the H,-spaces, it is convenient to consider all
s simultaneously. For this purpose, we introduce (for any X, not necessarily
compact) the space Op™(X; E, F) of all linear operators 9(X; E) — 9'(X; F)
which extend by continuity to operators in Op(X; E, F) for all s. Now the
Sobolev lemma implies that

DX E) = N H™X; E), &X;F) =N, H™X; F)

(with the inverse limit topology), and so an operator in Op™ actually maps
D(X; E)— &(X; F') (continuously). For each s we have an embedding of Op™
in Op?, and hence of Op™ in J], Opr: its image is closed, and we give Op™
the induced topology making it a Fréchet space.
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The space Op™ is a local space of operators in the sense that the Schwartz
kernels on X x X are a local space of distributions. This means that an
operator P is in Op™ if and only if, for every pair of C= functions ¢, 4+ on
X with compact support, p Py € Op™. Reasoning as in [3; Appendix] it follows
that, if {U;} is a coordinate covering of X so that {U, x U,} covers X x X,

PecOp™(X) = P|U,; e Op™(U,) for all ¢ .

Moreover the semi-norms in the U, determine the semi-norms in X,

By (5.1) 9™ < Op™, and we now form the closure 9™, Since 9™ is by
definition a local space of operators, and since Op™ is local, it follows that
9™ is local. Since ™ — P is, by definition, continuous, (5.2) implies that
the symbol extends by continuity to give a diagram

P P
Symb™ .
Note that, in this diagram, while o, is surjective, o is not. In fact, the
image of ¢ is rather difficult to describe, and we shall not go into the question.
An operator P c P will be called elliptic if o,(P) is invertible. An operator
Pc P will be called elliptic if o(P) is invertible (in the space Symb™ of
continuous symbols); this means that

P elliptic = P, elliptic for some s — P, elliptic for all s.

The most important reason for introducing the closure 9™ lies in the
behavior of pseudo-differential operators for products of manifolds as we
shall now explain. Thus let E, F’ be smooth vector bundles over X, and G a
smooth vector bundle over Y. If P is a continuous linear map 9(X; E) —
§(X; F), we denote by P the “lifted operator” from @(X x Y; EX G) —
&(X x Y; F X G), that is the unique continuous linear map such that

Pu®v)=Pu@v UeNX; E),vedNY;G).

If m = 0, this lifting operation behaves well with respect to the Op™ spaces,
that is P — P defines a continuous map

(5.3) Op"(X; E, F) — Op"(X x Y; EXG, FKXG) .

To verify this, it is enough to check the case when X and Y are domains in
euclidean space, and all bundles are trivial of dimension one. Suppose then
that Pe Op™(X). Then for fe DX x Y), compact sets KC X LCY and
la| + |B|=s—m =0, we have
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S | D2D}Pf [P dy = g dyg | DPD{f |*da
KXL L K
=C SLdySK 2 ziarsm | DIDIS [ da

= CS XLEIﬂHWISs | DYDJf |*dwdy .

This shows that (for s = m) P is continuous H*™(X x Y) — H*(X x Y),
and that P+— P is continuous from Opm™(X) to Op™(X x Y). Passing to
adjoints gives the corresponding result for s < 0. Hence for m = 0 or 1, we
are through and obtain the continuity of (5.3). For m > 1, another small
argument is needed, but since m = 1 suffices for applications, we shall omit
the proof.

Unfortunately it is not true in general that Pc 9™ — Pe @™, However
for the closure 9™, we do have

(5.4) For m > 0, if Pe P™(X; E, F), then the lifted operator

Pe9"X x V;EXG FXG).
Moreover o(P) = 6(P) where & is the lift of o defined by
Fem(e®g) =0:e) Ry, teTX,neTY,ecE, geqG.
This is essentially property (S6) of [14; Ch. XI], but we shall recall the proof
which is quite elementary.

Since 9™ is a local class of operators, it will be sufficient to deal with
the case when X = UcCR"and Y = V  R? are domains in euclidean space,
and all bundles are trivial of dimension one. Moreover by the continuity of
(5.3) it will be sufficient to prove that

Pe9™(U)— Pec9™(U x V).
Again, since 9™ is a local class, it will be sufficient to show that, for all
P, v eDNU) and @, ¥, € NV), Q = pp, Py, e P™(U x V). To do this we
shall construct a family R* e P°(U x V), defined for ¢ > 0, and such that

(i) Q-R'e9P™(U x V)

(ii) Q- R"— Q in Op™(U x V)ast—0.

First of all we choose a family of functions ¢‘(¢, 1), defined for ¢ > 0, taking
values in the unit interval and such that

(a) o' is homogeneous of degree zero and C= outside the origin,

(b) ot =1 for|&| < t|nl

=0 for (&l >2t|n|
Also let o(\) be a C= function of » € R such that

p(N) =0 for (v 1
=1 for | M| = 2.

K
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Then put

OE, M) =1 =t &F + |71))ais, ) .

The appearance of this function is indicated below: p* = 1 in the horizontally
shaded region, and p* = 0 in the vertically shaded region

7

1/t 2/t

Fic. 2

Finally we define R' to be convolution by the inverse Fourier transform of o’
so that

Ru(z, y) = <2n>-"-q§p‘<s, NS, N)ei=Oriwrdsdy .
Then the operator Q' = Q- R' is given by the integral formula
P
(Qu)(z, y) = (2ﬂ)‘”‘“8¢1(y)¢(x)w(w, £)p4E, NvulE, n)dédy .

The properties of the function p’ show that pyo‘e S7(U x V x R"*9) so
that Q' ¢ ?™(U x V). Now, as remarked in [11], the H, estimates for pseudo-
differential operators do not require regularity in (£,7). The fact that,
for m = 0, Dfpy(x, &)/(1 + |&] + |7 |)™ is bounded then implies that @ € Op™
(which we already know). Similarly for m > 0, the inequalities

D:f{p‘f’(xy E)((Ot($9 7)) - 1)} \< Cﬂt"‘ ,
@+ &0+ D"
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(which are easy consequences of the properties of pf) show that, as t — 0,
Q' — Q@ — 0in Op™. As for the symbols we have

0(Q") = po(py)(1 — ')V, = PG (P)(L — ')y, ,
and, as t— 0, this converges to @,pd(P)y,. Since the symbol is also a local
object, this implies that o(P) = &(P) as required.

The final property of pseudo-differential operators we need concerns the
situation of a group action. Thus let X be a compact manifold, and G a
compact Lie group acting smoothly on X and on vector bundles E, F' over X.
Then G acts on the space P™(X; E, F') (because of the invariance of 9™
under diffeomorphism). If g € G and Pc 9™, we denote the action simply by

g(P). Note that, if u is a section of E, and «+— gu denotes the action of G
on sections, then

9(P)u = gPg'w .
Then we shall need the following continuity property.*
(5.5) For fized Pc P™(X; E, F), the map G—P™Op™ given by gr—g(P)
18 continuous.
Since G can be assumed to act unitarily on all H, spaces, and since 9™ is
the uniform closure of 9™ it will be sufficient to prove (5.5) for Pe P™. Let
A be an element of the Lie algebra of G, and let 4., A, denote the first order

differential operators defined by the action of A on E, F, respectively. The
symbol ¢(A;) is given by

0(Ap)s = A},

where I, is the identity of E, and A(%) is inner product of the cotangent
vector &£ e (TX), with the tangent vector A, defined by the action of A on X,
Hence

0(P)o(Ag) = 0(Ap)a(P) ,
and so, by a basic property of pseudo-differential operators,
PA, — A, PcoP™.

For A in a bounded neighborhood of zero in the Lie algebra, it follows that
we can find constants C, so that

|| PA; — A:P||7 < C, .
Now, for g, = exptA and u € D(E), we put

2¢ The proof of (5.5) that follows we owe to L. Hormander. In fact, the proof in [10]
of the invariance of pseudo-differential operators under diffeomorphism also gives a certain
uniformity which essentially includes (5.5) as a special case.
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Ji = 9(P)u = exptAyo Poexp (—tAp)u .
Then

‘_df_t
dt

= |lexptAro(PAy — ApP)oexp (—tAz)ul|

m—s

<Cllulls,

since G can be assumed to act unitarily on all H, spaces. Hence

||ft - f0||m-—s < Cxt ||u||8

establishing the continuity of P g(P) at the identity element of G. Since
each ¢ acts continuously on 9™, the continuity everywhere follows.

In view of (5.5), if Pe 9™, and if dg denotes normalized Haar measure
on G <so that Sgdg = 1), we can form the average

Av(P) = | o(P)dg

and this will still be in* &,
Since g: ™ — Symb™ is continuous, it follows at once that we have
(5.6) o Av(P) = Av(cP) .

Similar results hold for the closure 97 in each H,-space.

6. The index of elliptic operators

Let X be a compact manifold, E and F smooth vector bundles over X.
We recall that an operator Pe P™(X; E, F) is said to be elliptic of order m
if o(P) is invertible. One can then construct @ ¢ -™(X: F, E) such that
PQ —1 and QP — 1 both have smooth kernels (and in particular are compact).
This then leads at once to the basic results on elliptic operators.

(6.1) P has closed range, Ker P and Coker P are finite-dimensional and
all distributional solutions of P and its adjoint are C=, i.e. Ker P = Ker P,
and Coker P = Coker P, = Ker P* for all s.
The index of P is defined to be
index P = dim Ker P — dim Coker P .
In view of the last part of (6.1) we also have
index P = index P, forall s.

For operators P in 97 with invertible symbols, we can, using (5.2), find
Q,_n € P7"(X; F, E) such that QP — 1 and PQ — 1 are both compact. This

% Actually it is true that PEP™ — Av(P)e P™, but this requires a little more work
and is not necessary for our purposes.
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implies that Pis a Fredholm operator (from H, to H,_,), i.e., that it has
closed range and Ker P, Coker P both have finite dimension. Index Pis there-
fore defined for all elliptic Pc $r. By standard properties of Fredholm
operators in Hilbert space the index is a continuous (and so locally constant)
function, and it is unchanged by addition of compact operators. Together
with (5.2), this implies

(6.2) The index depends only on the homotopy class of the symbol in the
space of continuous invertible symbols of given order.

In fact the order of an operator is not significant for purposes of the
index as is shown by

(6.3) If P,Q are elliptic operators in P™, P such that o(P) and
0(Q) coincide on the unit sphere bundle of TX (for some metric), then
index P = index Q.

To prove (6.3), we observe that ¢(P)/o(Q) is self-adjoint, and so we can find
a self-adjoint elliptic R so that

o(P) = 0(@)o(R) .

This implies that index P = index Q + index R = index @, since index R = 0
for a self-adjoint operator.

Finally let us add two trivial formal properties of the index

(6.4) index PP Q = index P + index Q

(6.5) index P = 0 if P: 9(X; E)— 9(X; F') is induced by a bundle isomor-
phism E — F over X.

If Pe (X, E, F) is elliptic, then o(P) defines, as in § 2, an element of
K(TX). Moreover our description of K(TX) in § 2 by homogeneous complexes
(of length one) and the properties (6.2) — (6.5) of the index above show that
index P depends only on the class of o(P) in K(TX), and that P index P
induces a homomorphism

K(TX)—Z.

This will be called the analytical index and denoted by a-ind. Note that it
does not depend on the integers m, s chosen above. The independence of m
follows from (6.3) and the independence of s from the fact that 9™ is dense
in 97, that we have regularity (6.1) for elliptic operators in 9™, and that the
index is continuous.

Let us now return and consider an elliptic operator P e $™, so that P, is
a Fredholm operator for all s. Since o(P,) is independent of s, it follows from
what has been said above, that index P, is independent of s. But
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index P, = dim Ker P, — dim Ker P}_, .

Since H,o H, ., and H, ,c H,_,_,, it follows that index P, is a monotone
decreasing function of s, and so can be constant only if Ker P, and Ker P},
are independent of s. Hence we have established

(6.6) Let Pc P™ be elliptic, then all distributional solutions of Pu = 0
are C= and the same holds for the adjoint P*,

This result, together with the fact that each P, has closed range,
easily implies that P has closed range; if f is in the closure of the range of
P, it is in the closure of the range of P,, and so f = P,g, for g, ¢ H,. But (6.6)
then implies g, — g, C= for all s,t, and so g,€ C~. Thus we can again
compute index P, on C* sections,

index P, = index P = dim Ker P — dim Coker P .

Finally we consider the situation of a group action. If the compact Lie
group G acts smoothly on X and on vector bundles over X, and if Pe 9™,
then we saw in § 5 that we can average over G to obtain Av(P)ecP™, and
that averaging commutes with taking symbols. In particular if o(P) is
invariant, then

o(AvP) = o(P) .
Similar results hold for Pe 97.

It remains now to show that a G-invariant Fredholm operator P: H—H’,
where H and H' are Hilbert spaces acted on by G, has an index in R(G) with
the usual properties. The definition of index P is clear, we put

index P = [Ker P] — [Coker P] € R(G) ,
which makes sense because Ker P and Coker P are finite-dimensional G-mod-
ules. To prove that this is locally constant for the norm topology of P, we
proceed as follows.” Choose V < H to be any G-invariant closed subspace of
finite co-dimension with V' N Ker P = 0 (for example V = (Ker P)*), and let
P. H'V — H'/P(V) be induced by P. From the exact sequences

0— V —H — HV —0
lz lP j?
0—— P(V) —— H' —— H'/P(V) — 0,
we deduce G-isomorphisms Ker P = Ker P, Coker P = Coker P. Hence
index P = [Ker P] — [Coker P] = [Ker P] — [Coker P]
= [H/V] - [H'|P(V)]

20 We are simply giving here a proof of the invariance of the usual index which
extends naturally to group actions.
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by a simple property of the index for finite-dimensional spaces. Now the map
(PV)'@© V— H' given by * y+ « + Qy is an isomorphism for Q = P,
and so also an isomorphism for || P — Q|| small. Hence, for such Q, we have
VNKerQ =0and (PV)* = H'/Q(V). Hence introducing @: H/V—H|Q(V)
we find as before

index Q = index @ = [H/V ]| — [H'/Q(V)]
= [H/V] - [(PV)']
= index P .

Thus index P e R(G) is locally constant.” If K is compact and G-invariant, the
homotopy P + ¢tK with 0 < ¢ < 1 then shows that index P = index (P + K).

As has already been indicated in the introduction, our main theorem will
be

THEOREM (6.7). The analytical index and the topological index coicide
as homomorphisms K (TX) — R(G).

This theorem gives in principle a complete topological answer to the
problem of computing the index of G-invariant elliptic operators. Alternative
and more explicit methods of computing the topological index will be derived
in papers II and III.

In view of the axiomatic characterizations of the topological index given
in § 4 we have only to show that the analytical index verifies the appropriate
axioms. The fact that

a-ind: K(TX) — R(G)

is functorial for G-diffeomorphisms of X, and for homomorphisms of groups
G — @, is immediate from the naturality of the construction.

Axiom (Al) is quite trivial for the analytical index. In fact an elliptic
operator P on a point is just a G-linear map P: V— W of finite-dimensional
G-modules, and we have

[6(P)] = [V] — [W] = index Pe R(G) .

The verification of the remaining axioms will be carried out in § 8 and § 9.

7. Elliptic complexes

In this section we digress briefly to discuss the notion of an elliptic
complex. Let X be a compact manifold, E‘ a sequence of smooth vector
bundles over X, and

27 Note that we did not really use the compactness of G. Everything holds for unitary
representations of any group G provided we interpret R(G) as the group generated by
characters of finite-dimensional representations of G.
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d;: DX; By — D(X; Ei+Y

a pseudo-differential operator of order m with symbol ;. The sequence

) dn—1
0— DE) L5 NE) — - T By — 0
is called an elliptic complex (of order m) if
( i) di+1di = 0,
(ii) the symbol complex
0 B 2 E v IS B 0

over the cotangent bundle 7TX is exact outside the zero-section.

In [4] it is shown that® the homology groups H¥(E) = Ker d,/Im d,_, are

finite-dimensional, and so the Euler characteristic

A(E) = 3 (—1) dim H'(E)
is defined. If a compact group G acts on E (commuting with the d;), then
H'(FE) is a G-module, and we can define y(E) as an element of R(G).

If the complex is of length one, then we have just one elliptic operator
d, and y(E) becomes just the index of d,. Thus an elliptic complex is a natural
generalization of a single elliptic operator. Moreover elliptic complexes occur
naturally in differential geometry; the two significant examples being the
de Rham complex and its complex analogue, the Dolbeault complex.

The symbol complex o(E) of E is, in the terminology of § 2, a compactly
supported homogeneous complex over TX, and so it defines an element of
K(TX) or of K,(TX) in the group situation. The problem of computing
x(E) in terms of the class of ¢(E) in K,(TX) can be reduced to the problem
of the index of a single operator by the following simple device.

Introduce G-invariant metrics in all the bundles and on X so that we
obtain adjoints d} for the d;. Now consider the single operator

D: 9(@; E%) — D(P; E**)
defined by D = d + d*. More precisely
D (o, Uy, +++) = (dguty + dFuy, dyrty + dfuy, +++) .
Since d* = 0, we have (d*)* = 0, and so
D*D = @; A, , D*D = @; A,y ,
where A; denotes the “laplacian” on 9(E;) given by
A, =d,_df, + did; .

2 Actually in [4] the degrees of the d; are not assumed to be the same. Here for
simplicity we have made this assumption.
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Now the exactness of the symbol complex o(E) (off the zero-section) implies
that

o(A;) = 0,0, + o}o,c Hom (n*E‘, n*E*)
is an isomorphism (off the zero-section). Hence A;, and so also D, is elliptic.

Using the regularity properties of elliptic operators, it then follows, as in the
usual Hodge theory, that

KerD=@, H* = @, H*(E)
Coker D = @, H*"' = @ H*+Y(E)
where H* stands for the space of “harmonic” sections of E‘?, namely Ker A;.
Hence
index D = y(F) .
Moreover o(D) and o(E) represent the same class in K,(7X) [1; 2.6.10]. Thus

we are reduced to the case of a single operator, and our main theorem (6.7)
yields immediately

THEOREM (7.1). Let E be a G-invariant elliptic complex over the compact
G-manifold X, and let [o(E)] € K, (TX) be the class of the symbol sequence
of E. Then the Euler characteristic

WE) =32 (—1)HE) e R(G)
18 given by
x(F) = t-ind [o(E)] .
Remark. [3] was concerned with a general endomorphism T of an elliptic
complex (not necessarily arising from a compact group), and the introduction

of metrics invariant under T is not in general possible. For this reason com-
plexes are needed essentially in [3] but not here.

8. The excision and normalization axioms

In this section, we shall show that the analytical index of § 6 satisfies
the excision axiom (B1) and the normalization axiom (B2"”) of § 4.

Consider first the excision (B1). Thus we suppose that U is an open
G-invariant subset of the compact G-manifold X, and we denote by j: U— X
the inclusion. Then j induces

I Ke(TU)— K (TX) .
Shortly we shall show that any element a € K;(TU) is the symbol class of an
elliptic G-invariant operator P which is “equal to the identity” outside a
compact set. More precisely, this means that Pe P(U; E, F) is G-invariant
with [¢(P)] = a,
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a:E|\U—-L— (U—-L)xC"
B:F|U~-L—(U—-L)xC"
are G-bundle isomorphisms outside some compact set L, and foru € D(U— L; E),
we have

8.1) Pu = B 'au .

For the moment assume we have such an operator P, Then it extends in an
obvious fashion to a G-invariant operator j,P on X; we extend E, F' trivially
to bundles j, E, j . F on X using a and 8, and then extend P outside U by
(8.1). Clearly we have

[07.(P)] = J«lo(P)] = ji(a) e Ko(TX) .
On the other hand, if u e P(X; j,.E), (8.1) shows that
(J«P)u =0 =—=suppu U and Pu=0.
Thus Ker P = Ker 7, P, and similarly for the adjoint P*. Hence
index*j,P = [Ker P] — [Ker P*] e R(G) .

This shows that index*j, P can be computed from the operator P on U, and
so does not depend on X. This is axiom (B1).

It remains now to show how to construct the operator P. As shown in
§ 2, we can represent a € K;(T'U) as the class of a complex over TU

[

0 K o F 0,

where E, F are vector bundles on U, o is homogeneous of degree zero and,
outside a compact set L, of U, we have isomorphisms

«:E|\U— L — (U—- L) xC"

B:F|\U—-L — (U- L) xC",
such that ¢ = 7*(8~'«). Moreover, everything is G-invariant, and we can
assume o is smooth. Since the construction of a pseudo-differential operator
with given symbol is done locally and then globalized by partitions of unity,
it is clear that we can find P, ¢ 9(U; E, F') with ¢(P,) = ¢, and such that P,
is equal to the identity (or precisely is induced by B~'a) outside some
{G-invariant) compact L > L,. The required operator P is then the average
Av(P)). Strictly speaking we have only shown that averaging preserves the
class P° on compact manifolds. Since U is non-compact, we should either
extend the proof to non-compact manifolds (which is not hard), or we can
argue as follows. We can certainly form Av(P,) in some weak sense (e.g.,
using the distribution topology of kernels). On the other hand, because P, is
the identity outside a compact set, it is clear that averaging over G will
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commute with extension from X to U, that is

Av(j.P) = jAV(P) .
Since X is compact, Av (j,P,) e P(X; j.E,j,F). Hence its restriction to U,
namely Av (P,), belongs to (U; E, F).

We now verify (B2”). For parts (i) and (ii) we have to consider the de
Rham complex of exterior differential forms on the nm-sphere for n =1, 2;
the symbol class of this is just the element os. of Axiom (B2”). If we are
prepared to use the de Rham theorems, which assert that the cohomology of
this complex is naturally isomorphic to the ordinary cohomology groups
H*(S", C), then (i) and (ii) of (B2"”) become obvious. In fact we have

H«(S",C)=0 for0<g<m
dim H°(S", C) = dim H*(S*,C) = 1.
The connected group SO(2) acts trivially on H%S?, C), and so
a-ind pg: = 2€ R(SO(2)) ,
proving (i). On the other hand, the generator of O(1) changes the orientation
of S', and so acts as —1 on H'(S", C) (but trivially on H%S?, C)). Thus
a-ind o = 1 — e R(O(1))
proving (ii).

A direct proof without appealing to the de Rham theorems (or to the
cohomology of spheres!) is however quite easy. For the circle, the de Rham
complex is just f+ df = (df/dx)-dx where x mod 1 is a parameter for the
circle. Hence Kerd consists of the constant functions, and Cokerd is
generated by d@. The generator of O(1) is the map «+ —a which induces
dx — —dx on Coker d and, of course, the identity on Ker d. Thus

a-ind oo =1 — &,
For S*, the de Rham complex has three terms:
a0 dt
0 Q° o O? 0.
Again Ker d’ consists of constants. Taking adjoints, we see that Coker d' is
generated by the volume form in Q. Since SO(2) acts trivially on both these
spaces, it remains to show that there is no contribution from !, i.e., that

dw =0=— w = df we, fed.

Now?* outside the north pole, the Poincaré lemma shows that w = df,, and
similarly w = df. outside the south pole. Then d(f, — f.) =0, and so

2% The proof that follows is essentially a specially simple version of the proof of the
de Rham theorems.
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fo — fo = constant. Thus f, is actually defined everywhere, i.e., foe Q.

We come now to part (iii) of Axiom (B2”). Here the operator whose index
we have to compute is not a differential operator, and the whole problem in
this case is a matter of sign conventions.” In fact, if we make use of the
multiplicative Axiom (B3"”) we can compute (a-ind j,(1))* on S* x S* (or better
on S*). Using part (i) of (B2"”) which we have just verified, one finds

(a-ind (1)) =1,

so that a-ind j(1) = +1, and the whole problem is to show that, with our
choice of sign conventions, we get the plus sign. This we now proceed to do.
Consider first the operator P on the circle S' = R/2rZ defined by
Peimr = gine forn =0
=0 forn < 0.
We shall show that Pe 9. Let fe 9(R) have support in an interval of length
<2m (which we identify with its image in S'). The Fourier coefficients of
f(@)e are f(n — §). Hence, in supp f,
%, &) = e P(f(2)e’™) = 307 f(n — g)ei—
= flo) = T fn — et
As § — — oo, the sum )~ converges to 0 faster than any power of | |, and
so do all its derivatives with respect to « and &, When & — + «, the sum
2, has the same properties. Thus P is pseudo-differential of order zero.
Since
ps(x, §) — f(w) as £ — + oo
—0 asé—— — oo
it follows that Pe 9°, and that its symbol o, is given by
op(w, &) =1 for& >0
=0 foré <o,

Now define A = ¢*P + (1 — P). This is then an operator in 9°, and its
symbol is given by

8.2) o,.(x, &) = e for & >0
=1 foré <0,
A is therefore elliptic. On the other hand, by definition
Aein® = gin+be forn =0
= ¢i"* forn <0,

% See [14, p. 281] for a discussion of the various places where a convention of sign
is involved. Because we have no cohomology so far, our sign problem is a little less acute
than in [14].
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and so Ker A = 0 and Coker A is generated by the constant functions. Thus

index 4 = —1.

To establish axiom (B2") of the analytical index, it remains therefore to
show that the natural homomorphism

(8.3) K(TR") — K(TS")

takes the element —j,(1) into the class of g, in K(T'S'). To do this, we define
a continuous symbol ¢ on R' by equation (8.2) for 0 < x <27, and by 0 = 1
for ¢ < 0 or x > 2z, It is then clear that [o] — [0,] in the homomorphism
(8.3). Thus we have finally to check that

[c] = —J(1) e K(TRY) .
Now both these elements are defined by maps
TR' — (compact set) — C — (0) .

For o, the compact set is the rectangle 0 < v < 7, | £| < 1, while for 5,(1), it
is the disc |& + 26| < 1.

etr 5
1 1 4{——» x z+1i€

Fi1G. 3

On the rectangle, ¢ is ¢ on the top and 1 elsewhere, while j,(1) is « + ¢ on
the unit circle. An elementary homotopy then deforms ¢ into —j,(1) and
the verification of Axiom (B2”) is then complete.

9. The multiplicative axiom

In this section, we show that the analytical index satisfies the multipli-
cative axiom (B3) (and hence also the weaker axiom (B3’)). Once this has
been done'we shall have established all the axioms necessary to apply Theorem
(4.6), and deduce that the analytical and topological indices coincide. Thus
our main theorem (6.7) will be proved.

We start by recalling the context of axiom (B3). Thus let Y =P x, F
be a fibre bundle over a compact manifold X where P— X is a principal
bundle with compact Lie group H, and F'is a compact manifold on which H
acts on the left. In addition a second compact Lie group G acts on both P
and F' commuting with the action of H. Hence G acts on X = P/H and
Y=P x4 F. In what follows, metrics are chosen on P, X, F',Y, and assorted
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vector bundles over these spaces so as to be invariant under G and/or H.
Axiom (B3) is concerned with two elements

ac K (TX), be Kyuu(TF)
and their product, in a suitable sense, which is an element
abe K(TY) .

What we have to do is to calculate the analytic index of ab in terms of the
analytical indices of @ and b. For this purpose we must first represent a, b,
and ab, by elliptic operators. This we proceed to do rather carefully.

Consider first a € K,(TX). We choose a representative smooth symbol «
of order® 1 (and G-invariant). Let A4, € 9' have symbol «, but for the moment
we do not insist that A, be G-invariant. Now take a covering {U;} of X with
trivializations of P, and hence of Y, over each U,. Let {¢%} be a smooth partition
of unity on X for this covering, and consider the operator 47 = ¢;A,p; on
U,. Let Y; = p(U,;) = U; x F, where p: Y — X is the projection, then the
lifted operator A7 on Y, belongs by (5.4) to the class '(Y,). Because of the
@, it can also be regarded as an operator on Y, and so it belongs to ?(Y).
Now form the average over GG

A= Av(S A e FY(Y) .
Since 0(} Af) = Y 9%0(A,) = «, and since taking symbols commutes both
with lifting (5.4) and with averaging (5.6), it follows that
g(A) =a.

Note that because we have chosen invariant metrics everywhere, the lifting
@ of the symbol « is globally well-defined: if we split the cotangent space of
Y into horizontal components & and vertical components 7, then &(&, 7) =a(¢)
(where we identify & with the corresponding vector on the base X).

If we restrict A7 to sections coming from the base, i.e., constant on the
fibres of Y, we recover the original operator A/. Hence the restriction of A
to such sections is just the G-invariant elliptic operator

A = Av(Y Al) e PU(X)
with symbol «.

We turn next to the element b € K, ,(TF'). We choose a G x H-invariant
operator B e P'(F') with 8 = a(B) in the class b. Let B, be the operator on
P x F obtained by lifting B. Since it is G x H-invariant, it induces a
G-invariant operator B on ¥ = P x , F. We simply restrict B, to sections
constant along the fibres of P x F'— Y. Since P is locally a product, it

31 As promised in §5 we are only going to apply (56.4) for m = 1.
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follows that, over the open sets Y; = p~(U,) = U, x F, the restriction B;
of B is just the lifting of B. It then follows from (5.4) that B; ¢ ?(Y;), and
so Be P(Y). Let B = o(B). It is invariantly defined by 8, and in terms of
horizontal (¢) and vertical () components, we have B, ) = B(T).

Finally we come to the element ab. For this we take the operator

~

A —B*\ _
D= (~ ~ |eP(Y).
B A*
It is G-invariant (since A and B are), and we have
A _ D%
o(D) = (‘f o ) .
s ar

Remark. If Ae PY(X; E°, E') and B e P'(F; G°, G'), then
De9(Y;E°XGCPEXG,E'EXGCHEXG,

and the two liftings of A, which occur in D, are liftings to different bundles.
Thus the A in the top-left is the lifting to G°, while A* in the bottom right
is (adjoint of) the lifting to G'. However the position in the matrix makes
clear which bundles are involved, and to simplify the notation we shall omit
all reference to the actual bundles involved.

As explained in § 2, o(D) is a representative for the class ab. What we
have to do now is to compute the index of the elliptic operator D.

We first show that A and B commute. From the local product represen-
tation Y; = U, x F, it follows that B; commutes with 4. Thus B commutes
with Y Aj and, because B is G-invariant, it also commutes with A4 =

Av (3 A¢). Similar remarks apply with B* for B, and so the off-diagonal
terms in D commute with the diagonal terms. Hence

A*A + B*B 0 P, 0

D*D = o~ ~~ | = say
0 AA* + BB* 0 Q
DD*:(AA*+B*B ~~0~~ :(Pl 0
0 A*A + BB* 0 @

Computing the kernels (on smooth sections), it follows that

Ker D = Ker D*D = Ker P, P Ker Q,
Ker D* = Ker DD* = Ker P, G Ker Q, .

But by (6.6) (regularity for elliptic operators in $™), it follows that we have
Ker D* = Coker D and so

index* D = (Ker P, — Ker P,) + (Ker @, — Ker Q,) € R(G) .
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Consider now the operator P, = A*4 + B*B (on smooth sections). For any
smooth section u we have

(P, wy = {Au, Auy + {Bu, Bu) ,

and so Ker P, = Ker A N Ker B. Since B is the natural extension of the
operator B on the fibres, it follows that Ker B consists of those smooth
sections which, on each fibre Y., lie in Ker B, (where B, denotes the operator
on Y, corresponding to B on the standard fibre F'). But this is just another
way of saying that Ker B is the space of smooth sections of the vector bundle
K;=P x ,Ker Bover X. Since A and B commute, it follows that A induces
an operator C on the sections of K. Since A = Av(Y ¢,;4ip;), we have
C = Av(}_ ¢,C;p;) where C; is the operator induced on K,| U, by Ai. But,
by definition of A7, this means that C, = 4, ® Id(K,). Hence C,c 9", C e
and

o(C)=a@IK,) .
Thus C is a G-invariant elliptic operator over X, and the class of o(C) in
K (TX) is the product a[ K;] of the class a € K,(TX) of the symbol « and the

class [K;] € Ki(X) of the vector bundle K;. Since A* = (4%)~, replacing A
by A* replaces P, by P, and C by C*. Hence

Ker P, — Ker P, = Ker C — Ker C* = a-ind* a[K;] € R(G) .
Replacing B by B*, we similarly get
Ker Q, — Ker Q, = a-ind* a[L;] € R(G) ,
where L, = P x , Coker B. Hence finally we obtain
index” D = a-ind" (a([K;] — [L;])) = a-ind* (a- p(a-inds, ,* b)) € R(G) .

Since the class of o(D) is the product ab, we have therefore established
Axiom (B3) for the analytical index. The proof of Theorem (6.7) is thus
complete.
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